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ABSTRACT

This thesis concerns the design of energy-efficient multimedia mobile devices, explored in the
GRACE project. The GRACE system saves energy by performing a coordinated adaptation in
all system layers in response to changing application requirements and resource availability. The
GRACE framework proposes a hierarchical solution to the cross-layer coordinated adaptation prob-
lem, where the system utilizes global (multiple application) and per-application adaptation to re-
duce energy. Global adaptation works at a large time granularity of several hundred frames — it
uses long-term information about multiple applications to find a long-term system wide optimal
configuration. Per-application adaptation works at the granularity of an application frame — it
uses frame-level information to respond to short-term variations in resource demand to further save
energy.

This thesis focuses on the benefits of per-application adaptation when added to global adapta-
tion. We consider adaptations in the CPU and the application, with the goal of minimizing CPU
and network transmission energy, subject to CPU and network bandwidth constraints. Our results
on the GRACE prototype system show that the cross-layer hierarchical adaptation strategy in
GRACE is effective. Per-application adaptation results in significant energy benefits (up to 50%)

in several scenarios, over and above the benefits from global adaptation.
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CHAPTER 1

INTRODUCTION

Mobile devices running soft real-time multimedia applications are becoming an increasingly impor-
tant computing platform. Such systems are often limited by their battery life; therefore, minimizing
their energy usage has become a primary design goal. A widely used technique to save energy is
to adapt the system in response to changes in application demands and resource availability. Re-
searchers have proposed such adaptations in all layers of the system e.g., hardware, application,
operating system, and network.

A system with multiple adaptive layers requires careful coordination of these adaptations to reap
their full benefit. The Illinois GRACE project (Global Resource Adaptation through CoopEration)
has proposed such a coordinated cross-layer adaptation framework [1, 2].

A cross-layer adaptive system must balance the conflicting demands of adaptation scope and
time scale. Ideally, it should invoke both global and frequent adaptation that coordinates all layers
in response to all changes in the system. Unfortunately, global adaptation can be expensive and so
must be infrequent, but long intervals between adaptation risks inadequate response to intervening
changes. To balance this conflict, the GRACE framework has proposed a hierarchical approach,
performing expensive global adaptations occasionally, and inexpensive limited-scope adaptations
frequently [1, 2].

Our previous work reported results on an initial GRACE protoype, GRACE-1, and demon-
strated the benefits of cross-layer coordinated adaptation [1]. This thesis reports on the next gen-
eration GRACE-2 system and focuses on the benefits of the hierarchical approach for coordinated
adaptation.

Specifically, the GRACE framework proposes three levels of adaptation, exploiting the natural
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Figure 1.1 GRACE adaptation hierarchy. (This thesis does not implement all adaptations in
the figure; specifically, the network layer is minimal and simulated.)

frame boundaries in periodic real-time multimedia applications (Figure 1.1 [2]). Global adaptation
considers all applications and system layers together, but only occurs at large system changes (e.g.,
application entry or exit). Per-application adaptation considers one application at a time and is
invoked every frame, adapting all system layers to that application’s current demands. Internal
adaptation adapts only a single system layer (possibly considering several applications) and may be
invoked several times per application frame. All adaptation levels are tightly coupled, ensuring that
the resource allocation decisions made through global coordination are respected by the limited-
scope adaptations.

The goal of this thesis is to ascertain the benefits of per-application adaptation over global
adaptation in a cross-layer adaptive system. Our new implementation, GRACE-2, incorporates
global and per-application adaptations in the CPU and application, along with global and internal
adaptations in the soft real-time scheduler. It respects the constraints of CPU utilization and
network bandwidth, while minimizing CPU and network transmission energy.

GRACE-2’s global optimizer chooses, for each application, an application configuration, a CPU
configuration, and the corresponding CPU time, network bandwidth, and energy budgets. The
optimization objective is to minimize the total system energy, subject to the constraints of total
CPU time and network bandwidth available. Since this optimization process is expensive, global
adaptation is invoked only when an application enters or leaves the system. Consequently, it needs
to make a long-term, usually conservative, prediction of the applications’ resource requirements.

GRACE-2’s per-application adaptation responds to interframe variations in the application’s
CPU and network requirement. It is invoked at the start of each application frame, and makes a
prediction of the resource requirements for the next frame for different configurations. Based on
this prediction and the budgets allocated by the global adaptation, the per-application adaptation

chooses the configuration for the application and the CPU for the next frame that would minimize



energy within the allocated budgets. The budget allocation is also modulated by the soft real-time
scheduler in response to frame-to-frame usage by the applications. Per-application adaptation is
less expensive because it only optimizes one application at a time.

We have implemented GRACE-2 on a Pentium-M based laptop system running Linux 2.6.8-
1, with a real adaptive CPU, fully implemented adaptive applications and soft real-time CPU
scheduler, but a simulated network layer. For CPU adaptation, we use dynamic voltage and
frequency scaling on the Pentium-M processor. For applications, we use H.263 video encoders and
perform adaptations first proposed in [3]. These adaptations vary the CPU time and network
bandwidth requirement of the encoder, to minimize the sum of the CPU and network transmission
energy, without perceptibly changing the video quality. We perform experiments with several video
streams and different network bandwidth availability, to cover four scenarios, where one or both of
the CPU and network are lightly or heavily loaded.

To our knowledge, GRACE-2 is the first implemented system that performs adaptations (1) at
multiple time scales (global and per-application), (2) in multiple layers (application, hardware, and
scheduler), (3) running multiple applications, and (4) in response to multiple constraints (CPU and
network bandwidth). Previous work that has considered adaptations in multiple system layers has
primarily focused on adaptation at a single time scale (usually global) and/or with one application
at a time and/or with one constraint (CPU or network bandwidth) (see Chapter 8 for a full
discussion of related work).

This work is the first to comprehensively explore the benefits of per-application adaptation over
global adaptation in a cross-layer adaptive system over a variety of scenarios representing different
resource constraints. Our results show that per-application adaptation in GRACE-2 provides sig-
nificant energy savings when added to global adaptation (up to 46%). While the magnitude and
source of the benefits depends on the resource constraints in the system, we can expect a typical
mobile device to operate under all of the conditions evaluated in this thesis. Further, given the low
overhead of per-application adaptation and the relatively low added system implementation com-
plexity over and above a system with global adaptation, the benefits achieved are clearly worthwhile

to exploit.



CHAPTER 2

LAYER ADAPTATIONS AND
MODELS

2.1 CPU

Adaptations: We study dynamic voltage and frequency scaling or DVFS [4] for CPU adaptation
since it is the most widely used software-controlled adaptation technique in current processors. The
Pentium-M based system we use supports five frequencies (and corresponding voltages) — 600, 800,
1000, 1200, 1300 MHz.

Energy model: We use the following model for CPU energy with DVFS, where C eff is effective

capacitance, f is the frequency, and V is the corresponding voltage.

Dynamic power at frequencyf = C eff X VZxf (2.1)
Energy at frequency f = Power x Execution Time (2.2)
= Cefrx V2 x Execution cycles (2.3)

The above model does not include static or leakage power. With technology scaling and increas-
ing frequencies, static power is becoming increasingly important; however, current-leakage models
are fairly complex and we did not include them for this study. We derive C eff by using published
numbers for the Pentium-M current and voltage at its highest frequency which gives the maximum
power (~ 25 W) — this does not incorporate the impact of application-dependent clock gating. To
determine the voltage at each frequency, we assume V o f, and use the published V', f numbers

for the Pentium-M at 1300 MHz to approximate the proportionality constant.



The net effect is that we can derive the energy of an application frame from its execution cycles.
All of the above assumptions are commonly made in the literature. We do not believe any of them
has an impact on the key focus of the thesis, i.e., the effectiveness of hierarchical adaptation.
Nevertheless, in the future, we will use a multimeter to directly measure the average power for each
frame.

Execution time: For the multimedia applications studied here, past work has shown that
the number of execution cycles for a given frame for a given application configuration is roughly
independent of frequency [5]. This is because the applications studied generally hit in the cache
and do not see much memory stall time. The execution time therefore scales roughly linearly with
frequency, and execution cycles stay roughly constant with changing frequency.

Emulating continuous DVFS (CDVFS): Current processors support a small number of
DVFS points. This limits the benefits of DVFS adaptations [6] as the adaptation algorithm rounds
up to the next DVFS point in cases where it needs a frequency that lies between two DVFS points.
This rounding up results in more energy being used than necessary. We reduce this inefficiency by
emulating a continuous set of points, which we refer to as continuous DVFS or CDVFS. The basic
idea, based on [7], is that if we want to run at a frequency that is not a DVFS point, we run at
the DVFS point below the desired frequency for some time, and the DVFS point above it for the
remaining time. Specifically, assume that ¢ cycles need to be executed at the calculated frequency
f and the lower and upper DVFS points are f; and fj, respectively. This emulation executes c;

cycles at speed f; and ¢y cycles at speed fp, such that

c1+c=c (2-4)
c_a,o
f A * In (2:9)

2.2 Network (Nonadaptive)

We assume a nonadaptive (simulated) network layer with fixed available network bandwidth. We

model network transmission energy using a fixed energy/byte cost:

Network Energy = EnergyPerByte x BytesTransmitted (2.6)



Table 2.1 Network bandwidth and energy/byte values.
Bandwidth (Mbps) 2|55 | 11
Energy per byte (e ®J) [ 4] 2 |08

In our evaluations, we study the effects of different bandwidth values, ranging from 2 Mbps to
11 Mbps. These values represent the bandwidth available in an IEEE 802.11b wireless network.
For each bandwidth level, the fixed transmission cost is modeled using the energy consumption of
a Cisco Aironet 350 series PC card [8]. Table 2.1 summarizes the specific values we use.

We believe the range of network configurations we study represent reasonable scenarios encoun-
tered in practice. Responding to variations in network bandwidth with an adaptive network layer

is part of our ongoing work and lies outside the scope of this thesis.

2.3 Application

We consider periodic soft real-time applications or tasks. An application releases a job or a frame at
the end of each period. We use H.263 video encoders as our base applications and apply adaptations
described in [3] and discussed below.

Adaptations: The application adaptations we study enable a tradeoff between the amount
of CPU computation (i.e., CPU energy) for the number of bytes transmitted (i.e., network trans-
mission energy), to minimize the total CPU+network transmission energy (referred to as system
energy henceforth). The appropriate tradeoff varies dynamically, depending on the video stream,
the load on the system, and the relative expense of CPU energy per cycle to network energy per
byte. The CPU energy per cycle in our system also depends on the CPU configuration chosen.

The adaptations we consider work at the granularity of a single frame of the input stream. They
enable dropping DCT computations and motion searches based on specified thresholds, which can
be changed for the next frame by the global or per-application adaptor. For motion search, at
each step, we compare the SAD (sum of absolute difference) generated with an externally specified
threshold. If the SAD for a candidate motion vector is less than the current threshold, that
candidate is declared the best match for the macroblock. Because the search begins with the null
motion vector (0,0), motion search is essentially disabled if the specified threshold is sufficiently

high.



For DCTs, we extend the H.263 specification by adding a bit before each 8 x 8 DCT block
specifying whether or not that block was transformed. If the sum of the absolute values of each
element of the 8 x 8 block exceeds the threshold, or the block belongs to an Intracoded macroblock,
the block is DCT-transformed and a ‘1’ is emitted into the bitstream. Otherwise, a ‘0’ is emitted,
and no DCT is performed. No change is made to the subsequent quantization and VLC (variable
length coding) steps.

The net effect of the above adaptations is that, by changing the thresholds, we can vary the bit
rate to be transmitted and the number of cycles required to encode each frame by approximately
a factor of two. Although these adaptations (particularly dropping DCTs) can reduce the PSNR
(pseudo signal to noise ratio) of the encoded stream somewhat, this can be compensated for by
adjusting the quantizer step size @) to keep the PSNR of the output stream roughly invariant.

Thus, the adaptive encoder can be scaled between a highly compute-intensive but lower bit rate
configuration to a less compute-intensive, higher bit rate configuration, without affecting the way
the stream is decoded or the quality of the video as seen by the user.

To simplify the configuration space, we chose 16 different configurations to map onto the two
thresholds. These 16 configurations include all combinations of four different DCT thresholds (0,
350, 700, and 20 000), and four different motion-search thresholds (0, 750, 2500, and 20 000).

Deadline misses and frame drops: A frame that does not complete encoding or transmission
of all its bytes by the end of the ensuing period is said to miss its deadline. If the application misses
its deadline for one frame, the encoding/transmission for that frame continues in the next period,
borrowing from the budget allocation of the next frame. If the application misses the deadline for
two frames in a row, then the next frame is entirely skipped or dropped (i.e., it incurs no CPU
computation or network transmission), enabling the application to catch up on its previous frame
overruns.

Since this is a soft real-time application, we assume that we may miss the deadline for or drop
a total of up to 5% of all frames, without affecting the video quality. Thus, we do not distinguish
between deadline misses and frame drops; henceforth, we use the term deadline misses to refer to

both frames that miss their deadlines and frames that are completely dropped.



2.4 0O.S. Scheduler

We assume an earliest-deadline-first (EDF) soft real-time scheduler for CPU time. The scheduler is
responsible for enforcing budget allocations for both CPU time and use of the network bandwidth.
To reduce deadline misses due to underruns and overruns, the scheduler performs an internal
adaptation called budget sharing as proposed in [9].

Budget sharing allows applications to use unused budget from other applications. This sharing
can, to some extent, handle overruns caused by factors such as imperfect prediction of cycle usage.
To support this type of sharing, the EDF scheduler maintains a record of all unused budgets, and
their expiration times. When an application is scheduled, the scheduler first tries to exhaust any
unused budget before charging the elapsed cycles to the application. The unused budget can be
given to an application only if the expiration time of the budget is less than the deadline for the
application. Also, unused budgets expire with time and may no longer be used. The details of
the algorithm can be found in [9]. Similar to the CPU budget sharing, we also exploit unused

bandwidth sharing between applications.



CHAPTER 3

GLOBAL AND PER-APPLICATION
ADAPTATION ALGORITHMS

We next describe GRACE-2’s global and per-application adaptation algorithms. Figure 3.1 sum-

marizes the full system.

3.1 Global Adaptation

The global adaptation algorithm is invoked on large changes in the system, e.g., when an application
enters or exits the system. As input, the algorithm receives the resource requirements for each
combination of application and CPU configuration. Resources include CPU time (equivalently,
CPU utilization), network bandwidth (equivalently, bytes to be transmitted), and energy (the sum
of CPU and network transmission energy).

Section 3.3 describes how resource requirements are determined for an application/CPU con-
figuration combination. These requirements should be representative of the behavior of the system
until the next global adaptation is invoked. The algorithm (conservatively) assumes that each frame

of an application has the same resource requirement for a given combination of application/CPU
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Figure 3.1 The GRACE-2 System.
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configuration.

Given the above inputs, the global adaptation algorithm must then choose, for each application,
the combination of the application and CPU configuration such that (i) the total system energy
usage is minimized, and (ii) the CPU and network resource requirements for all the applications
(running with the chosen configurations) can be met.

More formally, for application %, let C; be a chosen CPU and application configuration com-
bination, Energy; o, be the energy consumed by a frame of application ¢ with configuration Cj,
Time; ¢; be the time taken by a frame of application ¢ under configuration Cj;, Bytes; o, be the
bytes generated for transmission by a frame of application ¢ under configuration C;, and Period;
be the period for application . Let there be a total of Ngups applications in the system. Assume
an earliest-deadline-first (EDF') real-time scheduling algorithm and assume that the available total
network bandwidth is known.

Then the global adaptation algorithm is required to choose the CPU and application configu-
ration C; for each application 7 to:

minimize

Napps

Z Energy; ¢, (3.1)
i=1

subject to the EDF CPU scheduling constraint:

Napps

Time; ¢,
— <1 3.2
i:zl Period; — (3.2)

and the network bandwidth constraint:

Napps

>

i=1

Bytes; ¢, : .
————7 < Available network bandwidth (3.3)
Period;

The above optimization problem is essentially a multidimensional multiple-choice knapsack
problem (MMKP) [10], and known to be NP-hard. We report results using two techniques to solve
this problem. To give global adaptation the best showing, we report results with a brute force
approach that performs an exhaustive search for a minimal energy configuration that meets the

CPU and network constraint (with one optimization described below). This approach is impractical
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for a real system. For a more practical, but possibly suboptimal solution, we also report results with
a heuristic algorithm for MMKP proposed by Moser et al. [10], based on Lagrangian techniques.

To reduce the complexity of both the exhaustive search and the heuristic algorithm, we make
one optimization. We choose the same frequency (CPU configuration) for all applications. This
enables solving the MMKP problem separately for each supported frequency — we now need to
search only for the best application configuration for each application for each supported frequency
(vs. searching over the cross-product of frequency and application configurations). We then pick
the frequency that provides the minimum energy with the chosen application configurations at that
frequency. We justify the assumption of running all applications at the same frequency by Jensen’s
inequality [11]: if the energy per unit time is a convex function of frequency, then the best frequency
setting will be either a single point for all applications, or, if the CPU does not support a frequency
that exactly matches the processor’s workload, a combination of adjacent frequencies that match
the required computation cycles.

At the end of the above process, the algorithms provide, for each application, the assigned CPU
frequency (same for all applications) and the selected application configuration. These configura-
tion allocations imply an allocation of the required resources to the corresponding applications.
It is possible that at this point, there is some leftover network bandwidth and CPU utlization.
We further divide these leftover resources among the applications in proportion to their current
allocation.

To exploit the benefit of emulating continuous DVFS as discussed in Section 2.1, we perform the
following final optimization. The leftover allocated CPU utilization above can be further converted
into a reduction in frequency. The resulting frequency is not one that is directly supported, but
can be emulated using the continuous DVFS emulation discussed in Section 2.1.

A system that runs with only global adaptation uses the frequency and application configura-
tions as chosen by the global algorithm. A system that runs with per-application adaptation uses
the resource allocation of the global algorithm to determine the CPU and application configuration

each frame, as described next.
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3.2 Per-Application Adaptation

The per-application adaptation algorithm is simple, and is derived from [3]. It is invoked at the start
of an application frame with the following as input: (1) the resource allocation for each application,
as determined by the global adaptation algorithm and (2) the resource requirements for the next
frame for each combination of application and CPU configuration. (Section 3.3 discusses how we
determine these.)

Given the above input, the algorithm simply chooses the application and CPU configuration
combination that has the least energy, and whose CPU time and network bandwidth requirement
is within its allocation. If such a combination is not found, then we use the application and CPU
configuration of the last frame (likely leading to a deadline miss). The complexity of this algorithm

is order of the product of the number of application and CPU configurations.

3.3 Predicting Resource Usage

Both the global and the per-application adaptation algorithms need to predict the per-frame re-
source requirement for each combination of application and CPU configuration. The resources are
CPU time (equivalently CPU utilization), bytes to be transmitted on the network (equivalently

network bandwidth), and energy.

Predictions for Global

For the global adaptation, the predictions need to be representative of the resource usage until the
next global adaptation is invoked. This could be thousands of frames. Following previous work on
resource allocation and scheduling for soft real-time multimedia applications [12], we use profiling
of several frames to determine the resource usage for global allocation. Per-frame CPU time and
network bytes can be directly estimated during profiling. These estimates also allow estimation of
energy using the models in Section 2.

We need to determine per-frame execution cycles and network bytes transmitted that would
be representative of the frames executed before the next global adaptation. Based on the models

in Section 2, we can then convert these to per-frame execution time, network bandwidth, and

12



energy. Since we assume a 5% deadline miss rate is acceptable (Section 2.3), we use the cycle
counts (bytes) from the frame that falls in the 95th percentile of the cycle counts (bytes) from all
the profiled frames, to determine the execution time (network bandwidth). However, for energy,
we are concerned with minimization and not meeting a constraint. We therefore use the average
cycle count and bytes from the profiled frames to estimate the total energy (based on the models
in Section 2).

We note that the 95th percentile frame above may be different for cycle counts and for bytes.
Therefore, using the 95th percentile value for execution time and network bandwidth is optimistic
— in the worst case, 5% of the frames will have higher cycle counts and another 5% will have higher
byte counts, potentially leading to 10% deadline miss rate. Furthermore, once a frame is dropped,
we find that the compression algorithm is less effective for the next frame, resulting in even further
increases in byte counts. Our results show all of these effects in the form of large deadline misses
for global adaptation. Nevertheless, we use the 95th percentile to give global adaptation a good
showing; we use budget sharing in conjunction with global adaptation to bring down the deadline
misses to an acceptable level.

Naively, for a given application, we would need a separate profile for each combination of
application and CPU configuration. However, as mentioned earlier, for the multimedia applications
studied here, the number of execution cycles for a given frame for a given application configuration
is roughly independent of frequency [5]. We therefore profile each application configuration at a
single CPU frequency to determine both the number of execution cycles and the number of bytes
(which is also clearly independent of frequency).

In practice, we expect to use on-line profiling of a few hundred frames to measure the above
execution cycles and bytes, as recommended in previous work [13]. For long streams, this profiling
poses a negligible overhead. In our experiments, since our streams are short and since we would
like to give global adaptation the best showing, we profiled the entire stream off-line to determine

the 95th percentile values above.
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Predictions for Per-Application

Per-application adaptation is invoked each frame and therefore needs to make its resource predic-
tions only for the next frame. Conceptually, this should be easier than the long-term predictions
required by the global adaptation. In prior work, researchers have proposed the use of various
history-based techniques, where the behavior of the last few frames is used to predict that of the
next frame (e.g., the maximum execution time of the last five frames is used to predict the time for
the next frame [14]). However, one key difference for our work is that our application itself is adap-
tive. The history of the past frames may be for different configurations of the application, and it is
unclear how it can be used to predict the behavior of the next frame for yet other configurations.

Sachs et al. [3] proposed the following prediction strategy using off-line profiling. They generate
the execution cycle predictor off-line by repeatedly encoding one or more sequences (for a fixed
hardware frequency), randomly changing the encoder configuration at each frame. This off-line
run generates several points for every pair of (previous, next) encoder configurations, mapping the
number of cycles in the previous frame to the those in the next frame. The predictor is generated
by fitting a function in the least-squared sense, for every pair of (previous, next) configurations.

The same scheme is followed to generate a predictor for the number of bytes. To avoid deadline
misses, we conservatively add an adaptive leeway into the predicted values for both execution cycles
and bytes. In particular, we start with a leeway of 1.1 (10%) for the CPU and decay it by 0.005
(5%) every frame until we miss a deadline, in which case we reset it to 1.1. The leeway added
into the bytes starts of at 1.2 (20%), and decay it by 0.1 (50%). We decay the byte leeway in two
frames as the sole purpose of the byte leeway is to force the per-application coordinator to pick an
application configuration that does more compression.

When the per-application adaptation is invoked, it determines the cycle count and byte count
for each application configuration for the next frame by using the appropriate predictor, given the
knowledge of the previous frame’s application configuration, actual cycle count, and actual byte
count. The cycle and byte count then directly give CPU time, network bandwidth, and total

(CPU+network) energy.

14



CHAPTER 4

IMPLEMENTATION

We have implemented the GRACE-2 prototype on an IBM ThinkPad R40 laptop system. This
system has a single Intel Pentium-M processor, which features Intel’s Enhanced SpeedStep tech-
nology [15], and supports five DVFS points: 600, 800, 1000, 1200, and 1300 MHz. The processor
can be made to transition between DVFS points at runtime by the operating system. We use the
Linux kernel 2.6.8-1, modified as described below.

The GRACE-2 operating system components are implemented as a set of modules and patches
that hook into the Linux kernel 2.6.8-1. Figure 4.1 gives an overview of the software architecture.

We discuss the main components next.

4.1 Global Coordinator

The global coordinator implements the global adaptation algorithm described in Section 3.1. It is
implemented as a separate user-level process. This decision was based on two constraints. First,
the coordination computation involves floating-point type, which currently is not supported in the

Linux kernel module. Second, a user-level global coordinator runs at a lower priority than the

Adaptive application Global

lin.l.‘-Ed Per-application Coordinator :Ulabﬁ’l Coardinator
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User level system call
B e e a—

Standard
Linux
Scheduler

CPU Scheduler
and Monitor
{kernel module)

Speedstep
CPU
Adaptor

speed setting

Figure 4.1 GRACE-2 software architecture.
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applications, thereby ensuring that the expensive process of global optimization does not supercede
applications. The global coordinator communicates with the per-application coordinator via a

message queue.

4.2 Per-Application Coordinator

The per-application coordinator implements the per-application adaptation algorithm described in
Section 3.2. Tt is designed as a generic function that can be linked with the application at compile
time. Linking the per-application coordinator with the application implies that the CPU scheduler
sees the per-application adaptation as part of the application. This has two main advantages over
having the per-application coordinator be part of (for example) the global coordinator module: (1)
the application can be charged for the cycles that were used by its per-application coordinator,
and (2) we can ensure that per-application adaptation occurs at the start of every frame. The
advantage over implementing it in the kernel is in the reduced number of system calls. However,
linking the per-application coordinator with the application could make the coordinator vulnerable
to malicious applications, and thus nontrustworthy. We can work around this problem by sending
the global allocations for each application to the CPU scheduler, and having the CPU scheduler

enforce that each application is using only its allocation of resources.

4.3 CPU Scheduler

We use an EDF scheduling policy based Soft Real-Time (SRT) CPU scheduler (Section 2.4).
Invocation of the scheduler and new system calls: This scheduler is invoked either when a
timer started by the scheduler itself expires, or when an application makes a system call.

The scheduler may set the timer for several reasons. For example, before starting a new ap-
plication frame, the scheduler sets a timer to expire when the application’s budget runs out, to
enable handling overruns correctly. At the end of an application frame, the scheduler sets a timer
to expire at the start of a new period for the application, to schedule its next frame.

GRACE-1 used the standard 10 ms resoulution Linux kernel timer, but to implement per-

application adaptation we need a timer with higher resolution. In GRACE-2, we use the High Res
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Posix timers [16] to get a low-overhead, high-resolution timer.
The application may also invoke the scheduler for various reasons. We have added five new

system calls to enable the application to interact with the CPU scheduler:

1. EnterSrt: This is invoked when the application first joins the system. It registers the ap-
plication with the CPU scheduler as a new SRT task. The scheduler initializes its data
structures for the new application and inserts it into the SRT task list. It also signals the

global coordinator to perform the global optimization.

2. BeginJob: This is invoked at the start of a new frame. The per-application coordinator passes
its chosen CPU frequency to the scheduler. The scheduler refreshes the budget available for
the application’s new frame (based on the time allocation made by the global coordinator)
and invokes the CPU adaptor to change the CPU frequency (by performing a write to a
special CPU register MSR_TA32_PERF_CTL).

3. FinishJob: This is invoked when the application has finished encoding its frame. The CPU
scheduler gets the resource usage (elapsed cycles, energy) from the CPU monitor, checks
for deadline miss, and sends the resource usage and miss status information back to the
application. The monitor checks the cycle usage by using the rdtscll function in the Linux
Kernel to read the current processor cycle count. It estimates the CPU energy using the

model described in Section 2.

4. WaitNextPeriod: The application invokes this when it is done with all of the book-keeping
for its past frame, notifying the scheduler that it is ready to give up the CPU. The scheduler
sets the suspend flag associated with the application, sets a timer to wake up the application
at the start of its next period, and invokes the Linux scheduler to give the CPU to the next
application with the next highest priority. When the timer expires at the start of the next
period, the scheduler updates the deadline of the application, recalculates the priority of all
applications based on the EDF policy, and invokes the Linux scheduler to let the application

with the highest priority to proceed.

5. ExitSrt: This is invoked when the application is done (with all its frames). The scheduler

removes the application from the SRT list, cleans up related data structures, and signals the
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global coordinator to perform a global adaptation.

Accounting and Overrun Monitoring: At every timer expiration, the CPU scheduler in-
vokes the CPU monitor to get the elapsed cycles since the last timer expiration and charges it
to the application that is currently running. It also compares the cycles used by this application
with the cycle budget allocated to the application. If it detects that the application has used up
its entire budget, then the scheduler decreases the priority of the application and preempts it. If
the preempted application does not finish the job by its deadline, then the scheduler replenishes
the budget available to the application and allows it to finish. This extra budget given to the
application is deducted from the application’s new frame that will run during that period, if this
is the first deadline miss in a sequence. If this is the second miss in a sequence, then the extra
budget is compensated by asking the application to skip its next job. This is done by sending the
miss status information via the FinishJob system call.

CDVFS: The CPU scheduler handles most of the CDVFS related implementation. When an
application makes the BeginJob system call, in addition to refreshing its budget, the CPU scheduler
calculates the CDVFS values based on the allocated time and frequency. It also invokes the CPU
adaptor to set the CPU speed to the lower CDVFS frequency, and sets a timer to expire at the
end of the low-frequency interval. When the timer expires, the CPU scheduler invokes the CPU
monitor to get the resource usage, and the CPU adaptor to set the frequency to the higher CDVFS
frequency.

Budget Sharing: When an application makes the FinishJob call, the CPU scheduler adds any
unused budget to the budget queue. Later, when a timer expires because of a frame’s overrun and
the scheduler has to charge the frame for the elapsed cycles, it first checks whether it can charge
any of the elapsed cycles to the budget queue. If it can, then the unused budget in the budget
queue is adjusted accordingly, and a lower time is charged to the application. The scheduler also

removes any expired budget from the budget queue.

4.4 Network Scheduling and Budget Sharing

The CPU scheduler in our system meets the added responsibility of a network bandwidth scheduler.

This network scheduler also does network budget sharing, which works exatly like the CPU budget
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sharing. When an application has finished encoding a frame, and makes a FinishJob call, it also
sends information regarding the number of bytes it has generated and its allocated bandwidth to
the scheduler. The scheduler then checks whether the bandwidth requirement can be met by the
allocated bandwidth and any available residual budget. If the requirement is not met, then the

scheduler passes this information back to the application, as in the case of a CPU deadline miss.

4.5 Oracular Predictions

To determine the impact of the execution cycles and network bytes predictors in the per-application
adaptation, we also implement the ability to use an oracular predictor in “real-time.” At the end
of a frame of an application, we “freeze” the real-time clock used by the CPU scheduler and run
all the configurations of that application for the next frame. Using this, we can determine the
actual execution cycles and byte counts to feed to the per-application predictor. We then restart

the real-time clock and continue.
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CHAPTER 5

EXPERIMENTAL METHODOLOGY

We run all of our experiments on the system described in Section 4. Except for the energy mea-
surements and the actual network transmission, all parts of the system have been implemented.

Table 5.1 summarizes the input video streams we use and their characteristics. The streams are
obtained from standard web sites hosting such sequences. They have been chosen to represent a
spectrum in interframe computation variability and encoding complexity. All the streams process
QCIF size frames.

In each experiment, we run two applications concurrently, each running a different stream. We
use a total of four combinations of streams, shown in Table 5.2, to represent different combinations
of variability /complexity. To study the effect of different types of resource constraints (i.e., system
load), we use different periods (frame rates) for our workloads and different values of the available
network bandwidth. We create four scenarios of resource constraints (depending on whether the
CPU or network is constrained or not) as described below, studying four workloads under each
scenario. Table 5.2 summarizes the workloads, their periods, and available bandwidth for each
scenario. For simplicity, for a given scenario and workload, we use the same period for both
applications, but for generality, the applications start with an arbitrary lag between them.

The four resource constraint (or system load) scenarios we study are:

Table 5.1 Video streams used and their characteristics.

Stream | # Frames Description

salesman 450 Very low variability sequence of a talking head

foreman 450 Medium variability sequence of a talking head, has a scene change toward the end
buggy 450 High variability sequence of a buggy race, has a scene change in the middle
mobile 300 High complexity sequence of a toy train and tumbling blocks
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Table 5.2 Scenarios evaluated.

Constraint Number Streams Period | Bandwidth
(Scenario- (ms) (Mbps)
Workload)
CPU 1-1 salesman, mobile 30 11
1-2 buggy, foreman 30 11
1-3 foreman, mobile 30 11
1-4 buggy, mobile 30 11
Network 2-1 salesman, mobile 35 2
2-2 buggy, foreman 50 2
2-3 foreman, mobile 50 2
2-4 buggy, mobile 60 2
Both 3-1 salesman, mobile 30 5
3-2 buggy, foreman 30 5
3-3 foreman, mobile 30 5
34 buggy, mobile 30 5
None 4-1 salesman, mobile 45 5
4-2 buggy, foreman 45 5
43 foreman, mobile 45 5
4-4 buggy, mobile 45 5

Scenario 1, CPU constrained: We set the application period (frame rate) so that the application
configurations that do the most computation (i.e., the most compression) are unable to run on our
system (i.e., they would require a higher frequency than that supported). The network does not
pose a constraint in this scenario — we set enough available bandwidth to send the bytes produced
by the application configuration that does the least compression.

Scenario 2, network constrained: We set the application period and available network band-
width so that the bandwidth requirement of the application configurations that perform the least
compression exceeds the available bandwidth. The CPU does not pose a constraint in this scenario
— the application period is set so that even the highest computation application configuration can
complete in the available time.

Scenario 3, both CPU and network constrained: This is a combination of the above two con-
straints. In particular, we set the period and bandwidth such that the application configurations
that perform the most or least compression are constrained.

Scenario 4, neither CPU nor network constrained: In this case, we pick the period and band-
width such that none of the application configurations are resource-constrained.

In creating the above scenarios, we attempted to set the application frame rates as close to 30

frames/second as possible, while achieving the other goals of the constrained scenarios.
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CHAPTER 6

OVERHEADS

We next report the overheads from various parts of our implementation. The overheads are reported
in terms of the number of CPU cycles (which is virtually independent of frequency). For comparison,
note that the number of CPU cycles for encoding a typical frame is of the order 10 to 25 million
cycles.

Global Optimizer vs. Per-Application Adaptation: Figure 6.1 compares the cost for
global optimization with that for per-application adaptation. For global, we measured the elapsed
CPU cycles for the global optimization algorithm by Moser et al. (Section 3.1). To study how the
optimizer scales with the number of applications, we report results for systems containing one to
ten applications, where each application runs one of the four video streams used in this thesis.
The system with ten applications may represent, for example, a teleconference system involving
five sites (a video and an audio decoder for each of the four remote sites, and a video encoder
and an audio encoder for the local site). Note that our numbers do not include any profiling cost
incurred for making predictions for long-term resource usage for the global optimizer (discussed

further below).

600000 4 —+—global optimization

500000 4 -= per-application adaptation
400000 41
300000 41

200000 -1

Number of cycles

100000 -

[¢]

1 2 3 4 5 6 7 8 9 10
Number of applications

Figure 6.1 Overhead for global optimization and per-application adaptation.
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To measure the cost of per-application adaptation, for each frame of the foreman sequence, we
measured the elapsed cycles for the per-application adaptation algorithm (Section 3.2). We report
the elapsed cycles averaged over the entire sequence. Note that this measurement includes the full
cost of the adaptation, including the cost of predicting the resource usage for the next frame.

We find that the cost of per-application adaptation is significantly cheaper than that for the
global optimizer (e.g., factor of 8 lower for ten tasks). In absolute terms, the global optimization cost
with ten tasks is 5.5 x 10° cycles, which is 0.92 ms at 600 MHz. This is 3.7% of an average encoder
frame computation time, and is thus a nonnegligible cost in terms of both time and energy. Per-
application adaptation, on the other hand, takes 7.0 x 103 for each application, which corresponds
to 0.117 ms for 10 tasks at 600 MHz, and is clearly feasible at the frequency of once every frame.
We further discuss below why we expect the total overhead for global adaptation to be larger than
reported here.

First, we note that the global algorithm used here is optimized for the system we study. Specif-
ically, recall that we do not explore the full cross-product of the space of CPU and application
configurations — we are able to assume a common frequency for all applications because of the
special nature of the frequency-energy curve. However, this relationship is not true for other adap-
tations such as architecture adaptations that are becoming increasingly common in hardware [14].
Further, we also do not consider an adaptive network layer, which will further increase the com-
plexity of the search space that needs to be considered by the global optimizer. As the number of
possible adaptive layers, adaptive components within each layer, and the number of adaptive states
within each component increases, the overhead of the global optimizer will continue to increase.

Finally, when considering the overhead of global adaptation, we must also consider overheads
for the prediction of the long-term resource usage as required by the optimizer. In our system,
we perform global adaptation when an application joins or leaves the system, which is a relatively
rare event. Therefore, the profiling required for predictions can be done on-line (while running the
system in sub-optimal configurations); the time spent profiling is a negligible fraction of the overall
time that an application runs. However, for more frequent global adaptation, on-line profiling at
sub-optimal configurations can be too expensive. We cannot directly use past history because we

only have the history for the application configuration that was chosen for a frame; the optimizer
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Table 6.1 Average number of cycles for new system calls.

EnterSrt | BeginJob | FinishJob | WaitNextPeriod | ExitSrt
2554 1477 1054 845 2623

needs to make predictions for all the configurations. We could potentially use the same predictors
as used in the per-application adaptation to predict the behavior of the next frame, and keep track
of the outputs of these predictors over several frames. Determining whether this is feasible requires
a study of how well these predictors perform for a span of several frames. Our results show that
per-application adaptation is much simpler, and gives significant benefits over streams of several
hundred frames.

System Calls made by the Application: Table 6.1 lists the cycles used by each of the five
system calls made by the application while running the foreman sequence. These values have been
obtained by averaging the elapsed cycles for each call for each frame of the sequence. These system
calls add up to less than 0.1% of the cycles used in processing a typical frame, and so represent
negligible overhead.

Soft real-time scheduling and DVFS: The SRT scheduler requires less than 500 cycles per
application. The high resolution timer it uses requires between 1000 to 1500 cycles for set up. So
the scheduler overhead is also small.

For DVFS, the Pentium-M processor decouples the voltage and frequency transition, thereby
allowing voltage to be changed while executing instructions. The DVFS overhead is around 10 us

[15], making intraframe frequency transition feasible.
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CHAPTER 7

ENERGY SAVINGS

Sections 7.1 and 7.2 quantify the energy savings from global and per-application adaptation re-
spectively. These sections assume CDVFS and budget sharing (only network budget sharing for
global adaptation, and both CPU and network sharing for per-application adaptation). Sections 7.3
and 7.4 separately quantify the benefits of CDVFS and budget sharing, respectively. Since the pri-
mary benefit of budget sharing is in reducing missed deadlines, we discuss all deadline misses in

Section 7.4.

7.1 Benefits from Global Adaptation

Figure 7.1 presents the benefits of global adaptation. For each scenario (CPU/network con-
strained /unconstrained), for each workload, it gives the energy consumption of the base non-
adaptive system and four global adaptation systems. In the CPU constrained cases, the base
system is unable to meet the computation requirements of the base application configuration, in-
dicated by “U.” The first three global systems use the brute-force optimizer (Section 3.1) and so
represent the best (but impractical) case for global adaptation. The three bars respectively repre-
sent a system with only CPU adaptation (with the base application configuration), a system with
only application adaptation (with the base CPU configuration), and a system with both CPU and
application adaptations, represented as Gc, Ga, and G, respectively. The last bar in the set uses
the more practical optimizer by Moser et al. (Section 3.1) and includes both CPU and application
adaptations, represented by GMoser.

First, focusing on the results with the brute-force optimizer, we find that global adaptation

provides significant energy savings over the nonadaptive system across all scenarios and workloads
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Figure 7.1 Benefits of global adaptation.

studied. In the CPU constrained cases, the nonadaptive system is unable to even run the workload
since it cannot meet the CPU constraint. In this case, G can change the application configuration
to use less computation.

Overall, we see benefits from both CPU and application adaptation, with the best savings
coming from the combination. On average, Gc saves 35% while Ga saves 25% over Base, for the
cases where Base is able to run the workload. The combination of the two, G, saves an average of
70% energy over Base for these cases.

To see how global adaptation achieves its energy savings, Table 7.1 shows the application and
CPU configuration chosen by G for all cases (the application configurations are roughly ordered
by the amount of compression they perform — configuration 0 is the highest compression). We find
that G chooses a wide variety of configurations depending on the video stream and the resource
constraints.

Comparing the brute-force and the more practical optimizer, we find that the practical solver

provides very similar energy benefits. Nevertheless, since our focus is on the benefits of per-
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Table 7.1 Configurations chosen by global.

Constraint CPU Network
‘Workload 1 2 3 4 1 2 3 4
CPU 768 | 1066 | 940 | 1058 || 946 | 943 | 812 | 807
App 1 15 15 15 15 3 2 2 2
App 2 14 15 14 14 2 1 2 1
Constraint Both None
‘Workload 1 2 3 4 1 2 3 4
CPU 768 | 1131 | 1027 | 1165 || 600 | 711 | 627 | 706
App 1 15 10 13 3 15 15 15 15
App 2 14 11 12 12 14 15 14 14

application adaptation, we henceforth use the brute-force optimizer to give global the best showing.

7.2 Benefits from Per-Application Adaptation

Figure 7.2 shows the energy consumed by various systems that combine per-application adaptation
with global adaptation, normalized to the system G from Section 7.1 (i.e., only global adaptation,
with adaptive CPU/application). For each scenario and workload, we show the energy of G, G
enhanced with per-application adaptation for the CPU or G+Pc (i.e., the application configuration
is fixed at that chosen by G); G enhanced with per-application adaptation for the application
or G+Pa (i.e., the CPU configuration is fixed at that chosen by G); and G enhanced with per-
application adaptation for both the CPU and the application or G+P.

Overall benefits of per-application adaptation: Overall, we find that G4+P consumes less
energy than G for all the scenarios and workloads. The magnitude and source of the benefits
depends on the magnitude and nature of the resource constraints in the system, and the nature of
the encoded streams. The benefits from G+P over G range from mostly negligible (in a few cases)
to a significant 46% in the network-constrained case. The benefits are particularly significant when
both streams have higher variability /complexity (workloads 2, 3, and 4). For these workloads and
across all the constrained scenarios, the energy savings of G+P over G range from 10% to 46%,
average 22%.

Benefits of per-application adaptation in the CPU: Per-application adaptation in the
CPU provides significant benefits in all of the constrained scenarios where both streams in the
workload have higher variability /complexity (workloads 2, 3, and 4). For these cases, the energy

savings of G+Pc over G range from 7% to 20% (average of 14%). Even in the unconstrained case,

27



100 4 my — — 100 4 my — — -

o0
80 o — s0 o ||
7o 4 ~o 4
60 60 -
50 50

40 4 a0 +

Normalized energy
Normalized energy

30 4+ 30 1

20 4 >0 4

10 -+ 10 4+

[n

2 3 2 3
Workload Workload

(a) CPU Constrained (b) Network Constrained
100 9 | - - - 100 = - . -
90 - | | 90 - [
80 - N so - [
—. 70 4 . 70 -
g 60 - § 60 +
8 s0 4 8 so
-c_é 40 + t_é 40 -
2 30 + = 30 +1
20 A 20 H
10 H 10 -
o o

R

2 3 2 3
Workload Workload

(a) Both Constrained (b) Unconstrained

Figure 7.2 Benefits of per-application adaptation.

G+Pc provides a significant benefit for some workloads.

Benefits of per-application adaptation in the application: Per-application adaptation
in the application provides discernible benefits only in the cases where there is a network constraint
(scenarios 2 and 3).

In scenario 2, which is primarily network constrained, G+Pa provides energy savings of 5% to
16% over G (average of 9%). Compared to G+Pc (i.e., a system that already has per-application
CPU adaptation), the benefit of adding per-application application adaptation is quite significant —
8% to 32%, average 18% for G+P over G+Pc — in this scenario. It is noteworthy that the benefits
of combining CPU and application adaptation are more than additive in some cases.

In scenario 3, which is both CPU and network constrained, the benefits of G+P over G+Pc are
much lower, but not negligible — 7% to 13% — for workloads 2 to 4.

Analysis: Next, we analyze the reasons for the above results in each of the scenarios in more
detail. Figure 7.3 shows the network, CPU, and total energy for each application configuration

for a specific frame of workload 4 for each of the four scenarios (parts (a)—(d)). The application
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Figure 7.3 Results analysis.

configurations are ordered in increasing order of bytes generated. Only those configurations where
the CPU cycles for the configuration decrease with increasing bytes are shown — the remaining
configurations are clearly suboptimal, since they neither reduce total energy nor meet any more
constraints compared to the previous configuration. Configurations that do not meet the required
constraints are also not shown. (For this reason, the same number on the x-axis may represent
different actual configurations in the four graphs.) On each curve for total energy, we mark the
application configuration chosen by the G and G+P systems, along with the frequency chosen.
Recall that network energy is simply the product of (bandwidth dependent) energy/byte and
bytes generated. For CPU energy, we first need to determine the frequency at which the frame
will complete the required cycles within the time allocated by the global adaptation. Network
energy increases going from left to right due to increasing byte count, while CPU energy decreases;
further, CPU energy initially falls faster than network energy rises due to the quadratic dependence
on voltage. In general, therefore, we would expect that the total energy curve should initially fall
along with CPU energy and then rise; further, this expected bowl-shaped curve would be a fairly

shallow bowl because the effects of network and CPU energy change would cancel each other. In
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our graphs, for the most part, CPU energy is dominant, and so we find that the total energy curve
primarily follows the CPU energy; i.e., we see the left drop and the shallow bottom of the bowl,
but not the right rise. One slight exception is the unconstrained system, where the total energy
curve has just started to rise towards the right, although by a negligible amount.

We can now analyze the four cases. It is easiest to start with the unconstrained case (part
(d)). The G system chooses the rightmost application configuration based on its estimate of the
95th percentile cycle and byte count. The G+P system has a better estimate of these counts for
the current frame, and does affect an application adaptation to a configuration to the left of G.
However, because of the shallow nature of the bowl, the change in the application configuration by
itself does not result in energy savings. CPU adaptation does save energy because G+P is better
able to predict the cycle count and choose a lower frequency than G.

Next consider the network constrained case (part (b)). From an energy-minimization point of
view, we would like to pick the rightmost configuration shown on this graph, and picked by G-+P.
However, G is not able to pick that configuration because its estimate of the byte count is too high
(based on the 95th percentile) given the available bandwidth constraint. So G is forced to pick a
less energy-efficient configuration that can meet the network constraint, enabling significant energy
savings from G+P.

For the CPU-constrained case (part (a)), both G and G+P are able to pick the configuration
with the least computation (rightmost), and so the most energy efficient. Thus, G+P does not
see any benefit from application adaptation, compared to G. However, G+P does see benefit from
CPU adaptation because of its ability to better predict the cycle count and use a lower frequency.

The case with both CPU and network constraints can be similarly analyzed.

Limitations of the Predictor: The energy savings from per-application adaptation are de-
pendent on the prediction of the cycles and bytes for each configuration for the next frame. To
isolate the impact of the current predictors, we performed experiments with an oracular predictor
(Section 4.5). Our data showed that the current predictors in G+P are effective for energy savings —
they lose on average only 4% (range 1% to 6%) of energy savings compared to an oracular predictor
(detailed graphs omitted for space). The key drawback of the current predictors is in their ability

to meet frame deadlines, which we discuss in Section 7.4.
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Table 7.2 Deadline miss ratio with/without budget sharing.

Budget Sharing No Budget Sharing
Appl App2 Appl App2
G|[G+P| G |[G+P | G [G+P | G [ G+P
CPU constrained
11 03 0.7 0.3 0.0 0.0 0.7 0.3 0.0
2 || 0.0 1.3 0.0 3.8 0.0 7.0 0.0 3.3
31 13 1.3 0.0 1.0 0.3 4.0 0.0 0.3
4 || 0.0 0.3 0.0 0.0 0.3 3.7 0.0 0.0
Network constrained
1 1.0 4.1 0.0 0.0 8.3 9.0 0.7 4.0
2 0.0 6.8 1.5 8.5 4.5 22 5.4 24
3 0.3 5.0 1.0 0.0 0.3 24 2.0 5.7
41 0.3 5.0 0.3 1.3 10 20 20 27
Both
1] 0.0 0.7 0.7 0.0 0.0 3.3 0.0 2.7
2 0.0 3.1 2.1 4.1 0.3 2.7 0.0 5.0
3 1.8 4.0 0.0 4.3 6.0 30 0.0 29
41 0.3 2.7 0.3 1.3 6.0 30 0.0 29
Neither
11 0.0 0.3 0.3 0.0 0.0 0.0 0.0 0.0
2 || 0.0 0.0 0.8 0.0 1.5 3.5 3.3 4.8
31 0.0 0.0 0.0 0.0 0.7 2.3 4.3 0.3
4 1 0.0 0.0 0.0 0.0 1.3 5.7 4.3 0.7

7.3 Benefits from Emulating Continuous DVF'S

All the results with CPU adaptation so far have included CDVF'S as discussed in Section 2.1. Here
we isolate the benefits of this adaptation. Overall, we find that CDVFS is quite beneficial for both
the global and per-application adaptations in many cases. Across all scenarios and workloads, the
average energy savings that G sees from CDVFS are 15% (maximum 33%), and that G+P sees
from CDVFS are 13% (maximum 21%).

7.4 Benefits from Budget Sharing

The main benefit of budget sharing is in reducing the number of deadline misses; it has negligible
(< 1%) effect on energy. (Recall that we include frame drops in our deadline miss ratio as well,
and include drops/misses due to CPU or network.) Table 7.2 shows the deadline misses for G and
G+P for each workload and scenario studied, with and without budget sharing. The cases with
miss ratios > 5% are highlighted in bold.

We first note that with budget sharing, we see acceptable deadline misses (within 5%) for all

workloads and scenarios with only one exception. Workload 2 in the network-constrained scenario
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for G+P shows a miss ratio of 6.8% and 8.5% for its two applications. Without budget sharing,
the deadline miss ratios are high (up to 30%) for several cases (covering all workloads) for both G
and G+P. This shows that budget sharing is effective and critical for our system. However, budget
sharing is not a foolproof technique (as illustrated by the above exception case), and improving the
accuracy of the predictors for both the global and per-application adaptation case is an important
avenue for future work.! It is also conceivable that some of the deadline misses could be avoided
with buffering; however, the use of buffering has its limitations in that it introduces a delay which
may not be acceptable for applications such as teleconferencing. The appropriate combination of

buffering, improved predictors, and budget sharing remains a subject of our future work.

7.5 Summary

To summarize, our key findings are as follows:

Global adaptation by itself provides significant energy savings from both CPU and application
adaptation.

Per-application adaptation provides significant energy savings over and above global adapta-
tion. Overall, per-application CPU adaptation is effective in more scenarios, but per-application
application adaptation shows high benefits when network bandwidth is at a premium.

Emulating continuous DVS shows significant energy benefits for both global and per-application
adaptation.

Budget sharing is critical in avoiding deadline misses for both global and per-application adap-

tations. However, it is not foolproof, indicating the need for investigating better predictors.

!Note that simply increasing the percentile value of the selected frame for global prediction is not desirable since
it will imply an even higher energy consumption for global.
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CHAPTER 8

RELATED WORK

CPU/OS Energy Conservation: There is much work on CPU energy conservation through
DVFS that saves energy by dynamically adjusting the CPU frequency and voltage based on ap-
plication workload. In most prior work, the workload is either predicted heuristically based on
the average CPU utilization [17, 18, 19] or derived from application worst-case CPU demands
[20, 21, 22]. In contrast, GRACE-2 uses the runtime frame-based CPU usage information of mul-
timedia applications to guide the DVFS adaptation, achieving the energy saving of DVFS while
delivering soft real-time guarantees. Further, in contrast to most work that focuses on DVFS
(e.g., [6]), GRACE-2 also considers adaptive applications, which makes it harder to predict the
workload.

Our implementation of CDVFS emulation is based on the theorems presented in [7]. To the
best of our knowledge, this is the first such implementation and evaluation of emulated CDVFS
in a real system. Previous work such as [23] has shown the potential benefits of CDVFS at an
algorithmic level.

Application Energy Conservation: Multimedia applications generally adapt output quality
for CPU and energy usage. Cornel and Satyanarayanan [24] proposed three time scales of adaptation
for wireless video applications. Flinn et al. [25] explored how to adapt applications for energy
saving. Similarly, Mesarina and Turner [26] discussed how to reduce energy in MPEG decoding.
Further, some researchers also propose OS or middleware support for application adaptation. For
example, Odyssey [27] supports mobile application adaptation to trade off data fidelity and energy
consumption. Puppeteer [28] and Agilos [29] are middlewares to help applications to adapt their

QoS to variations of resource availability.
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GRACE-2 differs from all of the above work, since it coordinates the adaptations of multiple
applications and CPU frequency. Further, the application adaptations considered here also preserve
application quality. More recently, Lara et al. [30], Efstratiou et al. [31], and Poellabauer et al.
[32] proposed frameworks to coordinate adaptations of multiple applications. However, these three
related works do not consider adaptation of system resources.

There is also a body of research that investigates the relationship between CPU energy for
data processing (e.g., compression) and the energy consumption for transmitting the processed
data. Barr and Asanovic [33] analyze the total system energy consumption for various lossless
compression algorithms, including energy consumption from the network and CPU.

Cross-Layer Energy Adaptation: There has also been recent research in cross-layer adapta-
tion for energy conservation. Ecosystem [34] attempts to balance system resources, including CPU
and network, with the demands of multiple applications to allocate the necessary resources to each
application in an energy-efficient manner. However, it adapts on a large scale, using all available
information for each adaptation. The focus of our work is on hierarchical adaptation, showing the
benefits of per-frame adaptation when applied in addition to global adaptation.

GRACE-2 is built on GRACE-1 [1] and our previous work on application adaptation [3].
GRACE-1 was our first prototype and introduced our notion of coordinated cross-layer adapta-
tion. Its focus, therefore, was on studying the benefits of coordinated adaptation; our focus in
GRACE-2 has been to study the benefits of hierarchical coordinated adaptation. GRACE-1 incor-
porated global adaptations in the CPU and application (which affected application quality). We
additionally perform application and CPU adaptation at the frame granularity (per-application
adaptation) and show it provides significant benefits over global adaptation alone. GRACE-1 also
uses an internal scheduler adapation to reduce deadline misses. Our budget-sharing support has
the same goals, but is more sophisticated as required in a scenario with per-application applica-
tion adaptation. Finally, GRACE-1 did not consider any network constraints or network energy.
GRACE-2 considers a network bandwidth constraint and considers network transmission energy.

Our work in [3] introduced the adaptive application studied here and studied its benefits in
conjunction with an adaptive CPU in simulation and for only one application at a time at a per-

application granularity. GRACE-2 takes this work much further since it coordinates adaptation of
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multiple applications and uses a combination of per-application adaptation and global coordination.

QoS- or Energy-Aware Resource Allocation: There is a large body of work dealing
with QoS-aware resource allocation that is related as well. Q-RAM [35] models QoS management
as a constraint optimization, which maximizes the overall system utility while guaranteeing the
minimum resource to each application. Similarly, IRS [36] coordinates allocation and scheduling of
multiple resources to admit as many applications as possible. These approaches, however, assume
that the hardware layer is static, i.e., each system resource operates at a fixed mode. In contrast,
GRACE-2 targets a mobile system with adaptive CPU and adaptive applications, and provides
QoS support while saving energy. Rusu et al. [37] proposes two approximation algorithms for
optimization that consider constraints of energy, deadline, and utility. Their algorithms share

similarities with our global coordination algorithm, but they do not consider application adaptation.
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CHAPTER 9

CONCLUSIONS

This thesis describes the GRACE-2 system, which implements a hierarchical cross-layer adaptation
framework to reduce energy consumption in mobile devices. GRACE-2 implements an adaptive
CPU, adaptive applications, and an adaptive soft real-time scheduler. To coordinate all of the
adaptations, GRACE-2 uses a novel hierarchical approach where an expensive global adaptation
occurs infrequently in response to large system changes and an inexpensive per-application adapta-
tion occurs frequently (at every frame) in response to small changes. The two levels of adaptation
are tightly coupled by requiring the per-application adaptation to respect the budgets allocated by
the global adaptor. Besides a cross-layer adaptation, the GRACE-2 system also respects constraints
and optimizes for energy across two layers — the CPU and the network.

This work is the first to comprehensively explore the benefits of per-application adaptation over
global adaptation in a cross-layer adaptive system over a variety of scenarios (CPU-constrained,
network-constrained, both CPU and network constrained, and a lightly loaded CPU and network).
Our results show that per-application adaptation in GRACE-2 provides significant energy savings
when added to global adaptation (up to 46%). While the magnitude and source of the bene-
fits depends on the resource constraints in the system, we can expect a typical mobile device to
operate under all of the conditions evaluated in this thesis. Further, given the low overhead of
per-application adaptation and the relatively low added system implementation complexity over
and above a system with global adaptation, the benefits achieved are clearly worthwhile to exploit.

There are several avenues of future work. We are currently working on incorporating an adaptive
network layer into GRACE-2 that responds to variations in network bandwidth. We are also

exploring joint energy optimizations in other components of the system. Finally, we are exploring
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integrating application adaptations that save energy further by changing the visual perception —
this requires incorporating a notion of utility within the global optimizer and respecting that utility

in the per-application adaptation.
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