
896 IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 8, AUGUST 1988

Machine-Independent Virtual Memory Management
for Paged Uniprocessor and Multiprocessor -

Architectures
RICHARD RASHID, AVADIS TEVANIAN, JR., MICHAEL YOUNG, DAVID GOLUB, ROBERT BARON,

DAVID BLACK, WILLIAM J. BOLOSKY, AND JONATHAN CHEW

Abstract-Recent technological advances in memory manage-
ment architectures, multiprocessor systems, and software archi-
tectures dictate a reevaluation of the virtual memory management
support provided by an operating system. The problems posed by
multiprocessor systems and the portability issues raised by the
large variety of memory management units available have not
been satisfactorily addressed by past virtual memory systems. In
addition, increases in virtual memory functionality that can be
provided by memory managed architectures have gone largely
unnoticed by system designers.

This paper describes the design, implementation, and evalua-
tion of the Mach virtual memory management system. The Mach
virtual memory system exhibits architecture indepedence, multi-
processor and distributed system support, and advanced func-
tionality. The performance of this virtual memory system is
shown to often exceed that of commercially developed memory
management systems targeted at specific hardware architectures.

Index Terms-Architecture independence, Mach, parallel op-
erating systems, UNIX, virtual memory.

I. INTRODUCTION
HILE software designers are increasingly able to cope
with variations in instruction set architectures, operating

system portability continues to suffer from a proliferation of
memory architectures. UNIX [181 systems have traditionally
addressed the problem of virtual memory (VM) portability by
restricting the facilities they provided and basing implementa-
tions for new memory management architectures on versions
already done for previous systems. As a result, existing
versions of UNIX, such as Berkeley 4.3BSD [lo], offer little
in the way of virtual memory management other than simple
paging support. Versions of Berkeley UNIX on non-VAX
hardware, such as SunOS on the SUN 3 and ACIS 4.2 on the
IBM RT PC, actually simulate internally the VAX memory
mapping architecture-in effect treating it as a machine-
independent memory management specification.

Since the fall of 1984, CMU has been engaged in the
development of a portable, multiprocessor operating system
called Mach. One of the goals of the Mach project has been to
explore the relationship between hardware and software

Manuscript received October 15, 1987; revised February 15, 1988.
R. Rashid, M. Young, D. Golub, R. Baron, D. Black, and J. Chew are with

the Department of Computer Science, Carnegie-Mellon University, Pitts-
burgh, PA 15213.

A. Tevanian, Jr., is with NeXT, Inc., Palo Alto, CA 94304.
W. J. Bolosky is with the University of Rochester, Rochester, NY.
IEEE Log Number 8821805.

memory architectures and to design a memory management
system that would be readily portable to multiprocessor
computing engines as well as traditional uniprocessors.

Mach provides complete UNIX 4.3BSD compatibility while
significantly extending UNIX notions of virtual memory
management and interprocess communication [11. Mach sup-
ports

large, sparse virtual address spaces,
copy-on-write and read-write memory sharing between
copy-on-write and read-write memory sharing between

memory mapped files, and
user-provided backing store objects and pagers.

tasks,

This has been accomplished without patterning Mach’s inter-
nal memory representation after any specific architecture. In
fact, Mach makes relatively few assumptions about available
memory management hardware. The primary requirement is
an ability to handle and recover from page faults.

Mach runs on a number of uniprocessors and multiproces-
sors including the VAX family of uniprocessors and multipro-
cessors [12], [3], the IBM RT PC family [24], the SUN 3
family, the Encore Multimax, the Sequent Balance 21000 [6],
MIPS [13], the IBM 370 family [9], the BBN Butterfly Plus
1193, and several experimental computers such as the IBM RP3
[161. Despite differences between supported architectures, the
machine-dependent portion of Mach’s virtual memory subsys-
tem has been kept relatively small. All information important
to the management of Mach’s virtual memory is maintained in
machine-independent data structures and machine-dependent
data structures which contain only those mappings necessary
to running the current mix of programs.

Mach’s separation of software memory management from
hardware support has been accomplished without sacrificing
system performance. In several cases, overall system perform-
ance has measurably improved over existing UNIX implemen-
tations. Moreover, this approach makes possible a relatively
unbiased examination of the pros and cons of various hardware
memory management schemes, especially as they apply to the
support of multiprocessors. This paper describes the design
and implementation of virtual memory management within the
CMU Mach Operating System and the experiences gained by
the Mach kernel group in porting that system to a variety of
architectures.

0018-9340/88/0800-0896$01.~ O 1988 IEEE

-T

RASHID el al. : MACHINE-INDEPENDENT VIRTUAL MEMORY MANAGEMENT 897

11. MACH DESIGN and protection. One consequence of the decision to link
message passing and virtual memory is the fact that faults on
nonmemory-resident memory object data result in messages
sent to the backing-store port for that object. This permits
memory objects to be implemented either by the kernel
directly Or by user-state programs since either could hold
receive access rights to a memory object port.

There are five basic Mach abstractions.
1) A task is an execution environment in which threads

may run. It is the basic unit of resource allocation. A task
includes a paged virtual address space and protected access to
system resources (such as processors, port capabilities, and
virtual memory). A task address space consists of an ordered
collection of mappings to memory objects (see below). The
UNIX notion of a process is, in Mach, represented by a task
with a single thread of control.

2) A thread is the basic unit of CPU utilization. It is
roughly equivalent to an independent program counter operat-
ing within a task. All threads within a task share access to all
task resources.

3) A port is a communication channel-logically a queue
for messages protected by the kernel. Ports are the reference
objects of the Mach design. They are used in much the same
way that object references could be used in an object-oriented
system. Send and Receive are the fundamental primitive
operations on ports.

4) A message is a typed collection of data objects used in
communication between threads. Messages may be of any size
and may contain pointers and typed capabilities for ports.

5) A memory object is a collection of data provided and
managed by a server which can be mapped into the address
space of a task.

Mach is fundamentally a message passing communication
kernel. Operations on objects other than messages are per-
formed by sending messages to ports. In this way, Mach
permits system services and resources to be managed by user-
state tasks. For example, the Mach kernel itself can be
considered a task with multiple threads of control. The kernel
task acts as a server which in turn implements tasks, threads,
and memory objects. The act of creating a task, a thread, or a
memory object, returns access rights to a port which repre-
sents the new object and can be used to manipulate it.
Incoming messages on such a port result in an operation
performed on the object it represents.

The indirection provided by message passing allows objects
to be arbitrarily placed in the network (either within a
multiprocessor or a workstation) without regard to program-
ming details. For example, a thread can suspend another
thread by sending a suspend message to that thread’s thread
port even if the requesting thread is on another node in a
network. It is therefore possible to run varying system
configurations on different classes of machines while provid-
ing a consistent interface to all resources. The actual system
running on any particular machine is thus more a function of
its servers than its kernel.

Mach message passing and virtual memory management are
intimately linked. Large message transfers are implemented
using copy-on-write memory mapping techniques. This allows
large amounts of data, including whole files and even whole
address spaces, to be sent in a single message without the cost
of data copying. In addition, the interface that Mach provides
to memory management is implemented in terms of messages
sent to the ports which represent tasks and memory objects.
The use of port references provides both location transparency

lII. THE PROGRAMMER’S VIEW OF MACH VIRTUAL MEMORY

Each Mach task possesses a large address space that consists
of a series of mappings between ranges of memory addressable
to the task and memory objects. The size of a Mach address
space is limited only by the addressing restrictions of the
underlying hardware. An RT PC task, for example, can
address a full 4 Gbytes of memory under Mach’ while the
VAX architecture allows at most 2 Gbytes of user address
space. A task can modify its address space in several ways,
including

allocate a region of virtual memory on a page boundary,
deallocate a region of virtual memory,
set the protection status of a region of virtual memory,
specify the inheritance of a region of virtual memory, and
create and manage a memory object that can then be

mapped into the address space of another task.

The programming interface that Mach provides to manage
tasks and memory objects can be divided into four functional
groups:

address space manipulation, including the allocation
and deallocation of virtual memory,

memory protection, allowing flexible use of memory
protection hardware,

memory inheritance, which defines the sharing relation-
ship between the address spaces of related tasks, and

miscellaneous primitives, that formalize access to statis-
tics maintained by the Mach kernel, access other task’s virtual
memory, and describe a task’s address space.

Table I summarizes the interface based on these functional
groups.

A . Address Space Manipulation Primitives
Mach treats an address space as a sequence of pages. The

size of a logical page in Mach is not necessarily the same as the
underlying hardware page size. Instead, it is a boot time
parameter which can be any multiple of the hardware page size
that is a power of two. This allows a system administrator to
select a page size appropriate both to his machine type and mix
of applications.

Each page in a task’s address space is considered to be
either allocated or unallocated. A reference to an unallocated
page results in a memory protection violation. An allocated
page may be directly addressed and the data it contains are
derived from a memory object.

Virtual memory is allocated using the vm-allocate primi-
tive and is deallocated using the vm-deallocate primitive.

’ This feature is actively used at CMU by the CMU RT implementation of
CommonLisp.

898 IEEE TRANSACTIONS ON COMPUTERS, VOL. 31, NO. 8, AUGUST 1988

TABLE I
MACH VIRTUAL MEMORY INTERFACE FUNCTIONAL GROUPS

1 Functional Group I Primitives

Allocated virtual memory does not necessarily consume
system resources. By default, memory allocated by vm-
allocate contains no data. Physical pages are not allocated
until the virtual addresses in the range specified by vm-
allocate are referenced at which time pages are allocated and

corresponding page of the existing address space. Inheritance
values can be specified on a per page basis and can take on one
of three possible values:

VM-INHERIT-NONE: The page is not transferred to the
child. The page is left unallocated in the child.

VM-INHERIT-COPY: The page is copied into the child.
Subsequent modifications to the page affect the task making
the modification only. For efficiency, pages are usually only
copied when a write operation occurs (copy-on-write) .

VM-INHERIT-SHARE: The page is shared between the
parent and the child. Changes made to the page by either the
parent or child will be seen by both.

~~

filled with zeros. The vm-allocate-with-pager primitive is
used to allocate a range of task addressable pages that are
backed by a specific memory object. This feature of Mach
allows user-state programs to provide their own implementa-
tion of backing storage for regions of virtual memory. Tasks
which implement one or more memory objects are usually
referred to as external pagers. A complete description of
external pagers and their use in Mach can be found in [26].

By default, pages have an inheritance value of VM-
INHERIT-COPY. The inheritance value of pages is set with
the vm-inherit primitive. A task may freely set the inheritance
value of any allocated pages it can access.

An example of the way in which inheritance might be used
is the Mach implementation of the UNIX fork operation. Fork
creates a child process which is a copy of its parent. In Mach,
this is implemented by setting the inheritance value of the

B. Memory Protection Primitives
Just as memory allocation is performed at the page level,

Mach’s memory protection primitives are also defined to
operate on ranges of pages. Each allocated page in an address
space has two protection codes associated with it:

its current protection, which corresponds to the protec-
tion code associated with a page for memory references, and

its maximum protection, which’ limits the value of the
current protection.

A page’s protection consists of a combination of read,
write, and execute permissions. Each type of permission is
mutually exclusive. Proper enforcement of the protection
codes depends on hardware support. Lack of hardware support
may allow extra access to occur. For example, most memory
management units (MMU’s) do not distinguish between read
access and execute access. Therefore, on such MMU’s, it is
possible to execute any readable instructions regardless of
execute permissions.

Protection codes are set using the vm-protect primitive,
which can be used to set either the current protection or the
maximum protection. The current protection cannot be set to
include a permission not set in the maximum protection.
Further, the maximum protection may only be lowered. Once
a permission is removed from the maximum protection code, it
may never be added.

C. Memory Inheritance Primitives
A new address space is created in Mach as a side-effect of

task creation. Task creation, and thus address space creation,
is performed by the task-create primitive. task-create
constructs a new address space which is either empty or based
on an existing address space. When creating a new address
space (child) based on an existing space (parent), each page in
the new address space is based on the inheritance value of the

parent task to VM-INHERI?-COPY, creating the child
address space, and then creating a thread of control for the
child which begins executing at the location of the parent’s
program control counter at the time of fork. In addition to
pure copy-on-write sharing of the parent’s address space,
however, Mach’s inheritance primitives also allow read/write
or no sharing of page ranges between a UNIX parent and its
child processes.

D. Miscellaneous Primitives
While usually not necessary for normal memory manipula-

tions, Mach provides a number of miscellaneous primitives
which formalize memory management functions often needed
for advanced applications.

For example, it it typically the case that a thread can only
reference the memory corresponding to the task in which it
executes. However, it is sometimes necessary to read or write
the address space of another task. For example, a debugger
needs to examine and modify the address space of the task
being debugged. These operations may be performed using the
vm-read and vm-write primitives. The vm-copy primitive
may be used to efficiently copy a range of virtual memory
within an address space using copy-on-write techniques.

Information specific to an address space may be determined
with the vm-region call. This primitive returns a description of
a region of an address space including protection values,
inheritance values, and other pertinent information. Finally,
the vmstatistics primitive provides a formal interface allow-
ing tasks to query current virtual memory statistics maintained
by the kernel.

These operations are secured against malicious use by
unauthorized users due to the fact that the caller must have
send access rights to the task ports of the tasks they
manipulate. By default, only the creator of a task has such an
access right, although that access right may be passed to other
tasks in messages.

~- . -1 - 7 I 1

RASHID et al. : MACHINE-INDEPENDENT VIRTUAL MEMORY MANAGEMENT 899

IV. THE IMPLEMENTATION OF MACH VIRTUAL MEMORY tained in page entries in the resident page table. These entries
The design and implementation of Mach’s virtual memory are indexed by physical page nudXr . Each entry may

subsystem was dictated by several concerns: simultaneously be linked into several lists:

portability (i.e., architecture independence),
flexible address space manipulation,
multiprocessor support, and
performance.

The need for portability led to a system structure in which
machine-independent and dependent modules were clearly
defined with strict interfaces between them. All key functions
were implemented in a machine-independent fashion.

The desire for flexible address space handling directed the
choice of address space management data structures. Simple,
small data structures were used to represent the contents of an
address space to reduce both the implementation complexity of
address space operations and the amount of storage required.

Multiprocessor concerns resulted both in a user-visible
design which exported the notion of read/write shared memory
and in an object-oriented internal implementation style which
allowed fine-granularity locking.

Performance was achieved through aggressive lazy-evalua-
tion. The key to this approach is the fact that virtual memory
operations are often ephemeral in their effect. For example,
UNIX programs frequently allocate more data and stack space
than they usually use. Message passing logically copies data,
but it is seldom true that a receiving program changes a
memory value it has received in a message. By postponing
operations until their results are needed, a virtual memory

a memory object list,
a memory allocation queue, and
an object/offset hash bucket.

All the page entries associated with a given object are linked
together in a memory object list to speed up object dealloca-
tion and virtual copy operations. Memory object semantics
permit each page to belong to at most one memory object.
Allocation queues are maintained for free, reclaimable, and
allocated pages and are used by the Mach paging daemon, a
kernel thread that attempts to maintain a minimum number of
free, clean pages available to user-state tasks. Fast lookup of
the physical page associated with an object/offset is performed
using a bucket hash table keyed by memory object and byte
offset.

Byte offsets in memory objects are used throughout the
system to avoid linking the implementation to a particular
notion of physical page size. A Mach physical page does not
always correspond to a page as defined by the memory
mapping hardware of a particular computer. The size of a
Mach page is a boot time system parameter. It relates to the
physical page size only in that it must be a power of two
multiple of the machine-dependent size. For example, Mach
page sizes for a VAX can be 512 bytes, 1K bytes, 2K bytes,
4K bytes, etc. Mach page sizes for a SUN 3, however, are
limited to 8K bytes, 16K bytes, etc.

system can often avoid performing them altogether.

A . Virtual Memory Data Structures C. Address Maps
Four basic memory management data structures are used in

Mach:
1) the resident page table: a table used to keep track of

information about machine-independent pages,
2) the memory object: a unit of backing storage managed

by the kernel or a user task,
3) the address map: a doubly linked list of map entries,

each of which describes a mapping from a range of addresses
to a region of a memory object, and

4) the pmap: a machine-dependent memory mapping data
structure (i.e., a hardware-defined physical address map).

Not surprisingly, these data structures correspond roughly
to various hardware or software concepts. The resident page
table corresponds to a machine’s physical memory. An
address map corresponds to a task (in Mach) or a process (in
UNIX). A memory object corresponds to a source for paging
(a file, for example). Finally, a pmap corresponds to a
hardware’s representation of an address space (page tables, for
example).

B. Managing Resident Memory

Addresses within a task address space are mapped to byte
offsets in memory objects by a data structure called an address
map. An address map is a doubly linked list of address map
entries, each of which maps a contiguous range of virtual
addresses onto a contiguous area of a memory object. This
linked list is sorted in order of ascending virtual address and
different entries may not map overlapping regions of memory
(see Fig. 1).

Each address map entry contains information about the
inheritance and protection attributes of the region of memory it
defines. For that reason, all addresses within a range mapped
by an entry must have the same attributes. This can force the
system to allocate two address map entries that map adjacent
memory regions to the same memory object simply because
the properties of the two regions are different. Operations that
operate on a subset of a region corresponding to an entry
usually result in that entry being split into two separate entries
pointing to the same object.

The address map entry also contains pointers for the doubly
linked list management, as well as the byte offsets of the start
and end of the region that the entry represents. Fig. 2
summarizes the address map entry data structure.

Physical memory in Mach is treated primarily as a cache for
the contents of virtual memory objects. Information about
physical pages (e.g., modified and reference bits) is main-

This address map data structure was chosen over many
alternatives because it was the simplest that could implement
efficiently the most frequent operations performed on a task

I

900 IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 8, AUGUST 1988

Address map: Head Tail Hint

Fig. 1. A simple address map.

Fig. 2. An address map entry.

address space, namely,

page fault lookups,
copy/protection operations on address ranges, and
allocation/deallocation of address ranges.

A sorted linked-list allows operations on ranges of addresses
(e.g., copy-on-write copy operations) to be done simply and
quickly and does not penalize large, sparse address spaces.
Moreover, fast lookup on faults can be achieved by keeping
last fault “hints.” These hints allow the address map list to be
searched from the last entry found for a fault of a particular
type. Because each entry may map a large region of virtual
addresses, an address map is typically small. A typical VAX
UNIX process has four mapping entries upon creation-one
each for code, stack, initialized data, and uninitialized data.

Several alternative data structures were considered and
rejected. The simplest alternative was an array of page table
entries, similar to the VAX architecture. This solution makes
both lookup and ordered traversal fast, but is not sufficiently
compact, especially for sparse address maps. A multilevel
page table can be made compact; however, it is potentially
expensive to use when performing operations on large address
ranges. Tree-structured address maps were also considered,
but were rejected due to implementation costs (see [7]).

D. Memory Objects
A Mach address map need not keep track of backing

storage. Instead, backing storage is implemented by Mach
memory objects. Logically, a memory object is a contiguous
repository for data, indexed by byte, upon which various
operations (e.g., read and write) can be performed.

Data contained in a memory object can be mapped into a

task address space by any of the following mechanisms:

as the result of an explicit mapping, using, for example,
the vm-allocate- with-pager primitive,

as the result of a virtual copy operation, such as that
which results from receiving a large message, in which the
data in the object are accessible copy-on-write, or

as the result of a Mach taskcreate operation or a UNIX
fork operation, in which case the data can be either fully
shared or accessible copy-on-write, depending on inheritance
values.

Conceptually, a memory object represents some form of
secondary storage. More specifically, the contents of a memory
object are determined by the pager for that object. This could
be anything from a UNIX file (in the case of a UNIX file
system pager-see [22]) to a large database (in the case of a
database disk manager acting as a pager-see [21]). The act of
mapping part of an object into a virtual address map makes
that data available for direct access within that address space.

The kernel acts as a cache manager for object data, using
physical memory as a cache of the object’s contents. Refer-
ences to data in an object that are not in the physical memory
cache are translated into paging requests on the paper. As a
result, the virtual memory object maintains information about
those pages cached for each object (the resident page
structures) as well as information on how to communicate with
the pager (see Fig. 3).

As was pointed out in Section IV-B, resident pages are
contained in only a single object. This is because each object
defines a separate area of virtual memory. Sharing of physical
pages occurs as the result of objects being mapped by several
different address map entries.

E. Shadow Objects and Sharing Maps
When a copy-on-write copy is performed, the two address

maps which contain the copies point to the same memory
object. Should both tasks only read the data, no other mapping
is necessary.

If one of the two tasks writes data “copied” in this way, a
new page, accessible only to the writing task, must be
allocated. This new page is the page into which the modifica-
tions are placed. Such copy-on-write memory management
requires that the kernel maintain information about which
pages of a memory object have been modified and which have
not. Mach manages this information by creating memory
objects specifically for the purpose of holding modified pages
which originally belonged to another object. Memory objects
created for this purpose are referred to as shadow objects.

A shadow object collects and “remembers” modified pages
which result from copy-to-write faults. A shadow object is
created as the result of a copy-on-write fault taken by a task. It
is initially an empty object without a pager but with a pointer
to the shadowed object. A shadow object need not (and
typically does not) contain all the pages within the region it
defines. Instead, it relies on the original object that it shadows
for all unmodified data. A shadow object may itself be
shadowed as the result of a subsequent copy-on-write copy,
creating what is termed a shadow chain (see Fig. 4) . When

RASHID et al. : MACHINE-INDEPENDENT VIRTUAL MEMORY MANAGEMENT 90 1

C
Address map ea Tall Hint &

/Cached pages \J /%\) - Storage
)v Access I -

Fig. 3. A virtual memory object.

Map Entry Map Entry Map Entry

operation'

Shadow Chains

Fig. 4. Shadow chains as a result of virtual copies.

the system attempts to find a page in a shadow object, and fails
to locate it, it follows this list of objects. The system will
eventually find the page in some object in the list and make a
copy, if necessary.

While memory objects can be used in this way to implement
copy-on-write, the memory object data structure is not
appropriate for managing readlwrite sharing. Operations on
shared regions of memory may involve mapping or remapping
many existing memory objects. In addition, several tasks may
share a region of memory read/write and yet simultaneously
share the same data copy-on-write with another task.

This implies the need to provide a level of indirection when
accessing a shared object. Because operations on shared
memory regions are logically address map operations, read/
write memory sharing requires a map-like data structure which
can be referenced by other address maps. To solve these
problems, address map entries are allowed to point to a
sharing map as well as a memory object. The sharing map,
which is identical to an address map, then points to shared
memory objects. Map operations that should apply to all maps
sharing the data are simply applied to the sharing map.

Sharing maps are created as part of the task-create
operation whenever an inheritance value of SHARED is
detected (see Fig. 5) . Since sharing maps can be split and
merged (using multiple entries within a map), sharing maps do
not need to reference other sharing maps. For example, if a
shared region is split into two new regions, one speciQing that
sharing takes place with a new task, the previous share map is
simply split. Therefore, a sharing map is created only if
absolutely necessary. This simplifies map operations and
obviates the need for garbage collection of sharing maps.

Map Entry Map Entry
task create
operation *

"shared"

Fig. 5. Share map creation on taskcreate operation.

F. Managing the Object Tree
Much of the complexity of Mach memory management

arises from a need to prevent the potentially large chains of
shadow objects arising from repeated copy-on-write remap-
ping of a memory object from one address space to another.
Remapping causes shadow chains to be created when mapped
data are repeatedly modified-causing a shadow object to be
created-and then recopied. A trivial example of this kind of
shadow chaining can be caused by a simple UNIX process that
repeatedly forks its address space. This causes shadow objects
to be built in a long chain ultimately pointing to the memory
object that backs the UNIX stack.

As in the fork example, most cases of excessive shadow
object chaining can be prevented by recognizing that new
shadows often completely overlap (i.e., each page in the
original has a copy in the shadow) the objects they are
shadowing. Mach automatically garbage collects shadow
objects when it recognizes that an intermediate shadow is no
longer needed. While this code is, in principle, straightfor-
ward, it is made complex by the fact that unnecessary chains
sometime occur during periods of heavy paging and cannot
always be detected on the basis of in-memory data structures
alone. Moreover, the need to allow the paging daemon to
access the memory object structures, perform garbage collec-
tion, and still permit virtual memory operations to operate in
parallel on multiple CPU's has resulted in complex object
locking rules.

G. The Object Cache
A reference counter is maintained for each memory object.

This counter allows the object to be garbage collected when all
mapped references to it are removed. In some cases, for
example UNIX text segments or other frequently used files, it
is desirable for the kernel to retain information about an object
even after the last mapping reference disappears. Retaining the
physical page mappings for such objects can make subsequent
reuse very inexpensive. Mach maintains a cache of such
frequently used memory objects.

The object cache is a least recently used (LRU) list of those
objects that are not currently mapped but for which the kernel
is retaining cached pages. The size of the LRU list is a fixed,
boot time parameter, allowing those objects that are not
frequently referenced to be uncached automatically. Whenever
a cached object is mapped into an address space with the vm-
allocate-with-pager primitive, it is removed from the LRU
list, allowing other objects to be cached. When an object's
reference count goes to zero, indicating no remaining map-
pings, and if it is flagged as a cacheable object, it is placed at

1

902 IEEE TRANSACTIONS ON COMPUTERS, VOL. 31, NO. 8, AUGUST 1988

the end of the LRU list. If the list is full, objects are removed
from the front of the list and their physical resources are
uncached.

Most of the object cache control is performed automatically
by the kernel. All externally managed objects are assumed to
be cacheable, and cache control occurs transparently using the
LRU list. However, pagers may also exercise all cache control
functions. In particular, a pager may indicate whether or not
an object should be cached on a zero reference count. In
addition, a pager can flush an object from the cache if it is in
the cache. This operation is typically used to indicate to the
kernel that the cached data in the object are no longer valid.
For example, the file system removes the object corresponding
to a file whenever it is rewritten in order to flush stale cached
pages.

H. The PMAP Interface
The pmap module is the sole machine-dependent module in

the virtual memory implementation. The interface to this
module has been designed to support a wide variety of
hardware MMU’s, and could even be considered for direct
implementation in hardware or firmware. The interface
assumes only a simple, paged MMU architecture, and has
been shown to be effective for designs ranging from complex
page tables (such as those found in the VAX or B M RT PC
architectures) to designs that employ a simple translation look-
aside buffer (TLB) and no in-memory table (notably that found
in the MIPS architecture). See Table 11.

The implementor of a pmap module need not know any
details of the machine independent implementation and data
structures. A pmap structure is the handle with which the
machine-independent code communicates with the machine-
dependent code. All routines that operate on pmaps explicitly
specify which pmap is to be operated on.

The pmap module is informed of address space creation and
destruction with the pmap-create, pmap-reference, and
pmap-destroy primitives. Pmap-create is called when the
system begins using a new address space. The pmap module
creates a new pmap structure and returns its handle to the
machine-independent code. This handle is then used as an
argument to other pmap routines in order to specify which
pmap to affect. Pmap-reference and pmap-destroy incre-
ment and decrement reference counts on pmaps. When the
reference count of a pmap goes to zero, the pmap module can
free up all resources used by the pmap. For the most part,
reference counts on pmaps never to go higher than once since
each pmap corresponds to a single address map. However,
there are some exceptions, most notably some uses of address
maps for the kernel’s address space management.

Address space specific calls are used by the machine-
independent part of the system to notify the pmap module of
various types of changes in virtual address mappings. Pmap-
enter is the basic routine that is used to validate addresses.
Address invalidation is performed by the pmap-remove
routine. The pmap-protect routine is used to change the
protection. Both pmap-remove and pmap-protect operate on
a range of pages within a pmap. Pmap-enter operates on a
single page of machine-independent size.

Some kernel functions cause multiple address spaces to be
simultaneously affected. These functions are typified by the
need to affect all current mappings to a physical page. There
are two important examples of this type of function.

1) Page out operations require that all references to a
physical page become invalidated.

2) Copy-on-write operations require that all writeable
references to a physical page be changed to read-only.

To handle these cases, two primitives must be provided by
the pmap module. The page out case is handled by the pmap-
remove-all primitive. Given a physical page, this primitive
invalidates all virtual mappings to that page. The copy-on-
write case is handled by the pmap-copy-on- write primitive,
which like the pmap-remove-all primitive affects all map-
pings of a page. However, in this case, rather than remove all
mappings, the access for all mappings of the physical page is
lowered to read-only.

The need for the global pmap-remove-all and pmap-
copy-on- write primitives has important implications for the
pmap module. In particular, if the pmap module is to allow
multiple mappings of a physical page, then the pmap module
must maintain some type of physical-to-virtual mapping list.
Without such a list, the pmap module cannot properly
implement the global operations.

While most of the pmap interface is used by the machine-
independent part of Mach to inform the machine-dependent
part of changes in mappings, there is also a primitive which
allows the machine-independent code to query the status of
various mappings. This primitive pmap-extract performs a
virtual address translation on a specified virtual address and
returns the corresponding physical address.

Other primitives supplied by the pmap module exist for the
purposes of manipulating a machine’s physical memory. Two
primitives provide such support: pmap-zero-page zeros the
specified physical page, pmap-copy-page copies one physi-
cal page to another. Again, the size of the page is the machine-
independent page size, so the implementation must be pre-
pared to copy multiple hardware page size pages.

The next part of the pmap interface consists of primitives
that notify the pmap module of which address spaces are being
used on which processors. These primitives allow the pmap
module to set up hardware page table registers, or other
machine specific hardware registers related to memory man-
agement. This information is also especially important for
implementations that must perform some type of TLB consist-
ency.

Finally, the pmap interface has a small number of optional
primitives. Depending on the pmap implementation, these
may perform no function. The first is pmap-update. This
primitive informs the pmap module that all virtual mappings
should now be in sync. This primitive allows other operations
to be delayed until the sync time if there is some potential
performance gain to be achieved. All primitives that affect
mappings, except for pmap-enter, may be delayed until
pmap-update is called. The other two miscellaneous primi-
tives are pmap-copy and pmap-pageable. Both operate on a
range of virtual addresses; pmap-copy indicates that a range
of virtual memory has been copied using copy-on-write, and

I

RASHID er al. : MACHINE-INDEPENDENT VIRTUAL MEMORY MANAGEMENT 903

pmap-pageable indicates that a range of virtual memory can
(or cannot) be made pageable. These primitives are optional in
that this information is given to the pmap module by using the
other primitives (using pmap-enter for example). These
miscellaneous primitives represent redundant information that
may be used for performance optimizations.

I. The Page Fault Handler
The Mach page fault handler is the hub of the Mach virtual

memory system. The kernel fault handler is invoked when the
hardware tries to reference a page for which there is an invalid
mapping or a protection violation. The fault handler has
several responsibilities:

validity and protection-The kernel determines if the
faulting thread has the desired access to the address by
performing a lookup in its task’s address map. This lookup
also provides a memory object and offset into that object.

page lookup-The kernel attempts to find an entry for a
cached page in the virtual-to-physical hash table. If the page
is not present, the kernel must request the data from the pager.

copy-on-write-Once the page has been located, the
kernel determines if a copy-on-write operation is needed. If
the task desires write permission and the page has not yet been
copied, then a new page is created as a copy of the original. If
necessary, the kernel also creates a new shadow object.

hardware validation-Finally , the kernel informs the
hardware physical map module of the new virtual-to-physical
mapping.

With the exception of the hardware validation, all of these
steps are implemented in a machine-independent fashion.

V. PERFORMANCE

A. Uniprocessor Performance
Tables III and IV compare the performance of Mach’s zero

fill and fork operations with those of native UNIX implemen-
tations. In each table, the version of UNIX depends on the
hardware base as follows: 4.3 BSD on the MicroVAX-11,
SunOS 3.2 on the 31160, and ACIS 4.2a on the RT/PC.

Mach outperforms each UNIX counterpart for zero fill data.
On the MicroVAX, the large disparity in time is due primarily
to 4K page size compared to 1K for 4.3 BSD. However, the
minimum time required to zero 1K of data on the MicroVAX
(using the bzero routine, for example) is 0.25 ms. This leaves
0.3 ms and 0.95 ms of overhead for the Mach and BSD fault
handlers, respectively (per K). Since the Mach page size is
4K, the actual overhead is approximately 1.2 ms. This
compares favorably to the 0.95 ms value for BSD, which uses
the VAX page tables as its “machine-independent’’ data
structure representation. Both SunOS and ACIS suffer addi-
tional overhead due to the need to translate from VAX page
tables to their native counterparts.

Mach also outperforms each UNIX counterpart in imple-
menting the UNIX fork primitive (see Table IV). Since Mach
implements fork using copy-on-write, it avoids the copy costs
that inflate the time to fork on UNIX systems that do not
support copy-on-write. BSD-based systems try to avoid these
extra costs with the vfork primitive, which eliminates the copy

TABLE II
PMAP INTERFACE PRlMITlVES

I Functional Group I Primitives

I b a p Handles I pmap-create. pmap-reference

TABLE 111
PERFORMANCE OF ZERO FILL PER K OF DATA

I Machine I Mach I UNIX 1

TABLE IV
COST OF FORK/EXIT FOR A 2563 PROCESS

I Machine I Mach I UNIX I
Sun 3/160
1BM RTPC

at the expense of different semantics. However, the time for a
basic fork under Mach (24 ms on MicroVAX-11) is compara-
ble to a BSD vfork (17 ms on MicroVAX-11).

B. Parallel Performance
Measurement of the parallel performance of the virtual

memory system was performed on the Encore Multimax. The
Multimax contained 16 National 32032 processors with a total
of 32 Mbytes of primary memory.

Fig. 6 shows the parallel performance of manipulating data
that are faulted. The data are manipulated in three significant
ways:

bcopy (no fault): Data are copied using the UNIX C
library bcopy routine. This routine is hand-coded in Assembly
language to copy bytes as fast as possible. In this test, data are
simply copied, no page faults are generated.

bcopy (with fault): Data are copied using the UNIX C
library bcopy routine, but in this test accessing the source data
generates page faults.

register copy: This test moves each byte to a register.
This has the effect of simulating the copy without generating
excessive bus write operations. As in the previous test,
references to data generate page faults.

The major contribution to the dropoff in performance with
increasing numbers of CPU’s is cache-thrashing on the
Multimax. Each pair of CPU’s share a data cache and, as the
number of competing processors goes beyond eight, proces-
sors are competing for cache slots and interfering with each
other’s performance. This can be seen clearly in the case of the
bcopy (no fault) curve which drops off even more dramati-
cally in performance than the bcopy (with fault) curve. In any
event, the amount of fault parallelism available is not a visible
bottleneck on the Multimax with 16 processors. Moreover,
assuming that faulted data are processed in some way, the cost
of this processing is likely to dominate fault handling costs.

- 1 7- 7- 1

IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 8, AUGUST 1988

User System Elapsed
Machine System Time (sec) Time (sec) Time (mm:ss)

8:25 VAX Ill780 4.3 BSD 349.9 19.6
1 5 6 VAX llf78O Mach 353.0 81.5
4:21 Sun 3D60 SunOS 3.3 128.3 35.5

Sun3D60 Mach 127.5 40.1 3:41

904

16 -
14 -
12 -

t? 0 l o -
o

8 -
n
Q 6 -

4 -

-
U

it
v)

2,

VO
Reads/Writes

168611885
65511571

423111752
12511506

Parallel Page Fault Handling with Copy

D-O bcopy (no fault)
bcopy (+fault)

I

0 2 4 6 8 10 12 14 16 0

Number of PrOCeSSOrS

Fig. 6. Parallel performance of page fault operations (with copy) on
Multimax.

C. Overall Performance
While the previous section showed that many low-level

virtual memory functions perform better under Mach than
other UNIX systems, this is of little importance if the user
does not see an improvement in overall performance of higher
level operations. Table V compares the performance of Mach
to 4.3 BSD and SunOS. In each case, the time to compile a
subset of the programs in/bin is reported (the subset corres-
ponds to those programs that are compilable on both 4.3 and
SunOS) .

The VAX 1 1/780 used was running 4.3 BSD as released by
Berkeley. Both the 4.3 kernel and Mach kernel were used on
this system. The Sun 3/260 tests were performed on separate
but identical Suns with the same compilation environment.

The most important information contained in Table V
pertains to elapsed time and U0 operations. In both categories,
Mach outperforms its UNIX counterparts. Mach reduces I/O
operations by making more effective use of primary memory
as a cache. For example, the object cache allows Mach to
reuse programs cached in memory, even after those programs
have terminated. The reduction in I/O operations has the direct
effect of lowering the elapsed time.

D. Implementation Code Size
The size of the virtual memory implementation is summa-

rized in Fig. 7. The total size, about 16K, does not include
UNIX specific support, including support for paging to and
from UNIX file systems. Also, implementation of the pmap
module increases this total by an amount that depends on the
complexity of the hardware.

The pmap module is about the size of a disk device driver
with much of its implementation optional. The current VAX
version is 8K bytes (compiled uniprocessor) and 12K bytes
(compiled multiprocessor) of object code. The SUN imple-
mentation is 5K bytes. The IBM RT version is approximately
8.5K bytes.

Taken altogether, the virtual memory component of Mach is
negligible when compared to the total size of operating
systems such as 4.3 BSD or SunOS which can easily exceed
300-500K of code. In fact, it represents a small portion of the

Code Sizes (Vax)

7000 - 6752

6000

5000

4000

3000

2000

1000

0

Size (bytes)

Map Objecl Resident Fault Pageout
operations Operations P q e Handling Daemon

Handling

Function
Fig. 7. The object s u e of the machine-independent virtual memory

implementation broken down into modules (VAX architecture).

Relative Code Sizes (Vax)

5%
4%

Implementation

90%

Fig. 8. Relative code sizes on a VAX.

total amount of code required to emulate 4.3 BSD on a VAX
(see Fig. 8).

VI. HARDWARE EXPERIENCE

Mach runs on a large number of uniprocessors and
multiprocessors. In the course of porting Mach to these
machines, we gained considerable experience both with
porting Mach’s virtual memory code and with the pros and
cons of various hardware memory management schemes as
they apply to a system like Mach.

A . Porting Mach
Mach was originally implemented on VAX architecture

machines including the MicroVAX II, 11/780 and a four-
processor VAX system called the VAX 11/784. The imple-
mentation began in the fall of 1985. The first relatively stable
VAX version was available in February 1986. At the end of
that month the first port of Mach, to the IBM RT/PC, was
initiated by a newly hired programmer who had not previously

7 1 1 I

RASHID et al. : MACHINE-INDEPENDENT VIRTUAL MEMORY MANAGEMENT 905

worked on an operating system nor programmed in C. By
early May of 1986, the RT/PC version was self-hosting and
available to a small group of users.

The majority of time required for the RT/PC port was spent
debugging compilers and device drivers. The estimate of time
spent in implementing the pmap module was approximately
three weeks-much of that time spent understanding the code
and its requirements. By far the most difficult part of the pmap
module to “get right” was the precise points in the code where
validation and invalidation of hardware address translation
buffers were required.

Implementations of Mach on the Sun 3, Sequent Balance,
and Encore Multimax have each contributed similar experi-
ences. The Sequent port was the only one done by an expert
systems programmer. The result was a bootable system only
five weeks after the start of programming. In each case, Mach
has been ported to systems which possessed either a 4.2 BSD
or System V UNIX. This has aided the porting effort
significantly by reducing the effort required to build device
drivers. Fig. 9 graphically illustrates the time frame in which
several Mach ports have taken place.

Even after all of these porting efforts, the machine-
independent implementation has never been modified in order
to support a new hardware architecture. There were, however,
two changes that were made as a result of porting efforts. The
first was a two-line change to eliminate an autoincrement of a
bit field which exercised a compiler bug in the RT/PC
compiler. The only other change was to eliminate an informa-
tional print-out of some automatically computed paging
parameters since it interfered with other diagnostic output
generated by the Multimax.

B. Assessing Various Memory Hardware Architectures
Mach’s virtual memory system is portable, makes few

assumptions about the underlying hardware base, and has been
implemented on a variety of architectures. This has made
possible a relatively unbiased examination of the pros and cons
of various hardware memory management schemes.

In principle, Mach needs no in-memory hardware-defined
data structure to manage virtual memory. Machines which
provide only an easily manipulated translation look-aside
buffer can be accommodated by Mach and would need little
code to be written for the pmap module. In fact, a version of
Mach has already run on a simulator for the IBM RP3 which
assumed only TLB hardware support. In practice, though, the
primary purpose of the pmap module is to manipulate
hardware defined in-memory structures that in turn control the
state of an internal MMU TLB. Each hardware architecture
has shortcomings, both for uniprocessor use and even more so
when bundled in a multiprocessor.

1) Uniprocessor Issues: Mach was initially implemented
on the VAX architecture. Although, in theory, a full 2 Gbyte
address space can be allocated in user state to a VAX process,
it is not always practical to do so because of the large amount
of linear page table space required (8 Mbytes). UNIX systems
have traditionally kept page tables in physical memory and
simply limited the total process addressability to a manageable

OCl

1985 - Jan

Apr

1986 Jut

OCI

Jan

Apr

Vax (initial implementation)

RTPC

Sun 1 1 MulliMax

I
t Balance 21000

Fig. 9. The timing of the Mach implementation and several ports.

8, 16 or 64 Mbytes. VAX VMS handles the problem by
making page tables pageable within the kernel’s virtual
address space. The solution chosen for Mach was to keep page
tables in physical memory, but only to construct those parts of
the table that were actually needed to map virtual to real
addresses for pages currently in use. VAX page tables in Mach
may be created and destroyed as necessary to conserve space
or improve run time. The necessity to manage page tables in
this fashion and the large size of a VAX page table (partially
the result of the small VAX page size of 512 bytes) has made
the machine-dependent portion of that system more complex
than that for other architectures.

As specified by the VAX architecture, each page table is
broken down into two regions. Splitting the address space into
two regions is attractive, especially for UNIX, since it is easy
to cause the address space to grow in two separate directions.
For UNIX, one direction corresponds to stack growth, the
other corresponds to data segment growth. Unfortunately,
these advantages do not apply to multithreaded Mach applica-
tions that need a stack for each thread.

The IBM RT/PC does not use per-task page tables [24].
Instead it uses a single inverted page table that describes which
virtual address is mapped to each physical address. To
perform virtual address translation, a hashing function is used
to query the inverted page table. This allows a full 4 Gbyte
address space to be used with no additional overhead due to
address space size. Mach has benefited from the RT/PC
inverted page table in significantly reduced memory require-
ments for large programs (due to reduced map size) and
simplified page table management.

One drawback of the RT, however, is that it allows only one
valid mapping for each physical page, making it impossible to
share pages without triggering faults. The rationale for this
restriction lies in the fact that the designers of the RT targeted
an operating system which did not allow virtual address
aliasing. The result is that physical pages shared by multiple
tasks, in Mach, can cause extra page faults, with each page
being mapped and then remapped for the last task which
referenced it. The effect is that Mach treats the inverted page
table as a kind of large, in memory cache for the RT’s
translation look-aside buffer. The surprising result has been
that, to date, these extra faults are rare enough in normal
application programs that Mach is able to outperform a version
of UNIX (IBM ACIS 4.2a) on the RT which avoids such

I

906 IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 8, AUGUST 1988

aliasing altogether by using shared segments instead of shared
pages.

In the case of the Sun 3, a combination of segments and page
tables are used to create and manage per-task address maps up
to 256 Mbytes each. The use of segments and page tables
makes it possible to implement sparse addressing reasonably,
but only eight such contexts may exist at any one time. If there
are more than eight active tasks, they compete for contexts,
introducing additional page faults as on the RT.

Both the Encore Multimax and the Sequent Balance 2 1000
use the National 32082 MMU [14]. This MMU has posed
several problems unrelated to multiprocessing.

Only 16 Mbytes of virtual memory may be addressed per
page table. This requirement is very restrictive in large
systems, especially for the kernel’s address space.

Only 32 Mbytes of physical memory may be addressed.
Once again, this requirement is very restrictive in large
systems.

A chip bug apparently causes read-modify-write faults to
always be reported as read faults. Mach depends on the ability
to detect write faults for proper copy-on-write fault handling.

It is not surprising that these problems have been addressed
in the successor to the NS32082, the NS32382.

2) Multiprocessor Issues: When building a shared mem-
ory multiprocessor, care is usually taken to guarantee auto-
matic cache consistency or at least to provide mechanisms for
controlling cache consistency. However, hardware manufac-
turers do not typically treat the translation look-aside buffer of
a memory management unit as another type of cache which
also must be kept consistent. None of the multiprocessors
running Mach supports TLB consistency. In order to guaran-
tee such consistency when changing virtual mappings, the
kernel must determine which processors have an old mapping
in a TLB and cause it to be flushed. Unfortunately, it is
impossible to reference or modify a TLB on a remote CPU on
any of the multiprocessors which run Mach.

There are several possible solutions to this problem, each of
which has been employed by Mach implementations in
different settings:

1) forcibly interrupt all CPU’s which may be using a shared
portion of an address map so that their address translation
buffers may be flushed,

2) postpone use of a changed mapping until all CPU’s have
taken a timer interrupt (and have had a chance to flush), or

3) allow temporary inconsistency.
Case 1) applies whenever a change is time critical and must

be propagated at all costs. Case 2) can be used by the paging
system when the system needs to remove mappings from the
hardware address maps in preparation for pageout. The system
first removes the mapping from any primary memory mapping
data structures and then initiates pageout only after all
referencing TLB’s have been flushed. Often case 3) is
acceptable because the semantics of the operation being
performed do not require or even allow simultaneity. For
example, it is acceptable for a page to have its protection

The Multimax has, however, added special hardware to allow a full 4 G-
bytes to be addressed.

changed first for one task and then for another if that
protection is increasing. TLB’s (or page tables) containing
stale data will cause a protection fault that will be handled
properly by the fault handler.

VII. RELATION TO PREVIOUS WORK
Mach provides a relatively rich set of virtual memory

management functions compared to systems such as 4.3BSD
UNIX or System V, but most of its features derive from earlier
operating systems. Accent [17] and Multics [15], for example,
provided the ability to create segments within a virtual address
space that corresponded to files or other permanent data.
Accent also provided the ability to efficiently transfer large
regions of virtual memory in memory between protected
address spaces.

Obvious parallels can also be made between Mach and
systems such as Apollo’s Aegis [l l] , IBM’s System138 [8],
and CMU’s Hydra [25]-all of which deal primarily in
memory mapped objects. Sequent’s Dynix [4] and Encore’s
Umax [5] are multiprocessor UNIX systems which have both
provided some form of shared virtual memory. Mach differs
from these previous systems in that it provides sophisticated
virtual memory features without being tied to a specific
hardware base. Moreover, Mach’s virtual memory mecha-
nisms can be used either within a multiprocessor or extended
transparently into a distributed environment.

VIII. CONCLUSION
An intimate relationship between memory architecture and

software made sense when each hardware box was expected to
run its own manufacturer’s proprietary operating system. As
the computer science community moves toward UNIX-style
portable software environments and more sophisticated use of
virtual memory mechanisms this one-to-one mapping appears
less and less appropriate.

To date, Mach has demonstrated that it is possible to
implement a sophisticated virtual memory management which

is easily portable to paged architectures,
provides support for parallel architectures,
provides mechanisms for advanced use of virtual mem-

performs better than other designs targeted at specific

The system has been ported to a variety of hardware
architectures. At CMU alone, Mach has been ported to the
VAX family of uniprocessors and multiprocessors, the IBM
RT PC family, the SUN 3 family, the Encore Multimax, and
the Sequent Balance 21000. In each case, the portability of the
system has been demonstrated by the ease with which the
pmap module has been implemented. Further, no porting
effort has required any substantive change to the machine-
independent implementation.

The needs of parallel processing are handled at two levels.
First, flexible sharing and protection primitives provide
support for high-performance parallel applications. Second,

e.g. , transaction processing, database management [20], and AI knowl-
edge representation [2]

ory, and

hardware architectures.

1

RASHID er al. : MACHINE-INDEPENDENT VIRTUAL MEMORY MANAGEMENI 907

the virtual memory system implementation is fully parallel,
allowing for efficient execution on parallel processors.

Mach provides for advanced use of virtual memory by
providing powerful internal primitives that allow for virtually
arbitrary mapping relations to be created. Shared memory and
support for file mapping (with UNIX emulation) have all been
provided.

Although one is often willing to trade performance in return
for added functionality and/or portability, this performance
tradeoff has been unnecessary in the Mach virtual memory
system. In fact, the net effect of the advanced Mach design is a
system that typically pertorms other designs.

ACKNOWLEDGMENT

The implementors and designers of Mach are (in alphabeti-
cal order): M. Accetta, B. Baron, B. Beck (Sequent), D.
Black, B. Bolosky, J . Chew, D. Golub, G. Marcy, F. Olivera
(Encore), R. Rashid, A. Tevanian, J . Van Schiver (Encore),
and M. Young. For more detailed information on Mach and its
memory management implementation and interface see [23].

REFERENCES
M. Accetta, R. Baron. W . Bolosky. D. Golub, R. Rashid, A .
Tevanian, and M. Young. “Mach: A new kernel foundation for UNIX
development.” in Proc. Summer Usenix, July 1986.
R. Bisiani and A. Forin, ”Architectural support for multilanguage
parallel programming on heterogenous systems. ’ ‘ in Proc. 2nd Symp.
Architectural Support Programming Langua,yes Oper. Sys., Oct.
1987.
VAX Architecture Rejerence Manual, Digital Equipment Corp..
1983.
Dynix Programmer’s Manual, Sequent Computer Systems, Inc.,
1986.
UMAX 4.2 Programmer’s Reference Manual, Encore Computing
Corp., 1986.
G. Fiell and D. Rodgers. “32-bit computer system shares load equally
among up to 12 procesaors,” Electron. Des., Sept. 1984.
R. Fitzgerald and R. F. Rashid. “The integration of virtual memory
management and interprocess communication in Accent,” ACM
Trans. Comput. Syst., vol. 4. May 1986.
R. E. French, R. W . Collins. and L. W. Loen. “Systemi38 machine
storage management,” IBM Syst./38 Tech. Develop., IBM General
Systems Division, pp. 63-66, 1978.
3033 Processor Complex Theory of Operations, Vols. 1-5, SY22-
7001-SY22-7005, IBM. Corp., 1978.
W . Joy et al., 4.2BSD System Manual, Tech. Rep., Comput. Syst.
Res. Group, Coniput. Sci. Divi., Univ. California. Berkeley, July
1983.
P. L . Leach, P . H. Levine. B. P. Douros, J A. Hamilton, D. L.
Nelson. and B. L. Stumpf, “The architecture of an integrated local
network.” IEEE J. Select. Areas Commun., vol. SAC-I, pp. 842-
857. Nov. 1983.
H. Levy et al., Computer Programming and Architecture - The
VAX-11. Bedford, M A : Digital, 1980.
J. Moussouris et al., “A cmos risc processor with integrated system
functions.” in Proc. COMPCON, San Francisco, CA, Mar. 1986, pp.
126-13 1 .
Series 32000 Databook, National Semiconductor, Inc., 1984.
E . I . Organick, The ~Multics System: A n Examination of Its
Structure. Cambridge. MA: MIT Press, 1972.
G. Pfister et al., “The IBM research parallel processor prototype
(RP3): Introduction and architecture.” IEEE, 1985.
R. F. Rashid and G . Rohertson, “Accent: A communication oriented
network operating system kernel,” in Proc. 8rh Symp. Oper. Syst.
Principles, Dec. 1981. pp. 6 4 7 5 .
D. M. Ritchie and K . Thompson, “The Unix time-sharing system,”
Commun. ACM, vol. 17, pp. 365-375, Jul) 1974.
C. Russell and P. Waterman. “Variations on Unix for parallel-
processing computers.” Commun. ACM, vol. 30, pp. 1048-1055.
Dec. 1987.

A. Spector et al., “Support for distributed transactions in the tabs
prototype.” in Proc. 4th Symp. Reliability Distributed Software
Database Sysr., Oct. 1984.
A . Z. Spector. D. Duchamp. J . L. Eppinger, S. G. Menees. and D. S.
Thompson. ”The Camelot interface specification,” Camelot Working
Memo 2. Sept. 1986.
A. Tevanian. R. Rashid. M. Young. D. Golub, M. Thompson. W.
Bolosky. and R. Sanzi, “A Unix interface for shared memory and
memory mapped files under Mach.” in Proc. Summer Usenix, June
1987.
A . Tevanian. Jr . “Architecture-independent virtual menlor). manage-
ment for parallel and distributed environments: The Mach approach.“
Ph.D. dissertation, Carnegie-Mellon Univ.. Dec. 1987.
F. Waters. Ed., IBM RT Personal Computer Technology, Interna-
tional Business Machines Corp., 1986.
W . Wulf. R. Levin. and S. P. Harbison. H.vdra/C.mmp: An
Experimental Computer System.
M. Young. A. Tevanian. R. Rashid. D. Golub. J . Eppingcr. J . Cheu .
W . Bolosky, D. Black. and R. Baron, “The duality of memory and
communication in the implementation of a inultiprocessor operatine
system,’’ in Proc. Symp. Oper. Syst. Principles, Nov. 1987.

New York: McGrau-Hill, 1981

Richard Rashid graduated with honors in mathe-
matics from Stanford University. Stanford. CA. i n
1974. He received the M.S. and Ph.D. degrees in
computer science from the University of Rochester,
Rochester, NY. in 1977 and 1980. rcspectivelq.

He is an Associate Professor of Computer Sci-
ence and has been on the faculty of Carnegie-
Mellon University, Pittsburgh. PA, since Septen-
ber 1979. While at the University of Rochester. Dr.
Rashid participated in the design and implementa-
tion of the RIG oDeratine svstem and Rochester . - .

Virtual Terminal Management System. Since joining Carnegie-Mellon. hi\
responsibilities have included the direction of the CMU Distributed Senaor
Testbed project. CMU’s distributed personal computing project (SPICE). and
the Mach multiprocessor operating system project. He is respon\ihle for the
design and implementation of a network interprocess communication facility
for UNIX, the Accent network operating system kernel. and the Mach
multiprocessor operating system. He has also participated in the design of the
CMU ITC VICEiVIRTUE distributed file system.

Dr. Rashid is a past member of the DARPA UNIX Steering Committee and
CSNet Executive Committee. He is a current member of the DARPA
Distributed Systems Architecture Board and he is the current chairman of the
ACM System Awards Committee

Avadis Tevanian, Jr., received the B.A degres
from the University of Rochester. Rochester. NY.
in 1983, and thc M.S. and Ph.D. degrees in
computer science from Carnegie-Mellon Univer-
sity. Pittsburgh. PA, in 1985 and 1987. respec-
tively

He is currently Chief Operating Sqstein Scientist
at NeXT, Inc. He has worked on the Mach q s t e m
since its inception-being one of the original design-
ers and a major contributor to its implementation.
He has worked on many ports of the Mach sjatem

and has written many papers and lectured extensively o n various aspects of
Mach.

Michael Young is a Ph.D. candidate in the Depan-
ment of Computer Science at Carncgie-Mellon
University, Pittsburgh. PA.

His current work is on an interface that allow5
user programs to control the management of perma-
nent memory in the Mach operating sqstein.

908 IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 8, AUGUST 1988

David Golub has been a Senior Research Program-
mer on the Mach project since 1986. He formerly
worked at PERQ Systems, where he did extensive
work on the Accent operating system, a prototype
for much of the Mach work.

David Black received the B.A. and M.A. degrees
in mathematics and the B.S.E. degree in computer
science and engineering from the University of
Pennsylvania, Philadelphia, and the M.S degree in
computer science from Carnegie Mellon Univer-
sity, Pittsburgh, PA

He is a graduate student and Ph D. degree
candidate in the Department of Computer Science,
Carnegie Mellon University. His primary research
is in the area of operating systems with particular
interests in multiprocessors and scheduling issues.

Mr. Black is a member of Phi Beta Kappa, Tau Beta Pi, Eta Kappa Nu, Pi
He has been involved with the Mach project since 1985.

Mu Epsilon, and Sigma Xi.

William J. Bolosky received the B.S. degree in mathematics from Carnegie-
Mellon University, Pittsburgh, PA, in 1985.

He is a graduate student in Computer Science at the University of
Rochester, Rochester, NY, with interests in multiprocessor operating sys-
tems. He was formerly employed by the Carnegie-Mellon University
Computer Science Department, where he worked on Mach’s external paging
and did the Mach IBM PC’RT port.

Robe,, Baron the Bachelor’s,
and Engineer.s degree in electrical
from the Department of Electrical Engineering and
Computer Science, Massachusetts Institute of Tech-
nology, Cambridge, in 1977.

He has been at Carnegie-Mellon University,
Pittsburgh, PA, since 1983, originally working on
the Accent project and working on Mach since
1984. His research interest are in multiprocessors.
From 1977 to 1983, he was with the Bell Telephone
Laboratories. Initially involved in the development

of a telephone service representative support system using UNIX. Later he
worked for the UNIX support organization. At the Massachusetts Institute of
Technology, he was at the Laboratory for Computer Science and worked on
high-level languages. Corporation.

Mr. Baron is a member of Sigma Xi, Eta Kappa Nu and Tau Beta Bi.

Jonathan Chew received the B.A. degree in
applied math from the University of California,
Berkeley, in 1983.

He is a Research Systems Programmer for the
Mach Project. He has been working in the Depart-
ment of Computer Science, Carnegie-Mellon Uni-
versity, Pittsburgh, PA, since October 1985 Before
that, he worked on Accent at PERQ Systems

I 7- I

