I-USHER: Interfaces to Unlock the Specialized HardwarE Revolution

A DARPA Information Science and Technology (ISAT) Study

Leads:
Sarita Adve, University of lllinois
Ras Bodik, University of Washington
Steering Committee: Luis Ceze, University of Washington

April 1, 2019

This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA).
Approved for public release; distribution unlimited.
The views, opinions, and/or findings expressed are those of the authors and should not be interpreted as representing the official view of
policies of the Department of Defense or the U.S. Government..

0

Post-Moore: Exploding Heterogeneity and Cost

8

=
[
(=]

&
[=}

" H/W Design and Verification

=
(=]
(=}

S/W Development and Testing
I"Mask Costs

]
o

W W
o o

3]

Cost to Market ($ million)
@
(=]

]

o

- NN
o

=]

0.5u

0.35u 0.25u 0.18u 0.13u 90nm 65nm 45nm 28nm 20nm

Silicon Technology Node

of Specialized IP Blocks

o o

Ad A5 AB A7 A8 A9
2010

Source: Brooks, Wei group, http:/visiarch.eecs.harvard.edu/accelerators/die-photo-

A10 AN
2017

Source: International Business Strategies analysis .
Graph from Todd Austin’s seminar @ UIUC, 8/17 TeChnOIOQy Enab“ng Interface
CPUs ISAS
Databases Relational queries
Datacenters MapReduce
How to build the software stack? IGE’US t IC;UDA
nterne
What is the hardware-software interface? custom hardware | 277
| Source: Brooks, Wei group, Right interface can address cost

http://visiarch.eecs.harvard.edu/accelerators/die-photo-analysis F ree h ardwa re /S oftwa re d es | g ner t 0 | nn ovat e

CPU = Central Processing Unit, GPU = Graphics Processing Unit, ISA = Instruction Set Architecture, CUDA = Compute Unified Device Architecture

Why Now

e Explosion of accelerators
o Broaden accelerator applicability from kernels to apps and infrastructure
o Accelerate memory and communication, too
e Move to system view of specialization
o Focus on specialization of communication, to connect multiple hardware IPs
o Solve composability and portability, to co-develop accelerators
o Manage software cost, to make system-wide specialization affordable
e Develop next-generation interface methodologies
o Convey multiple properties: security, verifiability, accuracy, ...
o Inflection point in tools for verification, synthesis, machine learning, ...
e Open-source hardware and other Electronics Resurgence Initiative

investments

Three (Related) Views of Interfaces

Uniform Interface Co-designed Stack
View View
Software developed Co-design of software &
independent of hardware hardware
Mobile devices Accelerators

Desktops Catalog of Parts Embedded systems
Servers View Internet-of-Things devices

Data centers Domain-specific languages

Diverse hardware and software
components that must interoperate
Rich interfaces enable automatic
composition, verification, tuning

Supercomputers

Uniform Interface View

For software developed
independent of hardware .. Key: Uniform
Diverse abstractions for
Software diverse hardware

Uniform @Zé:rface(s) ____| Front-ends, tools for

diverse languages

Diverse Back-ends, optimizers,
Hardware autotuners, schedulers
= for high performance

Current Interface Levels: Which Can Be Uniform?

Application productivity Domain-specific language 5 it
Application performance General-purpose language fo d?f In€ a
uniform
Language innovation Language-level Compiler IR interface
Compiler investment Language-neutral Compiler IR e e
Object-code portability Virtual ISA uniform
Hardware innovation "Hardware" ISA ___ Also too
N =W .
CPUs + Vector -

DSP FPGA
SIMD Units GPU Domain-specific Source: Vikram Adve, HPVM project,

Accelerators https.//publish.illinois.edu/hpvm-project/

Current Interface Levels: Which Can Be Uniform?

Application productivity Domain-specific language 5 it
Application performance General-purpose language fo d?f In€ a
uniform
Language innovation Language-level Compiler IR interface
Compiler investment Language-neutral Compiler IR e e
Object-code portability Virtual ISA uniform

What should this uniform interface be?

How to represent software attributes to maximize efficiency on diverse hardware?
How to create front ends and tools for diverse languages?
How to create back-ends, optimizers, autotuners, schedulers for diverse hardware?

7

Uniform Interface View: Potential Surprise

Unlocks 100-1000x efficiency of heterogeneous hardware
Zero Hour SW Bring Up: Software ready as soon as hardware off fab

DSL 1 DSL 2 DSL 3 DSL 1 DSL 2
DSL1-IF compiler DSL2-IF compiler
DSL1-HW DSL2-HW DSL3-HW
compiler compiler compiler IE l>< IE

LLVM 2.0 HW implementation of IF

FPGA bitstream X86 FPGA bitstream
hiwil hiw3 HW1 HW3 -

Uniform I_r?t%rface(s)

X86

Today Tomorrow

Hardware

DSL = Domain-Specific Language HW = Hardware = SW = Software IF = Interface =~ —

Example 1. HPVM: Compiler IR and Virtual ISA [V. Adve et al]

HPVM Model
Hierarchical
Dataflow Graph
(with side effects)

Eev

load <L4 x float>* A
=load <L4 x float>* B

vc = fmul <L4 x float> V,,, Vg

VA

/7
¢ LLVM with
vector ops

\
\ Or “Child

sloper site
User site I

TensorFlow
Halide

OpenMP
OpenCL

2

Other
DSLs

Front edds)|

)

|

[

A 4

Target-aware HPVM
graph optimizer

HPVM code-gen for
each compute unit

CPUs + Vector i

SIMD Units Domain-

specific

DSP

Accelerators

|

FPGA

HPVM comes close to separate
hand-tuned code on GPU, vectors

8% slower on Vector

3% slower on GPU

[G G G i i G Y
000000000
=MW~ 0Ww

HPVM on GPU HPVM on Intel AVX

HPVM enables highly flexible static
or dynamic scheduling policies

Single program: N mappings

N graph nodes SiOR K de\{lces
dynamic ! ,!J
mappings

HPVM = Heterogeneous Parallel Virtual Machine
Kotsifakou et al.,PPoPP’18

Example 2: Delite IR: Parallel Pattern Lang. [Olukotun et al.]

psL
User

DSL
Developer

Delite _
Framework

B Most data analytic computations can be expressed as functional data
parallel patterns on collections (e.g. sets, arrays, tables, n-d matrices)

) (oun 1 !)
e Parallel Patterns
domain ops ees domain ops J;:::S:‘isg 1€ M Z Flt groupBy
domain data domain data transformations ap, ZIp, rifer,
FlatMap, Reduce, ki
|

W

key1l key2 key3

Key
|

- ~ GroupBy, Join, []] [
parallel data h aralle
m p?t\tems Generic analyses Sort’ TPCHQL Gene GDA LogReg
= f transf - ti = ” :: 7
@ . ransformations
—— - - 2 / :‘; VAR 7/
y, //’ 30 / % / 15
o I /A A/[. LA
4 45 20
o 0l 30x |11 £ alsr 10x | " / 10%
Optimized Code Generators
. A e AR S gy
@ g O Q O O ° 1) 12) 24) a8 ‘07{2 ' 24 ' ne ¢ ' 2 ' 24 ' '
Trianglé” 2 a8 bageklank
— 1- 48 threads ®
elements 4 sockets I

DSLs embedded in Scala

IR created using type-directed staging

Domain specific optimization

General parallelism, locality optimizations using
parallel patterns K.J. Brown et. al, PACT, 2011; K. J. Brown et. al, CG0 2016
Optimized mapping to hardware targets

Codesigned Stack View

Co-design of hardware
and software

Key: Coordinated stack of
codesigned interfaces

Application
developers

High-level interface for DSL

oSl construction
Compiler/ Low-level interface for
codegen
hardware
Interface
Hardware Automated generation of stack
design

Coordinated Stack of Interfaces

Bottlenecks in accelerator design High Level
Application

- What to accelerate?
- What is the hardware/software

I nte rface? Hel - Pde . CtNIty Pattern Transformations

- Developer tools and IR stack Tiing

TensorFlow

——

Improves Data Locality
Tiled Parallel Patterns

Hardware Generation
Metapipeline Analysis

New interfaces appear in a coordinated
stack of interfaces, needing coordinated
effort of experts Captures Design Space

Takes years of design and Search Design Space
implementation today, not reusable for
other domains

Exploits Nested Parallelism

Design Space Exploration
Latency, Area Estimation

(Chisel)

Bitstream Generation

(' FPGA Configuration)

12

Generates Verilog, bitstream

Source: Olukotun, I-USHER workshop

Coordinated Stack of Interfaces

Bottlenecks in accelerator design High Level
Application

- What to accelerate?
- What is the hardware/software

. o Parallel Patterns
|nte rface? Helps PI’OdUCtIVIty Pattern Transformations
) . i
Developer tools and IR stack improves DataLocality ~ — [
Tiled Parallel Patterns

Exploits Nested Parallelism Y
etapipeline Analysis

TensorFlow

How to automate this process?

: res Design
How to reuse across domains? Captures Design Space e
Modular, conflgurablg IRs? Search Design Space LatenanrefvEstlmatlon
Retargetable toolchains for new IRs? (chisel)

Leverage uniform interface view? Generates Verilog, bitstream R

(' FPGA Configuration)

13

Codesigned Stack View: Potential Surprise

Semi-automatic generation of co-designed hardware interface and DSL

for chosen domain

Example process

1.

W

© N O O

Collect representative apps or kernels

Automatically rewrite into alternative algorithms

|dentify performance bottlenecks

Map hardware primitives to software dataflow graphs; select best
hardware design

Infer hardware interface

Synthesize DSL spec

Automatically construct compiler from DSL to accelerator
Design hardware that implements the hardware interface

Application
developers

DSL

Compiler/
codegen

Interface

Hardware
design

14

Example 1: Spatial: IR for Accel. Design [Olukotun et al.]

Simplify accelerator design

e IR that can be mapped to many
hardware targets: FPGA, ASIC, ...
e Constructs to express:
o Parallel patterns as parallel
and pipelined datapaths
O Hierarchical control
o Explicit memory hierarchies
o Explicit parameters
e Optimizes parameters for each
target: parallelization, pipelining,
memory size, memory banking

Allows programmers & high level
compilers to focus on specifying
parallelism and locality

. Benchmark Designs Search Time
D. Koeplingeret. Al. PLDI 2018 Dot Product 5,426 5.3 ms / design
Outer Product 1,702 30 ms / design
TPCH sign
val output = ArgOut[Float] 6500x Speedup Over HLS! .
val vectorA = DRAM[Float](N) BHCF -
val vectorB = DRAM[Float](N) el e TrmETaeEsIgn
K-Means 75,200 20 ms /[design
Accel { GDA 42,800 17 ms [design
Reduce(output) (N by B){ 1 =
val tileA = SRAM[Float](B) GDA 2650 1.85min/ design
val tileB = SRAM[Float](B)
val acc = Reg[Float]
tileA load vectorA(i :: i+B)
tileB load vectorB(i :: i+B)

}

Reduce(acc) (B by 1){ j =>
tileA(j) * tileB(3)
Ha, b => a + b}
Ha, b =>a + h}

Spatial: ~30 lines

Chisel: ~3200 lines

15

Example 2: TVM for Automated Hardware/Software Co-Design [Ceze et al.]

150+ contributors,
several production
industrial users.

Frameworks TensorFlow, MxNet, PyTorch, Keras, etc.

High-level Optimizations
Tensor Expression Language

Loop Thread Cache
Transformations Bindings Locality
Thread o Latency S
. Tensorization - v
Cooperation Hiding i)

Primitives in prior works
Halide, Loopy

New primitives for GPUs and
Accelerators

Schedule
Space
€ Expression

\-—"‘- Proposal

Exploration Module . Code Generator

Program

I
CostModel | [p | / B

Training data

Automated deep
HW/SW co-design.

model + HW
co-training

training 3

data

FPGA, ASIC

Mapping ML code to diverse hardware typically
requires a significant amount of hand-tuning over a
space with billions of possibilities.

A solution is to use learning techniques to make
tuning automatic. Recent advances such as
automatic optimization in the TVM stack show
significant improvement compared to hand-tuned
implementations.

This technique is now being applied to automatic
hardware/software co-design.

[l
o N
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
[
1
h
I
il
1
il
1
1
1
1
1
1

e
@

e
Bl

——— TVM: ML-based Model

—-— TVM: Blackbox Genetic Algorithm
------ TVM: Random Search

——— Baseline: cuDNN

Relative Speedup
o
=

I
¥

e
o

100 200 300 400 500 600 700 800
Number of Trials

AutoTVM Conv2d example on TitanX
Source: UW SAMPL group (sampl.ai)

16

LI BRI }S B0 BUdn DE

Example 3. Stream Dataflow Execution [Sankaralingam et al.]

5 common principles for domain specific architecture (DSA) Stream-Dataflow ISA

= Set-up Interface:

Concurrency | Computation | Communication | Data Reuse o SD_Config - Configuration data stream for dataflow computation fabric (CGRA)

» Control Interface:
[i] [i] H SD_Barrier_Scratch_Rd, SD_Barrier_Scratch_lir, SD_Barrier_All
v Stream interface 2 SD_[source]_[dest]
Source/Dest Parameters: Address (memory or local_storage), DFG Port number
Pattern Parameters: ocress_size, stride_size, num_strides

S Parmmartrs Vi yebeens

Stream-Dataflow Execution Model | Toffom
i memory hierarchy |
Programmer Abstractions for Stream-Dataflow Model L Memory hierarcny |
From Memory * Computation abstraction—Dataflow Graph Scratchpad
|I (DFG) with input/output vector ports Scrathcpad Stream Engine Mem;:;ij:ream
Local
st:::=e 1 * Data abstraction — Streams of data fetched t] 1
Reuse : Memory from memory and stored backto memory g ¥ —
& | Stream | Input Vector Port Interface
tream I Reuse abstraction —Streams of data fetched = z z |
¥ once from memory, storedin local storage

(programmable scratchpad) and reused again

2 T @
o = =4
+ Communication abstraction—Stream-Dataflow | & i I § §
Datafiow data movement commands and barriers = 2 ma .
Graph Time g ! - % e Stream-Dataflow Acceleration, ISCA-2017
v] 3
- < - R e Domain Specialization is generally unnecessary
i ST 8 il for accelerators, HPCA 2016 & Top-Picks
comout e Analyzing Behavior Specialized Acceleration,
ompute —————————
- - — : ASPLOS-2016
Ta Memary Write Data | | Output Vector Port Interface |7 . .
! e Exploring the Potential of Heterogeneous Von

i : i

Neumann/Dataflow Execution Models, ISCA-
2015, Top-Picks, CACM RH 17

Catalog of Parts View
For plug-and-play
hardware and software Key: Rich, formal,

composable interfaces

Automated, verified composition

Communication

Tuning

The TTL Data Book for Design Engineers Second Edition
Author: The Engineering Staff of Texas Instruments, 1976
In this 832-page data book, Texas Instruments is pleased to present important technical information on the industry's broadest and most

advanced families of TTL integrated circuits. — You'll find complete specifications on standard-technology TTL circuits (Series 54/74, 18
Series 54H/74H, Series 54L/74L) and on TI's high-technology TTL circuits such... more »

http://www.paperbackswap.com/The-Engineering-Staff-Of-Texas-Instruments/author/
http://www.paperbackswap.com/TTL-Data-Book-The-Engineering-Staff-Of-Texas/book/270945/

Towards Formal Interfaces for Universal Plug and Play

Different cadence of innovation between hardware and software, between
accelerators

Today’s parts
e Interfaces in English
e Glue logic explosion
o Linux: 12M of 15M LOC in drivers
e Inefficiencies of driver-driver interactions
e Bugs in inter-IP block interactions
e No composability, build from scratch rather than reuse

TI OMAP4 SoC

Towards Formal Interfaces for Universal Plug and Play

Different cadence of innovation between hardware and software, between
accelerators

To deploy new parts ASAP, need clean interfaces to “plug and play”

How to specify formal, machine checkable spec o |
e Operational spec for part + how parts connect m
o Shim to connect parts is also a part
o Communication/memory first order
e Express performance, accuracy, resource use, security, ... ‘Ef-="

TI OMAP4 SoC
20

Catalog of Parts View: The Surprise

Reusable, verifiable, secure, market-driven ecosystem of parts
that can composably interoperate
and has checkable performance+semantic properties

. 4 . 4 . 4 . 4 . 4

On-chip Interconnect

. 4 . 4 . 4 . 4 . 4

Source: Sharad Malik, I-USHER workshop

Example 1: Instruction-Level Abstraction (ILA) [Malik et al.]

Halide description | High-level ILA

) C++ for HLS Low-level ILA
ILA: ISA-like Abstraction Modeling Accelerators , .
RTL implementation

* Gaussian Blur Image Processing

%‘ aCICEIerlitcl)r &Iprocessor (Horowitz Group) Start Encrypt || AW |LA v

* Hierarchical: multi-leve . . iti
« Different levels of abstractions BIB'T" 0ee 'I"'t':te D(';A':
* Enables formal software/hardware AES Block E i Bfigclf;‘t‘;?g‘ Ig:dv""vg:dz
T : hd ocC ncr 10N (OpenCores.or

co-verification ypu (Op _ g) o
* ILA compatibility for accelerator * One spec, two implementations :

replacement * Restricted Boltzmann Machine RBM ILA

(Carloni Group)
» Decomposition of computation Training | Predication PEIEY
Crypto Acc.] Transferring
from interface protocol Child-ILAs
Processor Length
Processor ISA Verification

Interface commands
START_ENCRYPT Write, Oxff00, Ox1 A sequence of operations e RISC-V RV32l base * Accelerator upgrades
STORE_LENGTH Write, Oxff10,data Length := data instruction set w. * Found RISC-V Rocket

. : : MRET/SRET bug
Insight: treat commands at interface as instructions privilege instructions * Verified AES/RBM/GB

accelerators

Example 2: CheckSuite [Martonosi et al.]

An ecosystem of tools to verify cross-layer consistency, coherence interfaces

(HLL)

TriCheck [ASPLOS ‘17] [IEEE MICRO Top Picks]

Compiler

COATCheck [ASPLOS “16] [IEEE MICRO Top Picks]

PipeCheck [Micro-47] [IEEE MICRO Top Picks]

Microarchitecture CCICheck [Micro-48] [Nominated for Best Paper Award]
RTL RTLCheck [Micro-50] [MICRO Top Picks Hon. Mention]
A u
Approach ‘B
* Formal specifications -> Happens-before graphs C ,
* Check Happens-Before Graphs via Efficient SMT solversL.

* Cyclic => A->B->C->A... Can’t happen
* Acyclic => Scenario is observable

Tools found bugs in:

Widely-used
Research simulator
Cache coherence
paper

IBM XL C++ compiler
(fixed in v13.1.5)
In-design commercial
processors

RISC-V ISA
specification
Compiler mapping
proofs

C++ 11 mem model

23

Example 3: Spandex [S. Adve et al]

Request Generated for

Goal: Accelerator Read ReqV Self-invalidating read
communication, Spandex Coherence Interface ReqS Writer-invalidated read
. ReqWT Write-through store
coherence interface Write) :
ReqO Write-only ownership store
MESIL1 M GPU coh. L1 i DeNovo L1 Read+ ReqWT+data Atomic for WT cache
Accel.2 Write for- i
1 ReqO+data | o wathe
External Request Interface P
coherent FIFO
Device Reques! Interface Writeback ReqwWB Owned data eviction
NI N + granularity
Spandex LLC 120%

Key Components

Flexible device request interface
External request interface

Execution Time
(cycles)
£ [-:]
o =]
= =2

8 £22288 2222388 §%
oo

« E:ﬁ Z17] ;:Emmm 28

H e

DeNovo-based LLC o%
\ / Device mav need translation unit 323300 233308 323385 235503 23888 3
y BC PR HSTI TRNS RSCT TQ Averag

Alsop et al. ISCA'18 24

The Three Interface Views Together

Uniform Interface Codesigned stack Catalog of Parts
\Application/
Diverse developers
Software
‘% é: DSL
Unifor terface(s) Compiler/
S codegen
Diverse Interface
AL AW Hardware
design

Zero hour software bring up + Rapid HW-SW codesign + Machine checked plug and play
Unlock usable specialization for embedded devices to planetary scale computing

Address performance, efficiency, portability, HW & SW design productivity, verifiability, security

of Specialized IP Blocks
2o 838 % 88 &

o w

: Time to
Measuring Success Market

3]

o

o

(HW+SW)
™ H/W Design and Verification
120 mS/W Development and Testing
= (" Mask Costs
S 100
E
g o0 Months
60
S to
§ 40
0 Years
Ad A5 A6 A7 A8 A9 A10 AN
2010 2017 o -

0.5u 0.35u 0.25u 0.18u 0.13u 90nm 65nm 45nm 28nm 20nm
Silicon Technology Node

HW Design & Verification
SW Development & Testing

Appendix: I-USHER Workshop Participants (March 5-6, 2018)

Sarita Adve, lllinois/ISAT Sharad Malik, Princeton

Vikram Adve, lllinois Margaret Martonosi, Princeton
Ras Bodik, Washington/ISAT Sasa Misailovic, lllinois

David Brooks, Harvard Sandeep Neema, DARPA

Luis Ceze. Washington/ISAT Kunle Olukotun, Stanford

David Doermann, DARPA Chris Ramming, VMware/ISAT
Chris Fletcher, lllinois Partha Ranganathan, Google
Vinod Grover, NVIDIA Jonathan Ragan-Kelley, Berkeley
Priscilla Guthrie, ISAT Tatiana Shpeisman, Google

Mark Hill, Wisconsin Michael Taylor, Washington

Shan Lu, U. Chicago Kathy Yelick, Berkeley

