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A b s t r a c t  

Typically, the choice of intermediate representation by a par- 
ticular compiler implementation seeks to address a specific 
goal. The intermediate language of the T O B E Y  compil- 
ers, XIL, was initially chosen to facilitate the production 
of highly optimal scalar code, yet, it was easily extended to 
a higher level form YIL in order to support a new suite of 
optimizations which in most  existing compilers are done at 
the level of source to source translation. In this paper we will 
discuss those design features of XIL that were important fac- 
tors in the production of optimal scalar code. In addition we 
will demonstrate how the strength of the YIL abstraction lay 
in its ability to access the underlying low level representa- 
tion. 

1 I n t r o d u c t i o n  

Faced with the task of writing a new compiler for one or 
more languages, one has no simple rule of thumb to apply 
in choosing the most appropriate intermediate form. We 
believe, however, that a set of principles can be enunciated 
which provides a framework for judging the utility of an in- 
termediate language. Our ideal il should be easy to generate 
and easy to translate into the desired final form. It should 
allow the functions which operate on it to conveniently and 
flexibly manipulate it, both for purposes of analysis and 
transformation. It should be expressive, supporting the rep- 
resentation of a variety of programming idioms and styles, 
thus allowing it to support a multiplicity of source languages. 
It should be transparent, making clearly visible the seman- 
tics of the underlying program, thereby easing the task of 
compiling for a variety of architectures. It should be capable 
of expressing enough detail to facilitate low level optimiza- 
tion, yet of abstracting details which are unimportant to its 
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clients, and it should be amenable to transportation, so that 
it may be saved, used by other tools and so on. 

It is difficult for any il to satisfy all of these requirements 
in every context within a compiler, but we hope to convince 
the reader that the two ils described in this paper, together 
come very close to satisfying most of them, most of the time. 

Over the past thirty years or so, there have been many 
intermediate languages proposed, to address a wide variety 
of issues. These languages fall into several broad categories. 
Chief among them have been triples and quadruples [11], Ab- 
stract Syntaz Trees [5], and Virtual Machines [12, 2]. The 
notion of machine independence as an attribute of interme- 
diate representation has certainly been around for a long 
time [3]. More recently, there have been many attempts to 
define intermediate representations which address problems 
specific to compilation for parallel or distributed memory 
machines, or compiling data parallel languages [4]. The in- 
termediate representation of the SUIF compiler appears to 
nicely solve the scalar/parallel optimization dichotomy [5]. 

It is not our intention here to provide an exhaustive sur- 
vey of the field, but merely to assert that the intermediate 
languages discussed in this paper share some of their proper- 
ties with both quadruples and with Virtual Machines, while 
at the same time deahng with the issue of high vs low level 
optimization. 

1 .1  O u t l i n e  

In this paper we will discuss in some depth the interme- 
diate representation of a suite of compilers which gener- 
ate highly optimized code, by means of the classical opti- 
mizations. In addition, we wish to demonstrate the relative 
ease with which the representation was abstracted to allow 
the apphcation of a completely different set of higher level 
loop optimizations which have traditionally been performed 
at the source language level. The paper will give a brief 
overview in the next section, of the TOBEY compiler and 
optimizations. Sections 3 and 4 form the core of the paper; 
these sections present a detailed look at the two i/s, XIL 
and YIL, with reference to interesting design features, and 
suitability for the types of optimization being performed. In 
section 5 we outline some implementation practices and ex- 
periences which it is felt underline the preceding discussions. 
The final two sections discuss future work and provide some 
concluding remarks. 
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2 T h e  T O B E Y  compi l e r s  

The intermediate languages X f L  and YIL are used by the 
IBM compilers [1] for the Rise System/6000, xIf, ale, alp 
and x l C + i  ( FORTRAN,  C, Pascal and C + + ) .  Over time 
compilers have been built for languages from Fortran90 to 
C + +  with code generation for Intel 386, RS/6000, Spare 
and S/a70. 

These compilers share a common back end, the Toronto 
Optimizing Back End with Yorktown, T O B E Y ,  which was 
inspired by an earlier compiler project for the 801 minicom- 
puter, the pl.8 compiler, and XIL  owes several of its major 
features to the intermediate language of that  compiler [16]. 

The TOBEY optimizer [15] utilizes familiar techniques 
such as Common Subexpression Elimination (CSE), upward 
motion of invariant computations from loops, elimination of 
dead or unused expressions, and Strength Reduction and Re- 
association. A host of other transformations are performed, 
namely, global constant propagation, dead store elimination, 
global value numbering, procedure inlining, local and global 
instruction scheduling. As the TOBEY project progressed, 
it became clear that,  although the quality of the generated 
code met our initial expectations, the rise in popularity of 
cache-based machines was opening up new opportunit ies for 
optimization. Unlike the classical optimizations, these new 
techniques operated on extended structures within a pro- 
gram, principally nests of loops. These restructuring trans- 
formations were more readily performed on an intermediate 
language which reflected the higher level structure of the 
code. Out of this insight, YIL was forged. 

3 XIL 

3.1 Arch i t ec tura l  Pr inc ip les  

The chief objectives of the TOBEY project were to pro- 
duce high quality object code, and support  multiple source 
languages and target  architectures. Clearly these goals in- 
fluenced the design of the intermediate representations in 
several ways. Ensuring the flexibility to add new languages 
or target machines, as required, necessitated that  the initial 
design provide clean interfaces. The intermediate represen- 
tation could not implicitly support  peculiarities of language 
semantics nor could it, at the interface to the front ends, 
require knowledge of part icular features of a specific instruc- 
tion set architecture. 

On the other hand, constructing a highly optimizing 
compiler inexorably pointed towards an il that  exposed the 
low level operations of a typical register-to-register machine. 
The major gains from the classical optimizations, CSE, Code 
Motion, Strength Reduction and their ilk, are made at the 
level of addressing computations [17]. This is reflected in 
XIL, by the requirement tha t  all loads and stores, and ex- 
pressions necessary to compute addresses are visible from 
the time the intermediate form is generated by a front end. 
By exposing these computations,  we are able to subject 
them to the same set of optimizations as are apphed to user 
variables. The main disadvantage of this approach is the 
increase in volume of the intermediate form of a program, 
and the concomitant effects on compile time performance. 

The ability to reuse or reorder the individual code trans- 
formations throughout compilation was also deemed to be 
a requirement. A clear distinction can be made between in- 
termediate representations which can be stored in strictly 
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sequential form, and those wherein linkage between the ob- 
jects is exposed. The former approach, usuMly implemented 
as a file interface, supports a notion of compilation wherein 
the discrete functions of the compiler form separate pro- 
grams. Previously such designs were useful for machines 
with small amounts of real memory. However, this approach 
did not meet the objectives of an optimizing compiler, since 
there is no easy way to traverse the sequential text in other 
than its implicit order. Explicitly linked ils, however, lend 
themselves more easily to a compilation style wherein all the 
parts of the compiler are bound in a single module. In this 
approach, the il resides in memory, and may be analyzed, 
transformed and modified by each successive optimization. 
The objectives of the TOBEY optimizer required that XIL 
belong to the latter category. 

3 . 2  M a c h i n e  M o d e l  

XfL  is a low level intermediate representation of the seman- 
tic content of a program. It is, by design, free of source 
language dependences and thus forms a suitable target for 
the compilation of a broad range of programming languages. 
It is not, however, of such a low character that it excessively 
narrows the range of instruction set architectures to which 
it can be reasonably translated. When considered interpre- 
tively, XfL presents a model of a machine with a Load/Store 
architecture and a number of distinct register sets. These 
register sets can each contain a conceptually infinite num- 
ber of symbolic registers. The instructions represented by 
XfL are, by and large, those that would not be thought out 
of place on any respectable RISC machine, but there are 
a number of more exotic creatures in the menagerie, those 
related, for example, to string manipulation. Also, in the 
early stages of compilation the instructions are more flexible 
in several ways than those of any real machine. Displace- 
ments in addresses can be of any size; addresses can contain 
as many index registers as desired (Fig 2), and it is possible 
to specify a multiplier for each such index register (Fig 3); 
cull instructions can have a large number of parameter regis- 
ters; and instructions can have as many result registers as is 
convenient (Fig 4). Most of these features are eliminated by 
a compiler phase called Macro Expansion, but they afford 
great convenience throughout a large part of the optimizer. 

L r.i=i(r200,64) 
M r300=r.i,8 
L Lj=j(r200,68) 
A r310=r.j,2 
M r320-r310,400 
LFL fp330=a(r200,r300,r320,30000) 

Figure 2: Indexed load of a(i,j+2). 

3 . 3  F o r m a l  I d e n t i t i e s  

Although it is often fruitful to consider an XIL program as a 
sequence of machine instructions for some abstract machine, 
as suggested above, there is another and perhaps more sig- 
nificant aspect presented by such a program. XfL is struc- 
tured as a forest of computation trees (Fig 5), where formally 

L r.i=i(r200,64) 
L r.j=j(r200,68) 
A r310=r.j,2 
LFL fp840=a(r200,Li,*4,r310,*400,30000) 

Figure 3: Indexed load of a(i,j+2)., using implied multiply 

LFLU fp350,gr400=b(gr400,8) 

Figure 4: Multiple results: gr400 is incremented 

identical computations performed in separate locations are 
represented by the same node. This alternative way of look- 
ing at the program lies at the heart of some of the major 
optimizations and provides the basis on which the YIL ab- 
straction is founded. 

The concept of formal identities is important in X[L, 
and not merely as a method of containing the storage re- 
quirements of the intermediate text. The entities referred 
to previously as symbolic registers lie at the heart of this 
concept. On the interpretive level, a symbolic register can 
be viewed as the compiler generated temporary for holding 
intermediate results in the evaluation of an expression. On 
the other, the computation tree level, the symbolic regis- 
ters are the names of the formal identities, and as such, act 
as links in the expression tree. Such a symbolic register is 
known as a canonical target. It is computed in the code gen- 
eration routines, as the hash value of the inputs on say a load 
or add instruction, when the front end does not specify the 
name of the result register. This ensures that a load from a 
given variable will always produce the same result register; 
similarly, an add of two given registers will always produce 
the same result register. This alternative way of looking at 
the program is key to some of the major optimizations in 
TOBEY, of which CSE is the most notable example. In ad- 
dition, it is this view which provides the basis upon which 
the YIL abstraction is founded. 

However, the dichotomy engendered by these two faces 
of a single program (Computation Tree vs interpretive) is a 
fault line buried in the deepest strata of the representation. 
As a result the precise definition of an XIL program can be 
complicated. A program which, when naively interpreted 
may appear correct, can in fact be illegal because it does 
not respect the rule of canonicity, that any two definitions 
of a given register must be formally identical. 

3.4 Representation 
A number of data structures form, in aggregate, XIL. The 
procedure is the highest level construct recognized in XIL, 
and each procedure in a compilation is given a slot in the 
Procedure Descriptor Table. This record contains informa- 
tion about the procedure as a whole, such as the size of the 
stack frame, the size of the register spill area, whether the 
procedure kills certain global registers and so on. It also 
contains a pointer to the Procedure List for this subroutine. 

The sequence of instructions which embodies, in XIL, 
the intent of the source program is represented by a circular 
doubly hnked hst, the Procedure List. The start of the pro- 
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L r.i=i(r sbase,8000} 

S r200=r.i, ] 

L rj=j(r.sbase,8004) 

LFL fp500-a(r.sbase,r200,*4,rd.* 800) 

L r.i=i(r.sbase,8000} 

A r210=r.i, 1 

L rd=j(£sbase,8004} 

S r220=rj, 1 

LFL fp600=a(r.sbase,r210,'4,r220,'800} 

AFL fp700=fp500,fp600 

STFL a(r.sbase,r.i,*8,@ *8OO}=fpTO0 

i(Esbase,8000) 

~ - - - - - ~  "~ L l 
" - .  ~¢~ , \ j(r.sbase,8004) 

, / \ ............... \ 

. . . . . . . .  . . . . .  1 ............... I 

. . . . .  :" " " " * LFL ................. * LFL 

Procedure ~ t  ~ ' ~  ~ ~  

"" .  STFL 

a(id) = a(i-Id) + a{i+ld-1) 

Figure 5: Expression Tree view of XIL. The dashed lines show the CT links, the dotted hnes show the links to formal identities. 
Note the sharing of subtrees. 

cedure is represented by an administrative entry, the header 
HDR. Then follows the procedure instruction PROC, the 
instructions in the body of the routine, and the procedure 
end instruction PEND. The sequence of the operations in 
the list represents the sequence of their corresponding ma- 
chine code instructions in the final object. Each entry in 
the Procedure List contains some information peculiar to its 
particular location, such as the source program llne number, 
and a pointer to another structure, the Computation Table, 
in which the actual operation performed by the instruction is 
encoded. Any particular encoded instruction may be shared 
by many elements of the Procedure List, as described later. 

The Computation Table, with its subsidiary data struc- 
tures, is the hub of XIL. It is an array of elements, called 
bags, which represent the opcodes and operands of instruc- 
tions in the intermediate text. Instructions may only be en- 
tered in the Computation Table by calling a service routine 
@t_hash), and this program ensures that each instruction 
appears only once in the table. An instruction is repre- 
sented by a sequence of entries in the Computation table ( 
Fig 6). The first of these entries is the opcode, the remain- 
der are operands. The opcode field encodes the number of 
operands that  follow, and there is a set of rules which gov- 
ern the ordering of operands within instructions. Each of 
the operands is self-describing, and represents one of several 
things: a symbolic register, the name of a variable, an inte- 
ger value or a long or short floating point value. In general, 
each of these consists of some data related to the locus of the 
operand, and a self describing pointer to an auxiliary table. 
The opcode entry also follows this scheme. The auxiliary 
tables, the Symbolic Register Table (SRT), the Opcode Ta- 
ble, the Intermediate Language Dictionary (ILD), and the 
Literal Value Table, contain less frequently used informa- 
tion about the operand, and for the most part we can omit 

discussion of this material. However the Symbolic Register 
Table contains one element which is critical to understand- 
ing the structure of XIL. Each entry in this table points back 
at the unique instruction in the Computation Table which 
produces it as a result, unless the entry is for a symbolic reg- 
ister representing a dedicated hardware register. Because of 
this property, the realization of Formal Identities discussed 
earlier, it is possible to take a symbohc register and treat it 
as the root of a tree of computations. The leaves of these 
trees are ILD entries, hardware registers, integer or floating 
values and symbohc registers which are defined by instruc- 
tions with no inputs. 1 The subroutine ct.hash ensures that 
each unique instruction receives a new set of result regis- 
ters, except when the caller exphcitly requests otherwise. In 
this case the generated instruction is referred to as being 
non-canonical. 

3.5 Support for IL generation 

XIL code is generated via a procedural interface. The rou- 
tines of this interface, referred to as the gen routines, hide 
the details of the il's implementation from those doing cocle 
generation. Over time, there have been changes to the ac- 
tual implementation of the il. These routines have kept such 
changes from impacting the compiler front ends. 

There are several tasks embedded in the code generation 
routines. First, there is a plethora of instruction level folding 
that is performed during code generation. Since the form of 
the il is constant throughout compilation, such folding op- 
portunities are realized starting with initial generation in 
the front ends and continuing as optimizations make trans- 
formations on the il. An instruction can fold to a hteral or 

The last of these essentially represents register temporary storage 
a n d  occu r s  on ly  rare ly .  
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ctx_ix 
ind tag index ~--Z-- 

P r o c e d u r e  List  
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utds sr 
utds sr 
utd__, s! lit 
utd______s i st 
utdsi lit 
utdst ild 
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7 0 0 -  

500 

600 

700 

! AFL 

[ STFL 

8 

__ 8OO 

Symbolic  Reg 
Table  

Opcod~e Tale 

Literal  Table  

Computation Table 

AFL fp700~fp500,fp600 
STFL a(r.sbase, r.i,*8,r.j,*800)=fp700 

In te rmedia te  
Language  
Dictionary 

Figure 6: XILData Structures 

to another instruction that  is simpler or more efficient. 
If an instruction does not fold to a hteral, the gen rou- 

tines will hnk the instruction into the procedure list, as well 
as building the computat ion trees (by calling ct_hash). A 
symbolic register result is assigned to represent the compu- 
tat ion tree. A corollary of this style of code generation, is 
that  the client usually does not specify the result register to 
the gen routine, although this is possible if needed. 

Since registers and various types of hteral are all rep- 
resented as tagged pointers into auxiliary tables, they can 
each be represented as an integer and be distinguished by 
their tags. In most contexts, registers and literals can be 
used interchangeably in instructions. 

The chents of the gen interface expect one or more re- 
sult to be returned by the code gen routines. Since such 
results are typically used only as inputs into subsequent in- 
structions, most callers need not care if the results returned 
are registers or literals that  were created as a result of fold- 
ing(Fig 7). 

3.6 Suitability for Classical Optimizations 
When an optimizing compiler makes some transformation of 
the compiland, it frequently uncovers opportunities for fur- 
ther optimization that  were not previously apparent. Strength 
Reduction for example, produces dead code. This observa- 
tion motivates us to ensure that  our designs include the 
ability to run each optimization multiple times, in various 
orders. The accompfishment of this task is rendered much 

Return Val 

iv.14 
r.b 
r300 

Gen Call 

t l=gen.x2 (op_M,sr _nt_gpr,iv.2,iv.7,...) 
t 2 =gen_mem(op_L,sr _nt _gpr,...,ild.b,...) 
t3=gen_r3(op_A,sr_nt_gpr,t 1,t2,...) 
gen_mem(op_ST,t3,...,ild.a,...) 

Figure 7: This sequence of calls will generate code for the 
statement a=b+$CT.The parameter  sr_nt_gpr indicates that  
the formal identity should be returned. Notice that  the mul- 
tiply is folded, and the result is t ransparently used in the 
call which generates the add. 

easier if the il remains constant throughout the process. XIZ 
is a product of this train of thought. It has the same form 
throughout the compiler, but changes in content as the work 
progresses. As generated by a front end, it contains no ma- 
chine dependant operations, all redundant computation is 
exphcit, and there is a sprinkling of higher level operations. 
As read by the assembler, there are no operations that  re- 
quire more than one machine instruction and all symbolic 
registers have been replaced by hardware registers. In be- 
tween, a great number of fleeting variations have been pro- 
duced. While this constancy of form greatly simphfies the 
task of ordering transformations, it  should not be thought 
that  it ehminates entirely the dependence of one transfor- 
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marion on another. There are very many problems in the 
interaction of optimizations, not all of which have satisfac- 
tory solutions. 

In illustration of the preceding discussion, consider the 
following example. The code fragments showing the se- 
quence of transformations are given in Fig 8 through Fig 11. 
Unneccessary detail has been elided in the later figures. 
Early in optimization we insert a register copy (LR) after 
each store. This copy preserves the stored value in the sym- 
bolic register which would be defined by a load from the 
'stored-into' location. 2 Sometime later, the CSE optimiza- 
tion runs and removes, among other things, any compu- 
tations which have been made redundant by this insertion 
(Fig 10). In our example, all the loads from the induction 
variable i are eliminated. This enables the Store Elimina- 
tion optimization to remove the stores into the dead variable 
±(Fig 11). Finally, the register allocator is likely to coalesce 
the source and target of the register copy, thus eliminating 
the LR instruction altogether. In cases where the inserted 
copies do not enable CSE, a pass of the Dead Code elimina- 
tion optimization will remove them. This example illustrates 

do i=1,10 
a(i)=x 

end 

LI: 

ST i=1 
LR r . i= l  
LABEL 
M r300=r.i,4 
STFL a(r2OO,r300, O)----fpr.x 
A r310=r.i,1 
ST i=r310 
LR r.i=r310 
C cr320=r.i,10 
BT L1,cr320,1e 

Figure 10: XIL after inserting copies and USE 

LR r . i= l  
LI: LABEL 

M r300=r.i,4 
STFL a(r200,r300,0)=fpr.x 
A r310=r.i,1 
LR r.i=r310 
C cr320=r.i,10 
BT L1,cr320,1e 

LI: 

Figure 8: Source code for a simple loop 

ST i : l  
LABEL 
L r . i : i  
M r300:r . i ,4 
STFL a(r200,r300,0)=fpLx 
L r.i=i 
A r310:r.i ,1 
ST i=r310 
L r . i : i  
C cr320=r.i,10 
BT L1,cr320,1e 

Figure 9: Original XIL for the loop 

several points: optimizations on XIL are simple, formal and 
separate; it is possible to get partial benefits as would be the 
case if the store had to remain; the mechanism of canonical 
3 symbolic registers makes it possible to insert LR ops on 
speculation. 

It has been noted [16] that for some optimizations, the 
greatest opportunities are found in the very low level oper- 
ations which are the constituents of the source statements. 
Such things as address computation, loading of data in regis- 
ters and so forth may be repeated in different statements, or 
afford other opportunities for optimization. For this reason, 
XIL was designed to expose these low level features. Analo- 
gously, high level loop and conditional constructs are repre- 

~Of course,  this  defini t ion of the  t a rge t  reg is te r  is not fo rmal ly  
ident ica l  to its or iginal  defini t ion,  and  so a cer ta in  a m o u n t  of care  
mus t  be  t aken  by rou t ines  which expect  the  p r o g r a m  to conform to 
expression t ree  semant i c s .  

3Sat isfying f o r m a l  ident i t ies  

Figure 11: XIL after Store Ehmination 

sented in XIL by simple comparison, conditional branch and 
label instructions. Information about loop structure and in- 
duction variables is obtained from the code by control and 
data flow analyses. 

It is instructive to look at how several of the important 
optimizations are performed on XIL. Dataflow analysis is at 
the heart of very many optimizing transformations. In the 
TOBEY compilers the values for which this analysis is done 
are the Symbolic Registers. Each register within the region 
of interest, is assigned a position in a bit-vector, and logical 
operations on these bit-vectors represent the set operations 
required to solve the datatflow problem at hand. Kill sets for 
store instructions are also represented by the same type of 
bit-vector. To compute some interesting set, say the set of 
available expressions used in common sub-expression ehmi- 
nation, is relatively simple. First the inputs to the dataflow 
equation for this problem, for example the downward ex- 
posed expressions, are constructed by walking each basic 
block. The forward and backward links in the procedure 
list ensure that this is a painless task. At each instruction, 
the computation table entries are scanned, and every reg- 
ister result is added to the set, while for store instructions, 
the kills are removed. Having computed this, and all the 
other inputs to the problem, we solve for available expres- 
sions using interval analysis or iteratively, as appropriate. 
Given this set, it is straightforward to again walk each basic 
block and delete instructions whenever all of their results 
are already available. In the same way, the set insert of in- 
structions to be inserted in a block by code motion can be 
computed. To insert an instruction, given the symbohc reg- 
ister, is trivial in XIL. It suffices to link in a new procedure 
list element and to set its computation table pointer to the 
canonical definition of the register. 

CSE is the prime example of an optimization which re- 
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lies on the expression tree aspect of XIL, since it depends 
on the fact that formally identical computations are always 
represented by the same symbolic register. The major ex- 
ponent of the interpretational, or virtual machine, aspect of 
the representation is the optimization known as Value Num- 
bering. The core function of Value Numbering is. to discover 
computations in the program which redundantly compute 
the same value, even when these computations are quite 
different in form. The program improvement results from 
replacing the later computation with a copy from the re- 
sult of the earlier. This process is accomplished by inserting 
register copy operations into the instruction sequence. Note 
that this effectively destroys the expression tree interpreta- 
tion of the program, because it introduces a different path 
for the computation of a symbolic register than that implied 
by the canonical definition. Any optimization that recom- 
puted this target canonically, would at best be undoing the 
results of Value Numbering, and in many cases might cause 
an incorrect code sequence to be generated. This conflict is 
the major tension in our compiler, and has never been sat- 
isfactorily resolved. All transformations must ensure that 
they treat such register copies with the circumspection they 
require, and this leads on occasion to a small loss of perfor- 
mance. 

4 Y I L  

4 . 1  T h e  E v o l u t i o n  o f  Y I L  

The design of XIL was driven by the clear objective of facil- 
itating the production of highly optimal code, by means of 
classical program optimizations. As work on the optimizer 
neared completion the desirabihty of enhancing its capabili- 
ties by the addition of techniques designed to exploit locahty 
of reference became evident [7, 14]. Loop transformations 
such as unrolhng, skewing, and tiling used in this type of op- 
timization require a different type of analysis. The low level 
of representation found in most scalar compilers is usually 
not suited to such tasks as extracting the data dependence 
information from array accesses at the level of the individual 
subscripts. Indeed, the received wisdom in writing such op- 
timizations, is that the program representation used should 
be at a very high, almost source, level. There are certainly 
many arguments in favor of this approach, not least that the 
greater level of detail in a low level intermediate language 
increases the compile time and space required to perform 
analysis and transformation. It was however our desire to 
incorporate these new optimizations into the framework of 
the existing compiler, which uses XIL, as its intermediate 
representation. It was also expected that the new function- 
ality would be supported for all source language front ends, 
and so a source level intermediate form, which is difficult to 
design in a language independent way, was felt to be inap- 
propriate. 

These considerations, combined with a desire to reuse 
existing code in writing the new optimizations, where that 
was practicable, led us to a design for YIL which can best 
be thought of as an abstraction of XIL. Building on the 
expression tree aspects of XfL, we designed a language which 
could be analyzed and manipulated in terms of high level 
constructs such as loop statements and exphcitly indexed 
array assignment statements, while not losing the underlying 
detail as represented by XIL. Statement level information, 
and in particular source level array subscripting information 

can be very easily derived from the structures with which 
XfL represents a program. 

Hence the first phase of the TOBEY locality optimizer 
performs the task of abstracting, from the XIL encoding of 
the program, this higher level representation which encapsu- 
lates precisely the information required for program restruc- 
turing through loop transformations. Specifically, the higher 
level representation, known as YIL, represents the program 
as a statement graph (Fig 12), wherein control flow, loop 
and array indexing information, and Static Single Assign- 
ment (SSA)form are all embedded; most pertinent how- 
ever, is the fact that each assignment statement represented 
in YIL has a pointer to the Computation Table entry for 
the series of computations which form the lower level repre- 
sentation of the statement. It is this hnk which is the key 
to the success of the YfL abstraction, in that it provides 
the abihty to exploit or ignore the lower level computation 
details as appropriate to the type of transformation. 

4 . 2  A r c h i t e c t u r a l  P r i n c i p l e s  

Unlike XIL, which was designed to expose the minutia of 
program execution, YIL is aimed squarely at the represen- 
tation of overall structure. This principle is apparent both 
in the amount of computation represented by the individ- 
ual statements, and by the level of abstraction represented 
within the statements. The statements of YIL, rather than 
standing in for primitive operations, such as loads and adds, 
indicate quite complex tasks, such as the assignment of a 
complete expression to a variable or the execution of a multi- 
dimensional loop. Within a statement making subscripted 
references the individual subscript expressions are explic- 
itly laid out and, for loop statements, details of the itera- 
tion space and any transformations to be applied to it are 
recorded. Since the formal identities of XfL already pro- 
vided a convenient way of encoding expressions, there was 
little point in duplicating this mechanism in YIL. Each ref- 
erence to an expression in a YIL statement is represented 
by a reference to the appropriate formal identity. While this 
approach is sufficient to take care of the arithmetic details of 
expression evaluation, for the purposes of the derivation of 
dependence information it is inconvenient to have to parse 
expression trees. For this reason, all YIL statements directly 
contain information about the uses and defs of variables that 
they entail. Associated with each such use or def datum is 
the set of subscript expressions required to fully resolve it. 
Once again, these subscript expressions are indicated by the 
appropriate formal identity. Overall the effect is to separate 
the details of program execution from the structural and 
dependence elements. The former is required mainly when 
rewriting the XIL version of the compiland, the latter are 
the essentials of dependence analysis and the restructuring 
transformations. 

4 . 3  R e p r e s e n t a t i o n  

A closer look at YIL reveals a program encoded as a dou- 
bly hnked hst of records. The principal statement types 
are assign, if, call, and loop. Each of these represents an 
abstraction of the lower level details of the underlying XIL 
program. In addition, the representation of the iffstatement 
record in YIL (Fig 13), encapsulates the control flow infor- 
mation of the program. Each if statement has two or more 
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Figure 13: Branching code in YIL 

successors such that the YIL statements form a statement 
graph rather than a statement list. 

A brief look at the assign and loop statements in YIL will 
serve to demonstrate the functionality and flexibility which 
it exploits to successfully perform many high level program 
transformations. The assign statement is a powerful ab- 
straction. It is analogous to the corresponding source level 
assignment operation, and represents an abstraction of all 
the low level computation which culminates in committing 
a value to memory. It also encodes the SSA representa- 
tion, and records subscript information for those statements 
which are array references. The most significant fields in the 
assign statement are the statement type, a left hand side 
and a right hand side, and an index into the computation 
table. This points to the underlying XIL store instruction, 
which forms the root of the computation tree for the whole 
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Figure 14: A YIL Indexed Assignment Statement 

expression. 
The left hand and right hand sides allow the incorpora- 

tion of SSA form into the statement graph [10]. A program 
in this form has the characteristics that each programmer 
specified use of a variable is reached by exactly one defini- 
tion. To ensure that this is so, phi statements are inserted at 
confluence points in the statement graph. Information about 
the statement's effects on the program's variables is recorded 
in the statement graph. For each use and def in a state- 
ment, information is recorded in the aUuse and alldeftables 
(Fig 12). In effect, the statement graph incorporates the 
use-defchains for the program, thus simplifying the analy- 
sis task of subsequent components, such as dependence and 
induction variable analysis. These tables also record the 
relevant indexing information for array variables (Fig 14). 

Just as the assign statement is an abstraction of much 
lower level detail, so too, the loop statement replaces en- 
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Figure 15: Matrix Multiply in YfL 

tirely the body and control elements of an XIL loop. Loop 
bodies are hierarchically linked to their corresponding loop 
statements, permitting easy traversal both inwards and out- 
wards. This high level loop statement has a single successor, 
namely the next statement after the loop (Fig 15). Another 
field in the loop statement record indexes the loop table 
entry which refers to all the information pertinent to the 
loop transformations, such as the normalized upper bounds, 
a vector of normalized induction variables, and the  nesting 
depth (Fig 16). The implementation of the loop optimiza- 
tions require that the program be represented as a series of 
either perfect or imperfect loop nests. To this end loop dis- 
tribution is performed early in the transformation process. 
After loop distribution and nest analysis, the outermost loop 
statement refers to a loop nest, and the details of this are in 
a nest record. The information in the nest record contains in 
addition to the details of the nest body, the transformation 
matrix to be applied to this particular nest. 

4 . 4  Abstraction from XIL 

The process of abstraction from XIL to YIL consists of sev- 
eral steps. Firstly, the XIL Procedure List is traversed and 
each store, branch and call type instruction causes the in- 
sertion of a statement node into the YIL Statement Graph. 
During this process the flow graph, built over the XIL ver- 
sion of the program, is consulted for information on branch 
targets and for loops. As each statement is added, the com- 
putation trees which are rooted in it, are examined to dis- 
cover the variable names to be entered into the alluse and 
alldef tables, and the indexing expressions, which give rise 
to separate subscript statements. Having performed this 
basic translation, the second phase involves identffication of 
locations where so-called phi and anti-phi functions are to 
be inserted. Once these locations are determined for each 

Figure 16: Matrix Multiply after Loop Distribution and 
Nest Extraction 

variable, a corresponding function is inserted into statement 
graph at each location. Now the conversion of YIL to SSA 
form is completed by creating a new variable name for each 
variable at every definition site. This name is used in sub- 
sequent references to the variable until the point where the 
variable is again redefined. 

Now induction variable analysis is performed and higher- 
level loop constructs are created in a form suitable for the 
analysis that occurs later in the High-Order Transformation 
phase of the back-end. Finally, the loop table entries are 
filled in and all the inductive loops of the program are nor- 
malized. 

4 . 5  Updating YIL 

The completion of these steps renders the program into a 
state suitable for the apphcation of dependence analysis and 
loop distribution which recasts the program as a series of 
maximally distributed loop nests, annotated with their con- 
comitant dependence information encoded as distance vec- 
tors. The way is thus cleared for the loop transformation 
phase. An obvious side effect of rendering the program into 
this form, indeed one that is encountered with each phase 
of the transformation process, is that many components of 
the YIL data structures become out of date. Two obvious 
examples are the data dependence information and the SSA 
representation. Indeed, one of the challenges of using SSA is 
keeping it up to date as the program is transformed. Rather 
than rebuild all the use-def chains that comprise SSA after 
each optimization step, we update the chains incrementally. 
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Incremental rebuilding is possible for transformations that 
are localized and that do not add control flow (which could 
require new phi function placement). 

For example, in the loop normalization step, basic in- 
duction variables in the loop body are replaced with their 
normalized form, I ¢ (7¢ - I) * bump q- init, where f¢ is 
the loop controlling induction variable, bump is the linear 
increment of f, and ini~ is the initial value of f. Although 
bump and ini~ may be arbitrarily complex symbolic expres- 
sions, they must be invariant in the loop body, and therefore 
have a single definition outside the loop that dominates the 
loop entry. This makes it straight forward to update SSA 
incrementally as loop normalization proceeds, since all the 
new uses of bump and ini~ have well-defined use-def rela- 
tionships. Further, no extra phi functions are needed in the 
loop body, even if it contains control flow, because the added 
uses are all invariant in the loop. 

This same type of reasoning can be applied to dead code 
removal and GCP, since these optimiaations can only re- 
move uses from the SSA structure. By treating the use-def 
chains as linked lists of references, dead entries can easily 
be removed from the middle of the list. As a result of these 
considerations, the current production version of TOBEY 
only builds the complete SSA representation once per com- 
pilation unit. 

4 . 6  S u i t a b i l i t y  f o r  R e s t r u c t u r i n g  O p t i m i z a -  

t i o n s  

The reordering of the iterations of multi-dimensional loops 
is the central concern of restructuring compilers. This re- 
ordering may be undertaken for several different ends, most 
commonly the extraction of parallelism from programs or 
the exploitation of reuse at some level of the memory hierar- 
chy. In recent years a popular approach to this problem has 
been the use of unimodular transformations, and YfL was 
designed with this method in mind. The glL loop statement 
has associated with it a unimodular transformation matrix, 
of the appropriate dimensionality, and a vector containing 
the loop index variables. The optimization routines of the 
compiler, after judicious analysis, reflect their decisions in 
the transformation matrix. It then remains to realize these 
intentions in the form of a rewritten program. In order to 
achieve this, it is necessary to modify the loop bounds and 
any inductive subscript expressions used by the statements 
in the loop body. The fact that this is a relatively straight- 
forward task in our compiler, assures us that YIL is indeed 
appropriate to its intended use. 

How is this task accomplished? In essence, the required 
changes reduce to the problem of rewriting a set of expres- 
sions. The variables in which these expressions are rooted 
have been transformed in a way that is readily derived from 
the unimodular matrix. Given each of the original variables 
and the expression, in terms of the new induction variables, 
to which it is transformed, we must take the old expression 
tree and replace each of its roots by the corresponding trans- 
formed quantity. By keeping a mapping between the sym- 
bolic registers corresponding to the new and the old formal 
identities, it is simple to walk the old expression tree, and, 
using the XfL gen routines, regenerate each XIL instruction 
by replacing its inputs with the new values. When a com- 
plete expression has been processed, the new formal identity 
can replace the old in the appropriate field of the YIL state- 
ment it originated from. Essentially the same technique can 

be used to rewrite the XfL version of the program. 

4 . 7  A d v a n t a g e s  o f  h a v i n g  X I L  e m b e d d e d  

From the preceding discussion, it may be inferred that the 
manner in which YIL was derived as a higher level abstrac- 
tion of XfL, was driven by the exigencies of product develop- 
ment. To some extent this is true, but we would argue that 
in fact YfL steers a middle course between the two possible 
alternatives; namely to perform the high order transforma- 
tions on the lower level XIL, an option which was considered, 
or to design a totally new, high level intermediate represen- 
tation. 

In fact, many benefits accrue from having the lower level 
representation available. Firstly, the flexibility exists to per- 
form lower level optlmizations as required. In some cases it 
is beneficial to reorder the XfL components of an operation 
in order to break dependences. We refer to this as node 
splitting. Since in FIL we have full access to the underlying 
loads/stores, complete with a defined order of evaluation, 
we are able to perform such a transformation by updating 
the underlying XIL representation. Secondly, the ability to 
reuse existing code is demonstrated in the dependence ana- 
lyzer implementation. Allusion has been made above to the 
fact that array index information is stored in the alluse and 
alldef tables, accessed from a field in the statement graph. 
In fact the indexfield in this structure (Fig 14) is the head of 
circular linked list of statement records identical to those in 
the main body of the statement graph. Hence, every array 
index statement has a pointer to its underlying computation 
tree. Given this fact, we were able to exploit the existence of 
a significant piece of code in the existing TOBEY compiler, 
which deals with manipulation of array index expressions. 
Following the approach used in the Reassociation optimiza- 
tion, wherein expression trees are built in order to apply 
the associative laws of arithmetic, we build a symbolic ex- 
pression for each array subscript contained within a loop. 
The expression list consists of the canonical form, in XIL 
representation, of the subscript expression. Typically the 
expression list for a subscript will consist of an add, of a 
positive or negative constant value to a register expression 
which may or may not represent the loop index variable. 
For ease of reference later on, we annotate those expression 
lists which do contain induction variables by replacing the 
canonical register representing the induction variable, with 
a pointer to the alldef entry for this subscript in the SSA of 
the program. A pointer to the expression list itself is stored 
in the node in the statement graph for the index statement. 
It is these expression lists, then which are manipulated by 
the dependence tester to form the equations whose solutions 
provide the distance vector information. 

5 E x p e r i e n c e s  

It may be argued that the true test of flexibility in an il is 
the ease with which unanticipated features may be added to 
the compilers it supports. By this touchstone both XIL and 
YIL prove golden. For each of them, we give an example to 
bolster this assertion. 

When XIL was first mooted it seemed that 32-bit ad- 
dressing and 32-bit integer data would be sufficient for com- 
puting needs into the distant future. The compilers were de- 
signed, and constructed with an implicit understanding that 
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the GPRs of the virtual machine were 32 bits long. When 64- 
bit machines began to appear (Mips R~O00, PowerPC 620), 
it became necessary to consider support for them, and for 
64-bit language constructs compiled for 32-bit architectures. 
This support has been successfully added to XIL. When we 
added 64-bit support, we had two main goals. First, we 
wanted to minimize the impact on existing code in both the 
front ends and TOBEY itself. Secondly, we wanted to hide 
the 64-bit implementation from the front ends so that they 
need not be aware of the size of gprs during il generation. 
Thus, for them 64-bit data becomes just a language issue. 
By having front ends always think of registers as 64-bits and 
adding a few more opcodes to work on these registers, we've 
largely been able to achieve these goals. Now, as the ills be- 
ing generated, if the actual target is 32-bits, we detect where 
64-bit data is actually used and modify the il to represent 
this with 2 symbolic registers. One side benefit of this effort 
has been to allow us to support 64-bit data in our existing 
compilers on 32-bit machines. 

Our data structures for representing the il have served 
us well in this effort. The way we represent registers did not 
change. Our integer values are stored in our Literal Value 
Table which was widened to handle 64-bit values. This ab- 
straction minimized the impact to those few places that ac- 
tually manipulate such values at compile time (e.g. constant 
folding). 

FIL was developed to allow TOBEY to perform mem- 
ory hierarchy optimizations, principally tiling, though the 
possibility of automatic extraction of parallehsm for shared 
memory machines was entertained. At a later time, there 
was some interest in having the compilers produce code for 
a vector architecture. This capability was prototyped in the 
YIL based transformer. Although the extraction of vector 
parallelism has much in common with the optimizations that 
YIL was designed for, it also requires a more detailed rep- 
resentation of the operations of the machine. Fortuitously, 
the fact that XIL  is embedded in YIL allows for the required 
level of detail. 

A further example of the useful co-existence of XIL and 
YIL is the predictive commoning [15] optimization of TO- 
BEY. While initially prototyped in XIL with some degree 
of success, it was felt that this optimization could be more 
optimistic when applied at the level of YIL. Consider the 
following loop: 

DO i = 2, i00 
a(i) = b(i - 1) + b(i) + b(i + 1) 

END DO 

Notice that the reference b(i + 1) in iteration I becomes b(i) 
in iteration I + 1 and b(i - 1) in the iteration after that. 
Predictive commoning can exploit this reference pattern by 
transforming the loop as follows: 

t l  = b(1) ! Initialize temps 
~2 = b(2) 
DO i ---- 2,100, 3 ! Unroll by 3 

t3 = b(i -6 1) ! Load the leader 
a(i) ---- t l  + t2 + t3 

a(i + 1) = t2 + t3 + t l  ! Cycle left by 1 
t2 = b(i + 3) 
a(i + 2) = t3 + t l  + t2 ! Cycle left again 

END DO 

Note that the original loop has 9 loads every 3 iterations, 
while the transformed loop has only 3. Note also that the 

optimization involves both high and low level transforma- 
tions: at the high level, the loop is unrolled 3 times; at the 
low level, the references to b are replaced by references to 
the temps. 

Predictive commoning is applied in three steps. In the 
first step, the YIL representation of the loop is used to search 
for opportunities - YIL make this easy because subscripts are 
represented explicitly. The second step applies cost/benefit 
analysis to the opportunities discovered in step 1, and de- 
termines the unroll factor. Again, YIL makes this easy since 
the unroll factor is simply a parameter in the nest record. 
Finally, the transformation is applied by rewriting the un- 
derlying XIL of the loop and its body. Here the canonicity 
property of XIL is used to identify the references to b so that 
they can be replaced efficiently. 

6 F u t u r e  D i r e c t i o n s  

The evolution of YIL thus far has demonstrated the fea- 
sibility of performing high order transformations at other 
than the source language level. YIL is a high level inter- 
mediate representation yet it easily exploits the details con- 
tained in a lower level form. The Predictive Commoning op- 
timization described in the previous section, demonstrates 
this nicely. Moreover, this optimization, which can be done 
equally well on either X[L or YfL, exemplifies a key topic 
for further study in this area, namely to what extent could 
existing optimizations exploit the type of information avail- 
able only in YIL. In particular, late optimizations such as 
software-pipelining and scheduling require good dependence 
information for optimal performance. Unfortunately, by the 
time these phases run the XIL is at a very low level: address- 
ing trees have been linearized, and the canonical symbolic 
registers may have been replaced by non-canonical hardware 
registers. As a result, it is difficult to extract detailed de- 
pendence information. In contrast, the dependence informa- 
tion acquired from the YIL representation of the program is 
highly precise, since at that time all registers are canonical 
and subscripting is represented explicitly. 

The challenge is to propagate the high-level dependence 
information into XIL so that the late low-level optimiza- 
tions of TOBEY can take advantage of it. This task is made 
more challenging by the fact that YIL is used early in the 
compilation phase; the program can look radically different 
by the time it reaches the scheduler. We have thought of 
tagging the XIL load and store references with the depen- 
dence information gleaned from YIL, but care must be used 
to preserve the canonicity of the references. If canonicity 
is not preserved, many intermediate optimizations may be 
partially or completely defeated. We have also thought of 
tagging the loop latches with summary information about 
the dependences in the loop; this approach is less precise 
but may still allow some optimizations to benefit. 

7 C o n c l u s i o n  

The rapid pace of competitive hardware development, has 
meant that a good compiler must address not only the classi- 
cal optimizations, but must also be capable of exploiting the 
architectural features of the most high performance super- 
scalar machines, through techniques such as loop restruc- 
turing, instruction scheduling and instruction and data pre- 
fetching. We feel that the TOBEY optimizer has maintained 
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a competitive edge with respect to performance on a vari- 
ety of target architectures. Moreover, the ability to host a 
variety of source languages has not been sacrificed; on the 
contrary, it has been expanded with the addition of C + +  to 
the three already existing. This success is due in no small 
part to the design of the intermediate representation, XIL: it 
allows for the addition of new front ends with relative ease; it 
shields those front ends from the specifics of the multiplicity 
of machine architectures which it targets; it facilitates the 
application of the classical optimizations in order to pro- 
duce highly optimal scalar code; and it was easily extended 
to permit the array and loop analyses which feed the higher 
level loop optimizations. 
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