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ABSTRACT

Battery technology has not kept the pace with innovations in microprocessors and wireless
networks, and as a result saving energy is increasingly important on modern wireless-equipped
laptops. To save energy, one technique we turn to is reconfiguration, or adaptation, of system
components to permit more efficient operation.

Our adaptive GRACE system provides for coordinated adaptation across all system layers
and applications through the use of an adaptation hierarchy. Resources are broadly allocated to
applications by a global adaptation layer, which considers all applications and system layers but
is relatively expensive and can therefore run only infrequently. These allocations are refined and
converted into adaptation decisions on a job-by-job basis using a cross-layer “per-application”
adaptor that considers only the current application’s demands and allocations. Finally, each
system layer optimizes itself independently within the application’s allocation to minimize its
energy consumption.

To validate this approach, a simulation of the GRACE system was constructed around a
custom-built adaptive video encoder that provides the system the ability to reduce its CPU
utilization at the cost of increased network-bandwidth requirements. These simulations show
that the GRACE architecture can save more than 50% of the total CPU and network energy
by appropriately shifting demand from the CPU to the network.

The GRACE system also allows utility to be allocated between applications. Convention-
ally, this is done using suboptimal heuristics. However, Lagrangian techniques can also be
applied to the allocation problem, supplying a method whereby optimal allocations (to within
convex-hull approximations) can be made without requiring exact foreknowledge of upcoming
workloads or searches of the cross-product of present and future applications. Through the
use of Lagrangian optimization, unbounded improvements in total utility can be achieved com-
pared to the constant-workload heuristic; simulations demonstrate a factor of two improvement

in total utility in advantageous circumstances.
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CHAPTER 1

INTRODUCTION

Until recently, “multimedia” was a wired-only phenomenon. Even “wireless” solutions, such
as television, had generally been hooked into external sources of power. Traditional wireless
environments have also been receive-only, with transmit capability being restricted to a small
segment of the voice communication market (cordless and cellular telephones) and hobbyists
(through amateur radio).

However, the confluence of several phenomena—including third generation cellular networks,
802.11, and rapidly improving computer and display technology—have recently permitted the
creation of true wireless multimedia devices. In addition to receiving media, modern laptops
can capture, encode, and wirelessly transmit multimedia streams.

Battery technology has not kept up with the advances in computing and communications,
and therefore energy has become a significant limitation in the operation of these types of
portable multimedia devices. Also, as computers have become faster, computation has become
a larger part of the energy budget of mobile devices. For this reason, we can no longer do
energy-aware encoding without taking into account the energy used in processing as well.

This dissertation explores some of the problems encountered in creating a system that
optimizes end-to-end energy consumption by jointly adapting behavior across the various layers

of the system.

1.1 The GRACE Project

This work has been done as part of the broader Illinois GRACE (Global Resource Adap-
tation through CoopEration) project [1], which aims to develop adaptive systems in which all

layers—hardware, operating system, network, and applications—coordinate to optimize multi-



media quality of service and resource usage. We believe that the correct approach is to allow all
system layers, from the application software to the CPU and networking hardware, to adapt in
response to changing conditions. Furthermore, this adaptation should be fine-grained; that is,
we should be able to take advantage of short-term variation in the behavior of the system and
its environment. This requires that we recompute optimal configurations for the entire system
frequently; ideally, we do this independently for every work unit (frame) of each application.

However, this philosophy introduces a challenge—how do we achieve this fine-grained cross-
layer adaptation between all applications without the large overhead of looking across all appli-
cations and recomputing complete configurations every frame? This problem is further compli-
cated by the fact that this allocation problem is equivalent to the NP-hard knapsack problem [2],
preventing the exact solution of the allocation problem even on a sporadic basis.

We believe that the challenge of fine-grained cross-layer adaptation can be met using a
hierarchical approach: resource allocations can be made at a global level, but exact decisions
about how these resources are to be used can be deferred to lower levels that are more aware of
instantaneous details. The results of the global adaptation are monitored, and if the resource
requirements of an application vary significantly from the allocation, or if the application ex-
ceeds or falls short of the expected utility by a significant amount, we again trigger a global

optimization.

1.2 Related Work

While significant work has been done on the general concept of energy-aware optimization
of multimedia applications, the work described in this thesis differs in several important ways.
Our architecture enables decoupled adaptation; we provide a minimal interface between various
system layers that permits end-to-end optimization, but allows the layers to make their own
decisions about when and what to adapt. This contrasts previous architectures, which tend to
have closely coupled system layers that require detailed information about the inner workings
of all components of the system, or operate the adaptation across broad time scales and are

unable to take advantage of short-term variations in conditions.



1.2.1 Adaptive applications

Adaptive applications have been proposed in many contexts. For mobile computing, the
adaptations have focused on changes in available bandwidth [3-5] and energy [6,7]. A significant
amount of work has also been done offloading parts of the application’s computation to wired
(and therefore not energy-limited) servers, such as [8] and [9]. The work described in [9] is
particularly interesting because it may enable offloading of work from the wireless device to a
fixed transcoder without incurring a significant rate penalty.

Also relevant is work explicitly considering the energy consumed encoding the video, such
as that found in [10] and [11]. This idea of trading off computation complexity for encoding
efficiency forms an important part of the adaptation framework introduced in Chapter 3, and
an encoder similar in nature to the complexity-adaptive decoder described in [10] and [11] is
used for this work. However, even this prior work considers other parts of the system as a
“black box” and cannot account for adaptation occurring in other parts of the system.

While most work in complexity-adaptive encoders, including our own, concentrates on
motion-compensated DCT video encoding, it is important to mention that other approaches
exist. For instance, the recent introduction of rate-scalable or “progressive” image and video
encoders [12-15] allows adaptation through the generation of bitstreams that can be truncated
without excessive loss of fidelity; the more data that are successfully transmitted, the better
the reconstruction quality. These wavelet-based encoders also have the desirable “embedding”
property, meaning that any low-rate encoded bitstream is a prefiz of a more detailed, higher-rate
bitstream; they therefore do not require choosing the eventual quality of the encoded stream
before encoding begins.

Progressive encoding and decoding offers two advantages over traditional encoders: first,
if a transmission error occurs, a coarse version of the transmission can be reconstructed using
only data transmitted before the error, and second, if a computation overrun occurs, encoding
and decoding can be terminated before completion, generating a lower-fidelity representation

of the encoded stream.

1.2.2 Other single-layer adaptations

In addition to adaptive applications, large bodies of literature address adaptive or adaptable

system layers. One of the most common single-layer adaptations is the the adaptation of CPU



and architecture; see [16] for a summary of past work in this field. Adaptive and application-
specific networks are also common [17-26]. Finally, as power management has been introduced
to CPUs and operating systems, schedulers have become increasingly power-aware and in some

cases explicitly optimize the system’s energy use [27-29].

1.2.3 Joint network-application adaptation

There has been considerable exploration of joint adaptation between the application and
network layers, primarily done by the signal processing community under the name of “joint
source-channel coding.” This work primarily focuses on jointly optimizing specific applications
(e.g., video or image source coding) and specific network functions (e.g., error/channel coding or
congestion control). This is typically done by feeding the network state back to the application,
and allowing the application to drive the network’s adaptation. In most cases the coding for
both source (application) and channel (network) are intermingled and inseparable [30-41]. In
some cases, the network directly drives the application [42]. In other cases [43-49], and my
own master’s thesis work [50,51], the separation between layers is preserved through the use
of embedded image and video coders and passing only the rate-distortion curve of the encoded
sequence. And although some of this prior work explicitly considers processing energy [38,44],
most has concentrated on network bandwidth and its associated energy costs, largely ignoring
computational complexity and processing energy and time.

Another approach to the joint source-channel adaptation problem is the use of middleware,
or system-level monitors that estimate resource availability and coordinate the allocation of
resources across applications and nodes. This type of approach is frequently applied to the
bandwidth management problem, and a survey of this type of work along with several examples
can be found in [52]. For example, Barghavan’s TIMELY system [53] combines network and
application adaptation with a revenue model used to ensure good quality of service and minimize
quality-of-service variations. The “Bandwidth Management” system of Shah et al. [54] similarly
aims to provide fair quality of service allocations across different nodes acting in an 802.11-
style wireless network. Although system utility is implicitly or explicitly optimized by these
systems—often on a distributed basis, expanding on the single-node optimization done by the

GRACE system—the optimization strategies are dedicated to doing management of bandwidth



and not energy. As a result, the optimization is somewhat at odds with energy minimization,
which is often achieved at the cost of increases in bandwidth use.

Finally, the networking community has studied interactive networks, designed to provide
applications the information they need to adapt themselves without exposing the details of
modulation and protocols to the application. This type of approach allows the status of the
network to drive the adaptation, without the need for the application or its author to understand
the operational details of the network protocols. This can be accomplished by notifying the
application when network state changes [55] and allowing the application to make its own
reconfiguration decisions, or by allowing the application to describe the payoff from different
quality of service levels the network can provide [42]. In either case, separation between layers
is preserved; one layer describes its behavior to the other, which makes an adaptation decision

based on the information provided.

1.2.4 Cross-layer adaptation frameworks

Because my work is fundamentally a coordination framework for cross-layer adaptation,
it shares some similarity with many other such frameworks. These frameworks typically co-
ordinate a subset of system layers, such as resource management and applications [56-58] or
adaptive CPU and OS resource allocation [59-61].

For example, Q-RAM [56] and IRS [62], much like our global adaptor, coordinate resource
allocation across applications to maximize quality within all resource constraints. Several
researchers have also implemented a more complete global adaptation layer similar to our
GRACE-1 [2] framework. Examples include ECOSystem [59,61] (part of the Duke University
Milly Watt project), which uses a model called “currentcy” to manage energy, with the goal
of achieving a specified battery lifetime, and the coordination algorithms proposed by Rusu et
al. [60], which consider constraints on energy, deadline, and utility in the presence of hardware
voltage scaling. Also, Efstratiou’s “coordinated adaptation platform” [63], Georgia Tech’s “Q-
Fabric” [58], and de Lara’s “EACS” [57] frameworks, like our GRACE-1 framework, combine

application adaptations with OS resource management.



1.3 GRACE Project Publications

The GRACE system described in this dissertation builds primarily on the work done by
members of the GRACE group. My first GRACE publication [64] introduced the adaptive
application and showed how cross-layer adaptation of the CPU [65] and application could be
exploited to optimize the system’s total energy consumption. Likewise, other group members
developed the adaptive scheduler [29] and the network protocol and estimation components [26].
These components have been integrated and tested together with the adaptive application and
algorithm from [64] in [66].

As this work is being performed as a collaborative effort with several other faculty and
students, many sections of this dissertation are derived from joint publications with several other
authors. Parts of this introduction chapter are based on a publication in the 2002 SHAMAN
workshop [1] and collaborative work creating the initial grant proposal for the project. Also, a
description of the system described in Chapters 3 and 4 was published as a technical report [67].
This work also appeared in abbreviated form as a sidebar in a special issue of IEEE Computer

magazine [68].



CHAPTER 2

ADAPTIVE APPLICATION

A basic component of all the adaptive systems I introduce in this thesis is our adaptive
encoder. This encoder is designed to enable power savings by providing the ability to trade off
not only between resource consumption and the quality of the encoded stream, but also between
different types of resources. The adaptive encoder presented here is an expanded version of the
one used for my initial work in application/CPU cross-layer adaptation [64].

Specifically, our adaptive encoder builds on a standard H.263 encoder by providing the

option to eliminate various parts of the encoding process.

2.1 Adaptive Encoder Core

The encoder used in this work is based on the TMN (Test Model Near-Term) 1.7 encoder
[69], which encodes standards-compliant H.263 streams. We modify the encoder to trade off
computational complexity against the number of bits output by providing mechanisms to vary
the compression efficiency of the encoder.

Because the above TMN encoder uses a full search to find motion vectors, we replaced
the motion search with a fast search. The search implementation is similar to the logarithmic
motion-search technique [70], but simplifies its implementation (at the cost of some efficiency)
by searching all four diagonals as well as up, down, left, and right in one step rather than
searching only two of the diagonals in a separate step after the cardinal directions are checked.

After the implementation of this fast motion-search algorithm, the encoder was profiled to
identify the largest consumers of CPU time. Even with the fast motion-search algorithm, the

motion-search function remained the largest single consumer of CPU time. The next largest



consumers of CPU time were the DCT and IDCT functions. As a result, the motion search
and DCT functions were targeted for adaptation.

Also, because the adaptive features require that certain information be passed along to the
decoder for correct decoding, the modified encoder and decoder are no longer H.263 compliant.
As a result, conventional decoders cannot decode streams generated by the adaptive encoder. A
compatible decoder has therefore been implemented (based on the corresponding TMN H.263
decoder) and is included in the encoder library.

Detailed descriptions of the functions in the adaptive video-encoder library have been in-

cluded as Appendix A.

2.1.1 Adaptive capabilities

This encoder provides several adaptive capabilities. First, as in all video encoders, the
quantizer step size can be adjusted, affecting the tradeoff between bit rate and the quality of
the stream. However, unlike conventional video encoders, our adaptive encoder also provides
the capability of adjusting tradeoffs between computational complexity and bit rate.

This is done in two ways. First, the encoder provides the capability to prematurely abandon
motion search when a “good enough” match is found. Second, for blocks with a low sum-of-
absolute-differences, the encoder can skip the DCT computation and quantize the pixels without
the DCT coding. Last, the encoder can generate I-frames with some or all of the macroblocks
sent completely uncoded.

All of these parameters can be adjusted on a frame-by-frame basis by an adaptation con-
troller. The algorithms for selecting a configuration are part of the GRACE system, and will

be described in future chapters.

2.1.1.1 Motion search threshold

The logarithmic motion search we use reduces the complexity of the motion search signifi-
cantly, but it still takes approximately 25% of the total CPU time. To cut this down further,
we allow the motion-search function to “escape” if, at any point in its search, it finds that the
sum of absolute differences for the current motion vector is less than or equal to an adjustable
threshold. When this “escape” occurs, the selected motion vector will be used as-is and not

further refined.



The motion-search threshold can be set to arbitrary numbers from zero up. A value of zero
ensures that the full motion search is run. Small numbers will cause the system to skip the
motion search if little change has occurred or if a good match is found; large values will disable

the motion search entirely.

2.1.1.2 DCT threshold

After the motion search is completed, each macroblock is split into 6 8x8 DCT blocks (four
luma blocks and two chroma blocks). Normally, these blocks would then be transformed using
a DCT, then quantized and coded. However, the DCT and IDCT together were the largest
user of the CPU in the encoding process, adding up to 30% of the total CPU demand. To
reduce their impact, we have added the ability to skip the DCT and quantize and send the
untransformed coefficients instead.

Before the DCT is performed, the absolute value of all of the elements of the 8x8 DCT block
is summed. If the sum exceeds the specified threshold, the DCT is performed; if not, the DCT
is skipped and the untransformed input block is copied as the DCT output.

To successfully decode a stream in which not all blocks have been DCT transformed, we
must deviate from the H.263 specification by adding an extra bit before each 8x8 block of
coefficients is transmitted. This bit indicates whether or not a DCT was performed on that
block. When the decoder receives the DCT block, it checks the bit and if the bit is not set, no
inverse DCT is performed.

Any DCT blocks associated with a macroblock that encoded in INTRA mode or that are
part of an I-frame are always DCT-transformed. However, the flag bit is still sent to simplify

decoding.

2.1.1.3 I-frames and uncoded macroblocks

Last, like all encoders, our encoder has the capability of generating I-frames that do not
depend on any prior frames. However, our encoder extends on this capability by allowing some
or all of the macroblocks in an I-frame to be transmitted entirely uncoded.! If a macroblock
is sent uncoded, all processing (including the motion search, DCT, quantization, and variable

length coding) is skipped, and the raw YUV data from the incoming frame is copied straight to

Tn fact, the encoder permits uncoded macroblocks to be included in P frames as well. However, we have
found this mode to be suboptimal.



the output, along with a marker (implemented as an extension to the macroblock mode table)
that indicates that the macroblock was transmitted using the “uncoded” mode.

This feature is controlled by a setting that indicates the probability that a given block will
be transmitted uncoded. Normally, this is set to zero (all blocks are encoded). If it is set to a
nonzero value, a random number in the range [0, 1) is generated for each macroblock that is to
be encoded. The macroblock is encoded if and only if the random number is greater than or
equal to the uncoded-block probability parameter. Each block is therefore selected as coded or
uncoded independently, and with equal probability.

An extension to the H.263 macroblock mode tables was required to indicate the presence of
an uncoded macroblock to the decoder. Also, for efficiency, the uncoded data is byte-aligned

in the output stream.

2.1.2 Additional capabilities

In addition to the adaptive functionality, the encoder also has explicit functions to save and
restore the encoder state. These are used for error recovery; rather than sending an I-frame if
a frame is lost, the controlling application has the option of backing up the encoder state to a
previous frame that arrived intact at the receiver. This is done through a pair of functions that
save and restore the encoder state. It is the application’s responsibility to select the previous
frame to use, and to ensure that the decoder state matches the encoder state when the frame

being decoded was encoded.

2.1.3 Omissions and unsupported features

Several features of the H.263 standard are not supported in the adaptive encoder, although
they were supported by the original H.263 encoder. These include arithmetic encoding, use of
fused PB frames, and automatic rate control.? Half-pel motion compensation has been disabled
in this version of the encoder, although it can be re-enabled with a compile-time flag.

Like the original TMN H.263 decoder, our decoder has limited ability to recover from stream
errors and should not be presented with corrupted frames. No error concealment is performed.

It is assumed that any corrupted frame will be dropped by the controlling application.

2 Arithmetic encoding and PB frames may still work if the adaptive properties of the encoder are disabled,
but this is untested.
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Table 2.1 Encoder configurations

# | Frame DCT | Motion || # | Frame | Uncoded

Type | Thresh | Thresh Type MBs

0 P 0 0 8 1 none

1 P 0 750 9 1 1/7

2 P 500 750 || 10 I 2/7

3 P 500 1250 || 11 I 3/7

4 P 500 2000 || 12 1 4/7

5 P 500 3000 || 13 I 5/7

6 P 1000 5000 || 14 I 6/7

7 P 20000 20000 || 15 1 all

2.2 Configuration Space

The motion-search threshold, DCT threshold, and block-drop probability are all continuous
parameters. However, our adaptation algorithm is designed to work with a set of configurations
that is discrete and well-ordered. Therefore, it is necessary to choose a set of discrete operating
points that the adaptive algorithms can select.

We have chosen a total of 16 configurations. These configurations were selected for well-
ordered and well-spaced cycle counts. However, due to variations between different streams,
there was one test case in which the cycle count was nonmonotonic.

The configurations are numbered in order of increasing output size and decreasing computa-
tional complexity. The first configuration, numbered zero, sets both the DCT and motion-search
threshold to zero. This ensures that all possible compression is done. The next configuration
increases the motion-search threshold, resulting in a significant decrease in the average CPU cy-
cle consumption with an accompanying small increase in bandwidth. The next 6 configurations,
up to configuration number 7, increase both the DCT and motion-search threshold.

Configuration 8 requests a fully encoded I-frame. Configurations 9 through 15 replace a
random subset of macroblocks with completely uncoded copies of the original frame. Configu-
ration 9 sends, on average, 1/7th of the macroblocks uncoded, configuration 10 2/7ths, and so
forth to 15, which sends the entire frame uncoded. Each macroblock is chosen to be sent coded
or uncoded independently with the chosen probability.

Table 2.1 gives a list of the motion-search threshold, DCT threshold, frame type, and the

percentage of uncoded macroblocks used for each of the 16 selected configurations.

11



2.2.1 Configuration selection

The application includes a file (“configs.h”) that contains the configurations that have been
selected for use. It declares a function set_config taking an integer parameter that indicates
which configuration (0-15) to use, and calling the appropriate set of encoder functions to set
the encoder configuration. It also declares a function config_is_i (), which returns a nonzero
value if the encoder has been set to encode I frames. This is used to properly set dependency
information.

The file also declares several “constants.” NUM_OPTIONS is set to the total number of config-
urations that have been declared. I_ABOVE_OPTION is set to the minimum configuration number
representing an I-frame; all higher numbers represent I-frames as well. QUANT_ONLY is set to the
lowest configuration number which does not send uncoded macroblocks. MAX_CONFIG is set to
the highest valid configuration number. In the current implementation, these “constants” are
actually implemented as variables, which change when the quantizer is reset. This allows the

encoder to lock out inappropriate configurations.

2.3 Encoder Performance

This selection of configurations gives us a wide variety of different operating points that
have varying tradeoff between CPU and network utilization while keeping the stream quality
roughly constant. In this section, we will show these tradeoffs explicitly.

These results are based on several standard MPEG-4 test sequences at the CIF (352 x 288)
resolution and using a relatively high quality (Q = 6). We evaluated each of the test sequences
at all of the 16 byte/cycle tradeoff configurations listed, and at two different values for the
quantization step size.

We specifically consider the encoding of three standard MPEG test sequences of 300 frames
each, which represent the variety of different types of sequences we will encode. The first,
“Akiyo,” is a talking-head sequence. The second, “Mobile,” is a sequence with panning and
several moving objects. The third, “Foreman,” has a talking head at the beginning and then
pans over to a moving view of a construction site.

We also evaluate a combined sequence of 5500 frames, consisting of a large number of

different test sequences concatenated together. It is intended that this represent the average
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Table 2.2 Comparison of original H.263 encoder and adaptive encoder.
Encoder operating in its maximum compression mode (Q = 6, CIF).

Stream Encoder Bytes Time
Combined | TMN H.263 | 21098480 | 1138.42 s
adaptive 28105113 | 283.31 s
Akiyo TMN H.263 176914 41.02 s
adaptive 231280 13.00 s
Mobile TMN H.263 | 4181474 57.24 s
adaptive 5464199 18.14 s
Foreman TMN H.263 1023868 57.21 s
adaptive 1680845 15.65 s

performance of the encoder across a large corpus of varying types of video streams. The
composite sequence was used to create the encoder-performance tables used by the adaptation

algorithm described in future chapters.

2.3.1 Compared to the unmodified TMN H.263 encoder

Due to the simplified motion search, elimination of half-pel motion compensation, and the
extra bits required to add the DCT and uncoded-macroblock flags, the adaptive encoder does
not compress as effectively as the unmodified H.263 encoder even if full compression is enabled.
The modified encoder, in its maximum-compression mode, uses about 33% more bits for the
same quality. However, CPU load even when full compression is used is approximately one-
fourth the CPU load of the original TMN H.263 encoder.

Because our work is aimed at laptops, which tend to have relatively high CPU power
demands and relatively low network power demands, we do not support the original full search
or half-pel motion compensation as options in our adaptive encoder. Enabling the full motion
search would also result in frame rates of approximately 5 fps (frames per second) on our test
platform. However, in the future when faster microprocessors are available or on platforms with
higher network costs, these functions could be enabled.

Table 2.2 compares the performance of the modified encoder against the original H.263

encoder with advanced options disabled.
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2.3.2 Comparison of adaptive modes

With the encoder quantizer set to 6 to achieve a high-quality video stream, we get a range
of approximately an order of magnitude in the CPU load between the sending the stream
completely uncoded and executing the full compression task. The range in the number of bytes

generated varies across approximately two orders of magnitude.

2.3.2.1 Byte and cycle comparison

Figure 2.1 shows the the number of cycles and number of bytes required to encode an average
frame of each of the four test sequences for all 16 application configurations. We see that the
bytes and cycle counts are nearly monotonic with configuration numbers; the only exception
is a slight rise in the number of CPU cycles going from Configuration 7 to Configuration 8
on the “Akiyo” curve with Q = 6. Furthermore, we see that the number of bytes and cycles
both vary by approximately a factor of two before we start sending uncoded macroblocks;
the remaining configurations have the expected linear change in both cycles and bytes as the

number of uncoded macroblocks increases.

2.3.2.2 PSNR comparison

To verify that our adaptations preserve the good quality of the video stream, Figure 2.2
shows the PSNR for the decoded stream as the encoder configuration is varied. From this
graph, we see that for a quantizer step size of 6, configurations 0-7 (representing P-frames) all

stay within a range of approximately 1 dB from the the “full compression” mode.

2.3.3 Perceptual quality comparison

Perceptually, configuration 6 and 7 result in slight quality loss at Q = 6; although detail is
preserved better than in configuration zero, some color artifacting occurs.

For configurations 8 and above (I-frames and uncoded macroblocks), unsurprisingly we see
the PSNR improve dramatically. For configuration 15, which is entirely uncoded and therefore
has perfect fidelity, it is undefined. Examples of encoded images for configuration 0, configura-
tion 7, and configuration 15—the baseline encoder, the encoder with DCT and motion search

disabled, and the raw frame data, respectively—are shown in Figure 2.3.
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2.3.4 Reduced quality operation

We also evaluated the encoder at quantizer step size Q = 12, which provides a reduced
quality stream at a significantly lower bit rate. Comparison of the bit rate and cycle counts for
various configurations are shown in Figure 2.4.

However, as the quantizer step size is increased, the effects on the images of eliminating the
DCT becomes more visible. This is due to the fact that there are fewer terms large enough
to be quantized to nonzero values, which increases the error disproportionally. Also, the error
is less concentrated at high spatial frequencies and therefore can be more easily noticed. As
a result, using the configurations that eliminate many DCTs with Q = 12 results in images
that are noticeably degraded. In addition to the 2 dB drop in image PSNR for configurations
6 and 7 shown in Figure 2.5, there is also significant blockiness and color shifting visible in
configurations 6 and 7. The blockiness in these configurations has a distracting harsh quality,
as shown in Figure 2.6.

Due to the distracting quality loss when configurations 6 and 7 are used with Q = 12, we
restrict the encoder to using modes 0-5 and 8 when operating in its reduced quality mode. By
avoiding configurations 6 and 7 and configurations that substitute uncoded macroblocks for
coded macroblocks, we avoid the distracting artifacts and ensure quality remains comparable
across all of the available configurations. The uncoded-macroblock configurations are also

disabled, as the restricted quantizer will only be used in network-constrained situations.

2.4 Conclusion

Although the encoder library presented in this chapter is neither standards-compliant nor
state-of-the-art, it provides the ability to trade off between CPU and network utilization, and
gives a large range of operating points ranging from full compression to no compression at all.
In future chapters, we will use this capability to enable energy savings by moving resource
utilization between CPU and networking.

The same techniques presented in this chapter can be applied to modern video coders,
such as MPEG-4 and H.264, although it may not be possible to make all of the associated
modifications while retaining compatibility with these standards. Applying these techniques

to a more modern video coder could provide a more efficient video encoding where the same
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number of cycles achieves better compression, and the maximum achievable compression ratio
is higher. Furthermore, by porting a modern video encoder to use the same interface presented
here and in Appendix A, it could be dropped into the broader GRACE framework with no

other changes to the adaptive encoder application.
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CHAPTER 3

THE GRACE SYSTEM FRAMEWORK

3.1 Introduction

In the previous chapters, we have introduced the concepts of coordinated adaptation between
system layers, and the hierarchy of adaptations — from global adaptations that affect the entire
system to per-layer internal adaptations that affect only a single layer and application.

The UIUC Global Resource Adaptation through CoopEration (GRACE) project aims to
unify adaptation across system layers and applications through the use of coordinated, cooper-

ative adaptation. In this chapter, I present our vision of the GRACE system.

3.1.1 Overview

The GRACE vision (Figure 3.1) differs from most adaptation systems in that it coordi-
nates the adaptation of all system layers, rather than allowing each system layer to adapt
independently and possibly at cross-purposes.

The GRACE system incorporates several unique features to limit complexity while permit-
ting fully cross-layer adaptations. The most important of these is the use of an adaptation
hierarchy, which permits us to combine the benefits of large scope and frequent adaptations
without incurring large computational overheads.

Ideally, a cross-layer adaptation system would constantly reallocate resources across appli-
cations to achieve the maximum possible benefit from the adaptation. However, as the full
cross-layer adaptation involves solving an NP-hard optimization problem, the computational
load associated with frequent reallocation is prohibitive. For this reason, we split up the adap-
tation into a hierarchy, in which relatively simple adaptations are done on a continuous basis

and the more complicated allocation problems are solved only when necessary.
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Figure 3.1 GRACE vision.

Second, we have designed a set of interfaces that minimize the information transferred
between system layers while preserving the ability of the system to optimally allocate resources
and configurations to each application and system layer. These interfaces abstract the data used
by various system layers to contain only information meaningful to that layer. For instance,
the application estimates its demands in terms of transmitted bytes and cycles, and passes
this information on to the CPU and network layers, which translate the information into an
appropriate selection of operating modes and return to the application answers about feasibility
and energy requirements. These interfaces permit the various system layers to be unaware of
the internal details of adaptation in other layers, rendering it unnecessary for each layer to
contain a detailed model of the workings of the other layers.

The adaptivity provided by the GRACE system can be used two ways. First, the perfor-
mance of applications running on the system can be traded against energy consumption to find
the best balance of instantaneous utility and runtime. Second, the behavior of various system
components can be tweaked to trade off between utilization of different system components,
such as the CPU and the network interface. Although changing the performance of the appli-

cations running on the system is an intrusive change (that could potentially bother the user if
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done too frequently), trading off between different configurations that offer the user the same

quality of service can be done at any time.

3.1.2 Terminology

We use “utility” to refer to abstract measures of user satisfaction. In practice, for video this
is likely to mean a metric like PSNR (pseudo signal-to-noise ratio), possibly scaled by a factor
representing the importance of a particular multimedia application to the user.

“Resources” are used to refer to a measure of the ability of the system to serve applications.
An application consumes resources when it sends or receives data over the network, or performs
computation; also, a system layer can consume resources on behalf of applications. For exam-
ple, if the network layer does error-correction processing on application data, this consumes

processor time that must be charged against the resource allocation for the application.

3.2 System Energy Model

Our system consists of two major adaptive components: a CPU that can change its oper-
ating frequency and voltage in response to changes in processor demand, and a network that
constantly adjusts transmit power and data rate to minimize power consumption given current

network conditions.

3.2.1 CPU

Current microprocessors are capable of dynamically adjusting the voltage requirements, V/,
and the operating frequency, f. Dynamic voltage and frequency scaling (DVS) takes advantage
of these capabilities to alter V' and f in response to application demands [71].

The power required to drive the processor is determined by three components, the voltage
V, the frequency f, and the effective capacitance of the microprocessor C eff The value of
microprocessor frequency and voltage scaling comes from the fact that as f is increased, the
required voltage V also increases at the same time—ideally, in a linear relationship. As a result,
reducing the operating frequency of the microprocessor and then reducing the voltage to an
appropriate level for that frequency provides a superlinear (ideally, quadratic) reduction in the
amount of energy consumed per cycle. Architectural adaptations can affect C.z, but are not

considered here.
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The total energy consumed by the CPU (E¢py) to complete a job is therefore determined
by the power consumed by the CPU, the frequency, and the number of cycles, I., the job takes.
Prior work [71] has shown that the number of cycles I, is does not vary significantly as the
microprocessor speed is scaled for multimedia applications that we consider. The equation we

use to compute total CPU energy consumption for a job is therefore as follows:

ECPU X Ceﬁ X V2 X Ic (3.1)

3.2.2 Network

The power used to drive a wireless network card is composed of the power required to drive
the transmitter, P;, the power to keep the card in transmit mode, Py, and the power required
to operate the rest of the circuitry of the card, Pp,s. There is also an energy cost associated
with protocol processing for each packet, Ep... Therefore, for a given packet of size D at a

transmission rate of Ry, the total per-packet energy consumption, ¢, is defined as

D
Enet = Eb X (Pt + P:vmit + Pbase) + Eproc- (32)

where Fy,, is roughly constant relative to packet size but depends on the cost of the CPU, and
Pyyse and Py are fixed by the interface device. In the context of this energy model, energy
conservation techniques aim to affect one or more of the other components. For example,
for any given channel characteristics, transmit power control minimizes P;, while bandpass
modulation adaptation affects R;. Additionally, reliability mechanisms such as retransmission
and forward error correction (FEC) increase the amount of data sent, essentially increasing D.
Finally, idle-time power management techniques allow Py to be conserved during idle periods

in communication.

3.2.3 Application energy model

Our application energy model consists of two parts: the energy used by the CPU, and the
energy used by the network. Obviously, a real system will have other components draining
energy from the battery as well. However, the power consumption of these components - the
camera, display, chipset, RAM, and other associated parts - are more or less fixed for this

type of application. (We expect that for the bulk of the video conferencing session, we will be
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able to turn the hard disk off.) We therefore lump the energy consumption of all these system

components into a fixed “external energy” cost that is not involved in the adaptation process.

3.3 The GRACE Framework

The GRACE framework is based on the concept of hierarchical adaptation, in which we do
expensive adaptations occasionally, and limited-scope but inexpensive adaptations constantly.
The combination of the different layers of adaptation allow us to achieve most of the benefits
of continuous, global adaptations without incurring the overhead of running full cross-layer
adaptations on a frame-by-frame basis.

The hierarchical adaptation of the GRACE system consists of three levels: “global” adap-
tations, which allocate invariant resources to the competing applications of the system; “per-
application” adaptations, which are low-overhead fine-grained cross-layer adaptations that can
be done on a job-by-job basis; and “per-layer” local adaptations, in which a single system layer
chooses the best configuration for itself in ways that are not directly visible to other layers or
applications.

Although we presently do not consider distributed systems, the hierarchical framework we
describe can be extended to handle them. This would involve another, higher layer of adaptation
(“cross-node” or “network-global”) that would distribute tasks across nodes, calling upon the
existing global allocation framework to find the best configurations of tasks within a node
and using similar optimization algorithms to find the set of tasks running on each node that

optimizes overall user satisfaction.

3.3.1 Long-term/global adaptation

“Global” (per-node) adaptation works across applications and layers, and as shown in Fig-
ure 3.2, works across applications and across layers. It is responsible for optimally allocating
resources to each of the applications running in the system, balancing quality of service for
each application against the power consumption and hence the runtime of the system. Because
this optimization must, in general, consider all configurations of all system layers and applica-
tions running in the system, it operates only when necessary due to a systemwide change in

applications or resources, and therefore at time scales of many seconds or more.
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Data on “average” jobs is used to choose the set of application configurations which form
an optimal tradeoff between utility and energy for the “average” frame. Once such a set of
application configurations is found, these configurations are converted to an allocation, splitting
the total available variable resources across applications proportionally to how these “average”
frames use the resource.

A key to our global resource allocation is that the resources are allocated before changes
due to reconfiguration are introduced. To do this, we use “CPU time” and “Network time” as
our invariant resources. Instead of counting cycles or instructions, both of which can vary as we
reconfigure the hardware, we allocate a certain amount of wall-clock CPU time per frame (job)
to each task (application). No matter how the hardware is reconfigured, the application is not
permitted to exceed its wall-clock time allocation. Likewise, as long as the network round-trip
time is insignificant compared to the time taken for the network to handle a single application
frame (job),! we can similarly allocate “time on the network” or “raw bandwidth” to each task.
This allocation will be used to transmit both its application data and any required error-control
coding.

The global optimization process is managed by the global coordinator, which communicates
with other system layers as shown in Figure 3.3 to determine the resource demands of different
applications and the current state of the system and network. The global coordination process
starts out with the global optimizer querying all of the application predictors for lists of available
configurations. The application predictors, along with the CPU and network estimators also

used in the adaptation process, combine precomputed, static profiles with runtime data to

Without this assumption, it may be desirable to interleave packets of different applications.
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Figure 3.3 Global adaptation communications.

estimate the current resource demands of the application. The application predictors then
report back a set of available configuration profiles, each indicating the expected utility, CPU
use, and network requirement for the associated application configuration.

The global optimizer then uses this data to repeatedly propose a set of operating points
to the hardware and network predictors. These configurations are then checked for feasibility,
utility, and energy consumption, and the best configuration for each application is selected.

Once a feasible set of configurations and utilities with acceptably low total energy con-
sumption is found, the global coordinator assigns the application its configuration and resource
allocation. The assigned configuration is stated in terms of the utility and period of the appli-
cation; this allows the lower adaptation levels to select an appropriate application configuration
within a range that the user finds indistinguishable. Because the resource allocations can-
not depend on the state of the system, CPU allocations are expressed as the amount of CPU

time available to the application per frame or period, and the network allocation is expressed
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as the proportion of “raw bandwidth,” or time on the network, allocated to the application.
This “raw” bandwidth allocation includes the time spent on retransmissions, and forward error
correction, and does not vary even if the data rate is changed.

After the final utility and resource allocations are determined, the global coordinator reports
to the per-application coordinator the allocations it selected. The final resource allocation is also
reported to the application, CPU, and network adaptors and their corresponding schedulers.
Reporting the resource allocations to the internal adaptors during the global adaptation process
allows them to prepare for the demands of the configurations selected by the global coordinator.
This is especially useful to the application, which may need to prepare user-interface elements

(such as window size) for the selected utility.

3.3.2 Short-term, per-application adaptation

“Per-application” adaptation works across layers on a job-by-job basis, as shown in Fig-

ure 3.4.

.
time

Figure 3.4 Per-application adaptation.

Before the per-application adaptation can run, resources must be allocated to each applica-
tion by the global adaptor. Along with CPU and network allocations, the global adaptor also
allocates a desired quality of service to each application. This allocation dictates the quality
level that the per-application adaptor must use if possible. But the per-application adaptor
is free to choose any application, CPU, and network configuration that achieves the requested
quality of service. This freedom allows the per-application adaptor to select the set of config-
urations for all layers which minimizes the energy consumed by a single job, while respecting

the allocations of CPU time and network bandwidth.
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We choose to restrict the per-application adaptor to energy minimization due to the short-
term nature of its adaptations. Allowing the per-application adaptor to change the delivered
utility (i.e., the stream’s quality of service) could potentially introduce rapid, annoying fluctu-
ations in the quality of the multimedia stream.

If external conditions do not permit the per-application adaptor to choose a configuration
that meets the requested quality, it is expected to provide the maximum quality possible while
respecting the original allocation. To simplify recovery from situations in which the resource
availability is too low or varies dramatically from one frame to the next, the per-application
adaptor is permitted to allow jobs to temporarily overrun their CPU or network allocation.
However, if such an overrun occurs, the per-application adaptor is required to reduce the al-
location for the next frame or job associated with the application proportionally, effectively
“borrowing” the allocation from the next frame. To prevent indefinite borrowing, if as a result
of this “borrowing” the allocation for a particular frame or job falls to zero, the per-application
adaptor forces the next frame to be skipped. This is a policing measure designed to enable the
system to catch up from past resource overconsumption.

As shown in Figure 3.5, the per-application adaptor selects a suitable configuration by first
collecting detailed, short-term predictions of the behavior of the job from the application pre-
dictors. It then queries other system layers for energy estimates, and chooses the application
configuration which minimizes the amount of energy that will be consumed. It is also respon-
sible for notifying the global coordinator when changes in the operating environment make
it impossible to achieve the expected utility within the existing resource allocation, or if the
amount of energy consumed or resource utilization varies greatly from the amount assumed by
the global coordination.

Unlike the allocation of variable resources across applications done by the “global” coor-
dinator, we do not consider the effect that the task currently being scheduled has on other
tasks. Compared to the global allocation problem, which (ideally) requires considering every
single possible combination of configurations across all applications and system layers, this

optimization is simple and can be done frequently without incurring excessive overhead.
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Figure 3.5 Per-application adaptation communications.

3.3.3 Internal or “per-layer” adaptation

Finally, each layer is capable of performing “per-layer” internal adaptation, as shown in
Figure 3.6. The internal adaptations are adaptations, possibly across applications but within
resources that are allocated to the layer, which minimize energy consumption but are not
visible to other layers and do not affect user-visible aspects of performance.

adaptations must restrict themselves to finding configurations for the layer that minimize the

layer’s aggregate energy consumption.

Examples of such “per-layer” adaptations include allowing the scheduler to reclaim unused
time from jobs once that job is finished, the hardware adaptation mechanism choosing the most
efficient hardware configuration given the time available to a task and its instruction count,

and the network choosing between various combinations of ARQ, forward error correction,

physical-layer bit rate, and energy per bit.

30

Usage
Monitor

Internal
Adaptor

» Estimator
Processor

Status
Monitor
?

The internal



appn_, appn

app 1 app 1 app i
network (OF] application

\/Z
\4
v

Figure 3.6 Internal adaptation.

For all layers, the internal adaptation also includes implementing the configurations deter-
mined in the per-application adaptation process. This means looking at the actual application
configuration chosen by the per-application coordinator. The application must reconfigure itself
to use that configuration. The network and CPU layers must look at the associated expected
resource consumption for that configuration, and reconfigure themselves to efficiently deal with
that workload within the resources (CPU time, network bandwidth) made available to the

application by the scheduler.

3.3.4 Job completion and feedback

After the job finishes its execution, the actual resource usage (including the number of
instructions executed, the total amount of network bandwidth used, and the total energy con-
sumption) is reported back by the resource usage monitors to the per-application coordinator.
The per-application coordinator evaluates this information, and determines if it shows that con-
ditions have changed significantly since the global adaptation was performed. If so, feedback is
sent to the global cross-layer coordinator, which may choose to reevaluate the global resource

allocation.
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CHAPTER 4

GRACE INTERFACES AND ALGORITHMS

This chapter presents a description of the algorithms and interfaces used in the simulation
of the GRACE system built as part of the testing and development process. The interfaces are
built as an abstraction layer, which admits multiple realizations including a simulator (described
in Chapter 5) as well as an implementation on actual hardware [72].

As an example of the use of these interface, I also present an adaptive application running
on these abstract interfaces. This application, an adaptive video encoder, is based on the
adaptive video encoder core presented in Chapter 2. It is presented along with a matching
nonadaptive video decoder, which registers with the GRACE system using some additional

interfaces designed to simplify the integration of existing real-time, nonadaptive applications

into the GRACE framework.

4.1 Application Interfaces

The GRACE system includes a set of interface libraries that sit between the system resources
and the application. These provide a high-level interface to application registration, scheduling,
and network capabilities provided by the GRACE OS. In this section, we provide an overview
of these interfaces.

The GRACE application interfaces are divided into three components: Global allocation

and coordination, network management, and CPU and scheduling.

4.1.1 Global coordination and configuration management

The global coordination interface incorporates the following functions:

e Initialize and update the list of configurations available for the application
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e Request that global allocation be performed
e Check if allocation has been updated and retrieve the application’s current allocation
e Update global allocation tables based on actual performance of the application

Upon startup, it is the application’s responsibility to load its configuration list into the
global coordinator and request a global allocation. Then the application must wait for the
coordinator to finish reallocation and issue an allocation.

The application must check for an updated global allocation at each frame. If a new alloca-

tion is issued, the allocation must be stored and sent along to the CPU and network interfaces.

4.1.2 CPU and scheduling

The CPU interface incorporates the following functions:

e Register as a real-time application

Start a new real-time job

Reconfigure the CPU based on predictions for available cycles and time

End a real-time job

Predict energy required for a given cycle count

Retrieve information on cycles, time, overruns, and CPU energy consumed
e Report a new or changed global allocation to the CPU adaptor

The CPU adaptation procedure works in a somewhat counterintuitive way, because the
predictions for the amount of CPU time and the number of cycles expected is not necessarily
available when the job starts. Before the operating configuration of the CPU is set, the CPU
is running using the application’s real-time allocation but at an unknown CPU frequency; the
CPU frequency will in fact be the last frequency used by the previous job.

The real-time job associated with each frame starts by running the per-application adaptor.
The adaptor then runs the application predictor and selects an operating configuration for the

application and CPU, and the reconfiguration request is sent to both the operating system’s
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CPU frequency controller and the application. After the operating configuration has been set,
the application is permitted to begin its processing of the frame.

When the application completes its processing, an “end job” call is made. At this point the
operating system computes estimates for the actual energy consumption of the CPU executing
the task, and sends these values back to the per-application adaptor and from there to the

application.

4.1.3 Network interface

The GRACE network interface currently only supports transmit functionality. This is be-
cause the GRACE framework does not currently have support for allowing a receiver to control
a remote transmitter, which would be required for adaptation to occur on the receiver. Also,
the present GRACE transmitter interface assumes that the processing required to support the
network protocol is trivial compared to the processing required by the application and can be
ignored. Therefore, Fproc is assumed to be zero, and no explicit allocation is made for the net-
work protocol; it is assumed that the processing demand and corresponding energy requirements
are rolled up into the CPU demand for the application.

The current GRACE network interface incorporates the following functions:

Initialize the network layer

Estimate available bandwidth for the current job

Estimate energy required to transmit a given number of bytes

Transmit a frame

Retrieve status of previously transmitted frames

Send global configuration information to the network layer

These calls work at a relatively high level, and understand several application constructs
such as frames, frame numbers, dependencies, and deadlines. These can be used by the network
layer to intelligently manage the network buffer, for instance by dropping frames that will not
be decoded because they are past their deadline or they refer to frames the decoder already

indicated did not arrive. (The current implementation only does the latter.)
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4.2 Global Coordination

In our system, the global optimization algorithm is separated from the framework, so that
it can be easily replaced for testing different algorithms.

The implementation of the GRACE architecture presented in this chapter is incomplete
in one important respect: the global allocator considers only energy and not utility. All ap-
plications are considered to be identical in utility and importance. In Chapter 6, the global
optimization problem will be revisited, extending the optimization to cover utility as well. Also,
in this implementation, applications are responsible for policing their own behavior and ensur-
ing they do not use more CPU time or network bandwidth than they have been allocated.
Future implementations of the GRACE architecture will move policing responsibility into the
operating system.

In this implementation of the GRACE interfaces, global coordination is handled in a separate
coordinator process. This coordinator reports allocations to the global-coordinator interface
in each application, which then relays the information to the associated CPU and network

adaptors.

4.2.1 Coordination protocols

GRACE applications register with the coordinator through by sending a list of configurations
to the coordinator, which then replies with an appropriate configuration and allocations of
computational and network resources.

Communication between the applications and the coordinator is managed by the GRACE
library linked to each GRACE-aware application, which communicates to the coordinator pro-
cess using using a message queue. The present implementation does not implement any security
model that prevents malicious applications from posing as other applications.

The configuration request message contains the following information:

e A flag indicating whether global reallocation should be performed.
e The number of configuration records being sent in this message.

e Zero or more configuration records.
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Applications are added to the GRACE system when the first request for an allocation
with that process ID is received, and detached from the GRACE system when a configuration
request containing zero configuration records is sent. The coordinator also checks periodically
(presently at a one-second interval) that each registered process ID is still running on the
system. If a process is found to be no longer running during this check, a detach request is
automatically generated, and the resources associated with that application are reallocated to
the other real-time applications running on the system.

The configuration record is a structure describing each configuration to the global coordi-

nator. It provides the following information for each configuration:

e Configuration number

e Average (mean) cycles consumed

e Average (mean) bytes consumed

e 90th percentile cycles consumed

e 90th percentile bytes consumed

e Period or interval between job release (microseconds)
e Maximum permissible job lateness (microseconds)!

e Per-job utility for successful completion

e External energy associated with the job

The per-job utility and external energy values are not used by the global optimization
algorithm described in the next section, which assumes all applications are of equal importance.

This limitation will be addressed by the optimization algorithm presented in Chapter 6.

"Normally, when an EDF scheduler is used with a periodic task, jobs are required to complete before the next
job for that application begins. However, for our soft real-time system, frames are permitted to “borrow” time
from subsequent frames if they overrun. We permit this by setting the maximum allowable lateness to a nonzero
value. Any job that exceeds its allowed lateness will be terminated.
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4.2.2 Global optimization algorithm

The optimization algorithm we use converts the optimization problem into a set of knapsack
optimization problems, and then uses well-known algorithms to solve the knapsack problems.
The inputs to the global optimizer are the list of applications and the associated configurations,
byte counts, and cycle counts, along with an estimate of the available network bandwidth in
total bytes per second.

The outermost loop for the optimizer fixes the CPU speed, evaluating the feasibility and
total energy consumption at each of the native operating frequencies offered by the CPU.
Although this is suboptimal, the power lost by using this heuristic can be bounded using Jensen’s
inequality to be no more than the difference in power between adjacent CPU speed steps. And
in practice, the per-application adaptation allows us to make achieve these intermediate speeds
and make up most of the energy we would otherwise lose.

The inputs available to the inner optimizer are therefore the CPU speed (fixed by the outer
loop), the network bandwidth, and the list of applications and associated configurations. At
this point there is sufficient information available to convert the list of application configura-
tions into figures for energy, percent CPU utilization, and percent network utilization for each
configuration.

This is a classic knapsack problem setup in two dimensions. Utility is defined as an offset
minus energy; the capacity of the CPU and network dimension is 1 minus an unallocated
reserve for best-effort applications. The knapsack problem is solved using either a brute-force
optimizer that evaluates all possible combinations of configurations, or an optimizer based on
work presented by Moser et al. [73]. Currently, we use the brute-force optimizer for optimizing
one or two applications, and the Moser optimizer if allocations for more than two applications
are being made.

When the optimization is completed, the set of application configurations with the highest
utility (lowest energy) is saved, along with their associated allocations (percentage of network,
percentage of CPU). Any unused CPU time or network bandwidth is distributed across appli-

cations proportional to their allocation.
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It is possible that no valid combination of configurations will be found at a given CPU
speed. If this occurs, the CPU speed will be marked as “infeasible“ and the next higher CPU
speed will be evaluated.

If the optimizer fails to find a valid combination of application configurations at any possible
CPU speed, allocation is performed via a “backup” method that, rather than minimizing en-
ergy, attempts satisfy the CPU constraint while minimizing the network overrun. This backup
optimizer sets the CPU to its maximum frequency, and then solves a one-dimensional knapsack
problem with the CPU utilization as the constraint and the negated network utilization used as
the “value.” In other words, the set of application configurations meeting the CPU utilization
constraint that minimize total network utilization is selected. Allocations of CPU time and
network bandwidth are then made proportionally based on the 90th percentile demands of each
application. This ensures fairness and is likely to generate a workable allocation, even if a 90th
percentile allocation of network bandwidth cannot be made.

The reason for this process is that the predictions are typically much more accurate for
CPU utilization than for network bandwidth. As a result, the difference between the expected
network utilization and the 90th percentile allocation level is large. The backup optimization
allows us to make a reasonable allocation, even if no allocation allows us to satisfy the 90th
percentile demands. If the backup allocation fails—in other words, if the CPU is overloaded
no matter what configuration is made—all applications are assigned configuration 0 and all
resources are divided evenly.

Although the global optimizer chooses an application configuration, the per-application
adaptor is only required to respect the allocations of CPU time and network bandwidth, not
the exact configuration choice. As a result, the actual application configuration and CPU
frequency used to encode any particular frame may vary from the values chosen by the global

optimizer.

4.3 Per-Application Coordinator

Linked into fully adaptive GRACE applications is a system component we call the per-
application coordinator. This component is responsible for determining the immediate resource
availability, and working with the application predictors to choose and implement an appropri-

ate application configuration for each job.
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Although the per-application adaptor is part of the GRACE system, it runs in the appli-
cation’s process space and communicates with the scheduler via system calls. The CPU and
network adaptation and estimators are also implemented partly in the per-application adaptor

code linked into the GRACE application.

4.3.1 Step 1: Predict resource demands and availability

The first step of the per-application coordination process is to collect the resource consump-
tion for the job about to be scheduled.

To do this, the application adaptor first calls the application predictor, which identifies
one or more valid configurations, dependent on the current state of the application. These
configurations are returned tagged with estimates for the byte and cycle counts.

Also, due to the reclamation of unused CPU time and variation in network bandwidth, the
actual resource allocation for a frame may vary from the originally expected value. For this
reason, the per-application adaptor also queries the CPU and network scheduler to determine
an updated estimate for both the availability of CPU time and of network bandwidth for the

next job.

4.3.2 Step 2: Determine energy costs for application configurations

After the potential configurations for the job are identified and their resource requirements
estimated, the per-application coordinator queries the CPU and network estimators to deter-
mine the feasibility and energy consumption of each application configuration returned by the
application predictor. When the per-application adaptation is performed, the per-application
coordinator queries the hardware predictor about the actual energy required to complete the
estimated workload within the time allocated by the scheduler.

Likewise, the network estimator is queried to determine the amount of energy that will be

required to perform the network activity associated with a proposed configuration.

4.3.3 Step 3: Determine most efficient application configuration

Finally, the network and CPU energies for each potential configuration of the application are
added, and the configuration that minimizes the total energy consumption for this particular

job is chosen.
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The per-application optimizer simply looks at the list of application configurations for which
energy has been calculated, and returns the application configuration that uses the least energy
while still meeting the present resource constraints. Once a suitable application configuration
is selected, the CPU adaptor is sent the estimated cycle count so the processing speed can be
set appropriately.

Depending on the application predictor that is selected, the per-application adaptor may be
presented with only one application configuration. In this case, the application configuration

selected by the predictor is used, even if predictions indicate it will fail.

4.4 Adaptive Encoder Application

To validate our system design and evaluate its potential for saving energy, applications
must be designed to work within the framework. This section presents one such application,

an adaptive video encoder based on the adaptive encoder core presented in Chapter 2.

4.4.1 Application structure

The application is split up into several parts. These parts are:

e Encoder core
e Application sequencer

e Application predictors

It is linked against the GRACE libraries, which include the CPU and network predictors, the
per-application adaptor, and the interfaces to the global coordinator, scheduler, and network
layer.

Because the GRACE system provides much of its functionality in libraries that are linked
to the application, the developer has the freedom to change or replace these functions with ones
better suited to a particular application. As a side effect, though, the actual GRACE system
components cannot be considered “trusted” by the system, and their work must be checked
against the actual allocations. Monitoring functions must therefore be handled in the GRACE
system core. However, the current implementation of the GRACE system assumes “friendly”

applications and does not attempt to enforce resource allocations.
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4.4.2 Encoder core

Although we have designed several applications that register with the GRACE kernel and
use the GRACE infrastructure for resource allocation and monitoring, we have at this point
only written one fully adaptive GRACE application. This is a video encoder application, built
around an adaptive video encoder core derived from the free (GPL) TMN H.263 [69] encoder.

Our modified encoder was first presented in [64], and is described in detail in Chapter 2.
This adaptive encoder allows a trade-off between the bit rate and processing time required for
encoding, offering the ability to find optimal tradeoffs between quality, bit rate, and computa-
tional complexity. These parameters are controlled on a frame-by-frame basis by the GRACE

software described in this chapter.

4.4.3 Communications protocol

The encoder application talks to the decoder via a pair of UDP sockets. The first socket is
used to transmit the actual image data. The protocol splits up each frame into a header packet
and one or more data packets.

The header packet contains the frame number, what frame (if any) the frame is predicted
from, the total length of the frame, and the playout time for the frame.

The data packets each contain the frame number, the offset of the particular data chunk
from the beginning of the frame, and a chunk of frame data. The frame data chunk is at least
32 bytes (to ensure that the data packets can be distinguished from header packets), and less
than or equal to a maximum packet length, currently set at 1024 bytes.

The frame can only be reassembled and successfully decoded if both the header and all of
the associated data packets arrive at the receiver. No provision is currently made for decoding
a frame if a header packet arrives out of order. Reordering of the data packets does not cause
decoding to fail as long as they are all received before the subsequent header packet.

The second socket is used to transmit feedback from the decoder back to the encoder. The
decoder sends reports for each frame that it sees (i.e., any frame for which either the header or
one or more data packets arrive). It does not send any report for frames for which no header
or data packets are received; therefore, the protocol implementation generates an implied NAK

whenever there is a missing frame number in the acknowledgment sequence.
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4.4.4 FError recovery

The feedback link with the decoder is used to prevent error propagation between frames
when the decoder encounters a transmission error. Before the encoder encodes any frame, it
checks the acknowledgment stream to determine what frames are safe to predict from. To do

this, it uses the following rules:

e If no negative acknowledgments have been received since the last frame was encoded,

predict from the previous encoded frame.

e If at least one negative acknowledgment has been received since the last frame was en-
coded, predict from the previous frame that received a positive acknowledgment. If no

frames have been positively acknowledged, force an I-frame.

e [fmore than 20 consecutive negative acknowledgments have occurred, force the next frame

to be encoded as an I-frame.

These rules ensure that the decoder is always presented with frames that it can decode,
as long as the acknowledgments have returned from the decoder. The last rule ensures that
the encoder and decoder can resynchronize after unusual circumstances cause the encoder to
have an incorrect previously acknowledged frame. Circumstances that can cause this condition
include the decoder restarting and excessive numbers of lost positive acknowledgments on the

feedback channel.

4.4.5 Application sequencer

The sequencer is the main loop of the application. It is responsible for calling the various
application components, including the core, per-application adaptor, and image capture. It also
mediates communication between the encoder core and the network and CPU adaptors.

The main purpose of the “application sequencer” is to simplify the construction of a GRACE
application, by splitting the application up into a well-defined set of tasks and calling these tasks
at appropriate times. In this way, a lot of the complexity of writing adaptive applications can
be abstracted out to simply providing calls to encode a frame and switch configurations, and

information about the various configurations available. The sequencer and GRACE libraries
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provide the per-application adaptor, interfaces between the system components, and the appli-

cation predictors.

4.4.6 Predictors

Resource use estimates are provided by application-specific predictors. Our video encoding
application integrates several different prediction algorithms, but all serve the same purpose:
Estimate the resources required to encode and transmit a frame using a particular configura-
tions, enabling the selection of the optimal application configuration for each frame.

In order for the adaptor to choose the best available application configuration, the applica-
tion must include the ability to predict the performance of the various configurations available.

We implement this by including a separate prediction module with the application. This
module is responsible for identifying a set of feasible configurations, and supplying estimates
for the number of cycles the configuration will use and the number of bytes of encoded data it

will generate.

4.5 Application Prediction Algorithms

Key to saving energy with the GRACE architecture is being able to make good decisions
about what application configurations best match current conditions. Therefore, substantial
research effort was devoted toward developing and evaluating different prediction algorithms

used by the application and the GRACE system to predict the performance of the encoder.

4.5.1 One-step oracle predictor

The first of these prediction algorithms, “oracle,” is not a prediction algorithm at all. In-
stead, it encodes each frame many times, once for each of the different application configura-
tions, and saves the number of bytes and cycles used to encode the frame in each configuration.
These values are then sent as “predictions” for byte and cycle counts to the adaptor. The
oracle, therefore, represents what we could do with perfect information about the next frame.

We term this a “one-step” oracle because although the oracle provides exact information
about the performance of the next frame, it does not necessarily find the globally optimal
solution. This is because what we do this frame can affect the prediction used to encode

the next frame. This means that occasionally another algorithm, such as the use of a fixed
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configuration, may actually result in a lower total energy consumption than the configurations

chosen by the oracle predictor.

4.5.2 Fixed-configuration predictor

The second prediction algorithm, “fixed,” only makes predictions for a single configuration
at a time. (The configuration is specified either by a command-line option or by the globally
selected application configuration.) It returns as a prediction the number of bytes and cycles
used by the previous frame. If there is no valid previous frame, it instead forces the CPU to
run at its maximum possible speed, and estimates that zero bytes will be transmitted.

This predictor is used for comparison as the baseline “no-adaptation” case. However, even

when this predictor is active, CPU frequency adaptation still occurs.

4.5.3 One-step linear predictor

The second prediction algorithm we developed (first introduced in [64]) uses predetermined
linear predictors to estimate the number of bytes and cycles that will be required for the next
frame to be encoded, based on the configuration used for the previous frame and the number
of bytes and cycles it took.

These predictors take the following form:

B(t)est = B(t—1) x mp(old conf, new conf) + bg(old conf, new conf) (4.1)

C(t)est = C(t—1) x me(old conf, new conf) + bc(old conf, new conf) (4.2)

Because there are 16 different possibilities for conf,_; and conf,, there are a total of 256
predictors for bytes and cycles that must be calibrated. This is done offline, by encoding a ref-
erence sequence (a composite of several MPEG test sequences) repeatedly, randomly switching
configurations between frames. The linear predictors are fit in a least-squares sense against this
calibration data.

Unfortunately, while these predictors worked fairly well between reasonably similar applica-
tion configurations, they had a large mean-squared prediction error when used to predict more
dissimilar configurations. This resulted in situations where the prediction error was so large

that very inefficient configurations were chosen.
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We therefore explored other predictors in an effort to find a design that was less prone to
choosing very-wrong configurations. Although we could show energy savings with these predic-
tors in the context of simple network models [64], they did not perform well when bandwidth
constraints were added.

We first explored using more complicated predictors, such as polynomial functions and more
than one step of history, but found no set of predictors reliable enough to use in constrained

situations.

4.5.4 Reactive approach: “adaptive” predictors

The last prediction algorithm developed (and the most effective) we call “adaptive” in our
comparison. Unlike the previously introduced predictors, the “adaptive” predictor does not
estimate byte and cycle counts for all possible application configurations. Instead, the predictor
directly chooses a single best configuration and reports estimates for byte and cycle counts for
that predictor only to the per-application adaptor.

The algorithm used by the “adaptive” predictor to choose the best possible application

configuration can be thought of as a three-step processes. These steps are:

1. Find the application configuration that, in the absence of constraints, minimizes energy

consumed encoding one frame.

2. Find the application configuration that is numerically closest to the best configuration,

which is estimated to meet resource availability constraints.
3. Update the resource-constraint tables to reflect current conditions.

4.5.4.1 Finding the energy-optimal configuration

To find the energy-optimal configuration, the “adaptive” algorithm determines the lowest-
energy configuration based on precomputed tables listing the average number of bytes and
cycles generated by the encoder for different configurations on “typical” input. Combined with
current predictions for network energy per byte and CPU energy per cycle, this information is
used to determine the most efficient configuration for the application.

However, this most-efficient configuration may not meet current constraints on available

bandwidth or CPU time. Therefore, we choose the configuration closest to the “energy-optimal”
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configuration that meets both of these constraints. We do this using a reactive approach, where
recent resource use for particular configurations is fed back into the prediction algorithm and

used to choose configurations that are not likely to exceed available resources.

4.5.4.2 Prediction tables

The reactive predictor works by maintaining several sets of tables, one set of tables per set

of “equivalent” configurations. The required tables are:

e Expected bytes required to encode a frame, for each configuration

Expected cycles required to encode a frame, for each configuration

Most recent byte count required for each configuration

Most recent cycle count for each configuration

Mappings from the CPU constraint (in cycles) to required configuration

Mappings from the network constraint (in bytes) to the required configuration

The first two tables describe the application configurations that are available. There is
one table entry per application configuration; if an application offers 16 configurations for a
particular utility value, tables have 16 entries each.

The last two tables are used for quickly reacting to changes in both the video stream and
present conditions. They are indexed by breaking the bandwidth constraints into “buckets,”
with each bucket mapping to an application configuration. The CPU constraint is divided
into 30 buckets. The first 29 of these buckets is each 5 million cycles wide; this covers CPU
constraints up to 135 000 000 cycles. Any value exceeding the limit that can be represented by
the table is mapped to the highest table entry, which is effectively considered to have infinity
as its upper bound.

The network constraint is divided into 21 buckets, based on the maximum number of bytes
that will be generated by the encoder by,q;. (This number is extracted from the global prediction
tables.) The first 15 of these buckets are each b’g% bytes wide, covering up to b”‘% bytes of

available bandwidth. The next 5 buckets are b%z bytes wide. The last bucket covers everything

above the maximum number of bytes by,qy-
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The “buckets” each contain the configuration number associated with the constraint. They

also contain a counter for the number of bucket underruns, which is used to update the tables.

4.5.4.3 Table initialization

The average byte and cycle tables are initialized by setting their values to those contained in
global configuration database. The previous byte and cycle counts are also initialized from the
global configuration table. The last byte count for each configuration is initialized to the average
byte count, and the last cycle count for each configuration is initialized to the 90th-percentile
cycle count.

The mapping tables are then initialized using the 90th-percentile data from the global-
prediction tables. For each possible application configuration associated with the current qual-
ity, the 90th-percentile bytes count is mapped into its associated bandwidth bucket. Then this
and all higher-byte-count buckets are assigned to the application configuration. Likewise, the
90th-percentile cycle count is mapped to its associated cycle-count bucket, and it and all lower
cycle-count buckets are mapped to this configuration.

Because this process is repeated for each application configuration in order of increasing
byte count and decreasing cycle count, this assigns each to appropriate values based on the
90th-percentile estimates.

This initialization is only done when the global allocation changes the working utility; even
if the global configuration feedback results in changes to the global tables, these changes are
not fed back into the mapping tables. The table update process takes care of updating the

configuration tables in response to the current conditions.

4.5.4.4 Configuration selection algorithm

The configuration is selected with a two-step process. The first step is to identify the
configuration which, in the absence of all constraints on CPU time and network bandwidth,
would consume the least energy.

To do this, the predictor estimates the energy required to encode and transmit an average
frame under the current conditions for each application configuration. It uses the number of
bytes and cycles required from an average frame, pulling these numbers from the associated

tables (and indirectly from the global-adaptor interface). The number of cycles expected from
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an average frame is mapped into a CPU speed required to run the configuration within the
available time, or the maximum speed if the CPU cannot run fast enough, and an estimate of
the total energy required for the encoding is computed based on the estimated speed. Likewise,
the number of bytes expected for an average frame is mapped into an energy value. These
values are added, and the configuration with the lowest total is called the “energy-optimal
configuration.”

However, this “energy-optimal configuration” is not necessarily achievable; it may require
too much CPU time or too much network bandwidth to use under the current conditions.
Therefore, the mapping tables are consulted to find a range of valid configurations. The num-
ber of available cycles (calculated from the time allocation minus any overrun from the previous
frame, times the maximum CPU speed available) and bytes (calculated from the network allo-
cation times the current bandwidth, minus the previous overrun) are computed. The byte limit
is looked up in the byte mapping table, which gives a minimum compression level required (i.e.,
maximum configuration number). Likewise, the cycle limit is looked up in the cycle mapping
table, which gives a maximum compression level (i.e., minimum configuration number).

If the “energy-optimal” configuration falls within these limits, that configuration is set and
used to encode and transmit the frame. If it does not, however, the configuration numerically
closest to the “energy-optimal” configuration but within the feasible range is selected. If no
configuration is feasible, the current version of the code selects configuration 0, i.e., to do all

possible compression.

4.5.4.5 Bucket update algorithm

The expected bytes and expected cycles table are read from the global configuration data-
base. Therefore, if the profile data contained in this database is changed, the expected-bytes
and expected-cycles prediction tables will be updated as well. However, as we have not yet
developed effective algorithms for updating this data, no such updates occur in the present
GRACE system implementation.

The previous cycle count and previous byte count tables are updated based on the actual
cycle and byte count for the last frame encoded. However, to prevent potentially unreliable

data from corrupting the byte count table, the increase is limited to 1.1 times the previous
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value. Also, the saved value is only updated if the frame dependency is on either the previous
if the frame’s dependency is not on either the previous frame or nothing at all.

Both the CPU-constraint mapping table and the network-constraint mapping table are
updated after every frame based on the performance of the encoder. The update algorithm only
activates if one of the tables constrained the selected value for the application configuration,
and it only affects the table that constrained the value.

For the network tables, the update algorithm compares the actual number of bytes generated
by the encoder against the limits of the bucket corresponding to the original constraint.

First, the actual configuration used is compared against the value stored in the applicable
bucket. If more compression was used than the table requires (i.e., the configuration number
is less than the value in the table), no update is performed unless the actual byte count of
the configuration used exceeds the upper bound of the bucket. In this case, the bucket is
immediately reset to one less than the configuration used to encode the previous frame.

If the network table is controlling the configuration (i.e., if we are bandwidth-constrained),
the network table is updated. If the number of bytes that the encoder generated was less than
the lower border of the bucket, a counter is incremented. If, after the increment, the value of
the counter is three, the value stored in the bucket is incremented, decreasing the compression
(increasing the byte count) and decreasing the amount of CPU time required.

If the actual byte count is within the range of the bucket, the counter is cleared, and if the
byte count is larger than the bucket, the counter is cleared and the configuration associated
with the bucket is decremented immediately.

The configuration number stored in the table is then clipped to the range of available
configurations.

Next, if the table value was increased, the new value is then checked against the previous
byte-count table to make sure that it is appropriate for the bandwidth constraint. This is done
by multiplying the “high” table limit by 1.5, and then comparing that to the previous byte
count table. If the previous byte count is greater than the “high” table bound times 1.5, the
configuration is assumed to use far too much bandwidth to be feasible and the previous value is
restored in the network-constraint table. This accounts for the possibility of a large difference

in bandwidth required for two adjacent configuration numbers.
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Finally, higher-number buckets are all checked for monotonicity. If the value in any higher-
numbered bucket is numerically less than the value of the current bucket, it is replaced by the
value in the current bucket.

The CPU cycle table is handled slightly differently. Instead of waiting until three underruns
have occurred before changing the active configuration, it changes the constraint to configu-
ration mapping immediately. This is because the processing occurs before the transmission of
the frame, and if the amount of processing time is increased into the next frame’s allocation,
it is likely that the time can be made up by the network layer; the network layer is generally
not being pushed in the CPU-bound case. There is also no automatic lockout of configurations
based on the CPU constraint value.

Finally, higher-number buckets are all checked for monotonicity. If the value in any higher-
numbered bucket is numerically greater than the value of the current bucket, it is replaced by

the value in the current bucket.

4.6 GRACE Support for Nonadaptive Applications

As part of the GRACE system, we built a simplified API to allow multimedia applications
that are not adaptive to interface with the rest of the GRACE system. This library has three

calls:

grace_register Request an allocation, given demand estimates (average and 90th percentile
cycles and bytes, and an associated period). Note that because the application is non-

adaptive, we do not need to collect information on utility.
grace_new_frame Finish a job and wait for the next period.

grace_deregister Terminate real-time operation and return the application’s CPU and net-

work allocation to system.

This API allows the decoder, which cannot adapt and does not need the full per-application
adaptor structure, to be smaller and maintain the structure of a conventional nonadaptive
application while still working within the GRACE framework.

The fixed application interface includes a small version of the per-application adaptor and

predictor. Presently, this sets CPU frequency assuming that the workload for each frame will be
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the same as the workload for the frame before it. Energy estimates are not used or supported,
as these are unnecessary for applications that do not support adaptation. This implementation
also does not support detection of or response to varying frame encoding methods (i.e, I/B/P
frames), nor does it support applications whose workload can vary on a frame-by-frame basis.
Such applications could use the full GRACE interface, or an expanded version of the simplified

interface presented in this section.

4.7 GRACE Decoder

To decode the data streams encoded by the adaptive encoder and complement our adap-
tive encoder for GRACE system testing, we have also built a nonadaptive but GRACE-aware
decoder. This decoder supports the basic GRACE functionality but does not include the com-
ponents that support adaptive applications.

The decoder application is a simple, nonadaptive application that accepts a data stream
from our adaptive encoder, decodes it, and displays it using an X11 window.

Although the decoder application supports decoding streams from the adaptive encoder,
it does not include any mechanism to predict CPU load if the encoder configuration of the
incoming stream varies. However, experiments have revealed that the range of variation is
much smaller than the variation encountered as the encoder configuration is changed. Since
for 802.11-based GRACE laptops the dominant consumer of energy is the CPU, if the GRACE
system runs a two-way videoconference with a non-GRACE infrastructure node, the most
power-efficient systemwide configuration is for the infrastructure to compress the sequence to
its minimum possible size. This allows the mobile node to use as much of the total network
bandwidth as possible to reduce its encoding complexity and hence CPU load.

The decoder maintains an archive of previous decoded frames to which the encoder can
refer when it encodes a frame. This archive is kept in a circular queue (currently set to length
10). When a frame is received, the dependency information is read out of the header and the
queue is searched for the appropriate history frame. The decoder’s state is then reset so that
the incoming frame is decoded with reference to the correct history frame.

If an incoming frame is incomplete — that is, the decoder does not receive both the header
and all associated data blocks — or it refers to a frame that has not been successfully decoded,

the frame is dropped. The decoder does not attempt to decode incomplete frames or frames
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for which it does not have the correct previous frame. This causes playback to be jerky when
many packets are lost, but prevents distracting artifacts.

Due to the fact that the current GRACE environment does not support application clocking
or blocking reads, the decoder is implemented using nonblocking operations only. When the
decoder is dispatched by the GRACE kernel to decode a new frame, it reads out all of the
packets waiting in its input buffer. If a complete frame can be assembled, it is decoded. Any
remaining packets, up to one complete frame’s worth, is held in a buffer to be decoded and
displayed during the next frame interval.

Currently, the decoder does not respect the playout time stamped by the encoder applica-

tion. This feature will be added in future revisions of the decoder.
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CHAPTER 5

GRACE SIMULATION ENVIRONMENT

To evaluate the performance of the GRACE system in a repeatable environment, we have
implemented a simulation of the GRACE kernel, scheduler, and network. This simulation
platform has exactly the same interfaces to the CPU, network, and global optimizer core as the
native implementation of the GRACE system.

Most of the simulation system is implemented in a simulator core that communicates with
each of the applications and the global optimizer as shown in Figure 5.1. The simulator core
contains an EDF scheduler for both the CPU and network, the CPU and network predictors
and energy models, and the interface to the per-application adaptors in each application. It
is responsible for collecting the global predictions from the application, monitoring the perfor-
mance of applications and calling the global optimizer at appropriate times, and telling each
application its allocation for each frame. It then schedules each frame’s CPU and network
utilization, and informs the application about whether or not the frame met its deadline.

It is difficult to meaningfully model other components, such as the display and the hard
disk, since their energy consumption depends primarily on user settings (for display brightness
and disk timeout) and the behavior of nonadaptive system components that the user is running
in parallel with the media tasks. Therefore, for the purposes of both energy optimization and

energy measurement we consider only the network and CPU energy consumption.

5.1 Architecture

The simulation system is built around a simulation of the GRACE framework written in

Python. The simulation of the framework incorporates the scheduler for both CPU and network,
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Figure 5.1 GRACE simulator structure.

prediction and estimation for the energy consumption of the system, and an interface to the

global optimization module.

5.1.1 CPU and network scheduling

The CPU and network scheduling is based on a pure EDF scheduler with no notion of
budget or overrun handling. It is a preemptive system with 1-ms time slices. At any time, the
ready process with the earliest deadline is scheduled on both the CPU and the network.

Our implementation does not take the conventional approach of deadline being equal to
the start time plus the period. Instead, the deadline can be set independently of the period;
typically we set the deadline to be the start time plus three times the period. This is because
after the CPU completes its work, the job is rescheduled on the network but retains its current
deadline. The three-times-period deadline allows time to encode and transmit a frame as well
as a margin for overruns; therefore, despite the use of an EDF scheduler, a single application
overrunning its allocation will not necessarily cause other applications to miss their deadline.

If the three-times-period deadline is missed, the frame is reported to have been lost. No effort
is made to distinguish between failure to complete processing of the frame (a CPU overrun)
and a network overrun. In both cases, the frame is reported as lost, and the application ensures

that subsequent frames are not encoded with reference to the lost frame.!

' One simulation inaccuracy is that if a CPU overrun occurs, the scheduling of that job is terminated, but the
application has in fact already run that frame to completion. It would be more accurate to force the incompletely
encoded frame to complete its processing whether or not a CPU overrun occurs.
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Although we do not explicitly evaluate the performance of a bidirectional communication
setup in the simulations reported in subsequent sections, our scheduler does support both
receiver and transmitter applications. Support for receiver applications is handled through the
use of a corresponding transmitter, which attaches to the simulator but reports only network
utilization and not CPU use. This transmitter then uses a back channel to communicate with
the receiving application.

This means that receiving is considered the same as transmitting to the simulation environ-
ment. As a result, the network energy consumed for transmit and receive activities will be the
same. Although this seems like it would be a poor model, it is actually a reasonable model for
802.11-style networks because dominant energy cost for an 802.11b network transceiver is the
power consumed by the 802.11 MAC processor and other shared radio components. The actual
radiated power is a small part of the total power consumption of the 802.11 device.

Another side effect of this model is that EDF scheduling is applied to the receiver as well

as the transmitter, which would be difficult to implement in practice.

5.1.2 Monitoring and allocation enforcement

Because the EDF scheduler does not directly enforce the resource allocations, the simulator
works with the application to ensure resources are consumed fairly.

As each new frame is dispatched, the simulator compares the amount of CPU and network
time used for the previous frame against the actual allocation from the previous frame. If the
frame used less network or CPU time than its allocation, it is provided a new allocation equal
to the allocation provided by the global simulator. If, however, the previous job overran one of
its allocations, the amount of overrun time will be subtracted from the allocation to the next
job. This forces the application to “catch up” from the previous overrun by requiring it to use
less of the resource that it overran in the previous job.

The application is responsible for checking the updated allocation every time a new job
starts. If the allocation is zero, the frame must be skipped; this is used to keep the application
from getting too far behind. (Currently the allocation will be zero if and only if the overrun
from the previous frame is greater than or equal to the global allocation of the corresponding
resource.) Otherwise, the application should attempt to choose an application configuration

and CPU speed that enable the frame to be completed within the allocation, or that come
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closest to meeting the allocation if this is not possible. The details of this selection are left to

the application and its associated predictors.

5.1.3 Global coordination

Unlike in the testbed, the applications request and receive the allocation from the simulation
core instead of the global coordinator directly. In the simulation, the global coordinator requests
are accepted by the simulator core, and passed along to the global coordinator when reallocation
is required.

However, because the global coordinator needs to be portable onto the testbed, it is not
part of the Python simulator core. Instead, it runs as a separate C process that communicates
with the simulator. This allows the core of the global coordinator—the code that actually does
the optimization—to be the same for both the simulator and the testbed.

The global allocation process used is the one described in Chapter 4.

5.2 CPU Model

Our simulation platform runs on a dual-processor Athlon MP 2000+ machine with 1 GB of
RAM. The native speed of the processor is 1667 MHz.

5.2.1 Simulated CPU hardware

Because the desktop Athlon microprocessor does not support voltage and frequency scaling,
we model a closely related Athlon Mobile processor, the Athlon XP-M 17004. This processor
uses the same core as the Athlon MP 2000+ in the simulation platform, but adds voltage and
frequency scaling features.

We assume that the number of cycles that would be used on an actual Athlon XP-M
processor is the same as the number of cycles used by the same code running on the simulation
host. This assumption is justified by the prior work of Hughes et al. [71], which showed that the
number of cycles used to encode multimedia streams is not significantly affected by the CPU

clock multiplier.
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5.2.2 Frequency and voltage scaling

The available processing frequencies and associated voltages and active power for the Athlon

XP-M 1700+ microprocessor are shown in Table 5.1 [74].

Table 5.1 CPU power vs. frequency for Athlon XP-M 1700+

Freq | Power | Voltage | Rel. energy/cycle

1466 MHz | 25.0 W | 1.25V 100%
1266 MHz | 199 W | 1.20V 92%
1133 MHz | 16.5 W | 1.15V 85%
1000 MHz | 13.2 W | 1.10V 7%
533 MHz | 6.4 W | 1.056V 70%

5.2.3 Energy model

Energy required by the CPU is estimated by using the peak power demands of the processor
model, along with the voltage scaling table and the rated maximum power dissipation of 25 W.
We can plug the voltages into the standard voltage and frequency scaling formula (3.1) to get
estimates of the CPU power for operation at lower frequencies. The CPU is assumed to draw
the calculated power during operation, and no power when asleep.

Although the processor hardware is limited to five distinct operating frequencies, each ap-
plication is allowed to choose any speed in the range of 533 MHz to 1467 MHz for each job.
For our simulator, we model this by interpolating the power requirements linearly between
operating points. This is because a real implementation of such a system could emulate an
unsupported processor speed by dynamically switching between supported operating points as

the job progresses.

5.3 Network Model

The GRACE group’s research into network protocols for 802.11-style networks came to the
surprising conclusion that to minimize the total energy consumption of the network layer, the
best approach is to choose the maximum possible data rate that does not result in excessive
packet losses [26]. This is due to the low radiated power limit for the unlicensed bands used
by 802.11; with a maximum radiated power of 100 mW, the energy consumption of “overhead”

components of the wireless interface, such as the media access-control and modulation hardware,
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is relatively large. As a result, the amount of energy that can be saved by reducing the radiated
power is minimal, and if the data rate must be reduced in order to reduce the transmit power,
the reduced energy consumption of the power amplifier does not counteract the extra energy
required to keep the rest of the wireless interface awake. Therefore, a simulation model for
an 802.11-style network needs to consider only a (potentially varying) maximum bandwidth
and the energy consumed per byte transmitted. Taking advantage of this observation, our
simulator reads the available network bandwidth in terms of application bytes per second, and
the associated energy requirement in joules per byte of application data transmitted, from a
bandwidth trace file.

To simplify implementation, we make two important assumptions. First, we assume that
as long as the bandwidth constraint is not violated, transmission will be error free, and second
that the network protocol is relatively lightweight and does not require explicit accounting for
the CPU time associated with handling the transmitted data. An alternate interpretation of
these assumptions is that the bandwidth costs associated with retransmissions and forward
error correction are incorporated into the bandwidth trace, and that any required protocol
overhead is incorporated into the application’s CPU demand.

The network trace incorporates both instant bandwidth availability and energy requirements
and long-term estimates. The instant bandwidth and energy values are used for both the actual
simulation of the transmission and for the short-term estimation required by the per-application
adaptor, and the long-term estimates are used for global allocation. The long-term estimates
are formed by passing the actual network bandwidth and energy figures through a low-pass
filter, and are intended to indicate long-term expectations for bandwidth availability.

Our simulation traces use varying data rates, intended to represent different potential op-
erating environments. Although the data rate varies, we compute the energy-per-byte value
by assuming that the wireless card has two states, active and shut down, and perfect power
control. Whenever the network is not busy transmitting application data, the network card
is shut down. The assumed wireless network interface draws 750 mW when it is active and
transmitting data, and no power when shut down. The energy per byte value included in the
network trace is therefore simply the power demanded by the active network divided by the

number of application bytes transmitted per second.
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5.4 Application Adaptation in an Unconstrained System

Our first set of results show the best-case effectiveness of application adaptation. In this
section, we are not concerned about our ability to implement our adaptation algorithms in a
practical system. Instead, we aim to show that the concept of application adaptation enables
energy savings, and to sketch out how much energy savings we can achieve by exploiting our

adaptive application.

5.4.1 Workload and simulation description

We do this by first evaluating the simplest possible implementation of application adapta-
tion: the energy consumption of a single application running in an unconstrained environment.
We run the encoder application encoding the “Foreman” test sequence (300 frames) at a CIF
resolution and at 10 frames per second using our simulation environment. The application is
adapted only globally; one configuration is chosen at its start and that configuration is used
throughout the entire encoder run. All other forms of adaptation (the per-application adaptor,
and CPU adaptation) are disabled.

Because we want to identify combinations of CPU and network that allow the application
adaptation to provide energy savings, we look at a range of different CPU powers, while the
network power is held at a constant value. This allows us to cover not only the regime where
CPU power dominates the system power, but also regimes where the CPU and network both
draw significant amounts of power and the regime where network power dominates.

Our energy model is therefore similar to that described in Section 5.1. The network power
is fixed at 750 mW for an achievable bandwidth rate of 1 600 000 bytes per second. This
bandwidth is sufficient to transmit a CIF-sized video stream at 10 fps without any encoding.
This corresponds to an energy requirement of approximately 4.7 x 10~7 joules per byte.

The CPU is also similar to the one described in Section 5.1. Instead of fixing the CPU peak
power at 25 W, we vary the peak CPU power across the range of 0.01 W to 50 W. We do this
to determine how much energy can be saved using our application adaptation across all three

CPU /network power regimes.

59



Effectiveness of App and CPU adaptation
T

Normalized energy

Il No adapt

[ CPU only bl
1 App only
Il CPU+App
001 002 005 01 02 05 1 2 5 10 20 50
CPU Power (W)

Figure 5.2 Energy savings from global-only adaptation for varying CPU powers. Shown nor-
malized, with 1.0 representing the energy use of the nonadaptive system.

5.4.2 Power savings from global adaptation

Figure 5.2 shows how the addition of globally optimal application adaptation and CPU
adaptation affects energy consumption of our encoder. The vertical axis of this figure is the
total (CPU plus network) energy energy consumed. The horizontal axis is the maximum (peak)
power of the CPU, or the power that the CPU consumes when it is operating at its highest
frequency. The network power remains fixed at 750 mW, so varying the peak power of the CPU
sweeps from regimes where network power dominates to ones where the CPU power dominates
as we go from left to right. The bars show the energy taken for various system configurations,
normalized against the energy taken by the nonadaptive system. The nonadaptive system is
defined as having a normalized energy use of 1.0.

We first consider the “CPU-only” case, adding CPU frequency and voltage adaptation (also
known as DVS, or dynamic voltage scaling) to our unconstrained, single-application system.
We implement DVS by scaling down both the processing frequency and the CPU power using
the power scaling data in Table 5.1. The CPU frequency is set to 1000 MHz, which is the
minimum operating frequency that permits the encoder to complete processing each frame

within the 100-ms frame time. This results in a reduction of the CPU power by 23%, the
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difference between the CPU power at its maximum frequency and the 1000 MHz frequency
required by the encoder. As a result, the energy savings we can achieve from CPU adaptation
alone is limited to 23% even in cases where the CPU power is much greater than that of the
network.

Next, we consider the “App only” case, which adds global application adaptation to the non-
adaptive system. Global application adaptation chooses a single application configuration which
minimizes the total network and CPU energy consumption for the entire sequence. Because
there are no constraints on what configurations can be chosen, this results in the application
selecting to send an uncoded stream when the CPU is the dominant consumer of energy. As
a result, CPU utilization is minimized and a total energy savings of over 75% can be achieved
when the CPU is the dominant consumer of energy.

For the “CPU+App” case, we examine the simultaneous adaptation of both the application
and the CPU by jointly optimizing both these configurations. In other words, we choose the
combination of application configuration and CPU frequency that results in the lowest total
energy consumption encoding the entire “Foreman” test sequence while avoiding CPU overruns.

Both CPU and application adaptation are most effective in regimes where the CPU consumes
a large fraction of the total system power. Because CPU adaptation reduces the power consumed
by the CPU without any increase in the network’s power consumption, unlike application
adaptation it can provide some energy savings even if the amount of power consumed by the
CPU is small. However, the effectiveness of CPU adaptation is limited by the energy per cycle
required by the CPU at the lowest possible frequency: 70% of the energy per cycle required
at full speed for our microprocessor model. Therefore, the total energy savings from CPU
frequency and voltage scaling is limited to 30%, no matter how the CPU and network are
utilized.

The use of application adaptation, on the other hand, can reduce the CPU workload tremen-
dously, providing huge energy benefits when the CPU dominates the total energy consumption
of the system. Furthermore, the benefits are synergistic. If the CPU workload is reduced suffi-
ciently, we can reduce the CPU frequency to 533 MHz. This results in an additional 7% energy
savings from CPU adaptation, resulting in a total energy savings of 83% for a “realistic” CPU

power of 20 W.
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These results clearly justify the value of performing adaptation of the application in contexts
where the network is not severely bandwidth constrained. If the CPU draws a peak power of
20 W, we would be reducing the total system power by nearly 10 W. Even accounting for the
energy costs associated with the rest of the system, this is a large energy savings. Assuming
the idle power of approximately 10 W for the complete system, this means that reducing our
application’s power consumption from approximately 13 W to approximately 3 W decreases

the total power consumption of the system by over 40%, greatly increasing battery lifetime.

5.4.3 Frame-by-frame adaptation

We next consider the addition of frame-by-frame adaptation to the combined CPU and
application adaptation system shown in Figure 5.2. Since we are primarily interested in theo-
retical benefits of per-frame adaptation, we use exact information about resource demands and
energy requirements to select a configuration for each frame. Specifically, before choosing a
configuration for a job, this “oracle” algorithm determines the byte and cycle count for each
possible application configuration, and then uses the byte and cycle count to compute an en-
ergy demand for each configuration. This information is then used to to select a configuration
for each frame. As there are no network bandwidth or CPU utilization constraints on which
configuration is chosen, the configuration that minimizes energy is always selected. The CPU
speed is also selected so that processing of the frame is completed within its alloted time (i.e.,
0.1 s). We allow the CPU frequency to be set to an intermediate point between two supported
CPU speeds. This is handled by interpolation; the actual energy consumption is assumed to
be equal to an appropriate linear combination of time spent operating at the next lower and
higher supported operating point.

The use of an oracle to determine the application configuration allows us to specifically
evaluate the effectiveness of per-frame adaptation in the context of a single unconstrained ap-
plication, without considering the effects of suboptimal predictions or allocation. However, it is
important to remember that this “single-step” oracle cannot account for dependencies between
the particular encoding of frames, and therefore frame-by-frame selection of configurations that
minimize energy for the current frame is not guaranteed to be globally optimal.

Figure 5.3 shows a comparison of the energy consumed by systems employing per-frame

adaptation in different system components. Because at this point we are interested in the

62



T T
Hl Global
[ Per-app CPU
[ Per-app App H
Il Per-app CPU+App

o
3

o
o

Energy (normalized against fixed system)
o o o
w > [9)]

o
N

o
o

0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 10 20 50
CPU power (W)

Figure 5.3 Energy savings from per-frame adaptation for varying CPU powers. Shown nor-
malized, with 1.0 representing the energy use of the nonadaptive system.

effects of per-frame adaptation, we start with enabling global adaptation for both the CPU
and application as a baseline. We then add per-frame adaptation of the CPU (“Per-frame
CPU”), of the application (“Per-frame App”), and of both the application and CPU (“Per
frame CPU+App”). We maintain our normalized energy scale, so a normalized energy of 1.0
represents the energy consumption of the nonadaptive system.

Because the selection of the application configuration that minimizes total energy consump-
tion is driven primarily by the relative power demands of the CPU and the network and not by
changes in the application’s behavior, in most cases we expect to see very little energy savings
from doing frame-by-frame adaptation. And this is in fact the case, except in the intermediate
CPU power range of 0.1 W to 2 W where the optimal application configuration is affected by
changes in the source stream. Even in this range energy savings was small, peaking at about 7%
more than the energy savings that can be achieved using global adaptation only. This increase
in energy savings was split roughly evenly between that attributable to per-frame application
adaptation, and that attributable to per-frame CPU adaptation.

Compared to the large energy savings afforded by global application adaptation, the ad-

ditional energy savings associated with per-frame application adaptation is small and appears
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only when both the network and CPU contribute significantly to the total energy consumption.
This is because neither the CPU nor the network dominate the total energy consumption, the
variation in the stream does not result in a large enough change in the network or CPU uti-
lization to drive a switch from “encode as much as possible” to “don’t encode at all”; at most
it induces slight variations in the optimal compression level.

Furthermore, the situation in which both the CPU and network consume significant amounts
of power is more typical of PDA or cellular applications than modern laptops with 802.11-style
wireless networking that is our primary focus. This means that without constraints on network
bandwidth, per-frame adaptations of the application will be of minimal value on a higher-power
laptop computer. Even on a PDA or cellular device, the amount of potential energy savings we
abandon by not doing per-frame adaptation of the application is small.

This is an important observation, because it suggests a simple approach to the selection
of an appropriate application configuration. Instead of considering the effect of application
configuration on energy consumption, we can select the most energy-efficient configuration
based on global statistics. We then use the per-frame application adaptation only to respond
to constraints on the system. The performance of this approach will be examined in detail in

Section 5.6.

5.5 Application Adaptation in Constrained Systems

Because per-frame application had minimal impact when the network bandwidth was un-
constrained, we next examine the case where the network is subject to a bandwidth constraint.
The network bandwidth constraint places a limit on the amount of complexity that can be
shifted from the CPU to the network; some configurations that do little or no compression
may exceed the network bandwidth constraint. This will reduce the energy savings that can be
achieved when we would otherwise have shifted as much work as possible to the network.

The constrained case is important because, although 802.11b networks have a relatively
high theoretical bandwidth, the actual bandwidth availability can vary dramatically depending
on network utilization, distance from the base station, and interference. Furthermore, even in
the best of conditions there is not enough bandwidth to transmit a 10 fps CIF video stream

entirely uncoded on a standard 802.11b network.
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For the purposes of this discussion, we introduce a bandwidth constraint of 100 Kbytes/s.
This is the lowest fixed bandwidth that is sufficient to transmit the stream. The network
power is unchanged at 750 mW. Note that because the network’s power consumption has
remained unchanged but the bit rate has been reduced, the amount of energy consumed per
byte transmitted has increased significantly. We continue to use exact information (i.e., the
“oracle” adaptor) to select an optimal application configuration that minimizes energy while
also meeting the 10 Kbytes per frame (100 Kbytes/s at 10 fps) network constraint.

Because of the bandwidth constraint, we need to account for the possibility that frames will
never make it to the receiver. To allow the system to recover from overruns, frames are dropped
by the scheduler only if they have not been completely transmitted within three frame times of
the start of their encoding. For a frame rate of 10 fps, the total time permitted from the start
of encoding to the completion of transmission is 300 ms.

With the 100 Kbyte/s bandwidth constraint, even if the processor is run at its highest
speed and all possible compression is done, there are still three frame drops over the 300-frame
“Foreman” sequence. To permit some adaptation while maintaining a good application quality,
we permit up to six dropped frames total when choosing the best fixed application configuration.

The “Foreman” sequence contains both a talking-head section and a more complicated pan-
and-zoom section. For this reason, the 100 Kbyte/s bandwidth is only tightly constraining for
roughly half of the total sequence. We therefore expect to see some benefit from the introduction
of frame-by-frame adaptation.

Figure 5.4 shows the actual energy savings associated with global-only and global plus per-
application adaptation, using the “oracle” adaptor. We see that for the higher CPU powers,
when it is desirable to shift work from the CPU to the network, being able to dynamically
choose a configuration that lowers workload while still respecting the bandwidth constraints
allows significant energy savings. For the 20 W case, we see that adapting both the CPU and
network on a per-frame basis allows an energy savings of 45% to be realized—this is nearly 20%

more than the energy savings associated with global adaptation alone.

5.6 Realizable Energy Savings for a Single Application

In the previous sections, we have shown that given perfect information about the future

behavior of the stream, we can potentially see significant energy savings from using our ap-
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Figure 5.4 Energy savings from per-frame adaptation with network-bandwidth constraints.
Shown normalized, with 1.0 representing the energy use of the nonadaptive system.

plication adaptation techniques. However, we have not shown that these savings can actually
be realized without the use of oracles. In this section, therefore, we examine how much of
the energy savings we can actually realize using the adaptation algorithm introduced in Chap-
ter 2. The results of this comparison are shown in Figure 5.5. The unconstrained case, in
which the network bandwidth is large enough to transmit the uncompressed stream, is shown
in Figure 5.5 (a), and the case where the network bandwidth is constrained is shown in (b).

Because the adaptation algorithm is designed around the assumption that changes in ap-
plication configuration are driven by the ratio of CPU and network power consumption and
network bandwidth constraints only, it cannot realize energy savings from per-frame adaptation
when the network bandwidth is not constrained.

In the constrained case, however, the per-frame adaptation is driven primarily by the con-
straint and we expect that our algorithm would achieve most of the realizable energy savings;
we see that this is in fact the case. Our adaptation algorithm allows us to realize energy savings
within 3% to 8% of the energy savings afforded by the per-frame oracle and its associated per-

fect information on the resource demands and energy consumption of upcoming frames. The
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Figure 5.5 Energy savings of oracle vs. actual algorithm. Shown normalized, with 1.0 repre-
senting the energy use of the nonadaptive system.

ability of this per-frame adaptation algorithm to achieve most of the potential energy savings

justifies our simplified adaptation model.

5.7 Energy Savings from the GRACE System

In the previous sections, we have shown the value of application adaptation for saving energy
in both constrained and unconstrained scenarios. But we have done so only in the context of a
single application which is assigned all of the computing and network bandwidth provided by
the system. Furthermore, the results in the previous section rely extensively on “oracles” that
provide exact information on the resource consumption of jobs before they are actually run.

In this section, we simulate the performance of the multiapplication, multilevel GRACE
system, as it would be implemented on a laptop computer. Because of the increased complexity
of the model, it is difficult to exhaustively test all the different power regimes and workloads
that we could possibly encounter in this environment. For this reason we fix the CPU power
at 25 W and the network power at 750 mW active, levels that are typical of modern laptop
computers. Again, both the network and CPU are assumed to draw no power when idle.

Because global allocation is requires solving a NP-hard problem, which are difficult even if
heuristics are used, optimization overhead makes it impractical to solve the global allocation

problem on a frame-by-frame basis [29]. As a result, these experiments consider only three

67



systems: a fixed system that does no application adaptation at all, a system that includes
global adaptation to allocate resources and application configurations as applications enter
and leave the system, and a GRACE system that incorporates global resource allocation and

frame-by-frame determination of the most efficient application configuration.

5.7.1 Workloads

To evaluate the performance of the GRACE system under varying system loads and appli-
cation distributions, we consider three different workloads consisting of one, up to two, and up
to three applications running simultaneously. These workloads start with the single-application
workload we used in the previous section, and add additional encoders until the system is loaded
to its capacity. The goal of using these workloads is to start with a moderate load, and examine
the system’s performance and energy consumption as the workload is increased to the point
where the system begins to fail due to overcommitment of the network and CPU resources.

Although we currently only have a single adaptive encoder, we can introduce variation
between the different applications running on the system by running the encoder at different
resolutions and frame rates. For this reason, we run the first application using CIF resolution
(352 x 288) and 10 fps, and the second and third applications at QCIF (176 x 144) and 15 fps.

The effect of these workloads is that, depending on the exact configuration of the adapta-
tion algorithms and network, the system is lightly to moderately loaded running a single CIF
encoder. It is under moderate to heavy loads with one CIF and one QCIF encoder operating,

and heavily loaded or overloaded with all three applications running.

5.7.1.1 One application

Our one-application workload consists of a single application running on the adaptive sys-
tem. This workload is the same as the one we consider in the previous section: the application
encodes the CIF-sized “Foreman” sequence at 10 fps. However, for this experiment we repeat
the entire sequence four times, for a total of 1200 frames.

This single application does not load the system heavily. It never overruns the CPU, and
only requires CPU frequencies of up to approximately 1000 MHz even if full compression is
performed. Also, it requires only 100 Kbytes/s of network bandwidth to successfully transmit

all but a small number of the frames of the sequence.
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5.7.1.2 TUp to two applications

Our second workload consists of the same 10-fps CIF encode of the “Foreman” sequence,
but this time with a 15-fps QCIF encode of the “Carphone” sequence running in parallel. The
QCIF encoder starts after and ends before the CIF encode, resulting in a period of time at the
beginning and end when only one application is running.

This workload can result in heavy loads on the CPU, requiring CPU frequencies of up to
the full 1466 MHz to complete full compression of the two streams within the available CPU
time. However, if full compression is performed, the network remains relatively lightly loaded,
requiring only 150 Kbytes/s of network bandwidth to achieve drop rates in the range of 0.5%
to 1%.

5.7.1.3 TUp to three applications

This workload combines up to two 15-fps QCIF sequences with a single 10-fps CIF sequence.
For this workload, the CIF “Foreman” sequence is repeated three times and encoded at 10-fps
(as in the two-application case). Alongside that, an encode of three repetitions of the QCIF
“News” sequence at 15 fps starts 10 s into the 10-fps “Foreman” sequence. Also, QCIF versions
of the “Akiyo,” “Mobile,” and “Tempete” sequences are encoded, 150 s into the workload.
Because this workload is relatively complicated and involves several application entries and
exits, a timeline has been included as Figure 5.6.

Unlike the one- and two-application workloads, performing all possible compression is capa-
ble of overloading the CPU even if the CPU frequency is set at its maximum of 1466 MHz. As
a result, it also requires significant amounts of network bandwidth to keep the frame loss rate
at an acceptable level. This is partially because the sequence cannot be encoded to its smallest
possible size due to the CPU limitations. As a result, at tested network bandwidths below 400
Kbytes/s, a significant number of frames were dropped due to the combined effects of CPU and

network overloading.

5.7.2 Effect of adaptation under fixed network constraints

To evaluate the performance of the GRACE system, we have run the simulation for each of
these workloads under a variety of different network conditions. For each of these workloads and

network conditions, we evaluate the energy consumption and drop rate for a “Fixed” system
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Figure 5.6 Three-application workload.

that does not adapt, an adaptive system that does global optimization on application entry and
exit (“Global”), and our full “GRACE” system which does global optimization on application
entry and exit as well as application adaptation on a per-job basis. Once again, the vertical
axes on the energy graphs represent normalized energy, where 1.0 is the energy consumption
of the fixed system. On the the drop-rate graphs, the vertical axis shows the drop rate: the
percentage of the of total frames (from all applications) that were not successfully transmitted.
The horizontal axis is the maximum number of simultaneous applications, representing the
one-, two-, and three-application workloads.

We start by considering a heavily bandwidth-limited network capable of transmitting 100
Kbytes/s, the results for which are shown in Figure 5.7 (a). This bandwidth is barely sufficient
for reliable transmission of the data for one application, and insufficient for the two- and three-
application workload. As a result, we observe drop rates of 1%, 5%, and 22%? respectively for
the fixed systems. Because of the bandwidth limitation, the global allocator makes the decision
to do the full encode and compression in all cases, so the performance of the global-allocation

system is the same. However with the addition of the per-application adaptor, we can realize

*Drop rates of greater than about 5% represents unacceptable stream quality, and as a result comparisons of
the associated energy demands are not meaningful.
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Figure 5.7 Energy savings from GRACE system for fixed-bandwidth networks.

energy savings of up to 39%, although due to the very tight network constraint this is realized
at the expense of a slight increase in the number of dropped frames.

As we increase the network bandwidth, we can save more energy through the use of ap-
plication adaptation, and we drop fewer frames due to bandwidth constraints. However, as
we increase the bandwidth, the amount of the total energy benefit that can be achieved with
global adaptation alone also increases. At 200 Kbytes/s of network bandwidth (Figure 5.7 (b)),
per-application adaptation only saves 3% more energy than global alone for one application.

However, for two and three applications, we still see significant energy savings from per-frame

adaptation.
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At 400 Kbytes/s (Figure 5.7 (c)), we see another benefit of application adaptation. The
three-application workload overburdens the CPU when full-complexity encoding is done, but
given sufficient bandwidth it is possible to reduce the compression level and prevent frames
from dropping due to the CPU overload. We also see a small but noticeable energy savings
from the addition of per-application adaptation for all three workloads.

By 600 Kbytes/s—which is approximately the maximum bandwidth that can be achieved
on an 802.11b-style wireless network—we see that the bandwidth is high enough that there is
little need to use per-frame adaptation (Figure 5.7 (d)). Because the bandwidth constraint is
loose, the global allocation can eliminate most of the computational workload even without the

ability to make short-term decisions about which application configuration to use.

5.7.3 Effect of adaptation under varying network constraints

We next look at the performance of the various adaptive systems under varying network
conditions. To do this, we consider networks that vary in bandwidth by more than a factor
of three. The variation occurs continuously, varying linearly in a zig-zag pattern and making
a complete cycle every 10 s. With the network-bandwidth variation, the effectiveness of the
global adaptation is reduced. This results in either a reduction in achievable energy savings, or
an increase in the drop rate, depending on the exact relationship between the global bandwidth
estimate and the available configurations.

Both of these effects can be seen in our experiments. If we look at bandwidths that vary
from 200 Kbytes/s to 600 Kbytes/s (Figure 5.8 (a)), we see that the total energy savings from
the GRACE system is about 58% for one application, about 47% for two, and about 30% for
three. Moreover, the bulk of the energy savings case for the 2- and 3-application workloads
comes from the per-frame adaptation; global allocation alone cannot realize the energy savings
we can achieve by taking advantage of the bandwidth available when the channel is good.
However, we also see that the bandwidth is insufficient for three applications at times, resulting
in a higher drop rate than is desirable.

If we increase the bandwidth to 400-1200 Kbytes/s (Figure 5.8 (b)), the global allocation
chooses an application configuration that overruns the available bandwidth when the bandwidth
is at the low end of the range, resulting in a similar energy savings for both the global and per-

application adaptation but resulting in a high frame drop count for the one-application work-
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load. The addition of per-job adaptation to the framework solves this problems. Energy savings
here are higher due to the extra bandwidth, ranging from over 60% for the one-application case

to approximately 35% for the 3-application case.

5.8 Conclusion

In this section, we have shown that the use of application adaptation as part of a multi-
level hierarchical adaptation system allows us to achieve significant energy savings. We have
also shown that in situations where the CPU is overloaded but the network is not, moving the
workload from the CPU to the network can allow an increase in quality of service while at the

same time lowering total energy consumption.

5.8.1 Analysis: Is per-application adaptation justified?

The main difference between the GRACE system and conventional cross-layer adaptations
is the use of the frequent “per-application” adaptation. Most other adaptation systems adapt
globally to allocate resources between applications, and permit the individual layers to make
short-term decisions about their behavior, but do not have specific support for frequent but
limited cross-layer adaptation. We therefore specifically consider the question of whether this

additional complexity is justified in the context of our adaptive application.
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First, we see that the benefits of application adaptation can be split into two parts: the
benefits that can be achieved by correctly matching the use of the network and the CPU against
the energy demanded by these system components, and the benefits that can be achieved by
matching the application configuration against the network’s available bandwidth.

The benefits of correctly matching the use of an uncongested network and CPU against their
corresponding energy requirements can be realized to a large extent using global adaptation
alone. Only in a small range of relative CPU and network weights does per-frame adaptation
give benefits over and above global-only adaptation of the application, and even in the best case
the additional energy savings that can be achieved from per-frame adaptation of the application
in an unconstrained environment is approximately 8% as shown on the left side of Figure 5.5.

However, per-frame adaptation can have significant benefits when it is used to balance
bandwidth use against bandwidth availability if the lowest-energy application configuration
cannot always be used due to bandwidth constraints. In this case, we can achieve nearly 20%
more energy savings than we could with global adaptation alone, as shown on the right side
of Figure 5.5. Even when the system is expanded to the full GRACE implementation with
multiple applications, we observe that the per-frame adaptation remains most effective when
the network is tightly constrained or varying, and when the network constraint is relatively
loose global adaptation alone realizes most of the potential energy savings.

Therefore, we can conclude that compared to doing adaptation at a global level only, the
additional complexity of the GRACE system is of substantial benefit when the network is
constrained—i.e., in the case where the state of the network prevents us from using the applica-
tion configuration that would give the optimal tradeoff between CPU and network utilization.
However, when the network does not constrain this selection, the use of per-frame adaptation
to track the state of the network and application offers little additional energy savings over

global adaptation alone.

5.8.2 Comparison to other GRACE results

Other GRACE work [75] also evaluates the performance of a similar adaptive application
and adaptation algorithms in the context of a laptop transmitting data on an 802.11b wireless
network. In fact, the core of the adaptive video encoder described in [75] is the video-encoder

library described in Chapter 2. Because of the large-scale similarity of the application and
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environment, this work comes to the same general conclusions as we have here: application
adaptation results in significant energy savings when the CPU is relatively more expensive than
the network, and it is possible to realize much of this energy gain through the combination of
profiling and on-line updates.

However, several details of the actual simulation environment are quite different. Most
importantly, the work in [75] does not consider scheduling constraints or the system’s frame
rate when choosing system or application configurations. Instead of fixing frame rate and
varying CPU speed and application configuration to minimize energy consumption consistent
with the desired frame rate, the frame rate is allowed to change dynamically to minimize the
total energy consumption. As a result, the CPU is allowed to run at its minimum speed at all
times, and is assumed to take 3 W in operation. The network is modeled using a fixed rate and
an operating power of approximately 1 W, and operates at one of the fixed 802.11b PHY rates
of 1, 2, 5.5, or 11 Mbit/s.

Between the lack of a frame-rate constraint and the reduced power consumption of the CPU
in this model, the amount of power used by the CPU relative to the network is significantly
lower than in the model used here. As a result, the system in [75] yields less energy savings
than we show here. Because of these different simulation conditions, the specific results cannot

be directly compared to the results in this section.
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CHAPTER 6

PROBABILISTIC GLOBAL OPTIMIZATION

6.1 Introduction

In the previous chapters, we have avoided the question of how to allocate quality by assuming
that all applications support only one level of quality, which they must achieve at whatever
cost in energy. However, multimedia applications generally support varying quality levels;
parameters such as quantization step size, resolution, and frame rate can all be adjusted to
effect a varying tradeoff between the quality of the sequence and the resources required to
process it.

Ideally, we would be able to allocate the various resources—CPU time, network bandwidth,
energy—in a way that best reflects the user’s expectations. Allocating CPU time and network
bandwidth is relatively straightforward; these resources are not conservable, so it makes sense
to use as much of the resource as is needed to maximize the user’s utility. However, energy is
conservable, and therefore the greedy approach we use for CPU time and network bandwidth
is only optimal in very restricted circumstances [2]. This problem has been addressed through
calendaring [76], a process which takes a list of tasks and times, and finds a resource schedule
that optimizes user’s utility. However, this requires that the user know in advance what will be
running and when, information that may be unavailable or unduly restricting.

However, there is another approach. The theory of Lagrange optimization [77] provides a
framework in which we can approach the allocation problem stochastically, allowing us to find
an optimal allocation even if we have only a probability distribution of the workloads that are
to be run; in other words, we must know only what is going to run, and not necessarily when.
Furthermore, the Lagrangian approach allows us to solve the energy allocation problem without

evaluating the cross product of all applications entering and leaving the system.
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6.2 Utility and Application Models

However, before we can talk about optimizing the system’s utility and hence the user’s
satisfaction with the system performance, we must explore the relationship between the utility
and quality metrics that are meaningful to the application.

The details of this relationship are largely beyond the scope of this thesis; a proper ex-
ploration of the relationship between the configurations of the encoder, stream quality in a
quantifiable sense, and utility in a sense that is meaningful to the user would require careful
evaluation with human subjects. With that said, we have to have some model of the relation-
ship between configurations, quality, and utility to do any sort of utility optimization. Because
accurate mappings from quality to utility can only be done through human trials, we will de-
velop a flexible model that will support a large class of mappings between quality and utility.
This will allow our model to incorporate the results of future human trials, whatever they might

be.

6.2.1 Utility Model

First, we must establish a model for utility. The model that we use is that utility is additive
across applications and additive across time. In other words, if we configure a particular
application with a particular configuration, we credit the system with its corresponding utility
for as long as that configuration is active. We therefore interpret the utility of the various
applications as an “instant utility” that integrates over time for as long as the application is
running.

This model ignores both synergies between applications and the possibility that the utility
of an application is only realized upon its completion. However, the additive model for utility
permits the use of fast algorithms to find optimal long-term global configurations. Without the
assumption of additivity across time and applications, we cannot use the fast algorithms we
will introduce. Instead, a search across the cross product of all possible applications running

at all times would be required to find the optimum application configurations.
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6.2.2 Application utility

We must next model the application. Each application can run in one or more different
configurations. Each of these configurations is corresponds to a particular utility, along with a
period and the associated per-period network and CPU requirement.

Different application configurations are not required to have unique periods and utili-
ties. This is because the system is designed to support a hierarchical adaptation in which
the lower-level adaptor is provided several alternatives from which to pick. If two applica-
tion configurations share the same period and utility, they are considered interchangeable by
the per-application adaptor, which is permitted to choose from any application configuration
that matches the utility and period assigned by the global coordinator. This allows the per-
application adaptor to make per-frame decisions about which configuration minimizes energy
consumption within the currently available resources.

We also assume that as the utility of application configurations increases, the resource
utilization will also increase; while it is possible that different configurations in a utility class
will have varying resource demands, no configuration of lesser utility will use more resources of
all types than any configuration of greater utility. We also assume that the resource utilization
curves are approximately convex, and as we increase the resource usage, the benefit we get from
using the additional resource is reduced.

In general, the utility of the application configurations can be assigned in one of two dif-
ferent ways. The first is to apply some function f(-)! to some measure, such as PSNR, of the
stream quality. In this case, the utility will necessarily be probabilistic at allocation time, and
therefore we must allocate based on expected utility instead of achieved utility. The second
is to simply assign a fixed utility to each application configuration; application configurations
giving a higher quality (i.e., better fidelity to the original stream) are assigned higher utility
values than configurations that achieve a lower quality. In our experiments, we choose the
second approach, assigning increasing utilities to application configurations as the frame rate
and number of quantizer steps is increased. Because the precise relationship between quality
and utility can only be obtained through extensive psychophysical studies beyond the scope of

this work, we have designed the framework to flexibly accept the results of such studies and

'The symbol - refers to any applicable function parameters.
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in the interim use “placeholder” values for the purpose of evaluating the effectiveness of the

framework.

6.2.3 Utilization Model

Because our system uses an EDF scheduler internally, we allocate CPU and network re-
sources by attempting to prevent the utilization of each from going above unity. Therefore,
when making our global allocation, we use normalized utilization metrics: the resource demand
of each application configuration is listed as a number from zero to one, representing the frac-
tion of the total CPU and network bandwidth it uses. The resource demands stated by the
application include all associated system overhead, including CPU time used to support the
network traffic the application generates and the network traffic used to improve reliability
through retransmissions and forward error correction.

In reality, external conditions (such as the effective bit rate of the network and the stream
being encoded) and the CPU frequency all vary. As a result, utilizations may also vary, and
all of the utilizations we allocate for are actually ezpected utilizations. To account for this, we
must actually constrain the ezpected utilization of the CPU and network to F[utilization] < 1.
In general, this problem would be difficult to solve, as the utilization and availability of the
various system components are not independent. Therefore, to keep the problem tractable we
make the generally false assumption that the number of bits to encode and the bit rate of the
network are independent, allowing us to multiply their expectations.

The expected cycle count and the expected byte count for each configuration are stored in
a profile table. The CPU utilization is determined from the cycle count and a CPU frequency
assigned to the application; this CPU frequency is considered to be part of the application
configuration. For the network, the utilization is determined using an expected or average bit
rate for the network layer, along with the expected application bit rate stored in the profile
table. In some cases, the network protocol may consume significant CPU resources in addition
to network bandwidth. In this case, the CPU utilization of the network protocol must be
included when the application indicates its CPU requirements. This allows the optimization to

properly account for all demands on the CPU.
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6.3 Global Allocation Problem

The top-level allocation problem—the problem we are attempting to derive a feasible, useful
solution for—is to achieve the best possible user experience by balancing the instant utility of
the system against the amount of time the system is expected to run.

We can define this top-level problem as a maximization of the integral of the utility for
all running applications until the system battery dies. Applications can come and go, but we
assume that the system is free to reject any application at the admission-control stage to save
energy, even if resources are otherwise available to run the application. This formulation was

introduced by Yuan et al. in [76].

6.3.1 Problem definition

Inputs to this optimization problem are an application list and the state of the system. The
application lists are derived from the global allocation data associated with each application,
and the list of available operating frequencies for the CPU. We represent each application with a
unique ID app; freg,,, represents the CPU operating frequency, and conf,,, is the configuration
ID for the application. Each application starts and ends at a particular time, and is permitted
to have its configuration changed by the global allocator at any time. When an application is
not running, it uses no resources and has no utility. The state of the system is represented by
the desired runtime runtime and the energy stored in the battery FEp,:. The goal is to maximize
the total utility of the system (that is, the integral over the utility for all applications over the
desired runtime) given a fixed starting energy.

This problem can be formalized as

max /Z U(t, app, confyy,) dt (6.1)
confs.freq/t gpps

s.t.

/ Z P(ta app, ConfappafreQapp)dt < Ebat
tapps

vt z C(ta app, ConfappafreQapp) <1
apps
Vt > N(t, app, conf,,,) < 1
apps
where
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P(t, app, conf, freq): Average power in watts

C(t, app, conf, freq): Normalized CPU utilization (0 to 1)

N(t, app, conf): Normalized network utilization (0 to 1)

U(t, app, conf): Average utility (is integrated over time)

Epq Energy stored in the system battery

runtime: System run time

Because the application is actually time-sliced and scheduled on a per-job basis by an EDF
schedule, we actually have to measure utility and power on an average basis rather than an
instant basis. To determine the average power, we divide the energy consumed processing one
job by the job rate. We define the instant utility to be constant across an entire job (in fact,
we assume it is constant unless the application configuration changes, although the model does
not require this), and therefore average utility and instant utility will be the same number. It
is also important to remember that the utilizations are actually probabilistic, so we actually
allocate based on their expected values.

It proved to be easier to state the battery constraint in terms of average power and runtime

instead of energy. This can be trivially done by rewriting the energy constraint as

P(t, app, conf,,,, freq,,,)dt
/t Z o PP < Payg (6.2)

apps runtime

while preserving the associated CPU and network constraints.

6.3.2 Dual problem

The optimization problem we have presented optimizes utility given a constraint on energy.
However, it may also be relevant to solve the dual problem, in which utility is constrained and
energy is optimized. The problem setup is essentially similar, but instead of fixing the energy
stored in the battery Fy,; as an input, we fix the desired utility Upeq.

Making this change allows us to transform the optimization to the dual problem, in which
we exchange the constraint on energy with the optimization target utility. However, because

lower energy is desirable, we must use negative energy —F(-) in place of the utility U(-) in the
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optimization problem. Likewise, because we want to find a utility not lower than the desired
utility but our original problem finds an energy not higher than the desired energy, we must
replace the energy term E(-) in the original problem with negative utility —U(-). We must
similarly negate the constraints. Once this transformation is made, the resulting problem takes
the same form as the original problem and can therefore be solved using the procedures we

develop.

6.4 Heuristic Solutions to the Allocation Problem

As is pointed out in [2], solving the top level problem directly requires precise knowledge
about what applications will be running at any particular point in time in the future. Typically,
this information will not be available. In [76], Yuan and Nahrstedt propose a reservation
approach in which future applications are scheduled in advance. However, this construction
requires precise information about the future and is therefore somewhat inflexible.

Because of the computational complexity and the aforementioned inflexibility of the reser-
vation approach, various simplifications have been proposed. In [2], Yuan et al. propose two
heuristics to handle cases where information about future tasks is unknown. One of these, the
utility-greedy approach, simply tries to maximize the instant utility at all times, ignoring the
impact of the associated energy use on system runtime. It is optimal if the desired runtime is
short.

The more common simplification, presented by Yuan as the energy-greedy heuristic, is to
assume that the applications presently available will run from the present until the time the
battery dies. This actually represents a subproblem of the original problem, and therefore the
heuristic is optimal if the applications in fact do not change, and is a good heuristic if the
character of the applications running on the system stays roughly the same. However, if the
utility or energy demands of the applications change dramatically over time, it may result in
significantly suboptimal allocations.

This subproblem (and by extension the energy-greedy heuristic) is essentially a constant
power approach to the top-level allocation problem; at all times it limits power consumption
to a value that allows the required lifetime to be achieved given the current energy supply.
(The power constraint can vary in response to current energy availability as the optimization

is repeated.)
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Theorem: Given a sufficiently dense set of application configurations, the energy-greedy
heuristic results in a near-constant system power.

Proof: To see that the energy-greedy approach attempts to equalize power consumption
over time, we can consider its associated optimization problem. The energy-greedy heuristic

maximizes the utility of the currently running applications subject to the power constraint

Payg < Erema?'n

TEMain
Utility is a monotonically increasing function of power,? and we will always choose to use
as much power as possible to achieve the greatest possible utility. As a result, the energy
consumption of the system will be as close to Pgyg as possible given the available application
configurations. If the set of application configurations is dense, the actual power will be close

to Pgyg, and when the maximum allowable power is calculated again the result will be near

(but perhaps slightly higher than) Pgyg.

6.4.1 Fixed-application optimization problem setup

For this subproblem, instead of maximizing the integral of utility over time for a possibly
unknown collection of applications, we consider only the optimization of the utility provided
by applications available to the system now. Likewise, instead of considering total energy con-
sumption, we consider only the average power required to run the currently active applications.
Once we have solved this problem, we will later return to the full optimization problem and
show how we can use solutions to this inner problem to help us find a solution to the complete
problem.

The subproblem’s inputs are a list of applications and configurations. Each of the applica-
tion configurations is labeled with a resource utilization and a quality metric. The optimization
problem takes this list of application configurations as input, and returns an allocation that
chooses appropriate application configurations that meet all constraints on resource availability
and average power. This simplified problem can correspond to either of the two policies intro-
duced in [2]. By setting the power constraint to be the energy reserve of the battery divided
by desired lifetime, we can realize the energy-greedy heuristic. By setting the power constraint

to be infinity, we can realize the utility-greedy heuristic.

2 Although this is not true in general, any nonmonotonic points are always suboptimal and will therefore be
ignored by the optimization process.
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This problem can be mathematically specified as
max max ZU(app, coNfopp) (6.3)
fregs; confs, oop
s.t.

Z P(a’pp7 confappafreqapp) S P(M)g
app

Z C(app, Confappafreqapp) <1
app

Z N(app, confappafTeQapp) <1
app

In other words, the goal is to maximize the utility, subject to a constraint on total power
and network and CPU utilization. This optimization problem takes the form of an NP-hard

multidimensional, multiple-choice knapsack problem [73].

6.4.2 Subproblem solution and issues

Because the optimization problem reduces to the solution of an NP-hard knapsack problem,
it must be solved either with an exponential-time brute-force algorithm, or using a suboptimal
approximation algorithm such as the one presented in [73]. However, for problem sets involving
reasonable numbers of multimedia applications running simultaneously (up to about two or
three), a full search will not need to cover a huge number of possible combinations, and is likely
to remain practical.

Another complexity issue that we encounter doing this optimization is that of CPU frequency
optimization. In the problem formulation above, we optimize over both the configuration for
each application and the CPU frequency that each application runs at. This requires (in
general) evaluating the cross product of frequencies and application configurations, increasing
the number of possible configurations that need to be evaluated for each application by a factor
of the number possible CPU frequencies.

To simplify the problem, we can assume that all applications run at the same CPU fre-
quency. The energy lost to this suboptimality is bounded by Jensen’s inequality, and also
largely recovered by the per-application adaptations we do on a frame-by-frame basis. Mak-
ing this assumption permits us to do the entire optimization once for each CPU frequency,
rather than making each inner optimization more complex, greatly reducing the computational

complexity of the problem.
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Jensen’s inequality states that for any convex curve f(z):

If we assume we can interpolate between any two operating frequencies by running the system
at one part of the time and the other for the rest, the energy per cycle is a convex function
of CPU frequency.> We can therefore apply Jensen’s inequality and find that operating all
applications at the same (possibly interpolated) frequency is better than running applications
at different frequencies.

Therefore, if we restrict the applications to a single frequency, the extra energy consumed
is limited by the difference between the chosen frequency and the ideal interpolated frequency.
This difference will be less than or equal to the difference in energy consumed when all ap-
plications run at the chosen frequency, and the energy that would have been consumed if all

applications ran at the next lower available frequency.

6.5 Lagrangian Energy-Greedy Heuristic

Traditionally, optimization problems such as the simplified problem described in the previ-
ous section are solved using knapsack solvers, or suboptimal, fast heuristics for near-optimal
solutions. Lagrange optimization theory provides a different approach based on the replacement
of a hard constraint with a Lagrange multiplier A [78,79]. In this section, we show how to apply
Lagrangian techniques to solve the instantaneous allocation problem described in the previous

section.

6.5.1 Lagrangian reformulations

The core idea of the Lagrangian approach to optimization is that solving constrained prob-
lems is difficult, and that sometimes this difficulty can be reduced by eliminating the con-

straints [77]. This is done by rewriting a constrained problem in the form
m.aLxZAi(-) s.t. ZB,() <C (6.5)
i 1

into the form

min J(X) Z —A;(-) + AB;() (6.6)

3 Any points not on the convex hull would be suboptlmal given the interpolation, and therefore not used.
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where A represents a particular tradeoff between the term being maximized A and the con-
strained term B. This formulation can in fact be generalized to an arbitrary number of con-
straints by introducing a separate Lagrange multiplier A\ for each constraint to be eliminated.

Lagrangian optimization theory gives us two important properties for this reformulation.
First, it shows that if we solve the minimization problem Equation (6.6), the resulting allocation
of the resource represented by B; to each component % is optimal, if the total availability of
the resource is equal to the total amount used; in other words, if }°; B;(-) = C, the resource
allocation is optimal.

Second, it shows that we are likely to find a value of A that achieves the desired usage of the
resource B. Specifically, if the utility A;(-) is a convex function of the resource consumption B;(-)
for every component i, there exists some A which will achieve the optimal resource allocation.
In fact, there will be a value of A that finds every point on the convex hull of the composite
resource-utility curve we get from all possible combinations of allocations. Therefore, as long
as the achieved utility is an approzimately convex function of resource demands, it is likely that

a near-optimal solution will be found.

6.5.2 The Lagrangian allocation problem

We can apply the Lagrangian technique to our allocation problem by realizing we have
a utility function analogous to the A(:) shown in Equation (6.5), and several resource con-
straint functions analogous to B(-). We can therefore transform this problem into a Lagrange
form, and by finding suitable values for the Lagrange multipliers remove the constraints on the
optimization, yielding an unconstrained problem that admits fast solutions.

However, for our resource allocation problem it is difficult to use Lagrangian techniques
to remove all of the constraints; even if the energy constraint is removed through Lagrange
reformulation, the CPU and network constraints still apply. Although the Lagrangian approach
can be used even for multidimensional problems, bisection searches with multiple A’s have not
been shown to be efficient or optimal. Also, the Lagrangian approach can only find points on
the convex hull of the operating surface, and the resulting requirement for multidimensional
near-convexity? is problematic. For this reason, we do not use the Lagrangian technique to

remove the CPU and network constraints of the utility optimization problem.

“The problem must be close enough to convex that reasonable operating points can be found on the convex
hull for any reasonable resource availability.
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However, we can still use the Lagrangian formulation to unify utility and energy. To achieve
this, the optimization problem stated in the previous section can be reformulated in terms of a

Lagrange multiplier as follows:

min J()) (6.7)
where
JO) = min 3 [~U(app, confupy) + AP(app, conf . freqa,)]
confs, freqs jpps
s.t.

CPU constraint: Z C(app, confop,, fregqy,) <1
apps

Network constraint: Z N (app, confyy,) <1
apps

An important result from Lagrange optimization theory is that the A’s correspond to a slope
on the convex hull [79], and that X is actually the marginal efficiency between the operating
point and the adjacent point on the convex hull that uses less energy and achieves less utility.
Therefore, every possible A corresponds to a minimum efficiency requirement, and through
Lagrangian optimization theory, to a corresponding optimal configuration of applications. We
find the set of application configurations that corresponds to a given value for A by minimizing
J(A); the application configurations that minimize J(\) also optimize the utility for the resulting
energy consumption. To satisfy a particular power or utility constraint, we must do a search over
A to find the value that maximizes utility while obeying the energy constraint corresponding to

the capacity of the battery.

6.5.3 Optimality of the Lagrange solution

If the power constraint Pp,,; happens to “hit” an operating point on the convex hull of
the utility-power scatter, an argument analogous to a theorem presented in [77] can be used
to prove that the reformulated problem and the original constrained optimizer have the same
solution.

Theorem: If conf* is the solution to the problem of Equation (6.7), it is also the solution

to the problem of Equation (6.3) for the particular case of Ppgy = P, onf*
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Proof:

J(best*) < Jx(conf¥)
—U(best®) + AP(best*) < —U(conf*) + AP(conf¥
—U(best*) + Ulconf*) < AP(best*) — P(conf*)]
—U(best*) + Uconf*) < A[P(best*) — Prag]

Since best* is a valid solution to the constrained optimization problem,
P(best*) S Pmagj

And therefore, since A > 0,
—U (best*) + U(conf*) <0

and therefore conf* satisfies the original optimization problem. In other words, if we solve the
reformulated problem for some A > 0 and get back a configuration that uses power Pmax, the
solutions of the constrained and unconstrained problems are identical.

It can also be shown that as we sweep across values of A, we trace out all the convex hull
points on the utility-energy scatter. The fact that Lagrangian techniques find all points on
the convex hull is widely cited in the literature [78-80], and was proven in [77]. The proof
for the multicell case presented therein clearly applies when only one optimization “domain” is

considered.

6.5.4 Computational complexity

Normally, we would use the Lagrange formulation to maximize A over a convex curve with no
other constraints. If the selection of configurations for applications is independent and permit
any combination of application configurations to be used, we can use a bisection search to find
an appropriate value for \; because X is the marginal utility at the operating point, this implies
a configuration for each application. However, in our environment we cannot usefully eliminate

all the constraints on the application configurations.’?

SWhile it is possible to use more than one Lagrangian, we run into two problems doing this. First, we can
only find points that are on the multidimensional convex hull; experiments have shown that this eliminates many
possible configurations from consideration. Second, bisection searches for A are not known to be efficient or
optimal if multiple Lagrange multipliers are used [77].
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Because the application constraints are therefore not independent, marginal utilities for each
application cannot be found, and therefore J(A) must be calculated by solving the minimiza-
tion problem directly. The complexity of the search operation is equal to the cross product of
all the configurations of all the applications in the system, and each available CPU frequency.
However, we can again simplify the problem by setting the CPU frequency of all applications
to be equal. By doing so, we reduce the search space to only the cross product of the applica-
tion configurations, times the number of CPU frequencies, with a minimal increase in energy
consumption.

Also, conventional fast-search techniques for solving the multidimensional, multichoice knap-
sack problem can be applied to estimate J(\) with reasonable results. This is especially valuable
when the number of applications is high, as the complexity of a full search is higher and the
suboptimality of doing a partial search is reduced.

The search for the value of A that maximizes utility while operating within the energy
constraint adds complexity to the optimization problem, and as a result the Lagrange imple-
mentation requires more computation than the straight knapsack solution. Because J()) is
a convex function of A, the search for A can be done using a fast bisection search that will
converge within a small number of iterations [79]; our present implementation searches up to
18 points and finds X to precision of 2 x 1075 times the efficiency of the most efficient appli-
cation configuration. However, we must optimize the application configurations to compute
the minimum value for J()) for each value of A; computation of J(X) is reducible to solving
the knapsack problem.® As a result, the complexity of the Lagrange search is higher than the
computational complexity of a more conventional optimization algorithm. However, use of the

Lagrange framework provides other advantages.

6.5.5 Interpretation: What is \?

Normally, we would use a Lagrangian transformation to convert a constrained optimization
problem to an unconstrained one. But due to the CPU and network constraints in our allocation
problem, we cannot eliminate all of the constraints using a Lagrange formulation. In fact,

reformulating the problem using an efficiency constraint adds additional complexity, as we

61t is also possible to search for A indirectly by searching the configuration space for the convex hull point
that comes closest to using the available energy, and then solving for the A corresponding to that point.
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must now do an outer loop to find an appropriate value of A. This means that the knapsack
problem must be solved several times, compared to just once for the original problem setup.

So why do the Lagrangian reformulation at all?

The gain is the intermediate parameter A. In many cases, although the Lagrangian is a
“synthesized” intermediate parameter, it has a real-world meaning. For example, in Frank
Kelly’s work on network pricing for elastic traffic [81], the Lagrangian values Ay represent the
marginal or ‘shadow’ price of a unit of traffic on the corresponding network link. And in [82], the
selected value for A represents the tradeoff between the energy consumed by an equalizer filter
tap, and the amount of interference the filter tap can remove from the signal being received.

In the allocation problem we address here, the intermediate parameter A defines a tradeoff
between the two optimization targets it connects—in this case, between utility and energy. A
high A\ means that energy is at a premium, and that we should only use a configuration if it
offers a particularly high utility in exchange for its energy consumption. A low A, on the other
hand, means that power can be spent relatively freely in exchange for modest amounts of utility.
In fact, due to the construction of J(A), A is actually the minimum allowable slope between
the selected point and the previous point on the utility-energy convex hull. This can be easily
shown:

Lemma: A is the minimum permissible marginal utility for the set of application configu-
rations that minimizes J(\).

Proof:

J(A) = ~Ubest + Ppest
where Up, .+ and P, correspond to the total utility and power consumed by the configuration
minimizing J(A).

Because these values minimize J(\), perturbation can only increase J(A). Therefore,

=
>
A

—(U — dslope) + A\(P — 0)
J(A) < J(A) + dslope — XS

where slope is the slope of the convex hull between the optimal point and the next point to the
left, which uses less energy and generates less utility, and ¢ is the change in power going to that

point. So
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0 < dslope— N
A6 < dslope
A < slope

Even with the constraints, we can achieve any particular tradeoff between utility and power
by only considering system configurations that have marginal efficiencies—the change in utility
over the change compared to the next lower-utility, lower-energy point on the convex hull—
greater than or equal to a fixed number A\. Furthermore, once we fix a value for \, we can
continue to use it even if the applications running on the system change. The system will
continue to run with the same tradeoff between utility and energy, which means that if similar
applications replace the currently running applications they will achieve a similar total runtime
and utility. Moreover, if we replace the applications with new ones that offer more utility for
energy spent, energy consumption will increase to take advantage of the better opportunities
to gain utility for the user; likewise, if new applications are less efficient, energy use will be
reduced to conserve energy for the future. The marginal efficiency metric A therefore provides
a mechanism which permits the actual power consumption of the system to vary in response to
the changing workloads.

Because our constant as the workload changes is the efficiency metric A rather than power,
energy, or utility, the system’s power consumption can increase at one time to take advantage
of the availability of high-efficiency tasks, and decrease at others if no high-efficiency tasks are

available.

6.5.6 Optimality properties

It is important that although our restated optimization problem remains an NP-hard knap-
sack problem, it shares important optimality properties with the Lagrangian approach. These
optimality properties provide us with a method of solving the full optimization problem in
Equation (6.1), which we will introduce in a later section.

As proven in the theorem above, for any value of A\ the returned solution is optimal in that

no other solution has both a larger utility, and a smaller total energy consumption.
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The most powerful optimality property, however, is inherited from the Lagrange optimiza-
tion theory. This is that a fixed A will correctly allocate energy to different applications, even
as the workload changes. As long as the marginal utility remains constant, the allocation of
energy to the various applications running at different times will achieve the optimal utility for
the energy spent. We can therefore use the Lagrange optimization to optimize over changing
application loads both in the context of known future tasks (much as is done in [76]), and in
the case when task sets for the future are known only statistically. The choice of configurations
for any particular set of applications is determined only by the CPU and network demands of
the current application set, and a globally-precomputed value for A. This fact leads us to a
solution to the top-level problem in Equation (6.1), and will be explored in detail in the next

two sections.

6.6 Optimization for Known Workloads

Although doing Lagrange allocation — that is, the use of marginal utility to pick an ap-
propriate operating point — is serviceable for optimizing the system for running a fixed set of
applications, it is not ideal. It optimizes over the convex hull of the utility /energy curve rather
than the full scatter, and therefore may leave some portion of the energy unused, achieving a
lower utility than otherwise could be be realized.

However, we have considered only the case where the same applications are running on the
system from the initial start until the battery is exhausted. Normally, system workload varies
as the user moves from one task to another. The true value of the Lagrange allocation method
comes from its ability to handle cases where the workload varies over time.

In fact, if we use any fixed Lagrange multiplier A when we allocate utility and energy to
the applications running on the system, the resulting system configurations will be optimal in
that they will achieve the maximum possible utility for the amount of energy consumed. Also,
as we accumulate more different workloads, the extra utility we can achieve by using operating
points not on the utility-energy convex hull diminishes.

We can solve the varying-workload optimization problem using a straightforward extension
to the Lagrangian solution to the fixed-workload case. Each time an application enters or leaves
the system, we create a new “cell” in the Lagrange construction [77], that can be optimized

independently given a fixed A. Because each “cell” can be optimized independently, we do not
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need to consider the solutions for previous or future workloads when finding an optimal set of

configurations for the current tasks.

6.6.1 Lagrange construction for allocation across workloads

Because workloads are nonoverlapping, the top-level problem setup in Equation (6.1) can
be converted to to a Lagrangian optimization problem. This is because although each workload
is subjected to CPU and network constraints that are not subsumed into the Lagrangian opti-
mization, each workload is active for a fixed time period and its effects on CPU and network
utilization do not extend past that time period. The only constraint that affects all work-
loads simultaneously is the energy constraint, which has been subsumed into the Lagrangian
multiplier ).

Each time an application enters or leaves the system, a workload is created, We can treat
this new workload as an additional Lagrangian “cell” [77]. This “cell” can be optimized inde-
pendently from the other cells using a precomputed value for A, and we do not need to consider
the solutions for previous or future workloads when finding the optimal set of configurations
for the current tasks.

The Lagrangian minimization problem is formalized as follows:

0 = min | 3 Ut 000, confy) -+ APt 0. confpy )

= / min >~ U(t, app, confy,,) + AP(t, app, conf,,, freqq,,)
t confs,, freg, apps,

= time; X min U (app, conf,,,) + AP (app, conf,, ., freq
; ) con fs“ freqsi a,%si ( ) app) ( 3 app’ app)

= Z timei X Jz(A)
i

where J;()) is the Lagrange problem corresponding to the ith distinct workload. Each workload
consists of a list of running applications apps;, a list of corresponding application configurations
confs;, and operating frequencies fregs;. time; is the length of time that the workload is active.

Because the time intervals corresponding to the different sets of applications being summed
over are nonoverlapping, we can split the constraints on CPU and network into corresponding
nonoverlapping intervals, each of which is optimized separately. The CPU and network con-
straints are therefore subsumed into the calculation of J;(A), and there is no need to explicitly

consider these constraints when searching for A.
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As a result, we can optimize the top-level problem, to within a convex-hull approximation,
by doing a Lagrange search over A at the top level, while doing full searches to find J;(\) for each
set of applications independently. There is no need to search the cross product of applications

running at different times.

6.6.2 Optimality properties

Because this remains a Lagrange formulation, we inherit all of the associated optimality
properties [77]. Most importantly, for any value of A, the amount of utility we get for the
associated energy consumption is the maximum possible, and we can find any point on the
convex hull of the composite utility-distortion curve. We can also still use a fast bisection
search over A to find an appropriate value [79].

In other words, the Lagrange formulation permits us to reduce the complexity of the top-
level allocation problem from a cross-product of all application configurations to a small number
of allocations for each set of applications. Even if we are optimizing for a particular runtime,
the resulting solution will be optimal to within a convex-hull approximation.

Furthermore, if we consider total (integrated over time) utility and we permit the system to
achieve additional utility by slightly extending our runtime from the original goal, choosing con-
vex hull points on the utility-energy curve is optimal as long as the time slices are short enough
to be negligible compared to the system runtime. This directly follows from the optimality of
the Lagrange (convex hull) solution for any runtime it finds.

Theorem: Total utility (integrated over time) from a point on the utility-energy convex
hull is higher than the net utility from a point off the convex hull that provides the same or
greater utility.

Proof: If we consider a point on the convex hull, and another point that provides more
utility and is not on the convex hull, the efficiency (utility per unit energy) of the point on the
convex hull will be greater than the efficiency of the point not on the convex hull. (Otherwise,
the point not on the convex hull would also be on the convex hull, a contradiction.)

Therefore, as long as we can use any remaining energy to increase run time and achieve
additional integrated utility, we will achieve more utility from the additional time than we

would have by using the additional energy earlier.
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These optimality properties lead to a surprising conclusion. If we allow the runtime of the
system to extend indefinitely, the problem definition breaks down. Because there is no penalty
for waiting, the optimizer will reject any applications that do not offer a very large utility return
for energy consumed. These very efficient applications may appear only rarely, resulting in the
system spending most of its time doing nothing at all. While this behavior is mathematically

optimal, in practice it may not be considered desirable by a user.

6.7 Stochastic Problem and Solution

Another benefit of using the Lagrange formulation to solve the resource-allocation problem
is that the optimality of the Lagrange formulation is retained, even if the future workload is
known only probabilistically. Although in the stochastic case we can recompute utility and
runtime only probabilistically, the Lagrange formulation assures that for whatever runtime we
realize, the maximum possible average utility is achieved, and equivalently that for whatever

average utility is achieved, then we realize the maximum possible runtime.

6.7.1 Stochastic problem statement

We introduce the stochastic problem as a variant of the top-level problem in which the
workloads are not known in advance. Instead of having a list of workloads and the time periods
that they are active, we have a list of potential or representative workloads, and probabilities
that they are active at any given time instant.

We define the term Pr(i) to be the probability of workload i—that is, a combination of
applications we index using i—being active at any given time instant. In other words, it is
the probability the system is running that particular combination of applications. We further
assume independence of applications running at different times. While this assumption is
patently false, if battery lifetime is long enough, the actual distribution of applications running
during the lifetime of the battery will be close to the a priori probabilities. P,yq is computed as

Eiot

P =
Y9 ™ runtime

where Ejy 4 is the capacity of the system battery and runtime is the desired expected runtime.
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With these assumptions, the stochastic problem can then be stated as

max Pr(i) Z U (app, conf; app) (6.8)
confs;, freq; apps,;
s.t.

ZPT(i) Z P(app, conf; apps fred; app) < Pavg
i apps,;

Vi, Y C(app, conf; app: fred; app) < 1
apps;

Vi, Y N(app, conf; ) < 1
apps;

For the stochastic version of the allocation problem, we have simply replaced the integrals
over time with summation over workloads and their associated probabilities. Note that if the
distribution of future workloads is known exactly, this form is equivalent to the integrals over
time in Equation (6.1). Instead of optimizing utility given a runtime constraint, we instead
optimize expected utility given a constraint on expected average power. The use of expectation
for both utility and power is somewhat flexible; especially on the power side it may be useful

to optimize for, say, worst-case or 90th percentile runtime.

6.7.2 Stochastic problem solution

Since the stochastic problem setup shown in Equation (6.8) is only trivially different from
the deterministic problem introduced in Equation (6.1), we can apply the same Lagrangian
techniques we used in the previous section to solve the stochastic problem.

We convert the problem to Lagrange form by writing Equation (6.8) in terms of a La-
grange multiplier \. We do this by replacing the optimality criterion with the usual Lagrange

formulation:

JAN) = min Y Pr(i (6.9)

confs, freqs ™
Z _U(appa Confi,app) + AP(appa conj%,appafre%,app)
apps;

s.t.

Vi, Y C(app, conf; gpp, freg; app) < 1
apps;

96



Vi, Z N (app, conf; o) < 1
apps;

By interchanging the summation and the minimization, we can rewrite this in terms of the
single-application Lagrange weight:

J(A) = > Pr(i) min l > —Ulapp, conf; o) +
i confs, fregs | apps,

)\P(app, con i,appafTeQi,app)]

= Z Pr(i) J;(\)

To find the value of A\ that maximizes the expected utility (to within a convex-hull approx-
imation) while ensuring that the expected running time of the system is at least some fixed
value, we simply do a search over A to find the value that minimizes J(A). Because J(\) is
expressed in terms of J;(\), this search does not require evaluating cross products of different
workloads; each workload is only optimized once per value of A checked.

The probability distribution of the workload is only used to estimate the average system
power and hence the runtime; it is not used to determine the configuration used at any particular
time. This limits the effect of inaccuracies in workload probability estimates. Although an
inaccurate estimate will result in a runtime longer or shorter than desired, the system will still
run efficiently. Hence, it is possible to design the system to allow the user to control A more
directly, possibly providing an estimate of the resulting runtime (for either the current workload
or estimated future workloads) for any input value for .

The optimal value of A depends only on the probability distribution of workloads that may
run on the system; it does not depend on what applications are running at any particular
time. Therefore, once an optimal A is chosen, it can be used for a long time—until the desired
runtime changes or the battery is replaced or charged, or until the probability distribution that
was used to compute A is no longer valid. Even as the workload changes, the value of A\ we
use to compute the optimal allocation of resources for any given workload stays the same, as it

represents the optimal division of energy between the current workload and the future.
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6.7.3 Optimization with a base power load

So far, we have considered optimization only in the case where the applications are the
only drain on the battery. However, in a mobile environment there will generally be some
base load associated with system components, such as the display, that remain active even
if no applications are running. This base load affects our optimization algorithm significantly,
because increasing the runtime decreases the total energy availability by the corresponding base
load.

The solution to the desired-runtime problem is the same: compute the energy availability
after subtracting the base load for the desired runtime, and then allocate for the correct average
power across the distribution of possible workloads.

However, the addition of a base load makes another optimization problem interesting: max-
imize the integral of utility over the run time of the system. This problem without a base load
is trivial: operate the most efficient application in any possible workload at its most efficient
(and hence lowest-utility) configuration, and disable all other applications. With a base load, it
is no longer necessarily the case that the lowest-utility configuration is optimal, because when
the system is operated at a low-power, low-utility configuration, the base load is likely to be the
dominant power drain. In this case, the benefit of conserving energy for later use is diminished,
and using energy more rapidly is justified.

This new problem can be stated as

max ZPr(i) Z U (app, conf; qp,) | X runtime (6.10)
confs;.fregs; | 5 apps,
s.t.
E
runtime < —tot
avg
Vi, Y Clapp, conf; gpp, freg; opp) < 1
apps;
Via Z N(G,pp, con i,app) <1
apps;

where

Pavg = Pba,ge + Z PT(Z) Z P(app, co"fi,appaf"‘6Qi,app)
i apps;
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This problem can also be solved using the Lagrangian formulation shown in Equation (6.9)
by searching for an appropriate value of A\. In this case, we must compute the average power
consumed for the value of \ being evaluated, add the base load, and compute the lifetime of
the system given the battery energy. We can then multiply the lifetime by the expected utility
of the system to estimate the total utility. Since the total utility is a product of an increasing
function of A (expected utility) and a decreasing function of A (expected runtime), it is convex,
and we can optimize the resulting value using a bisection search on A. The resulting solution
will be the closest convex hull point to the optimal solution; however, the proof that the convex
hull point is actually optimal no longer applies.

Although this stochastic allocation approach can be used to choose an appropriate value of
A for a known list of workloads and expected runtime, it cannot be used for prescheduled task
lists if the system must maximize utility in the presence of a base power load. The running
time in this case is variable, and the workload distribution changes depending on the total run
time of the system. Such varying workload distributions do not fit the fixed probability model

we require for the stochastic algorithm.

6.7.4 Network variation

The Lagrangian approach can be easily extended to encompass variation of the network.
This is done by adding the network state to the description of each workload when searching
for an appropriate value of A. In other words, we list the cross product of network states and
workloads, setting the probability for each to be the probability of the workload times the
probability of the network state. This effectively expands the number of workloads evaluated
by a factor of the number of possible network states. Since the network state can generally
be quantized into a small number of possible bandwidths, this extended problem will generally

remain tractable.

6.8 Simulation Setup

We use the simulator developed in the previous section to evaluate the effectiveness of
the Lagrangian resource allocation. Although the Lagrangian theory provides mechanisms
whereby we can respond to variations in the network, we assume a fixed network that provides

a constant bandwidth and per-byte energy demand. This is done to restrict this discussion to
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the performance of the Lagrangian allocation algorithm itself and not the nature and effects of

the network variations.

6.8.1 Simulation environment

The network is modeled as having a bandwidth of 500 Kbyte/s and a per-byte energy cost
of 1 uJ. The CPU uses the same model of the Athlon XP-M 1700+ with voltage and frequency
scaling used in previous sections. The desired runtime is set to 600 s, and the starting energy
of the battery is varied to simulate environments under tighter and looser power constraints.
The simulation runs for 600 s or until the initial energy supply is exhausted, whichever comes
first. Parasitic power demands (such as the display) are not considered; it is assumed that
the provided initial energy excludes any parasitic power that would be consumed during the
requested running time.

The simulation environment does not presently charge the Lagrange optimization for the
processing time and energy spent doing its one-time search for the Lagrange multiplier. The
run time for the current implementation of the Lagrange multiplier search is approximately
2 s at full processor speed for the “realistic” workload, so it would increase the total energy
consumption for the Lagrangian case by about 50 J. We do not charge this energy because
in practice it would be amortized over a much longer runtime than the 600 s used in these

simulations.

6.8.1.1 Applications

For these simulations, we re-use the adaptive encoder application described in Chapter 2.
The application is run on input streams with two different image sizes, CIF (352 x 288) and
QCIF (176 x 144). For each image size, the resource requirements can be reduced at the cost
of decreasing utility by decreasing the frame rate from the base of 10 (CIF) or 15 (QCIF) fps.
The system also supports reducing the quality by increasing the quantizer step size for CIF
encoding, although these configurations are relatively inefficient (in terms of utility per unit
power consumed) and are therefore not selected by the optimizer.

Each operating mode allows application adaptation: 15 available compression modes when

Q = 6, and 6 when Q = 12.
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Table 6.1 Application base utilities

Resolution | Frame | Quantizer Utility
rate step size | per second

CIF 10 fps Q=6 1.00
(352 x 288) Q=12 0.80
5 fps Q=6 0.60

Q=12 0.50

3.3 fps Q=6 0.20

Q=12 0.15

QCIF 15 fps Q=26 0.50
(176 x 144) | 10 fps Q=6 0.30
5 fps Q=26 0.10

The base utilities for every possible configuration of the encoder are shown in Table 6.1.
These numbers are expressed as a rate, in terms of utility per second. Each second that the
application is running and set to a given configuration, it accumulates the utility shown in the
table.

Because choosing meaningful values for the base utility would require extensive human trials,
values were instead were assigned by hand. These particular values for utility were selected
to ensure that the utility is a monotonic function of resource utilization and hence energy.
They do not result in a convex energy/utility curve; this is intentional and intended to put the
Lagrangian approach at a slight disadvantage.

In addition to the base utility, which is associated with the application itself, each time an

4

application starts it is assigned a “weight” by the user. The weight connects the base utility of
the application with the user’s perception of its importance—it is a “utility mapping function.”
The implementation multiplies the weight assigned by the workload by the base utility rate
of the application to find the actual utility rate for each potential application configuration.
The higher the weight, the higher the resulting utility, and the more likely it will be that the

application will be allocated enough energy, CPU time, and network bandwidth to operate at

a high quality level.

6.8.2 Simulation workloads

We implement these simulations by defining two different prototype workloads, consisting of

the CIF and QCIF versions of our adaptive encoder application. The first “realistic” workload
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is intended to represent a reasonable variation in desired applications and utility; the second is
a “best case” workload intended to highlight the improvements in total utility that can come
from allocating energy only to the most beneficial applications.

The prototype workloads list the possible application sets, the weight for each application,
and the probability that this application set is active. We then generate the actual workload
by choosing a workload from the prototype according to the associated probability distribution
for each 30-second slice of a 600-second simulation run. The input stream is a composite of
several MPEG test sequence, treated as a circular array. As part of the workload creation
process a starting position for each application invocation is chosen randomly (with a uniform
distribution) from the frames in this composite stream.

In all cases, the original probability distribution from which the actual workloads are drawn
is used along with composite statistics about the application’s resource demands to compute
the value for A used for the Lagrangian optimization.

It is important to note that the global allocator is permitted to refuse any offered jobs, and
that each job can run at one of several different quality/utility levels. This means that the
actual energy consumption of an offered workload can vary down to zero, if none of the offered

applications receives an energy allocation.

6.8.2.1 “Realistic” workload

The “realistic” workload (Table 6.2) is intended to represent things a user could plausibly
do with the computer. As we are limited by the fact that our adaptive application is an
encoder, it is not particularly “realistic” in practice. However, unlike the “advantageous”
workload it has not been designed to provide the Lagrangian optimization approach with a
large advantage. We therefore expect the utility improvement we achieve with this workload
to be more representative of the general case.

These workload probability distributions are synthetic and created to illustrate a point.
However, one possible explanation for this type of workload is a remotely operated wireless
camera controller (controlling several cameras) covering some type of event. CIF encoders
(which consistently have higher priorities) could represent cameras being used for a live feed;

QCIF encoders could represent cameras that are being previewed at the mixing board but are
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Table 6.2 “Realistic” workload
‘ Probability ‘ Image size ‘ Weight ‘

20% | CIF 15
20% | QCIF 0.8
CIF 1.0
25% | CIF 1.3
QCIF 1.0
25% | QCIF 1.0
QCIF 0.5
QCIF 0.5
10% | CIF 1.0
QCIF 0.7
QCIF 0.7

not currently active. As cameras are turned on and off and sent to the feed, the workload

changes.

6.8.2.2 “Advantageous’” workload

The “advantageous” workload (Table 6.3), on the other hand, represents a situation under
which the Lagrangian optimization makes a large difference in the total utility of the system.
It does not represent an upper bound (as the utility improvement given a suitably constructed
workload availability is unbounded). It is instead intended to show that under certain circum-

stances, large utility improvements can be achieved.

Table 6.3 “Advantageous” workload

‘ Probability ‘ Image size ‘ Weight ‘

20% | CIF 100.0
CIF 100.0
80% | CIF 1.0
CIF 1.0

This type of workload distribution could be found in a sensor network. The rare, high-value
operations occur when the sensor has detected something of interest and the operator is likely
to be actively viewing the sensor’s output; the common, low-value operations occur when the

system has not detected anything of interest and therefore is unlikely to be needed or monitored.
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6.9 Simulation Results

We evaluate the performance of the Lagrange optimizer against the “Energy-greedy” heuris-
tic described by Yuan et al. [2].

Figures 6.1 and 6.2 show the results of a proof-of-concept simulation of the Lagrangian
allocator. Each set of graphs includes five rows of three graphs. The first four rows repre-
sent the same sequence of workloads; each workload sequence consists of a list of workloads,
drawn randomly from the “realistic” or “advantageous” probability distributions of applica-
tions. New workloads are drawn for every 30-second slice, so there are 20 different workloads
total represented in each graph. However, the system may shut down early and not run the
last several workloads. The last row of graphs shows the average results across 10 realizations
of the workload sequences, including the four shown as Workloads 1 through 4.

The leftmost column of graphs shows the total realized utility—in other words, the sum
of the utility values multiplied by the running time and the weight of each application—over
the 600 s the system is allowed to run. The middle column shows the amount of time that
the system runs before it shuts down, either due to running out of time or exhausting its
energy. The rightmost column shows the total energy consumption of the system. None of
these totals include the time and energy that would be spent finding the optimal value of A
as it is assumed to have been computed off-line. The overhead of allocating resources to each
application entering and leaving the system is, however, included.

Each graph has a solid, darker line representing the results for the Lagrangian optimization
and a dashed, lighter line representing the “energy-greedy” heuristic. The horizontal axis on
all the graphs is the starting energy of the battery, expressed in terms of the average power
permitted over the 600-second desired runtime; the starting energy in Joules is the value in
watts shown times 600. The vertical axis on the “utility” graphs is utility units based on the
application utility and weightings; on the “time” graphs it is seconds, and on the “energy”
graphs it is once again in terms of power averaged over the desired runtime of 600 s. The
performance is sampled across average power limits at every two watts from 5 to 25 W.

The minimum and maximum values across all 10 workload sequences is shown as error bars
on the “average” graphs. The darker error bars correspond to the Lagrangian optimizer, and

the lighter error bars correspond to the energy-greedy heuristic. Note that the minimum and
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Figure 6.1 “Realistic” workload. The “Workload” graphs show specific results for four work-
load sequences; all points on the graph for each row come from the same sequence of applications
entering and exiting. The “Average” graphs show average and min/max (indicated by error
bars) results across 10 workloads. Dashed/lighter lines are from the energy-greedy heuristic,
solid/dark lines are from the Lagrange optimizer. Left column shows the total (summed) utility,
middle column shows running time in seconds (limited to 600 s), right column shows average
power in watts.
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Figure 6.2 “Advantageous” workload. The “Workload” graphs show specific results for four
workload sequences; all points on the graph for each row come from the same sequence of appli-
cations entering and exiting. The “Average” graphs show average and min/max (indicated by
error bars) results across 10 workloads. Dashed/lighter lines are from the energy-greedy heuris-
tic, solid/dark lines are from the Lagrange optimizer. Left column shows the total (summed)
utility, middle column shows running time in seconds (limited to 600 s), right column shows
average power in watts.
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maximum values for each starting energy are each selected independently, and do not represent

any single workload.

6.9.1 “Realistic” workload

The results for the “realistic” workload are shown in Figure 6.1. We see that, on average,
there is a significant increase in utility when the starting power is low, and no significant
change in utility or energy consumption when the starting power is high. At an average power
constraint of 5 W, we improve the average achieved utility by over 20% by pushing the power
consumption from times that only low-utility tasks are running to other times when higher-
utility tasks are available. However, once the starting energy is sufficient to allow the average
power drain to exceed 15 W, there is no benefit from the use of the Lagrangian approach.

It can also be seen that in some cases, the total utility is reduced modestly. The worst loss of
utility observed is 12%, and occurs due to under-using energy; this case is shown as “Workload
3.” Here, at an average power limit of 9 W, only 77% of the original energy is used at the
end of the end of the 600-second desired runtime. This occurs when the actual application
selections have a lower utility than the prototype distribution. Although the applications to
be run are selected from the probability distribution provided to the code that computes the
optimal Lagrange multiplier, the workload list is short enough that significant variations from

the mean distribution can occur.

6.9.2 “Advantageous” workload

The results for the “advantageous” workload are shown in Figure 6.2. Because this workload
was constructed to show a large benefit from the Lagrangian optimization, we see an average
improvement in utility of over 140% when the average power is limited to 5 W. (It is important
to remember that a suitably constructed sequence could realize an arbitrarily large utility
improvement.) As the average power increases, the benefit we get from the Lagrangian approach
falls; at 13 W, the average improvement in utility is 23%. Above 17 W, there is no improvement
because the Lagrangian optimizer and the energy-greedy heuristic both yield exactly the same
configuration.

In fact, for several of the workloads, the utility curve is close to flat; for example, this is

true of the second and fourth workload shown in Figure 6.2, The flat utility curve is because,
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in these cases, there is enough energy to run all the high-utility tasks at full quality (achieving
the highest utility), and the low-utility tasks do not contribute significantly to the total utility.

At 15 W, we see a dip in running time across all the workloads, resulting results in noticeable
reduction in utility for several of the workloads. This dip occurs because when we do the search
for A, the system estimates that if all applications are run at their highest possible utility (i.e.,
A is set to zero), the average power will be slightly less than 15 W. In reality, though, the
power demand is slightly higher. This is partly, but not entirely, due to a systemic bias in
the predictions: the power predictions made when A is calculated do not include energy used
to allocate resources to applications as they enter and leave the system. (There is also some
bias in the predicted cycle count, because the procedures used to create these tables do not
accurately account for the per-application adaptation overhead.)

Because the system uses more energy than is predicted as it actually runs, allowing the
applications to all run at maximum utility does not conserve enough energy to run until the
end of the run time. Therefore, if a high-utility task appears at the end of the sequence of
workloads, it will not run and the system will be unable to achieve the maximum possible utility.
There are various solutions to this problem, including better accounting for various overheads
and allocating a certain amount of “reserve” energy to ensure that the full runtime is achieved.
We have not implemented these options here to demonstrate that while the Lagrangian theory
works, a practical implementation should address these issues.

It is also possible for the workload to have an atypically high utility—that is, more high-
utility (and therefore energy-consuming) workloads appear than the probability distribution
indicates. In these cases, the system will terminate early due to energy exhaustion. This effect
can be seen in Workload 1, where the total utility is much higher than the other workloads,
but the system shuts down early if the battery holds only enough energy for an average power

of 5 W.

6.10 Conclusion

In this chapter, we have shown that Lagrangian optimization techniques can be productively
applied to the problem of optimizing the allocation of a fixed pool of energy across multiple
applications as they enter and leave the system. This approach requires only that the proba-

bilities of various workloads be known; foreknowledge of the actual schedule is not required.
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Compared to existing constant-power optimization algorithms, the Lagrangian procedure can
provide significant improvements in achievable utility when energy is at a premium. If system
energy is significantly constrained, utility improvements of 20% or more are achievable.

We have also shown some of the problems that an actual implementation of this approach
would encounter. First, the approach is sensitive to the accuracy of the probability distribution
of the expected workload; mismatches result in consuming too much energy and terminating
early, or consuming too little and achieving less than the best possible utility. Second, if there
is no provision for periodically re-allocating the value of A, these inaccuracies and any other
inaccuracies in the predictions cannot be corrected.

Future work would require extending the implementation of the algorithm. First, the im-
plementation currently assumes a fixed network bandwidth; optimizing across varying networks
is important, but was not implemented in our proof-of-concept implementation. Second, the
algorithm should dynamically update the workload probabilities based on the actual use of the
system, and periodically update A as the energy availability and workload statistics change.
This would largely solve the problems shown in the results, where sometimes the predictions
result in over- or underestimation of the energy demands of the system for the desired run-
time. Third, the Lagrangian algorithms should be integrated more tightly into the GRACE
framework. Although the test system uses the GRACE infrastructure, it has not been tightly

integrated, and the optimizer A is found and set outside the GRACE system.
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CHAPTER 7

CONCLUSIONS AND FUTURE RESEARCH

7.1 Conclusions

The goal of my research was to design and implement the application-related components
of the GRACE system. In this thesis, I have shown the design of the GRACE adaptation
system, and provided results from a simulated implementation that show the effectiveness of
our hierarchical approach.

Because my work centers on the application, I started by developing an adaptive application
to run on our adaptive systems. This application is an H.263-style video encoder that allows
trading off processing and network bandwidth through the use of an adaptive motion search,
selective DCT's, and the transmission of uncoded macroblocks. The encoder permits the CPU
load associated with encoding to be varied by an order of magnitude, and the network load to
vary over several orders of magnitude; as a result, if the network bandwidth is large and the
network power is low, the total energy of the CPU and network combined can be reduced to
a small fraction of its original value. Because modern laptops fit this model— the CPU draws
up to 20 W or more, and the network card draws no more than 2-3 W—much of this potential
energy savings is actually achievable.

The adaptive application exposes adaptivity to the system, but cannot make allocation or
configuration decisions on its own. To do this, we use the GRACE system, a framework that
allocates resources and chooses configurations to minimize total energy consumption. The re-
sults in Chapter 5 show that the GRACE multilayer adaptation provides significant reductions
in energy consumption of the system; we have shown energy savings of more than 50% under
some conditions. Furthermore, we have shown that the fine-grained adaptations enabled by

the hierarchical adaptation approach permit additional energy savings that cannot be achieved
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through the use of coarse-time-scale global adaptations alone, and demonstrated that in cer-
tain cases a 20% reduction in power can be achieved through the addition of per-application
adaptation.

We have found that for laptops with 802.11-style networks, it is nearly universally advan-
tageous to reduce the work done by the CPU by increasing the network utilization. This is
primarily because the crossover point at which the network would draw more power than the
CPU is far below current or likely future CPU power figures. As a result, the choices for the ap-
plication configuration are primarily driven by responding to the network constraint. For fixed
networks or networks where the network-bandwidth constraint is relatively loose, this means
that near-optimal performance can be achieved through the use of global allocation alone.

For tighter network constraints, though, global allocation alone is problematic. Allocations
must be made for the worst-case network bandwidth and stream complexity, but doing so re-
duces the ability of the GRACE system to decrease the CPU workload when network bandwidth
is less tight. (The alternative, allocating for a more “average” case, results in large numbers of
frame drops when the network bandwidth is reduced or stream complexity increases.) In these
cases, the per-frame adaptation permits finer-grained decisions to be made, and enables energy
savings by permitting CPU load to be reduced when extra network bandwidth is available.

We have also introduced a novel Lagrangian approach to the global allocation problem.
Unlike previous heuristic algorithms, the Lagrangian framework allows for true optimization
across varying workloads, even if the workloads are known only statistically. If the workload
varies significantly, huge improvements can be realized by reserving more energy for times when
high-utility tasks are available.

The Lagrangian approach to global allocation offers modest increases in utility for a “reason-
able” workload distribution that might occur in a videoconference or video production environ-
ment when energy availability is severely restricted. However, it is better suited to workloads
where there is a large disparity between “low priority” applications and “high priority” appli-
cations. If such a disparity exists, the Lagrangian approach can offer huge increases in system
utility; the scenario we evaluated, with a 100 times disparity and an 80:20 ratio between “low-
priority” and “high-priority” tasks, resulted in a utility increase of over a factor of two under

severely energy-constrained conditions.
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7.2 Future Work

This dissertation concentrates on the design of the GRACE system, and an simulated imple-
mentation of the GRACE architecture. But in addition to this simulation, the GRACE system
as described in Chapter 3 has been implemented on a pair of IBM Thinkpad laptops. This
prototype implementation supports CPU adaptation, network bandwidth estimation, and the
GRACE multilevel adaptation scheme. Using this implementation of the GRACE system, we
have achieved full-system energy savings of up to 12% as measured by a power meter attached
to the DC input of the GRACE laptop [72].

Future work will concentrate on porting the utility allocation algorithm introduced in Chap-
ter 6 into the actual implementation of the GRACE framework, and porting the GRACE
transport protocol [75] to the implementation of the framework as well. By porting these two
components, we will implement the entire GRACE system as originally envisioned.

Although we have shown the theoretical optimality properties of the Lagrangian optimiza-
tion algorithm and demonstrated its effectiveness, several practical limitations remain. As part
of integrating it into the GRACE test bed, we must address these limitations. Specifically,
we must address the issues of periodic reallocation and creating and updating the workload-
probability tables; the latter in particular is an interesting but difficult prediction problem that
deserves significant study.

Also, the Lagrangian optimization algorithm may be well suited for sensor-network appli-
cations. The Lagrangian algorithm makes the largest difference when there is a large disparity
between between frequent, “low-priority” tasks and infrequent, “high-priority” tasks. On a
sensor network, when “interesting” things occur, the utility from spending energy and running
high-quality algorithms is much higher than when nothing of relevance has been detected. Sen-
sor networks are also often significantly energy-constrained and intended to last for a particular
lifetime. Furthermore, the amount of time spent doing various operations is likely to be more
predictable as there is less human input in their operation. Another path of future work would
therefore extend the Lagrangian power allocation to remote sensors, possibly using the GRACE

ideas of hierarchical adaptation and network and CPU load shifting as well.

112



APPENDIX A

ENCODER LIBRARY INTERFACES

A.1 Encoder Interface

The original TMN H.263 code was designed as standalone encoder and decoder programs.
They were not designed to be linked together into a single application, or into a larger appli-
cation that supported a network transport. To make a workable test environment, we had to
change the encoder and decoder to allow them to be linked into an application that supported
error recovery and our cross-layer adaptation environment.

This has been done by collecting the encode-frame and decode-frame functions into a library
called “tmn-lib.” The library includes various functions to initialize the encoder, encode a frame,

and set the various adaptable parameters.

A.1.1 Core encoder functions

These functions provide the encoder basics: starting and stopping the encoder, and encoding
one or more frames.
int enc_init(char *options);
int enc_frames(unsigned char *framebuf, unsigned char *recbuf,
int count, unsigned char *bits, int bufsize, int force_i);

int enc_close();
int enc_frame_size(void);

extern int pels;
extern int lines;

enc_init Initialize the encoder. This function takes a list of encoder parameters. The only

important parameter that must be passed is the size of the stream to be encoded. This can be
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passed as either "-x 1" through "-x 5" representing SQCIF, QCIF, CIF, 4CIF, and 16CIF, or
"-X xres yres" for an arbitrarily resolution. To change the encoding resolution, the encoder
must be closed and re-opened.

enc_frames encodes one or more frames. It is provided with a pointer to an input buffer
holding one or more frames (framebuf) along with a count of the number of frames to be
encoded. It returns the encoded frames in the buffer pointed to by bits, which can hold at
most bufsize bytes; the number of encoded bytes is returned by the function. If force_i is
set, each of the frames being encoded is encoded without reference to past frames; if unset, the
frame may or may not be an I-frame depending on the configuration setting of the encoder.

Specifically, an I-frame will be encoded under the following conditions:

e The first frame after the encoder is initialized.
e If the fifth bit of enc_features is set.

o If the force_i flag is set.

enc_close closes the encoder and frees all of the memory allocated for the encoder state.
enc_frame_size returns the size (in bytes) of each frame, determined by the options passed
to the encoder at initialization. Also, the encoder sets the global values pels and lines with

the width and height of the image in pixels, respectively.

A.1.2 Adaptation controls

void enc_Q(int gp, int gpi);

void enc_get_Q(int *gp, int *qpi);

int enc_set_seek(int newdist);

int enc_set_motion_thresh(int thresh);

int enc_set_dct_thresh(int thresh);

double enc_set_block_drop_ratio(double new_ratio);
int enc_features(int clearbits, int setbits);

enc_Q sets the quantization step size. The qp parameter is the step size used for P-frames.
The gpi parameter is the step size used for I-frames.
enc_get_Q returns the current values for the quantization step sizes for P and I frames in

the address pointed to by gp and gpi.
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enc_set_seek sets the maximum distance from no motion that the motion-search algorithm
will check. Valid inputs range from 0 to 15 pixels. If a negative input is provided, the previous
value is returned.

enc_set_motion_thresh sets the motion-search threshold. If a negative input is provided,
the previous value is returned.

enc_set_dct_thresh sets the DCT threshold. Again, if a negative input is provided, the
previous value is returned.

enc_set_block_drop_ratio sets the ratio of blocks that are sent entirely uncoded. Valid
values are 0 to 1, inclusive. If a negative input is provided, the previous value is returned.

enc_features updates a bitmap indicating which encoder features are enabled. Although
several features are available, only one is tested. Setting the fifth bit tells the encoder to encode
all frames as I-frames, and clearing it tells it to use P frames. Internally, the current value is

AND’d with clearbits and OR’d with setbits.

A.1.3 Encoder state manipulation

int get_prev_images(unsigned char *image, unsigned char *recon) ;
int set_prev_images(unsigned char *image, unsigned char *recon) ;

These functions save and restore the state of the encoder. To save the state of the encoder,
allocate two buffers of the size returned by enc_frame_size (in bytes), and pass pointers as
image and recon to get_prev_image (). If these same pointers are then later passed back to
set_prev_images (), the state of the encoder is reset to the saved state.

This feature is used to ensure that the encoder and decoder remain synchronized even if
frames are lost. If a frame loss occurs, the application can restore the state to match the state

of the encoder before the missing frame was encoded.

A.2 Decoder Interface

The decoder works by accepting a buffer containing one or more encoded frames as input.
It then decodes the frame into an image buffer (in YUV format), and provides the number of
bytes read from the input. This allows the decoder to automatically split an incoming stream

into frames without requiring the application structure to understand the H.263 stream format.
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A.2.1 Core decoder functions

int decode_init(char *args, unsigned char *firstheader,
int headerlen, int *imagex, int *imagey) ;

int decode_frame( unsigned char *imageptr,

unsigned char *streamptr, int streamlen );

int decode_close( );

decode_init: Initialize the decoder.

To open the decoder, we must first load the header of the first frame and make it available.
This is so the encoder can read the size out of the stream, and initialize its internal buffers
appropriately. The firstheader parameter is a pointer to the first frame’s header; headerlen
is the amount of valid data it points to.

imagex and imagey return the size of the stream’s data, which is used to create a window
and properly size buffers for saving and restoring the decoder state. Any image buffers should
be allocated with a size of (((*imagex)* (*imagey))*3)/2 bytes.

Once again, args points to a string giving arguments. However in this case, no useful
arguments exist; this parameter should be an empty string.

decode_frame: Decode a frame. This takes as input a pointer to the decoded image, and a
pointer to the input and a length of the valid input. It decodes one frame and saves it in the
decoded-image buffer, and returns the number of bytes read.

decode_close: Close the decoder and deallocate any buffers that have been allocated.

A.2.2 Decoder state manipulation

void decode_get_refframe(unsigned char *buf);
void decode_set_refframe(unsigned char *buf);

These functions save and restore the state of the decoder (specifically, the reference frame)
in a buffer provided by the application. Obviously, the state of the decoder when decoding the
frame must correspond to the state of the encoder when it was encoded, or the frame will be
decoded incorrectly.

decode_get_refframe puts the current state of the decoder in an image-sized buffer pointed
to by buf. decode_set_refframe retrieves the image from the buffer pointed to by buf, and

copies it into the decoder.
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