
Energy-Driven Hardware Adaptations for

Multimedia Applications on

General-Purpose Processors

Sarita Adve

with

Christopher J. Hughes, Rohit Jain, Praful Kaul,

Chanik Park, Ruchira Sasanka, Jayanth Srinivasan

Department of Computer Science

University of Illinois at Urbana-Champaign

http://www.cs.uiuc.edu/~sadve



Motivation and Goals

Multimedia and communication will be critical workloads

Video, speech, images, wireless communication

Traditionally used ASICs, DSP processors, BUT

Now general-purpose processors attractive

Increasing application complexity ⇒

Need for compilers, upgradeability, portability

How to build general-purpose architectures for new applications?
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Computation

Real-time

Energy

Battery life

Bandwidth
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Real-time

Energy

Battery life

Bandwidth

Wireless losses,
congestion

Stringent, dynamic, multidimensional resource constraints

Real-time ⇒
Can slow processing to save energy

Soft correctness criteria ⇒
Can tradeoff output quality for resource usage
Resilience to losses and imprecise computation

Lots of parallelism in applications ⇒
Old and new architectural techniques to exploit parallelism

New Challenges and Opportunities



Key Themes in our Work

Dynamic system and flexible output quality ⇒
Make hardware adaptive, flexible

Change configuration to optimize for current condition



Key Themes in our Work

Dynamic system and flexible output quality ⇒
Exploit adaptation in all system layers

Hardware, network, operating system, application

Collaborate to optimize for current system conditions

Integrated cross-layer adaptation control

         With Jones, Kravets, Nahrstedt



Key Themes in our Work

Dynamic system and flexible output quality ⇒
Exploit adaptation in all system layers

Hardware, network, operating system, application

Collaborate to optimize for current system conditions

Integrated cross-layer adaptation control

         With Jones, Kravets, Nahrstedt

Resilience to losses ⇒
Aggressive speculation for performance and energy

New models and techniques for fault tolerance



Key Themes in our Work

Dynamic system and flexible output quality ⇒
Exploit adaptation in all system layers

Hardware, network, operating system, application

Collaborate to optimize for current system conditions

Integrated cross-layer adaptation control

         With Jones, Kravets, Nahrstedt

Resilience to losses ⇒
Aggressive speculation for performance and energy

New models and techniques for fault tolerance

Parallelism ⇒
Exploit past experience w/ instruction and thread parallelism



Key Themes in our Work

Dynamic system and flexible output quality ⇒
Exploit adaptation in all system layers

Hardware, network, operating system, application

Collaborate to optimize for current system conditions

Integrated cross-layer adaptation control

         With Jones, Kravets, Nahrstedt

Resilience to losses ⇒
Aggressive speculation for performance and energy

New models and techniques for fault tolerance

Parallelism ⇒
Exploit past experience w/ instruction and thread parallelism



Issues in Hardware Adaptation

Prediction of execution time, energy, bandwidth

Adaptation control algorithm

Architecture and design of adaptive hardware

Cross-layer integration



Issues in Hardware Adaptation

Prediction of execution time, energy, bandwidth  [ISCA’01]

Adaptation control algorithm

Architecture and design of adaptive hardware

Cross-layer integration

[MICRO’01],
[under review]
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Adaptive Hardware to Save Energy

Summary and Ongoing Work



Predictability - Motivation

Many multimedia applications real-time

Must process frame of data within a deadline

⇒ Need predictability

Common conjecture for general-purpose processors (GPPs)

Complex features make GPPs unpredictable (???)

E.g., out-of-order issue, caches, speculation



Predictability - Motivation

Many multimedia applications real-time

Must process frame of data within a deadline

⇒ Need predictability

Common conjecture for general-purpose processors (GPPs)

Complex features make GPPs unpredictable (???)

E.g., out-of-order issue, caches, speculation

We used variability at frame granularity to quantify predictability



Workload and Simulated Architecture

Workload

Speech: GSMenc, GSMdec (low bit rate)

         G728enc, G728dec (high bit rate)

Video:    H263enc, H263dec (low bit rate)

     MPEGenc, MPEGdec (high bit rate)

Audio:    MP3dec

1GHz out-of-order processor simulated with RSIM

4-issue, 64 entry instruction window

64KB L1 data (2 cycles), 1MB L2 data (20 cycles)

102 cycles main memory

2 ALU, 2 FPU, 2 Address generation
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Key Findings for Predictability

Complex features make GPPs unpredictable (???)

Some apps show high variability in execution time of a frame

BUT architecture introduces little of it: IPC almost constant

Most variability from algorithm, input: Instruction count varies

⇒  Amount of work changes, nature of work stays same

Other useful results

• Little time in memory stalls

• Instruction count changes slowly

Motivates algorithm to control when and what to adapt 
Next….
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Adaptive Hardware – Motivation and Goals

Many proposals for adaptive hardware to save energy

Dynamic voltage and frequency scaling (DVS)

Architecture adaptation

Instruction window size, functional units, issue width, …

Two key questions

⇒ When to adapt?

⇒ What to adapt?

Our goal

Adaptation control algorithm for multimedia applications

Study DVS vs. architecture adaptation

Adaptation control
algorithm



Inter-Frame Control Algorithm – Key Ideas

Use results from study of execution time predictability

⇒ When to adapt?

Execution time variability at frame level

⇒ Adaptation at frame granularity

(2) What to adapt?

Predict time, energy of next frame for all configurations

Pick lowest energy configuration that can meet deadline



Execution Time Prediction for a Frame

Execution cycles =        x Instruction count
IPC

1

(IPC = instructions per cycle)
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Execution Time Prediction for a Frame

Execution cycles =        x Instruction count

⇒ Frame execution time dynamically predictable

Dynamic predictor needed only for frame instruction count

Energy prediction analogous

IPC constant ⇒
   Get by profiling initial frame

Memory time small ⇒
   Profile only one frequency

DIC changes smoothly ⇒
   Can use simple predictor

   One prediction for all hardware

IPC
1



Inter-Frame Adaptation Control Algorithm

                                 Profiling Phase

For each hardware, H

ImaxH = Maximum instructions H can execute in deadline

EPIH   = Energy per Instruction

                               Adaptation Phase

Predict instruction count for next frame

Choose hardware with Imax ≥ prediction and least EPI
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For each hardware, H, with architecture A

ImaxH = Deadline × FrequencyH × IPCA

EPIH   = Energy per Instruction ∝ PowerA VH
2
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Choose hardware with Imax ≥ prediction and least EPI
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Inter-Frame Adaptation Control Algorithm

                                 Profiling Phase

For each architecture, A, measure IPCA and PowerA at one voltage/freq

For each hardware, H, with architecture A

ImaxH = Deadline × FrequencyH × IPCA

EPIH   = Energy per Instruction ∝ PowerA VH
2
/IPCA

Order hardware by increasing EPI in EPI-Imax table

                               Adaptation Phase

Predict instructions: Max of past 5 frames, leeway, hysteresis

Choose first h/w in EPI-Imax table with Imax ≥ prediction

Dynamic prediction only needed for frame instruction count

Independent of hardware configuration



Modifications for Continuous DVS

At least one processor has continuous DVS (CDVS)

 ⇒ EPI-Imax table too long

With CDVS, same architecture has least EPI for most cases

Architecture with least PowerA /IPCA
3

• Find this architecture in profiling phase

• Pick only frequency in adaptation phase

 ⇒ No large EPI-Imax tables needed



Experimental Methodology

Workload same as for predictability study

RSIM + Wattch for time and energy simulations

Aggressive clock gating



Experimental Methodology (Cont.)

Processors evaluated

NoAdapt, Arch, CDVS, Arch+CDVS

Base hardware similar to predictability study except

Processor ~ 2X as aggressive

8-way, 128 entry inst. window, 6 ALU, 4 FPU, 2 addr gen.

Architecture adaptations

Instruction window size: 128, 96, 64, 48, 32, 16

Active ALUs: 6, 4, 2

Active FPUs: 4, 2, 1 ⇒  54 configurations

DVS frequency: 100 MHz to 1GHz



How Good is the Inter-Frame Algorithm?

Missed deadlines

For all deadlines and processors, very few deadlines missed

Average across all apps ≤ 0.8%

Maximum for a single app ≤ 3.6%

Slack removed

Slack = Idle time between end of processing until deadline

Most slack removed

Remaining slack mostly from system limitations

Energy savings – Next…



Energy Savings From Inter-Frame Adaptation
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DVS very effective

46% to 82% savings, average 74%

Architecture adaptation effective, but much less than DVS

38% to 50% savings, average 44%
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Inter-Frame DVS+Arch vs. DVS alone
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DVS + Arch most energy efficient, but most benefit from DVS

Savings vs. DVS alone: 10% to 32%, average 18%
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Instruction Window Utilization for Arch
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Most energy efficient architecture depends on presence of DVS

Without DVS, simple configurations (low IPC) chosen

With DVS, more aggressive configurations (high IPC) chosen
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Most energy efficient architecture depends on presence of DVS

Without DVS, simple configurations (low IPC) chosen

With DVS, more aggressive configurations (high IPC) chosen

High IPC allows running at low frequency



DVS + Architecture Adaptation

When is it effective to have architecture adaptation with DVS?

Application has lower  PowerA /IPCA
3  for alternate hardware

Application has slack at lowest frequency

Optimal frequency not supported by D-DVS



DVS + Architecture Adaptation

When is it effective to have architecture adaptation with DVS?

Application has lower  PowerA /IPCA
3  for alternate hardware

Application has slack at lowest frequency

Optimal frequency not supported by D-DVS

But so far assume same hardware for full frame

What about intra-frame adaptation?
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Intra-Frame Adaptation

IPC and resource usage often varies within a frame

⇒  Intra-frame architecture adaptation

 Adapt without slowing down (ideally)

 (No intra-frame DVS due to high overhead)

Similar to architecture adaptation work for conventional apps

But previous work does not consider

• Real-time multimedia applications

• Interaction with inter-frame adaptation



Instruction Window Adaptation – Key Idea

Divide instruction window into equal segments

To save energy, deactivate active segments

To avoid IPC loss, activate inactive segments

Control algorithm must determine

When and how much to deactivate?

When and how much to activate?

inactive segments

active segments



State-of-the-art Algorithm [Folegnani et al.]

Activates periodically

– Can degrade energy due to unnecessary powering up

– Can degrade IPC due to delays in powering up

Can we do better?

Deactivates when # of issues from youngest segment are low

+ Deactivates segments that do not contribute to IPC

youngest
segment



New Algorithm for Activation

Activate when reduced instruction window causes stalls

Track stalls at retirement

Instruction window reduces stalls by providing overlap

m instructions

n instructions

instruction i

m+n
instructions

instruction i

Instruction i  lost m instructions worth of overlap

 ⇒ Tag instruction i with m



New Algorithm for Activation

Activate when reduced instruction window causes stalls

Track stalls at retirement

Instruction window reduces stalls by providing overlap

m+k
instructions

instruction i

instruction j

Instruction j  lost m instructions worth of overlap

 ⇒ Pass tag m of instruction i to instruction j

m instructions

k instructions instruction i

instruction j



New Algorithm for Activation (Cont.)

On entry

Set tag for each instruction whose operands are available

Tag = # entries powered down

On completion

Reduce tag if instruction was stalled (at retirement)

Pass tag to any instruction that consumes the result

On retirement

If an instruction is tagged

Increment a counter by min(# of stall cycles, tag)

Increase the window size if counter exceeds a threshold



New vs. State-of-the-Art Activation Algorithm

State-of-the-art

– Can degrade energy due to unnecessary powering up

– Can degrade IPC due to delays in powering up

New algorithm

+ Activates only when there is IPC loss due to reduced window

– Overhead due to tags



Instruction Window Algorithms Studied

State-of-the-art [Folegnani et al.]

Issue based deactivation

Periodic activation

New Algorithm

Issue based deactivation

Stall based activation

Thresholds set for max average IPC degradation of 4%



Instruction Window Algorithms Studied

State-of-the-art [Folegnani et al.]

Issue based deactivation

Periodic activation

New Algorithm

Issue based deactivation

Stall based activation

Thresholds set for max average IPC degradation of 4%

New algorithm always same or slightly better

Use in rest of the talk



Functional Unit Adaptation

Can activate/deactivate each ALU or FPU

To save energy, deactivate active units

To avoid IPC loss, activate inactive units

Issue width proportional to # of active units

Control algorithm must determine

When and how many to deactivate?

When and how many to activate?



State-of-the-art Algorithm [Maro et al.]

Deactivates when utilization of a unit is low

Activates when utilization of remaining units is high

– Does not necessarily mean that more units are needed

Can we do better?



New Algorithm for Activation

Activate when # of structural hazards for a unit type is high

+ Only activates when more units are needed

– Non-critical instructions can still activate



Functional Unit Adaptation Algorithms Studied

State-of-the-art [Maro et al.]

Utilization based deactivation

Utilization based activation

New Algorithm

Utilization based deactivation

Hazard based activation

Thresholds set for max average IPC degradation of 3%



Functional Unit Adaptation Algorithms Studied

State-of-the-art [Maro et al.]

Utilization based deactivation

Utilization based activation

New Algorithm

Utilization based deactivation

Hazard based activation

Thresholds set for max average IPC degradation of 3%

New algorithm always same or slightly better

Use in rest of the talk



Savings with Intra-Frame Arch Adaptation

23

78 75 74
68 69

65
73

77

54

2221
31

18
222322

62

�
��

� �
� �

� � �

%
 N

o
A

d
ap

t 
E

n
er

g
y

DVS IntraArch

Intra-frame architecture adaptation effective, but less than DVS

22% to 38% savings, average 29%

   GSMd    GSMe   G728d  G728e  H263d   H263e  MPGd   MPGe   MP3d



Intra-Frame DVS+Arch vs. DVS alone
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Intra-frame architecture adaptation effective, but less than DVS

22% to 38% savings, average 29%

DVS + IntraArch most energy efficient

Savings vs. DVS alone: 18% to 30%, average 24%

   GSMd    GSMe   G728d  G728e  H263d   H263e  MPGd   MPGe   MP3d



Outline

Predictability of Execution Time

Adaptive Hardware to Save Energy

Motivation and Goals

Inter-Frame Adaptation

Intra-Frame Architecture Adaptation

Inter- vs. Intra- Frame and Combination

Summary and Ongoing Work



Inter vs. Intra Frame Adaptation

Those not applicable

to full  frame

With high overheadBest for which

adaptations?

No impact (ideally)May increaseImpact on exec time

Individual featuresGlobal configurationFeatures controlled

Continuous monitoringProfiles mostly at startBasis of adaptation

Intra-frameInter-frameProperties



Inter-Frame + Intra-Frame Adaptation

Same as inter-frame algorithm except

Run profiling phase with intra-frame adaptations

Run adaptation phase with intra-frame adaptations



Inter, Intra, Inter+Intra without DVS
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Why is Inter Better than Intra with no DVS?

When applications have a lot of slack

Inter increases execution time to save energy

Selects low IPC (low energy) architecture configurations

Intra must maintain execution time

Selects more aggressive architecture configurations

⇒  Inter better with lot of slack

When applications have little slack

Inter cannot do much

⇒  Intra better with little slack

Similar to case with DVS described next



Conclusions for No DVS

Lot of slack ⇒ Inter better

Little slack ⇒ Intra better

Inter + Intra best in all cases

Application slack unknown a priori

⇒ Inter+Intra best choice without DVS



Inter, Intra, Inter+Intra with DVS
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With DVS, Intra exploits slack as well as Inter!

Inter + Intra always best

Intra gives most savings, but adding Inter costs little

Savings vs. DVS alone: 18% to 39%, average 27%
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Instruction Window Utilization w/o and w/ DVS
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With DVS, more aggressive configurations chosen

Without DVS
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Conclusions - Inter vs. Intra-Frame Adaptation

Inter+Intra frame architecture adaptation is best

Without DVS

Lot of slack ⇒ Inter better

Little slack ⇒ Intra better

Inter + Intra best in all cases

With DVS

Most of the savings come from Intra

But adding Inter costs little

Average savings 46% without DVS, 26% with DVS



Summary and Conclusions (1 of 2)

Execution Time Predictability for Soft Real-Time

Conventional wisdom:

Complex architecture features induce unpredictability (??)

Variability from algorithm + input for all architectures

Findings motivate inter-frame adaptation control algorithm

Hardware Adaptation to Save Energy

Next slide…



Summary and Conclusions (2 of 2)

Hardware Adaptation to Save Energy

Inter-, Intra-, Inter+Intra- Frame adaptation control algorithms

• DVS + Architecture adaptation is best

• Inter-frame + Intra-frame architecture adaptation is best

Best architecture configuration depends on DVS

• No DVS ⇒ simple architectures

• With DVS ⇒ aggressive architectures

    Design aggressive architectures at low frequency



Ongoing Work

• Hardware adaptation techniques

• Integration of hardware adaptation with other layers

• Adapting for thermal power

• Exploiting output quality flexibility and loss resilience

• Enhancing predictability of multithreading (SMT) for real-time



For more information

http://www.cs.uiuc.edu/~sadve

sadve@cs.uiuc.edu


