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[With Mark Hill]
• 1988 to 1989: What is a memory consistency model?

– Simplest model: sequential consistency (SC) [Lamport79]
• Memory operations execute one at a time in program order
• Simple, but inefficient

– Implementation/performance-centric view
• Order in which memory operations execute
• Different vendors w/ different models (orderings)

– Alpha, Sun, x86, Itanium, IBM, AMD, HP, Cray, … 
• Complex, many ambiguities, …

– A new memory model virtually everyday
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• 1988 to 1989: What is a memory consistency model?

Memory model = What value can a read return?

HW/SW Interface: affects performance, programmability, portability
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Wisconsin – Question Fundamentals

Initially X=Y=Flag=0
Thread 1                       Thread 2                                                   
X = 26                            if (Flag == 1) {
Y = 90                                    … = Y  
…                           … = X       
Flag = 1 …

}

90
26 0



• 1990-93: Software-centric view: Data-race-free (DRF) model 
– Sequential consistency for data-race-free programs [Adve, Hill ISCA90]

– Distinguish data vs. synchronization (race)
• Data can be optimized ⇒↑ performance for DRF programs

Ack: Jim Goodman, Bart Miller, Rob Netzer, Kourosh Gharachorloo
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“Two body problem” ⇒
Two body opportunity
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Dependence analysis, auto-
vectorization, data parallel 
languages, parallel 
performance analysis tools, …



[With Vijay Pai and Partha Ranganathan]
• 1993-99: Performance benefits of relaxed models 

– New out-of-order processors emerging, new speculation techniques
– No tools to understand performance implications
– RSIM: Built first publicly available multiprocessor simulator with   

out-of-order processors  [Pai et al. ASPLOS’96, ISCA’97, …]

• More confidence in DRF!
– Called out compiler and PL community
– Proceedings of IEEE paper caught attention of Bill Pugh
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[with Bill Pugh, Jeremy Manson, Doug Lea, Hans Boehm, et al.]
• 2000-05: Java memory model [Manson, Pugh, Adve POPL’05]

– DRF model BUT racy programs need semantics 
⇒ No out-of-thin-air values
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Illinois: Impact = Change Minds. Takes Time.

Initially X=Y=0
Thread 1                       Thread 2  

r1 = X                            r2 = Y

Y = r1                             X = r2

Can r1=r2=42?

42

Problem: Incredibly hard to formalize a spec that prohibits this result 
without prohibiting common optimizations

Java memory model = DRF + big mess



[With Hans Boehm et al.]
• 2005-08: C++ memory model [Boehm, Adve PLDI’08]

– DRF model BUT need high performance; mismatched hardware
– Baseline DRF (DRF0) requires synchronization/atomics to be SC
– Hardware vendors, software developers complained, but no option
– Compromise: Relaxed atomics (only for experts)

⇒ DRF + big mess

Good news: After 20 years, convergence at last!

But: How to debug racy programs, how to avoid out of thin air 
values, no semantics for relaxed atomics, …
CACM’10: Memory Models: A Case for Rethinking Parallel Languages 
and Hardware
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Illinois: Impact = Change Minds. Takes Time.



No Formal Specification for Relaxed Atomics

C++17 "specification" for relaxed atomics
• Races that don't order other accesses
• Implementations should ensure no “out-of-thin-air” 

values are computed that circularly depend on their own 
computation

“C++ (relaxed) atomics were the worst idea ever.  I just 
spent days (and days) trying to get something to work. 
… My example only has 2 addresses and 4 accesses, it 
shouldn’t be this hard.  Can you help?”

- Email from employee at major research lab
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[With Vikram Adve, Byn Choi, Rakesh Komuravelli, Matt Sinclair, Hyojin Sung]

• 2008-14: Software-centric view for coherence: DeNovo protocol
– More performance-, energy-, and complexity-efficient than MESI

• Began with DPJ’s disciplined parallelism 
• Identified fundamental, minimal coherence mechanisms
• Loosened s/w constraints, but still minimal, efficient hardware
Ack: Marc Snir, UPCRC

• Meanwhile: the end of Dennard and Moore’s laws
– Architecture enters golden age
– Déjà vu for coherence and consistency

• Next phase with Matt Sinclair and John Alsop, current group 12

Last Decade: Back to Fundamentals
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The Golden Age of Specialization & Heterogeneity

Source: Brooks, Wei group, http://vlsiarch.eecs.harvard.edu/accelerators/die-photo-analysis

Explosion of accelerators in SoCs



CPU

Accelerator

Traditional heterogeneity
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CPU

Accelerator

CPU 
memory

Accelerator 
memory

Data in

Data out

Shared Memory

Coherent 
data

Coherent shared memory

Wasteful data movement
No fine-grain synch
No irregular access patterns

Implicit data reuse
Fine-grain synchronization
Irregular access

Existing solutions: complex & inflexible

Specialization Requires Better Memory Systems



CPU Coherence: MSI

• Single writer, multiple reader
– On write miss, get ownership + invalidate all sharers
– On read miss, add to sharer list

⇒ Directory to store sharer list
⇒Many transient states
⇒Excessive traffic, indirection
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GPU Coherence with DRF

• With data-race-free (DRF) memory model
– No data races; synchs must be explicitly distinguished
– At all synch points

• Flush all dirty data: Unnecessary writethroughs
• Invalidate all data: Can’t reuse data across synch points

– Synchronization accesses must go to last level cache (LLC)
Simple, but inefficient at synchronization 16
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GPU Coherence with DRF

• With data-race-free (DRF) memory model
– No data races; synchs must be explicitly distinguished
– At all synch points

• Flush all dirty data: Unnecessary writethroughs
• Invalidate all data: Can’t reuse data across synch points

– Synchronization accesses must go to last level cache (LLC)
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• With data-race-free (DRF) memory model
– No data races; synchs must be explicitly distinguished

– At all synch points

• Flush all dirty data: Unnecessary writethroughs
• Invalidate all data: Can’t reuse data across synch points

– Synchronization accesses must go to last level cache (LLC)
– No overhead for locally scoped synchs

• But higher programming complexity

GPU Coherence with HRF
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Modern GPU Coherence & Consistency
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DeNovo+DRF: Efficient AND simpler memory model

Do GPU models (HRF) need to be more complex than CPU models (DRF)? 

NO! Not if coherence is done right!

[Sinclair et al. Micro’15]



• Read hit: Don’t return stale data
• Read miss: Find one up-to-date copy

A Classification of Coherence Protocols

Invalidator
Writer Reader

Track 
up-to-
date 
copy 

Ownership

Writethrough

MESI

GPU

DeNovo
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• Reader-initiated invalidations
– No invalidation or ack traffic, directories, transient states

• Obtaining ownership for written data
– Reuse owned data across synchs (not flushed at synch points) 
– Complexity, performance, energy



DeNovo shows 28% lower execution time than GPU with global synch

Global Synch – Execution Time

0%

20%

40%

60%

80%

100%

G* D* G* D* G* D* G* D* G* D*

FAM SLM SPM SPMBO AVG

GH GH GH GH GHDD DD DD DD DD



0%

20%

40%

60%

80%

100%

G* D* G* D* G* D* G* D* G* D*

N/W L2 $ L1 D$ Scratch GPU Core+

Global Synch – Energy

DeNovo shows 51% lower energy than GPU with global synch
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Modern GPU Coherence & Consistency
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DeNovo+DRF: Efficient AND simpler memory model

Do GPU models (HRF) need to be more complex than CPU models (DRF)? 

NO! Not if coherence is done right!
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Spatial
locality

Temporal
locality

Throughput 
Sensitivity

Latency 
Sensitivity

Fine-grain
Synch

Typical CPU workloads: fine-grain synch, latency sensitive
Typical GPU workloads: spatial locality, throughput sensitive

Heterogeneous Devices have Diverse Memory Demands



Accel 2 ?Accel 1CPU

MESI LLC

MESI L1

GPU

GPU 
coh. L1

DeNovo
L1

GPU 
coh. L1

MESI/GPU coh.
Hybrid L2

MESI L1

Examples: ARM CHI, IBM CAPI, AMD APU 25

Existing Solutions: Inflexible and Inefficient



CPU

MESI L1

Adapts to exploit individual device’s workload attributes
Better performance, lower complexity

GPU

GPU 
coh. L1

Accel 1

GPU 
coh. L1

Accel 2 ?

DeNovo
L1

Spandex

⇒ Fits like a glove for each device!

26

Spandex: Flexible Heterogeneous Coherence Interface

[Alsop et al. ISCA’18]



Key Components

• Flexible device request interface

• DeNovo-based LLC

• External request interface

Device may need translation unitSpandex LLC
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Device Request Interface

External Request Interface

TUTUTU

CPU GPU Accel ?
MESI L1 GPU coh. 

L1
DeNovo L1

Spandex Key Components



Next steps: Dynamic coherence specialization
Exploit SW or HW hints about data access patterns

• Dynamic Spandex request selection
• Producer-consumer forwarding
• Extended granularity flexibility

⇒ Simple, Flexible, Efficient

Producer Consumer

Spandex So Far and Next Steps



inter-chip  
IF

Accel. 1

IF

IF

Accel. 3

cache

IF

IF

stash

Accel. 2

Accel. 4

coherent FIFO

RDMA

inter-chip 
IF

inter-chip  
IF

Specialized coherence a la Spandex

Handle specialized memories in global address space
Scratchpad, FIFOs, …, compute-in-memory, HBM,
Stash: globally addressable scratchpads [ISCA’15]

Relaxed atomics
DRFrlx [Sinclair et al. ISCA’17]

SC-centric semantics for good code patterns
How to formalize other patterns?

Handle approximations & solution quality, security

Accelerator Communication Architecture



Heterogeneous Parallel Virtural Machine (HPVM) [PPoPP’18]
– Virtual ISA, compiler IR (LLVM for heretogeneous systems)

Hardware-Software Interface

LLVM with vector ops
VA = load <L4 x float>* A
VB = load <L4 x float>* B
…
VC = fmul <L4 x float> VA, VB

Or “Child Graph

Targets: CPUs, vector 
extensions, GPUs, FPGAs, 
domain specific accelerators

Model: Hierarchical dataflow 
graph with side effects 

Runtime maps to accelerators

Another talk!



Looking Forward…

HPVM + DRF Consistency + ???

Synchronization 
locality

Producer/consumer 
relationships

Data locality, 
visibility

Coarse-grain 
operations

Software 
Innovations

Hardware 
Innovations

hLRC adaptive 
laziness

HBM cachesSpandex 
dynamic caches

Hardware 
queues

Coherent 
scratchpads
Stash, ISCA’15

+

NVRAM

+



It takes a village to make a 
successful researcher

Paying it forward …
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Our Community: Paying it Forward
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Partha Ranganathan, 
Karin Strauss, 
David Wood

Our Community: Paying it Forward

Natalie Enright Jerger,
Kim Hazelwood, 
Margaret Martonosi,
Kathryn McKinley

Highlight: Diversity and Inclusion

A community effort to emulate
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Our Community: Paying it Forward

Natalie Enright Jerger,
Kim Hazelwood, 
Margaret Martonosi,
Kathryn McKinley

Highlight: Diversity and Inclusion

A community effort to emulate
Janie Irwin



Key Events Last Year in Architecture Community

SIGARCH works for diversity
But study is wakeup call 

Diversity in conference governance
• Institution, academic lineage, …

Personal accounts of harassment

Micro50: Legends of Micro panel 
• All white, all male

Reading of Diversity Statement 
• Call to action
• Clear public support for change

Study shows poor gender ratios
• Keynotes, PC chairs, Awards
• All conferences must improve
• One stands out



Key Events Last Year in Architecture Community

SIGARCH works for diversity
But study is wakeup call 

Diversity in conference governance
• Institution, academic lineage, …

Personal accounts of harassment

Micro50: Legends of Micro panel 
• All white, all male

Reading of Diversity Statement 
• Call to action
• Clear public support for change

Study shows poor gender ratios
• Keynotes, PC chairs, Awards
• All conferences must improve
• Micro stands out

SIGARCH CARES:
To help report harassment
Chairs: Martonosi, McKinley

SIGMICRO joins CARES

WICArch is SIGARCH subcommittee
Web portal w/ directory, profiles
Slack mentoring channel
Graduating women brochure
Strategizes diversity efforts
Chair: Enright Jerger

Get data
Raise awareness, fix problems
CARES, WiCarch, Bias busting worksop, Conference mentoring, …



37

Thank You!



38

Thank You!

Wisconsin Question fundamentals

Rice Believe in yourself

Illinois Impact = Change minds. Takes time

Our community Acknowledge your village. Pay it forward


	Memory Consistency Models: �They are Broken and Why We Should Care
	My Story
	My Story
	Wisconsin – Question Fundamentals
	Wisconsin – Question Fundamentals
	Wisconsin – Question Fundamentals
	Wisconsin  Rice
	Rice – Believe in Yourself
	Illinois: Impact = Change Minds. Takes Time.
	Illinois: Impact = Change Minds. Takes Time.
	No Formal Specification for Relaxed Atomics
	Last Decade: Back to Fundamentals
	The Golden Age of Specialization & Heterogeneity
	Slide Number 14
	CPU Coherence: MSI
	GPU Coherence with DRF
	GPU Coherence with DRF
	GPU Coherence with HRF
	Modern GPU Coherence & Consistency
	A Classification of Coherence Protocols
	Global Synch – Execution Time
	Global Synch – Energy
	Modern GPU Coherence & Consistency
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Hardware-Software Interface
	Looking Forward…
	Our Community: Paying it Forward
	Our Community: Paying it Forward
	Our Community: Paying it Forward
	Key Events Last Year in Architecture Community
	Key Events Last Year in Architecture Community
	Thank You!
	Thank You!

