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Abstract

Mobile systems primarily processing multimedia data are ex-
pected to become important platforms for pervasive computing.
These systems, however, must satisfy large, dynamic demands
of multimedia applications subject to stringent energy, compu-
tational, and bandwidth constraints. At the same time, multime-
dia applications provide the possibility of adaptation, allowing
tradeoffs between energy, computation, and network bandwidth
to maximize the user’s experience for the current resources.

Researchers have proposed adaptations in the hardware, net-
work, operating system, and applications to provide QoS guar-
antees and to save energy. To reap the full benefits of such adap-
tations, however, the different system layers and applications
must coordinate their adaptations with each other. This paper
describes a framework, called GRACE, to achieve such a co-
ordination, using a novel hierarchical approach that combines
global, per-application, and per-layer internal adaptation, for
multimedia applications running on wireless systems. GRACE
achieves the benefits of coordination through cleanly defined
interfaces that keep the internals of the different layers isolated
from each other. Our results so far show the effectiveness of
the hierarchical adaptations, and justify the use of coordinated,
cross-layer adaptations to both save energy and improve the
user’s multimedia experience.

1 Introduction

Wireless mobile devices, primarily processing multimedia data
such as video, audio, and images, are becoming important
platforms for pervasive computing. Compared to conven-
tional desktop and server systems, such mobile systems bring
new challenges for two reasons: (1) multimedia applications
present dynamically changing computation and communica-
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tion requirements that must be met in soft real-time, and (2)
system resources (such as CPU time, network bandwidth, and
battery energy) are limited and also dynamically change over
time. Thus, mabile systems need to support application quality
of service (QoS) in the presence of multiple dynamic resource
constraints and dynamic application requirements.

At the same time, our target mobile systems also introduce
new opportunities. First, unlike best-effort applications, mul-
timedia applications often result in some computational slack.
For example, from the perceptual quality point of view, there
is no benefit to completing the decoding of a video frame be-
fore the next frame is available. Such slack can be exploited
by slowing down hardware resources to save energy, with-
out affecting application quality. Second, multimedia applica-
tions can support multiple quality configurations, trading off
the quality for resource demands. For example, a video player
can decode video frames in different frame size and resolutions
based on currently available resources.

Based on the above observations, researchers have intro-
duced adaptive techniques within applications [2] and within
various system layers, such as the hardware [16], OS [10], net-
work protocols [7], and middleware [5]. These adaptations
have been shown to be effective both for QoS provisioning and
for energy saving. However, most of the prior adaptation work
focuses on adapting a single layer at a time (possibly in re-
sponse to changes in another layer). Such independent adap-
tations in multiple layers could potentially conflict with each
other or miss system-wide optimization opportunities.

This paper describes the Illinois GRACE (Global Resource
Adaptation through CoopEration) project, which is a cross-
layer adaptation framework for saving energy in mobile mul-
timedia systems. All system layers and applications are al-
lowed to be adaptive. These adaptive entities cooperate with
each other to achieve a system-wide optimal configuration (i.e.,
maximize system utility) in the presence of changes in the avail-
able resources or application demands.

Our framework currently considers the resources of CPU
time, network bandwidth, and the CPU and network transmis-
sion energy. It considers adaptations in the hardware layer for



the CPU (e.g., voltage and frequency scaling and architecture
adaptations), network layer (e.g., adapting transmission power,
changing to active, idle, or sleep states of the wireless card,
alternating between ARQ, FEC, or a hybrid for reliability),
the CPU scheduler (adapting CPU time budgets), the network
scheduler (adapting bandwidth budgets), and multimedia appli-
cations (e.g., changing video compression amounts to trade off
communication and computation without affecting user utility,
or changing frame size to trade off utility and all resource use).
Key challenges in designing such a cross-layer adaptive sys-
tem are: (1) achieving the benefits of continuous global cross-
layer adaptation with low overhead, (2) predicting the resource
usage of adaptive applications on adaptive system configura-
tions sufficiently well and enough in advance to trigger the right
adaptations, and (3) choosing which of possibly tens to thou-
sands of configurations to use given the resource predictions.
Finally, although we desire that all system layers and applica-
tions coordinate their adaptations, we also desire to preserve
the isolation and independence of different layers for practical
considerations such as ease of development and maintenance.
GRACE adopts a novel hierarchical approach with three lev-
els of adaptation to address several of the above challenges.
The first level is global adaptation, which considers the entire
system while adapting, but cannot occur frequently enough due
to its inherently high overhead. The other two adaptation lev-
els are limited in scope (per-application and per-layer internal);
these are lower overhead and hence can occur more frequently
to exploit short-term variations. To ensure that the limited-
scope adaptations do not subvert the coordination achieved by
the global adaptation, all adaptation levels are tightly coupled.
GRACE is also designed so that no application or system
layer need expose its internals to other parts of the system. This
is done by carefully defining the interfaces among different lay-
ers; these interfaces only encode the external impact of different
configurations, but do not divulge how that impact is achieved.
The GRACE framework leverages prior adaptation tech-
niques in all of the system layers we consider (e.g., [16, 10, 7,
5]), and shares some similarity with other coordination frame-
works (e.g., [9, 1, 18, 12, 4, 11, 3]). GRACE distinguishes itself
from prior work for two reasons: (1) It considers adaptations in
all system layers, from the hardware to applications. (2) It em-
ploys a hierarchy of adaptations to achieve high responsiveness
with small overhead. For example, Q-RAM [9], HATS [3], and
Q-fabric [11] consider adaptations in OS resource management
and applications only, while the approaches in [18, 12] adapt
the hardware and OS only. Our previous work has reported ex-
perience with prototypes focusing on parts of the design deci-
sions in GRACE [17, 14, 13]; this paper focuses on describing
the full GRACE framework in detail and is the first to describe
all three levels of adaptation.

2 The GRACE Framework

An ideal cross-layer adaptive system would continuously mon-
itor each application’s resource demands and available re-
sources. At any change, it would consider each possible com-
bination of configurations of the different system layers and ap-

plications as a candidate for the next instant. It would choose
the combination that maximizes utility while meeting appli-
cation demands within the available resources. The optimal
choice would require perfect knowledge of future resource de-
mands and availability. In practice, however, such an ideal sys-
tem is infeasible since continuous global adaptation would in-
cur unacceptably large overhead, and it is difficult to have per-
fect knowledge of the future.

We identify three key challenges that must be resolved by

a practical cross-layer adaptive system to approach the above
ideal:

e How to get the benefit of continuous global adaptation, but
with acceptable overhead?

e How to predict future resource demands and availability,
especially given that the configurations for the applica-
tions and system layers will change?

e How to choose an optimal configuration, given the above
predictions?

Sections 2.1, 2.2, and 2.3 describe how GRACE meets the
above challenges. Section 2.4 puts these parts together to sum-
marize the operation of the entire GRACE framework. The fol-
lowing assumes that multimedia applications are soft real-time
and periodic. They release a job (e.g., frame decoding) every
period, with a soft deadline as the end of the period. We use
utility to quantify the quality of each application configuration;
e.g., based on PSNR (peak signal-to-noise ratio) for video or
other basic quality models [2] or user preferences [8]. System
utility is the weighted sum of utilities of all concurrent applica-
tions and measures the overall quality. Further, the OS provides
soft real-time CPU and network schedulers which constrain the
resource allocation. For example, the earliest deadline first or
EDF CPU scheduling algorithm requires that the sum of CPU
utilizations of all applications is no more than 1, providing the
CPU time constraint for the system.

2.1 Hierarchical Adaptation — Balancing Scope
and Temporal Granularity

The ideal system described above performs adaptations that are
global in scope (i.e., considers all applications and system lay-
ers) and occur frequently (i.e., in response to any change at
any time in the system). Unfortunately, adaptations with global
scope potentially incur large overheads which makes it imprac-
tical to invoke them frequently. Consider, for example, that
each application or system layer may have tens to thousands of
possible configurations. A global adaptor would need to pre-
dict the resource demands for each application configuration
while running on each system configuration, and then choose
the combination that satisfied the current resource constraints
with the maximum utility. Exploring the full, or even partial,
cross-product of all of the configurations is expensive, both in
terms of the raw computation required and the communication
that would be incurred across different layers (e.g., messages
and context switches crossing application boundaries, system
libraries, and the kernel).

On the other hand, performing global adaptation too infre-
quently risks inadequate response to intervening changes, and
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Figure 1: Hierarchical adaptation. GRACE uses three levels of adaptation differing in scope and temporal granularity: (a) global
— adapts all system layers and applications, invoked infrequently for large changes, (b) per-application — adapts all system layers
for one application, invoked once per application job, (c) internal — adapts a single system layer or application (the system layer
adaptation could apply to multiple applications), invoked frequently (e.g., every packet in the network, every few instructions in

the hardware, every scheduling slice in the scheduler).

not performing global adpatation at all risks poor or even con-
flicting configuration choices in the independent layers.

Thus, our first challenge is to design a system with an ad-
equate balance between the scope and the temporal granular-
ity of adaptation. We use a hierarchical approach to solve this
problem: GRACE performs expensive global adaptations oc-
casionally, and limited-scope but inexpensive adaptations con-
stantly. The combination of the different levels of adapta-
tion allows us to achieve most of the benefits of continuous,
global adaptations without incurring the overhead of running
full cross-layer adaptations.

GRACE identifies and supports three levels of adaptation,
which increasingly trade off scope (and thus overhead) for finer
temporal granularity, illustrated in Figure 1:

e Global adaptation considers all applications and all sys-
tem layers together. It is invoked infrequently, in response
to large changes in resource demands and/or availability
(e.g., when an application joins or leaves the system).

e Per-application adaptation considers only one application
at a time, and adapts that application and all system layers
for that application. It is invoked at the start of each job of
the application.

o Internal adaptation adapts only a single system layer or
application, but the system layer adaptation could apply to
multiple applications. It may be invoked at a granularity
finer than a job (e.g., every packet in the network, every
few hundred instructions in hardware, or every scheduling
slice in the scheduler).

To ensure that the limited-scope per-application and inter-
nal adaptations do not subvert the coordinated full-system deci-
sions made by global adaptation, all three adaptation levels are
tightly coupled with each other. In particular, the global adapta-
tion determines a utility and relative resource allocation (CPU
time, network bandwidth, and energy) for each application that
maximizes overall system utility. This determination takes into

consideration the impact of any limited-scope adaptations. The
limited-scope adaptations, in turn, ensure that they respect the
globally assigned utility and resource allocations over the scope
of their adaptations.

In combination, the three levels of adaptation are able to

respond to all types of changes in resource demands and re-
source availability, while respecting the cross-layer coordina-
tion achieved by the global adaptation. The three adaptation
levels are described in more detail next.
Global adaptation: The goal of global adaptation is to allo-
cate available resources (CPU time, network bandwidth, and
energy) among all applications in a way that will maximize sys-
tem utility.

A global coordinator performs the resource allocation by
searching through the space of all combinations of configura-
tions of the different system layers and applications. It deter-
mines the overall utility and resource usage for each such com-
bination. The combination that maximizes the utility without
exceeding the available resources is chosen as the desired set
of configurations. This choice defines for each application the
utility it must achieve (i.e., the utility corresponding to the cho-
sen configuration for the application) and its relative resource
allocation (i.e., the time, bandwidth, and energy used by that
application configuration on the chosen configurations for the
CPU and network). Subsequent levels of adaptation view this
assignment of utility and resource allocation as a contract they
must respect.

The global adaptation process involves making predictions
of resource demands and availability, and choosing the best
configuration. Sections 2.2 and 2.3 respectively discuss tech-
niques for these purposes. While these techniques are practical,
they are still complex. Global adaptation is therefore invoked
infrequently, only in response to large changes in the system
(e.g., when an application enters or leaves the system, when
the resource usage of an application changes significantly due



to changes in the media stream, or when the available network
bandwidth or system energy drops significantly).

The long time interval between global adaptations, however,

implies its configuration choices could be sub-optimal. This
is because the underlying resource predictions also need to be
made for the long time interval, and hence are necessarily rough
estimates based on average statistical behavior. The conse-
quent configuration choices may not be optimal for short-term
variations that may occur during this time interval. The per-
application and internal adaptations compensate for this sub-
optimality as discussed next.
Per-application adaptation: Per-application adaptation is in-
voked at the start of each job of an application. At this time,
there is more accurate information about the job’s resource de-
mands than available to the global adaptation (e.g., the resource
demand for a job is well correlated to the demand exhibited by
the last few jobs, and can be derived by maintaining limited his-
tory). Similarly, information on currently available resources is
also more accurate. Thus, at this time, a more informed choice
can be made for the job. However, the overhead of determin-
ing a system-wide optimal configuration is too much to pay at
the start of each job. Therefore, the per-application adaptation
does not attempt to reallocate resources among different appli-
cations, but continues to use the same allocation (with an ex-
ception described below).

The goal of the per-application adaptation is to find the ap-
plication and system configuration that will provide the utility
expected by the global coordinator, within its CPU time and
bandwidth budget allocation, with minimal energy.

The per-application adaptation makes a distinction between
the resources of CPU time and network bandwidth, and en-
ergy. The former two are not conservable resources (i.e., if
CPU time and network bandwidth go unused, they cannot be
conserved for the future), while the latter is and can be saved
for later. Given that future short-term variations in resource
demands cannot be predicted, the per-application coordinator
seeks to minimize its use of energy while ensuring that it uses
up the time and bandwidth allocated. If less energy is used than
that allocated by the global coordinator, it can be “banked” for
later jobs which could be longer than the current one.

It may be possible for the per-application coordinator to find
configurations that increase the utility for the next job; however,
we do not allow this since it could potentially introduce rapid
fluctuations in the quality of the multimedia stream which could
be annoying to the user.

Finally, as described below, internal scheduler adaptations
can temporarily affect the CPU time available to a job (e.g.,
more time may be available if a previous job of another ap-
plication finished early). The per-application adaptation also
incorporates any such temporary resource availability changes
in its optimization process (if so indicated by the scheduler).
Internal adaptation: Internal adaptation adapts only a sin-
gle system layer or a single application at a time (a system
layer adaptation could apply to multiple applications, how-
ever). Since internal adaptation does not need to consider a
cross-product of configurations of different layers and/or appli-
cations, it is significantly more efficient and can potentially be
invoked at a very fine temporal granularity.

Internal adaptation is useful in many ways. For example,
recall that time and bandwidth allocations are made globally
assuming an average resource demand for each job. However,
a given job of an application may underrun or overrun this de-
mand, and the wireless channel quality may change temporar-
ily. In response to such variations, the CPU and network sched-
ulers can adapt by redistributing the allocated time and band-
width more optimally.

Second, internal adaptation can respond to variations in re-
source usage and resource availability that occur within a given
job. For example, different parts of the job may use different
CPU resources. Under-utilized resources could be deactivated,
thereby saving energy but without affecting CPU time. Simi-
larly, rapidly changing characteristics of the wireless channel
motivate network layer adaptations at the packet granularity, to
achieve a given net bandwidth and quality for an application.

Third, during the process of global and per-application adap-
tation, a system layer may apply an internal adaptation process
to determine its minimal energy configuration, given an appli-
cation configuration and resource allocation (motivated further
in Section 2.3). This can cull a significant part of the full cross-
product configuration space that must be searched by the global
or per-application adaptation coordinators. In particular, it al-
lows each system layer to locally integrate the effect of any
intra-job internal adaptations — exposing those adaptations to
the global or per-application coordinators would significantly
explode the configuration space and require the coordinators to
know too much about the internals of the individual layers.

As mentioned, there has been much work in adapting a single
layer or application at a time, and we can leverage all of that
work for internal adaptations. We therefore focus the rest of
this paper on global and per-application adaptations.

2.2 Predicting Resource Demands

All the adaptation levels require predicting the resource de-
mands for each application. The global level requires a long-
term prediction while the per-application adaptation requires a
prediction for the next job. Current real-time schedulers also
need to make long-term resource usage predictions. For exam-
ple, hard real-time CPU schedulers use a combination of mea-
surement and analysis to determine the worst-case execution
time of a job and schedule accordingly. Soft real-time sched-
ulers often profile (i.e., run) several jobs and use the measured
average or some other statistic (e.g., 90th percentile) for job
CPU time. Programmer input could also be used for this pur-
pose. For short-term predictions, a common technique is dy-
namic history-based predictors. For example, the CPU time for
the next job may be predicted as the average (or maximum or
some other statistic) of the CPU time of the last IV jobs (where
N is a small number).

Using the above techniques in the context of GRACE is not
straightforward since resource usage in GRACE depends on the
specific system and application configuration in use. For exam-
ple, we can using profiling to determine the long-term average
per-job CPU time, but the profiles would need to be collected
for each combination of application and system configuration,
with each profile run over a large number of frames. The prob-



lem with the short-term predictions is even more acute. It is
hard to develop history-based predictors because the previous
N jobs may have run with different system and application con-
figurations. Correlating the CPU time (or other resource usage)
of those runs with that for the next job is difficult. Even if it
were possible to form such correlations, it would require deep
knowledge of the different application and system layer con-
figurations, which is impractical and undesirable to incorporate
within a single centralized entity.

Our approach to reduce the complexity of the prediction
problem is to divide it into two parts — a system configuration
independent part that can be predicted entirely by the applica-
tion, and a system configuration dependent part that is handled
by the specific system layer. For example, as applied to the
CPU [15], the CPU time demand of a job can be divided into
the number of instructions in the job and time per instruction (or
TPI, which is determined by the product of CPU frequency and
instructions-per-cycle or IPC). The number of instructions in
a job is entirely an application-level parameter, independent of
the rest of the system configuration. Its prediction can therefore
be localized within an application-level predictor, oblivious to
the rest of the system. The time-per-instruction or TPI predic-
tion can be made within the hardware layer. Previous work has
shown that, for several multimedia applications, TPI for a job
stays roughly constant across all jobs of the same type! for a
given CPU and application configuration [6].2 TPI (effectively
IPC) can therefore be measured by profiling a job for each ap-
plication configuration on each system configuration once at
the beginning of the application run. Analogous observations
hold for CPU energy, which can be divided into instructions
and energy per instruction.

Similarly, to quantify network bandwidth and energy de-
mands in system-independent terms, we use the application-
level traffic (number of bytes generated by the job) to be trans-
mitted per job and any application specified QoS requirements
(e.g., acceptable loss rate). The application-level traffic is in-
dependent of the network layer protocols, and again can be
estimated using a purely application-level predictor. Depend-
ing on the network protocol used (e.g., use of ARQ vs. FEC
vs. some hybrid for reliability) and the current channel quality,
more bytes will be added per job or the transmission power may
be increased, affecting the total expected bandwidth and trans-
mission energy. However, the impact of this can be determined
purely in the network layer, and does not need to be made vis-
ible to the application. Analogous observations hold for the
additional CPU time and energy spent by network processing
on behalf of the application.

In summary, with each application, we associate a predictor
of the application’s resource demands in system-independent
terms. With each system layer, we associate a resource demand
predictor that takes the system-independent estimate for an ap-
plication configuration and converts it to an absolute measure

1Some applications explicitly contain jobs of different types; eg., I, P, and
B frames of MPEG.

2The intuition is that the nature of the work done is generally the same for
al jobs (quantifi ed by TPI); only the amount of work varies across jobs (quan-
tifi ed by instruction count). For applications where this observation does not
hold, the instruction count and TPl may not be independent, and other system-
independent statistics (e.g., distribution of instructions) may be needed.

for the resource demand (time, energy, and/or bandwidth) for
a specific configuration of that system layer. These predictors
form the key interface between the application and system lay-
ers (the actual communication between them is orchestrated by
the operating system as described later). The predictors could
be implemented by the designers/vendors of the adaptive appli-
cation or system layer, as a user-level library or as part of the
operating system. Further, our approach does not preclude non-
adaptive applications and system layers — the “predictors” as-
sociated with these default to the conventional techniques cur-
rently used as described earlier.

2.3 The Optimization Process

The third challenge for GRACE is to develop, for each adapta-
tion level, an efficient optimization process that picks the best
system and application configurations. Our approach exploits
the hierarchical adaptation framework and the ability to express
resource demands in system-independent parameters.
Per-application optimization. The per-application coordina-
tor must determine the best configuration for its application
and the other system layers that minimizes energy, given the re-
source allocation and utility assignment for the application (ob-
tained from the other adaptation levels). For simplicity, below,
we assume that the CPU and network are independent system
layers; i.e., network protocol processing occurs on a separate
hardware. The optimization process is as follows:

1. The per-application coordinator first queries the applica-
tion predictor to determine all the application configura-
tions that will give the required utility, along with their
resource demands for the next job (expressed in system-
independent terms).

2. For each application configuration above, the coordinator
sends the resource demand and allocation information to
the CPU and network internal adaptors.

3. These adaptors independently perform an internal adapta-
tion to determine their minimal energy configurations and
the resultant energy for the given application configuration
and resource allocation. (It is possible for these internal
adaptations to use known information about the resource
allocations to other applications as well.)

For example, the CPU internal adaptor receives the CPU
time allocated to the job and the predicted instruction
count for the job. The adaptor calculates the ratio of
these terms as the maximum TPI allowed. It then sim-
ply chooses the CPU configuration that has TPI less
than the above maximum with the minimum energy-per-
instruction (EPI). The total estimated energy is this EPI
times the instruction count.

4. The internal adaptors convey their minimal energy config-
urations and resultant energy back to the per-application
coordinator. It is possible that there is no feasible config-
uration for a given set of parameters, in which case, the
internal adaptor returns a negative response.

5. The coordinator sums the total energy from the CPU and
network, and chooses the application configuration (and
associated hardware and network configurations) with the
lowest total energy. It indicates the chosen configurations



back to the internal adaptors of the application, hardware,
and network respectively.

If no feasible system configuration is found for any appli-
cation configuration, the application coordinator indicates
this to the global coordinator. At this point, the global co-
ordinator may decide to drop the job, or trigger a global
reallocation if too many jobs of this application have al-
ready been dropped, or the job may proceed anyway until
its budget is exhausted and then move to best-effort mode.

A key attribute of the optimization process described is that
the coordinator is oblivious to the actual adaptation process
within each layer, and the application and system layers are
oblivious to each other. Thus, this process preserves the de-
sirable isolation and independence of the different system lay-
ers and the applications. The only information exchanged be-
tween the different parts of the system is the resource demand
of an application configuration (in system-independent terms)
and the resource consumption of a system layer (in absolute
terms). No part of the system needs to know about how any of
the final configurations are reached, or even what they are.
Global optimization. Global adaptation needs to determine,
for each application, configurations for the application and sys-
tem such that system utility is maximized within the available
resources. This is an NP-hard problem in general. Our previ-
ous work has solved this problem for some system scenarios
by mapping it to the knapsack problem and using established
heuristics to solve it [13, 17] (Section 3.1). The most signifi-
cant limitation of our solutions so far has been that we assume
that network bandwidth is unconstrained (although we charge
for energy for network transmission [13, 14]).

Our future global optimizer will combine our hierarchical ap-
proach with search algorithms such as genetic algorithms or
simulated annealing. It will search the space of possible re-
source allocations across applications and the utility demanded
of each application. For each such combination, the optimizer
will invoke the per-application optimizers independently for
each application. These optimizers will return the best configu-
rations using their optimization algorithms, if a solution exists.
The global coordinator continues the search until no better fea-
sible solution is likely to be returned.

In our implementations, the global optimizer took an order of
magnitude more time than the per-application optimizer [13].

2.4 Putting it Together

We next summarize the operation of the complete GRACE
framework, illustrated in Figure 2. In addition to the compo-
nents already mentioned, the system includes monitors to mea-
sure application resource usage and utility, so the scheduler can
ensure that all applications stay within their allocation and util-
ity contract. The monitors are also used by the predictors to
estimate system-independent and system-dependent portions of
the resource demands. The global and per-application coordi-
nators and the CPU and network schedulers with their internal
adaptors are implemented as part of the operating system. To
describe the full operation of GRACE, we start when a new ap-
plication joins the system. This results in the following actions.
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Figure 2: The GRACE system.

. A global adaptation is triggered. This first adaptation
process starts by initializing the system-independent and
system-dependent parts of the resource demand predic-
tions of the different configurations of the application (not
shown in Figure 2). This part can be run in either best-
effort mode, or a portion of the real-time partition of the
system may be pre-allocated to the global coordinator.
The global coordinator then starts its optimization pro-
cess by communicating with the per-application coordina-
tors (Section 2.3). For each resource allocation suggested
by the global coordinator, the per-application coordinators
send back the best combination of configurations.

The coordinator chooses the per-application resource al-
location and utility that maximizes system utility. It sends
this information to each per-application coordinator, to the
CPU and network schedulers, and the utility information
to the application’s predictor and internal adaptor. If no
allocation returns a feasible solution, the new application
is denied admission, and the system proceeds as before.
The scheduler schedules the next job, modifying its allo-
cations based on prior underruns/overruns.

Before the job runs, the per-application coordinator deter-
mines the best CPU, network, and application configura-
tion using the process described earlier (i.e., by determin-
ing the new allocation from the scheduler and then com-
municating with the internal adaptors). It conveys the best
configurations to all the internal adaptors, which invoke
the appropriate adaptations.

As the job runs, internal finer-granularity adaptations take
place within the CPU, network, and application. The mon-
itors monitor resource usage and utility. If a job violates
its contract, the global coordinator is informed, and it de-
cides if the job should be dropped or allowed to continue
in best effort mode or if a new global adaptation should be
triggered to reallocate resources. The monitors also help
to update the predictions for the next job and for the next
global adaptation.

If an application leaves the system or a resource reduces
significantly (detected by monitors or by observing in-
creased deadline misses), a global adaptation is triggered.



3 Reaults

We separately examine the benefits of global, per-application,
and internal adaptations, using the prediction and optimization
mechanisms discussed earlier. Our implementations so far use a
simplistic network layer model and assume unconstrained net-
work bandwidth, but we consider network transmission energy
in Section 3.2. An implementation integrating all the adaptation
modes and an adaptive network layer with constrained network
bandwidth is currently in progress.

3.1 Benefits of Global Adaptation

We first evaluate the benefits of global adaptation of the
GRACE framework based on its first prototype, GRACE-1.
This prototype coordinates CPU frequency/voltage scaling in
hardware, soft real-time CPU scheduling in OS, and quality
adaptation in applications for stand-alone devices [17].

GRACE-1 takes an energy-greedy heuristic approach for
global adaptation; specifically, the coordinator seeks to maxi-
mize the overall system utility under two constraints: (1) CPU
resource constraint— the aggregate CPU utilization of all con-
current applications is < 1. (2) Energy constraint— the battery
should last for a user-defined lifetime (e.g., the time length of a
DVD movie or expected runtime of all applications).

We have implemented GRACE-1 on a laptop with a single
AMD Athlon processor, supporting six frequencies {300, 500,
600, 700, 800, 1000 MHz}. The OS is Redhat 7.2 Linux with a
modified kernel 2.4.18; specifically, we add kernel modules for
soft real-time scheduling and frequency setting.

We use adaptive MPEG video player applications, which can
trade off video quality for CPU demand. Each player sup-
ports nine quality configurations by changing the frame rate and
dithering methods (e.g., in color or gray). For each configura-
tion, we profile the number of cycles for each frame decoding
and use the average across all frames as the CPU demand of
the configuration; we then define the utility as a linear function
of the CPU demand; i.e., v = a + b X %, where a and b are
constants, and P and C are the period and demanded cycles of
the configuration.

Since we currently do not have power meters, we use nor-
malized energy from the AMD CPU specification, where the
relative CPU power is 0.22, 0.35, 0.47, 0.6, 0.74, and 1.0 for
the six different frequencies, respectively. When the CPU runs
for ¢ time units at frequency f, its normalized energy consump-
tion is ¢ x p(f), where p(f) is the relative power at f.

We compare GRACE-1 with a baseline policy without adap-
tation, and with four policies that adapt one or two layers:

e No-adapt. No layer adapts: CPU runs at the highest fre-

quency; the applications run at the highest configuration.

e CPU-only. Only the CPU is adaptive: CPU frequency is
adjusted according to the total CPU demand of all concur-
rent applications.

e App-only. Only applications are adaptive: when an ap-
plication arrives, it configures its configuration as high as
possible, given the currently available CPU resource.

e App-CPU. This is uncoordinated adaptation in the appli-
cation and hardware layer: the application and CPU adapt
as in the app-only and CPU-only cases respectively.
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Figure 3: Benefits of global adaptation.

e App-OS. Upon an application joining or leaving, the OS
coordinates the adaptation of all current applications to
maximize the system utility at the highest frequency.

Under each policy, we start an MPEG player every 12 sec-
onds; each player decodes the video 4Dice.mpg with frame size
352 x 240 pixels and 1679 frames, and exits after completing
the video. We measure the achieved battery lifetime and accu-
mulated system utility for each policy. The accumulated sys-
tem utility is the integral of the system utility over the achieved
lifetime. We assume the desired lifetime is 900 seconds, and
perform experiments with different battery energy of 300, 600,
900, and 1200 normalized units.

The results (Figure 3) show that GRACE-1 achieves the
highest system utility and almost the desired lifetime for dif-
ferent energy availability. In particular, it improves the utility
by 19%-63% and the lifetime by 33%-58%, compared to other
policies that adapt only some of the system layers. This indi-
cates that significant benefits are obtained from global adapta-
tion in the GRACE framework. More detailed results can be
found in [17].

3.2 Benefits of Per-Application Adaptation

We evaluated the benefits from per-application adaptation us-
ing adaptive applications and hardware. We consider CPU time
and energy, and network transmission energy, but assume that
network bandwidth is unconstrained. These results assume that
a global coordinator (such as discussed above) has made a re-
source allocation for the adaptive application. A more detailed
discussion of the system and the results can be found in [14].

The application studied is a video encoder based on the TMN
(Test Model Near-Term) 1.7 encoder, which encodes standards-
compliant H.263 streams. It was modified to integrate a fast
motion search and to provide 16 different tradeoffs between
computation and compression [14] through the selective elimi-
nation of low-value motion comparison and DCTSs.

We predict instruction count and byte count for the next
job (frame) using a set of linear predictors. For every tran-
sition between the previous frame’s application configuration
and the next frame’s application configuration, the linear pre-
dictors map the previous frame’s instruction and byte count to
an estimate for the next frame.
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Figure 4: Energy comparison for fixed and adaptive systems

The CPU studied is a modern out-of-order superscalar
general-purpose processor with a conventional cache/memory
hierarchy. It employs both dynamic voltage and frequency scal-
ing (DVS) and architecture adaptation. It supports four ar-
chitectural configurations varying in instruction window size
and number of functional units, and scales frequency between
100MHz and 1GHz at voltages ranging from 0.7 to 1.8 volts.
The CPU’s peak power dissipation in its fastest configuration
is approximately 40W. Since we do not have access to CPUs
that provide software control for architecture adaptation, we
perform this study using a detailed cycle-by-cycle architecture
simulator, RSIM.

The CPU profiles the application configurations for IPC and
EPI as mentioned earlier and uses this information to convert
instruction count to CPU time and energy.

To trade off between energy consumed in the network and
energy consumed on the CPU, some model of the network is
required. Our network model assumed a fixed cost (2 x 106
J) per byte, that any overhead is incurred on a per-frame ba-
sis and the bandwidth of the wireless network is much greater
than the bandwidth consumed by the video stream. We also as-
sumed that the network does not lose packets, and that energy
consumed by the CPU running network code is insignificant
compared to the per-byte energy cost.

We assume each job is assigned a CPU time (presumed to
come from an external, global allocation) of 33ms.

Our simulations show that our approach, using per-
application coordinated adaptation across layers, allows sig-
nificant energy savings over systems that do not adapt all lay-
ers. The fine-grained adaptation offered by the hierarchical ap-
proach also allows additional energy savings by taking advan-
tage of short-term variation in the stream.

Figure 4 shows the energy required to encode two sequences
(Carphone and Foreman) under five hardware/application sce-
narios. In each chart, the first four bars show all the com-
binations of fixed and adaptive hardware and application re-
spectively (e.g., FH/FA denotes fixed hardware running the ap-
plication without any adaptation, FH/AA denotes fixed hard-
ware and adaptive application). To see the benefits of the
per-application adaptation over a best possible global appli-
cation adaptation, we also tested a system where the adaptive
hardware ran with a fixed application configuration where the
thresholds are chosen to minimize energy across the specific
encoded sequence, denoted “Best-Fixed.”

In these experiments, the value of coordinated adaptation is
clear; the addition of application adaptation saves significant
amounts of energy. On the adaptive hardware, the addition of

application adaptation saves an additional 20% or so more en-
ergy for Carphone, and around 15% more for Foreman. Com-
paring AH/AA with Best-Fixed, we also observe that the flex-
ibility to choose different configurations on a frame-by-frame
basis provides an additional energy savings of approximately
5% for our adaptive system when encoding Foreman (which
consists of an initial “talking head” segment followed by a more
complex “pan-and-zoom” segment). This additional savings
from per-job adaptation is unachievable with a high-overhead,
low-adaptation-frequency global adaptor alone. More short-
term variations (e.g., use of I, P, B frames in MPEG or more
variations in the input stream) will further amplify these bene-
fits.

3.3 Benefits of CPU internal adaptation

To see the benefits of internal adaptation, we report results for
internal adaptation in the CPU at the granularity of every 256
instructions. As in the previous section, the CPU can resize its
instruction window and change the number of active functional
units, but at a much finer granularity [15]. The CPU also em-
ploys DVS at a per-job granularity, but not within a job due to
the relatively large overhead of invoking DVS. The study as-
sumes a fixed time allocation for a job (assumed to come from
the global coordinator), equal to the time it takes for the longest
frame of the application on the fastest CPU configuration. It
also assumes a fixed application (to isolate the benefits from
internal CPU adaptation) and considers nine different multime-
dia applications encompassing speech, audio, and video codecs.
The baseline is a system where the CPU adapts only at job
boundaries (based on the predicted instruction count of the job
and the globally allocated CPU time). We find that adding the
above intra-job internal adaptation to the system with job-level
adaptation gave an additional energy reduction ranging from
2% to 19% (average of 9%) across the nine applications. More
details on this study can be found in [15] and another paper
submitted to the same Computer special issue.®

4 Conclusionsand Future Work

This paper describes the framework of the Illinois GRACE
project, a novel approach for meeting the challenging demands
of an increasingly dominant computing platform — adaptive
mobile systems employing wireless communication and run-
ning multimedia applications. These systems have demand-
ing, dynamic, and multidimensional resource constraints, along
with strict limitations on available energy. The GRACE frame-
work leverages the ability of multimedia applications to trade
between output quality and resource consumption, and, to re-
duce energy by exploiting slack without affecting application
quality.

We have proposed a system architecture where all layers
(hardware and software) are flexible and adapt cooperatively to
best meet the real-time demands of the applications, within the
available resources. For the systems we target, we believe that
such joint cross-layer adaptation will be critical to achieving

3The other submission is focused on internal hardware adaptation.



future benefits from adaptation. In contrast to the limited pre-
vious work on joint adaptation, we believe that our framework
will enable cross-layer cooperation in a manner that greatly en-
hances software reusability, enables a globally optimal solu-
tion, and readily enables adaptation across multiple layers. At
the same time, our approach retains the advantages of previous
fixed systems that isolate functionality within different layers.

Furthermore, we have implemented significant portions of
the complete framework outlined here. This work shows that
the combination of global, per-application, and per-layer inter-
nal adaptations can provide significant reductions in the amount
of energy consumed by multimedia systems. We have also
shown that the proper use of coordination between operating
system resource allocation and individual adaptive applications
allows us to increase the total utility of the running system,
while restricting energy consumption to achieve a specified bat-
tery lifetime. We are currently working on a complete system
that integrates all levels of adaptation, incorporates adaptive
networking with constrained bandwidth, uses more refined no-
tions of utility, and considers applications with multiple syn-
chronized tasks that share resource allocations.

Although our focus has been on energy management for sin-
gle multimedia mobile nodes, we believe that the principles
of the GRACE framework will be extensible to other domains
as well, including non-adaptive and non-realtime applications,
adaptations in other parts of the system (e.g., other hardware re-
sources), cross-layer thermal management, and, through the ad-
dition of an additional cross-node adaptation layer, distributed
applications across multiple nodes.
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