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Graph from Todd Austin’s seminar @ UIUC, 8/17

Post-Moore: Exploding Heterogeneity and Cost

Technology             Enabling Interface

CPUs ISAs

Databases Relational queries

Datacenters             MapReduce

GPUs CUDA

Internet IP

Custom hardware   ???

How to build the software stack?

What is the hardware-software interface?

Right interface can address cost

Free hardware/software designer to innovate

Source: Brooks, Wei group, http://vlsiarch.eecs.harvard.edu/accelerators/die-photo-

analysis

Source: Brooks, Wei group, 

http://vlsiarch.eecs.harvard.edu/accelerators/die-photo-analysis

CPU = Central Processing Unit, GPU = Graphics Processing Unit, ISA = Instruction Set Architecture, CUDA = Compute Unified Device Architecture



Why Now

● Explosion of accelerators
○ Broaden accelerator applicability from kernels to apps and infrastructure

○ Accelerate memory and communication, too

● Move to system view of specialization
○ Focus on specialization of communication, to connect multiple hardware IPs 

○ Solve composability and portability, to co-develop accelerators

○ Manage software cost, to make system-wide specialization affordable

● Develop next-generation interface methodologies
○ Convey multiple properties: security, verifiability, accuracy, …

○ Inflection point in tools for verification, synthesis, machine learning, …

● Open-source hardware and other Electronics Resurgence Initiative 

investments



Three (Related) Views of Interfaces

Uniform Interface 

View

Co-designed Stack 

View

Catalog of Parts 

View

Software developed
independent of hardware

Mobile devices
Desktops
Servers

Data centers
Supercomputers

Co-design of software & 
hardware

Accelerators
Embedded systems

Internet-of-Things devices
Domain-specific languages

Diverse hardware and software
components that must interoperate

Rich interfaces enable automatic 
composition, verification, tuning



Uniform Interface View

Diverse 

Hardware

Uniform Interface(s)

Diverse 

Software

For software developed
independent of hardware Key: Uniform 

abstractions for 

diverse hardware

Front-ends, tools for 

diverse languages

Back-ends, optimizers, 

autotuners, schedulers 

for high performance



Current Interface Levels: Which Can Be Uniform?

CPUs + Vector 

SIMD Units

…

GPU
DSP

Domain-specific 

Accelerators

FPGA

"Hardware" ISA

Virtual ISA

Language-neutral Compiler IR

Language-level Compiler IR

General-purpose language

Domain-specific language Too diverse

to define a 

uniform 

interface

Also too  

diverse …

Much more

uniform

Hardware innovation

Object-code portability

Compiler investment

Language innovation

Application performance

Application productivity

Source: Vikram Adve, HPVM project,

https://publish.illinois.edu/hpvm-project/ 6
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What should this uniform interface be? 

How to represent software attributes to maximize efficiency on diverse hardware?

How to create front ends and tools for diverse languages?

How to create back-ends, optimizers, autotuners, schedulers for diverse hardware?



Uniform Interface View: Potential Surprise

Unlocks 100-1000x efficiency of heterogeneous hardware

Zero Hour SW Bring Up: Software ready as soon as hardware off fab

LLVM 2.0 HW implementation of IF

HW1 HW3

IF IF

FPGA bitstreamx86

DSL1-IF compiler

DSL 1

DSL2-IF compiler

DSL 2

TomorrowToday

h/w1 h/w3

FPGA bitstreamx86

DSL1-HW 

compiler

DSL 1

DSL2-HW 

compiler

DSL 2

h/w2

DSL3-HW 

compiler

DSL 3

Hardware

Uniform Interface(s)

Software

DSL = Domain-Specific Language     HW = Hardware      SW = Software       IF = Interface



Developer site

User site

Example 1: HPVM: Compiler IR and Virtual ISA [V. Adve et al.]

Target-aware HPVM 

graph optimizer

HPVM code-gen for 

each compute unit

Front  ends

CPUs + Vector 
SIMD Units

…

GPU
DSP

Domain-
specific 

Accelerators

FPGA

HPVM

OpenCL

OpenMP

Halide
Other

DSLs

TensorFlow

HPVM = Heterogeneous Parallel Virtual Machine

Kotsifakou et al.,PPoPP’18

Single program: Nk mappings

N graph nodes
Static OR

dynamic

mappings

K devices

3% slower on GPU

8% slower on Vector

HPVM comes close to separate 
hand-tuned code on GPU, vectors

HPVM enables highly flexible static 
or dynamic scheduling policies

HPVM Model
Hierarchical 

Dataflow Graph 
(with side effects)

LLVM with 

vector ops

VA = load <L4 x float>* A
VB = load <L4 x float>* B
…
VC = fmul <L4 x float> VA, VB

Or “Child 
Graph



Key elements

■ DSLs embedded in Scala

■ IR created using type-directed staging

■ Domain specific optimization

■ General parallelism, locality optimizations using 

parallel patterns

■ Optimized mapping to hardware targets
K. J. Brown  et. al., PACT, 2011; K. J. Brown et. al., CGO 2016

Parallel Patterns

Map, Zip, Filter, 

FlatMap, Reduce, 

GroupBy, Join, 

Sort, …

Example 2: Delite IR: Parallel Pattern Lang. [Olukotun et al.]

Most data analytic computations can be expressed as functional data 

parallel patterns on collections (e.g. sets, arrays, tables, n-d matrices)

10



Codesigned Stack View
Co-design of hardware 
and software Key: Coordinated stack of 

codesigned interfaces 

Automated generation of stack

High-level interface for DSL 

construction

Low-level interface for 

hardware

Hardware 

design

Compiler/ 

codegen

DSL

Interface

Application

developers



Coordinated Stack of Interfaces

Bottlenecks in accelerator design 

- What to accelerate? 

- What is the hardware/software 

interface?

- Developer tools and IR stack

New interfaces appear in a coordinated 

stack of interfaces, needing coordinated 

effort of experts

Takes years of design and 

implementation today, not reusable for 

other domains
Source: Olukotun, I-USHER workshop

12

High Level 

Application

TensorFlow



Coordinated Stack of Interfaces

Bottlenecks in accelerator design 

- What to accelerate? 

- What is the hardware/software 

interface?

- Developer tools and IR stack

How to automate this process? 

How to reuse across domains?

Modular, configurable IRs? 

Retargetable toolchains for new IRs?  

Leverage uniform interface view?

13

High Level 

Application

TensorFlow



Codesigned Stack View: Potential Surprise

Example process
1. Collect representative apps or kernels

2. Automatically rewrite into alternative algorithms

3. Identify performance bottlenecks

4. Map hardware primitives to software dataflow graphs; select best 

hardware design

5. Infer hardware interface

6. Synthesize DSL spec

7. Automatically construct compiler from DSL to accelerator 

8. Design hardware that implements the hardware interface Hardware 

design

Compiler/ 

codegen

DSL

Interface

Application

developers

Semi-automatic generation of co-designed hardware interface and DSL

for chosen domain

14



Example 1: Spatial: IR for Accel. Design [Olukotun et al.]

Simplify accelerator design

● IR that can be mapped to many 

hardware targets: FPGA, ASIC, …

● Constructs to express:

○ Parallel patterns as parallel 

and pipelined datapaths

○ Hierarchical control

○ Explicit memory hierarchies

○ Explicit parameters

● Optimizes parameters for each 

target: parallelization, pipelining, 

memory size, memory banking

Allows programmers & high level 

compilers to focus on specifying 

parallelism and locality

D. Koeplingeret. Al. PLDI 2018 
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Example 2: TVM for Automated Hardware/Software Co-Design [Ceze et al.]

Mapping ML code to diverse hardware typically 
requires a significant amount of hand-tuning over a 
space with billions of possibilities. 

A solution is to use learning techniques to make 
tuning automatic. Recent advances such as 
automatic optimization in the TVM stack show 
significant improvement compared to hand-tuned 
implementations. 

This technique is now being applied to automatic 
hardware/software co-design. 

150+ contributors, 
several production 
industrial users.

AutoTVM Conv2d example on TitanX

Source: UW SAMPL group (sampl.ai) 16

TensorFlow, MxNet, PyTorch, Keras, etc.



Example 3: Stream Dataflow Execution [Sankaralingam et al.]

5 common principles for domain specific architecture (DSA)

● Stream-Dataflow Acceleration, ISCA-2017

● Domain Specialization is generally unnecessary 

for accelerators, HPCA 2016 & Top-Picks

● Analyzing Behavior Specialized Acceleration, 

ASPLOS-2016

● Exploring the Potential of Heterogeneous Von 

Neumann/Dataflow Execution Models, ISCA-

2015, Top-Picks, CACM RH 17



Catalog of Parts View
For plug-and-play 
hardware and software Key:  Rich, formal, 

composable interfaces

Tuning

Automated, verified composition 

Communication

The TTL Data Book for Design Engineers Second Edition

Author: The Engineering Staff of Texas Instruments, 1976

In this 832-page data book, Texas Instruments is pleased to present important technical information on the industry's broadest and most 

advanced families of TTL integrated circuits. — You'll find complete specifications on standard-technology TTL circuits (Series 54/74, 

Series 54H/74H, Series 54L/74L) and on TI's high-technology TTL circuits such...  more » 18

http://www.paperbackswap.com/The-Engineering-Staff-Of-Texas-Instruments/author/
http://www.paperbackswap.com/TTL-Data-Book-The-Engineering-Staff-Of-Texas/book/270945/


Towards Formal Interfaces for Universal Plug and Play

Different cadence of innovation between hardware and software, between 

accelerators

To deploy new parts ASAP, need clean interfaces to “plug and play” 

Today’s parts
● Interfaces in English

● Glue logic explosion 

○ Linux: 12M of 15M LOC in drivers

● Inefficiencies of driver-driver interactions

● Bugs in inter-IP block interactions

● No composability, build from scratch rather than reuse[TI 
OMAP4 
SoC]

TI OMAP4 SoC

19



Towards Formal Interfaces for Universal Plug and Play

Different cadence of innovation between hardware and software, between 

accelerators

To deploy new parts ASAP, need clean interfaces to “plug and play” 

[TI 
OMAP4 
SoC]

.
How to specify formal, machine checkable spec

● Operational spec for part + how parts connect

○ Shim to connect parts is also a part

○ Communication/memory first order

● Express performance, accuracy, resource use, security, ...

20
TI OMAP4 SoC



Catalog of Parts View: The Surprise

Reusable, verifiable, secure, market-driven ecosystem of parts 

that can composably interoperate 

and has checkable performance+semantic properties

On-chip Interconnect 
Interconnect

CPU GPU Cam Touch Flash

… … … PTIP…

RAM

HW ACCEL

ROM (FW)

μC

NOC IF

Source: Sharad Malik, I-USHER workshop
21



Example 1: Instruction-Level Abstraction (ILA) [Malik et al.] 

• Uniform: accelerator & processor

• Hierarchical: multi-level

• Enables formal software/hardware 
co-verification

• ILA compatibility for accelerator 
replacement

Modeling Accelerators

Processor ISA

• RISC-V RV32I base 
instruction set w. 
privilege instructions

ILA: ISA-like Abstraction

Verification

• Accelerator upgrades
• Found RISC-V Rocket 

MRET/SRET bug
• Verified AES/RBM/GB 

accelerators

Halide description

C++ for HLS

RTL implementation

High-level ILA

Low-level ILA

Start Encrypt

Block load

Block encrypt

Block store

ILA C ILA VStart Encypt

Initiate DMA

load word 1

load word 2

…

load word 3

Training Predication

RBM ILA

Data 

Transferring 
Child-ILAs



Example 2: CheckSuite [Martonosi et al.]
An ecosystem of tools to verify cross-layer consistency, coherence interfaces

High-Level Languages 
(HLL)

Compiler

Architecture

Microarchitecture

OS

TriCheck [ASPLOS ‘17] [IEEE MICRO Top Picks]

PipeCheck [Micro-47] [IEEE MICRO Top Picks]
CCICheck [Micro-48] [Nominated for Best Paper Award]

COATCheck [ASPLOS ‘16] [IEEE MICRO Top Picks]

RTL RTLCheck [Micro-50] [MICRO Top Picks Hon. Mention]

Approach
• Formal specifications -> Happens-before graphs
• Check Happens-Before Graphs via Efficient SMT solvers 

• Cyclic => A->B->C->A… Can’t happen
• Acyclic => Scenario is observable

A

C

B

Tools found bugs in:
• Widely-used 

Research simulator
• Cache coherence 

paper
• IBM XL C++ compiler 

(fixed in v13.1.5)
• In-design commercial 

processors
• RISC-V ISA 

specification
• Compiler mapping 

proofs
• C++ 11 mem model

23



Example 3: Spandex [S. Adve et al.]
Request Generated for

ReqV Self-invalidating read

ReqS Writer-invalidated read

ReqWT Write-through store

ReqO Write-only ownership store

ReqWT+data Atomic for WT cache

ReqO+data
Read-for-ownership store,

Atomic for ownership cache

ReqWB Owned data eviction

Read

Write

Read+

Write

Writeback

Goal: Accelerator 

communication, 

coherence interface 

Spandex Coherence Interface 

Key Components

Flexible device request interface

External request interface

DeNovo-based LLC

Device may need translation unit

+ granularity

Alsop et al. ISCA’18
24



Hardware 

design

Compiler/ 

codegen

DSL

Interface

Application

developers

The Three Interface Views Together

Diverse 

Hardware

Diverse 

Software

Uniform Interface(s)

Uniform Interface Codesigned stack               Catalog of Parts

Zero hour software bring up  + Rapid HW-SW codesign + Machine checked plug and play

Unlock usable specialization for embedded devices to planetary scale computing

Address performance, efficiency, portability, HW & SW design productivity, verifiability, security



Measuring Success

HW Design & Verification

SW Development & Testing

Time to 

Market

(HW+SW)

Months 

to

Years

Days

to

Weeks
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