
I-USHER: Interfaces to Unlock the Specialized HardwarE Revolution

A DARPA Information Science and Technology (ISAT) Study

Leads:

Sarita Adve, University of Illinois

Ras Bodik, University of Washington

Steering Committee: Luis Ceze, University of Washington

April 1, 2019

This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA).

Approved for public release; distribution unlimited.

The views, opinions, and/or findings expressed are those of the authors and should not be interpreted as representing the official view of

policies of the Department of Defense or the U.S. Government..

Source: International Business Strategies

Graph from Todd Austin’s seminar @ UIUC, 8/17

Post-Moore: Exploding Heterogeneity and Cost

Technology Enabling Interface

CPUs ISAs

Databases Relational queries

Datacenters MapReduce

GPUs CUDA

Internet IP

Custom hardware ???

How to build the software stack?

What is the hardware-software interface?

Right interface can address cost

Free hardware/software designer to innovate

Source: Brooks, Wei group, http://vlsiarch.eecs.harvard.edu/accelerators/die-photo-

analysis

Source: Brooks, Wei group,

http://vlsiarch.eecs.harvard.edu/accelerators/die-photo-analysis

CPU = Central Processing Unit, GPU = Graphics Processing Unit, ISA = Instruction Set Architecture, CUDA = Compute Unified Device Architecture

Why Now

● Explosion of accelerators
○ Broaden accelerator applicability from kernels to apps and infrastructure

○ Accelerate memory and communication, too

● Move to system view of specialization
○ Focus on specialization of communication, to connect multiple hardware IPs

○ Solve composability and portability, to co-develop accelerators

○ Manage software cost, to make system-wide specialization affordable

● Develop next-generation interface methodologies
○ Convey multiple properties: security, verifiability, accuracy, …

○ Inflection point in tools for verification, synthesis, machine learning, …

● Open-source hardware and other Electronics Resurgence Initiative

investments

Three (Related) Views of Interfaces

Uniform Interface

View

Co-designed Stack

View

Catalog of Parts

View

Software developed
independent of hardware

Mobile devices
Desktops
Servers

Data centers
Supercomputers

Co-design of software &
hardware

Accelerators
Embedded systems

Internet-of-Things devices
Domain-specific languages

Diverse hardware and software
components that must interoperate

Rich interfaces enable automatic
composition, verification, tuning

Uniform Interface View

Diverse

Hardware

Uniform Interface(s)

Diverse

Software

For software developed
independent of hardware Key: Uniform

abstractions for

diverse hardware

Front-ends, tools for

diverse languages

Back-ends, optimizers,

autotuners, schedulers

for high performance

Current Interface Levels: Which Can Be Uniform?

CPUs + Vector

SIMD Units

…

GPU
DSP

Domain-specific

Accelerators

FPGA

"Hardware" ISA

Virtual ISA

Language-neutral Compiler IR

Language-level Compiler IR

General-purpose language

Domain-specific language Too diverse

to define a

uniform

interface

Also too

diverse …

Much more

uniform

Hardware innovation

Object-code portability

Compiler investment

Language innovation

Application performance

Application productivity

Source: Vikram Adve, HPVM project,

https://publish.illinois.edu/hpvm-project/ 6

Current Interface Levels: Which Can Be Uniform?

CPUs + Vector

SIMD Units

…

GPU
DSP

Domain-specific

Accelerators

FPGA

"Hardware" ISA

Virtual ISA

Language-neutral Compiler IR

Language-level Compiler IR

General-purpose language

Domain-specific language Too diverse

to define a

uniform

interface

Also too

diverse …

Much more

uniform

Hardware innovation

Object-code portability

Compiler investment

Language innovation

Application performance

Application productivity

Source: Vikram Adve, HPVM project,

https://publish.illinois.edu/hpvm-project/ 7

What should this uniform interface be?

How to represent software attributes to maximize efficiency on diverse hardware?

How to create front ends and tools for diverse languages?

How to create back-ends, optimizers, autotuners, schedulers for diverse hardware?

Uniform Interface View: Potential Surprise

Unlocks 100-1000x efficiency of heterogeneous hardware

Zero Hour SW Bring Up: Software ready as soon as hardware off fab

LLVM 2.0 HW implementation of IF

HW1 HW3

IF IF

FPGA bitstreamx86

DSL1-IF compiler

DSL 1

DSL2-IF compiler

DSL 2

TomorrowToday

h/w1 h/w3

FPGA bitstreamx86

DSL1-HW

compiler

DSL 1

DSL2-HW

compiler

DSL 2

h/w2

DSL3-HW

compiler

DSL 3

Hardware

Uniform Interface(s)

Software

DSL = Domain-Specific Language HW = Hardware SW = Software IF = Interface

Developer site

User site

Example 1: HPVM: Compiler IR and Virtual ISA [V. Adve et al.]

Target-aware HPVM

graph optimizer

HPVM code-gen for

each compute unit

Front ends

CPUs + Vector
SIMD Units

…

GPU
DSP

Domain-
specific

Accelerators

FPGA

HPVM

OpenCL

OpenMP

Halide
Other

DSLs

TensorFlow

HPVM = Heterogeneous Parallel Virtual Machine

Kotsifakou et al.,PPoPP’18

Single program: Nk mappings

N graph nodes
Static OR

dynamic

mappings

K devices

3% slower on GPU

8% slower on Vector

HPVM comes close to separate
hand-tuned code on GPU, vectors

HPVM enables highly flexible static
or dynamic scheduling policies

HPVM Model
Hierarchical

Dataflow Graph
(with side effects)

LLVM with

vector ops

VA = load <L4 x float>* A
VB = load <L4 x float>* B
…
VC = fmul <L4 x float> VA, VB

Or “Child
Graph

Key elements

■ DSLs embedded in Scala

■ IR created using type-directed staging

■ Domain specific optimization

■ General parallelism, locality optimizations using

parallel patterns

■ Optimized mapping to hardware targets
K. J. Brown et. al., PACT, 2011; K. J. Brown et. al., CGO 2016

Parallel Patterns

Map, Zip, Filter,

FlatMap, Reduce,

GroupBy, Join,

Sort, …

Example 2: Delite IR: Parallel Pattern Lang. [Olukotun et al.]

Most data analytic computations can be expressed as functional data

parallel patterns on collections (e.g. sets, arrays, tables, n-d matrices)

10

Codesigned Stack View
Co-design of hardware
and software Key: Coordinated stack of

codesigned interfaces

Automated generation of stack

High-level interface for DSL

construction

Low-level interface for

hardware

Hardware

design

Compiler/

codegen

DSL

Interface

Application

developers

Coordinated Stack of Interfaces

Bottlenecks in accelerator design

- What to accelerate?

- What is the hardware/software

interface?

- Developer tools and IR stack

New interfaces appear in a coordinated

stack of interfaces, needing coordinated

effort of experts

Takes years of design and

implementation today, not reusable for

other domains
Source: Olukotun, I-USHER workshop

12

High Level

Application

TensorFlow

Coordinated Stack of Interfaces

Bottlenecks in accelerator design

- What to accelerate?

- What is the hardware/software

interface?

- Developer tools and IR stack

How to automate this process?

How to reuse across domains?

Modular, configurable IRs?

Retargetable toolchains for new IRs?

Leverage uniform interface view?

13

High Level

Application

TensorFlow

Codesigned Stack View: Potential Surprise

Example process
1. Collect representative apps or kernels

2. Automatically rewrite into alternative algorithms

3. Identify performance bottlenecks

4. Map hardware primitives to software dataflow graphs; select best

hardware design

5. Infer hardware interface

6. Synthesize DSL spec

7. Automatically construct compiler from DSL to accelerator

8. Design hardware that implements the hardware interface Hardware

design

Compiler/

codegen

DSL

Interface

Application

developers

Semi-automatic generation of co-designed hardware interface and DSL

for chosen domain

14

Example 1: Spatial: IR for Accel. Design [Olukotun et al.]

Simplify accelerator design

● IR that can be mapped to many

hardware targets: FPGA, ASIC, …

● Constructs to express:

○ Parallel patterns as parallel

and pipelined datapaths

○ Hierarchical control

○ Explicit memory hierarchies

○ Explicit parameters

● Optimizes parameters for each

target: parallelization, pipelining,

memory size, memory banking

Allows programmers & high level

compilers to focus on specifying

parallelism and locality

D. Koeplingeret. Al. PLDI 2018

15

Example 2: TVM for Automated Hardware/Software Co-Design [Ceze et al.]

Mapping ML code to diverse hardware typically
requires a significant amount of hand-tuning over a
space with billions of possibilities.

A solution is to use learning techniques to make
tuning automatic. Recent advances such as
automatic optimization in the TVM stack show
significant improvement compared to hand-tuned
implementations.

This technique is now being applied to automatic
hardware/software co-design.

150+ contributors,
several production
industrial users.

AutoTVM Conv2d example on TitanX

Source: UW SAMPL group (sampl.ai) 16

TensorFlow, MxNet, PyTorch, Keras, etc.

Example 3: Stream Dataflow Execution [Sankaralingam et al.]

5 common principles for domain specific architecture (DSA)

● Stream-Dataflow Acceleration, ISCA-2017

● Domain Specialization is generally unnecessary

for accelerators, HPCA 2016 & Top-Picks

● Analyzing Behavior Specialized Acceleration,

ASPLOS-2016

● Exploring the Potential of Heterogeneous Von

Neumann/Dataflow Execution Models, ISCA-

2015, Top-Picks, CACM RH 17

Catalog of Parts View
For plug-and-play
hardware and software Key: Rich, formal,

composable interfaces

Tuning

Automated, verified composition

Communication

The TTL Data Book for Design Engineers Second Edition

Author: The Engineering Staff of Texas Instruments, 1976

In this 832-page data book, Texas Instruments is pleased to present important technical information on the industry's broadest and most

advanced families of TTL integrated circuits. — You'll find complete specifications on standard-technology TTL circuits (Series 54/74,

Series 54H/74H, Series 54L/74L) and on TI's high-technology TTL circuits such... more » 18

http://www.paperbackswap.com/The-Engineering-Staff-Of-Texas-Instruments/author/
http://www.paperbackswap.com/TTL-Data-Book-The-Engineering-Staff-Of-Texas/book/270945/

Towards Formal Interfaces for Universal Plug and Play

Different cadence of innovation between hardware and software, between

accelerators

To deploy new parts ASAP, need clean interfaces to “plug and play”

Today’s parts
● Interfaces in English

● Glue logic explosion

○ Linux: 12M of 15M LOC in drivers

● Inefficiencies of driver-driver interactions

● Bugs in inter-IP block interactions

● No composability, build from scratch rather than reuse[TI
OMAP4
SoC]

TI OMAP4 SoC

19

Towards Formal Interfaces for Universal Plug and Play

Different cadence of innovation between hardware and software, between

accelerators

To deploy new parts ASAP, need clean interfaces to “plug and play”

[TI
OMAP4
SoC]

.
How to specify formal, machine checkable spec

● Operational spec for part + how parts connect

○ Shim to connect parts is also a part

○ Communication/memory first order

● Express performance, accuracy, resource use, security, ...

20
TI OMAP4 SoC

Catalog of Parts View: The Surprise

Reusable, verifiable, secure, market-driven ecosystem of parts

that can composably interoperate

and has checkable performance+semantic properties

On-chip Interconnect
Interconnect

CPU GPU Cam Touch Flash

… … … PTIP…

RAM

HW ACCEL

ROM (FW)

μC

NOC IF

Source: Sharad Malik, I-USHER workshop
21

Example 1: Instruction-Level Abstraction (ILA) [Malik et al.]

• Uniform: accelerator & processor

• Hierarchical: multi-level

• Enables formal software/hardware
co-verification

• ILA compatibility for accelerator
replacement

Modeling Accelerators

Processor ISA

• RISC-V RV32I base
instruction set w.
privilege instructions

ILA: ISA-like Abstraction

Verification

• Accelerator upgrades
• Found RISC-V Rocket

MRET/SRET bug
• Verified AES/RBM/GB

accelerators

Halide description

C++ for HLS

RTL implementation

High-level ILA

Low-level ILA

Start Encrypt

Block load

Block encrypt

Block store

ILA C ILA VStart Encypt

Initiate DMA

load word 1

load word 2

…

load word 3

Training Predication

RBM ILA

Data

Transferring
Child-ILAs

Example 2: CheckSuite [Martonosi et al.]
An ecosystem of tools to verify cross-layer consistency, coherence interfaces

High-Level Languages
(HLL)

Compiler

Architecture

Microarchitecture

OS

TriCheck [ASPLOS ‘17] [IEEE MICRO Top Picks]

PipeCheck [Micro-47] [IEEE MICRO Top Picks]
CCICheck [Micro-48] [Nominated for Best Paper Award]

COATCheck [ASPLOS ‘16] [IEEE MICRO Top Picks]

RTL RTLCheck [Micro-50] [MICRO Top Picks Hon. Mention]

Approach
• Formal specifications -> Happens-before graphs
• Check Happens-Before Graphs via Efficient SMT solvers

• Cyclic => A->B->C->A… Can’t happen
• Acyclic => Scenario is observable

A

C

B

Tools found bugs in:
• Widely-used

Research simulator
• Cache coherence

paper
• IBM XL C++ compiler

(fixed in v13.1.5)
• In-design commercial

processors
• RISC-V ISA

specification
• Compiler mapping

proofs
• C++ 11 mem model

23

Example 3: Spandex [S. Adve et al.]
Request Generated for

ReqV Self-invalidating read

ReqS Writer-invalidated read

ReqWT Write-through store

ReqO Write-only ownership store

ReqWT+data Atomic for WT cache

ReqO+data
Read-for-ownership store,

Atomic for ownership cache

ReqWB Owned data eviction

Read

Write

Read+

Write

Writeback

Goal: Accelerator

communication,

coherence interface

Spandex Coherence Interface

Key Components

Flexible device request interface

External request interface

DeNovo-based LLC

Device may need translation unit

+ granularity

Alsop et al. ISCA’18
24

Hardware

design

Compiler/

codegen

DSL

Interface

Application

developers

The Three Interface Views Together

Diverse

Hardware

Diverse

Software

Uniform Interface(s)

Uniform Interface Codesigned stack Catalog of Parts

Zero hour software bring up + Rapid HW-SW codesign + Machine checked plug and play

Unlock usable specialization for embedded devices to planetary scale computing

Address performance, efficiency, portability, HW & SW design productivity, verifiability, security

Measuring Success

HW Design & Verification

SW Development & Testing

Time to

Market

(HW+SW)

Months

to

Years

Days

to

Weeks

Sarita Adve, Illinois/ISAT

Vikram Adve, Illinois

Ras Bodik, Washington/ISAT

David Brooks, Harvard

Luis Ceze. Washington/ISAT

David Doermann, DARPA

Chris Fletcher, Illinois

Vinod Grover, NVIDIA

Priscilla Guthrie, ISAT

Mark Hill, Wisconsin

Shan Lu, U. Chicago

Sharad Malik, Princeton

Margaret Martonosi, Princeton

Sasa Misailovic, Illinois

Sandeep Neema, DARPA

Kunle Olukotun, Stanford

Chris Ramming, VMware/ISAT

Partha Ranganathan, Google

Jonathan Ragan-Kelley, Berkeley

Tatiana Shpeisman, Google

Michael Taylor, Washington

Kathy Yelick, Berkeley

Appendix: I-USHER Workshop Participants (March 5-6, 2018)

