
XIL and YIL: The Intermediate Languages of TOBEY

Kevin O'Brien* Kathryn M. 0 'Brien ~ Martin Hopkins; Arvin Shepherd § R, on Unrau ¶

A b s t r a c t

Typically, the choice of intermediate representation by a par-
ticular compiler implementation seeks to address a specific
goal. The intermediate language of the T O B E Y compil-
ers, XIL, was initially chosen to facilitate the production
of highly optimal scalar code, yet, it was easily extended to
a higher level form YIL in order to support a new suite of
optimizations which in most existing compilers are done at
the level of source to source translation. In this paper we will
discuss those design features of XIL that were important fac-
tors in the production of optimal scalar code. In addition we
will demonstrate how the strength of the YIL abstraction lay
in its ability to access the underlying low level representa-
tion.

1 I n t r o d u c t i o n

Faced with the task of writing a new compiler for one or
more languages, one has no simple rule of thumb to apply
in choosing the most appropriate intermediate form. We
believe, however, that a set of principles can be enunciated
which provides a framework for judging the utility of an in-
termediate language. Our ideal il should be easy to generate
and easy to translate into the desired final form. It should
allow the functions which operate on it to conveniently and
flexibly manipulate it, both for purposes of analysis and
transformation. It should be expressive, supporting the rep-
resentation of a variety of programming idioms and styles,
thus allowing it to support a multiplicity of source languages.
It should be transparent, making clearly visible the seman-
tics of the underlying program, thereby easing the task of
compiling for a variety of architectures. It should be capable
of expressing enough detail to facilitate low level optimiza-
tion, yet of abstracting details which are unimportant to its

* e r a a i l : 0 b r i e n @ w a t s o n . i b m . corn

"t e r n a i l : k o b r i e n ~ w a t s 0 n . i b m . c0m

$ email:hopkinsewat son. ibm. com

e r a a i l : a r v i n ~ t 0 r o l a b 2 , vnet. ibm. com

¶ e r a a i l : u n r au@~ o r o l a b 2 , v n e ~ . i b m . corn
Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
IR'95 1/95 San Francisco California USA
Qlg95 ACM 0-89791-754-5/95/0001.. .$3.50

clients, and it should be amenable to transportation, so that
it may be saved, used by other tools and so on.

It is difficult for any il to satisfy all of these requirements
in every context within a compiler, but we hope to convince
the reader that the two ils described in this paper, together
come very close to satisfying most of them, most of the time.

Over the past thirty years or so, there have been many
intermediate languages proposed, to address a wide variety
of issues. These languages fall into several broad categories.
Chief among them have been triples and quadruples [11], Ab-
stract Syntaz Trees [5], and Virtual Machines [12, 2]. The
notion of machine independence as an attribute of interme-
diate representation has certainly been around for a long
time [3]. More recently, there have been many attempts to
define intermediate representations which address problems
specific to compilation for parallel or distributed memory
machines, or compiling data parallel languages [4]. The in-
termediate representation of the SUIF compiler appears to
nicely solve the scalar/parallel optimization dichotomy [5].

It is not our intention here to provide an exhaustive sur-
vey of the field, but merely to assert that the intermediate
languages discussed in this paper share some of their proper-
ties with both quadruples and with Virtual Machines, while
at the same time deahng with the issue of high vs low level
optimization.

1 .1 O u t l i n e

In this paper we will discuss in some depth the interme-
diate representation of a suite of compilers which gener-
ate highly optimized code, by means of the classical opti-
mizations. In addition, we wish to demonstrate the relative
ease with which the representation was abstracted to allow
the apphcation of a completely different set of higher level
loop optimizations which have traditionally been performed
at the source language level. The paper will give a brief
overview in the next section, of the TOBEY compiler and
optimizations. Sections 3 and 4 form the core of the paper;
these sections present a detailed look at the two i/s, XIL
and YIL, with reference to interesting design features, and
suitability for the types of optimization being performed. In
section 5 we outline some implementation practices and ex-
periences which it is felt underline the preceding discussions.
The final two sections discuss future work and provide some
concluding remarks.

71

2 T h e T O B E Y compi l e r s

The intermediate languages X f L and YIL are used by the
IBM compilers [1] for the Rise System/6000, xIf, ale, alp
and x l C + i (FORTRAN, C, Pascal and C + +) . Over time
compilers have been built for languages from Fortran90 to
C + + with code generation for Intel 386, RS/6000, Spare
and S/a70.

These compilers share a common back end, the Toronto
Optimizing Back End with Yorktown, T O B E Y , which was
inspired by an earlier compiler project for the 801 minicom-
puter, the pl.8 compiler, and XIL owes several of its major
features to the intermediate language of that compiler [16].

The TOBEY optimizer [15] utilizes familiar techniques
such as Common Subexpression Elimination (CSE), upward
motion of invariant computations from loops, elimination of
dead or unused expressions, and Strength Reduction and Re-
association. A host of other transformations are performed,
namely, global constant propagation, dead store elimination,
global value numbering, procedure inlining, local and global
instruction scheduling. As the TOBEY project progressed,
it became clear that, although the quality of the generated
code met our initial expectations, the rise in popularity of
cache-based machines was opening up new opportunit ies for
optimization. Unlike the classical optimizations, these new
techniques operated on extended structures within a pro-
gram, principally nests of loops. These restructuring trans-
formations were more readily performed on an intermediate
language which reflected the higher level structure of the
code. Out of this insight, YIL was forged.

3 XIL

3.1 Arch i t ec tura l Pr inc ip les

The chief objectives of the TOBEY project were to pro-
duce high quality object code, and support multiple source
languages and target architectures. Clearly these goals in-
fluenced the design of the intermediate representations in
several ways. Ensuring the flexibility to add new languages
or target machines, as required, necessitated that the initial
design provide clean interfaces. The intermediate represen-
tation could not implicitly support peculiarities of language
semantics nor could it, at the interface to the front ends,
require knowledge of part icular features of a specific instruc-
tion set architecture.

On the other hand, constructing a highly optimizing
compiler inexorably pointed towards an il that exposed the
low level operations of a typical register-to-register machine.
The major gains from the classical optimizations, CSE, Code
Motion, Strength Reduction and their ilk, are made at the
level of addressing computations [17]. This is reflected in
XIL, by the requirement tha t all loads and stores, and ex-
pressions necessary to compute addresses are visible from
the time the intermediate form is generated by a front end.
By exposing these computations, we are able to subject
them to the same set of optimizations as are apphed to user
variables. The main disadvantage of this approach is the
increase in volume of the intermediate form of a program,
and the concomitant effects on compile time performance.

The ability to reuse or reorder the individual code trans-
formations throughout compilation was also deemed to be
a requirement. A clear distinction can be made between in-
termediate representations which can be stored in strictly

72

Figure 1: The Tobey Compiler

sequential form, and those wherein linkage between the ob-
jects is exposed. The former approach, usuMly implemented
as a file interface, supports a notion of compilation wherein
the discrete functions of the compiler form separate pro-
grams. Previously such designs were useful for machines
with small amounts of real memory. However, this approach
did not meet the objectives of an optimizing compiler, since
there is no easy way to traverse the sequential text in other
than its implicit order. Explicitly linked ils, however, lend
themselves more easily to a compilation style wherein all the
parts of the compiler are bound in a single module. In this
approach, the il resides in memory, and may be analyzed,
transformed and modified by each successive optimization.
The objectives of the TOBEY optimizer required that XIL
belong to the latter category.

3 . 2 M a c h i n e M o d e l

XfL is a low level intermediate representation of the seman-
tic content of a program. It is, by design, free of source
language dependences and thus forms a suitable target for
the compilation of a broad range of programming languages.
It is not, however, of such a low character that it excessively
narrows the range of instruction set architectures to which
it can be reasonably translated. When considered interpre-
tively, XfL presents a model of a machine with a Load/Store
architecture and a number of distinct register sets. These
register sets can each contain a conceptually infinite num-
ber of symbolic registers. The instructions represented by
XfL are, by and large, those that would not be thought out
of place on any respectable RISC machine, but there are
a number of more exotic creatures in the menagerie, those
related, for example, to string manipulation. Also, in the
early stages of compilation the instructions are more flexible
in several ways than those of any real machine. Displace-
ments in addresses can be of any size; addresses can contain
as many index registers as desired (Fig 2), and it is possible
to specify a multiplier for each such index register (Fig 3);
cull instructions can have a large number of parameter regis-
ters; and instructions can have as many result registers as is
convenient (Fig 4). Most of these features are eliminated by
a compiler phase called Macro Expansion, but they afford
great convenience throughout a large part of the optimizer.

L r.i=i(r200,64)
M r300=r.i,8
L Lj=j(r200,68)
A r310=r.j,2
M r320-r310,400
LFL fp330=a(r200,r300,r320,30000)

Figure 2: Indexed load of a(i,j+2).

3 . 3 F o r m a l I d e n t i t i e s

Although it is often fruitful to consider an XIL program as a
sequence of machine instructions for some abstract machine,
as suggested above, there is another and perhaps more sig-
nificant aspect presented by such a program. XfL is struc-
tured as a forest of computation trees (Fig 5), where formally

L r.i=i(r200,64)
L r.j=j(r200,68)
A r310=r.j,2
LFL fp840=a(r200,Li,*4,r310,*400,30000)

Figure 3: Indexed load of a(i,j+2)., using implied multiply

LFLU fp350,gr400=b(gr400,8)

Figure 4: Multiple results: gr400 is incremented

identical computations performed in separate locations are
represented by the same node. This alternative way of look-
ing at the program lies at the heart of some of the major
optimizations and provides the basis on which the YIL ab-
straction is founded.

The concept of formal identities is important in X[L,
and not merely as a method of containing the storage re-
quirements of the intermediate text. The entities referred
to previously as symbolic registers lie at the heart of this
concept. On the interpretive level, a symbolic register can
be viewed as the compiler generated temporary for holding
intermediate results in the evaluation of an expression. On
the other, the computation tree level, the symbolic regis-
ters are the names of the formal identities, and as such, act
as links in the expression tree. Such a symbolic register is
known as a canonical target. It is computed in the code gen-
eration routines, as the hash value of the inputs on say a load
or add instruction, when the front end does not specify the
name of the result register. This ensures that a load from a
given variable will always produce the same result register;
similarly, an add of two given registers will always produce
the same result register. This alternative way of looking at
the program is key to some of the major optimizations in
TOBEY, of which CSE is the most notable example. In ad-
dition, it is this view which provides the basis upon which
the YIL abstraction is founded.

However, the dichotomy engendered by these two faces
of a single program (Computation Tree vs interpretive) is a
fault line buried in the deepest strata of the representation.
As a result the precise definition of an XIL program can be
complicated. A program which, when naively interpreted
may appear correct, can in fact be illegal because it does
not respect the rule of canonicity, that any two definitions
of a given register must be formally identical.

3.4 Representation
A number of data structures form, in aggregate, XIL. The
procedure is the highest level construct recognized in XIL,
and each procedure in a compilation is given a slot in the
Procedure Descriptor Table. This record contains informa-
tion about the procedure as a whole, such as the size of the
stack frame, the size of the register spill area, whether the
procedure kills certain global registers and so on. It also
contains a pointer to the Procedure List for this subroutine.

The sequence of instructions which embodies, in XIL,
the intent of the source program is represented by a circular
doubly hnked hst, the Procedure List. The start of the pro-

73

L r.i=i(r sbase,8000}

S r200=r.i,]

L rj=j(r.sbase,8004)

LFL fp500-a(r.sbase,r200,*4,rd.* 800)

L r.i=i(r.sbase,8000}

A r210=r.i, 1

L rd=j(£sbase,8004}

S r220=rj, 1

LFL fp600=a(r.sbase,r210,'4,r220,'800}

AFL fp700=fp500,fp600

STFL a(r.sbase,r.i,*8,@ *8OO}=fpTO0

i(Esbase,8000)

~ - - - - - ~ "~ L l
" - . ~¢~ , \ j(r.sbase,8004)

, / \ \

. 1 I

. :" " " " * LFL * LFL

Procedure ~ t ~ ' ~ ~ ~

"" . STFL

a(id) = a(i-Id) + a{i+ld-1)

Figure 5: Expression Tree view of XIL. The dashed lines show the CT links, the dotted hnes show the links to formal identities.
Note the sharing of subtrees.

cedure is represented by an administrative entry, the header
HDR. Then follows the procedure instruction PROC, the
instructions in the body of the routine, and the procedure
end instruction PEND. The sequence of the operations in
the list represents the sequence of their corresponding ma-
chine code instructions in the final object. Each entry in
the Procedure List contains some information peculiar to its
particular location, such as the source program llne number,
and a pointer to another structure, the Computation Table,
in which the actual operation performed by the instruction is
encoded. Any particular encoded instruction may be shared
by many elements of the Procedure List, as described later.

The Computation Table, with its subsidiary data struc-
tures, is the hub of XIL. It is an array of elements, called
bags, which represent the opcodes and operands of instruc-
tions in the intermediate text. Instructions may only be en-
tered in the Computation Table by calling a service routine
@t_hash), and this program ensures that each instruction
appears only once in the table. An instruction is repre-
sented by a sequence of entries in the Computation table (
Fig 6). The first of these entries is the opcode, the remain-
der are operands. The opcode field encodes the number of
operands that follow, and there is a set of rules which gov-
ern the ordering of operands within instructions. Each of
the operands is self-describing, and represents one of several
things: a symbolic register, the name of a variable, an inte-
ger value or a long or short floating point value. In general,
each of these consists of some data related to the locus of the
operand, and a self describing pointer to an auxiliary table.
The opcode entry also follows this scheme. The auxiliary
tables, the Symbolic Register Table (SRT), the Opcode Ta-
ble, the Intermediate Language Dictionary (ILD), and the
Literal Value Table, contain less frequently used informa-
tion about the operand, and for the most part we can omit

discussion of this material. However the Symbolic Register
Table contains one element which is critical to understand-
ing the structure of XIL. Each entry in this table points back
at the unique instruction in the Computation Table which
produces it as a result, unless the entry is for a symbolic reg-
ister representing a dedicated hardware register. Because of
this property, the realization of Formal Identities discussed
earlier, it is possible to take a symbohc register and treat it
as the root of a tree of computations. The leaves of these
trees are ILD entries, hardware registers, integer or floating
values and symbohc registers which are defined by instruc-
tions with no inputs. 1 The subroutine ct.hash ensures that
each unique instruction receives a new set of result regis-
ters, except when the caller exphcitly requests otherwise. In
this case the generated instruction is referred to as being
non-canonical.

3.5 Support for IL generation

XIL code is generated via a procedural interface. The rou-
tines of this interface, referred to as the gen routines, hide
the details of the il's implementation from those doing cocle
generation. Over time, there have been changes to the ac-
tual implementation of the il. These routines have kept such
changes from impacting the compiler front ends.

There are several tasks embedded in the code generation
routines. First, there is a plethora of instruction level folding
that is performed during code generation. Since the form of
the il is constant throughout compilation, such folding op-
portunities are realized starting with initial generation in
the front ends and continuing as optimizations make trans-
formations on the il. An instruction can fold to a hteral or

The last of these essentially represents register temporary storage
a n d occu r s on ly rare ly .

74

ctx_ix
ind tag index ~--Z--

P r o c e d u r e List

:___:
7 op

U $ C $~

utds sr
utds sr
utd__, s! lit
utd______s i st
utdsi lit
utdst ild

I :

7 0 0 -

500

600

700

! AFL

[STFL

8

__ 8OO

Symbolic Reg
Table

Opcod~e Tale

Literal Table

Computation Table

AFL fp700~fp500,fp600
STFL a(r.sbase, r.i,*8,r.j,*800)=fp700

In te rmedia te
Language
Dictionary

Figure 6: XILData Structures

to another instruction that is simpler or more efficient.
If an instruction does not fold to a hteral, the gen rou-

tines will hnk the instruction into the procedure list, as well
as building the computat ion trees (by calling ct_hash). A
symbolic register result is assigned to represent the compu-
tat ion tree. A corollary of this style of code generation, is
that the client usually does not specify the result register to
the gen routine, although this is possible if needed.

Since registers and various types of hteral are all rep-
resented as tagged pointers into auxiliary tables, they can
each be represented as an integer and be distinguished by
their tags. In most contexts, registers and literals can be
used interchangeably in instructions.

The chents of the gen interface expect one or more re-
sult to be returned by the code gen routines. Since such
results are typically used only as inputs into subsequent in-
structions, most callers need not care if the results returned
are registers or literals that were created as a result of fold-
ing(Fig 7).

3.6 Suitability for Classical Optimizations
When an optimizing compiler makes some transformation of
the compiland, it frequently uncovers opportunities for fur-
ther optimization that were not previously apparent. Strength
Reduction for example, produces dead code. This observa-
tion motivates us to ensure that our designs include the
ability to run each optimization multiple times, in various
orders. The accompfishment of this task is rendered much

Return Val

iv.14
r.b
r300

Gen Call

t l=gen.x2 (op_M,sr _nt_gpr,iv.2,iv.7,...)
t 2 =gen_mem(op_L,sr _nt _gpr,...,ild.b,...)
t3=gen_r3(op_A,sr_nt_gpr,t 1,t2,...)
gen_mem(op_ST,t3,...,ild.a,...)

Figure 7: This sequence of calls will generate code for the
statement a=b+$CT.The parameter sr_nt_gpr indicates that
the formal identity should be returned. Notice that the mul-
tiply is folded, and the result is t ransparently used in the
call which generates the add.

easier if the il remains constant throughout the process. XIZ
is a product of this train of thought. It has the same form
throughout the compiler, but changes in content as the work
progresses. As generated by a front end, it contains no ma-
chine dependant operations, all redundant computation is
exphcit, and there is a sprinkling of higher level operations.
As read by the assembler, there are no operations that re-
quire more than one machine instruction and all symbolic
registers have been replaced by hardware registers. In be-
tween, a great number of fleeting variations have been pro-
duced. While this constancy of form greatly simphfies the
task of ordering transformations, it should not be thought
that it ehminates entirely the dependence of one transfor-

75

marion on another. There are very many problems in the
interaction of optimizations, not all of which have satisfac-
tory solutions.

In illustration of the preceding discussion, consider the
following example. The code fragments showing the se-
quence of transformations are given in Fig 8 through Fig 11.
Unneccessary detail has been elided in the later figures.
Early in optimization we insert a register copy (LR) after
each store. This copy preserves the stored value in the sym-
bolic register which would be defined by a load from the
'stored-into' location. 2 Sometime later, the CSE optimiza-
tion runs and removes, among other things, any compu-
tations which have been made redundant by this insertion
(Fig 10). In our example, all the loads from the induction
variable i are eliminated. This enables the Store Elimina-
tion optimization to remove the stores into the dead variable
±(Fig 11). Finally, the register allocator is likely to coalesce
the source and target of the register copy, thus eliminating
the LR instruction altogether. In cases where the inserted
copies do not enable CSE, a pass of the Dead Code elimina-
tion optimization will remove them. This example illustrates

do i=1,10
a(i)=x

end

LI:

ST i=1
LR r . i= l
LABEL
M r300=r.i,4
STFL a(r2OO,r300, O)----fpr.x
A r310=r.i,1
ST i=r310
LR r.i=r310
C cr320=r.i,10
BT L1,cr320,1e

Figure 10: XIL after inserting copies and USE

LR r . i= l
LI: LABEL

M r300=r.i,4
STFL a(r200,r300,0)=fpr.x
A r310=r.i,1
LR r.i=r310
C cr320=r.i,10
BT L1,cr320,1e

LI:

Figure 8: Source code for a simple loop

ST i : l
LABEL
L r . i : i
M r300:r . i ,4
STFL a(r200,r300,0)=fpLx
L r.i=i
A r310:r.i ,1
ST i=r310
L r . i : i
C cr320=r.i,10
BT L1,cr320,1e

Figure 9: Original XIL for the loop

several points: optimizations on XIL are simple, formal and
separate; it is possible to get partial benefits as would be the
case if the store had to remain; the mechanism of canonical
3 symbolic registers makes it possible to insert LR ops on
speculation.

It has been noted [16] that for some optimizations, the
greatest opportunities are found in the very low level oper-
ations which are the constituents of the source statements.
Such things as address computation, loading of data in regis-
ters and so forth may be repeated in different statements, or
afford other opportunities for optimization. For this reason,
XIL was designed to expose these low level features. Analo-
gously, high level loop and conditional constructs are repre-

~Of course, this defini t ion of the t a rge t reg is te r is not fo rmal ly
ident ica l to its or iginal defini t ion, and so a cer ta in a m o u n t of care
mus t be t aken by rou t ines which expect the p r o g r a m to conform to
expression t ree semant i c s .

3Sat isfying f o r m a l ident i t ies

Figure 11: XIL after Store Ehmination

sented in XIL by simple comparison, conditional branch and
label instructions. Information about loop structure and in-
duction variables is obtained from the code by control and
data flow analyses.

It is instructive to look at how several of the important
optimizations are performed on XIL. Dataflow analysis is at
the heart of very many optimizing transformations. In the
TOBEY compilers the values for which this analysis is done
are the Symbolic Registers. Each register within the region
of interest, is assigned a position in a bit-vector, and logical
operations on these bit-vectors represent the set operations
required to solve the datatflow problem at hand. Kill sets for
store instructions are also represented by the same type of
bit-vector. To compute some interesting set, say the set of
available expressions used in common sub-expression ehmi-
nation, is relatively simple. First the inputs to the dataflow
equation for this problem, for example the downward ex-
posed expressions, are constructed by walking each basic
block. The forward and backward links in the procedure
list ensure that this is a painless task. At each instruction,
the computation table entries are scanned, and every reg-
ister result is added to the set, while for store instructions,
the kills are removed. Having computed this, and all the
other inputs to the problem, we solve for available expres-
sions using interval analysis or iteratively, as appropriate.
Given this set, it is straightforward to again walk each basic
block and delete instructions whenever all of their results
are already available. In the same way, the set insert of in-
structions to be inserted in a block by code motion can be
computed. To insert an instruction, given the symbohc reg-
ister, is trivial in XIL. It suffices to link in a new procedure
list element and to set its computation table pointer to the
canonical definition of the register.

CSE is the prime example of an optimization which re-

76

lies on the expression tree aspect of XIL, since it depends
on the fact that formally identical computations are always
represented by the same symbolic register. The major ex-
ponent of the interpretational, or virtual machine, aspect of
the representation is the optimization known as Value Num-
bering. The core function of Value Numbering is. to discover
computations in the program which redundantly compute
the same value, even when these computations are quite
different in form. The program improvement results from
replacing the later computation with a copy from the re-
sult of the earlier. This process is accomplished by inserting
register copy operations into the instruction sequence. Note
that this effectively destroys the expression tree interpreta-
tion of the program, because it introduces a different path
for the computation of a symbolic register than that implied
by the canonical definition. Any optimization that recom-
puted this target canonically, would at best be undoing the
results of Value Numbering, and in many cases might cause
an incorrect code sequence to be generated. This conflict is
the major tension in our compiler, and has never been sat-
isfactorily resolved. All transformations must ensure that
they treat such register copies with the circumspection they
require, and this leads on occasion to a small loss of perfor-
mance.

4 Y I L

4 . 1 T h e E v o l u t i o n o f Y I L

The design of XIL was driven by the clear objective of facil-
itating the production of highly optimal code, by means of
classical program optimizations. As work on the optimizer
neared completion the desirabihty of enhancing its capabili-
ties by the addition of techniques designed to exploit locahty
of reference became evident [7, 14]. Loop transformations
such as unrolhng, skewing, and tiling used in this type of op-
timization require a different type of analysis. The low level
of representation found in most scalar compilers is usually
not suited to such tasks as extracting the data dependence
information from array accesses at the level of the individual
subscripts. Indeed, the received wisdom in writing such op-
timizations, is that the program representation used should
be at a very high, almost source, level. There are certainly
many arguments in favor of this approach, not least that the
greater level of detail in a low level intermediate language
increases the compile time and space required to perform
analysis and transformation. It was however our desire to
incorporate these new optimizations into the framework of
the existing compiler, which uses XIL, as its intermediate
representation. It was also expected that the new function-
ality would be supported for all source language front ends,
and so a source level intermediate form, which is difficult to
design in a language independent way, was felt to be inap-
propriate.

These considerations, combined with a desire to reuse
existing code in writing the new optimizations, where that
was practicable, led us to a design for YIL which can best
be thought of as an abstraction of XIL. Building on the
expression tree aspects of XfL, we designed a language which
could be analyzed and manipulated in terms of high level
constructs such as loop statements and exphcitly indexed
array assignment statements, while not losing the underlying
detail as represented by XIL. Statement level information,
and in particular source level array subscripting information

can be very easily derived from the structures with which
XfL represents a program.

Hence the first phase of the TOBEY locality optimizer
performs the task of abstracting, from the XIL encoding of
the program, this higher level representation which encapsu-
lates precisely the information required for program restruc-
turing through loop transformations. Specifically, the higher
level representation, known as YIL, represents the program
as a statement graph (Fig 12), wherein control flow, loop
and array indexing information, and Static Single Assign-
ment (SSA)form are all embedded; most pertinent how-
ever, is the fact that each assignment statement represented
in YIL has a pointer to the Computation Table entry for
the series of computations which form the lower level repre-
sentation of the statement. It is this hnk which is the key
to the success of the YfL abstraction, in that it provides
the abihty to exploit or ignore the lower level computation
details as appropriate to the type of transformation.

4 . 2 A r c h i t e c t u r a l P r i n c i p l e s

Unlike XIL, which was designed to expose the minutia of
program execution, YIL is aimed squarely at the represen-
tation of overall structure. This principle is apparent both
in the amount of computation represented by the individ-
ual statements, and by the level of abstraction represented
within the statements. The statements of YIL, rather than
standing in for primitive operations, such as loads and adds,
indicate quite complex tasks, such as the assignment of a
complete expression to a variable or the execution of a multi-
dimensional loop. Within a statement making subscripted
references the individual subscript expressions are explic-
itly laid out and, for loop statements, details of the itera-
tion space and any transformations to be applied to it are
recorded. Since the formal identities of XfL already pro-
vided a convenient way of encoding expressions, there was
little point in duplicating this mechanism in YIL. Each ref-
erence to an expression in a YIL statement is represented
by a reference to the appropriate formal identity. While this
approach is sufficient to take care of the arithmetic details of
expression evaluation, for the purposes of the derivation of
dependence information it is inconvenient to have to parse
expression trees. For this reason, all YIL statements directly
contain information about the uses and defs of variables that
they entail. Associated with each such use or def datum is
the set of subscript expressions required to fully resolve it.
Once again, these subscript expressions are indicated by the
appropriate formal identity. Overall the effect is to separate
the details of program execution from the structural and
dependence elements. The former is required mainly when
rewriting the XIL version of the compiland, the latter are
the essentials of dependence analysis and the restructuring
transformations.

4 . 3 R e p r e s e n t a t i o n

A closer look at YIL reveals a program encoded as a dou-
bly hnked hst of records. The principal statement types
are assign, if, call, and loop. Each of these represents an
abstraction of the lower level details of the underlying XIL
program. In addition, the representation of the iffstatement
record in YIL (Fig 13), encapsulates the control flow infor-
mation of the program. Each if statement has two or more

77

Alldef t a b ~ \ Predecessors / / ~ STFL

' '] ' S~ te~e'nt list a(r.sbase,r.i,*8.r.J,*800) _ _

AUuse table a(r.sbase,r200,*4,r.J,*800}

a(r.sbase.r22 I0 . '4 . r220. '800)

a{id} = a(i -Id} + a(i+Id-1)

Figure 12: YIL Statement Graph Entry

L:5-q_z_L__L_J . ~ _ _ _ . _ - - - - - - - -

~: -L-L-4aar , I

L I I.~ t J

l
~ - ~ - - T-V]

l f a < O

t L ~ , LooP}I j do i=l.10

/ I
I] ~,xIII=x(1)+1
L---.~ / l - + - ~ " l . ! I

} l I ~ x{i)>lOO leave

b=O

Figure 13: Branching code in YIL

successors such that the YIL statements form a statement
graph rather than a statement list.

A brief look at the assign and loop statements in YIL will
serve to demonstrate the functionality and flexibility which
it exploits to successfully perform many high level program
transformations. The assign statement is a powerful ab-
straction. It is analogous to the corresponding source level
assignment operation, and represents an abstraction of all
the low level computation which culminates in committing
a value to memory. It also encodes the SSA representa-
tion, and records subscript information for those statements
which are array references. The most significant fields in the
assign statement are the statement type, a left hand side
and a right hand side, and an index into the computation
table. This points to the underlying XIL store instruction,
which forms the root of the computation tree for the whole

...... ~? 4 ~ ¸ ~

78

~ 4:r-'E;z:q

~w-"'-[:::z:q

= a~-lj} + a{l+ld-1)

Figure 14: A YIL Indexed Assignment Statement

expression.
The left hand and right hand sides allow the incorpora-

tion of SSA form into the statement graph [10]. A program
in this form has the characteristics that each programmer
specified use of a variable is reached by exactly one defini-
tion. To ensure that this is so, phi statements are inserted at
confluence points in the statement graph. Information about
the statement's effects on the program's variables is recorded
in the statement graph. For each use and def in a state-
ment, information is recorded in the aUuse and alldeftables
(Fig 12). In effect, the statement graph incorporates the
use-defchains for the program, thus simplifying the analy-
sis task of subsequent components, such as dependence and
induction variable analysis. These tables also record the
relevant indexing information for array variables (Fig 14).

Just as the assign statement is an abstraction of much
lower level detail, so too, the loop statement replaces en-

1 ,300

f

f ..-.F!-i~1 , I-q~,

bt~ : 0 1 :

N e s t R e c o r d

do j = l , 3 0 0

c[i,j)=o.0

do k = l . 3 0 0

c(i,j)=c[i,j) +a(i,k}*b{k,j}

c[IV. 1,1V. 2}=O.O

,' Ilcralto~ v~-tablcs
O 0 1

c{IV. 1 ,IV.2)=c(IV. 1.1V.2}+a(IV. 1 ,lIV.3)*b(IV.3,IV.2}

Figure 15: Matrix Multiply in YfL

tirely the body and control elements of an XIL loop. Loop
bodies are hierarchically linked to their corresponding loop
statements, permitting easy traversal both inwards and out-
wards. This high level loop statement has a single successor,
namely the next statement after the loop (Fig 15). Another
field in the loop statement record indexes the loop table
entry which refers to all the information pertinent to the
loop transformations, such as the normalized upper bounds,
a vector of normalized induction variables, and the nesting
depth (Fig 16). The implementation of the loop optimiza-
tions require that the program be represented as a series of
either perfect or imperfect loop nests. To this end loop dis-
tribution is performed early in the transformation process.
After loop distribution and nest analysis, the outermost loop
statement refers to a loop nest, and the details of this are in
a nest record. The information in the nest record contains in
addition to the details of the nest body, the transformation
matrix to be applied to this particular nest.

4 . 4 Abstraction from XIL

The process of abstraction from XIL to YIL consists of sev-
eral steps. Firstly, the XIL Procedure List is traversed and
each store, branch and call type instruction causes the in-
sertion of a statement node into the YIL Statement Graph.
During this process the flow graph, built over the XIL ver-
sion of the program, is consulted for information on branch
targets and for loops. As each statement is added, the com-
putation trees which are rooted in it, are examined to dis-
cover the variable names to be entered into the alluse and
alldef tables, and the indexing expressions, which give rise
to separate subscript statements. Having performed this
basic translation, the second phase involves identffication of
locations where so-called phi and anti-phi functions are to
be inserted. Once these locations are determined for each

Figure 16: Matrix Multiply after Loop Distribution and
Nest Extraction

variable, a corresponding function is inserted into statement
graph at each location. Now the conversion of YIL to SSA
form is completed by creating a new variable name for each
variable at every definition site. This name is used in sub-
sequent references to the variable until the point where the
variable is again redefined.

Now induction variable analysis is performed and higher-
level loop constructs are created in a form suitable for the
analysis that occurs later in the High-Order Transformation
phase of the back-end. Finally, the loop table entries are
filled in and all the inductive loops of the program are nor-
malized.

4 . 5 Updating YIL

The completion of these steps renders the program into a
state suitable for the apphcation of dependence analysis and
loop distribution which recasts the program as a series of
maximally distributed loop nests, annotated with their con-
comitant dependence information encoded as distance vec-
tors. The way is thus cleared for the loop transformation
phase. An obvious side effect of rendering the program into
this form, indeed one that is encountered with each phase
of the transformation process, is that many components of
the YIL data structures become out of date. Two obvious
examples are the data dependence information and the SSA
representation. Indeed, one of the challenges of using SSA is
keeping it up to date as the program is transformed. Rather
than rebuild all the use-def chains that comprise SSA after
each optimization step, we update the chains incrementally.

79

Incremental rebuilding is possible for transformations that
are localized and that do not add control flow (which could
require new phi function placement).

For example, in the loop normalization step, basic in-
duction variables in the loop body are replaced with their
normalized form, I ¢ (7¢ - I) * bump q- init, where f¢ is
the loop controlling induction variable, bump is the linear
increment of f, and ini~ is the initial value of f. Although
bump and ini~ may be arbitrarily complex symbolic expres-
sions, they must be invariant in the loop body, and therefore
have a single definition outside the loop that dominates the
loop entry. This makes it straight forward to update SSA
incrementally as loop normalization proceeds, since all the
new uses of bump and ini~ have well-defined use-def rela-
tionships. Further, no extra phi functions are needed in the
loop body, even if it contains control flow, because the added
uses are all invariant in the loop.

This same type of reasoning can be applied to dead code
removal and GCP, since these optimiaations can only re-
move uses from the SSA structure. By treating the use-def
chains as linked lists of references, dead entries can easily
be removed from the middle of the list. As a result of these
considerations, the current production version of TOBEY
only builds the complete SSA representation once per com-
pilation unit.

4 . 6 S u i t a b i l i t y f o r R e s t r u c t u r i n g O p t i m i z a -

t i o n s

The reordering of the iterations of multi-dimensional loops
is the central concern of restructuring compilers. This re-
ordering may be undertaken for several different ends, most
commonly the extraction of parallelism from programs or
the exploitation of reuse at some level of the memory hierar-
chy. In recent years a popular approach to this problem has
been the use of unimodular transformations, and YfL was
designed with this method in mind. The glL loop statement
has associated with it a unimodular transformation matrix,
of the appropriate dimensionality, and a vector containing
the loop index variables. The optimization routines of the
compiler, after judicious analysis, reflect their decisions in
the transformation matrix. It then remains to realize these
intentions in the form of a rewritten program. In order to
achieve this, it is necessary to modify the loop bounds and
any inductive subscript expressions used by the statements
in the loop body. The fact that this is a relatively straight-
forward task in our compiler, assures us that YIL is indeed
appropriate to its intended use.

How is this task accomplished? In essence, the required
changes reduce to the problem of rewriting a set of expres-
sions. The variables in which these expressions are rooted
have been transformed in a way that is readily derived from
the unimodular matrix. Given each of the original variables
and the expression, in terms of the new induction variables,
to which it is transformed, we must take the old expression
tree and replace each of its roots by the corresponding trans-
formed quantity. By keeping a mapping between the sym-
bolic registers corresponding to the new and the old formal
identities, it is simple to walk the old expression tree, and,
using the XfL gen routines, regenerate each XIL instruction
by replacing its inputs with the new values. When a com-
plete expression has been processed, the new formal identity
can replace the old in the appropriate field of the YIL state-
ment it originated from. Essentially the same technique can

be used to rewrite the XfL version of the program.

4 . 7 A d v a n t a g e s o f h a v i n g X I L e m b e d d e d

From the preceding discussion, it may be inferred that the
manner in which YIL was derived as a higher level abstrac-
tion of XfL, was driven by the exigencies of product develop-
ment. To some extent this is true, but we would argue that
in fact YfL steers a middle course between the two possible
alternatives; namely to perform the high order transforma-
tions on the lower level XIL, an option which was considered,
or to design a totally new, high level intermediate represen-
tation.

In fact, many benefits accrue from having the lower level
representation available. Firstly, the flexibility exists to per-
form lower level optlmizations as required. In some cases it
is beneficial to reorder the XfL components of an operation
in order to break dependences. We refer to this as node
splitting. Since in FIL we have full access to the underlying
loads/stores, complete with a defined order of evaluation,
we are able to perform such a transformation by updating
the underlying XIL representation. Secondly, the ability to
reuse existing code is demonstrated in the dependence ana-
lyzer implementation. Allusion has been made above to the
fact that array index information is stored in the alluse and
alldef tables, accessed from a field in the statement graph.
In fact the indexfield in this structure (Fig 14) is the head of
circular linked list of statement records identical to those in
the main body of the statement graph. Hence, every array
index statement has a pointer to its underlying computation
tree. Given this fact, we were able to exploit the existence of
a significant piece of code in the existing TOBEY compiler,
which deals with manipulation of array index expressions.
Following the approach used in the Reassociation optimiza-
tion, wherein expression trees are built in order to apply
the associative laws of arithmetic, we build a symbolic ex-
pression for each array subscript contained within a loop.
The expression list consists of the canonical form, in XIL
representation, of the subscript expression. Typically the
expression list for a subscript will consist of an add, of a
positive or negative constant value to a register expression
which may or may not represent the loop index variable.
For ease of reference later on, we annotate those expression
lists which do contain induction variables by replacing the
canonical register representing the induction variable, with
a pointer to the alldef entry for this subscript in the SSA of
the program. A pointer to the expression list itself is stored
in the node in the statement graph for the index statement.
It is these expression lists, then which are manipulated by
the dependence tester to form the equations whose solutions
provide the distance vector information.

5 E x p e r i e n c e s

It may be argued that the true test of flexibility in an il is
the ease with which unanticipated features may be added to
the compilers it supports. By this touchstone both XIL and
YIL prove golden. For each of them, we give an example to
bolster this assertion.

When XIL was first mooted it seemed that 32-bit ad-
dressing and 32-bit integer data would be sufficient for com-
puting needs into the distant future. The compilers were de-
signed, and constructed with an implicit understanding that

........... 80

the GPRs of the virtual machine were 32 bits long. When 64-
bit machines began to appear (Mips R~O00, PowerPC 620),
it became necessary to consider support for them, and for
64-bit language constructs compiled for 32-bit architectures.
This support has been successfully added to XIL. When we
added 64-bit support, we had two main goals. First, we
wanted to minimize the impact on existing code in both the
front ends and TOBEY itself. Secondly, we wanted to hide
the 64-bit implementation from the front ends so that they
need not be aware of the size of gprs during il generation.
Thus, for them 64-bit data becomes just a language issue.
By having front ends always think of registers as 64-bits and
adding a few more opcodes to work on these registers, we've
largely been able to achieve these goals. Now, as the ills be-
ing generated, if the actual target is 32-bits, we detect where
64-bit data is actually used and modify the il to represent
this with 2 symbolic registers. One side benefit of this effort
has been to allow us to support 64-bit data in our existing
compilers on 32-bit machines.

Our data structures for representing the il have served
us well in this effort. The way we represent registers did not
change. Our integer values are stored in our Literal Value
Table which was widened to handle 64-bit values. This ab-
straction minimized the impact to those few places that ac-
tually manipulate such values at compile time (e.g. constant
folding).

FIL was developed to allow TOBEY to perform mem-
ory hierarchy optimizations, principally tiling, though the
possibility of automatic extraction of parallehsm for shared
memory machines was entertained. At a later time, there
was some interest in having the compilers produce code for
a vector architecture. This capability was prototyped in the
YIL based transformer. Although the extraction of vector
parallelism has much in common with the optimizations that
YIL was designed for, it also requires a more detailed rep-
resentation of the operations of the machine. Fortuitously,
the fact that XIL is embedded in YIL allows for the required
level of detail.

A further example of the useful co-existence of XIL and
YIL is the predictive commoning [15] optimization of TO-
BEY. While initially prototyped in XIL with some degree
of success, it was felt that this optimization could be more
optimistic when applied at the level of YIL. Consider the
following loop:

DO i = 2, i00
a(i) = b(i - 1) + b(i) + b(i + 1)

END DO

Notice that the reference b(i + 1) in iteration I becomes b(i)
in iteration I + 1 and b(i - 1) in the iteration after that.
Predictive commoning can exploit this reference pattern by
transforming the loop as follows:

t l = b(1) ! Initialize temps
~2 = b(2)
DO i ---- 2,100, 3 ! Unroll by 3

t3 = b(i -6 1) ! Load the leader
a(i) ---- t l + t2 + t3

a(i + 1) = t2 + t3 + t l ! Cycle left by 1
t2 = b(i + 3)
a(i + 2) = t3 + t l + t2 ! Cycle left again

END DO

Note that the original loop has 9 loads every 3 iterations,
while the transformed loop has only 3. Note also that the

optimization involves both high and low level transforma-
tions: at the high level, the loop is unrolled 3 times; at the
low level, the references to b are replaced by references to
the temps.

Predictive commoning is applied in three steps. In the
first step, the YIL representation of the loop is used to search
for opportunities - YIL make this easy because subscripts are
represented explicitly. The second step applies cost/benefit
analysis to the opportunities discovered in step 1, and de-
termines the unroll factor. Again, YIL makes this easy since
the unroll factor is simply a parameter in the nest record.
Finally, the transformation is applied by rewriting the un-
derlying XIL of the loop and its body. Here the canonicity
property of XIL is used to identify the references to b so that
they can be replaced efficiently.

6 F u t u r e D i r e c t i o n s

The evolution of YIL thus far has demonstrated the fea-
sibility of performing high order transformations at other
than the source language level. YIL is a high level inter-
mediate representation yet it easily exploits the details con-
tained in a lower level form. The Predictive Commoning op-
timization described in the previous section, demonstrates
this nicely. Moreover, this optimization, which can be done
equally well on either X[L or YfL, exemplifies a key topic
for further study in this area, namely to what extent could
existing optimizations exploit the type of information avail-
able only in YIL. In particular, late optimizations such as
software-pipelining and scheduling require good dependence
information for optimal performance. Unfortunately, by the
time these phases run the XIL is at a very low level: address-
ing trees have been linearized, and the canonical symbolic
registers may have been replaced by non-canonical hardware
registers. As a result, it is difficult to extract detailed de-
pendence information. In contrast, the dependence informa-
tion acquired from the YIL representation of the program is
highly precise, since at that time all registers are canonical
and subscripting is represented explicitly.

The challenge is to propagate the high-level dependence
information into XIL so that the late low-level optimiza-
tions of TOBEY can take advantage of it. This task is made
more challenging by the fact that YIL is used early in the
compilation phase; the program can look radically different
by the time it reaches the scheduler. We have thought of
tagging the XIL load and store references with the depen-
dence information gleaned from YIL, but care must be used
to preserve the canonicity of the references. If canonicity
is not preserved, many intermediate optimizations may be
partially or completely defeated. We have also thought of
tagging the loop latches with summary information about
the dependences in the loop; this approach is less precise
but may still allow some optimizations to benefit.

7 C o n c l u s i o n

The rapid pace of competitive hardware development, has
meant that a good compiler must address not only the classi-
cal optimizations, but must also be capable of exploiting the
architectural features of the most high performance super-
scalar machines, through techniques such as loop restruc-
turing, instruction scheduling and instruction and data pre-
fetching. We feel that the TOBEY optimizer has maintained

81

a competitive edge with respect to performance on a vari-
ety of target architectures. Moreover, the ability to host a
variety of source languages has not been sacrificed; on the
contrary, it has been expanded with the addition of C + + to
the three already existing. This success is due in no small
part to the design of the intermediate representation, XIL: it
allows for the addition of new front ends with relative ease; it
shields those front ends from the specifics of the multiplicity
of machine architectures which it targets; it facilitates the
application of the classical optimizations in order to pro-
duce highly optimal scalar code; and it was easily extended
to permit the array and loop analyses which feed the higher
level loop optimizations.

8 R e f e r e n c e s

R e f e r e n c e s

[1] IBM RISC System/6000 Technology, SA23-2619, IBM
Corporation.

[2] Wall, D. Experience with a software defined machine
architecture. In ACM Transactions on Programming
Languages and Systems Volume 14, no 3 July 1992

[3] Strong, J., Wegstein, J., Tritter, A., Olsztyn,J.,
Mock,O. and Steel,T. The problem of programming
communication with changing machines: A proposed
solution. In Communications of the ACM, Aug 1958,
pages 12-18 and Sept 1958. pages 9-15

[4] Blelloch, G.E. and Chatterjee, S. Vcode: a data par-
allel intermediate language. In Proceedings of Third
symposium on the Frontiers of Massively
parallel computation. 1990, pages 471-80

[5] Tjiang, S., Wolf, M., Pieper, K. and Hennessy, J.
Integrating scalar optimization and parallelization In
Languages and Compilers for Parallel Computing
Fourth International Workshop 1992, pages 137-51

[6] Wolf, Michael E. and Lain, Moniea S. A Loop Trans-
formation Theory and an Algorithm to Maximize Par-
allelism. In Journal of Parallel and Distributed
Programming October 1991

[7] Wolf, Michael E. and Lam, Monica S. A Data Lo-
cality Optimizing Algorithm. In Proceedings of ACM
Sigplan Conference Toronto, June 1991

[8] Banerjee, Uptal. Unimodular Transformations of
Double Loops. In 3rd Workshop on Languages and
Compilers for Parallel Computers

[9] Ferrante, Jeanne., Ottenstein, Karl J. and Warren, Joe
D. The Program Dependence Graph and its use in Opti-
mization. In ACM Trans. on Programming Languages
and Systems

[10] Cytron, Ron., Ferrante, Jeanne., Rosen, B K., Weg-
man, Mark. and Zadeck, F K. Efficiently computing
static single assignment form and the control depen-
dence graph. In ACM Transac t i ons on Progrnm~aing
Languages and Systems

[11] Aho,Alfred V., Sethi,Ravi. and Ullman,J.D. Compilers:
principles, techniques and tools. Addison-Wesley

[12] Nori,K.V., Ammann,U., Jensen, K., Nageli, H.H. and
Jacobi, Ch. The PASCAL P compiler: Implementation
notes. In Technical Report iO ETH Switzerland Re-
vised October 1976

[13] Goff, Gina., Kennedy, Ken. and Tseng, Chau-Wen.
Practical Dependance Testing. In Proceed ings of ACM
Sigplan Conference Toronto June 1991

[14] O'Brien,J.K. and O'Brien, Kathryn M. The Implemen-
tation of Locality Optimizations in the RS/5000 FOR-
TRAN Compiler. In The Proceedings of the 1992
IBM Programming Languages ITL. Toronto, June 1992

[15] O'Brien,J.K. et al Advanced Compiler Technology
for the RISC System/6000 Architecture In IBM RISC
System/6000 Technology, SA23-2619, IBM Corpora-
tion.

[16] Auslander, Marc. and Hopkins, M. E, An Overview o/
the PL.8 Compiler. In Proceedings of ACM SIGPLAN
Conference Boston, June 1982, pages 22-31

[17] Hopkins, M.E. Compiling for the RT PC Romp. In IBM
RT Personal Computer Technology SA23-i057

82

