HeteroSync: A Benchmark Suite for Fine-Grained
Synchronization on Tightly Coupled GPUs

Matthew D. Sinclair, Johnathan Alsop, Sarita V. Adve
University of lllinois @ Urbana-Champaign
hetero@cs.lllinois.edu

Traditional Heterogeneous SoC Memory Hierarchies

L1 AV HW Accels.
Cache

L1
Cache

Main Memory

Discrete address spaces

Works well for streaming applications
Inefficient for applications with fine-grained synchronization 2

 Tighter CPU-GPU integration — need better synch support
* Lots of heterogenous coherence, consistency research

QuickRelease HPCA'14 HRF ASPLOS ‘14
DeNovo MICRO ‘15 RemoteScopes ASPLOS ‘15
hLRC MICRO ‘16 hVIPS TACO ‘16
RAts ISCA ’17

No standardization — which approach is best?
HeteroSync: new microbenchmark suite

HeteroSync

* Fine-grained synchronization microbenchmarks
— Various mutex, semaphore, barrier algorithms
— Relaxed atomics: event counters, split counters, seqglocks, ...

* Enable deep analysis of:
— Algorithm scalability
— Scalability of different coherence and consistency schemes

Standard fine-grained synch microbenchmarks

Motivation

Background: Coherence & Consistency
HeteroSync

Results

Conclusion

Atomics Background

 Default: Data-race-free-0 (DRF0) [Adve ISCA ‘90]

— ldentify all races as synchronization accesses (C++: atomics)

// each thread
fori=0:n

ADD R4, A[i], R1 synch (atomic)
ADD R5, B[i], R1 synch (atomic)

— All atomics order data accesses
— Atomics order other atomics
—Ensures SC semantics if no data races

Atomics Background (Cont.)

* Default: Data-race-free-0 (DRF0) [Adve ISCA ‘90]
— All atomics order data
— All atomics order other atomic accesses
—Ensures SC semantics if no data races

* Relaxed atomics [Boehm PLDI “08]

+ Do not order data or other atomics
—But can violate SC and no formal specification

 Data-race-free-relaxed (DRFrlx) [Sinclair ISCA ‘“17]

—SC-centric semantics + efficiency

GPU Coherence with DRF

Fiushdiitey
alddada

L2 Cache L2 Cache
ET] Bank

Interconnection n/w

 With data-race-free (DRF) memory model

/l each thread

for i = r[tid]:r[tid+1]
LOCK
LD R1, A[i];
LD R2, B[i]; W
R3 € Math(R1, R2);
ST B[i], R3;
UNLOCK

— No data races; synchs must be explicitly distinguished
— Synchronization accesses (atomics) go to last level cache (LLC)
— Synchronization points are expensive, preclude reuse

Simple but inefficient coherence, simple consistency

GPU Coherence with HRF

/l each thread

Puslictitey for i = r[tid]:r[tid+1]
aldededa LOCK global
LD R1, A[i];
L2 Cache L2 Cache LD R2, B[i]; &
HEML B R3 € Math(R1, R2);

ST B[i], R3;
UNLOCK global

Interconnection n/w

New memory model: Heterogeneous-race-free (HRF) [ASPLOS ‘14]
— Adds scoped synchronization

GPU Coherence with HRF

/l each thread

Keep data for i = r[tid]:r[tid+1]
local LOCK Eloblal
LD R1, A[i];
L2 Cache L2 Cache LD R2, B[i]; &
HEML B R3 € Math(R1, R2);

ST B[i], R3;
UNLOCK Bloblal

Interconnection n/w

New memory model: Heterogeneous-race-free (HRF)
— Adds scoped synchronization
— No overhead for locally scoped synchronizations

But higher programming complexity
More efficient coherence, complex consistency

10

DeNovo Coherence with DRF

for i = r[tid]:r[tid+1]

Invaliatain LOCK
non-oowed daip LD R1, Afi];
LD R2, B[i]; &
»ei-l| | L2 Cache L2 Cache R3 € Math(R1, R2);
Reg Bank Bank ST BJi], R3;
Only track 1 Interconnection n/w UNLOCK

up-to-date copy

* Reuse dirty data across synch points — more data reuse
* Synchronization accesses can be performed at L1 - synch reuse

Efficient coherence, simple consistency

11

Motivation
Background: Coherence & Consistency

HeteroSync
— Synchronization Primitives Microbenchmarks
— Relaxed Atomics Microbenchmarks

Results
Conclusion

12

Synchronization Primitives Microbenchmarks

* SyncPrims microbenchmarks [Stuart CoRR '11]:
— Originally studied synchronization primitive latency
— Focus: performance of atomic operations

— Less Focus: overheads of proper synchronization
* No global data accesses

* Microbenchmarks:
— Mutexes: Spin (with backoff), centralized ticket, ring buffer
— Semaphores: Spin (with backoff)
— Barriers: Centralized, decentralized barriers

13

Synchronization Primitives Microbenchmarks

» Updates [Sinclair MICRO ‘15]:

— Global data accesses in critical sections

— Synchronization loads and stores to enforce ordering

— Two versions of each microbenchmark: local/global scope
— Optimize algorithms

* Microbenchmarks: decentralized ticket
— Mutexes: Spin (with backoff), centralized ticket, ring-buffer
— Semaphores: Spin (with backoff)
— Barriers: Centralized, decentralizeokbarriers A
2-level tree + local exchange

Can vary data size, scope, synchronization primitive

14

Motivation
Background: Coherence & Consistency

HeteroSync
— Synchronization Primitives Microbenchmarks
— Relaxed Atomics Microbenchmarks

Results
Conclusion

15

Relaxed Atomic (RAts) Microbenchmarks

» Contacted vendors, developers, and researchers
— Common uses of relaxed atomics [Sinclair ISCA ‘17]:

Event Counters Place events into bins
Seqlocks Sequence number instead of mutex lock
Flags Shared flag for inter-thread communication

Split Counters Simultaneously update and get partial sums

Ref Counters Track threads using an object; delete if none

Can vary data size, algorithm

16

Motivation

Background: Coherence & Consistency
HeteroSync

Results

Conclusion

17

Evaluation Methodology

* 1 CPU core + 1-15 GPU compute units (CU)

— Each node has private L1, scratchpad, tile of shared L2

* Simulation Environment
— GEMS, Simics, Garnet, GPGPU-Sim

» HeteroSync microbenchmarks
— SyncPrims: weak scaling

— Relaxed Atomics: strong scaling

18

Configurations Studied

Studied GPU, DeNovo coherence with DRF0, DRFrix, HRF

Abbreviation | Coherence| Consistency

-o- GDO GPU DRFO
SyncPrims
- DD0 | DeNovo | DRFO Relaxed
Atomics
-#- GDR GPU DRFrlix

DDR DeNovo DRFrix

19

Key Evaluation Questions

* How are coherence/consistency schemes impacted?
— Do certain algorithms scale better than others?
— How does an algorithm scale with local/global scope?
— Do relaxed atomics impact scalability?

20

Centralized Ticket Lock Scalability (Global Scope

-GH=GD DD

=
92

=
o

Cycles (M)

U

o

1 2 4 8 15
CU

As CUs increase, execution time increases due to increased contention
DeNovo+DREF is able to reuse synch, so scales 20% better than GPU+HRF

)

21

Centralized vs. Decentralized (Global Scope)

15 =GH=GD-e-DD 15 ==GH=GD DD
S 10 10
ke
> O 5
®

0 0

1 2 4 8 15 1 2 4 8 15
CU # CU

As CUs increase, execution time increases due to increased contention
Decentralized ticket lock scales better than centralized with DeNovo+DRF
For decentralized, DeNovo+DRF scales 32% better than GPU+HRF

22

Key Evaluation Questions

* How are coherence/consistency schemes impacted?
— Do certain algorithms scale better than others?
Coherence protocol impacts which algorithm scales better

— How does an algorithm scale with local/global scope?
— Do relaxed atomics impact scalability?

23

Decentralized Ticket Lock Scalability (Local Scope)

1 2 4 8 15
CU

GPU+DRF cannot perform atomics locally, contention increases with # CUs
DeNovo+DRF exploits locality

24

Decentralized Ticket Lock Scalability (Local Scope)

1200 GD =GH -eDD
1000 —ﬂ—o—/_‘

28
§600 e —— —— ——
S 4
O

1 2 4 8 15
CU

GPU+DRF cannot perform atomics locally, contention increases with # CUs
DeNovo+DRF exploits locality
GPU+HREF also exploits locality, but increased programming complexity

25

Key Evaluation Questions

* How are coherence/consistency schemes impacted?
— Do certain algorithms scale better than others?
Coherence protocol impacts which algorithm scales better

— How does an algorithm scale with local/global scope?
DeNovo+DRF provides best scalability with global scope

GPU+HRF and DeNovo+DRF both scale well with local scope

— Do relaxed atomics impact scalability?

26

Split Counters Scalability

@-GDO <-DDO0

400
=300
2200
S
9100
0

1 2 4 8 15
CU

Execution time significantly reduced as work spread across more CUs
DeNovo+DRFO0: tradeoff between increased reuse, remote accesses

27

Split Counters Scalability

©-GDO0 #-DDO0 #-GDR -4DDR

400
=300
2200 -
S
9100
0

1 2 4 8 15
CU

Execution time significantly reduced as work spread across more CUs
DeNovo+DRFO0: tradeoff between increased reuse, remote accesses
Relaxed atomics reduce execution time compared to DRF0

28

Key Evaluation Questions

* How are coherence/consistency schemes impacted?
— Do certain algorithms scale better than others?
Coherence protocol impacts which algorithm scales better

— How does an algorithm scale with local/global scope?
DeNovo+DRF provides best scalability with global scope

GPU+HRF and DeNovo+DRF both scale well with local scope

— Do relaxed atomics impact scalability?

Relaxed atomics reduce execution time, but increase contention

Compare schemes and scalability with HeteroSync

29

 HeteroSync: fine-grained GPU synch microbenchmarks
— Synchronization primitives: mutexes, semaphores, barriers
— Relaxed atomics: event counters, split counters, seqglocks, ...
— Highly configurable

 Study algorithms, coherence, and consistency
— Examine scalability of existing approaches

« Standard set of GPU microbenchmarks
— Released soon: github.com/mattsinc/heterosync

30

github.com/mattsinc/heterosync

