
An Improved Supercomputer Sorting Benchmark

Kurt Thearling & Stephen Smith

Thinking Machines Corporation
245 First Street

Cambridge, MA 02142

kurt(?thi.nk.com / smith@ think .com

Abstract: In this paper we propose that the process of sorting be more formally adopted as a performance benchmark for commer-

cial supercomputer applications. To this end we have investigated the use of entropy as a measure of data dkribution and propose

that it, along with larger datasets, be added to existing sorting benchmarks (such as NAS). Some of the key points in adopting such

a benchmark are presented and the results of applying such a benchmark to the CM-5 supercomputer are discussed. As a result of

carefully exarniniig thii problem, we were able to sort 1 billion 32-bit keys in less than 17 seeonds on a 1024 processor CM-5.

1.0 Introduction

The development of commercial markets for supercom-

puters will depend on the ability of manufacturers to

provide performance in areas which are outside the sci-

entific community’s traditional needs. Rather than

LINPACK and other number-crunching benchmarks,

commercial customers will require performance mea-

surements for processing non-numeric data. Tasks such

as relational database queries and sorting are examples

of the type of processing which will be needed.

We propose that sorting be adopted as an additional

benchmark in the repertoire of performance analysis

routines. There are two basic features which make sort-

ing a desirable benchmark. First it is simply described as

a problem and can be easily scaled in size to provide

progressively more difficult benchmarks. (h the work

presented here, a maximum of 2W 32-bit keys were sort-

ed, requiring a minimum of 4 Gbytes of memory). Sec-
ond, sorting requires that massive amounts of data be

communicated between processors. In both shared and

distributed memory machines, the ability to move data

efficiently will dictate performance in many commercial

applications. Sorting could be considered the prototypi-

cal benchmark of data movement performance (which is

closely related to the communication bandwidth in a

distributed memory machine) without having to create a

contrived example.

As will be described later, it is important to correetly

characterize the distribution of the data that is being

sorted. We have decided to use art information theoretic

measure which characterizes the distribution of keys in

terms of the entropy of the key values. As we will show,

the sorting techniques described in this paper are robust

to changes in the distribution of the key values.

2.0 Sorting as a Benchmark

Sorting has recently been proposed as an important

benchmark kernel for the NAS parallel benchmarks

&tailey 91]. These benchmarks have been produced in

an effort to improve upon the evaluation of large parallel

supercomputers that were being provided by the Liver-

more Loops [McMahon 86], LINPACK [Dongarra 88a,

88b] and PERFECT club [Berry 89] benchmarks. The
intent of NAS was to provide a benchmark that was reli-

ably implemented from a simple “paper and pencil” de-

scription while allowing for problem sizes and

algorithmic modifications that more fairly reflected

problems and kernels that were of interest on today’s

parallel supercomputers. Specifically, the NAS parallel
sorting benchmark consists of sorting 8 million 19-bit

1063-9535/92 $3.00 @ 1992 IEEE

14

integers produced from the average of 4 randomly gen-

erated numbers between O and 219.

While these new benchmarks are welcome additions

they, perhaps, do not go far enough. Specifically there

arE parallel supercomputers which are today capable of

sorting 1 billion keys in memory in under a minute
[Baber 91] and thus the 8 million keys of the current

NAS benchmark is relatively small. Additionally the

NAS benchmark allows for only a single data distribu-

tion that is only moderately non-uniform (the distribu-

tion created by the sum of 4 random values). Many real

world data distributions are far less uniform than this

disrnbution and some are more uniform. It will be im-

portant to determine the performrmce of sorting systems

and algorithms over a wide range of distributions as

some algorithms can take advantage of data distribu-

tions that are known a priori to be uniform [Baber 9 1].

3.0 Characterizing the Keys

While the performance of some sorting algorithms, such

as bitonic sort, are unaffected by the distribution of the

data being sorted, some of the currently most useful al-

gorithms (e.g., samplesort, block radix) are dependent

on the data distribution [Blelloch 90]. Algorithms which

are not robust to variations in the distribution of sorting

keys can have performance problems when they en-

counter non-uniform data. In the work presented in

[Baber 91], the sorting algorithm relies on the fact that

the keys are uniformly distributed to insure proper load

balancing. If the keys were not uniformly distributed

(say they were a list of customers’ ages), the majority of

processors would be idle while the minority would be

overloaded. The goal of our work was to develop a sim-

ple metric which would allow for the characterization of

the key distribution.

It should be noted that there are two possible interpreta-

tions of the word “distribution.” The first refers to the

probability distribution of the values of the keys (e.g.

Are low-valued keys more common than high-valued

keys?). The second interpretation refers to the way in

which the keys are physically placed initially in the

memory (e.g. Are the keys already in sorted order? Are

they in reverse sorted order?). In this paper we are refer-

ring to the first of these two interpretations.

‘0rN32-bitke@’eremer3x1)p0ssib1ekey
distributions [Knuth 68]. If there are one billion (2W)

keys, this number is 10 E 1166738659. Obviously it

would be impossible to characterize the sorting perfor-

mance over any but a very small subset of these possi-

bilities.

One technique which has often been used to chamcter- ‘

ize the distribution of data is entropy measurement. The

Shannon entropy [Shannon49] of a distribution is de-

fined as

-zpi. log pi

where pi is the probability associated with key i. If the

logarithm is base 2, the entropy of the key distribution

specifies the number of unique bits in the key. For exam-

ple, if every key had the same value (say 927), the entro-

py of the key distribution would be O bits. On the other

hand, if every possible 32-bit key were represented the

same number of times (i.e., a uniform distribution), the

entropy of the keys would be 32 bits. In between these

two exmemes are entropies of intermediate values.

In many real world databases there witl be fewer bits of

entropy for a distribution than bits in the data structure

representing the key. Customer account numbers are a

good example of this. Often not all possible account

numbers are used or it may be the case that certain pre-

fix digits are used to organize the data. For example, a

leading order digit of 1 in an account number might

specify commercial customers while a leading order

digit of 2 might specify individuals. No other leading or-

der digits are allowed. Assuming an eight bit character

representation of the digits, the 8 bits in the character are

used to represent a 1 bit quantity.

The goal of this work is to evaluate sorting algorithms

as the entropy of the key data is varied. To evaluate an

algorithm, it is necessary to either measure the entropy

of a test set or generate a test set with a specified entro-

py. We have chosen to generate key data which spans a

range of entropy values. To accomplish this, there are

many possible algorithms. One technique would be to

simply take a uniform set of keys with 32 bits of entropy

and zero out the leading order N bits. This would gener-

ate keys with (32 - N) bits of entropy. A more interesting

technique would produce keys whose individual bits are

between O and 1 bit of entropy. We propose one such

technique here. Unquestionably there are other tech-

niques which could also perform this task. We believe

the technique we have developed is general enough to

serve the desired purpose.

15

The basic idea is to combine multiple keys having a uni-

form distribution into a single key whose distribution is

non-uniform. The combination operation we will be us-

ing is the binary AND. For example, take two 32-bit

keys generated using a uniform distribution (we will as-

sume that the individual bits are independent and that

the two keys are independent). In this case, each bit of

the keys will have a .50/.50 chance of being either a zero

or a one. If we AND these two keys together, each bit

will now be three times as likely to be a zero as a one

(.75/.25). This produces an entropy of.811 bits per bina-

ry digit for a total of 25.95 bits for the entire key (out of

a possible 32 bits). If we repeat this process using addi-

tional uniform keys, the entropies of the key distribu-

tions continue to decrease

Number of Keys

ANDed Together
Entropy

~ 1. bits

2 .811 bits

3 .544 bits

4 .337 bits

5 .201 bits

Infinite 0.0 bits

The difference between successive ANDings is approxi-

mately twenty percent of the total for the first five AND-

ings. It then takes an infinite amount of additional work

to decrease the entropy completely to zero.

In the results presented in this paper, we have character-

ized the algorithm performance for key entropies of O,

6.42, 10.78, 17.41,25.95, and 32 bits. This corresponds

to &ta that has been set to a constant value, the first four

ANDings, and uniform data.

4.0 Radix Sorting

A radix sorting algorithm can be implemented to exploit

known uniform data distributions and has recently been

done so with high performance[Baber91]. A bucket

sort is another, and probably more efficient algorithm,
for known uniform data distributions [Corrnen 90] as it

can be accomplished with only a single interprocessor

communications step and a local sort as opposed to the

numerous interprocessor communication steps of the ra-

dix rdgorithm.

The radix algorithm is, however, of interest to us as it

has also been implemented with high performance for

data sets with unknown (non-uniform) distributions

[Blelloch 91]. We will then utilize the radix algorithm as

described in [Blelloch91] to see its performance over a

variety of different data distributions.

In brief the radix algorithm makes multiple passes over

the keys sorting on a subset of the total bits of the keys

and moving from the least significant to most significant

bits with each pass. Each pass uses a counting sort

which consists of three basic phases:

1. Build a histogram of key values locally on each

processor.

2. Count the number of occurrences of each histo-

gram row across processors.

3. Use these counted values to determine the new ad-

dress of the key. Then permute the keys based on

this new address.

Histogram Generation: In this phase, each key is ex-

amined (in order) and the associated histogram bucket is

incremented. For an R bit radix, there are 2R buckets.

me primary limitation on performance is the speed at

which memory can be accessed.

Our first attempt at implementing this phase was used a

naive, simple approach:

Index = Shift and Mask Key

Histogram [Index] ++

An important factor in the performance of the histo-

gramming phase is the cache. In the case of the CM-5

processing nodes (SPARC processors), a cache line

holds eight 32-bit words. Therefore, when the keys are

examined, the first key in a line misses. If that line is not

quickly replaced (simulations show that it isn’t), the

next seven key references are all cache hits. Once each

key has been examined it is not used again in this phase.

On the other hand, the histogram entries are accessed

randomly. When the histogram is at least as big as the

cache, we have found that once the transients have died

out, most of the cache contains the histogram.

A simple improvement to this approach was then sug-

gested to us [Culler 92]. In our original implementation,

a 16-bit blocksize was found to be optimrd. This means

that 216 histogram buckets are necessary. Since there are

16K 32-bit words in the cache, only 2570 of the histo-

gram buckets can be in the cache at any instant if each

bucket is represented as a 32-bit integer. Instead of using

32 bits for each bucke~ we changed each bucket’s repre-

sentation to 8 bits. This allowed us to tit the entire histo-

16

gram into the cache. After each bucket is incremented,

the result is checked to see if there was an overflow. If

an overflow did occur, an auxiliary bucket (the high-or-

der bits for the bucket) was incremented. Since an over-
flow does not happen very often (on average it occurs

once every 256 increments), nearly all of the 8-bit histo-

gram buckets will be available in cache. When the pro-

cess is completed, the complete histogram buckets are

reconsmucted by combining the 8-bit buckets and their

corresponding auxiliary bucket. This “trick” multed in

a 37% improvement in the histogram generation time.

Scanning the Histogram: Once the histogram en-

tries have been updated, the results need to be communi-

cated to other processors. A parallel prefix plus operator

(“plus scan”) is applied to each one of the histogram en-

tries in parallel. Although this requires 2R scans, the

CM-5 is designed to do this efficiently. The actual im-

plementation pipelines this operation, and as will be

shown later, the cost of this phase is relatively small.

After the plus scan has been performed, the results in the

last processor must be copied back to each processor.

This is also performed using a scan operation (“max-

scan”) using the CM-5’s global control network. This

operation is also pipelined to take advantage of the long

histogram arrays.

Finally, a local plus scan is used to update each of the

processors local histogram entries. Once this is accom-

plished, each histogram entry will contain the absolute

address for the first local key associated with that histo-

gram index.

Sending the Keys: After the histograms have been

scanned, the resulting entries will contain the destina-

tion addresses for the keys. Since they are absolute ad-

dresses, we must first separate them into processor and

array indices. If there are 2’ processors and 2K keys per

processor, the low order K bits specify the array index.

The next J bits then specify the processor index. If the

number of keys per processor is a power of two, the ad-

dress generation can be performed using shift and mask

operations. Otherwise, modulus and divide opemtors are

used. When the key is sent to the destination processor,

the array index of the destination is appended to the key

message packet.

5.0 Performance Figures for the CM-5

We have benchmarked our algorithms on CM-5 configu-
rations ranging fi-om 4 to 1024 processors [Thinking

Machines 91]. Our first prototype of the algorithm was

running within 24 hours of starting this project (at ap-

proximately 80% of the performance reported in this pa-

per). It should also be noted that the results presented

here are for CM-5 systems without the currently avail-

able vector units. Additional results showing the perfor-

mance improvements when the vector units are used

will be submitted for publication in the near futme.

We will first discuss our results using a very large num-

ber of uniform (entropy of 32 bits) keys on a 1024 pro-

cessor machine. Later we will discuss our results as the

entropy of the key values is varied. In our first experi-

ment, the goal was to sort one billion (230) 32-bit keys

as quicid y as possible. Each processor was allocated one

million keys. Since both the number of passes and the

complexity of each pass is determined by the radix size,

we have experimented with various radix sizes. The

32 . The complexity ofHnumber of passes is equal to ~

the histogram generation and key sending are not direet-

ly dependent on the size of the radix (but there are some

indirect effects on the cache). Thus there will be three

passes with an 11 bit radix and two passes with a 16 bit

radix. It should be noted that a 12 (or 13, 14, or 15) bit

radix is no better than a 11 bit radix in terms of the num-

ber of passes. All require three passes. Although the

number of passes does not decrease in these cases, the

complexity of each pass does increase. The number of

scans is exponentially proportional to the radix. One ad-

ditional bit in the radix doubles the number of histogram

entries and thus the number of scans is also doubled.

We have determined that for large numbers of keys (per

processor), it is better to use a longer (16 bit) radix. The

total sorting time is dominated by the send and the effect

of the scan times is relatively minimal. Increasing the

scan time by a factor of 32 (when going from an 11 bit

to a 16 bit radix) is more than compensated for by re-

ducing the number of sends. The general relationship

between the total sort time, the number of keys per pro-

cessor, and the size of the radix is described by the fol-

lowing equation:

[1
T = !? X [’2R - t~can +N “ (thisl+ ‘send)]

R

where T is the total time for the sort, N is the total num-

ber of keys per processor, R is the radix, thi,t is the his-

tograrnming time (per key), t,c~n is the scan time (per
histogram entry), and t,end is the time to send one key to

an arbitrary processor (including any additional over-
head sent with the key). In addition to the factors includ-

17

ed in this equation, there are non-linear performance

factors involving the cache which influence the timings

as the radix is varied.

The total time taken by each phase is listed below. Since

the radix was 16 bits, these times are the sum of two

passes of the algorithm:

Histogramming 2.0 seconds

Scanning 0.5

Sending 14.2

Total 16.7 seconds

This corresponds to 64.3 MSOPS (millions of sorting

operations per second).

These same experiments were also run on a 64 proces-

sor CM-5 (again with one million keys per processor) to

determine the performance as the number of processors

was varied. Since the histogramming phase is entirely
local, there was no change in performance for that

phase. The scan and send times did vary slightly as in-

terconnection network increased in size. The observed

performance was within specifications.

Totat

G .,”.f,.,

Histogramming
. ----------------------..--------- ------ scans.--..—---------- -..---------......--.-—.

8 16 24 32

Key Entropy (Bits)

Figure 1: Sort Time versus Key Entropy for a 64 proces-

sor system with 1 Million keys per processor.

The performance of the sort for various key entropies is

illustrated in Figure 1. As can be seen, decreasing the
entropy actually decreases the sorting time. This is due

primarily to an increase in cache reference locality as

the key distribution I?ecomes more skewed (i.e., has less

entropy). In some sense the algorithm is able to take ad-

vantage of the structure in the key distribution and the

performance increases. In addition, there is a fairly sub-

stantial jump in the performance when the entropy of

the key distribution falls all the way to zero. This is due

to the fact that in this case the data is already in sorted

order (since all the keys have the same value, they are

already sorted) and don’t need to be moved. In that case

no global communication is necessary for the send.

6.0 Conclusions

We have proposed that sorting is an important bench-

mark for both scientific and commercial applications of

parallel supercomputers and have shown that further va-

riety in the size and distribution of sorted data is now

necessary. To this end we have proposed that the maxi-

mum data set sizes increase to the level of a billion or

more keys (sizes that are currently being sorted by at

least two supexomputers) and that consideration of the

data distribution be added to the existing NAS sorting

lxmchmark. This second extension of the current NAS

sorting benchmark seeks to cleanly and simply identify

the distribution of data being sorted via an entropy mea-

sure. This measure will more fairly characterize the uni-

formity of different data distributions and hopefully

provide insights into which parallel algorithms and ar-

chitectures are the best match for particular problems.

Though this entropy measure does not take into consid-

eration such variables as the distribution of data on the

processors or sorting stability it is, nonetheless, a step in

the right direction that is easily included in the standard

benchmarks. We hope that it will be in the future.

7.0 Acknowledgments

The authors would like to thank Mark Bromley, Steve

Heller, Marco Zagha, and Guy Blelloch for their assis-

tance with the work presented in this paper.

8.0 References

maber 91] M. Baber. An Implementation of the Radix

Sorting Algorithm on the Touchstone Delta Prototype.

Proceedings of the Sixth Distributed Memory Comput-

ing Conference. Portland Oregon, IEEE Press, May

1991.

mailey 91] D. Bailey et al. The NAS Parallel Bench-
marks - Summary and preliminary Results. Proceedings

of SuperComputing 158-165, November 1991.

merry 891 M. Berry et al. The Perfect Club Bench-
mark Effective Performance Evaluation of Supercom-

puters. The Internatiorxd Journal of Supercomputer

Applications, 3:5-40, 1989.

[Blelloeh 90] G. Blelloeh et al. A Comparison of Sort-

ing Algorithms for the Connection Machine CM-2.

Symposium on Parallel Algorithms and Architectures,

Hilton Head, SC. 3-16, July 1991.

[Ctdler 921 D. Culler, Personal communication (via
Steve Heller), University of California, Berkeley.

[Cormen 90] T. Cormen, C. Leiserson, R. Rivest- Intro-

duction to Algorithms. MIT Press. 1990.

[Dongarra 88a] J. Dongarra. The LINPACK Bench-
mark An Explanation. SuperComputing 10-14, Spring

1988.

[Dongarra 88b] J. Dongarra. Performance of Various

Computers Using Standard Linear Equatwns Sof?ware

in a Fortran Environment. T&hnieal Report MCSRD-

23, Argonne National Laboratory, March 1988.

lCKmu.h68] D. Knuth. The Art of Computer Program-

ming: Fundamental Algorithms, Addison-Wesley

Reading, MA, 1968.

lJvIcMahon 86] F. McMahon. The Livermore Fortran

Kernels: A Computer Test of the Numerical Pe~or-

mance Range. Technical Report UCRL -53745,

Lawrenee Livermore National Laboratory, Livermore

Califomi~ December 1986.

[Shannon 49] C. Shannon and W. Weaver, The Mathe-

matical Theory of Communication, University of Illinois

Press: Urban% 1949.

Uhinking Machines 91] CM-5 T~hnical Summary,

Thinking Machines Corporation, October 1991.

19

