
Chasing Away RAts: Semantics and Evaluation

for Relaxed Atomics on Heterogeneous Systems

Matthew D. Sinclair, Johnathan Alsop, Sarita V. Adve

University of Illinois @ Urbana-Champaign

hetero@cs.illinois.edu

Matt’s Future: AMD Research, University of Wisconsin

mailto:hetero@cs.illinois.edu

“Everyone (thinks they) can cook” use relaxed atomics (RAts)

Incorrect usage No formal definition

Out-of-thin-air values Hard to debug

Not portable

Health code violations: Correctness

Consistency is Complex

“If you think you understand quantum computers, it’s

because you don’t. Quantum computing is actually

harder than memory consistency models.”

- Luis Ceze, video in ISCA ‘16 Keynote

Memory consistency: gold standard for complexity

3

Relaxed atomics add even more complexity

No Formal Specification for Relaxed Atomics

C++17 "specification" for relaxed atomics
• Races that don't order other accesses

• Implementations should ensure no “out-of-thin-air”

values are computed that circularly depend on their own

computation
“C++ (relaxed) atomics were the worst idea ever. I just

spent days (and days) trying to get something to work.

… My example only has 2 addresses and 4 accesses, it

shouldn’t be this hard. Can you help?”

- Email from employee at major research lab

4

Formal specification for relaxed atomics is a longstanding problem

• But generally use simple, SW-based coherence

– Cost of staying away from relaxed atomics too high!

5

Why Use Relaxed Atomics?

0X

10X

20X

Sp
e

e
d

u
p

27X 99X 28X

• Previous work

– Goal: formal semantics for all possible relaxed atomics uses

– Unsuccessful despite ~15 years of effort

• Insight: analyze how real codes use relaxed atomics

– What are common uses of relaxed atomics?

– Why do they work?

– Can we formalize semantics for them?

6

Our Approach

Contributions

7

Everyone can safely use RAts

• Identified common uses of relaxed atomics

– Work queues, event counters, ref counters, seqlocks, …

• Data-race-free-relaxed (DRFrlx) memory model:

– Sequentially consistent (SC) centric semantics + efficiency

• Evaluated benefits of using relaxed atomics

– Up to 53% less cycles (33% avg), 40% less energy (20% avg)

Outline

• Motivation

• Background

• Data-race-free-relaxed

• Results

• Conclusion

8

Atomics Background

• Default: Data-race-free-0 (DRF0) [ISCA ‘90]

– Identify all races as synchronization accesses (C++: atomics)

– All atomics order data accesses

– Atomics order other atomics

Ensures SC semantics if no data races

9

// each thread
for i = 0:n
 …
 ADD R4, A[i], R1
 ADD R5, B[i], R1
 …

synch (atomic)

synch (atomic)

Atomics Background (Cont.)

• Default: Data-race-free-0 (DRF0) [ISCA ‘90]

– All atomics order data accesses

– Atomics order other atomics

Ensures SC semantics if no data races

• Data-race-free-1 (DRF1): unpaired atomics [TPDS ‘93]

+ Unpaired atomics do not order data accesses

– Atomics order other atomics

Ensures SC semantics if no data races

• Relaxed atomics [PLDI ‘08]

+ Do not order data or other atomics

But can violate SC and no formal specification
10

Outline

• Motivation

• Background

• Data-race-free-relaxed

• Results

• Conclusion

11

Identifying Relaxed Atomic Use Cases

• Our Approach

– What are common uses of relaxed atomics?

– Why do they work?

– Can we formalize semantics for them?

• Contacted vendors, developers, and researchers

12
How do relaxed atomics work in Event Counters?

Accel

• Threads concurrently update counters

– Read part of a data array, updates its counter

13

Event Counter

L1

Cache

L1

Cache

L1

Cache

L1

Cache

L2 Cache

Counters … 0 0 0 0 0 0

…

1 1 1 1 1 1

Accel

• Threads concurrently update counters

– Read part of a data array, updates its counter

– Increments race, so have to use atomics

14

Event Counter (Cont.)

L1

Cache

L1

Cache

L1

Cache

L1

Cache

L2 Cache

Counters … 2 1 3 2 1 1

…

1 1 1 1 1 1

Accel

• Threads concurrently update counters

– Read part of a data array, updates its counter

– Increments race, so have to use atomics

15

Event Counter (Cont.)

L1

Cache

L1

Cache

L1

Cache

L1

Cache

L2 Cache

Counters …

…

7 1 9 1 5 3

Commutative increments: order does not affect final result

How to formalize?

Incorporating Commutativity Into DRFrlx

16

What about the other use cases?

• New relaxed atomic category: commutative

• Formalism:

– Accesses are commutative

– Intermediate values must not be observed

Final result is always SC

Incorporating Other Use Cases Into DRFrlx

17

SC

Final result always SC

SC-centric: non-SC parts isolated

Unpaired

Non-Ordering

Commutative

Speculative

Quantum

Semantics Category Use Case

Work Queues

Flags

Seqlocks

Event Counters

Ref Counters

Split Counters

Outline

• Motivation

• Background

• Data-race-free-relaxed

• Results

• Conclusion

18

Evaluation Methodology

19

• 1 CPU core + 15 GPU compute units (CU)

– Each node has private L1, scratchpad, tile of shared L2

• Simulation Environment

– GEMS, Simics, Garnet, GPGPU-Sim, GPUWattch, McPAT

• Study DRF0, DRF1, DRFrlx w/ GPU & DeNovo coherence

• Workloads

– Microbenchmarks for each use case

• Relaxed atomics help a little (Avg: 10% cycles, 5% energy)

– Benchmarks with biggest RAts speedups on discrete GPU

• UTS, PageRank (PR), Betweeness Centrality (BC)

Relaxed Atomics Applications – Execution Time

20

0%

20%

40%

60%

80%

100%

G
D

0
G

D
1

G
D

2
D

D
0

D
D

1
D

D
2

G
D

0
G

D
1

G
D

2
D

D
0

D
D

1
D

D
2

G
D

0
G

D
1

G
D

2
D

D
0

D
D

1
D

D
2

G
D

0
G

D
1

G
D

2
D

D
0

D
D

1
D

D
2

G
D

0
G

D
1

G
D

2
D

D
0

D
D

1
D

D
2

G
D

0
G

D
1

G
D

2
D

D
0

D
D

1
D

D
2

G
D

0
G

D
1

G
D

2
D

D
0

D
D

1
D

D
2

G
D

0
G

D
1

G
D

2
D

D
0

D
D

1
D

D
2

G
D

0
G

D
1

G
D

2
D

D
0

D
D

1
D

D
2

G
D

0
G

D
1

G
D

2
D

D
0

D
D

1
D

D
2

G0 = GPU coherence + DRF0

G1 = GPU coherence + DRF1

GRlx = GPU coherence + DRFrlx

D0 = DeNovo coherence + DRF0

D1 = DeNovo coherence + DRF1

DRlx = DeNovo coherence + DRFrlx

Relaxed Atomics Applications – Execution Time

21

0%

20%

40%

60%

80%

100%

G
D

0
G

D
1

G
D

2
D

D
0

D
D

1
D

D
2

G
D

0
G

D
1

G
D

2
D

D
0

D
D

1
D

D
2

G
D

0
G

D
1

G
D

2
D

D
0

D
D

1
D

D
2

G
D

0
G

D
1

G
D

2
D

D
0

D
D

1
D

D
2

G
D

0
G

D
1

G
D

2
D

D
0

D
D

1
D

D
2

G
D

0
G

D
1

G
D

2
D

D
0

D
D

1
D

D
2

G
D

0
G

D
1

G
D

2
D

D
0

D
D

1
D

D
2

G
D

0
G

D
1

G
D

2
D

D
0

D
D

1
D

D
2

G
D

0
G

D
1

G
D

2
D

D
0

D
D

1
D

D
2

G
D

0
G

D
1

G
D

2
D

D
0

D
D

1
D

D
2

Relaxed atomics reduce cycles up to ~50%

DeNovo increases reuse over GPU: 10% avg. for DRFrlx

104

 G0 G1 D0 D1 DRlx GRlx

PR-2 PR-3 PR-4 PR-1 UTS BC-1 BC-2 BC-3 BC-4 AVG

Relaxed Atomics Applications – Energy

22

0%

20%

40%

60%

80%

100%

G
D

0
G

D
1

G
D

2
D

D
0

D
D

1
D

D
2

G
D

0
G

D
1

G
D

2
D

D
0

D
D

1
D

D
2

G
D

0
G

D
1

G
D

2
D

D
0

D
D

1
D

D
2

G
D

0
G

D
1

G
D

2
D

D
0

D
D

1
D

D
2

G
D

0
G

D
1

G
D

2
D

D
0

D
D

1
D

D
2

G
D

0
G

D
1

G
D

2
D

D
0

D
D

1
D

D
2

G
D

0
G

D
1

G
D

2
D

D
0

D
D

1
D

D
2

G
D

0
G

D
1

G
D

2
D

D
0

D
D

1
D

D
2

G
D

0
G

D
1

G
D

2
D

D
0

D
D

1
D

D
2

G
D

0
G

D
1

G
D

2
D

D
0

D
D

1
D

D
2

N/W L2 $ L1 D$ Scratch GPU Core+

Energy similar to execution time trends

DeNovo’s reuse reduces energy over GPU: 29% avg. for DRFrlx

104

PR-2 PR-3 PR-4 PR-1 UTS BC-1 BC-2 BC-3 BC-4 AVG

Conclusion

23

DRFrlx: SC-centric semantics + efficiency

Everyone can safely use RAts

• Cost of avoiding relaxed atomics too high

• Difficult to use correctly: no formal specification

• Insight: Analyze how real codes use relaxed atomics

