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Abstract. Universal randomized methods for parallelizing sequential backtrack search and 
branch-and-bound computation are presented. These methods execute on message-passing multi- 
processor systems, and require no global data structures or complex communication protocols. 
For backtrack search, it is shown that, uniformly on all instances, the method described in this 
paper is likely to yield a speed-up within a small constant factor from optimal, when all solutions 
to the problem instance are required. For branch-and-bound computation, it is shown that, 
uniformly on all instances, the execution time of this method is unlikely to exceed a certain 
inherent lower bound by more than a constant factor. These randomized methods demonstrate 
the effectiveness of randomization in distributed parallel computation. 
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1. Introduction 

A combinatorial search problem, or simply search problem, is a problem of 
finding certain arrangements of some combinatorial objects among a large set 
of possible arrangements. Typical examples of search problems are enumerat- 
ing the satisfying assignments of a Boolean formula or finding a minimum-cost 
tour through a set of cities. Computational resources required for solving 
search problems tend to grow exponentially in the size of problem instance; the 
explosive complexity limits the range of search problems that are solvable in 
practice. 

Search problems are well suited for parallel computation-the set of possi- 
ble arrangements can be searched simultaneously. Potential speed-up by paral- 
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lel computation in solving search problems can be great. The study of parallel 
algorithms for solving search problems is of theoretical and practical 
significance. 

In this paper, we study the parallel execution of two fundamental search 
methods: backtrack search and branch-and-bound computation. We present 
universal randomized methods for parallelizing sequential backtracking search 
and branch-and-bound computation. These methods execute on message- 
passing multiprocessor systems, and require no global data structures or 
complex communication protocols. For backtrack search we show that, uni- 
formly on all instances, our method is likely to yield a speed-up within a small 
constant factor from optimal, when all solutions to the problem instance are 
required. For branch-and-bound computation, we show that, uniformly on all 
instances, the execution time of our method is unlikely to exceed a certain 
inherent lower bound by more than a constant factor. These randomized 
methods demonstrate the effectiveness of randomization in distributed parallel 
computation. 

We shall formulate a search problem as a tree search. We assume that an 
algorithm for solving a certain search problem is given. This algorithm has a 
certain procedure for generating subproblems. When this procedure is applied 
to a subproblem A, it either solves A directly or derives from A a set of 
subproblems A,, A,, . . . , A, such that the solution of A can be found from 
thesolutionsof A1,A2,..., A,. Given a problem instance, we associate with it 
a rooted tree in which the root of the tree corresponds to the given problem 
instance, an internal node corresponds to a subproblem of the given problem 
instance, the children of an internal node correspond to the set of subproblems 
derived from the subproblem represented by that internal node, and a leaf 
corresponds a subproblem that can be solved directly. The execution of the 
given algorithm corresponds to a search in the tree associated with the problem 
instance. The nodes of the tree are generated by the node expansion operation 
that, when applied to node ~1, either determines that u is leaf or produces the 
children of U. A node can be expanded only if it is the root of the tree or if it is 
a child of some node previously expanded. The search, starting with the root, 
successively applies node expansion to generate the nodes of the tree until a 
leaf or a set of leaves are identified as the solution. The execution time of a 
sequential search is the number of node expansions, all other computation 
being considered free. 

We are interested in executing the tree search in parallel. Our model of 
parallel computation is a message-passing multiprocessor system with p pro- 
cessors. We require that at most p nodes are expanded at a single step. We 
assume that there is no global memory, and that a processor can send a 
message to any other processor in unit time, where a message has sufficient 
capacity to contain whatever the information is required for a node expansion 
operation. The processors are regarded as synchronous for the purpose of 
counting steps, but the algorithms themselves do not require global synchro- 
nization. The execution time of a parallel search is the number of steps at 
which node expansions are performed, all other computations being considered 
free. Given a problem instance, the speed-up of a parallel algorithm A over a 
sequential algorithm B is the ratio of the execution time of A to the execution 
time of B with respect to the same instance. Our goal is to find parallel 
algorithms that achieve a speed-up close to the number of processors used, and 
yet are efficiently implementable in the chosen model of parallel machines. 
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Problems that yield to backtrack search have the property that it is possible to 
determine that some initial choices cannot lead to a solution. This property 
allows the search to terminate an unproductive exploration and then “back- 
track” to a point where a new search can be started. An example of backtrack 
search is a way of finding an exit in a maze: starting at the entry, keep 
extending the path from the entry until an exit is reached; when facing a dead 
end, retreat one step and try to extend the path in another direction. 

More formally, backtrack search works by continually trying to extend a 
partial solution to a problem; when it is found that the current partial solution 
cannot possibly be extended to a complete solution, the algorithm then 
backtracks to its previous partial solution and attempts to extend that partial 
solution again in a way that has not been previously attempted. This process is 
repeated until a solution is found or it is found that there is no solution. A 
backtrack search can be viewed as a search through a tree of partial solutions 
in which the root represents the empty solution, an internal node represents a 
partial solution, the children of an internal node u represent all possible 
minimal extensions to the partial solution represented by u, and a leaf of this 
tree represents either a solution or a partial solution that cannot be extended 
to a solution. The execution of a sequential backtrack search corresponds to a 
depth-first search in this tree using the node expansion operation. A study on 
the complexity of backtrack search can be found in [4]. 

In this paper, we shall consider the all-solution backtrack search that seeks 
all solutions to the given problem instance. By backtrack search, we shall 
always mean all-solution backtrack search. The fundamental property of all- 
solution backtrack search is that its corresponding tree search must expand 
every node of the tree. This is because the backtrack search cannot tell 
whether a partial solution can be extended to a solution until it determines 
that the partial solution corresponds to a leaf of the tree. As all nodes of the 
tree must be expanded, each node expansion performed is a useful work. An 
all-solution parallel backtrack search algorithm will achieve a good speed-up if 
processors are kept busy performing node expansions. 

Given a backtrack search algorithm, let H be the rooted tree of partial 
solutions associated with the algorithm on some problem instance. Consider a 
parallel search algorithm that generates H. Let y1 be the number of nodes in 
H, and let h be the number of nodes in a longest root-leaf path in H. The 
execution time of any algorithm that generates H is at least h, since the nodes 
along a path must be expanded one at a time, and the execution time of any 
p-processor algorithm that generates H is at least n/p, since all IZ nodes in H 
must be expanded and the algorithm can expand at most p nodes at one step. 
Therefore, max{a/p, h} is an inherent lower bound on the execution time of 
any p-processor algorithm that generates H. Our goal is to find p-processor 
backtrack search algorithms whose execution time comes close to this lower 
bound. 

3. Parallel Backtrack Search 

In this section, we study parallel backtrack search. We give a generic descrip- 
tion of the parallel backtrack search algorithms we wish to study. We then 
describe two specific algorithms, one deterministic and the other randomized; 
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the deterministic algorithm requires global control whereas the randomized 
one does not. 

3.1. GENERIC PARALLEL E~ACKTRACK SEARCH ALGORITHMS. A frontiernode 
is a node that has been generated but not expanded. The frontier nodes are 
distributed among the processors, with each belonging to exactly one processor. 
Let Pi denote processor i. The localfrontier of Pi, denoted by Fi, is the set of 
frontier nodes possessed b:y Pi. A processor is busy if its local frontier is 
nonempty; otherwise, it is idle. A busy processor is loaded if its local frontier 
contains two or more nodes. The level of a node u is the number of nodes on 
the path from the root to u inclusively. A top-node of Pi is a node of minimum 
level among all nodes in Fi. Let T denote the set of top-nodes of 4.. Let I’(U) 
denote the set of children of an internal node U. For two nodes u and u of a 
tree that do not lie on the same root-leaf path, u is to the left of u if u is visited 
before u is visited in a depth-first traversal of the tree in which the children of 
a node are visited according; to the ordering of the children. 

A generic parallel backtra.ck search algorithm is given in Figure 1. A step of 
the algorithm is an execution of the while-loop. Each step consists of a node 
expansion step in which each busy processor expands its leftmost frontier node, 
a pairing step in which a set of loaded processors are designated as donating 
processors, each having a distinct idle processor as its receiving processor, and 
a donation step in which each donating processor transfers half of its top-nodes 
to its receiving processor. At each pairing step, the set R of pairs (i, j) such 
that processor i donates to processor j is called the pairing set. 

By the description in Figure 1, a busy processor performs a depth-first 
traversal in some subtree, and finishes the traversal, with a possibility of 
donating some parts of the subtree to other processors, before it starts to 
traverse another subtree. The local frontier of each processor can be conve- 
niently maintained by a stack. A processor with a nonempty stack removes the 
top node of its stack, expands it, and pushes its children, if any, onto the stack 
in the reversed order of the children. The following conditions are required for 
donation: (a) only idle processors may receive donations; (b) only loaded 
processors may donate; (c) a donating processor may donate to only one 
processor at a time; (d) a receiving processor may receive donations from only 
one processor at a time, and (e) a donating processor donates half of its 
top-nodes. Among these conditions, condition (e) of donating top-nodes is the 
essential rule for donation. Condition (d) guarantees that the top-nodes of a 
processor are consecutive siblings and appear at the bottom of the stack. A 
processor donates its top-noldes by removing them from the bottom of its stack; 
the donation message permits a succinct description of the donation as the 
donated top-nodes are consecutive siblings. 

The code in Figure 1 omits the details of terminating the computation after 
H is completely generated. The computation can stop as soon as each proces- 
sor learns that all local frontiers are empty. This objective can be achieved by 
scheduling occasional broadcast phases, in which the processors configure 
themselves into a uniform bmary tree of preassigned structure. Each processor 
with a nonempty frontier sends its name to the root processor along the edges 
of the tree, and the root processor then broadcasts the information it has 
received to all nodes of the tree. The intervals between the broadcast steps can 
be so chosen that these steps have no appreciable influence on the overall 
execution time. 
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Generic Parallel Backtrack Search 
/*Initialization*/ 

F, = Id; 
fori=2,3 ,..., p,F,*B, 
while some F, f 0 do 

/ *Node Expansion Step*/ 
for i = 1,2,. , p in parallel do 

if Fi # 0 then 
let ui be the leftmost node in Fi; 
expand vi; 
Fi + F, \ {“j); 
if ui is not a leaf then F; + F, U T(q); 

/*Pairing Step*/ 

determine a pairing set 
R = ((i, j)J IF,1 > 1, 151 = 0, 1 I i, j spl such that 
if (i, j), (2, j’) E R, then either i = i’, j = j’ or i f i’, j f j’; 

/ *Donation Step*/ 
for i = 1,2,. , p in parallel do 

let q be the set of top-nodes in Fi; 
let Dj c T, be a set of [1T#21 nodes in 7;; 
if (i, j) E R for some j then /*i donates Di to j*/ 

F, +- Fi\Di; 
send message “i donates D,” to j; 

for j = 1,2,. . , p in parallel do 
if j receives message ‘7 donates 0,” then 5 + D,. 
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FIG. 1. Generic parallel backtrack search. 

We prove some basic properties of the generic parallel backtrack search 
algorithm. The level of a busy processor is the level of its top-nodes. The level 
of a receiving processor after a donation will be the level of the donating 
processor. The degree of a tree is the maximum number of children of any 
internal node of the tree. A unit of work is one of the following three 
operations: expand, by which a processor expands a node, donate, by which a 
processor makes a donation, and receiue, by which a processor receives a 
donation. The total work is the total number of work units performed. 

PROPOSITION 1. Let d be the degree of H. Then (i) a node can be donated at 
most [logdl times, (ii) the total work is at most 3n[logd], and (iii) a busy 
processor with k top-nodes either increases its level or becomes idle after at most 
[log kl donations. In particular, for a binary tree, each node can be donated at 
most once, the level of a processor increases after each donation. 

PROOF. Let u be a node involved in a donation. The number of siblings of 
u that are together with u in a donation is reduced by half at each donation. 
Hence, u can be involved in at most [log d] donations before either u is 
expanded or u is the only node in a donation. In the latter case, u will be 
expanded at the next step. This proves (iI. 

There are exactly n node expansions, as each node is expanded once. By (i>, 
a node is donated at most [log d] times, and thus received at most [log d] times. 
Thus, the total work is at most 3nrlog d], which gives (ii). 

To prove (iii), let Pi be a busy processor. 

Case 1. Pi has only one frontier node u. Then Pi will expand u, increasing 
its level or becoming idle. 
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Case 2. pi has two or more frontier nodes. Let k be the number of 
top-nodes of Pi. Each time Pi donates, the number of top-nodes of Pi is 
reduced by half, thus at most [log k] donations can be done before Pi increases 
its level or becomes idle. KI 

3.2. A DETERMINISTIC ALGORITHM. We now present a specific determinis- 
tic algorithm called Full-Donation Backtrack Search (FDBS). The strategy of 
FDBS is simple: Let as many idle processors receive donations as possible. In 
other words, choose the pairing set as large as possible. 

RULE FORFULL-DONATIOX Choose the pairing set as large as possible. 

The above rule does not fully specify the pairing set. When there are more 
busy processors than the idle ones, one may take into account certain at- 
tributes such as the level number, size of local frontier, or length of local 
depth-first traversal path, in setting priorities for donation among busy proces- 
sors. The rule of full-donation does not explore the potential computational 
advantages of setting donation priority among busy processors. The following 
theorem shows that FDBS is within a factor of O([log dl) from the inherent 
lower bound max{n/p, h]. 

THEOREM 2. The execution time of Full-Donation Backtrack Search on in- 
stance His at most [logdl(3rz/p + h) where d is the degree of H. 

PROOF. A step is perfect if every processor does one unit of work at that 
step, that is, it expands, donates, or receives; otherwise, the step is imperfect. By 
Proposition l(n), the total number of units of work is at most 3n[log d]. Hence, 
there can be no more than 3nllog d]/p perfect steps. 

We show that there are at most h[log d] imperfect steps. The search-level is 
the minimum level of all lmsy processors. We show that the search-level 
increases in each [log dl imperfect steps. Consider an imperfect step. There 
must be an idle processor that did not receive a donation in that step. By the 
maximality of the full-donation rule, every loaded processor must have donated 
in that step. Let P be a busy processor. If P is not loaded, then P either 
increases its level or becomes idle after one step. If P is loaded, then P 
donates at each imperfect step and, by Proposition l(iii), increases its level 
after at most [log d] imperfect steps. Consider a processor Q that receives a 
donation from P at some step. As P halves its top-nodes for donation at each 
imperfect step, Q receives at most 2k top-nodes from P if P has not increased 
its level after [log dl - k imperfect steps. Processor Q will increase its level, 
which is equal to the level of P, in k imperfect steps after receiving the 
donation. Hence, in [log dl imperfect steps, the level of any busy processor and 
the levels of processors that receive donations will increase. This implies that 
the search-level increases in each [log dl imperfect steps. The search-level is at 
most h. There can be at most h[log d] imperfect steps. 0 

3.3. A RANDOMIZED ALGORITHM. Though exhibiting optimality, Full- 
Donation Backtrack Search requires global control to implement donation. It 
turns out that the global control required by FDBS can be effectively replaced 
by randomization. We present a randomized algorithm called Randomized 
Parallel Backtrack Search (IIPBS) in which random requests are used in 
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Pairing Step of RPBS 
/ *Requesting Message Step*/ 
for j = 1,2,...,p in parallel do 

if j is idle then 
dest( j) + a random element of {l, 2,. . . , p}; 

send message “j wants new work” to dest(j>; 
/ *Accepting Message Step*/ 
for i = 1,2,. . . , p in parallel do 

if i is loaded then 
let A, = {jli has received a message “j wants new work”); 
if Ai # IzI then 

select an arbitrary k E A,; 

send message “i has work to share” to k; /*will donate to k*/ 
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FIG. 2. Pairing step of RPBS. 

donation. Randomized request was also proposed in a distributed implementa- 
tion of backtrack search in [4a]. 

The donation of RPBS is as follows: Each idle processor initiates a request 
to a randomly chosen processor; a loaded processor that receives some re- 
quests selects one request from the received requests, and donates to the idle 
processor that made that request. Figure 2 contains the code describing the 
pairing step of RPBS. The corresponding modification in the donation step in 
Figure 1 is to replace the line “if (i, j) E R for some j then” with “if i has 
selected j in the accepting message step then”. On each fixed instance H, the 
execution time of RPBS is a random variable. 

The following theorem states that, for any instance H with degree d, with a 
probability approaching 1 exponentially fast as IZ increases, the execution time 
of RPBS is within a factor of O(log d) from the lower bound max{n/p, h}. This 
shows that RPBS is a universal method for executing backtrack search algo- 
rithms efficiently in parallel without global control. 

THEOREM 3. Let the random variable T(H) be the execution time of RPBS on 
H. Let n be the number of nodes in H and let h be the maximum number of nodes 
in a root-leaf path of H. Let d be the degree of H. Then, for any instance H and 
for any p 2 2, 

)] <nexp( -$j$). 

In particular, the probability bound is at most n e-C for any positive constant c if n is 
LRCp210gp). 

Theorem 3 is an immediate consequence of the following theorem, combined 
with the fact that H has n nodes. 

THEOREM 4. Let the random variable T(H, w> denote the number of steps of 
RPBS on instance H, up to the point when node w is expanded. Let d be the degree 
of H. Then for euery instance H, for every w in H and for any p 2 2, 

T(H,w) > [logdl - + 4h (“,” )] <expI-qjq. 

PROOF. At any point before w  is expanded, let s be the current utiique 
frontier node, generated but unexpanded, on path from the root to w. We call 
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the processor possessing s the special processor, denoted by S. When the 
special processor donates, either the donating processor remains as the special 
processor or the receiving processor becomes the special processor. 

If 8” = {u} at a donation step, then at the preceding node expansion step, 
either Fs = {u, u} and u was expanded, or Fs = (u} and u was generated from 
u. The latter case increases the level of S, and thus occurs at most h times. The 
former case implies IFsI > 1 at the preceding donation step. A donation step at 
which IFsI > 1 is called a trial step. At a trial step, the special processor S 
will donate if it receives a request from an idle processor. We show that, 
with the indicated probability bound, the number of trial steps is at most 
[log dl(9n/p + 3h), and the theorem follows. 

We call a trial step successfil if S donates at that step. A trial step is 
successful if S receives a request from an idle processor. We call a trial step 
good if more than [p/2] processors do at least one unit of work at that step; 
otherwise, it is bad. As the total work is no more than 3rt[log d], there can be 
at most 6[log din/p good trial steps. It is reduced to show that, with high 
probability, there are at most 3[log dl(n/p + h) bad trial steps. 

The probability that a bad trial step is successful is the probability that some 
idle processor requests to the special processor. The number of idle processors 
at a bad step is at least p/2. The probability that a bad trial step is successful 
is thus at least 1 - (1 - l/p) PI2 > 1 - exp( - l/2) > l/3. By Proposition 
l(iii), the total number of donations by special processors is at most h[log dl. 
So there can be at most h[log d] successful trial steps. Let B(t, N, p> denote 
the probability that there are fewer than t successes in N independent 
Bernolli trials where the probability of success for each trial is p. We have 

Pr more than 3Flog d] 1 
<R(h,logd,,3,logd,(; + h),;). 

By a Chernoff-bound on binomial distribution [l], for 1 > y > 0, 

B((1 - y)pN, N, p> 5 exp( -+yW). 

Let (1 - y)pN = hIlog d], N = 3[log dl(n/p + h) and p = 3. Then 

n/P 
Y= 

H/P + h 
and 

(2) 

y%N = 
Dog dl(n/pY 

n/pi-h . 

To bound y2pN from below, consider two cases. 

Case 1. n/p 2 h. In this case, y2pN 2 n[log d1/2p. 

Case 2. n/p < h. In this case, y’pN 2 n[log d]/2p2, as n 2 h. Hence 

y2pN 2 
nrlog dl 

2p2 ’ 
(3) 
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By (11, (2), and (31, the probability of more than 3]log dl(n/p + h) bad trial 
steps is at most exp( - in log d/p*). The proof is complete. 0 

4. Branch-and-Bound Method 

Branch-and-bound procedures are the most frequently used method in practice 
for the solution of combinatorial optimization problems. An introduction to 
branch-and-bound method can be found in [7] and an in-depth account in [3]. 

The fundamental ingredients of a branch-and-bound method are a branching 
procedure and a bounding procedure. The branching procedure takes a given 
combinatorial optimization problem A and either solves it directly or derives 
from it a set of subproblems A,, A,, . . . , A, such that an optimal solution to 
problem A can be found by solving each of A,, A,, . . . , A, and then, among 
these d solutions, taking the one of least cost. The bounding procedure 
computes a lower bound on the cost of an optimal solution to a subproblem A, 
and the lower bounds satisfy the monotonicity property that the lower bound 
on subproblem A is no larger than the lower bound on a subproblem derived 
from A. The lower bounds can be used to guide the order in which subprob- 
lems are solved, or to determine that certain subproblems need not be 
considered at all. The computation may terminate when it finds a solution 
whose cost is not larger than the lower bounds of the remaining subproblems, 
and a solution of the least cost among the found solutions is the solution of 
minimum cost. Different rules can be used to decide the order in which 
subproblems are branched on. The “best-first” rule is to branch on the 
subproblem of least lower bound. The best-first rule tends to minimize the 
number of subproblems that are created, but also may need to maintain a 
large set of subproblems at a given time. The “depth-first” rule is to branch on 
the most recently generated subproblem. The depth-first rule tends to mini- 
mize the number of subproblems that are maintained, but may explore some 
subproblems unnecessarily. A recent study of time-space trade-offs in sequen- 
tial branch-and-bound computation is given in [5]. 

A branch-and-bound computation can be viewed as a search through a tree 
of subproblems, in which the original problem occurs at the root, and the 
children of a given subproblem are those subproblems obtained from it by 
branching. A leaf of the tree corresponds to a subproblem that can be solved 
directly by the branching procedure. The object of the search is to find a leaf of 
minimum cost. The primitive step of the search is the expansion of a given 
node of the tree to produce its children and their cost bounds. We model a 
branch-and-bound computation as a rooted tree H in which each node has a 
finite number of children, together with a cost function c on the nodes of H 
such that C(U) is the cost of an optimal solution to the subproblem associated u 
if u is a leaf, or the lower bound on the cost of the subproblem associated with 
u if u is an internal node. We require that the cost function c satisfy the 
conditions (9 if u # w, then C(U) # c(w) and (ii) if w  is a child of u, then 
c(u) < c(w). Condition (i) of distinct costs is for convenience; condition (ii) is 
the monotonicity property of the lower bounds. We consider algorithms whose 
objective is to generate the leaf of least cost in H, using the node expansion 
operation. This model is similar to the one introduced in [5]. 

We are interested in executing a branch-and-bound computation in parallel. 
The fundamental challenge is to allocate the subproblems to the processors so 
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that they can all be performing useful work. A parallel branch-and-bound 
algorithm may not achieve a.n effective speed-up by merely keeping all proces- 
sors busy; a successful solution must ensure that processors will not spend 
much time exploring useless subproblems, and that the overhead for interpro- 
cessor communication is not excessive. 

5. Parallel Branch-and-Bound 

The following is a generic description of the branch-and-bound algorithm we 
consider. Let KS) denote the set of children of the nodes in S. The frontier, 
denoted by variable F, is the set of nodes that have been generated but not 
expanded, and the variable B denotes the minimum cost of any expanded leaf. 

Generic Branch-and-Bound Algorithm 
F +- (r}; B + 00; 
while F, # 0 do 

select a set of nodes S G F; 
expand the nodes in S; 
F +- {F\S} u l?(S); 
B + min({B} u {c(u): u E S and u is a leaf)>; 
F +- {u E F: c(u) I B}. 

We think of the nodes in S as being expanded simultaneously; thus, the 
execution time of the algorithm is defined to be the number of executions of 
the body of the while loop. 

There is an inherent lower bound on the execution time of the branch-and- 
bound algorithms described above. For a given problem instance (H, c> let u* 
be the leaf of minimum cost in H. Let H be the subtree determined by the 
nodes in H of cost less than or equal to u *. Every node expansion algorithm to 
determine the minimum-co_st leaf of H must expand every node of H. Let n be 
the number of nod_es in H, and let h be the number of nodes in ,a longest 
root-leaf path in H. Notice that n and h are all concerned with H, not H. 
Then the execution of any algorithm is at least h, and the execution of any 
p-processor algorithm is at least n/p. Our goal is to design p-processor 
algorithms whose execution time comes close to the lower bound max{n/p, h) 
on all instances of (H, c). 

Among algorithms that expand at most p nodes per step, the following 
“best-first” rule for selecting S is a direct extension of the sequential best-first 
rule. We call the algorithm implementing this rule Global Best-First Search. 

Best-First Rule 
if IFI I p then S = F 
else S consists of the p nodes in F of least cost 

PROPOSITION 5. The execution time of Global Best-First Search is at most 
(n/p) + h. 

PROOF. We show that all the node: in g will be expanded within n/p + h 
steps. Let w  be an arbitrary node in H. Let P(w) be the path from the root of 
H to w  and let v be the node on P(w) that is currently in the frontier F. 
Consider the next node expansion step. If u is not exp_anded, _then by the 
best-first rule, all p nodes expanded in this step are in H. As IHI = n, there 
can be at most n/p such steps. If u is expanded, the child of u on P(w) will be 
in F. There can be at most h such steps, as the height of H is at most h. 
Hence, w  will be expanded within n/p + h steps. 0 
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In order to implement Global Best-First Search, it seems necessary to keep 
the set F in a global priority queue so that, at each step, the p nodes of least 
cost in F can be selected, assigned in one-to-one fashion to the p processors, 
and distributed to their assigned processors. The implementation of these 
selection and distribution operations using messages is costly; to avoid this 
overhead, we propose the algorithm called Local Best-First Search, which uses 
no shared data structures. Instead, the unexpanded nodes are distributed 
among the processors, with each unexpanded node belonging to exactly one 
processor. The computation alternates between node expansion steps, in which 
each processor expands the cheapest node in its possession, and node distribu- 
tion steps, in which the children of the nodes just expanded are sent to random 
processors. More precisely, processor i maintains a set of nodes E, its local 
frontier, and a cost bound Bi, which is certified to be the cost of some leaf. Fi is 
the set of nodes of cost less than or equal to Bi which have been received from 
other processors but not yet expanded. At each step, every processor i does 
one of two things: 

(i) if C;;: is not empty, then it expands the node of minimum cost in F): and 
sends its children to processors chosen at random; 

(ii) if Fi is empty, then it sends the message “there is a leaf of cost Bi” to a 
processor at random; 

The processors then update the sets Fi and bounds Bi on the basis of the 
messages they have received. The computation continues until all sets Fi are 
empty; at that point the minimum cost of a leaf is given by min((Bi, i = 
1,2,..., p)>. The code for Local Best-First Search is contained in Figure 3. 

The code of Figure 3 omits the details of how messages are used to notify all 
processors of the minimum cost and turn the computation off. Let 7 be the 
time when all nodes of H have been expanded. Let B be the minimum cost of 
a leaf of H. At time 7, at least one processor will possess the bound B. From 
time r onward, each processor that has received the bound B will have an 
empty local frontier, and will use each subsequent node expansion step to send 
the bound B to a random processor. Thus, with high probability, all processors 
will receive the bound B by some later time u, where (T I r + O(log p). From 
time P onward, all local frontiers will be empty. By scheduling occasional 
broadcast phases, as discussed previously, each processor will learn that all 
local frontiers are empty, and stop its computation. 

On each fixed problem instance (H, c), the execution time of the randomized 
algorithm Local Best-First Search is a random variable. We prove that there 
exists a universal constant cr such that, for every instance (H, c) the following 
holds with high probability: the ratio between the execution time of the Local 
Best-First Search and the minimum possible execution time of any p-processor 
algorithm is less than d. Thus, Local Best-First Search is a universal method of 
executing branch-and-bound algorithms efficiently in parallel without shared 
data structures. 

THEOREM 6. There exist positive constants (Y, /3, y, and d such thaj the 
following holds for every instance (H, c): Let n be the number of nodes in H and 
let h be the maximum number of nodes in a root-leaf path of H. Let the random 
variable T(H, c> denote the execution time of Local Best-First Search on the 
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Local Best-First Search 

/ *Initialization*/ 
F, = b+; 
for i = 2,3,. . , p, F, + 12r, 
for i = 1,2,. . . , p, Bi + m; 
while some set F, # 0 do 

/ *Node Expansion Step*/ 
for i = 1,2,..., p in parallel do 

if Fi f 0 then 

let ui be the node of least cost in Fi; 
expand ui; 
Fi + Fj \ ISI; 
if u, is a leaf then Bj + c(ui) 

else 
for each child w of ui do 

de&w) +- a random element of (1,2,. . . , p}; 
send w to dest(w) 

else 
send “a leaf of cost Bi” to a random element of (1,2,. . . , p); 

/*Message Arriual Step*/ 
for i = 1,2,. . , p in parallel do 

F, + F, u (w : dest(w) = i}; 
for i = 1,2,..., p in parallel do 

Bi t min(B, u (n : i has received a message “a leaf of cost x”}); 
for i = 1,2,...,p in parallel do 

F, + {u E Fi: c(u) 5 BJ. 

FIG. 3. Local best = first search. 

instance (H, c>. Then, for n 2~ p, 

< yntn + pbp( -P(n/pja). 

In particular, the probability bound is at most Kc for any positive constant c if n is 
.n(pUogp>W 

Theorem 6 is an immediate consequence of the following theorem, combined 
with the fact that H has at most n nodes. 

THEOREM 7. For evev instance (H, c> and for every node w in I?, let the 
random variable T,(H, c) denote the number of steps of Local Best-First Search 
on instance (H, c), up to the point when node w is expanded. Then, for n 2 p, 

Pr[T,(H, c> > dtn/p + h)l < y(n + p>ap( -P(n/pIa), 

where (Y, j3, y, and d are the constants stated in Theorem 6. 

Our goal is to prove Theorem 7. In the next section, we present a proof of 
Theorem 7 based on the proof outlined in [6]. Recently, Ranade [8] found a 
new, and simpler, proof. Nevertheless, the proof presented in this paper is of 
interest because of the probabilistic analysis techniques it uses. 

6. Proof of Theorem 7 

We present a proof of Theorem 7 in this section. The core of our analysis is to 
transform the problem into a cleanly stated problem about queuing systems. 
The analysis also gives rise to a simple game of strategy called the Shooting 
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Gallery Game and a study of large deviations in random walks. To enhance the 
continuity, some claims in this section are proved in the Appendix. 

Recall that H consists of all the nodes whose costs are less than or equal to 
that of the minimal-cost leaf in H. In analyzing the time required by Local 
Best-First Search to expand the nodes in H, we can disregard all nodes of H 
that do not lie in H, singe no processor will ever choose to expand such a node 
when it has a node of H available, We are interested in the ti-me steps needed 
to expand a specific node w  in H. We divide the nodes of H into two types: 
special nodes, which lie on the path from the root to w, and regular nodes, 
which do not lie on that path. At each step, there is exactly one special node s 
present in some local frontier, and we concentrate on the processor that owns 
s. We can distinguish among three possible actions by that processor: 

(i) The processor expands s; 
(ii) The processor expands a node that was generated after s was generated; 

such a step is called a post-delay; 
(iii) The processor expands a node that was generated earlier than s was 

generated, or at the same time. Such a step is called a pre-delay. 

Action (i) can occur at most h times, since there are at most h special nodes. A 
node can cause a post-delay only if, at the time it is generated, it is sent to the 
unique processor possessing a special node. Since the newly generated nodes 
are sent to random queues, the number of nodes capable of causing a 
post-delay is stochastically no greater than the number of successes in a 
Bernoulli process with n trials, where the probability of success at each trial is 
l/p. By the Chernoff-bound [l], the chance that the number of post-delays is 
greater than 2n/p is at most exp(-n/3p). 

Thus, the crux of the proof of Theorem 7 lies in bounding the number of 
pre-delays. To approach this bound, we view the computation as a queuing 
process. 

6.1. A QUEUING PROCESS. To describe the execution of Local Best-First 
Search as a queuing process, we view each processor as server and each node 
in H as a customer. Customers corresponding to special nodes are called 
special customers, and those corresponding to regular nodes are called regular 
customers. Associated with each customer is a number called his cost. Initially, 
queue 1 contains one special customer, and queues 2,3,. . . , p are empty. The 
system contains exactly one special customer and the queue containing the 
special customer is called the special queue. The queuing process alternates 
between service steps, in which the customer of least cost in each nonempty 
queue is served, and arrival steps, in which a sequence of customers arrives at 
the queues. If a special customer was served at the preceding service step then 
exactly one of the arriving customers is special; otherwise, all the arriving 
customers are regular. The total number of customers arriving during the 
entire process is n, and at most h of these are special. The cost of the process 
is the number of service steps in which a customer is served who is in the 
special queue and arrived there before the current special customer did. 

The relationship between the queuing process and the execution of the 
algorithm is apparent. The service steps correspond to node expansion steps in 
the algorithm, and the arrival steps correspond to message arrival steps in the 
algorithm. The cost corresponds to the number of pre-delays. 
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Define a destination sequence as an infinite sequence a,, a2,. . . of elements 
from {1,2, . . . , p} where ai is drawn independently from the uniform distribu- 
tion over (1,2,. ;. , p}. The intended meaning is that uk is the destination of the 
kth node of H to be generated (the nodes generated simultaneously are 
arranged in order of increasing cost). It should be clear that the following data 
completely determines a run of the queuing process: an n-node tree H in 
which no root-leaf path is of-length greater fhan h, a function c assigning a 
cost c(u) to each node u in H, a node w  in H and a destination sequence. We 
may think of H, c, and w  as being chosen by an adversary whose goal is to 
maximize the probability that the cost of the queuing process exceeds d(n/p + 
h) for some suitable constant d. 

We now modify the rules of the queuing process in favor of the adversary. 
We replace an arrival step at which k customers arrive with a sequence of k 
arrival steps at each of which one of those k customers arrives. A step is either 
a service step or an arrival step with a single customer. At each step, the 
adversary chooses one of five steps of euents: the arrival of a special customer, 
the arrival of a regular customer, and three types of service events, depending 
on who in the special queue gets served: the special customer, a regular 
customer who arrived before the special customer did, or a regular customer 
who arrived after the special customer did. The two types of arrival events are 
denoted S and R (for special and regular), and the three types of service 
events are denoted s, pre, and post (the service of the special customer, a 
pre-delay or a post-delay). When an S-event or an R-event occurs, an element 
is drawn from the uniform distribution over {1,2,. . . , p) to determine the 
queue at which the arrival will take place. When a service event occurs, one 
customer from each nonempty queue is served, with the type of the event 
determining which customer is served from the special queue. In selecting each 
event, the adversary knows the random choices made at all earlier events, and 
is thus able to calculate which customers reside in each queue. The adversary is 
constrained by the following rules: (a) the first event is an S-event; (b) S-events 
and s-events must alternate; (c) the number of R-events and S-events is ~1, 
and, at most, h of these are S-events; (d) a pre-event can occur only if the 
special queue contains a regular customer who arrived before the last S-event; 
and (e) a post-event can occur only if the special queue contains a regular 
customer who arrived after the last S-event. 

In the modified queuing process, the- adversary preserves the ability to 
simulate an instance given by the triple (H, c, w); that is, he has the freedom to 
specify the events as they would occur for that instance, given the destinations 
of the successive arrivals, SC: that the number of pre-events is the number of 
pre-delays in the instance (11, c, w). 

The adversary succeeds if the number of pre-events exceeds d(n/p + h). 
Thus, we can prove Theorem 7 by showing that the adversary’s chance of 
success in the modified queuing process is exponentially small. We show that 
the strategy that respects following rules is optimal for the adversary: 

Rule 1. Always serve the regular customers in the special queue before the 
special customer. 

Rule 2. Schedule no arrivals when the special customer is present in the 
system. 
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Schedules respecting these two rules are completely described by the se- 
quence of arrival events. Service always occurs just after an S-event, and 
continues until all customers in the special queue get served, with the special 
customer being served last, and no arrivals occur during the period of these 
services. Post-events never occur. The cost of the process, that is, the number 
of pre-events, is simply the sum of the lengths of the special queues at the 
times the special customers arrive. 

The sequence of events selected by the adversary gives rise to an arrival 
pattern B = b,, b,, . . . , where b, E {r, s} such that b, = s if the kth arrival is 
special and b, = r if the kth arrival is regular. Given the destination sequence 
A and the arrival pattern B, the behavior of a strategy respecting Rules 1 and 2 
is completely determined. The following proposition, proved in the Appendix, 
shows that the strategy respecting Rules 1 and 2 is optimal. 

PROPOSITION 8. For each n and each choice of the destination sequence A and 
the arrival pattern B of n arrivals, the unique sequence of events consistent with 
A, B and Rules 1 and 2 yields at least as large a number of pre-events as any 
sequence of events consistent with A and B. 

6.2. A CONTINUOUS-TIME MODEL. The imposition of Rules 1 and 2 simpli- 
fies the queuing process and enables us to give the following clean description 
of it. A sequence of II customers (each corresponding to a regular customer) 
arrives at a system of p queues. When each customer arrives, he is assigned to 
a random queue. An adversary who observes the arrivals decides, after each 
arrival, whether to trigger a service phase (corresponding to the arrival of a 
special customer). When a service phase is triggered, a random queue is chosen 
(corresponding to the special queue). If the queue contains m customers, then 
the adversary receives a payoff of m and m + 1 service events occur (corre- 
sponding to m pre-events and one s-event); at each service event, one cus- 
tomer in each nonempty queue is served and deleted from its queue. No 
arrivals occur during a service phase. The total number of service phases is at 
most h. The adversary’s goal is to maximize the probability that his total payoff 
exceeds d(n/p + h). We wish to prove that its probability of achieving this 
goal is exponentially small. 

To facilitate the analysis, we embed this process in continuous time by 
assuming that customers arrive according to a Poisson process. This poissoniza- 
tion allows us to use the tools of stochastic processes to analyze the payoff of 
the adversary. We shall assume that customers arrive according to a Poisson 
process with rate p/2 over the time period [0,4n/p]. At each arrival, the 
queue where the customer arrives is drawn from the uniform distribution over 
(1,2,. . . , p}. Thus, the arrival process for a particular queue is Poisson with 
rate l/2 (and the arrival processes for all queues are mutually independent). 
When a service phase is triggered, the service events occur immediately, with 
no lapse of time. It should be clear that letting customers arrive according to a 
Poisson process has no effect on the payoff received by the adversary in the 
course of the first n arrivals. The following proposition is proved in the 
Appendix. 

PROPOSITION 9. Let N(t) be the number of am’vals in a Poisson process with 
rate 6 over the time interval [0, t]. Then (i) Pr[N(t) < ] @/2]] I 
exp(-0.31@/2]) and (ii) Pr[ N(t) > ]2@]] I exp( -0.19@). 
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By Proposition 9(i), the probability of fewer than n arrivals in a Poisson 
process with rate p/2 over the time period [0,4n/p] is at most exp( - 0.3n). 
Thus, it suffices to prove that, in this continuous-time set-up, the adversary has 
an exponentially small chance of achieving a payoff greater than d(n/p + h). 

Now we define a modified continuous-time process that incorporates an 
amortization mechanism to keep the queue lengths small. In addition to the 
service phases scheduled by the adversary, we schedule random service events 
according to a Poisson process with rate 1. At each random service event, one 
customer is removed from each nonempty queue, and the adversary receives 
one unit of payoff. The effect of these random service events on the total 
payoff is that we amortize some of the payoff that the adversary would 
otherwise receive in the service phases. The following proposition, proved in 
the Appendix, states that the adversary is better off with the amortization. 

PROPOSITION 10. Let U and r? be the number of units of payoff the adversary 
receives in the process with and without random service eve_nts, respectively. Let R 
be the number of random service events occurring. Then, U I U + R. 

On the other hand, by Proposition 9(ii), the probability that more than 
18n/p] random service events occur over the time period [0,4n/p] is at most 
exp( - 0.7n/p). Thus it suffices to prove that, in the modified continuous-time 
process in which random service events occur according to a Poisson process 
with rate 1, the adversary has an exponentially small chance of achieving a 
payoff greater than d(n/p t- h), for some suitable constant d. 

The random service events, however, have a major impact on the lengths of 
the queues. For each queue, the arrival rate is l/2 whereas the rate of random 
service events is 1. One can expect that the length of a queue tends to be small, 
even without considering the effect of the service phases. 

Let Mk be the number of service phases in which the adversary receives a 
payoff of at least k. These service phases correspond to instants when the 
special customer arrives at a queue of length at least k. Mk is nonincreasing in 
k. Let mk be the number of service phases in which the adversary receives a 
payoff of exactly k. Then the total payoff received by the adversary is 

(4) 
k=l k=l i=k k=l 

Our analysis of the adversary’s total payoff begins by studying the probability 
distribution of Mk for a fixed k. For this analysis, we make the pessimistic 
assumption that the adversary’s sole purpose is to maximize Mk, the number of 
times the special customer arrives at a queue of size at least k. In Section 6.4, 
we investigate the frequency with which queues of length at least k occur. This 
is preceded by Section 6.3, in which we determine how often the adversary can 
expect to arrive at a queue of length at least k, knowing how frequently such 
queues occur. 

6.3. SHOOTING GALLERY GAME. We introduce a game called the Shooting 
Gallery Game. The player of this game is a marksman who possesses m targets 
and h bullets. Before each shot, the marksman may set up any number of 
targets from 1 to p. If he sets up t targets, then his chance of success is t/p. If 
he succeeds then his score increases by one and the t targets are destroyed. If 
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he fails, then no targets are destroyed. He is allowed h shots, and the total 
number of targets available is m. The goal of the marksman is to maximize his 
final score. 

The shooting gallery game is intended to model the situation of an adversary 
who watches the fluctuations of the queues, with the goal of scheduling the 
arrivals of special customers at times when they are likely to arrive at a queues 
of length at least k. A shot in which t targets are set up is intended to 
represent the arrival of a special customer at a time when t of the p queues 
are of length k or greater. Thus, m, the number of targets, corresponds to the 
number of moments when some queue reaches size k, and h, the number of 
shots, represents the number of special arrivals. Our analysis favors the 
adversary by giving him complete freedom to allocate the targets to shots, 
subject to a restriction on the total number of targets and the number of shots. 

PROPOSITION 11. Let S be the marksman’s final score. Then, no matter how 
the marksman selects the number of targets at each step, 

Pr[S > 3/F] I -(--+Ej. 

PROOF. If h I 9m/p, then 34m 2 h 2 S. Now assume that h > 9m/p. 

Set a = ids. Then a < p. We say that a shot is of type 1 if more than a 
targets are set up, and of type 2 if a or fewer targets are set up. We change the 
scoring rules in the marksman’s favor as follows: (i> count each shot of type 1 
as a success and (ii) let the chance of success in each shot of type 2 be a/p. 
The shots of type 1 can generate at most m/a = 24s successes. The 
number of successes generated by the shots of type 2 is stochastically domi- 
nated by the number of successes in a Bernoulli process with h trials, 
each having a chance of success a/p, denoted by B(h, a/p>. Hence, 
Pr[S > 34-1 I Pr[B(h,a/p) > 4-1 I exp(- ids>, where the 
last inequality is by the Chernoff-bound. q 

6.4. A RANDOM WALK. Continuing our analysis of the random variable Mk, 
we investigate the frequency with which the length of a single queue is greater 
than or equal to k. To do so, we disregard the service phases triggered by the 
adversary. Then each queue is a Poisson process with arrival rate l/2 and 
service rate 1. Let Xi be the number of customers in a given queue after the 
ith event, which is either an arrival or a service. Then {Xi) is a simple random 
walk on nonnegative integers, started at state 0, with a probability l/3 of going 
up by 1 at any state, and a probability 2/3 of going down by 1 if not at state 0, 
or staying at state 0. The stationary distribution of {Xi} is {QTJ with ni = l/2’+’ 
for i = 0, 1, . . . , co. 

We are interested in studying the random variable U,(m) that is the number 
of times that the random walk {Xi}, starting at 0, reaches a value greater than 
or equal to k in the first m steps. 

PROPOSITION 12. E[U,(m)] < 2-km. 

PROOF. The random walk {Xi} has the stationary distribution (pi} where 
pi = 2-(i+l). By the ergodic theorem, 

lim 
EIUk(m)l m 

m+m m 
= iFklTi = 2-k. 



782 R. M. KARP AND Y. ZHANG 

We claim that E[U,(m)l 5 2-km for all m 2 0. Suppose, on the contrary, 
that EIUk(mo)] > 2-km, for some m, 5 0. Let m = tm, be a multiple of m,. 
Let E,“(m) be the expected number of times that the random walk {X,} reaches 
k or larger in the first m steps, started at a. Conditioning on the state of Xjm, 
forOlj<t-1, 

t-1 @J 

EIUk(m>l = c c Pr[ xjm, = a]E,“(m,). 
j=O a=0 

(5) 

But E,“(m,) 2 Ei(m,). Hence, (5) implies E[U,(m)] 2 tI$‘(m,) = tE[U,(m,)] 
and 

EIUk(m>l tE[U,(mJl 
2 = 

EIUk(mO)] > 2-k 
7 

m tm0 m0 

contradicting to the fact that 

lim 
EIUk(m)l = 2-k 

9 
,?I * m m 

as m is an arbitrarily multiple of m,. q 

A sequence of random variables {y: i = 0, 1, . . . } is a martingale if, for i 2 0, 
(i) E[IYll < w  and (ii) EIY,+r]Yo,. . . , yi] = Y. The following lemma is a special 
form of Azuma’s martingale inequality [2]. 

LEMMA 13. Let {x: i = 0, 1,. . .} be a martingale such that lyl+, - x:.I I cfor 
0 I i < n. Then 

Pr[Yn 2 Yo + cc&] I exp(-a2/2). 

PROOF. A simple proof, can be found in [ 10, p. 551. q 

Let E,“(m) denote the expected number of times that random walk {Xi} 
reaches a state 2 k in the first m steps, starting at state a. 

LEMMA 14. For la - bl :; 1, IE,“(m) - E,b(m - l)] I 3. 

PROOF. Let Ta,b be the expected number of steps random walk (Xi) takes 
to reach state b from state a. We show that T, o = 3. Suppose that we are at 
state 1. Conditioning on the next state, which is either 0 or 2, we have 
T,,, = 1 + T2,,/3 = 1 + 27;,,/3, as T2,0 = 2T,,,. This gives T,,, = 3. Note 
that T,, a- 1 = T, o , for any a > 0. To prove the proposition, consider three 
cases. 

Case 1. a = b. By definition, E,“(m - 1) 5 E,“(m) 5 E,“(m - 1) + 1 or 
equivalently IE,“(m) - E,“(m - l)] I 1. 

Case 2. b = a - 1. Clearly, E, ‘-‘(m - 1) I E,“(m). On the other hand, 
E,“(m) I T, a-, + E,“-‘(m - 1) = 3 + E,“-‘(m - 1). Hence, IE,$m> - 
E,“-‘(m - 1>1 I 3. 

Case 3. b = a + 1. Clearly, E,“(m) I Ei+’ (m - 1) + 1. On the other hand, 
Ei”(m - 1) 5 T,,, a 
l)] I 3. 0 

, + E,“(m) = 3 + E,“(m). Hence, [E,“(m) - E,“+‘(m - 
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The following proposition gives an upper bound on the probability that 
U,(m) is larger than its mean E[U,(m)] by an additive factor x. This probability 
bound is of general interest for large deviations in random walks. 

PROPOSITION 15. For k > 0, 

X2 

Pr[U,(m) 2 E[U,(m>l + xl 5 exp 16m . i I 
PROOF. For 0 I i I m, let yi = E(U,(m)lX,, X,, . . . , Xi>. Then, 

WI,, y,, f * * , Y,} is a martingale, By the Markovian property, 

x = U,(i) + E$(m - i) (7) 

for 0 5 i I m. In particular, Y, = E[U,(m>] and Y, = U,(m). Since 
lU,(i + 1) - r/,(i)1 I 1, by (7), 

lyi+, - yl s 1 + IET+l(m - i - 1) - ET(rn - iI/. (8) 

But IX,+1 - Xi1 I 1. By Lemma 14 and (8), Ix+, - yil I 4 = c. By Lemma 13, 
(6) follows by setting (Y = ixm-‘/2. •I 

COROLLARY 16. Fork 2 1, Pr[U,(m) 2 m/2k-‘] I exp(-m2-2k/16). 

PROOF. By Proposition 12 and Proposition 15 with x = m/2k. 0 

6.5. THE DISTRIBUTION OF IV,. We shall study the distribution of Mk for a 
fixed k. Having fixed k, we focus on the history of a particular queue i. The 
events affecting the queue are arrivals, the random service events, and the 
service phases triggered by the adversary. By Proposition 9(ii), the probability 
that more than [12n/p] arrivals and random service events occur in some 
queue over the time period [0,4n/p] is at most p exp( - l.ln/p). We shall 
make the assumption that there are no more than [12n/p] arrivals and random 
service events in any queue. 

A service phase is k-profitable if it results in a payoff of at least k for the 
adversary. The time interval between successive k-profitable service phases is 
called a k-interval. Queue i is said to be k-eligible during a given k-interval if, 
at some point during the interval, the length of queue i is at least k. Let the 
random variable X(k, i> denote the number of k-intervals during which queue 
i is k-eligible. Let Tk = Zip_ ,X(k, i). X(k, i) is nonincreasing in k and so is Tk. 

PROPOSITION 17. Let m, = [12n/p] and p = l/16. Then 

X(k,i) 2 s < exp( -pm,2-2k). 
I 

PROOF. The adversary maximizes the number of k-intervals during which 
queue i is k-eligible by scheduling a service phase with payoff k every time the 
length of queue i reaches k, and otherwise leaving the queue alone. Under this 
policy for the adversary, the number of k-intervals during which the queue is 
k-eligible is just the number of times the queue length reaches k and drops 
instantaneously from k to zero, which in turn is no larger than the number of 
times that the state of the associated random walk {Xi] in Section 6.4 reaches a 
value greater than or equal to k. Under the assumption that there are no more 
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than m, = 112n/p] arrivals and random service events, X(k, i) is stochastically 
no more than U,(m,). By Corollary 16, Pr[ X(k, i) 2 rr~,/2~-‘] < Pr[U,(m,> 2 
m,/2k-‘] < exp(-@z,2-2”). Cl 

COROLLARY 18. Forn >p, 

Pr 
[ 

t X(k, i:) > 24n2-k 1 spexp(-P2-2kn/p), 
i=l 

where p is the constant in Proposition 17. 

PROOF. That CiP,lX(k, i) > 24n2-k implies that for some i, X(k, i) > 
24n2-k/p 2 m,/2 - . k ’ The result follows from Proposition 17 and m, = 
[12n/p] 2 n/p if n r p. III 

Now we are ready to analyze the random variable Mk, which is the number 
of times the adversary achieves a payoff of at least k. Recall that the payoff 
received by the adversary is CT=, Mk by (4). The following theorem completes 
the proof of Theorem 7. 

THEOREM 19. There exist positive constants CY, p, y, and d such that for 
n 2p, 

Pr (9) 

PROOF. We define A = La log,(n/p)l and B = l(n/p>bl, where a and b 
are certain positive constants to be specified later. Then 

&vlk:z eMk+ ;iu,+ &l,. 
k=l k=l k=A k=B 

We shall bound each of the three summations separately. We first show that, 
with high probability, the last summation ET-B Mk is zero. Suppose that 
cy=,it!k > 0. Then some queue must be of length at least B = l(n/p)b] at 
some time. Given that there are at most m, = [12n/p] arrival and random 
service events, 

Pr 
[k=B k ] 

5 M > 0 5 p Pr[U,(m,) > 0] 5 pE[U,(m,)] 5 y’n2-(n’P)b, (10) 

where the last inequality is by Proposition 12. 
We now consider the first summation C,“= 1 Mk. To bound Mk for a fixed k, 

we draw an analogy between the Shooting Gallery Game and our continuous- 
time model. The number of bullets h corresponds to the number of service 
phases that the adversary can trigger. The targets correspond to pairs (I, i> 
where I is a k-interval and i is a queue that is k-eligible during interval I. 
Therefore, at most Tk = Lip_, X(k, i) targets are available to the marksman. 
The act of setting up t targets and taking a shot corresponds to executing a 
service phase at a time when t queues are of length at least k. A successful 
shot corresponds to the arrival of the special customer at a queue of length at 
least k. The marksman’s score corresponds to Mk, the number of times the 
adversary receives a payoff of at least k. 
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Let ZI be the event that Tk = Cf= ,X(k, i) > 24n2-k for some k I A = 
[a log(n/p>]. By Corollary 18, for some constant P’ > 0, 

Pd8,l 5 C p exp 
A ( -‘:-‘“I k=l 

I pA exp 

(11) 

Assume that event 8, does not occur. Then, we may give the adversary the 
advantage of having TA = 1241~2~~ 1. Then, for properly chosen constants c > 0 
and c’ > 0, 

-a 

(12) 

Let g2 be the event that for some k I A, a marksman with Tk targets and h 
bullets achieves a score larger than 3dm. We bound the probability of 
event g2 given that event 8, does not occur. By Proposition 11, noting that Tk 
is non-increasing in k and A = la log,(n/p)l, 

(13) 

where the second last inequality uses the first inequality of (12). 
Assume that neither event 8, nor event 6YI occurs. Then viewing Mi as the 

score of the marksman, 

tM,< iI?/7 <cxfE$I@Sdr(; +h), 
k=l 

where the last inequality is by the fact that IX:= ,p is bounded and that 
&<x+yforx>Oandy>O. 

Finally, we bound the middle summation cf=AMk. Given that neither of the 
events ZY2 and 8, occurs, we have MA I 3dm and TA I c’n(n/p)-” (by 
the second inequality of (12)). Since Mk is nonincreasing in k and B = l(n/p>b], 

where the last inequality is again by fi < x + y. 
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Take a = 2/5 and b = l/5. Then a = 2b, and from (14). 

: Mksd.li%j1-a+2b .hj 4(; +,). 

k=A 

By the probability bounds indicated in (9), (IO), (11) and (X3), take cr = 
min{l - 2a,(l - a)/2, bl = l/5, and constants p, y, and d in (9) can be 
extracted from the proof. q 

The proof of Theorem 7 is complete. 

7. Future Research 

We have made the strong assumption that any processor can send a message to 
any other processor in unit time. The algorithms can be implemented on a 
PRAM in which processors communicate via a shared memory. The algorithms 
can also be implemented on a sparsely interconnected network such as a 
hypercube or butterfly network by routing the messages, but some of their 
advantage is lost in that case, since the message-routing delay will grow with 
the diameter of the network. One approach to avoiding that message-routing 
delay would be to modify the algorithms so that, whenever a processor 
performs a random selection, it randomly selects one of its neighboring 
processors instead of a random processor from the entire network. The 
effectiveness of these modified algorithms will depend critically on the inter- 
connection structure. Recently, Ranade [9] has given a more sophisticated 
parallel backtrack search algorithm that runs on the Butterfly network and, 
with high probability, has an execution time within a small constant factor of 
the inherent lower bound. .Lt remains open to analyze the modified branch- 
and-bound algorithm in sparsely interconnected networks such as the Hyper- 
cube and the Butterfly networks. 

Appendix A. Some Proofs 

PROOF OF PROPOSITION 8. Fix a choice of destination sequence A and 
arrival pattern B of n arrivals. Let L = L(A, B) be the unique sequence of 
events consistent with A, 13 and Rules 1 and 2. Let L be any sequence 
of events consistent with A and B. 

Let k be the number- of special customers and let si be the ith special 
customer. Let dj and di be the number of pre-delays to si in L and L, 
respectively. We show that 

(15) 
i=l i=l 

Let_ qi(j) and G;(j) be the: length of queue j upon the arrival of si with L 
and L, respectively. Let 

with CY~ = 0. We will show that 

(16) 

d;, I d, + cyk (17) 
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and for i = 1,2 ,..., k - 1, 

787 

(Y~+~ I ai - di + d,. (18) 

One can derive (15) from (17) by repeatedly applying (18). We first show that 
for i = 1,2, . . . , k, 

ci; s di + q, (19) 

which includes (17) as a special case. 
We fix i and assume that si arrives at queue 1: By Rule 1, di = qi(l). Since 

there can be at most Gi(l> pre-delays to si given L, di 5 Gi(l>. But 4&l> - q,(l) 
I (Y;. So di I qi(l) I q,(l) + czi = di + C+ which proves (19). 

To prove (18), let ai(j) be the number of arrivals to queue j between si and 
‘i+l exclusively. Then qi+ r(j) = max{O,qJj) - di} + a,(j) by Rules 1 and 2, 
and &+,(j> = max(0, Gi(j) + ai( j) - dJ. Since max{a, b) - c = max{a - c, 
b - cl, 

ii+ l(j) - qi+ I( j) = t-x(0 - qi+ It j), Gj+ ,t j) + ai(j) - d; - qi+ ,(j)) 

I max{O, gi( j> - di - qi( j) + di} 

I max{O, (Y~ - d;: + cl,) 

~cq--~+d~, (20) 

where the last two-inequalities are by (16) and (191, respectively. By (16) and 
C20), ai+ 1 - -C (Y~ - di + di, which is (18) as desired. q 

PROOF OF PROPOSITION 9. By Markov inequality, for an arbitrary random 
variable 2 and 13 > 0, 

Pr[Z > 21 I exp(- Bz)Eexp(82) Cm 

Pr[Z < 21 I exp(Bz)Eexp(- f3Z). (22) 

Let S, = Cy! *Xi, where Xi are independent and identically dependent 
exponential random variables with mean l/p. Then, N(t) 2 m, if and only if 
S, I t, and 

Eexp(sS,) = (Eexp(sX,))m = ( p( p - s)-r)m. (23) 

Taking Z = S,, z = t and m = 1 pt/2] in (21) and 8 = s = p/2 in (231, 

Pr[N(t) < lpt/211 = PrLS,,,,2, > tl 

5 exp( - pt/2)2Lpt/2J 5 exp( - 0.31 pt/21). 

Similarly, taking Z = S,, z = t and m = [2,ut] in (22) and 8 = --s = 2~ in 
(2% 

PdNtt) > 12ptll 5 PrL!&, 5 tl 

5 exp(2@)3-12F’1 I exp( -0.19pt). 0 

PROOF OF PROPOSITION 10. The proof is similar to that of Proposition 8. 
Let A be an instance of arrivals and let B be an instance of random service 
events. Let (A, B) denote the instance of arrival A with random service events 
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B. Let d, and C& be the number of pre-delays to si with instance A and 
instance (A, I?), that is, without and with random service events, respectively. 
Thus iT=c Isiskdi and U= Clsisk ,. d. Let Ri be the number of random 
service events that occur before the arrival of si and let Y, = R, and ri = Ri - 

Rip 1 for 1 < i I k. Thus, R’ = C, ~ iL k~i. We show that 

~, d;:I C di+ C ri. (24) 
1si:sk lsisk l_<i<k 

Let qi(j) and @i(j) be the length of queue j upon the arrival of Si with A 
and (A, B), respectively. Let (Y~ = max 1 sjs,(@i(j) - qi(j)). We show that 

d;, < d, + (Yk (25) 

and for i = 1,2,. . . , k - 1, 

ai+I I q - di + d, + ri+l. (26) 

One can derive (24) and (25) by repeatedly applying (26). The proof of (25) is 
the same as that of (19). To prove (261, let q:(j) and @I(j) be the length of 
queue j upon the time of completing the service phase triggered by si on 
instances A and (A, B), respectively. Let ai( j) be the number of arrivals to the 
queue j between si and si+, exclusively. Then ai( j) = qi+ ,( j> - qj( j), as A 
has no random service event s. Set a:(j) = qi+&j) - q:(j). Then ai I a:(j) 

+ ri+ 1, as each random service event serves at most one arrival in one queue. 
Hence, Gi+ l(j) - qi+ I( j) I @:( j> - q$ j) + ri+ 1. 

qi< j)}. Then 
Let C( = max,5j5P{@~(j) - 

ai+ 5 a; + r-,+1. (27) 

Moreover, q:(j) = max{O, qi(j) - dJ and G:,‘(j) = max{O, Gi(j> - d;:}. Hence, 

@I( j> - q:(j) I max(0, qi( j) - qi( j) - Ji + “i} 

I max{O, ai - di + di} 

sq-&+d,, 

where the last inequality is by (25). Since a; = maxI I js ,{q$ j> - qj( j>), the 
last equality gives ai I (Y~ -- ii + di. This, together with (271, proves (26). 0 
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