
Memory Consistency Models:
They are Broken and Why We Should Care

Sarita Adve
University of Illinois at Urbana-Champaign

sadve@Illinois.edu

Ken Kennedy Lecture

Work with numerous colleagues and students over 30 years

This work is currently supported in part by DARPA, NSF, and by the Applications Driving Architecture (ADA) Research center (JUMP
center co-sponsored by SRC and DARPA)

Wisconsin

Rice

Illinois

Our community

2

My Story

Wisconsin Question fundamentals

Rice Believe in yourself

Illinois Impact = Change minds. Takes time

Our community Acknowledge your village. Pay it forward

3

My Story

[With Mark Hill]
• 1988 to 1989: What is a memory consistency model?

– Simplest model: sequential consistency (SC) [Lamport79]
• Memory operations execute one at a time in program order
• Simple, but inefficient

– Implementation/performance-centric view
• Order in which memory operations execute
• Different vendors w/ different models (orderings)

– Alpha, Sun, x86, Itanium, IBM, AMD, HP, Cray, …
• Complex, many ambiguities, …

– A new memory model virtually everyday

4

Wisconsin – Question Fundamentals

LD

LD

LD

ST

ST

ST

ST

LD

Fence

• 1988 to 1989: What is a memory consistency model?

Memory model = What value can a read return?

HW/SW Interface: affects performance, programmability, portability
5

Wisconsin – Question Fundamentals

Initially X=Y=Flag=0
Thread 1 Thread 2
X = 26 if (Flag == 1) {
Y = 90 … = Y
… … = X
Flag = 1 …

}

90
26 0

• 1990-93: Software-centric view: Data-race-free (DRF) model
– Sequential consistency for data-race-free programs [Adve, Hill ISCA90]

– Distinguish data vs. synchronization (race)
• Data can be optimized ⇒↑ performance for DRF programs

Ack: Jim Goodman, Bart Miller, Rob Netzer, Kourosh Gharachorloo

Wisconsin – Question Fundamentals

Initially X=Y=Flag=0
Thread 1 Thread 2
X = 26 if (Flag == 1) {
Y = 90 … = Y
… … = X
Flag = 1 …

}

“Two body problem” ⇒
Two body opportunity

7

Wisconsin Rice

Dependence analysis, auto-
vectorization, data parallel
languages, parallel
performance analysis tools, …

[With Vijay Pai and Partha Ranganathan]
• 1993-99: Performance benefits of relaxed models

– New out-of-order processors emerging, new speculation techniques
– No tools to understand performance implications
– RSIM: Built first publicly available multiprocessor simulator with

out-of-order processors [Pai et al. ASPLOS’96, ISCA’97, …]

• More confidence in DRF!
– Called out compiler and PL community
– Proceedings of IEEE paper caught attention of Bill Pugh

8

Rice – Believe in Yourself

[with Bill Pugh, Jeremy Manson, Doug Lea, Hans Boehm, et al.]
• 2000-05: Java memory model [Manson, Pugh, Adve POPL’05]

– DRF model BUT racy programs need semantics
⇒ No out-of-thin-air values

9

Illinois: Impact = Change Minds. Takes Time.

Initially X=Y=0
Thread 1 Thread 2

r1 = X r2 = Y

Y = r1 X = r2

Can r1=r2=42?

42

Problem: Incredibly hard to formalize a spec that prohibits this result
without prohibiting common optimizations

Java memory model = DRF + big mess

[With Hans Boehm et al.]
• 2005-08: C++ memory model [Boehm, Adve PLDI’08]

– DRF model BUT need high performance; mismatched hardware
– Baseline DRF (DRF0) requires synchronization/atomics to be SC
– Hardware vendors, software developers complained, but no option
– Compromise: Relaxed atomics (only for experts)

⇒ DRF + big mess

Good news: After 20 years, convergence at last!

But: How to debug racy programs, how to avoid out of thin air
values, no semantics for relaxed atomics, …
CACM’10: Memory Models: A Case for Rethinking Parallel Languages
and Hardware

10

Illinois: Impact = Change Minds. Takes Time.

No Formal Specification for Relaxed Atomics

C++17 "specification" for relaxed atomics
• Races that don't order other accesses
• Implementations should ensure no “out-of-thin-air”

values are computed that circularly depend on their own
computation

“C++ (relaxed) atomics were the worst idea ever. I just
spent days (and days) trying to get something to work.
… My example only has 2 addresses and 4 accesses, it
shouldn’t be this hard. Can you help?”

- Email from employee at major research lab

11

[With Vikram Adve, Byn Choi, Rakesh Komuravelli, Matt Sinclair, Hyojin Sung]

• 2008-14: Software-centric view for coherence: DeNovo protocol
– More performance-, energy-, and complexity-efficient than MESI

• Began with DPJ’s disciplined parallelism
• Identified fundamental, minimal coherence mechanisms
• Loosened s/w constraints, but still minimal, efficient hardware
Ack: Marc Snir, UPCRC

• Meanwhile: the end of Dennard and Moore’s laws
– Architecture enters golden age
– Déjà vu for coherence and consistency

• Next phase with Matt Sinclair and John Alsop, current group 12

Last Decade: Back to Fundamentals

13

The Golden Age of Specialization & Heterogeneity

Source: Brooks, Wei group, http://vlsiarch.eecs.harvard.edu/accelerators/die-photo-analysis

Explosion of accelerators in SoCs

CPU

Accelerator

Traditional heterogeneity

14

CPU

Accelerator

CPU
memory

Accelerator
memory

Data in

Data out

Shared Memory

Coherent
data

Coherent shared memory

Wasteful data movement
No fine-grain synch
No irregular access patterns

Implicit data reuse
Fine-grain synchronization
Irregular access

Existing solutions: complex & inflexible

Specialization Requires Better Memory Systems

CPU Coherence: MSI

• Single writer, multiple reader
– On write miss, get ownership + invalidate all sharers
– On read miss, add to sharer list

⇒ Directory to store sharer list
⇒Many transient states
⇒Excessive traffic, indirection

15

L2 Cache,
Directory

Interconnection n/w

CPU

L2 Cache,
Directory

CPU

L1 CacheL1 Cache

Complex + inefficient

GPU Coherence with DRF

• With data-race-free (DRF) memory model
– No data races; synchs must be explicitly distinguished
– At all synch points

• Flush all dirty data: Unnecessary writethroughs
• Invalidate all data: Can’t reuse data across synch points

– Synchronization accesses must go to last level cache (LLC)
Simple, but inefficient at synchronization 16

L2 Cache
Bank

Interconnection n/w

GPU

L2 Cache
Bank

CPU
CacheCacheValidDirty

Valid
Flush dirty

data
Invalidate all

data

GPU Coherence with DRF

• With data-race-free (DRF) memory model
– No data races; synchs must be explicitly distinguished
– At all synch points

• Flush all dirty data: Unnecessary writethroughs
• Invalidate all data: Can’t reuse data across synch points

– Synchronization accesses must go to last level cache (LLC)
17

• With data-race-free (DRF) memory model
– No data races; synchs must be explicitly distinguished

– At all synch points

• Flush all dirty data: Unnecessary writethroughs
• Invalidate all data: Can’t reuse data across synch points

– Synchronization accesses must go to last level cache (LLC)
– No overhead for locally scoped synchs

• But higher programming complexity

GPU Coherence with HRF

18

heterogeneous HRF

global

and their scopes

Global

heterogeneous

Modern GPU Coherence & Consistency

19

DeNovo+DRF: Efficient AND simpler memory model

Do GPU models (HRF) need to be more complex than CPU models (DRF)?

NO! Not if coherence is done right!

[Sinclair et al. Micro’15]

• Read hit: Don’t return stale data
• Read miss: Find one up-to-date copy

A Classification of Coherence Protocols

Invalidator
Writer Reader

Track
up-to-
date
copy

Ownership

Writethrough

MESI

GPU

DeNovo

20

• Reader-initiated invalidations
– No invalidation or ack traffic, directories, transient states

• Obtaining ownership for written data
– Reuse owned data across synchs (not flushed at synch points)
– Complexity, performance, energy

DeNovo shows 28% lower execution time than GPU with global synch

Global Synch – Execution Time

0%

20%

40%

60%

80%

100%

G* D* G* D* G* D* G* D* G* D*

FAM SLM SPM SPMBO AVG

GH GH GH GH GHDD DD DD DD DD

0%

20%

40%

60%

80%

100%

G* D* G* D* G* D* G* D* G* D*

N/W L2 $ L1 D$ Scratch GPU Core+

Global Synch – Energy

DeNovo shows 51% lower energy than GPU with global synch

FAM SLM SPM SPMBO AVG

GH GH GH GH GHDD DD DD DD DD

Modern GPU Coherence & Consistency

23

DeNovo+DRF: Efficient AND simpler memory model

Do GPU models (HRF) need to be more complex than CPU models (DRF)?

NO! Not if coherence is done right!

24

Spatial
locality

Temporal
locality

Throughput
Sensitivity

Latency
Sensitivity

Fine-grain
Synch

Typical CPU workloads: fine-grain synch, latency sensitive
Typical GPU workloads: spatial locality, throughput sensitive

Heterogeneous Devices have Diverse Memory Demands

Accel 2 ?Accel 1CPU

MESI LLC

MESI L1

GPU

GPU
coh. L1

DeNovo
L1

GPU
coh. L1

MESI/GPU coh.
Hybrid L2

MESI L1

Examples: ARM CHI, IBM CAPI, AMD APU 25

Existing Solutions: Inflexible and Inefficient

CPU

MESI L1

Adapts to exploit individual device’s workload attributes
Better performance, lower complexity

GPU

GPU
coh. L1

Accel 1

GPU
coh. L1

Accel 2 ?

DeNovo
L1

Spandex

⇒ Fits like a glove for each device!

26

Spandex: Flexible Heterogeneous Coherence Interface

[Alsop et al. ISCA’18]

Key Components

• Flexible device request interface

• DeNovo-based LLC

• External request interface

Device may need translation unitSpandex LLC

27

Device Request Interface

External Request Interface

TUTUTU

CPU GPU Accel ?
MESI L1 GPU coh.

L1
DeNovo L1

Spandex Key Components

Next steps: Dynamic coherence specialization
Exploit SW or HW hints about data access patterns

• Dynamic Spandex request selection
• Producer-consumer forwarding
• Extended granularity flexibility

⇒ Simple, Flexible, Efficient

Producer Consumer

Spandex So Far and Next Steps

inter-chip
IF

Accel. 1

IF

IF

Accel. 3

cache

IF

IF

stash

Accel. 2

Accel. 4

coherent FIFO

RDMA

inter-chip
IF

inter-chip
IF

Specialized coherence a la Spandex

Handle specialized memories in global address space
Scratchpad, FIFOs, …, compute-in-memory, HBM,
Stash: globally addressable scratchpads [ISCA’15]

Relaxed atomics
DRFrlx [Sinclair et al. ISCA’17]

SC-centric semantics for good code patterns
How to formalize other patterns?

Handle approximations & solution quality, security

Accelerator Communication Architecture

Heterogeneous Parallel Virtural Machine (HPVM) [PPoPP’18]
– Virtual ISA, compiler IR (LLVM for heretogeneous systems)

Hardware-Software Interface

LLVM with vector ops
VA = load <L4 x float>* A
VB = load <L4 x float>* B
…
VC = fmul <L4 x float> VA, VB

Or “Child Graph

Targets: CPUs, vector
extensions, GPUs, FPGAs,
domain specific accelerators

Model: Hierarchical dataflow
graph with side effects

Runtime maps to accelerators

Another talk!

Looking Forward…

HPVM + DRF Consistency + ???

Synchronization
locality

Producer/consumer
relationships

Data locality,
visibility

Coarse-grain
operations

Software
Innovations

Hardware
Innovations

hLRC adaptive
laziness

HBM cachesSpandex
dynamic caches

Hardware
queues

Coherent
scratchpads
Stash, ISCA’15

+

NVRAM

+

It takes a village to make a
successful researcher

Paying it forward …

32

Our Community: Paying it Forward

SIGARCH EC
Joel Emer
Babak Falsafi,
Natalie Enright Jerger,
Scott Mahlke,
Partha Ranganathan,
Karin Strauss,
David Wood

Our Community: Paying it Forward

Natalie Enright Jerger,
Kim Hazelwood,
Margaret Martonosi,
Kathryn McKinley

Highlight: Diversity and Inclusion

A community effort to emulate

SIGARCH EC
Joel Emer
Babak Falsafi,
Natalie Enright Jerger,
Scott Mahlke,
Partha Ranganathan,
Karin Strauss,
David Wood

Our Community: Paying it Forward

Natalie Enright Jerger,
Kim Hazelwood,
Margaret Martonosi,
Kathryn McKinley

Highlight: Diversity and Inclusion

A community effort to emulate
Janie Irwin

Key Events Last Year in Architecture Community

SIGARCH works for diversity
But study is wakeup call

Diversity in conference governance
• Institution, academic lineage, …

Personal accounts of harassment

Micro50: Legends of Micro panel
• All white, all male

Reading of Diversity Statement
• Call to action
• Clear public support for change

Study shows poor gender ratios
• Keynotes, PC chairs, Awards
• All conferences must improve
• One stands out

Key Events Last Year in Architecture Community

SIGARCH works for diversity
But study is wakeup call

Diversity in conference governance
• Institution, academic lineage, …

Personal accounts of harassment

Micro50: Legends of Micro panel
• All white, all male

Reading of Diversity Statement
• Call to action
• Clear public support for change

Study shows poor gender ratios
• Keynotes, PC chairs, Awards
• All conferences must improve
• Micro stands out

SIGARCH CARES:
To help report harassment
Chairs: Martonosi, McKinley

SIGMICRO joins CARES

WICArch is SIGARCH subcommittee
Web portal w/ directory, profiles
Slack mentoring channel
Graduating women brochure
Strategizes diversity efforts
Chair: Enright Jerger

Get data
Raise awareness, fix problems
CARES, WiCarch, Bias busting worksop, Conference mentoring, …

37

Thank You!

38

Thank You!

Wisconsin Question fundamentals

Rice Believe in yourself

Illinois Impact = Change minds. Takes time

Our community Acknowledge your village. Pay it forward

	Memory Consistency Models: �They are Broken and Why We Should Care
	My Story
	My Story
	Wisconsin – Question Fundamentals
	Wisconsin – Question Fundamentals
	Wisconsin – Question Fundamentals
	Wisconsin Rice
	Rice – Believe in Yourself
	Illinois: Impact = Change Minds. Takes Time.
	Illinois: Impact = Change Minds. Takes Time.
	No Formal Specification for Relaxed Atomics
	Last Decade: Back to Fundamentals
	The Golden Age of Specialization & Heterogeneity
	Slide Number 14
	CPU Coherence: MSI
	GPU Coherence with DRF
	GPU Coherence with DRF
	GPU Coherence with HRF
	Modern GPU Coherence & Consistency
	A Classification of Coherence Protocols
	Global Synch – Execution Time
	Global Synch – Energy
	Modern GPU Coherence & Consistency
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Hardware-Software Interface
	Looking Forward…
	Our Community: Paying it Forward
	Our Community: Paying it Forward
	Our Community: Paying it Forward
	Key Events Last Year in Architecture Community
	Key Events Last Year in Architecture Community
	Thank You!
	Thank You!

