
Randomized Parallel Algorithms for Backtrack

Search and Branch-and-Bound Computation

RICHARD M. KARP AND YANJUN ZHANG

University of California at Berkeley, Berkeley, California

Abstract. Universal randomized methods for parallelizing sequential backtrack search and
branch-and-bound computation are presented. These methods execute on message-passing multi-
processor systems, and require no global data structures or complex communication protocols.
For backtrack search, it is shown that, uniformly on all instances, the method described in this
paper is likely to yield a speed-up within a small constant factor from optimal, when all solutions
to the problem instance are required. For branch-and-bound computation, it is shown that,
uniformly on all instances, the execution time of this method is unlikely to exceed a certain
inherent lower bound by more than a constant factor. These randomized methods demonstrate
the effectiveness of randomization in distributed parallel computation.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]:
Non-numerical Algorithms-computation on discrete structures; sorting and searching; F.1.2 [Com-
putation by Abstract Devices]: Modes of computation-parallelism and concurrency; probabilistic
computation; G.2.1 [Discrete Mathematics]: Combinatorics-combinutoria~ algorithms; G.3 [Prob-
ability and Statistics]: probabilistic algotithms; 1.2.8 [Artificial Intelligence]: Problem Solving,
Control Methods, and Search-backtracking; graph and tree search strategies

General Terms: Algorithms

Additional Key Words and Phrases: Backtrack search, branch-and-bound, distributed parallel
computation

1. Introduction

A combinatorial search problem, or simply search problem, is a problem of
finding certain arrangements of some combinatorial objects among a large set
of possible arrangements. Typical examples of search problems are enumerat-
ing the satisfying assignments of a Boolean formula or finding a minimum-cost
tour through a set of cities. Computational resources required for solving
search problems tend to grow exponentially in the size of problem instance; the
explosive complexity limits the range of search problems that are solvable in
practice.

Search problems are well suited for parallel computation-the set of possi-
ble arrangements can be searched simultaneously. Potential speed-up by paral-

The research for this paper was supported by National Science Foundation (NSF) grant DCR
84-11954 and by the International Computer Science Institute, Berkeley, California.
Authors’ present addresses: R. M. Karp, Computer Science Division, University of California at
Berkeley, Berkeley, CA 94720; Y. Zhang, Department of Computer Science and Engineering,
Southern Methodist University, Dallas, TX 75275
Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or
specific permission.
0 1993 ACM 0004-5411/93/0700-0765 $01.50

Journal of the Association for Computing Machinery, Vol. 40, No. 3, July 1993, pp. 765-789.

766 R. M. KARP AND Y. ZHANG

lel computation in solving search problems can be great. The study of parallel
algorithms for solving search problems is of theoretical and practical
significance.

In this paper, we study the parallel execution of two fundamental search
methods: backtrack search and branch-and-bound computation. We present
universal randomized methods for parallelizing sequential backtracking search
and branch-and-bound computation. These methods execute on message-
passing multiprocessor systems, and require no global data structures or
complex communication protocols. For backtrack search we show that, uni-
formly on all instances, our method is likely to yield a speed-up within a small
constant factor from optimal, when all solutions to the problem instance are
required. For branch-and-bound computation, we show that, uniformly on all
instances, the execution time of our method is unlikely to exceed a certain
inherent lower bound by more than a constant factor. These randomized
methods demonstrate the effectiveness of randomization in distributed parallel
computation.

We shall formulate a search problem as a tree search. We assume that an
algorithm for solving a certain search problem is given. This algorithm has a
certain procedure for generating subproblems. When this procedure is applied
to a subproblem A, it either solves A directly or derives from A a set of
subproblems A,, A,, . . . , A, such that the solution of A can be found from
thesolutionsof A1,A2,..., A,. Given a problem instance, we associate with it
a rooted tree in which the root of the tree corresponds to the given problem
instance, an internal node corresponds to a subproblem of the given problem
instance, the children of an internal node correspond to the set of subproblems
derived from the subproblem represented by that internal node, and a leaf
corresponds a subproblem that can be solved directly. The execution of the
given algorithm corresponds to a search in the tree associated with the problem
instance. The nodes of the tree are generated by the node expansion operation
that, when applied to node ~1, either determines that u is leaf or produces the
children of U. A node can be expanded only if it is the root of the tree or if it is
a child of some node previously expanded. The search, starting with the root,
successively applies node expansion to generate the nodes of the tree until a
leaf or a set of leaves are identified as the solution. The execution time of a
sequential search is the number of node expansions, all other computation
being considered free.

We are interested in executing the tree search in parallel. Our model of
parallel computation is a message-passing multiprocessor system with p pro-
cessors. We require that at most p nodes are expanded at a single step. We
assume that there is no global memory, and that a processor can send a
message to any other processor in unit time, where a message has sufficient
capacity to contain whatever the information is required for a node expansion
operation. The processors are regarded as synchronous for the purpose of
counting steps, but the algorithms themselves do not require global synchro-
nization. The execution time of a parallel search is the number of steps at
which node expansions are performed, all other computations being considered
free. Given a problem instance, the speed-up of a parallel algorithm A over a
sequential algorithm B is the ratio of the execution time of A to the execution
time of B with respect to the same instance. Our goal is to find parallel
algorithms that achieve a speed-up close to the number of processors used, and
yet are efficiently implementable in the chosen model of parallel machines.

Parallel Algorithms for Backtrack Search and Branch-and-Bound

2. Backtrack Search

767

Problems that yield to backtrack search have the property that it is possible to
determine that some initial choices cannot lead to a solution. This property
allows the search to terminate an unproductive exploration and then “back-
track” to a point where a new search can be started. An example of backtrack
search is a way of finding an exit in a maze: starting at the entry, keep
extending the path from the entry until an exit is reached; when facing a dead
end, retreat one step and try to extend the path in another direction.

More formally, backtrack search works by continually trying to extend a
partial solution to a problem; when it is found that the current partial solution
cannot possibly be extended to a complete solution, the algorithm then
backtracks to its previous partial solution and attempts to extend that partial
solution again in a way that has not been previously attempted. This process is
repeated until a solution is found or it is found that there is no solution. A
backtrack search can be viewed as a search through a tree of partial solutions
in which the root represents the empty solution, an internal node represents a
partial solution, the children of an internal node u represent all possible
minimal extensions to the partial solution represented by u, and a leaf of this
tree represents either a solution or a partial solution that cannot be extended
to a solution. The execution of a sequential backtrack search corresponds to a
depth-first search in this tree using the node expansion operation. A study on
the complexity of backtrack search can be found in [4].

In this paper, we shall consider the all-solution backtrack search that seeks
all solutions to the given problem instance. By backtrack search, we shall
always mean all-solution backtrack search. The fundamental property of all-
solution backtrack search is that its corresponding tree search must expand
every node of the tree. This is because the backtrack search cannot tell
whether a partial solution can be extended to a solution until it determines
that the partial solution corresponds to a leaf of the tree. As all nodes of the
tree must be expanded, each node expansion performed is a useful work. An
all-solution parallel backtrack search algorithm will achieve a good speed-up if
processors are kept busy performing node expansions.

Given a backtrack search algorithm, let H be the rooted tree of partial
solutions associated with the algorithm on some problem instance. Consider a
parallel search algorithm that generates H. Let y1 be the number of nodes in
H, and let h be the number of nodes in a longest root-leaf path in H. The
execution time of any algorithm that generates H is at least h, since the nodes
along a path must be expanded one at a time, and the execution time of any
p-processor algorithm that generates H is at least n/p, since all IZ nodes in H
must be expanded and the algorithm can expand at most p nodes at one step.
Therefore, max{a/p, h} is an inherent lower bound on the execution time of
any p-processor algorithm that generates H. Our goal is to find p-processor
backtrack search algorithms whose execution time comes close to this lower
bound.

3. Parallel Backtrack Search

In this section, we study parallel backtrack search. We give a generic descrip-
tion of the parallel backtrack search algorithms we wish to study. We then
describe two specific algorithms, one deterministic and the other randomized;

768 R. M. KARP AND Y. ZHANG

the deterministic algorithm requires global control whereas the randomized
one does not.

3.1. GENERIC PARALLEL E~ACKTRACK SEARCH ALGORITHMS. A frontiernode
is a node that has been generated but not expanded. The frontier nodes are
distributed among the processors, with each belonging to exactly one processor.
Let Pi denote processor i. The localfrontier of Pi, denoted by Fi, is the set of
frontier nodes possessed b:y Pi. A processor is busy if its local frontier is
nonempty; otherwise, it is idle. A busy processor is loaded if its local frontier
contains two or more nodes. The level of a node u is the number of nodes on
the path from the root to u inclusively. A top-node of Pi is a node of minimum
level among all nodes in Fi. Let T denote the set of top-nodes of 4.. Let I’(U)
denote the set of children of an internal node U. For two nodes u and u of a
tree that do not lie on the same root-leaf path, u is to the left of u if u is visited
before u is visited in a depth-first traversal of the tree in which the children of
a node are visited according; to the ordering of the children.

A generic parallel backtra.ck search algorithm is given in Figure 1. A step of
the algorithm is an execution of the while-loop. Each step consists of a node
expansion step in which each busy processor expands its leftmost frontier node,
a pairing step in which a set of loaded processors are designated as donating
processors, each having a distinct idle processor as its receiving processor, and
a donation step in which each donating processor transfers half of its top-nodes
to its receiving processor. At each pairing step, the set R of pairs (i, j) such
that processor i donates to processor j is called the pairing set.

By the description in Figure 1, a busy processor performs a depth-first
traversal in some subtree, and finishes the traversal, with a possibility of
donating some parts of the subtree to other processors, before it starts to
traverse another subtree. The local frontier of each processor can be conve-
niently maintained by a stack. A processor with a nonempty stack removes the
top node of its stack, expands it, and pushes its children, if any, onto the stack
in the reversed order of the children. The following conditions are required for
donation: (a) only idle processors may receive donations; (b) only loaded
processors may donate; (c) a donating processor may donate to only one
processor at a time; (d) a receiving processor may receive donations from only
one processor at a time, and (e) a donating processor donates half of its
top-nodes. Among these conditions, condition (e) of donating top-nodes is the
essential rule for donation. Condition (d) guarantees that the top-nodes of a
processor are consecutive siblings and appear at the bottom of the stack. A
processor donates its top-noldes by removing them from the bottom of its stack;
the donation message permits a succinct description of the donation as the
donated top-nodes are consecutive siblings.

The code in Figure 1 omits the details of terminating the computation after
H is completely generated. The computation can stop as soon as each proces-
sor learns that all local frontiers are empty. This objective can be achieved by
scheduling occasional broadcast phases, in which the processors configure
themselves into a uniform bmary tree of preassigned structure. Each processor
with a nonempty frontier sends its name to the root processor along the edges
of the tree, and the root processor then broadcasts the information it has
received to all nodes of the tree. The intervals between the broadcast steps can
be so chosen that these steps have no appreciable influence on the overall
execution time.

Parallel Algorithms for Backtrack Search and Branch-and-Bound

Generic Parallel Backtrack Search
/*Initialization*/

F, = Id;
fori=2,3 ,..., p,F,*B,
while some F, f 0 do

/ *Node Expansion Step*/
for i = 1,2,. , p in parallel do

if Fi # 0 then
let ui be the leftmost node in Fi;
expand vi;
Fi + F, \ {“j);
if ui is not a leaf then F; + F, U T(q);

/*Pairing Step*/

determine a pairing set
R = ((i, j)J IF,1 > 1, 151 = 0, 1 I i, j spl such that
if (i, j), (2, j’) E R, then either i = i’, j = j’ or i f i’, j f j’;

/ *Donation Step*/
for i = 1,2,. , p in parallel do

let q be the set of top-nodes in Fi;
let Dj c T, be a set of [1T#21 nodes in 7;;
if (i, j) E R for some j then /*i donates Di to j*/

F, +- Fi\Di;
send message “i donates D,” to j;

for j = 1,2,. . , p in parallel do
if j receives message ‘7 donates 0,” then 5 + D,.

769

FIG. 1. Generic parallel backtrack search.

We prove some basic properties of the generic parallel backtrack search
algorithm. The level of a busy processor is the level of its top-nodes. The level
of a receiving processor after a donation will be the level of the donating
processor. The degree of a tree is the maximum number of children of any
internal node of the tree. A unit of work is one of the following three
operations: expand, by which a processor expands a node, donate, by which a
processor makes a donation, and receiue, by which a processor receives a
donation. The total work is the total number of work units performed.

PROPOSITION 1. Let d be the degree of H. Then (i) a node can be donated at
most [logdl times, (ii) the total work is at most 3n[logd], and (iii) a busy
processor with k top-nodes either increases its level or becomes idle after at most
[log kl donations. In particular, for a binary tree, each node can be donated at
most once, the level of a processor increases after each donation.

PROOF. Let u be a node involved in a donation. The number of siblings of
u that are together with u in a donation is reduced by half at each donation.
Hence, u can be involved in at most [log d] donations before either u is
expanded or u is the only node in a donation. In the latter case, u will be
expanded at the next step. This proves (iI.

There are exactly n node expansions, as each node is expanded once. By (i>,
a node is donated at most [log d] times, and thus received at most [log d] times.
Thus, the total work is at most 3nrlog d], which gives (ii).

To prove (iii), let Pi be a busy processor.

Case 1. Pi has only one frontier node u. Then Pi will expand u, increasing
its level or becoming idle.

770 R. M. KARP AND Y. ZHANG

Case 2. pi has two or more frontier nodes. Let k be the number of
top-nodes of Pi. Each time Pi donates, the number of top-nodes of Pi is
reduced by half, thus at most [log k] donations can be done before Pi increases
its level or becomes idle. KI

3.2. A DETERMINISTIC ALGORITHM. We now present a specific determinis-
tic algorithm called Full-Donation Backtrack Search (FDBS). The strategy of
FDBS is simple: Let as many idle processors receive donations as possible. In
other words, choose the pairing set as large as possible.

RULE FORFULL-DONATIOX Choose the pairing set as large as possible.

The above rule does not fully specify the pairing set. When there are more
busy processors than the idle ones, one may take into account certain at-
tributes such as the level number, size of local frontier, or length of local
depth-first traversal path, in setting priorities for donation among busy proces-
sors. The rule of full-donation does not explore the potential computational
advantages of setting donation priority among busy processors. The following
theorem shows that FDBS is within a factor of O([log dl) from the inherent
lower bound max{n/p, h].

THEOREM 2. The execution time of Full-Donation Backtrack Search on in-
stance His at most [logdl(3rz/p + h) where d is the degree of H.

PROOF. A step is perfect if every processor does one unit of work at that
step, that is, it expands, donates, or receives; otherwise, the step is imperfect. By
Proposition l(n), the total number of units of work is at most 3n[log d]. Hence,
there can be no more than 3nllog d]/p perfect steps.

We show that there are at most h[log d] imperfect steps. The search-level is
the minimum level of all lmsy processors. We show that the search-level
increases in each [log dl imperfect steps. Consider an imperfect step. There
must be an idle processor that did not receive a donation in that step. By the
maximality of the full-donation rule, every loaded processor must have donated
in that step. Let P be a busy processor. If P is not loaded, then P either
increases its level or becomes idle after one step. If P is loaded, then P
donates at each imperfect step and, by Proposition l(iii), increases its level
after at most [log d] imperfect steps. Consider a processor Q that receives a
donation from P at some step. As P halves its top-nodes for donation at each
imperfect step, Q receives at most 2k top-nodes from P if P has not increased
its level after [log dl - k imperfect steps. Processor Q will increase its level,
which is equal to the level of P, in k imperfect steps after receiving the
donation. Hence, in [log dl imperfect steps, the level of any busy processor and
the levels of processors that receive donations will increase. This implies that
the search-level increases in each [log dl imperfect steps. The search-level is at
most h. There can be at most h[log d] imperfect steps. 0

3.3. A RANDOMIZED ALGORITHM. Though exhibiting optimality, Full-
Donation Backtrack Search requires global control to implement donation. It
turns out that the global control required by FDBS can be effectively replaced
by randomization. We present a randomized algorithm called Randomized
Parallel Backtrack Search (IIPBS) in which random requests are used in

Parallel Algorithms for Backtrack Search and Branch-and-Bound

Pairing Step of RPBS
/ *Requesting Message Step*/
for j = 1,2,...,p in parallel do

if j is idle then
dest(j) + a random element of {l, 2,. . . , p};

send message “j wants new work” to dest(j>;
/ *Accepting Message Step*/
for i = 1,2,. . . , p in parallel do

if i is loaded then
let A, = {jli has received a message “j wants new work”);
if Ai # IzI then

select an arbitrary k E A,;

send message “i has work to share” to k; /*will donate to k*/

771

FIG. 2. Pairing step of RPBS.

donation. Randomized request was also proposed in a distributed implementa-
tion of backtrack search in [4a].

The donation of RPBS is as follows: Each idle processor initiates a request
to a randomly chosen processor; a loaded processor that receives some re-
quests selects one request from the received requests, and donates to the idle
processor that made that request. Figure 2 contains the code describing the
pairing step of RPBS. The corresponding modification in the donation step in
Figure 1 is to replace the line “if (i, j) E R for some j then” with “if i has
selected j in the accepting message step then”. On each fixed instance H, the
execution time of RPBS is a random variable.

The following theorem states that, for any instance H with degree d, with a
probability approaching 1 exponentially fast as IZ increases, the execution time
of RPBS is within a factor of O(log d) from the lower bound max{n/p, h}. This
shows that RPBS is a universal method for executing backtrack search algo-
rithms efficiently in parallel without global control.

THEOREM 3. Let the random variable T(H) be the execution time of RPBS on
H. Let n be the number of nodes in H and let h be the maximum number of nodes
in a root-leaf path of H. Let d be the degree of H. Then, for any instance H and
for any p 2 2,

)] <nexp(-j).

In particular, the probability bound is at most n e-C for any positive constant c if n is
LRCp210gp).

Theorem 3 is an immediate consequence of the following theorem, combined
with the fact that H has n nodes.

THEOREM 4. Let the random variable T(H, w> denote the number of steps of
RPBS on instance H, up to the point when node w is expanded. Let d be the degree
of H. Then for euery instance H, for every w in H and for any p 2 2,

T(H,w) > [logdl - + 4h (“,”)] <expI-qjq.

PROOF. At any point before w is expanded, let s be the current utiique
frontier node, generated but unexpanded, on path from the root to w. We call

772 R. M. KARP AND Y. ZHANG

the processor possessing s the special processor, denoted by S. When the
special processor donates, either the donating processor remains as the special
processor or the receiving processor becomes the special processor.

If 8” = {u} at a donation step, then at the preceding node expansion step,
either Fs = {u, u} and u was expanded, or Fs = (u} and u was generated from
u. The latter case increases the level of S, and thus occurs at most h times. The
former case implies IFsI > 1 at the preceding donation step. A donation step at
which IFsI > 1 is called a trial step. At a trial step, the special processor S
will donate if it receives a request from an idle processor. We show that,
with the indicated probability bound, the number of trial steps is at most
[log dl(9n/p + 3h), and the theorem follows.

We call a trial step successfil if S donates at that step. A trial step is
successful if S receives a request from an idle processor. We call a trial step
good if more than [p/2] processors do at least one unit of work at that step;
otherwise, it is bad. As the total work is no more than 3rt[log d], there can be
at most 6[log din/p good trial steps. It is reduced to show that, with high
probability, there are at most 3[log dl(n/p + h) bad trial steps.

The probability that a bad trial step is successful is the probability that some
idle processor requests to the special processor. The number of idle processors
at a bad step is at least p/2. The probability that a bad trial step is successful
is thus at least 1 - (1 - l/p) PI2 > 1 - exp(- l/2) > l/3. By Proposition
l(iii), the total number of donations by special processors is at most h[log dl.
So there can be at most h[log d] successful trial steps. Let B(t, N, p> denote
the probability that there are fewer than t successes in N independent
Bernolli trials where the probability of success for each trial is p. We have

Pr more than 3Flog d] 1
<R(h,logd,,3,logd,(; + h),;).

By a Chernoff-bound on binomial distribution [l], for 1 > y > 0,

B((1 - y)pN, N, p> 5 exp(-+yW).

Let (1 - y)pN = hIlog d], N = 3[log dl(n/p + h) and p = 3. Then

n/P
Y=

H/P + h
and

(2)

y%N =
Dog dl(n/pY

n/pi-h .

To bound y2pN from below, consider two cases.

Case 1. n/p 2 h. In this case, y2pN 2 n[log d1/2p.

Case 2. n/p < h. In this case, y’pN 2 n[log d]/2p2, as n 2 h. Hence

y2pN 2
nrlog dl

2p2 ’
(3)

Parallel Algorithms for Backtrack Search and Branch-and-Bound 773

By (11, (2), and (31, the probability of more than 3]log dl(n/p + h) bad trial
steps is at most exp(- in log d/p*). The proof is complete. 0

4. Branch-and-Bound Method

Branch-and-bound procedures are the most frequently used method in practice
for the solution of combinatorial optimization problems. An introduction to
branch-and-bound method can be found in [7] and an in-depth account in [3].

The fundamental ingredients of a branch-and-bound method are a branching
procedure and a bounding procedure. The branching procedure takes a given
combinatorial optimization problem A and either solves it directly or derives
from it a set of subproblems A,, A,, . . . , A, such that an optimal solution to
problem A can be found by solving each of A,, A,, . . . , A, and then, among
these d solutions, taking the one of least cost. The bounding procedure
computes a lower bound on the cost of an optimal solution to a subproblem A,
and the lower bounds satisfy the monotonicity property that the lower bound
on subproblem A is no larger than the lower bound on a subproblem derived
from A. The lower bounds can be used to guide the order in which subprob-
lems are solved, or to determine that certain subproblems need not be
considered at all. The computation may terminate when it finds a solution
whose cost is not larger than the lower bounds of the remaining subproblems,
and a solution of the least cost among the found solutions is the solution of
minimum cost. Different rules can be used to decide the order in which
subproblems are branched on. The “best-first” rule is to branch on the
subproblem of least lower bound. The best-first rule tends to minimize the
number of subproblems that are created, but also may need to maintain a
large set of subproblems at a given time. The “depth-first” rule is to branch on
the most recently generated subproblem. The depth-first rule tends to mini-
mize the number of subproblems that are maintained, but may explore some
subproblems unnecessarily. A recent study of time-space trade-offs in sequen-
tial branch-and-bound computation is given in [5].

A branch-and-bound computation can be viewed as a search through a tree
of subproblems, in which the original problem occurs at the root, and the
children of a given subproblem are those subproblems obtained from it by
branching. A leaf of the tree corresponds to a subproblem that can be solved
directly by the branching procedure. The object of the search is to find a leaf of
minimum cost. The primitive step of the search is the expansion of a given
node of the tree to produce its children and their cost bounds. We model a
branch-and-bound computation as a rooted tree H in which each node has a
finite number of children, together with a cost function c on the nodes of H
such that C(U) is the cost of an optimal solution to the subproblem associated u
if u is a leaf, or the lower bound on the cost of the subproblem associated with
u if u is an internal node. We require that the cost function c satisfy the
conditions (9 if u # w, then C(U) # c(w) and (ii) if w is a child of u, then
c(u) < c(w). Condition (i) of distinct costs is for convenience; condition (ii) is
the monotonicity property of the lower bounds. We consider algorithms whose
objective is to generate the leaf of least cost in H, using the node expansion
operation. This model is similar to the one introduced in [5].

We are interested in executing a branch-and-bound computation in parallel.
The fundamental challenge is to allocate the subproblems to the processors so

774 R. M. KARP AND Y. ZHANG

that they can all be performing useful work. A parallel branch-and-bound
algorithm may not achieve a.n effective speed-up by merely keeping all proces-
sors busy; a successful solution must ensure that processors will not spend
much time exploring useless subproblems, and that the overhead for interpro-
cessor communication is not excessive.

5. Parallel Branch-and-Bound

The following is a generic description of the branch-and-bound algorithm we
consider. Let KS) denote the set of children of the nodes in S. The frontier,
denoted by variable F, is the set of nodes that have been generated but not
expanded, and the variable B denotes the minimum cost of any expanded leaf.

Generic Branch-and-Bound Algorithm
F +- (r}; B + 00;
while F, # 0 do

select a set of nodes S G F;
expand the nodes in S;
F +- {F\S} u l?(S);
B + min({B} u {c(u): u E S and u is a leaf)>;
F +- {u E F: c(u) I B}.

We think of the nodes in S as being expanded simultaneously; thus, the
execution time of the algorithm is defined to be the number of executions of
the body of the while loop.

There is an inherent lower bound on the execution time of the branch-and-
bound algorithms described above. For a given problem instance (H, c> let u*
be the leaf of minimum cost in H. Let H be the subtree determined by the
nodes in H of cost less than or equal to u *. Every node expansion algorithm to
determine the minimum-co_st leaf of H must expand every node of H. Let n be
the number of nod_es in H, and let h be the number of nodes in ,a longest
root-leaf path in H. Notice that n and h are all concerned with H, not H.
Then the execution of any algorithm is at least h, and the execution of any
p-processor algorithm is at least n/p. Our goal is to design p-processor
algorithms whose execution time comes close to the lower bound max{n/p, h)
on all instances of (H, c).

Among algorithms that expand at most p nodes per step, the following
“best-first” rule for selecting S is a direct extension of the sequential best-first
rule. We call the algorithm implementing this rule Global Best-First Search.

Best-First Rule
if IFI I p then S = F
else S consists of the p nodes in F of least cost

PROPOSITION 5. The execution time of Global Best-First Search is at most
(n/p) + h.

PROOF. We show that all the node: in g will be expanded within n/p + h
steps. Let w be an arbitrary node in H. Let P(w) be the path from the root of
H to w and let v be the node on P(w) that is currently in the frontier F.
Consider the next node expansion step. If u is not exp_anded, _then by the
best-first rule, all p nodes expanded in this step are in H. As IHI = n, there
can be at most n/p such steps. If u is expanded, the child of u on P(w) will be
in F. There can be at most h such steps, as the height of H is at most h.
Hence, w will be expanded within n/p + h steps. 0

Parallel Algorithms for Backtrack Search and Branch-and-Bound 775

In order to implement Global Best-First Search, it seems necessary to keep
the set F in a global priority queue so that, at each step, the p nodes of least
cost in F can be selected, assigned in one-to-one fashion to the p processors,
and distributed to their assigned processors. The implementation of these
selection and distribution operations using messages is costly; to avoid this
overhead, we propose the algorithm called Local Best-First Search, which uses
no shared data structures. Instead, the unexpanded nodes are distributed
among the processors, with each unexpanded node belonging to exactly one
processor. The computation alternates between node expansion steps, in which
each processor expands the cheapest node in its possession, and node distribu-
tion steps, in which the children of the nodes just expanded are sent to random
processors. More precisely, processor i maintains a set of nodes E, its local
frontier, and a cost bound Bi, which is certified to be the cost of some leaf. Fi is
the set of nodes of cost less than or equal to Bi which have been received from
other processors but not yet expanded. At each step, every processor i does
one of two things:

(i) if C;;: is not empty, then it expands the node of minimum cost in F): and
sends its children to processors chosen at random;

(ii) if Fi is empty, then it sends the message “there is a leaf of cost Bi” to a
processor at random;

The processors then update the sets Fi and bounds Bi on the basis of the
messages they have received. The computation continues until all sets Fi are
empty; at that point the minimum cost of a leaf is given by min((Bi, i =
1,2,..., p)>. The code for Local Best-First Search is contained in Figure 3.

The code of Figure 3 omits the details of how messages are used to notify all
processors of the minimum cost and turn the computation off. Let 7 be the
time when all nodes of H have been expanded. Let B be the minimum cost of
a leaf of H. At time 7, at least one processor will possess the bound B. From
time r onward, each processor that has received the bound B will have an
empty local frontier, and will use each subsequent node expansion step to send
the bound B to a random processor. Thus, with high probability, all processors
will receive the bound B by some later time u, where (T I r + O(log p). From
time P onward, all local frontiers will be empty. By scheduling occasional
broadcast phases, as discussed previously, each processor will learn that all
local frontiers are empty, and stop its computation.

On each fixed problem instance (H, c), the execution time of the randomized
algorithm Local Best-First Search is a random variable. We prove that there
exists a universal constant cr such that, for every instance (H, c) the following
holds with high probability: the ratio between the execution time of the Local
Best-First Search and the minimum possible execution time of any p-processor
algorithm is less than d. Thus, Local Best-First Search is a universal method of
executing branch-and-bound algorithms efficiently in parallel without shared
data structures.

THEOREM 6. There exist positive constants (Y, /3, y, and d such thaj the
following holds for every instance (H, c): Let n be the number of nodes in H and
let h be the maximum number of nodes in a root-leaf path of H. Let the random
variable T(H, c> denote the execution time of Local Best-First Search on the

R. M. KARP AND Y. ZHANG 776

Local Best-First Search

/ *Initialization*/
F, = b+;
for i = 2,3,. . , p, F, + 12r,
for i = 1,2,. . . , p, Bi + m;
while some set F, # 0 do

/ *Node Expansion Step*/
for i = 1,2,..., p in parallel do

if Fi f 0 then

let ui be the node of least cost in Fi;
expand ui;
Fi + Fj \ ISI;
if u, is a leaf then Bj + c(ui)

else
for each child w of ui do

de&w) +- a random element of (1,2,. . . , p};
send w to dest(w)

else
send “a leaf of cost Bi” to a random element of (1,2,. . . , p);

/*Message Arriual Step*/
for i = 1,2,. . , p in parallel do

F, + F, u (w : dest(w) = i};
for i = 1,2,..., p in parallel do

Bi t min(B, u (n : i has received a message “a leaf of cost x”});
for i = 1,2,...,p in parallel do

F, + {u E Fi: c(u) 5 BJ.

FIG. 3. Local best = first search.

instance (H, c>. Then, for n 2~ p,

< yntn + pbp(-P(n/pja).

In particular, the probability bound is at most Kc for any positive constant c if n is
.n(pUogp>W

Theorem 6 is an immediate consequence of the following theorem, combined
with the fact that H has at most n nodes.

THEOREM 7. For evev instance (H, c> and for every node w in I?, let the
random variable T,(H, c) denote the number of steps of Local Best-First Search
on instance (H, c), up to the point when node w is expanded. Then, for n 2 p,

Pr[T,(H, c> > dtn/p + h)l < y(n + p>ap(-P(n/pIa),

where (Y, j3, y, and d are the constants stated in Theorem 6.

Our goal is to prove Theorem 7. In the next section, we present a proof of
Theorem 7 based on the proof outlined in [6]. Recently, Ranade [8] found a
new, and simpler, proof. Nevertheless, the proof presented in this paper is of
interest because of the probabilistic analysis techniques it uses.

6. Proof of Theorem 7

We present a proof of Theorem 7 in this section. The core of our analysis is to
transform the problem into a cleanly stated problem about queuing systems.
The analysis also gives rise to a simple game of strategy called the Shooting

Parallel Algorithms for Backtrack Search and Branch-and-Bound 777

Gallery Game and a study of large deviations in random walks. To enhance the
continuity, some claims in this section are proved in the Appendix.

Recall that H consists of all the nodes whose costs are less than or equal to
that of the minimal-cost leaf in H. In analyzing the time required by Local
Best-First Search to expand the nodes in H, we can disregard all nodes of H
that do not lie in H, singe no processor will ever choose to expand such a node
when it has a node of H available, We are interested in the ti-me steps needed
to expand a specific node w in H. We divide the nodes of H into two types:
special nodes, which lie on the path from the root to w, and regular nodes,
which do not lie on that path. At each step, there is exactly one special node s
present in some local frontier, and we concentrate on the processor that owns
s. We can distinguish among three possible actions by that processor:

(i) The processor expands s;
(ii) The processor expands a node that was generated after s was generated;

such a step is called a post-delay;
(iii) The processor expands a node that was generated earlier than s was

generated, or at the same time. Such a step is called a pre-delay.

Action (i) can occur at most h times, since there are at most h special nodes. A
node can cause a post-delay only if, at the time it is generated, it is sent to the
unique processor possessing a special node. Since the newly generated nodes
are sent to random queues, the number of nodes capable of causing a
post-delay is stochastically no greater than the number of successes in a
Bernoulli process with n trials, where the probability of success at each trial is
l/p. By the Chernoff-bound [l], the chance that the number of post-delays is
greater than 2n/p is at most exp(-n/3p).

Thus, the crux of the proof of Theorem 7 lies in bounding the number of
pre-delays. To approach this bound, we view the computation as a queuing
process.

6.1. A QUEUING PROCESS. To describe the execution of Local Best-First
Search as a queuing process, we view each processor as server and each node
in H as a customer. Customers corresponding to special nodes are called
special customers, and those corresponding to regular nodes are called regular
customers. Associated with each customer is a number called his cost. Initially,
queue 1 contains one special customer, and queues 2,3,. . . , p are empty. The
system contains exactly one special customer and the queue containing the
special customer is called the special queue. The queuing process alternates
between service steps, in which the customer of least cost in each nonempty
queue is served, and arrival steps, in which a sequence of customers arrives at
the queues. If a special customer was served at the preceding service step then
exactly one of the arriving customers is special; otherwise, all the arriving
customers are regular. The total number of customers arriving during the
entire process is n, and at most h of these are special. The cost of the process
is the number of service steps in which a customer is served who is in the
special queue and arrived there before the current special customer did.

The relationship between the queuing process and the execution of the
algorithm is apparent. The service steps correspond to node expansion steps in
the algorithm, and the arrival steps correspond to message arrival steps in the
algorithm. The cost corresponds to the number of pre-delays.

778 R. M. KARP AND Y. ZHANG

Define a destination sequence as an infinite sequence a,, a2,. . . of elements
from {1,2, . . . , p} where ai is drawn independently from the uniform distribu-
tion over (1,2,. ;. , p}. The intended meaning is that uk is the destination of the
kth node of H to be generated (the nodes generated simultaneously are
arranged in order of increasing cost). It should be clear that the following data
completely determines a run of the queuing process: an n-node tree H in
which no root-leaf path is of-length greater fhan h, a function c assigning a
cost c(u) to each node u in H, a node w in H and a destination sequence. We
may think of H, c, and w as being chosen by an adversary whose goal is to
maximize the probability that the cost of the queuing process exceeds d(n/p +
h) for some suitable constant d.

We now modify the rules of the queuing process in favor of the adversary.
We replace an arrival step at which k customers arrive with a sequence of k
arrival steps at each of which one of those k customers arrives. A step is either
a service step or an arrival step with a single customer. At each step, the
adversary chooses one of five steps of euents: the arrival of a special customer,
the arrival of a regular customer, and three types of service events, depending
on who in the special queue gets served: the special customer, a regular
customer who arrived before the special customer did, or a regular customer
who arrived after the special customer did. The two types of arrival events are
denoted S and R (for special and regular), and the three types of service
events are denoted s, pre, and post (the service of the special customer, a
pre-delay or a post-delay). When an S-event or an R-event occurs, an element
is drawn from the uniform distribution over {1,2,. . . , p) to determine the
queue at which the arrival will take place. When a service event occurs, one
customer from each nonempty queue is served, with the type of the event
determining which customer is served from the special queue. In selecting each
event, the adversary knows the random choices made at all earlier events, and
is thus able to calculate which customers reside in each queue. The adversary is
constrained by the following rules: (a) the first event is an S-event; (b) S-events
and s-events must alternate; (c) the number of R-events and S-events is ~1,
and, at most, h of these are S-events; (d) a pre-event can occur only if the
special queue contains a regular customer who arrived before the last S-event;
and (e) a post-event can occur only if the special queue contains a regular
customer who arrived after the last S-event.

In the modified queuing process, the- adversary preserves the ability to
simulate an instance given by the triple (H, c, w); that is, he has the freedom to
specify the events as they would occur for that instance, given the destinations
of the successive arrivals, SC: that the number of pre-events is the number of
pre-delays in the instance (11, c, w).

The adversary succeeds if the number of pre-events exceeds d(n/p + h).
Thus, we can prove Theorem 7 by showing that the adversary’s chance of
success in the modified queuing process is exponentially small. We show that
the strategy that respects following rules is optimal for the adversary:

Rule 1. Always serve the regular customers in the special queue before the
special customer.

Rule 2. Schedule no arrivals when the special customer is present in the
system.

Parallel Algorithms for Backtrack Search and Branch-and-Bound 779

Schedules respecting these two rules are completely described by the se-
quence of arrival events. Service always occurs just after an S-event, and
continues until all customers in the special queue get served, with the special
customer being served last, and no arrivals occur during the period of these
services. Post-events never occur. The cost of the process, that is, the number
of pre-events, is simply the sum of the lengths of the special queues at the
times the special customers arrive.

The sequence of events selected by the adversary gives rise to an arrival
pattern B = b,, b,, . . . , where b, E {r, s} such that b, = s if the kth arrival is
special and b, = r if the kth arrival is regular. Given the destination sequence
A and the arrival pattern B, the behavior of a strategy respecting Rules 1 and 2
is completely determined. The following proposition, proved in the Appendix,
shows that the strategy respecting Rules 1 and 2 is optimal.

PROPOSITION 8. For each n and each choice of the destination sequence A and
the arrival pattern B of n arrivals, the unique sequence of events consistent with
A, B and Rules 1 and 2 yields at least as large a number of pre-events as any
sequence of events consistent with A and B.

6.2. A CONTINUOUS-TIME MODEL. The imposition of Rules 1 and 2 simpli-
fies the queuing process and enables us to give the following clean description
of it. A sequence of II customers (each corresponding to a regular customer)
arrives at a system of p queues. When each customer arrives, he is assigned to
a random queue. An adversary who observes the arrivals decides, after each
arrival, whether to trigger a service phase (corresponding to the arrival of a
special customer). When a service phase is triggered, a random queue is chosen
(corresponding to the special queue). If the queue contains m customers, then
the adversary receives a payoff of m and m + 1 service events occur (corre-
sponding to m pre-events and one s-event); at each service event, one cus-
tomer in each nonempty queue is served and deleted from its queue. No
arrivals occur during a service phase. The total number of service phases is at
most h. The adversary’s goal is to maximize the probability that his total payoff
exceeds d(n/p + h). We wish to prove that its probability of achieving this
goal is exponentially small.

To facilitate the analysis, we embed this process in continuous time by
assuming that customers arrive according to a Poisson process. This poissoniza-
tion allows us to use the tools of stochastic processes to analyze the payoff of
the adversary. We shall assume that customers arrive according to a Poisson
process with rate p/2 over the time period [0,4n/p]. At each arrival, the
queue where the customer arrives is drawn from the uniform distribution over
(1,2,. . . , p}. Thus, the arrival process for a particular queue is Poisson with
rate l/2 (and the arrival processes for all queues are mutually independent).
When a service phase is triggered, the service events occur immediately, with
no lapse of time. It should be clear that letting customers arrive according to a
Poisson process has no effect on the payoff received by the adversary in the
course of the first n arrivals. The following proposition is proved in the
Appendix.

PROPOSITION 9. Let N(t) be the number of am’vals in a Poisson process with
rate 6 over the time interval [0, t]. Then (i) Pr[N(t) <] @/2]] I
exp(-0.31@/2]) and (ii) Pr[N(t) >]2@]] I exp(-0.19@).

780 R. M. KARP AND Y. ZHANG

By Proposition 9(i), the probability of fewer than n arrivals in a Poisson
process with rate p/2 over the time period [0,4n/p] is at most exp(- 0.3n).
Thus, it suffices to prove that, in this continuous-time set-up, the adversary has
an exponentially small chance of achieving a payoff greater than d(n/p + h).

Now we define a modified continuous-time process that incorporates an
amortization mechanism to keep the queue lengths small. In addition to the
service phases scheduled by the adversary, we schedule random service events
according to a Poisson process with rate 1. At each random service event, one
customer is removed from each nonempty queue, and the adversary receives
one unit of payoff. The effect of these random service events on the total
payoff is that we amortize some of the payoff that the adversary would
otherwise receive in the service phases. The following proposition, proved in
the Appendix, states that the adversary is better off with the amortization.

PROPOSITION 10. Let U and r? be the number of units of payoff the adversary
receives in the process with and without random service eve_nts, respectively. Let R
be the number of random service events occurring. Then, U I U + R.

On the other hand, by Proposition 9(ii), the probability that more than
18n/p] random service events occur over the time period [0,4n/p] is at most
exp(- 0.7n/p). Thus it suffices to prove that, in the modified continuous-time
process in which random service events occur according to a Poisson process
with rate 1, the adversary has an exponentially small chance of achieving a
payoff greater than d(n/p t- h), for some suitable constant d.

The random service events, however, have a major impact on the lengths of
the queues. For each queue, the arrival rate is l/2 whereas the rate of random
service events is 1. One can expect that the length of a queue tends to be small,
even without considering the effect of the service phases.

Let Mk be the number of service phases in which the adversary receives a
payoff of at least k. These service phases correspond to instants when the
special customer arrives at a queue of length at least k. Mk is nonincreasing in
k. Let mk be the number of service phases in which the adversary receives a
payoff of exactly k. Then the total payoff received by the adversary is

(4)
k=l k=l i=k k=l

Our analysis of the adversary’s total payoff begins by studying the probability
distribution of Mk for a fixed k. For this analysis, we make the pessimistic
assumption that the adversary’s sole purpose is to maximize Mk, the number of
times the special customer arrives at a queue of size at least k. In Section 6.4,
we investigate the frequency with which queues of length at least k occur. This
is preceded by Section 6.3, in which we determine how often the adversary can
expect to arrive at a queue of length at least k, knowing how frequently such
queues occur.

6.3. SHOOTING GALLERY GAME. We introduce a game called the Shooting
Gallery Game. The player of this game is a marksman who possesses m targets
and h bullets. Before each shot, the marksman may set up any number of
targets from 1 to p. If he sets up t targets, then his chance of success is t/p. If
he succeeds then his score increases by one and the t targets are destroyed. If

Parallel Algorithms for Backtrack Search and Branch-and-Bound 781

he fails, then no targets are destroyed. He is allowed h shots, and the total
number of targets available is m. The goal of the marksman is to maximize his
final score.

The shooting gallery game is intended to model the situation of an adversary
who watches the fluctuations of the queues, with the goal of scheduling the
arrivals of special customers at times when they are likely to arrive at a queues
of length at least k. A shot in which t targets are set up is intended to
represent the arrival of a special customer at a time when t of the p queues
are of length k or greater. Thus, m, the number of targets, corresponds to the
number of moments when some queue reaches size k, and h, the number of
shots, represents the number of special arrivals. Our analysis favors the
adversary by giving him complete freedom to allocate the targets to shots,
subject to a restriction on the total number of targets and the number of shots.

PROPOSITION 11. Let S be the marksman’s final score. Then, no matter how
the marksman selects the number of targets at each step,

Pr[S > 3/F] I -(--+Ej.

PROOF. If h I 9m/p, then 34m 2 h 2 S. Now assume that h > 9m/p.

Set a = ids. Then a < p. We say that a shot is of type 1 if more than a
targets are set up, and of type 2 if a or fewer targets are set up. We change the
scoring rules in the marksman’s favor as follows: (i> count each shot of type 1
as a success and (ii) let the chance of success in each shot of type 2 be a/p.
The shots of type 1 can generate at most m/a = 24s successes. The
number of successes generated by the shots of type 2 is stochastically domi-
nated by the number of successes in a Bernoulli process with h trials,
each having a chance of success a/p, denoted by B(h, a/p>. Hence,
Pr[S > 34-1 I Pr[B(h,a/p) > 4-1 I exp(- ids>, where the
last inequality is by the Chernoff-bound. q

6.4. A RANDOM WALK. Continuing our analysis of the random variable Mk,
we investigate the frequency with which the length of a single queue is greater
than or equal to k. To do so, we disregard the service phases triggered by the
adversary. Then each queue is a Poisson process with arrival rate l/2 and
service rate 1. Let Xi be the number of customers in a given queue after the
ith event, which is either an arrival or a service. Then {Xi) is a simple random
walk on nonnegative integers, started at state 0, with a probability l/3 of going
up by 1 at any state, and a probability 2/3 of going down by 1 if not at state 0,
or staying at state 0. The stationary distribution of {Xi} is {QTJ with ni = l/2’+’
for i = 0, 1, . . . , co.

We are interested in studying the random variable U,(m) that is the number
of times that the random walk {Xi}, starting at 0, reaches a value greater than
or equal to k in the first m steps.

PROPOSITION 12. E[U,(m)] < 2-km.

PROOF. The random walk {Xi} has the stationary distribution (pi} where
pi = 2-(i+l). By the ergodic theorem,

lim
EIUk(m)l m

m+m m
= iFklTi = 2-k.

782 R. M. KARP AND Y. ZHANG

We claim that E[U,(m)l 5 2-km for all m 2 0. Suppose, on the contrary,
that EIUk(mo)] > 2-km, for some m, 5 0. Let m = tm, be a multiple of m,.
Let E,“(m) be the expected number of times that the random walk {X,} reaches
k or larger in the first m steps, started at a. Conditioning on the state of Xjm,
forOlj<t-1,

t-1 @J

EIUk(m>l = c c Pr[xjm, = a]E,“(m,).
j=O a=0

(5)

But E,“(m,) 2 Ei(m,). Hence, (5) implies E[U,(m)] 2 tI$‘(m,) = tE[U,(m,)]
and

EIUk(m>l tE[U,(mJl
2 =

EIUk(mO)] > 2-k
7

m tm0 m0

contradicting to the fact that

lim
EIUk(m)l = 2-k

9
,?I * m m

as m is an arbitrarily multiple of m,. q

A sequence of random variables {y: i = 0, 1, . . . } is a martingale if, for i 2 0,
(i) E[IYll < w and (ii) EIY,+r]Yo,. . . , yi] = Y. The following lemma is a special
form of Azuma’s martingale inequality [2].

LEMMA 13. Let {x: i = 0, 1,. . .} be a martingale such that lyl+, - x:.I I cfor
0 I i < n. Then

Pr[Yn 2 Yo + cc&] I exp(-a2/2).

PROOF. A simple proof, can be found in [10, p. 551. q

Let E,“(m) denote the expected number of times that random walk {Xi}
reaches a state 2 k in the first m steps, starting at state a.

LEMMA 14. For la - bl :; 1, IE,“(m) - E,b(m - l)] I 3.

PROOF. Let Ta,b be the expected number of steps random walk (Xi) takes
to reach state b from state a. We show that T, o = 3. Suppose that we are at
state 1. Conditioning on the next state, which is either 0 or 2, we have
T,,, = 1 + T2,,/3 = 1 + 27;,,/3, as T2,0 = 2T,,,. This gives T,,, = 3. Note
that T,, a- 1 = T, o , for any a > 0. To prove the proposition, consider three
cases.

Case 1. a = b. By definition, E,“(m - 1) 5 E,“(m) 5 E,“(m - 1) + 1 or
equivalently IE,“(m) - E,“(m - l)] I 1.

Case 2. b = a - 1. Clearly, E, ‘-‘(m - 1) I E,“(m). On the other hand,
E,“(m) I T, a-, + E,“-‘(m - 1) = 3 + E,“-‘(m - 1). Hence, IE,$m> -
E,“-‘(m - 1>1 I 3.

Case 3. b = a + 1. Clearly, E,“(m) I Ei+’ (m - 1) + 1. On the other hand,
Ei”(m - 1) 5 T,,, a
l)] I 3. 0

, + E,“(m) = 3 + E,“(m). Hence, [E,“(m) - E,“+‘(m -

Parallel Algorithms for Backtrack Search and Branch-and-Bound 783

The following proposition gives an upper bound on the probability that
U,(m) is larger than its mean E[U,(m)] by an additive factor x. This probability
bound is of general interest for large deviations in random walks.

PROPOSITION 15. For k > 0,

X2

Pr[U,(m) 2 E[U,(m>l + xl 5 exp 16m . i I
PROOF. For 0 I i I m, let yi = E(U,(m)lX,, X,, . . . , Xi>. Then,

WI,, y,, f * * , Y,} is a martingale, By the Markovian property,

x = U,(i) + E$(m - i) (7)

for 0 5 i I m. In particular, Y, = E[U,(m>] and Y, = U,(m). Since
lU,(i + 1) - r/,(i)1 I 1, by (7),

lyi+, - yl s 1 + IET+l(m - i - 1) - ET(rn - iI/. (8)

But IX,+1 - Xi1 I 1. By Lemma 14 and (8), Ix+, - yil I 4 = c. By Lemma 13,
(6) follows by setting (Y = ixm-‘/2. •I

COROLLARY 16. Fork 2 1, Pr[U,(m) 2 m/2k-‘] I exp(-m2-2k/16).

PROOF. By Proposition 12 and Proposition 15 with x = m/2k. 0

6.5. THE DISTRIBUTION OF IV,. We shall study the distribution of Mk for a
fixed k. Having fixed k, we focus on the history of a particular queue i. The
events affecting the queue are arrivals, the random service events, and the
service phases triggered by the adversary. By Proposition 9(ii), the probability
that more than [12n/p] arrivals and random service events occur in some
queue over the time period [0,4n/p] is at most p exp(- l.ln/p). We shall
make the assumption that there are no more than [12n/p] arrivals and random
service events in any queue.

A service phase is k-profitable if it results in a payoff of at least k for the
adversary. The time interval between successive k-profitable service phases is
called a k-interval. Queue i is said to be k-eligible during a given k-interval if,
at some point during the interval, the length of queue i is at least k. Let the
random variable X(k, i> denote the number of k-intervals during which queue
i is k-eligible. Let Tk = Zip_ ,X(k, i). X(k, i) is nonincreasing in k and so is Tk.

PROPOSITION 17. Let m, = [12n/p] and p = l/16. Then

X(k,i) 2 s < exp(-pm,2-2k).
I

PROOF. The adversary maximizes the number of k-intervals during which
queue i is k-eligible by scheduling a service phase with payoff k every time the
length of queue i reaches k, and otherwise leaving the queue alone. Under this
policy for the adversary, the number of k-intervals during which the queue is
k-eligible is just the number of times the queue length reaches k and drops
instantaneously from k to zero, which in turn is no larger than the number of
times that the state of the associated random walk {Xi] in Section 6.4 reaches a
value greater than or equal to k. Under the assumption that there are no more

784 R. M. KARP AND Y. ZHANG

than m, = 112n/p] arrivals and random service events, X(k, i) is stochastically
no more than U,(m,). By Corollary 16, Pr[X(k, i) 2 rr~,/2~-‘] < Pr[U,(m,> 2
m,/2k-‘] < exp(-@z,2-2”). Cl

COROLLARY 18. Forn >p,

Pr
[

t X(k, i:) > 24n2-k 1 spexp(-P2-2kn/p),
i=l

where p is the constant in Proposition 17.

PROOF. That CiP,lX(k, i) > 24n2-k implies that for some i, X(k, i) >
24n2-k/p 2 m,/2 - . k ’ The result follows from Proposition 17 and m, =
[12n/p] 2 n/p if n r p. III

Now we are ready to analyze the random variable Mk, which is the number
of times the adversary achieves a payoff of at least k. Recall that the payoff
received by the adversary is CT=, Mk by (4). The following theorem completes
the proof of Theorem 7.

THEOREM 19. There exist positive constants CY, p, y, and d such that for
n 2p,

Pr (9)

PROOF. We define A = La log,(n/p)l and B = l(n/p>bl, where a and b
are certain positive constants to be specified later. Then

&vlk:z eMk+ ;iu,+ &l,.
k=l k=l k=A k=B

We shall bound each of the three summations separately. We first show that,
with high probability, the last summation ET-B Mk is zero. Suppose that
cy=,it!k > 0. Then some queue must be of length at least B = l(n/p)b] at
some time. Given that there are at most m, = [12n/p] arrival and random
service events,

Pr
[k=B k]

5 M > 0 5 p Pr[U,(m,) > 0] 5 pE[U,(m,)] 5 y’n2-(n’P)b, (10)

where the last inequality is by Proposition 12.
We now consider the first summation C,“= 1 Mk. To bound Mk for a fixed k,

we draw an analogy between the Shooting Gallery Game and our continuous-
time model. The number of bullets h corresponds to the number of service
phases that the adversary can trigger. The targets correspond to pairs (I, i>
where I is a k-interval and i is a queue that is k-eligible during interval I.
Therefore, at most Tk = Lip_, X(k, i) targets are available to the marksman.
The act of setting up t targets and taking a shot corresponds to executing a
service phase at a time when t queues are of length at least k. A successful
shot corresponds to the arrival of the special customer at a queue of length at
least k. The marksman’s score corresponds to Mk, the number of times the
adversary receives a payoff of at least k.

Parallel Algorithms for Backtrack Search and Branch-and-Bound 785

Let ZI be the event that Tk = Cf= ,X(k, i) > 24n2-k for some k I A =
[a log(n/p>]. By Corollary 18, for some constant P’ > 0,

Pd8,l 5 C p exp
A (-‘:-‘“I k=l

I pA exp

(11)

Assume that event 8, does not occur. Then, we may give the adversary the
advantage of having TA = 1241~2~~ 1. Then, for properly chosen constants c > 0
and c’ > 0,

-a

(12)

Let g2 be the event that for some k I A, a marksman with Tk targets and h
bullets achieves a score larger than 3dm. We bound the probability of
event g2 given that event 8, does not occur. By Proposition 11, noting that Tk
is non-increasing in k and A = la log,(n/p)l,

(13)

where the second last inequality uses the first inequality of (12).
Assume that neither event 8, nor event 6YI occurs. Then viewing Mi as the

score of the marksman,

tM,< iI?/7 <cxfE$I@Sdr(; +h),
k=l

where the last inequality is by the fact that IX:= ,p is bounded and that
&<x+yforx>Oandy>O.

Finally, we bound the middle summation cf=AMk. Given that neither of the
events ZY2 and 8, occurs, we have MA I 3dm and TA I c’n(n/p)-” (by
the second inequality of (12)). Since Mk is nonincreasing in k and B = l(n/p>b],

where the last inequality is again by fi < x + y.

786 R. M. KARP AND Y. ZHANG

Take a = 2/5 and b = l/5. Then a = 2b, and from (14).

: Mksd.li%j1-a+2b .hj 4(; +,).

k=A

By the probability bounds indicated in (9), (IO), (11) and (X3), take cr =
min{l - 2a,(l - a)/2, bl = l/5, and constants p, y, and d in (9) can be
extracted from the proof. q

The proof of Theorem 7 is complete.

7. Future Research

We have made the strong assumption that any processor can send a message to
any other processor in unit time. The algorithms can be implemented on a
PRAM in which processors communicate via a shared memory. The algorithms
can also be implemented on a sparsely interconnected network such as a
hypercube or butterfly network by routing the messages, but some of their
advantage is lost in that case, since the message-routing delay will grow with
the diameter of the network. One approach to avoiding that message-routing
delay would be to modify the algorithms so that, whenever a processor
performs a random selection, it randomly selects one of its neighboring
processors instead of a random processor from the entire network. The
effectiveness of these modified algorithms will depend critically on the inter-
connection structure. Recently, Ranade [9] has given a more sophisticated
parallel backtrack search algorithm that runs on the Butterfly network and,
with high probability, has an execution time within a small constant factor of
the inherent lower bound. .Lt remains open to analyze the modified branch-
and-bound algorithm in sparsely interconnected networks such as the Hyper-
cube and the Butterfly networks.

Appendix A. Some Proofs

PROOF OF PROPOSITION 8. Fix a choice of destination sequence A and
arrival pattern B of n arrivals. Let L = L(A, B) be the unique sequence of
events consistent with A, 13 and Rules 1 and 2. Let L be any sequence
of events consistent with A and B.

Let k be the number- of special customers and let si be the ith special
customer. Let dj and di be the number of pre-delays to si in L and L,
respectively. We show that

(15)
i=l i=l

Let_ qi(j) and G;(j) be the: length of queue j upon the arrival of si with L
and L, respectively. Let

with CY~ = 0. We will show that

(16)

d;, I d, + cyk (17)

Parallel Algotithms for Backtrack Search and Branch-and-Bound

and for i = 1,2 ,..., k - 1,

787

(Y~+~ I ai - di + d,. (18)

One can derive (15) from (17) by repeatedly applying (18). We first show that
for i = 1,2, . . . , k,

ci; s di + q, (19)

which includes (17) as a special case.
We fix i and assume that si arrives at queue 1: By Rule 1, di = qi(l). Since

there can be at most Gi(l> pre-delays to si given L, di 5 Gi(l>. But 4&l> - q,(l)
I (Y;. So di I qi(l) I q,(l) + czi = di + C+ which proves (19).

To prove (18), let ai(j) be the number of arrivals to queue j between si and
‘i+l exclusively. Then qi+ r(j) = max{O,qJj) - di} + a,(j) by Rules 1 and 2,
and &+,(j> = max(0, Gi(j) + ai(j) - dJ. Since max{a, b) - c = max{a - c,
b - cl,

ii+ l(j) - qi+ I(j) = t-x(0 - qi+ It j), Gj+ ,t j) + ai(j) - d; - qi+ ,(j))

I max{O, gi(j> - di - qi(j) + di}

I max{O, (Y~ - d;: + cl,)

~cq--~+d~, (20)

where the last two-inequalities are by (16) and (191, respectively. By (16) and
C20), ai+ 1 - -C (Y~ - di + di, which is (18) as desired. q

PROOF OF PROPOSITION 9. By Markov inequality, for an arbitrary random
variable 2 and 13 > 0,

Pr[Z > 21 I exp(- Bz)Eexp(82) Cm

Pr[Z < 21 I exp(Bz)Eexp(- f3Z). (22)

Let S, = Cy! *Xi, where Xi are independent and identically dependent
exponential random variables with mean l/p. Then, N(t) 2 m, if and only if
S, I t, and

Eexp(sS,) = (Eexp(sX,))m = (p(p - s)-r)m. (23)

Taking Z = S,, z = t and m = 1 pt/2] in (21) and 8 = s = p/2 in (231,

Pr[N(t) < lpt/211 = PrLS,,,,2, > tl

5 exp(- pt/2)2Lpt/2J 5 exp(- 0.31 pt/21).

Similarly, taking Z = S,, z = t and m = [2,ut] in (22) and 8 = --s = 2~ in
(2%

PdNtt) > 12ptll 5 PrL!&, 5 tl

5 exp(2@)3-12F’1 I exp(-0.19pt). 0

PROOF OF PROPOSITION 10. The proof is similar to that of Proposition 8.
Let A be an instance of arrivals and let B be an instance of random service
events. Let (A, B) denote the instance of arrival A with random service events

788 R. M. KARP AND Y. ZHANG

B. Let d, and C& be the number of pre-delays to si with instance A and
instance (A, I?), that is, without and with random service events, respectively.
Thus iT=c Isiskdi and U= Clsisk ,. d. Let Ri be the number of random
service events that occur before the arrival of si and let Y, = R, and ri = Ri -

Rip 1 for 1 < i I k. Thus, R’ = C, ~ iL k~i. We show that

~, d;:I C di+ C ri. (24)
1si:sk lsisk l_<i<k

Let qi(j) and @i(j) be the length of queue j upon the arrival of Si with A
and (A, B), respectively. Let (Y~ = max 1 sjs,(@i(j) - qi(j)). We show that

d;, < d, + (Yk (25)

and for i = 1,2,. . . , k - 1,

ai+I I q - di + d, + ri+l. (26)

One can derive (24) and (25) by repeatedly applying (26). The proof of (25) is
the same as that of (19). To prove (261, let q:(j) and @I(j) be the length of
queue j upon the time of completing the service phase triggered by si on
instances A and (A, B), respectively. Let ai(j) be the number of arrivals to the
queue j between si and si+, exclusively. Then ai(j) = qi+ ,(j> - qj(j), as A
has no random service event s. Set a:(j) = qi+&j) - q:(j). Then ai I a:(j)

+ ri+ 1, as each random service event serves at most one arrival in one queue.
Hence, Gi+ l(j) - qi+ I(j) I @:(j> - q$ j) + ri+ 1.

qi< j)}. Then
Let C(= max,5j5P{@~(j) -

ai+ 5 a; + r-,+1. (27)

Moreover, q:(j) = max{O, qi(j) - dJ and G:,‘(j) = max{O, Gi(j> - d;:}. Hence,

@I(j> - q:(j) I max(0, qi(j) - qi(j) - Ji + “i}

I max{O, ai - di + di}

sq-&+d,,

where the last inequality is by (25). Since a; = maxI I js ,{q$ j> - qj(j>), the
last equality gives ai I (Y~ -- ii + di. This, together with (271, proves (26). 0

REFERENCES

1. ANGLLJIN, D., AND VALIANT, L. G. Fast probabilistic algorithms for Hamiltonian circuits
and matchings. J. Comput. Cyst. Sci. 19 (1979), 155-193.

2. AZUMA, K. Weighted sums of certain dependent variables. Tohoku Math. J. 3 (19671,
357-367.

3. BALAS, E. Branch and bound methods. In The Traveling Salesman Problem, E. L. Lawler,
J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys, eds. Wiley, New York, 1985.

4. CARTER, L., STOCKMEYER, L., AND WEGMAN, M. The complexity of backtrack searches. In
Proceedings of the 17th Annual ACM Symposium on Theory of Computing. (Providence, R.I.,
May 6-8). ACM, New York, 1985,449-457.

4a. FINKEL, R. A., AND MANBER, U. DIB-A distributed implementation of backtracking.
ACM Trans. Prog. Lang. Syst. 9, 2 (1987), 235-256.

5. KARP, R. M., SAKS, M., AND WIGDERSON, A. On a search problem related to branch-and-
bound procedures. In Proceedings of the 27th IEEE Symposium on Foundations of Computer
Science. IEEE, New York, 1986, pp. 19-28.

Parallel Algotithms for Backtrack Search and Branch-and-Bound 789

6. KARP, R. M., AND ZHANG, Y. A randomized parallel branch-and-bound procedure. In
Proceedings of the 20th Annual ACM Symposium on Theory of Computing. (Chicago, Ill., May
2-4), ACM, New York, 1988, pp. 290-300.

7. PAPADIMITRIOU, C. H., AND STEIGLITZ, K. Combinatorial Optimization: Algorithms and
Complexity. Prentice-Hall, Englewood Cliffs, N.J., 1982.

8. RANADE, A. A simpler analysis of the Karp-Zhang parallel branch-and-bound method.
Tech. rep. No. 586. Computer Science Division, Univ. California at Berkeley, Berkeley,
Calif., 1990.

9. RANADE, A. Optimal speedup for backtrack on a butterfly network. In Proceedings of the
3rd Annual ACM Symposium on Parallel Algotithms and Architectures. ACM, New York, 1991,
pp. 44-48.

10. SPENCER, J. Ten Lectures on the Probabilistic Method. SIAM, Philadelphia, Pa., 1987.

RECEIVED OCTOBER 1990; REVISED APRIL 1992 AND MARCH 1993; ACCEPTED MARCH 1993

Journal of the Association for Computing Machinery, Vol. 40, No. 3, July 1993.

