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Traditional Heterogeneous SoC Memory Hierarchies

Works well for streaming applications
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Inefficient for applications with fine-grained synchronization



• Tighter CPU-GPU integration – need better synch support

• Lots of heterogenous coherence, consistency research
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Motivation

QuickRelease HPCA’14

DeNovo MICRO ‘15

hLRC MICRO ‘16

HRF ASPLOS ‘14

RemoteScopes ASPLOS ‘15

hVIPS TACO ‘16

RAts ISCA ’17 …

No standardization – which approach is best?

HeteroSync: new microbenchmark suite



• Fine-grained synchronization microbenchmarks

– Various mutex, semaphore, barrier algorithms

– Relaxed atomics: event counters, split counters, seqlocks, …

• Enable deep analysis of:

– Algorithm scalability

– Scalability of different coherence and consistency schemes
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HeteroSync

Standard fine-grained synch microbenchmarks



Outline

• Motivation

• Background: Coherence & Consistency

• HeteroSync

• Results

• Conclusion
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Atomics Background

• Default: Data-race-free-0 (DRF0) [Adve ISCA ‘90]

– Identify all races as synchronization accesses (C++: atomics)

– All atomics order data accesses

– Atomics order other atomics

Ensures SC semantics if no data races
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// each thread
for i = 0:n
…
ADD R4, A[i], R1
ADD R5, B[i], R1
…

synch (atomic)

synch (atomic)



Atomics Background (Cont.)

• Default: Data-race-free-0 (DRF0) [Adve ISCA ‘90]

– All atomics order data

– All atomics order other atomic accesses

Ensures SC semantics if no data races

• Relaxed atomics [Boehm PLDI ‘08]

+ Do not order data or other atomics

But can violate SC and no formal specification

• Data-race-free-relaxed (DRFrlx) [Sinclair ISCA ‘17]

SC-centric semantics + efficiency
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GPU Coherence with DRF

• With data-race-free (DRF) memory model

– No data races; synchs must be explicitly distinguished

– Synchronization accesses (atomics) go to last level cache (LLC)

– Synchronization points are expensive, preclude reuse

L2 Cache
Bank

Interconnection n/w

GPU

L2 Cache
Bank

CPU

CacheCacheValidDirty

Valid
Flush dirty 

data

Invalidate 

all data

// each thread

for i = r[tid]:r[tid+1]

LOCK
LD R1, A[i];
LD R2, B[i];
R3Math(R1, R2);
ST B[i], R3;
UNLOCK

Simple but inefficient coherence, simple consistency
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GPU Coherence with HRF

• New memory model: Heterogeneous-race-free (HRF) [ASPLOS ‘14]

– Adds scoped synchronization

L2 Cache
Bank

Interconnection n/w

GPU

L2 Cache
Bank
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CacheCacheValidDirty

Valid
Flush dirty 

data

Invalidate 

all data

// each thread

for i = r[tid]:r[tid+1]

LOCK
LD R1, A[i];
LD R2, B[i];
R3Math(R1, R2);
ST B[i], R3;
UNLOCK global

global

9



GPU Coherence with HRF

• New memory model: Heterogeneous-race-free (HRF)

– Adds scoped synchronization

– No overhead for locally scoped synchronizations

• But higher programming complexity

L2 Cache
Bank

Interconnection n/w

GPU

L2 Cache
Bank

CPU

CacheCacheDirty

Valid

// each thread

for i = r[tid]:r[tid+1]

LOCK
LD R1, A[i];
LD R2, B[i];
R3Math(R1, R2);
ST B[i], R3;
UNLOCK global

global

local

local

Keep data 

local

More efficient coherence, complex consistency
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DeNovo Coherence with DRF

• Reuse dirty data across synch points – more data reuse

• Synchronization accesses can be performed at L1 – synch reuse

L2 Cache
Bank

Interconnection n/w

GPU

L2 Cache
Bank
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CacheCacheObtain 

ownership

Invalidate

non-owned data
Dirty
Valid
Own

for i = r[tid]:r[tid+1]

LOCK
LD R1, A[i];
LD R2, B[i];
R3Math(R1, R2);
ST B[i], R3;
UNLOCK

Efficient coherence, simple consistency
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Outline

• Motivation

• Background: Coherence & Consistency

• HeteroSync

– Synchronization Primitives Microbenchmarks

– Relaxed Atomics Microbenchmarks

• Results

• Conclusion
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• SyncPrims microbenchmarks [Stuart CoRR ’11]:

– Originally studied synchronization primitive latency

– Focus: performance of atomic operations

– Less Focus: overheads of proper synchronization

• No global data accesses

• Microbenchmarks: 

– Mutexes: Spin (with backoff), centralized ticket, ring buffer

– Semaphores: Spin (with backoff)

– Barriers: Centralized, decentralized barriers
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Synchronization Primitives Microbenchmarks



• Updates [Sinclair MICRO ‘15]:

– Global data accesses in critical sections

– Synchronization loads and stores to enforce ordering

– Two versions of each microbenchmark: local/global scope

– Optimize algorithms

• Microbenchmarks: 

– Mutexes: Spin (with backoff), centralized ticket, ring buffer

– Semaphores: Spin (with backoff)

– Barriers: Centralized, decentralized barriers

14

Synchronization Primitives Microbenchmarks

Can vary data size, scope, synchronization primitive

decentralized ticket

2-level tree + local exchange



Outline

• Motivation

• Background: Coherence & Consistency

• HeteroSync

– Synchronization Primitives Microbenchmarks

– Relaxed Atomics Microbenchmarks

• Results

• Conclusion
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Relaxed Atomic (RAts) Microbenchmarks

• Contacted vendors, developers, and researchers

– Common uses of relaxed atomics [Sinclair ISCA ‘17]:
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Event Counters

Seqlocks

Flags

Ref Counters

Split Counters

Place events into bins

Shared flag for inter-thread communication

Simultaneously update and get partial sums

Can vary data size, algorithm

Sequence number instead of mutex lock

Track threads using an object; delete if none



Outline

• Motivation

• Background: Coherence & Consistency

• HeteroSync

• Results

• Conclusion
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Evaluation Methodology
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• 1 CPU core + 1-15 GPU compute units (CU)

– Each node has private L1, scratchpad, tile of shared L2

• Simulation Environment

– GEMS, Simics, Garnet, GPGPU-Sim

• HeteroSync microbenchmarks

– SyncPrims: weak scaling

– Relaxed Atomics: strong scaling
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Configurations Studied

GPU

GPU

Studied GPU, DeNovo coherence with DRF0, DRFrlx, HRF

GPU
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DeNovo

Coherence Consistency

DRF0

HRF

DRF0

DRFrlx

DRFrlx

Abbreviation
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DD

GD

DD

0

0

R

R

SyncPrims

Relaxed 

Atomics



• How are coherence/consistency schemes impacted?

– Do certain algorithms scale better than others?

– How does an algorithm scale with local/global scope?

– Do relaxed atomics impact scalability?
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Key Evaluation Questions
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Centralized Ticket Lock Scalability (Global Scope)
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As CUs increase, execution time increases due to increased contention

DeNovo+DRF is able to reuse synch, so scales 20% better than GPU+HRF
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Centralized vs. Decentralized (Global Scope)
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• How are coherence/consistency schemes impacted?

– Do certain algorithms scale better than others?

– How does an algorithm scale with local/global scope?

– Do relaxed atomics impact scalability?
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Key Evaluation Questions

Coherence protocol impacts which algorithm scales better
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Decentralized Ticket Lock Scalability (Local Scope)
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Decentralized Ticket Lock Scalability (Local Scope)
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GPU+DRF cannot perform atomics locally, contention increases with # CUs

DeNovo+DRF exploits locality

GPU+HRF also exploits locality, but increased programming complexity



• How are coherence/consistency schemes impacted?

– Do certain algorithms scale better than others?

– How does an algorithm scale with local/global scope?

– Do relaxed atomics impact scalability?
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Key Evaluation Questions

Coherence protocol impacts which algorithm scales better

DeNovo+DRF provides best scalability with global scope

GPU+HRF and DeNovo+DRF both scale well with local scope



27

Split Counters Scalability

Execution time significantly reduced as work spread across more CUs

DeNovo+DRF0: tradeoff between increased reuse, remote accesses
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Split Counters Scalability
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Execution time significantly reduced as work spread across more CUs

DeNovo+DRF0: tradeoff between increased reuse, remote accesses

Relaxed atomics reduce execution time compared to DRF0



• How are coherence/consistency schemes impacted?

– Do certain algorithms scale better than others?

– How does an algorithm scale with local/global scope?

– Do relaxed atomics impact scalability?
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Key Evaluation Questions

Coherence protocol impacts which algorithm scales better

DeNovo+DRF provides best scalability with global scope

GPU+HRF and DeNovo+DRF both scale well with local scope

Relaxed atomics reduce execution time, but increase contention

Compare schemes and scalability with HeteroSync



• HeteroSync: fine-grained GPU synch microbenchmarks

– Synchronization primitives: mutexes, semaphores, barriers

– Relaxed atomics: event counters, split counters, seqlocks, …

– Highly configurable

• Study algorithms, coherence, and consistency

– Examine scalability of existing approaches

• Standard set of GPU microbenchmarks

– Released soon: github.com/mattsinc/heterosync
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Summary

github.com/mattsinc/heterosync

