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Abstract-Recent technological advances in memory manage- 
ment architectures, multiprocessor systems, and software archi- 
tectures dictate a reevaluation of the virtual memory management 
support provided by an operating system. The problems posed by 
multiprocessor systems and the portability issues raised by the 
large variety of memory management units available have not 
been satisfactorily addressed by past virtual memory systems. In 
addition, increases in virtual memory functionality that can be 
provided by memory managed architectures have gone largely 
unnoticed by system designers. 

This paper describes the design, implementation, and evalua- 
tion of the Mach virtual memory management system. The Mach 
virtual memory system exhibits architecture indepedence, multi- 
processor and distributed system support, and advanced func- 
tionality. The performance of this virtual memory system is 
shown to often exceed that of commercially developed memory 
management systems targeted at specific hardware architectures. 

Index Terms-Architecture independence, Mach, parallel op- 
erating systems, UNIX, virtual memory. 

I. INTRODUCTION 
HILE software designers are increasingly able to cope 
with variations in instruction set architectures, operating 

system portability continues to suffer from a proliferation of 
memory architectures. UNIX [ 181 systems have traditionally 
addressed the problem of virtual memory (VM) portability by 
restricting the facilities they provided and basing implementa- 
tions for new memory management architectures on versions 
already done for previous systems. As a result, existing 
versions of UNIX, such as Berkeley 4.3BSD [lo], offer little 
in the way of virtual memory management other than simple 
paging support. Versions of Berkeley UNIX on non-VAX 
hardware, such as SunOS on the SUN 3 and ACIS 4.2 on the 
IBM RT PC, actually simulate internally the VAX memory 
mapping architecture-in effect treating it as a machine- 
independent memory management specification. 

Since the fall of 1984, CMU has been engaged in the 
development of a portable, multiprocessor operating system 
called Mach. One of the goals of the Mach project has been to 
explore the relationship between hardware and software 
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memory architectures and to design a memory management 
system that would be readily portable to multiprocessor 
computing engines as well as traditional uniprocessors. 

Mach provides complete UNIX 4.3BSD compatibility while 
significantly extending UNIX notions of virtual memory 
management and interprocess communication [ 11. Mach sup- 
ports 

large, sparse virtual address spaces, 
copy-on-write and read-write memory sharing between 
copy-on-write and read-write memory sharing between 

memory mapped files, and 
user-provided backing store objects and pagers. 

tasks, 

This has been accomplished without patterning Mach’s inter- 
nal memory representation after any specific architecture. In 
fact, Mach makes relatively few assumptions about available 
memory management hardware. The primary requirement is 
an ability to handle and recover from page faults. 

Mach runs on a number of uniprocessors and multiproces- 
sors including the VAX family of uniprocessors and multipro- 
cessors [12], [3], the IBM RT PC family [24], the SUN 3 
family, the Encore Multimax, the Sequent Balance 21000 [6], 
MIPS [13], the IBM 370 family [9], the BBN Butterfly Plus 
1193, and several experimental computers such as the IBM RP3 
[ 161. Despite differences between supported architectures, the 
machine-dependent portion of Mach’s virtual memory subsys- 
tem has been kept relatively small. All information important 
to the management of Mach’s virtual memory is maintained in 
machine-independent data structures and machine-dependent 
data structures which contain only those mappings necessary 
to running the current mix of programs. 

Mach’s separation of software memory management from 
hardware support has been accomplished without sacrificing 
system performance. In several cases, overall system perform- 
ance has measurably improved over existing UNIX implemen- 
tations. Moreover, this approach makes possible a relatively 
unbiased examination of the pros and cons of various hardware 
memory management schemes, especially as they apply to the 
support of multiprocessors. This paper describes the design 
and implementation of virtual memory management within the 
CMU Mach Operating System and the experiences gained by 
the Mach kernel group in porting that system to a variety of 
architectures. 
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11. MACH DESIGN and protection. One consequence of the decision to link 
message passing and virtual memory is the fact that faults on 
nonmemory-resident memory object data result in messages 
sent to the backing-store port for that object. This permits 
memory objects to be implemented either by the kernel 
directly Or by user-state programs since either could hold 
receive access rights to a memory object port. 

There are five basic Mach abstractions. 
1) A task is an execution environment in which threads 

may run. It is the basic unit of resource allocation. A task 
includes a paged virtual address space and protected access to 
system resources (such as processors, port capabilities, and 
virtual memory). A task address space consists of an ordered 
collection of mappings to memory objects (see below). The 
UNIX notion of a process is, in Mach, represented by a task 
with a single thread of control. 

2) A thread is the basic unit of CPU utilization. It is 
roughly equivalent to an independent program counter operat- 
ing within a task. All threads within a task share access to all 
task resources. 

3) A port is a communication channel-logically a queue 
for messages protected by the kernel. Ports are the reference 
objects of the Mach design. They are used in much the same 
way that object references could be used in an object-oriented 
system. Send and Receive are the fundamental primitive 
operations on ports. 

4) A message is a typed collection of data objects used in 
communication between threads. Messages may be of any size 
and may contain pointers and typed capabilities for ports. 

5 )  A memory object is a collection of data provided and 
managed by a server which can be mapped into the address 
space of a task. 

Mach is fundamentally a message passing communication 
kernel. Operations on objects other than messages are per- 
formed by sending messages to ports. In this way, Mach 
permits system services and resources to be managed by user- 
state tasks. For example, the Mach kernel itself can be 
considered a task with multiple threads of control. The kernel 
task acts as a server which in turn implements tasks, threads, 
and memory objects. The act of creating a task, a thread, or a 
memory object, returns access rights to a port which repre- 
sents the new object and can be used to manipulate it. 
Incoming messages on such a port result in an operation 
performed on the object it represents. 

The indirection provided by message passing allows objects 
to be arbitrarily placed in the network (either within a 
multiprocessor or a workstation) without regard to program- 
ming details. For example, a thread can suspend another 
thread by sending a suspend message to that thread’s thread 
port even if the requesting thread is on another node in a 
network. It is therefore possible to run varying system 
configurations on different classes of machines while provid- 
ing a consistent interface to all resources. The actual system 
running on any particular machine is thus more a function of 
its servers than its kernel. 

Mach message passing and virtual memory management are 
intimately linked. Large message transfers are implemented 
using copy-on-write memory mapping techniques. This allows 
large amounts of data, including whole files and even whole 
address spaces, to be sent in a single message without the cost 
of data copying. In addition, the interface that Mach provides 
to memory management is implemented in terms of messages 
sent to the ports which represent tasks and memory objects. 
The use of port references provides both location transparency 

lII. THE PROGRAMMER’S VIEW OF MACH VIRTUAL MEMORY 

Each Mach task possesses a large address space that consists 
of a series of mappings between ranges of memory addressable 
to the task and memory objects. The size of a Mach address 
space is limited only by the addressing restrictions of the 
underlying hardware. An RT PC task, for example, can 
address a full 4 Gbytes of memory under Mach’ while the 
VAX architecture allows at most 2 Gbytes of user address 
space. A task can modify its address space in several ways, 
including 

allocate a region of virtual memory on a page boundary, 
deallocate a region of virtual memory, 
set the protection status of a region of virtual memory, 
specify the inheritance of a region of virtual memory, and 
create and manage a memory object that can then be 

mapped into the address space of another task. 

The programming interface that Mach provides to manage 
tasks and memory objects can be divided into four functional 
groups: 

address space manipulation, including the allocation 
and deallocation of virtual memory, 

memory protection, allowing flexible use of memory 
protection hardware, 

memory inheritance, which defines the sharing relation- 
ship between the address spaces of related tasks, and 

miscellaneous primitives, that formalize access to statis- 
tics maintained by the Mach kernel, access other task’s virtual 
memory, and describe a task’s address space. 

Table I summarizes the interface based on these functional 
groups. 

A .  Address Space Manipulation Primitives 
Mach treats an address space as a sequence of pages. The 

size of a logical page in Mach is not necessarily the same as the 
underlying hardware page size. Instead, it is a boot time 
parameter which can be any multiple of the hardware page size 
that is a power of two. This allows a system administrator to 
select a page size appropriate both to his machine type and mix 
of applications. 

Each page in a task’s address space is considered to be 
either allocated or unallocated. A reference to an unallocated 
page results in a memory protection violation. An allocated 
page may be directly addressed and the data it contains are 
derived from a memory object. 

Virtual memory is allocated using the vm-allocate primi- 
tive and is deallocated using the vm-deallocate primitive. 

’ This feature is actively used at CMU by the CMU RT implementation of 
CommonLisp. 
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TABLE I 
MACH VIRTUAL MEMORY INTERFACE FUNCTIONAL GROUPS 

1 Functional Group I Primitives 

Allocated virtual memory does not necessarily consume 
system resources. By default, memory allocated by vm- 
allocate contains no data. Physical pages are not allocated 
until the virtual addresses in the range specified by vm- 
allocate are referenced at which time pages are allocated and 

corresponding page of the existing address space. Inheritance 
values can be specified on a per page basis and can take on one 
of three possible values: 

VM-INHERIT-NONE: The page is not transferred to the 
child. The page is left unallocated in the child. 

VM-INHERIT-COPY: The page is copied into the child. 
Subsequent modifications to the page affect the task making 
the modification only. For efficiency, pages are usually only 
copied when a write operation occurs (copy-on-write) . 

VM-INHERIT-SHARE: The page is shared between the 
parent and the child. Changes made to the page by either the 
parent or child will be seen by both. 

~~ 

filled with zeros. The vm-allocate-with-pager primitive is 
used to allocate a range of task addressable pages that are 
backed by a specific memory object. This feature of Mach 
allows user-state programs to provide their own implementa- 
tion of backing storage for regions of virtual memory. Tasks 
which implement one or more memory objects are usually 
referred to as external pagers. A complete description of 
external pagers and their use in Mach can be found in [26].  

By default, pages have an inheritance value of VM- 
INHERIT-COPY. The inheritance value of pages is set with 
the vm-inherit primitive. A task may freely set the inheritance 
value of any allocated pages it can access. 

An example of the way in which inheritance might be used 
is the Mach implementation of the UNIX fork operation. Fork 
creates a child process which is a copy of its parent. In Mach, 
this is implemented by setting the inheritance value of the 

B. Memory Protection Primitives 
Just as memory allocation is performed at the page level, 

Mach’s memory protection primitives are also defined to 
operate on ranges of pages. Each allocated page in an address 
space has two protection codes associated with it: 

its current protection, which corresponds to the protec- 
tion code associated with a page for memory references, and 

its maximum protection, which’ limits the value of the 
current protection. 

A page’s protection consists of a combination of read, 
write, and execute permissions. Each type of permission is 
mutually exclusive. Proper enforcement of the protection 
codes depends on hardware support. Lack of hardware support 
may allow extra access to occur. For example, most memory 
management units (MMU’s) do not distinguish between read 
access and execute access. Therefore, on such MMU’s, it is 
possible to execute any readable instructions regardless of 
execute permissions. 

Protection codes are set using the vm-protect primitive, 
which can be used to set either the current protection or the 
maximum protection. The current protection cannot be set to 
include a permission not set in the maximum protection. 
Further, the maximum protection may only be lowered. Once 
a permission is removed from the maximum protection code, it 
may never be added. 

C. Memory Inheritance Primitives 
A new address space is created in Mach as a side-effect of 

task creation. Task creation, and thus address space creation, 
is performed by the task-create primitive. task-create 
constructs a new address space which is either empty or based 
on an existing address space. When creating a new address 
space (child) based on an existing space (parent), each page in 
the new address space is based on the inheritance value of the 

parent task to VM-INHERI?-COPY, creating the child 
address space, and then creating a thread of control for the 
child which begins executing at the location of the parent’s 
program control counter at the time of fork. In addition to 
pure copy-on-write sharing of the parent’s address space, 
however, Mach’s inheritance primitives also allow read/write 
or no sharing of page ranges between a UNIX parent and its 
child processes. 

D. Miscellaneous Primitives 
While usually not necessary for normal memory manipula- 

tions, Mach provides a number of miscellaneous primitives 
which formalize memory management functions often needed 
for advanced applications. 

For example, it it typically the case that a thread can only 
reference the memory corresponding to the task in which it 
executes. However, it is sometimes necessary to read or write 
the address space of another task. For example, a debugger 
needs to examine and modify the address space of the task 
being debugged. These operations may be performed using the 
vm-read and vm-write primitives. The vm-copy primitive 
may be used to efficiently copy a range of virtual memory 
within an address space using copy-on-write techniques. 

Information specific to an address space may be determined 
with the vm-region call. This primitive returns a description of 
a region of an address space including protection values, 
inheritance values, and other pertinent information. Finally, 
the vmstatistics primitive provides a formal interface allow- 
ing tasks to query current virtual memory statistics maintained 
by the kernel. 

These operations are secured against malicious use by 
unauthorized users due to the fact that the caller must have 
send access rights to the task ports of the tasks they 
manipulate. By default, only the creator of a task has such an 
access right, although that access right may be passed to other 
tasks in messages. 

~- . -1  - 7  I 1 
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IV. THE IMPLEMENTATION OF MACH VIRTUAL MEMORY tained in page entries in the resident page table. These entries 
The design and implementation of Mach’s virtual memory are indexed by physical page nudXr .  Each entry may 

subsystem was dictated by several concerns: simultaneously be linked into several lists: 

portability (i.e., architecture independence), 
flexible address space manipulation, 
multiprocessor support, and 
performance. 

The need for portability led to a system structure in which 
machine-independent and dependent modules were clearly 
defined with strict interfaces between them. All key functions 
were implemented in a machine-independent fashion. 

The desire for flexible address space handling directed the 
choice of address space management data structures. Simple, 
small data structures were used to represent the contents of an 
address space to reduce both the implementation complexity of 
address space operations and the amount of storage required. 

Multiprocessor concerns resulted both in a user-visible 
design which exported the notion of read/write shared memory 
and in an object-oriented internal implementation style which 
allowed fine-granularity locking. 

Performance was achieved through aggressive lazy-evalua- 
tion. The key to this approach is the fact that virtual memory 
operations are often ephemeral in their effect. For example, 
UNIX programs frequently allocate more data and stack space 
than they usually use. Message passing logically copies data, 
but it is seldom true that a receiving program changes a 
memory value it has received in a message. By postponing 
operations until their results are needed, a virtual memory 

a memory object list, 
a memory allocation queue, and 
an object/offset hash bucket. 

All the page entries associated with a given object are linked 
together in a memory object list to speed up object dealloca- 
tion and virtual copy operations. Memory object semantics 
permit each page to belong to at most one memory object. 
Allocation queues are maintained for free, reclaimable, and 
allocated pages and are used by the Mach paging daemon, a 
kernel thread that attempts to maintain a minimum number of 
free, clean pages available to user-state tasks. Fast lookup of 
the physical page associated with an object/offset is performed 
using a bucket hash table keyed by memory object and byte 
offset. 

Byte offsets in memory objects are used throughout the 
system to avoid linking the implementation to a particular 
notion of physical page size. A Mach physical page does not 
always correspond to a page as defined by the memory 
mapping hardware of a particular computer. The size of a 
Mach page is a boot time system parameter. It relates to the 
physical page size only in that it must be a power of two 
multiple of the machine-dependent size. For example, Mach 
page sizes for a VAX can be 512 bytes, 1K bytes, 2K bytes, 
4K bytes, etc. Mach page sizes for a SUN 3, however, are 
limited to 8K bytes, 16K bytes, etc. 

system can often avoid performing them altogether. 

A .  Virtual Memory Data Structures C. Address Maps 
Four basic memory management data structures are used in 

Mach: 
1) the resident page table: a table used to keep track of 

information about machine-independent pages, 
2) the memory object: a unit of backing storage managed 

by the kernel or a user task, 
3) the address map: a doubly linked list of map entries, 

each of which describes a mapping from a range of addresses 
to a region of a memory object, and 

4)  the pmap: a machine-dependent memory mapping data 
structure (i.e., a hardware-defined physical address map). 

Not surprisingly, these data structures correspond roughly 
to various hardware or software concepts. The resident page 
table corresponds to a machine’s physical memory. An 
address map corresponds to a task (in Mach) or a process (in 
UNIX). A memory object corresponds to a source for paging 
(a file, for example). Finally, a pmap corresponds to a 
hardware’s representation of an address space (page tables, for 
example). 

B. Managing Resident Memory 

Addresses within a task address space are mapped to byte 
offsets in memory objects by a data structure called an address 
map. An address map is a doubly linked list of address map 
entries, each of which maps a contiguous range of virtual 
addresses onto a contiguous area of a memory object. This 
linked list is sorted in order of ascending virtual address and 
different entries may not map overlapping regions of memory 
(see Fig. 1). 

Each address map entry contains information about the 
inheritance and protection attributes of the region of memory it 
defines. For that reason, all addresses within a range mapped 
by an entry must have the same attributes. This can force the 
system to allocate two address map entries that map adjacent 
memory regions to the same memory object simply because 
the properties of the two regions are different. Operations that 
operate on a subset of a region corresponding to an entry 
usually result in that entry being split into two separate entries 
pointing to the same object. 

The address map entry also contains pointers for the doubly 
linked list management, as well as the byte offsets of the start 
and end of the region that the entry represents. Fig. 2 
summarizes the address map entry data structure. 

Physical memory in Mach is treated primarily as a cache for 
the contents of virtual memory objects. Information about 
physical pages (e.g., modified and reference bits) is main- 

This address map data structure was chosen over many 
alternatives because it was the simplest that could implement 
efficiently the most frequent operations performed on a task 

I 
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Address map: Head Tail Hint 

Fig. 1. A simple address map. 

Fig. 2. An address map entry. 

address space, namely, 

page fault lookups, 
copy/protection operations on address ranges, and 
allocation/deallocation of address ranges. 

A sorted linked-list allows operations on ranges of addresses 
(e.g., copy-on-write copy operations) to be done simply and 
quickly and does not penalize large, sparse address spaces. 
Moreover, fast lookup on faults can be achieved by keeping 
last fault “hints.” These hints allow the address map list to be 
searched from the last entry found for a fault of a particular 
type. Because each entry may map a large region of virtual 
addresses, an address map is typically small. A typical VAX 
UNIX process has four mapping entries upon creation-one 
each for code, stack, initialized data, and uninitialized data. 

Several alternative data structures were considered and 
rejected. The simplest alternative was an array of page table 
entries, similar to the VAX architecture. This solution makes 
both lookup and ordered traversal fast, but is not sufficiently 
compact, especially for sparse address maps. A multilevel 
page table can be made compact; however, it is potentially 
expensive to use when performing operations on large address 
ranges. Tree-structured address maps were also considered, 
but were rejected due to implementation costs (see [7]). 

D. Memory Objects 
A Mach address map need not keep track of backing 

storage. Instead, backing storage is implemented by Mach 
memory objects. Logically, a memory object is a contiguous 
repository for data, indexed by byte, upon which various 
operations (e.g., read and write) can be performed. 

Data contained in a memory object can be mapped into a 

task address space by any of the following mechanisms: 

as the result of an explicit mapping, using, for example, 
the vm-allocate- with-pager primitive, 

as the result of a virtual copy operation, such as that 
which results from receiving a large message, in which the 
data in the object are accessible copy-on-write, or 

as the result of a Mach taskcreate operation or a UNIX 
fork operation, in which case the data can be either fully 
shared or accessible copy-on-write, depending on inheritance 
values. 

Conceptually, a memory object represents some form of 
secondary storage. More specifically, the contents of a memory 
object are determined by the pager for that object. This could 
be anything from a UNIX file (in the case of a UNIX file 
system pager-see [22]) to a large database (in the case of a 
database disk manager acting as a pager-see [21]). The act of 
mapping part of an object into a virtual address map makes 
that data available for direct access within that address space. 

The kernel acts as a cache manager for object data, using 
physical memory as a cache of the object’s contents. Refer- 
ences to data in an object that are not in the physical memory 
cache are translated into paging requests on the paper. As a 
result, the virtual memory object maintains information about 
those pages cached for each object (the resident page 
structures) as well as information on how to communicate with 
the pager (see Fig. 3). 

As was pointed out in Section IV-B, resident pages are 
contained in only a single object. This is because each object 
defines a separate area of virtual memory. Sharing of physical 
pages occurs as the result of objects being mapped by several 
different address map entries. 

E. Shadow Objects and Sharing Maps 
When a copy-on-write copy is performed, the two address 

maps which contain the copies point to the same memory 
object. Should both tasks only read the data, no other mapping 
is necessary. 

If one of the two tasks writes data “copied” in this way, a 
new page, accessible only to the writing task, must be 
allocated. This new page is the page into which the modifica- 
tions are placed. Such copy-on-write memory management 
requires that the kernel maintain information about which 
pages of a memory object have been modified and which have 
not. Mach manages this information by creating memory 
objects specifically for the purpose of holding modified pages 
which originally belonged to another object. Memory objects 
created for this purpose are referred to as shadow objects. 

A shadow object collects and “remembers” modified pages 
which result from copy-to-write faults. A shadow object is 
created as the result of a copy-on-write fault taken by a task. It 
is initially an empty object without a pager but with a pointer 
to the shadowed object. A shadow object need not (and 
typically does not) contain all the pages within the region it 
defines. Instead, it relies on the original object that it shadows 
for all unmodified data. A shadow object may itself be 
shadowed as the result of a subsequent copy-on-write copy, 
creating what is termed a shadow chain (see Fig. 4) .  When 
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Fig. 3. A virtual memory object. 

Map Entry Map Entry Map Entry 

operation' 

Shadow Chains 

Fig. 4. Shadow chains as a result of virtual copies. 

the system attempts to find a page in a shadow object, and fails 
to locate it, it follows this list of objects. The system will 
eventually find the page in some object in the list and make a 
copy, if necessary. 

While memory objects can be used in this way to implement 
copy-on-write, the memory object data structure is not 
appropriate for managing readlwrite sharing. Operations on 
shared regions of memory may involve mapping or remapping 
many existing memory objects. In addition, several tasks may 
share a region of memory read/write and yet simultaneously 
share the same data copy-on-write with another task. 

This implies the need to provide a level of indirection when 
accessing a shared object. Because operations on shared 
memory regions are logically address map operations, read/ 
write memory sharing requires a map-like data structure which 
can be referenced by other address maps. To solve these 
problems, address map entries are allowed to point to a 
sharing map as well as a memory object. The sharing map, 
which is identical to an address map, then points to shared 
memory objects. Map operations that should apply to all maps 
sharing the data are simply applied to the sharing map. 

Sharing maps are created as part of the task-create 
operation whenever an inheritance value of SHARED is 
detected (see Fig. 5 ) .  Since sharing maps can be split and 
merged (using multiple entries within a map), sharing maps do 
not need to reference other sharing maps. For example, if a 
shared region is split into two new regions, one speciQing that 
sharing takes place with a new task, the previous share map is 
simply split. Therefore, a sharing map is created only if 
absolutely necessary. This simplifies map operations and 
obviates the need for garbage collection of sharing maps. 

Map Entry Map Entry 
task create 
operation * 

"shared" 

Fig. 5.  Share map creation on taskcreate operation. 

F. Managing the Object Tree 
Much of the complexity of Mach memory management 

arises from a need to prevent the potentially large chains of 
shadow objects arising from repeated copy-on-write remap- 
ping of a memory object from one address space to another. 
Remapping causes shadow chains to be created when mapped 
data are repeatedly modified-causing a shadow object to be 
created-and then recopied. A trivial example of this kind of 
shadow chaining can be caused by a simple UNIX process that 
repeatedly forks its address space. This causes shadow objects 
to be built in a long chain ultimately pointing to the memory 
object that backs the UNIX stack. 

As in the fork example, most cases of excessive shadow 
object chaining can be prevented by recognizing that new 
shadows often completely overlap (i.e., each page in the 
original has a copy in the shadow) the objects they are 
shadowing. Mach automatically garbage collects shadow 
objects when it recognizes that an intermediate shadow is no 
longer needed. While this code is, in principle, straightfor- 
ward, it is made complex by the fact that unnecessary chains 
sometime occur during periods of heavy paging and cannot 
always be detected on the basis of in-memory data structures 
alone. Moreover, the need to allow the paging daemon to 
access the memory object structures, perform garbage collec- 
tion, and still permit virtual memory operations to operate in 
parallel on multiple CPU's has resulted in complex object 
locking rules. 

G. The Object Cache 
A reference counter is maintained for each memory object. 

This counter allows the object to be garbage collected when all 
mapped references to it are removed. In some cases, for 
example UNIX text segments or other frequently used files, it 
is desirable for the kernel to retain information about an object 
even after the last mapping reference disappears. Retaining the 
physical page mappings for such objects can make subsequent 
reuse very inexpensive. Mach maintains a cache of such 
frequently used memory objects. 

The object cache is a least recently used (LRU) list of those 
objects that are not currently mapped but for which the kernel 
is retaining cached pages. The size of the LRU list is a fixed, 
boot time parameter, allowing those objects that are not 
frequently referenced to be uncached automatically. Whenever 
a cached object is mapped into an address space with the vm- 
allocate-with-pager primitive, it is removed from the LRU 
list, allowing other objects to be cached. When an object's 
reference count goes to zero, indicating no remaining map- 
pings, and if it is flagged as a cacheable object, it is placed at 

1 
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the end of the LRU list. If the list is full, objects are removed 
from the front of the list and their physical resources are 
uncached. 

Most of the object cache control is performed automatically 
by the kernel. All externally managed objects are assumed to 
be cacheable, and cache control occurs transparently using the 
LRU list. However, pagers may also exercise all cache control 
functions. In particular, a pager may indicate whether or not 
an object should be cached on a zero reference count. In 
addition, a pager can flush an object from the cache if it is in 
the cache. This operation is typically used to indicate to the 
kernel that the cached data in the object are no longer valid. 
For example, the file system removes the object corresponding 
to a file whenever it is rewritten in order to flush stale cached 
pages. 

H. The PMAP Interface 
The pmap module is the sole machine-dependent module in 

the virtual memory implementation. The interface to this 
module has been designed to support a wide variety of 
hardware MMU’s, and could even be considered for direct 
implementation in hardware or firmware. The interface 
assumes only a simple, paged MMU architecture, and has 
been shown to be effective for designs ranging from complex 
page tables (such as those found in the VAX or B M  RT PC 
architectures) to designs that employ a simple translation look- 
aside buffer (TLB) and no in-memory table (notably that found 
in the MIPS architecture). See Table 11. 

The implementor of a pmap module need not know any 
details of the machine independent implementation and data 
structures. A pmap structure is the handle with which the 
machine-independent code communicates with the machine- 
dependent code. All routines that operate on pmaps explicitly 
specify which pmap is to be operated on. 

The pmap module is informed of address space creation and 
destruction with the pmap-create, pmap-reference, and 
pmap-destroy primitives. Pmap-create is called when the 
system begins using a new address space. The pmap module 
creates a new pmap structure and returns its handle to the 
machine-independent code. This handle is then used as an 
argument to other pmap routines in order to specify which 
pmap to affect. Pmap-reference and pmap-destroy incre- 
ment and decrement reference counts on pmaps. When the 
reference count of a pmap goes to zero, the pmap module can 
free up all resources used by the pmap. For the most part, 
reference counts on pmaps never to go higher than once since 
each pmap corresponds to a single address map. However, 
there are some exceptions, most notably some uses of address 
maps for the kernel’s address space management. 

Address space specific calls are used by the machine- 
independent part of the system to notify the pmap module of 
various types of changes in virtual address mappings. Pmap- 
enter is the basic routine that is used to validate addresses. 
Address invalidation is performed by the pmap-remove 
routine. The pmap-protect routine is used to change the 
protection. Both pmap-remove and pmap-protect operate on 
a range of pages within a pmap. Pmap-enter operates on a 
single page of machine-independent size. 

Some kernel functions cause multiple address spaces to be 
simultaneously affected. These functions are typified by the 
need to affect all current mappings to a physical page. There 
are two important examples of this type of function. 

1) Page out operations require that all references to a 
physical page become invalidated. 

2) Copy-on-write operations require that all writeable 
references to a physical page be changed to read-only. 

To handle these cases, two primitives must be provided by 
the pmap module. The page out case is handled by the pmap- 
remove-all primitive. Given a physical page, this primitive 
invalidates all virtual mappings to that page. The copy-on- 
write case is handled by the pmap-copy-on- write primitive, 
which like the pmap-remove-all primitive affects all map- 
pings of a page. However, in this case, rather than remove all 
mappings, the access for all mappings of the physical page is 
lowered to read-only. 

The need for the global pmap-remove-all and pmap- 
copy-on- write primitives has important implications for the 
pmap module. In particular, if the pmap module is to allow 
multiple mappings of a physical page, then the pmap module 
must maintain some type of physical-to-virtual mapping list. 
Without such a list, the pmap module cannot properly 
implement the global operations. 

While most of the pmap interface is used by the machine- 
independent part of Mach to inform the machine-dependent 
part of changes in mappings, there is also a primitive which 
allows the machine-independent code to query the status of 
various mappings. This primitive pmap-extract performs a 
virtual address translation on a specified virtual address and 
returns the corresponding physical address. 

Other primitives supplied by the pmap module exist for the 
purposes of manipulating a machine’s physical memory. Two 
primitives provide such support: pmap-zero-page zeros the 
specified physical page, pmap-copy-page copies one physi- 
cal page to another. Again, the size of the page is the machine- 
independent page size, so the implementation must be pre- 
pared to copy multiple hardware page size pages. 

The next part of the pmap interface consists of primitives 
that notify the pmap module of which address spaces are being 
used on which processors. These primitives allow the pmap 
module to set up hardware page table registers, or other 
machine specific hardware registers related to memory man- 
agement. This information is also especially important for 
implementations that must perform some type of TLB consist- 
ency. 

Finally, the pmap interface has a small number of optional 
primitives. Depending on the pmap implementation, these 
may perform no function. The first is pmap-update. This 
primitive informs the pmap module that all virtual mappings 
should now be in sync. This primitive allows other operations 
to be delayed until the sync time if there is some potential 
performance gain to be achieved. All primitives that affect 
mappings, except for pmap-enter, may be delayed until 
pmap-update is called. The other two miscellaneous primi- 
tives are pmap-copy and pmap-pageable. Both operate on a 
range of virtual addresses; pmap-copy indicates that a range 
of virtual memory has been copied using copy-on-write, and 
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pmap-pageable indicates that a range of virtual memory can 
(or cannot) be made pageable. These primitives are optional in 
that this information is given to the pmap module by using the 
other primitives (using pmap-enter for example). These 
miscellaneous primitives represent redundant information that 
may be used for performance optimizations. 

I. The Page Fault Handler 
The Mach page fault handler is the hub of the Mach virtual 

memory system. The kernel fault handler is invoked when the 
hardware tries to reference a page for which there is an invalid 
mapping or a protection violation. The fault handler has 
several responsibilities: 

validity and protection-The kernel determines if the 
faulting thread has the desired access to the address by 
performing a lookup in its task’s address map. This lookup 
also provides a memory object and offset into that object. 

page lookup-The kernel attempts to find an entry for a 
cached page in the virtual-to-physical hash table. If the page 
is not present, the kernel must request the data from the pager. 

copy-on-write-Once the page has been located, the 
kernel determines if a copy-on-write operation is needed. If 
the task desires write permission and the page has not yet been 
copied, then a new page is created as a copy of the original. If 
necessary, the kernel also creates a new shadow object. 

hardware validation-Finally , the kernel informs the 
hardware physical map module of the new virtual-to-physical 
mapping. 

With the exception of the hardware validation, all of these 
steps are implemented in a machine-independent fashion. 

V. PERFORMANCE 

A. Uniprocessor Performance 
Tables III and IV compare the performance of Mach’s zero 

fill and fork operations with those of native UNIX implemen- 
tations. In each table, the version of UNIX depends on the 
hardware base as follows: 4.3 BSD on the MicroVAX-11, 
SunOS 3.2 on the 31160, and ACIS 4.2a on the RT/PC. 

Mach outperforms each UNIX counterpart for zero fill data. 
On the MicroVAX, the large disparity in time is due primarily 
to 4K page size compared to 1K for 4.3 BSD. However, the 
minimum time required to zero 1K of data on the MicroVAX 
(using the bzero routine, for example) is 0.25 ms. This leaves 
0.3 ms and 0.95 ms of overhead for the Mach and BSD fault 
handlers, respectively (per K). Since the Mach page size is 
4K, the actual overhead is approximately 1.2 ms. This 
compares favorably to the 0.95 ms value for BSD, which uses 
the VAX page tables as its “machine-independent’’ data 
structure representation. Both SunOS and ACIS suffer addi- 
tional overhead due to the need to translate from VAX page 
tables to their native counterparts. 

Mach also outperforms each UNIX counterpart in imple- 
menting the UNIX fork primitive (see Table IV). Since Mach 
implements fork using copy-on-write, it avoids the copy costs 
that inflate the time to fork on UNIX systems that do not 
support copy-on-write. BSD-based systems try to avoid these 
extra costs with the vfork primitive, which eliminates the copy 

TABLE II 
PMAP INTERFACE PRlMITlVES 

I Functional Group I Primitives 

I b a p  Handles I pmap-create. pmap-reference 

TABLE 111 
PERFORMANCE OF ZERO FILL PER K OF DATA 

I Machine I Mach I UNIX 1 

TABLE IV 
COST OF FORK/EXIT FOR A 2563 PROCESS 

I Machine I Mach I UNIX I 
Sun 3/160 
1BM RTPC 

at the expense of different semantics. However, the time for a 
basic fork under Mach (24 ms on MicroVAX-11) is compara- 
ble to a BSD vfork (17 ms on MicroVAX-11). 

B. Parallel Performance 
Measurement of the parallel performance of the virtual 

memory system was performed on the Encore Multimax. The 
Multimax contained 16 National 32032 processors with a total 
of 32 Mbytes of primary memory. 

Fig. 6 shows the parallel performance of manipulating data 
that are faulted. The data are manipulated in three significant 
ways: 

bcopy (no fault): Data are copied using the UNIX C 
library bcopy routine. This routine is hand-coded in Assembly 
language to copy bytes as fast as possible. In this test, data are 
simply copied, no page faults are generated. 

bcopy (with fault): Data are copied using the UNIX C 
library bcopy routine, but in this test accessing the source data 
generates page faults. 

register copy: This test moves each byte to a register. 
This has the effect of simulating the copy without generating 
excessive bus write operations. As in the previous test, 
references to data generate page faults. 

The major contribution to the dropoff in performance with 
increasing numbers of CPU’s is cache-thrashing on the 
Multimax. Each pair of CPU’s share a data cache and, as the 
number of competing processors goes beyond eight, proces- 
sors are competing for cache slots and interfering with each 
other’s performance. This can be seen clearly in the case of the 
bcopy (no fault) curve which drops off even more dramati- 
cally in performance than the bcopy (with fault) curve. In any 
event, the amount of fault parallelism available is not a visible 
bottleneck on the Multimax with 16 processors. Moreover, 
assuming that faulted data are processed in some way, the cost 
of this processing is likely to dominate fault handling costs. 
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User System Elapsed 
Machine System Time (sec) Time (sec) Time (mm:ss) 

8:25 VAX Ill780 4.3 BSD 349.9 19.6 
1 5 6  VAX llf78O Mach 353.0 81.5 
4:21 Sun 3D60 SunOS 3.3 128.3 35.5 

Sun3D60 Mach 127.5 40.1 3:41 
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Fig. 6. Parallel performance of page fault operations (with copy) on 
Multimax. 

C. Overall Performance 
While the previous section showed that many low-level 

virtual memory functions perform better under Mach than 
other UNIX systems, this is of little importance if the user 
does not see an improvement in overall performance of higher 
level operations. Table V compares the performance of Mach 
to 4.3 BSD and SunOS. In each case, the time to compile a 
subset of the programs in/bin is reported (the subset corres- 
ponds to those programs that are compilable on both 4.3 and 
SunOS) . 

The VAX 1 1/780 used was running 4.3 BSD as released by 
Berkeley. Both the 4.3 kernel and Mach kernel were used on 
this system. The Sun 3/260 tests were performed on separate 
but identical Suns with the same compilation environment. 

The most important information contained in Table V 
pertains to elapsed time and U0 operations. In both categories, 
Mach outperforms its UNIX counterparts. Mach reduces I/O 
operations by making more effective use of primary memory 
as a cache. For example, the object cache allows Mach to 
reuse programs cached in memory, even after those programs 
have terminated. The reduction in I/O operations has the direct 
effect of lowering the elapsed time. 

D. Implementation Code Size 
The size of the virtual memory implementation is summa- 

rized in Fig. 7. The total size, about 16K, does not include 
UNIX specific support, including support for paging to and 
from UNIX file systems. Also, implementation of the pmap 
module increases this total by an amount that depends on the 
complexity of the hardware. 

The pmap module is about the size of a disk device driver 
with much of its implementation optional. The current VAX 
version is 8K bytes (compiled uniprocessor) and 12K bytes 
(compiled multiprocessor) of object code. The SUN imple- 
mentation is 5K bytes. The IBM RT version is approximately 
8.5K bytes. 

Taken altogether, the virtual memory component of Mach is 
negligible when compared to the total size of operating 
systems such as 4.3 BSD or SunOS which can easily exceed 
300-500K of code. In fact, it represents a small portion of the 
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Fig. 7.  The object s u e  of the machine-independent virtual memory 

implementation broken down into modules (VAX architecture). 

Relative Code Sizes (Vax) 

5% 
4% 

Implementation 

90% 

Fig. 8.  Relative code sizes on a VAX. 

total amount of code required to emulate 4.3 BSD on a VAX 
(see Fig. 8). 

VI. HARDWARE EXPERIENCE 

Mach runs on a large number of uniprocessors and 
multiprocessors. In the course of porting Mach to these 
machines, we gained considerable experience both with 
porting Mach’s virtual memory code and with the pros and 
cons of various hardware memory management schemes as 
they apply to a system like Mach. 

A .  Porting Mach 
Mach was originally implemented on VAX architecture 

machines including the MicroVAX II, 11/780 and a four- 
processor VAX system called the VAX 11/784. The imple- 
mentation began in the fall of 1985. The first relatively stable 
VAX version was available in February 1986. At the end of 
that month the first port of Mach, to the IBM RT/PC, was 
initiated by a newly hired programmer who had not previously 
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worked on an operating system nor programmed in C. By 
early May of 1986, the RT/PC version was self-hosting and 
available to a small group of users. 

The majority of time required for the RT/PC port was spent 
debugging compilers and device drivers. The estimate of time 
spent in implementing the pmap module was approximately 
three weeks-much of that time spent understanding the code 
and its requirements. By far the most difficult part of the pmap 
module to “get right” was the precise points in the code where 
validation and invalidation of hardware address translation 
buffers were required. 

Implementations of Mach on the Sun 3, Sequent Balance, 
and Encore Multimax have each contributed similar experi- 
ences. The Sequent port was the only one done by an expert 
systems programmer. The result was a bootable system only 
five weeks after the start of programming. In each case, Mach 
has been ported to systems which possessed either a 4.2 BSD 
or System V UNIX. This has aided the porting effort 
significantly by reducing the effort required to build device 
drivers. Fig. 9 graphically illustrates the time frame in which 
several Mach ports have taken place. 

Even after all of these porting efforts, the machine- 
independent implementation has never been modified in order 
to support a new hardware architecture. There were, however, 
two changes that were made as a result of porting efforts. The 
first was a two-line change to eliminate an autoincrement of a 
bit field which exercised a compiler bug in the RT/PC 
compiler. The only other change was to eliminate an informa- 
tional print-out of some automatically computed paging 
parameters since it interfered with other diagnostic output 
generated by the Multimax. 

B. Assessing Various Memory Hardware Architectures 
Mach’s virtual memory system is portable, makes few 

assumptions about the underlying hardware base, and has been 
implemented on a variety of architectures. This has made 
possible a relatively unbiased examination of the pros and cons 
of various hardware memory management schemes. 

In principle, Mach needs no in-memory hardware-defined 
data structure to manage virtual memory. Machines which 
provide only an easily manipulated translation look-aside 
buffer can be accommodated by Mach and would need little 
code to be written for the pmap module. In fact, a version of 
Mach has already run on a simulator for the IBM RP3 which 
assumed only TLB hardware support. In practice, though, the 
primary purpose of the pmap module is to manipulate 
hardware defined in-memory structures that in turn control the 
state of an internal MMU TLB. Each hardware architecture 
has shortcomings, both for uniprocessor use and even more so 
when bundled in a multiprocessor. 

1) Uniprocessor Issues: Mach was initially implemented 
on the VAX architecture. Although, in theory, a full 2 Gbyte 
address space can be allocated in user state to a VAX process, 
it is not always practical to do so because of the large amount 
of linear page table space required (8 Mbytes). UNIX systems 
have traditionally kept page tables in physical memory and 
simply limited the total process addressability to a manageable 
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1985 - Jan 
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Vax (initial implementation) 

RTPC 

Sun 1 1 MulliMax 

I 
t Balance 21000 

Fig. 9. The timing of the Mach implementation and several ports. 

8, 16 or 64 Mbytes. VAX VMS handles the problem by 
making page tables pageable within the kernel’s virtual 
address space. The solution chosen for Mach was to keep page 
tables in physical memory, but only to construct those parts of 
the table that were actually needed to map virtual to real 
addresses for pages currently in use. VAX page tables in Mach 
may be created and destroyed as necessary to conserve space 
or improve run time. The necessity to manage page tables in 
this fashion and the large size of a VAX page table (partially 
the result of the small VAX page size of 512 bytes) has made 
the machine-dependent portion of that system more complex 
than that for other architectures. 

As specified by the VAX architecture, each page table is 
broken down into two regions. Splitting the address space into 
two regions is attractive, especially for UNIX, since it is easy 
to cause the address space to grow in two separate directions. 
For UNIX, one direction corresponds to stack growth, the 
other corresponds to data segment growth. Unfortunately, 
these advantages do not apply to multithreaded Mach applica- 
tions that need a stack for each thread. 

The IBM RT/PC does not use per-task page tables [24]. 
Instead it uses a single inverted page table that describes which 
virtual address is mapped to each physical address. To 
perform virtual address translation, a hashing function is used 
to query the inverted page table. This allows a full 4 Gbyte 
address space to be used with no additional overhead due to 
address space size. Mach has benefited from the RT/PC 
inverted page table in significantly reduced memory require- 
ments for large programs (due to reduced map size) and 
simplified page table management. 

One drawback of the RT, however, is that it allows only one 
valid mapping for each physical page, making it impossible to 
share pages without triggering faults. The rationale for this 
restriction lies in the fact that the designers of the RT targeted 
an operating system which did not allow virtual address 
aliasing. The result is that physical pages shared by multiple 
tasks, in Mach, can cause extra page faults, with each page 
being mapped and then remapped for the last task which 
referenced it. The effect is that Mach treats the inverted page 
table as a kind of large, in memory cache for the RT’s 
translation look-aside buffer. The surprising result has been 
that, to date, these extra faults are rare enough in normal 
application programs that Mach is able to outperform a version 
of UNIX (IBM ACIS 4.2a) on the RT which avoids such 
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aliasing altogether by using shared segments instead of shared 
pages. 

In the case of the Sun 3, a combination of segments and page 
tables are used to create and manage per-task address maps up 
to 256 Mbytes each. The use of segments and page tables 
makes it possible to implement sparse addressing reasonably, 
but only eight such contexts may exist at any one time. If there 
are more than eight active tasks, they compete for contexts, 
introducing additional page faults as on the RT. 

Both the Encore Multimax and the Sequent Balance 2 1000 
use the National 32082 MMU [14]. This MMU has posed 
several problems unrelated to multiprocessing. 

Only 16 Mbytes of virtual memory may be addressed per 
page table. This requirement is very restrictive in large 
systems, especially for the kernel’s address space. 

Only 32 Mbytes of physical memory may be addressed. 
Once again, this requirement is very restrictive in large 
systems. 

A chip bug apparently causes read-modify-write faults to 
always be reported as read faults. Mach depends on the ability 
to detect write faults for proper copy-on-write fault handling. 

It is not surprising that these problems have been addressed 
in the successor to the NS32082, the NS32382. 

2) Multiprocessor Issues: When building a shared mem- 
ory multiprocessor, care is usually taken to guarantee auto- 
matic cache consistency or at least to provide mechanisms for 
controlling cache consistency. However, hardware manufac- 
turers do not typically treat the translation look-aside buffer of 
a memory management unit as another type of cache which 
also must be kept consistent. None of the multiprocessors 
running Mach supports TLB consistency. In order to guaran- 
tee such consistency when changing virtual mappings, the 
kernel must determine which processors have an old mapping 
in a TLB and cause it to be flushed. Unfortunately, it is 
impossible to reference or modify a TLB on a remote CPU on 
any of the multiprocessors which run Mach. 

There are several possible solutions to this problem, each of 
which has been employed by Mach implementations in 
different settings: 

1) forcibly interrupt all CPU’s which may be using a shared 
portion of an address map so that their address translation 
buffers may be flushed, 

2) postpone use of a changed mapping until all CPU’s have 
taken a timer interrupt (and have had a chance to flush), or 

3) allow temporary inconsistency. 
Case 1) applies whenever a change is time critical and must 

be propagated at all costs. Case 2) can be used by the paging 
system when the system needs to remove mappings from the 
hardware address maps in preparation for pageout. The system 
first removes the mapping from any primary memory mapping 
data structures and then initiates pageout only after all 
referencing TLB’s have been flushed. Often case 3) is 
acceptable because the semantics of the operation being 
performed do not require or even allow simultaneity. For 
example, it is acceptable for a page to have its protection 

The Multimax has, however, added special hardware to allow a full 4 G- 
bytes to be addressed. 

changed first for one task and then for another if that 
protection is increasing. TLB’s (or page tables) containing 
stale data will cause a protection fault that will be handled 
properly by the fault handler. 

VII. RELATION TO PREVIOUS WORK 
Mach provides a relatively rich set of virtual memory 

management functions compared to systems such as 4.3BSD 
UNIX or System V,  but most of its features derive from earlier 
operating systems. Accent [17] and Multics [15], for example, 
provided the ability to create segments within a virtual address 
space that corresponded to files or other permanent data. 
Accent also provided the ability to efficiently transfer large 
regions of virtual memory in memory between protected 
address spaces. 

Obvious parallels can also be made between Mach and 
systems such as Apollo’s Aegis [ l l ] ,  IBM’s System138 [8], 
and CMU’s Hydra [25]-all of which deal primarily in 
memory mapped objects. Sequent’s Dynix [4] and Encore’s 
Umax [5] are multiprocessor UNIX systems which have both 
provided some form of shared virtual memory. Mach differs 
from these previous systems in that it provides sophisticated 
virtual memory features without being tied to a specific 
hardware base. Moreover, Mach’s virtual memory mecha- 
nisms can be used either within a multiprocessor or extended 
transparently into a distributed environment. 

VIII. CONCLUSION 
An intimate relationship between memory architecture and 

software made sense when each hardware box was expected to 
run its own manufacturer’s proprietary operating system. As 
the computer science community moves toward UNIX-style 
portable software environments and more sophisticated use of 
virtual memory mechanisms this one-to-one mapping appears 
less and less appropriate. 

To date, Mach has demonstrated that it is possible to 
implement a sophisticated virtual memory management which 

is easily portable to paged architectures, 
provides support for parallel architectures, 
provides mechanisms for advanced use of virtual mem- 

performs better than other designs targeted at specific 

The system has been ported to a variety of hardware 
architectures. At CMU alone, Mach has been ported to the 
VAX family of uniprocessors and multiprocessors, the IBM 
RT PC family, the SUN 3 family, the Encore Multimax, and 
the Sequent Balance 21000. In each case, the portability of the 
system has been demonstrated by the ease with which the 
pmap module has been implemented. Further, no porting 
effort has required any substantive change to the machine- 
independent implementation. 

The needs of parallel processing are handled at two levels. 
First, flexible sharing and protection primitives provide 
support for high-performance parallel applications. Second, 

e.g. ,  transaction processing, database management [20], and AI knowl- 
edge representation [2] 

ory, and 

hardware architectures. 
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the virtual memory system implementation is fully parallel, 
allowing for efficient execution on parallel processors. 

Mach provides for advanced use of virtual memory by 
providing powerful internal primitives that allow for virtually 
arbitrary mapping relations to be created. Shared memory and 
support for file mapping (with UNIX emulation) have all been 
provided. 

Although one is often willing to trade performance in return 
for added functionality and/or portability, this performance 
tradeoff has been unnecessary in the Mach virtual memory 
system. In fact, the net effect of the advanced Mach design is a 
system that typically pertorms other designs. 
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