
Global Data Flow Analysis and Iterative Algorithms

JOHN B. KAM AND JEFFREY D. ULLMAN

Princeton University, Princeton, New Jersey

ABSTRACT Kildall has developed data propagation algorithms for code optimization m a general
lattice theoretic framework. In another directmn, Hecht and Ullman gave a strong upper bound on
the number of iterations required for propagation algorithms when the data is represented by bit
vectors and depth-first ordering of the flow graph is used The present paper combines the ideas of
these two papers by considering conditions under whmh the bound of Hecht and Ullman applies to
the depth-first veremn of Klldall's general data propagation algorithm. It is shown that the following
condition is necessary and sufficient Let f and g be any two functions which could be associated
with blocks of a flow graph, let x be an arbitrary lattice element, and let 0 be the lattice zero Then
(*) (Vf,g,x) [fg(0) > g(0)A f(x) /~ x] Then it is shown that several of the particular instances of
the techniques Kildall found useful do not meet condition (*)

KEy WORDS ANn PnaASES. code optimization, data flow analysis, reducible flow graph, semilat-
rice, depth-first search, constant propagation, available expressmns

CR CATEGORIES• 4.12, 5.24, 5.25

1. lntroductio~

Pecforming compile time optimization involves solving a class of problems each of which
can be dealt with in essentially the same manner. These problems, called "global data
flow analysis problems," involve determination and collection of information which is
distributed throughout the program.

The interval approach [1-4, 9, 12] has been used to solve this class of problems when
the flow graph of the program has a property called "reducibility." A second approach,
using iteration of a data propagation step, has recently appeared in the literature [10, 13].
Its origins go back to at least 1961, when it was used by Vyssotsky m a Fortran compiler
[14]. Developments regarding this approach, which we shall term the "iterative ap-
proach," have taken two directions. First, Klldall [10] expresses the class of problems
which can be solved using the lterative approach in a very general lattice theoretic frame-
work. The bit-vector representation of data used in previous work on data propagation
is a special case of the techniques described in [10].

The second direction which research into iterative methods has taken is typified by [5].
There, considering only bit-vector represented data, it was shown that depth-first search
provided an efficient ordering of the nodes of a flow graph, and in fact d -.p 2 iterations
were sufficient for the usual kinds of data flow problems, where d, the loop Interconnected-
hess parameter of a flow graph, is the maximum number of back edges (according to any
depth-first spanning tree) in a cycle-free path. In practice, d is often 3 or less [11].

In the present paper we provide a necessary and sufficient condition for the bound
of [5] 1 to apply to Kildall's lattice theoretic formulation of flow analysis problems when

Copyright © 1976, Association for Computing Machinery, Inc General permission to republish,
but not for profit, all or part of this material is granted provided that ACM's copyright notice is
given and that reference is made to the publication, to its date of issue, and to the fact that reprinting
privileges were granted by permission of the Association for Computing Machinery
This work was supported by the National Science Foundation under Grant GJ-1052.
Authors' address: Department of Electrical Engineering, Princeton University, Princeton, NJ 08540

Actually, for technical reasons, we use the bound d --p 3 instead of d + 2.

Journal of the Aa~oclatlon for Computing Machinery, Vol 23, ~o. 1, January 1976, pp 158-171

Global Data Flow Analysis and Iteratwe Algorithms 159

dep th- f i r s t o rder ing of t he nodes is used. W e t h e n see t h a t t he app l i ca t ions of his al-
g o r i t h m sugges ted b y Kildal l do no t m e e t t he cr i ter ion. I t is possible, however , t h a t or-
der ings o the r t h a n dep th - f i r s t m a y m a k e i t e r a t i on efficient in these cases, a n d we do no t
wish to imp ly t h a t Ki lda l l ' s t echn iques are inefficient u n d e r all possible c i r cums tances

2. Background

A flow graph is a t r ip le G = (N,E,no), where :
(1) N is a f ini te se t of nodes.
(2) E is a subse t of N X N called t he edges. T h e edge (x,y) enters node Y and leaves

node x. We say t h a t x is a predecessor of y, a n d y is a successor of x.
(3) no in N is t he initial ~ode. T h e r e is a path 2 f rom no to eve ry node.
A depth-first spanning tree 3 (D F S T) of a flow g r a p h is a t r ee w i t h order on t h e sons

of any node (o rde red t r ee) g rown b y A lgo r i t hm D [7].

ALGORITHM D: DFST of a flow graph G
Input . Flow graph G with n nodes.
Output. (1) A DFST for G, (2) a numbering rPostorder of the nodes from 1 to n indicating the

reverse of the order in which each node was last vmited.
Method.
[DI] The root of the DFST is the initial node of G. Let this node be the node m whmh m vmlted in

step D2 ~ will be used to number nodes in rPostorder Initially, ~ ~-- n.
[D21 [visit node m] If node m has a successor x not already on the DFST, make x the rightmost

son of m so far placed in the spanmng tree, adding edge (re,x) to the tree. If such an x is
found, it becomes the node m to be visited next by repeating step D2 on x. If there is no such
x, go to step D3.

[D3] Let m be the node being visited,
rPostorder (m) ~-- i,
~ ~-.-~- 1;
i f m is the root then h a l t
else execute step D2 on the father of m

Le t G = (N,E, no) be a flow g r a p h a n d le t T = (N ,E ') be a D F S T for G. T h e edges
in E fall i n to t h r e e classes:

(1) Edges which r u n f rom a node to a p roper d e s c e n d a n t are called forward edges. 4
(2) Edges which r u n f rom a node to a n ances to r (inc lud ing i tself) are cal led back

edges.
(3) Edges wh ich r u n b e t w e e n nodes u n r e l a t e d b y t he ances to r -de scendan t r e l a t i on

are called cross-edges.
Observatwn 1. Le t G = (N,E,no) be a flow g r a p h a n d let T be a D F S T of G. Le t a

and b be nodes in G. T h e n (b,a) in E is a b a c k edge if a n d only if r P o s t o r d e r (b) .> rPos t -
o r d e r (a) .

Observation 2. Let G = (N,E,no) be a flow g r a p h and T be a D F S T of G. T h e n every
cycle of G con ta ins a t leas t one b a c k edge.

Defin~twn. Le t G = (N,E,~o) be a flow g r a p h a n d T = (N ,E ') be a D F S T of G
We define d(G,T), t h e loop connectedness of G with respect to T, to be t he la rges t n u m b e r
of b a c k edges found in a n y cycle-free p a t h of G. Often, when T is unde r s tood , we shal l
wr i te d(G) for d(G,T). For t h e wide class of flow g raphs k n o w n as " r educ ib l e " flow
g raphs [3], i t h a s been shown [6] t h a t d(G,T) is in fac t i n d e p e n d e n t of which D F S T T
is chosen

Apath f r o m n l t o n ~ m a s e q u e n c e o f n o d e s n ~ , n ~ , .. , n ~ s u c h t h a t (n,, n,+~) is in E for 1 < ~ <
k - - 1. The path length ls k -- 1 Ifn~ = n~andk > 1, t h e p a t h l s acycle.

For a qmck definition, a tree m a flow graph such that no node has more than one predecessor The
terin root of a tree m a synonym for initial node, son IS used for successor, and father for predecessor.
Ancestor and descendant are terms used for the reflexive and transitive closure of the father and son
relations, respecttvely.
4 Some authors call edges in E' tree edges, reserving "forward" for edges not in E

160 J .B. KAM AND J.D. ULLMAN

Having introduced the terminology needed for flow graphs, we now proceed to the
second area in which a series of definitions are necessary, namely latt ice algebra. A semi-
lattice is a set L with a binary meet opera t ion /~ such tha t for all a, b, and c in L:

a / ~ a = a (idempotent) , a / ~ b = b A a (commutat ive) ,
a / ~ (b A c) = (a A b) /~ c (associative).

Given a semilattice L and elements a, b E L, we say tha t a _> b if and only if a A b =
b, a ~ b if and only if a _> b and a ~ b. We also extend the notat ion of the meet opera-
tion by saying ^~<,<~x, -- x~/~ x2 A - ' " A x~.

A semilattice L is said to have a zero element 0 if for all x E L, 0 A x = 0. L is said
have a one element 1, if for all x E L, 1 A x = x. We assume from here on tha t every
semilattice has a zero element, but not necessarily a one element.

Given a semilattice L, a sequence x,, x2, • • • , x~ of elements of L is said to be a chain
if for 1 _< i < n w e h a v e x , > x,+,. L i s s a i d to be bounded if for e a c h x E L there
is a constant b, such tha t any chain beginning with x has length at most b,.

If L is bounded, then we can take meets over countably infinite sets if we define ^,es x,
where S = {x,, x~, . - . }, to be l im~. , ^,<,<~ x,. The fact tha t L is bounded assures us
tha t the l imit does exist.

3. Global Data Flow Problems

Following [10], we t reat da t a flow analysis problems as follows. We choose a semilattice
L and a t tach to its elements a "meaning," normally da ta which could reach a point in
a flow graph. We associate with each node of the flow graph a function f from L to L
which intuit ively represents how da ta is transformed when control passes through the
block of code represented by tha t node.

In what follows we find i t necessary to consider the set of all functions which could be
associated with some node of a flow graph. That is, having selected a semilattice L and
an intended meaning for lat t ice elements, the admissible functions ate those which reflect
the action of straight-line blocks of code on elements of L. We abstract the notion of
such a set of functions in the following definition.

Given a bounded semilattice L, a set of functions F on L is said to be an admissible
set of functions for L if and only if the following conditions are satisfied:

IF1] E a c h] E F distributes over A , i.e. for any x and y in L, f (x A y) = f (x) A f (y) .
[F2] There exists an ident i ty function e in F such tha t for all x E L, e(x) = x.
[F3] F is closed under composition, i.e. f and g in F impliesfg E F, where for all x E L,

[fgl(x) -- : (g (x)) .
[F4] For each x E L, there exists a finite subset H c F such tha t x = ^serif(0) .
Conditions [F2] and [F3| reflect obvious properties of straight-line blocks of code.

Tha t is, [F3] comes from the fact tha t the concatenation of two blocks is a block, and
[F2] comes from the reasonable assumption tha t a block can be empty. [F1], on the other
hand, is not universally true. I t is used in [10] to prove the uniqueness of the output to
Kildall 's algorithm. The justification for condition [F4] is the following lemma.

Observatwn 3, Let L be a bounded semilattice and let F be a set of functions on L
such tha t F satisfies [F1] with respect to L. Then for any finite subset J ~ L,

f (^ x) = ^ f(x).
zEJ =EJ

Gwen a bounded sem~lattzce L and F a set of functions on L satisfying [F1]- LEMMA 1.
[F3], ~f we let

L' = {x l3 fx , . . . , f ~ E F and x -- ^ f , (0) l ,

then F is an admissible set of funchons for L'.
PROOF. Since any subset of L, which is closed under A , satisfies the idempotent,

Global Data Flow Analysis and Iterative Algorithms 161

commutative, and associative properties with respect to A and hence is a semilattice,
it suffices to show that F satisfies [F1]-[F3] with respect to L p if F satisfies [F1]-[F3] with
respect to L.

[F1] and [F2] are trivially satisfied by F with respect to L p, because L' is a subset of
L. Assume F does not satisfy [F3] with respect to L', i.e. there exists x E L' and f, g E F
such that fg(x) E L - L'. Wewant todrawa contradiction, x E L' implies x = ^h~, h(0)
for some finite H c F. Thus

fg(x) = fg(^ h(0)) = ^ fgh(O) (by Observation 3).
hEH hEH

Hence fg(x) should have been included in L' by definition. []
Some additional useful observations are the following.
Observation 4. Given bounded semilattiee L and associated F, for all f E F and

x, y E L, x > y impliesf(x) ~ f (y) .
Observatwn 5. For any bounded semi]attice L and any countable J ~ L, if for all

x E J w e h a v e x > y, then^~e~x > y.
We now introduce the basic formalism for our expression of data flow problems. A

data flow analysis framework is a triple D = (L ,A ,F) where L is a bounded semilattice
with meet A, and F is an admissible set of functions for L. A partzcular instance of D =
(L , A , F) is a pair I = (G,M) where (1) G = (N,E,no) is a flow graph and (2) M : N -~
F is a function which maps each node in N to a function in F.

Convention. Given a particular instance I = (G,M) of D = (L , A , F) , if the nodes
of G are labeled by rPostorder with respect to a DFST of G, we associate the nodes of
G with their labels. We let f, denote M(i) , the function in F which is associated with
node ~. Let P = 11, i2, . . . , i~, im+l be a path in G. Then we may use f~(.) for
f,~ (f,~_~ (. . - f ,~ (.) . . .)). Note thatf,~+~ is not in the composition. If m = 0, then
fe = e, the identity function.

4. The Depth-First Version of Kildall's Algomthm

We now give an iterative algorithm to find what is essentially the maximum solution to
the equations implied by an instance of a data flow problem. I t is essentially the algorithm
of [10] but with the important difference that the nodes are visited in turn in the rPost-
order sequence. The following definitions are essential:

PRED(3) = {q] q is a predecessor of j}.
PRED*(j) = {q i q E PRED(3) and q < j in reostorder, i.e. (q,3) is not a back edge}.

ALGORITHM K
Input. A partmular instance I = (G,M) of data flow analysis framework D = (L,F), where G =

(N,E,no) is a flow graph with k nodes. Take N to be I1, 2, ... , kl, and assume the nodes
a r e numbered by rPostorder Execute the program of Figure 1

Conventwn. We say that n iterations of Algorithm K have been applied, where n > 1,
if the for loop beginning at step 1 has been executed once and the for loop beginning
at step 2 has been executed n - 1 times.

THEOaEM 1 [10]. Given a particular instance I = (G,M) of D = (L , A , F) as input,
Algorithm K will eventually halt. At the completion of Algorithm K,

A[i] -- ^ r e (o) , 1 < i < k,
PEPATH($)

where P A T H (I) = {P I P ~s a path in G from node 1 to node ~}. []
LEMMA 2. Given instance I = (G,M) of data flow analyszs framework D = (L , A , F) ,

and T a D F S T for G, after the n-th iteration of Algorithm K,

A[i] = ^ re(o) , 1 < I < k,
PEPATH(n)($)

102 J.B. KAM AND J.D. ULLMAN

begin
temp e l emen t of L,
A array [1 k] of e l emen t s of L,
j in teger , change Boolean;
A[I] = O,

Step 1. for j = 2 un t i l k do A[j] = ^~,VR~O*(,)Jq(A[q]);.
change = t rue
while change do

begin
change = false,

Step2 f o r 2 = 2 u n t i l k d o
begin

temp = %,va~v¢~)fq(A[q]),
i f temp ~ A[j] t h e n

begin
change = true,
A[3] = temp

end
end

end
end

FIo. 1. P rogram for Algomthm K

where PATH(^) (i) = { P I P E P A T H (z) and P contains at most n -- 1 back edges
according to the rPostorder z~duced by T}.

PROOF. The proof is by induction on n, the number of iterations of Algorithm K
already completed.

Basis (n = 1). We proceed by induction on the rPostorder 2 of the nodes of G.
Baszs (2 = 1). I t is obvious that the trivial path is the only element in PATH(Z)(1)

because any edge entering node 1 has to be a back edge. Thus, A[1] should equal e(0) =
0. As we assign A[1] := 0 in the first iteration, the basis is done.

Inductwn step (j > 1). By Observation 1, all and only the back-edge-free paths from
1 to 3 can be written as (P,3}, ~ where P is a path from 1 to q E PRED*(j) . By the in-
duction hypothesis, A[q] = hpCp.~Tt~(l)(q)fp(0) for each q E PRED*(j) . Step 1 of Al-
gorithm K assures

A[j] = ^ fq(A[q]) = ^ A f(p,,>(O) = ^ f0(O).
q6 PRED*(J) qE PROD* (./) P6PAT/~ (I) (q) QEPATH(I) (y)

This completes the induction on .7 for the case n = 1.
Induction step (n > 1). We proceed by induction onff again.
Basis (2 = 1). I t is obvious that 0 = ^pepAT~(')(z)fP(0) __> ^ ~ePAT~(,)(1)fP(O).

Thus ^PCeAT~(-)u)fP(0) = 0. After n iterations of Algorithm K, A[1] is still assigned
0, so A[1] -- ^PePATH(')(1)f~,(0) after the nth iteration.

lnductzon step (3 > 1). Every path Q in PATH(')(3) is of the form (P,q) where
either:

(i) q E PRED*(j) and P E PATH(') (q) , or
(ii) q E P R E D (j) - PRED*(j) and P E PATH(~-~)(q).

That is, (ii) represents the case where edge (q,y) is a back edge, i.e. q _> 2, and (i) repre-
sents the opposite case, where q < .7. When in Algorithm K temp is computed for j in
the nth pass, A[q] will be

(a) ap£pATH(a)(q) f e (0) if q < j, i.e. case (i) applies to q, and
(b) ^P~eATn(--X)(q)fp(0) if q > 3, i.e. case (ii) applies.

Note that part (a) follows by the inductive hypothesis for j and (b) follows by the
inductive hypothesis for n.

From the above it is immediate that on the nth pass temp is set equal to
^~eexvH(-)o) f~(0), and thus A[.7] is given this value if it does not already have it. []

We use (P, 3) to denote a pa t h consis t ing of the nodes of p a t h P followed by 3. Similar, hopeful ly
t r a n s p a r e n t no ta t ion will be used th roughout .

Global Data Flow Analysis and Iteratwe Algomthms 163

LEMMA 3. Gwen dnstance I = (G,M) of framework D = (L , A , F) , and a fixed rPost-
order for G, Algomthra K will halt after no more then n iteratwns i f and only i f for each node
j C N, and for each path P E P A T H (g) there exist Px, " " ,P~, each in P A T H (~-1) (j) ,
and fp(O) > ^l_<j<~fp,(0).

PROOF. (i f) . In this case by Observation 5 we have

^ f Q (0) = ^ f ~ (0) ,
QEPATH(n) ($) QEPATH(n-1) (3)

so temp = A[3] will always hold on the nth pass of Algorithm K, and change will be
false at the end of that pass.

(only if) . Suppose that Algorithm K halts after the ruth pass, m < n. Then for ar-
bitrary node 3 and P E PATH(3) we must have fp(0) >_ ^QeeATrI(~--~)(j)fQ (0). We
must show that there is a finite subset S of PATH"-~(j) such that fp(0) > ^QesfQ(O).
Enumerate PATH(m-X)(3) as Q~, Q~, . - . in any order, and let x, = ^L<~<_,f~,(O). Surely
x, > x,+~ for all ~. By the boundedness condition there can on]y be a finite number of
d's for which x, > x,+~. Let d0 be the last and let S = {Q~, Q:, . . - , Q,0}. Then
^~e~*TH(,~-~)(~) f~(0) = ^~esf~(0), SO S ~s the desired finite subset.

5. The Mare Result

We are now ready to characterize those data flow analysis frameworks for which depth-
first search yields "rapid" convergence of Kildall's algorithm.

THEORE.~I 2. Let D = (L , A , F) be a data flow analyses framework. The~ Algomthm
K halts after at most d(G) + 3 dteratw~s 6 for every instance I = (G,M) of D and every
rPostorder definable for G = (N,E, t~) , ~f and o~dy , f D satisfies condition (*) :

(VL g ~ F)(Vx ~ L)[f.q(0) > g(0) A f (x) A x]. (,)

Formally, the theorem can be stated:

(VD){[(VI = (G,M) an instance of D)(Algori thm K
halts after at most d(G) + 3 iterations)] ~ (.)}

PROOF. ($f). By Lemma 3, it suffices to show that for each 3 E N and each path
P E PATH(?) , there exist paths P1, " ' ,Pro in PATH(n+2)(2) such that fe(0) _>
a~<,_<mfp,(0). We want to prove the above by induction on k, the number of back
edges contained in P = /1, v~, - . . , ~r, where dt = 1 and ir = 2.

Basds(O < k < d + 1). This case is trlvial; lust let m = l a n d P ~ = P.
Inductwn step (k > d + 1). Since P contains more than d + 1 back edges, it cannot

be cycle free by definition of d. Let us pick the highest number a such that ~ = ~b for
some b > a. We clmm that the path P~ = ~, • •. , ia must contain at least oneback edge,
for the path i,+x, -- . , ~r is cycle free and thus has at most d back edges. (in, in+l) may
be a back edge, but P is assumed to have more than d + 1 back edges, so the claim
follows. The path P2 = d~, • , db contains at least one back edge by Observation 2.
We let P3 = ib, - . . , dr, and let P4 be a back-edge-free path from node 1 to node i, as
shown in Figure 2. I t is a property of DFST's that P4 exists, since P4 may follow the
tree.

Now we let x = fp,(O).

fp(O) = fp~ (fe~ (fP, (0))) by definition

>_ fP3(fe~(O) A fP2(X) A x) by assumption

= f~(fp~(O) A fp2 (fp , (O)) A f p , (O))

= fpj~,~(o) A f p ~ f ~ f ~ , (o) A f~,f~,(0)
= fp,(O) A fP,(O) A fp"(O),

6 Recall that d(G) stands for d(G,T) where T is the DFST defining the rPostorder m question

164 3.B. KAM AND J.D. ULLMAN

PI

FzG 2. Decomposition of psth P

G= T= I ~

n + l 2

_ ~ L ~ . . / " ' ~

• n + 2 f

o) FLOWGRAPH OF G b) A DFST FOR G SHOWING r POSTORDER
NUMBERING

Fie 3 Counterexsmple withj~(x) ~ f(x) A x

/ / f n+l

/ T .-

iN,r--,

a) FLOW GRAPH OF G b) A DFST FOR G SHOWING r POSTORDER
NUMBERING

FZG 4. Counterexample wzth •(x) _> f(x) /k x

where P ' = il, . . . , ia,~b+l, " ' " , i , , P " = (P4,~a+l, " " , ~b, ib+l, "'" , i,}, P " = {P4,
~b+1, " " " , ~,}. P ' , P " , and P " are each pa ths in G and contain a t most k -- 1 back edges.

T h e induct ion step follows immedia te ly .
(only zf) . Suppose the condi t ion (*) is not satisfied, i.e.

(3 x E L) (3] , g E F)[fg (O) > g(O) A / (x) A x].

Global Data Flow Analysis and Iterative Algorithms 165

By condition [F4] of F being admissible for L, there exist hi, h2, . ." h~ E F such that
x = ^1<,_<~ h, (0). We have two cases to consider.

Case 1. fi(x) ~ f (x) A x. The particular instance I = (G,M) as shown in Figure
3 will do the job, where d(G) = 0. After the third iteration of Algorithm K we have
A[~ + 2] = x A f (x) A if(x), while A[n + 2] = x A f (x) after the second iteration.
Hence Algorithm K will take at least 4 > (0 + 3) iterations.

Case 2. fi(x) >_ f(x) A x. The particular instance I = (G,M) with the DFST of
G grown as shown in Figure 4 will do. We see d(G,T) = 2.

After the first iteration:

A[n + 2l = x

A[n + 3] = x

A In + 4] = x

A In + 5] = x

A In + 6] = 0

After the second iteration:

A In + 2] = x

A[n + 31 = x A f(x)

A [n + 4] = x A f (x)

A [n + 5] = x A g (0)

A[n + 6] = 0

After the third iteration:

A[n +

A[n +

A[n +

A[n +

2] = g(0) A f (x) A x

3] = g(0) A f(x) A x A #(x)

(by assumption) = g(O) A f(x) A x

41 = g(0) A f (x) A x

5] = g(0) A f (x) A x

afn + 6] = 0

After the fourth iteration:

A[n + 2] = g(0) A](x) A x

A[n + 31 = q(0) A f (x) A x A fg(O)

A[n + 4] = g(0) A f (x) A x A fg(O)

A[n + 5] = g(0) A f (x) A x

A[n + 6] = 0

After the fifth iteration:

A[n + 2] = g(0) A f (x) A x A fg(O)

A[n + a] -- g(O) A f(x) A x m fg(O) A fig(O)

A[n + 4] = g(0) A f (x) A x A fg(O) A fig(O)

= g(O) A](x) A x A fg(O) (by assumption)

Ain + 5] = g(0) A f (x) A x A fg(O)

A[n + 6] = 0

A[n + 2] = g(0) A f (x) A x after the fourth iteration and A[n + 2] = g(0) A
f (x) A x A fg(O) after the fifth iteration. By the hypothesis that (.) does not hold
for f, g, and x, we have g(0) A f (x) A x ~ g(O) A f(x) A x A fg(O). Thus Algorithm
K will take at least 6 > (d(G) + 3) = 5 iterations, and in fact, it does halt after six itera-
tions.

In general, any I = (G,M) with T' grown as shown in Figure 5 will take Algorithm
K at least 2d + 2 iterations before it halts. []

We have completed the proof of Theorem 2. Let us remind the reader that Theorem 2
does not make the (false) claim that unless (,) is satisfied for framework D, there is no
instance I = (G,M) of D for which Algorithm K takes at most d(G) + 3 iterations.
Formally, the false statement is:

(VD) (V instances I = (G,M) of D)
[Algorithm K converges in d(G) W 3 iterations ~ (,)] .

I t is also worth noting a few statements about a framework D = (L ,A,F) which are
equivalent to (*) and a few that are not. We leave the proofs to the reader.

166 J , B . K A M A N D J . D . U L L M A N

f
/ n+l

/
/

/ n+2

i Ift (..~
I
I ~ d+n+4 f I i
I
I f/

~ n + 2
Fi~. 5.

xn+3

• ~

" ~ d+.+l

d+n+2

D S F T T ' generalizing 1Figure 4(b)

Observatwn 6. (,) is equivalent to

(Vf E F)(Vx, y E L)[f(y) > y A f(x) A x]
and to

(Vf, g'E F)(Vx, y E L)~fg(y) _> g(y) /k f (x) /~ x],

and if L has a one element 1, to

(Vf, g E F)[fg(O) >_ g(O) A f (1)]
and to

(Vf E F)(Vx E L)~(z) >_ x A f (1)] .

Observahon 7. (,) Is implied by

(W E F)(Vx E L)[f(x) _> x]
and implies

(Vf E F)(Vx E L)[ff(x) ~ f(x) A x],

but is equivalent to neitheP of these statements.

6. Some Specific Data Flow Analysis Frameworks

In his paper [10], Kildall handles constant propagation by a global da ta flow analysis
fi 'amework CP = (L,A,F), where V = {X1, X2, " . . } for some infinite set of variable
names; C is equal to the set of all values assumed by variables; L is the set of functions
from finite subsets of V to C; 0 E L is the function which is undefined for all X,. The %

meet operation /k on L is set intersection3 Intuit ively, z E L stands for the information
about variables which we may assume at certain points of the program flow graph.
(v,c) E z implies the variable v has value c.

We define a notat ion for functions in F based on the sequence of assignment s tatements
whose effect they are to model.

(1) For each assignment s ta tement X := ~(Y1, " ", Y,~), m ~ 1, for X and Yi, "" ",

Recall t ha t a funct ion f - V -~ C is a se t of pairs (v,c) with v E V and c E C. We shall hencefor th
t r ea t members of L as subse t s of V X C.

Global Data Flow Analysis and Iterative Algorithms 167

Y,~ in V, there is a function f in F such tha t for z E L, f (z) = z' is defined by :
(i) For U ~ X, z ' (U) = z (U) if z (U) is defined, and z ' (U) is undefined otherwise.
(ii) z ' (X) is the value ~(cl, . . • , e~) if z(Y,) = c, for 1 < , < m, and z ' (X) is un-

defined otherwise.
We denote this function by (X := ~(Y1, " ", ym)).
(2) For each assignment s ta tement X := c, where c E C is a constant, the function

f in F is defined as in (1), but (ii) reads:
(i i) ' z ' (X) = e.

We denote this function by (X := e).
(3) For each assignment s ta tement X := Y, where X and Y are in V, the function

f i n F is defined as in (1), but (ii) reads:
(ii)" z'(X) = z (F) .

We denote this function by (X := Y).
(4) e E F, where e(z) = z for all z E L.
(5) If f, g E F, thenfg E F.
I t happens that the framework CP is not distr ibutive under the normal interpretat ion

of "values" [8]. We shall show here that CP does not satisfy (,) . Then we shall give an
interpretat ion of values for which CP is distr ibutive and show tha t (.) still is not satis-
fied.

THEOREM 3. CP, w*th the usual amthmetic ~nterpretat~on of "values," does not sat-
isfy (.) .

PROOF. Let x be {(A,3), (B,1), (C,2)} and let g be the composition of the functions
associated with the assignment s tatements: D := 1, E := 2, A := D + E, s i.e. g =
(A := D + E) o (E := 2) o (D := 1) . L e t f b e t h e f u n c t i o n (A := B -4- C). Then
f (x) = x, g(O) = {(A,3), (D,1), (E,2)}, and fg(O) = {(D,1), (W,2)}. Then fg(0)
g(0) A f (x) A z = {(A,3)}. []

In order tha t CP be distr ibutive it is necessary tha t operator symbols be given a free
interpretat ion (see [8]). That is, values are formulas involving integers or reals and the
operator symbols. The effect of applying m-ary operator <# to formulas Fi, F2, - • • , F, ,
is the formula ~o(F1, F2, • - • , Fro).

THEOREM 4. CP under a free ~nterpretatwn of operators does not satisfy (,) .
PROOF. The same proof as tha t for Theorem 3 goes through if we replace (A,3) in

x b y (A , 1 + 2) . []
We should observe that only Theorem 4 is significant, since the effect on nondistribu-

t ive frameworks of (.) not holding has not been investigated. Also, the same remarks
as we made here for the framework CP apply to the "s tructured par t i t ion" lat t ice of
[10l.

Now let us consider a case where (.) does hold. The usual bit vector common sub-
expression detection strategy can be expressed as the da ta flow analysis framework
CSE = (L , A , F) , where L is the set of bit vectors of length n. For x, y E L, x A y is
the bitwise product (logical AND) . The 0 element in L is the word of all O's. Fur ther-
more, L has a one element 1, namely the vector of all l ' s .

F consists of functions f which may be denoted (KILL, GEN>, where G l e n and K I L L
are each n-bit vectors, with G E N A K I L L = 0. For z C L, we define f (z) =
(z A ~ K I L L) V GEN; the symbols A , V, and-~ s tand for A N D (bitwise product) ,
OR (bitwise sum), and NOT (bitwise complement) , respectively.

We see tha t F is closed under composition, because given g = (KILL~,GEN~), f =
(KIL~ ,GEN2) , then fg = (KILL ' ,GEN') , where K I L L ' = [KILL~ A ~ G E N d V KILLs,
and G E N ' = [GEN1 A m KILL2] V GEN2.

(0,0) is the identi ty, and we leave dis t r ibut ivi ty for the reader to check.
Finally, given x E /~ we have x = (0,x) (0), so condition [F4] is satisfied.
THEOREM 5. The global opt,m,zation problem CSE satisfies condition (.) .

8 The use of infix rather than postfix notation should not confuse the reader

168

Step 1

J,B. KAM AND J.D. ULLMAN

begin
temp- e l e m e n t o f L;
A array [1 . k] of e l ements of L,
3 integer; change Boolean,
A h l = 0,
for 3 = 2 u n t i l /c do A[3] := i ,
change := t r u e ,
while change do

begin
change = :false,
for.] = 2 u n t i l k do

begin
temp ~ ^~.r~v~,)f~(A[q]);
i f temp ~ A[3] then

begin
change "~ true,
A[?] .= temp

end
end

end
end

FIG. 6 Program for Algorithm MK

PROOF. By Observation 6, i t suffices to show tha t if the / th bi t of the word
g(0) A f (1) is equal to 1, then the i th bit of the wordfg(0) is also equal to 1, where g =
(KILLi,GEN~) and f = (KILI.~,GEN2~.

The i th bi t of g(0) /~ f (1) is equal to 1 iff (1) the i th bit of GENi = 1, and (2) the
~th bi t of KILLs = 0. N o w f g = (K I L L ' , G E N ') , where G E N ' = (G E N A ~ K I L I a) V
GEN2. Since 1 in a bit of GEN2 implies 0 in the corresponding bit of KILLs, by (1) and
(2) either GEN~ A ~ K I L L 2 has the , th bit equal to 1 or GEN2 has the ~th bi t equa l to 1.
Hence the word fg(O) has the i th bit equal to 1. []

7. A Particular Case: When L Contains a 1 Element

If L contains a 1 element, we can apply a slightly modified version of Algorithm K to
achieve a bet ter t ime bound.

ALGORITHM MK
Input: A particular instanceJ = (G,M) of D = (L,A,F), where G = (N,E,no) is a flow graph with

k nodes and L contains a 1 element. Take N to be {1, 2, . . . , kl and assume the nodes are
numbered by rPostorder Execute the program of Figure 6.

Convention. We say tha t n i terations of Algori thm M K have been applied, where
n >_ 1, if the loop beginning at step 1 has been applied n times.

L:EMMA 4. Given instance J = (G,M) of data flow analysis framework D = (L , A , F) ,
where L contains a one element 1, and given an rPostorder for G, after the n-th Iteration of
Algorithm M K ,

A[j] = (^ fQ(0)) A (^ f~(1))
QE PATB(n)(3) QEXPATtI(n)($)

fl~r 1 < j ~ k, where X P A T H (~) (j) = {P I P is a path in G from an arbitrary node to
node 3, P contains n back edges, and the first edge in path P is a back edge}. I f X P A T H (~) (j)
=: ~ , we let

^ f q (1) = 1.
Q6XPATH(~)($)

PROOF. The proof is similar to tha t of Lemma 2, and we omit it. []
THEOREM 6. Given a particular instance J = (G,M) of framework D = (L , A , F) as

Global Data Flow Analysis and Iterative Algorithms 169

input, where L contains a one element 1, Algorithm M K will eventually halt. A t the comple-
tion of Algorithm M K ,

A[j] = ^ f~(O), 1 < 2 g k.
OEPATTU(3)

PaOOF. A direct consequence of Lemma 4 and Theorem 1. [:J
LEMMA 5. Gwen J = (G,M) of D = (L , / \ , F) , where L contains a one element 1, and

qiven an rPostorder for G, Algorithm M K will halt after no more than a ~terations i f f for
each node q in N and for each path P from node 1 to node q, there exist

(1) paths P1, • " , Pro, each going from node 1 to node q and containing no more than
n -- 2 back edges, and

(2) paths Qi, • • • , Ql, each of whwh zs a path from an arbitrary node to node q, such
that each path contains n - 1 back edges and the first edge in the path is a back edge satisfy-
ing the condition

re(o) = ^ fp,(O)A ^ fq,(1).
l < * < m l ~ , < z

PROOF. (,f) . Let

We must show tha t

^ f ~ (0) A ^ f ~ (1) .
Q ~P/~.TK(n--1) (3) Q E XPAT~i(n-- 1) ($)

^ f Q (o) A ^ f ~ (1) = x.
Q E PATH (n) (j) Q E XPATH (n) (3)

By hypothesis, for every Q C PATH(n~(j) we have fo(0) > x. For Q in XPATH(~)(3),
consider Q' formed by prefixing to Q a path from the initial node along the D F S T on
which the given rPostorder is based. Surely fq(1) > fo ' (0). But fq, (0) > x is given.

(only i f) . This par t is analogous to Lemma 3 and we omit it. []
THEOREM 7. Let D = (L , A , F) be a data flow analysis framework, where L contains a

one element 1. Then Algorithm M K halts after at most d(G) -~ 2 iterations for every instance
J = (G,M) of D and every rPostorder definable for G = (N,E,no) , i f and only i f D satisfies
condition (**) :

(Vf, g E F)(Yx ~ L)~g(0) > g(0) A f(1)]? (**)

Formal ly the theorem can be s ta ted:

(V D) { [VJ = (G,M) an instance of D) (Algorithm M K
halts after d(G) -4- 2 i terations)] ~ (**)}.

PROOF. (i f) . B~y Lemma 5, it suffices to show that for each node j E N and each
pa th P E P A T H (j) , there exist paths P1, • • • , P~ in PATH(d+1)(3) and paths Q1, • • ", Qt
in XPATH(d+I)(j) , where d = d(G), such tha t

re(o) > ^ :p,(O) A ^ :~,(1).
l_<,_<m , < , < z

We want to prove the above by induction on k, the number of back edges contained in P.
Bas i s (O_< k < d). This case is trivial; just l e t m = 1, l = 0, andP1 = P.
Induction step (k > d). Since P contains more than d back edges, the pa th P =

il, . . . , in must contain a cycle. Let us pick the highest number a such tha t i , = ib for
some b > a.

Case 1 (The pa th i,,i,+l, . . . , ib-1, ib, "." , i, contains at most d back edges.) The
proof goes exactly as Theorem 2.

Case 2(a) (The pa th in, L+i, " " , in-l, ib, "'" , in contains d + 1 back edges and
b ~ r.) Note tha t (i, , *,+1) must be a back edge, because i~+~, • • • , i~ is cycle free.

• Note that (**) m equivalent to (*) when L has a unit, by Observation 6.

170 J . B . KAM A N D J . D . U L L M A N

We let (note tha t both i~+l and ib+l are successors of i ,) : P1 = il, . . . , Q, ib+l;
P2 = a back-edge-free pa th from node 1 to node /~+1; P3 = i~+,, . . . , ib+l; P4 =
ib+~, . . . , / ~ ; x = fp~(0) .

/ . (0) = f . j e J . l (o) 1°

_> f e , (f e~ (o) A f~ s (l)) (by assumption)

>_ f . . (f . , (o) A f .~ (x)) = f . j . ~ (o) A f . j . j . ~ (o) = f~,(o) A f . . (o) ,

where P ' = ~1, • • , ~, ib+l, . . • , ,, and P" = P2, ~+2, "" • , *b, i b + l , " " " , $ r) . P' and
P" are each seen to be from 1 to 3 = i, with fewer than k back edges. The induction
follows in this ease.

Case 2(b) (The pa th i~, i~+1, . . • , ib, "" • , i~ contains d + 1 back edges and b = r,
i.e. ~a = ~b = ~ = 3") Again we see tha t (~, to+l) must be a back edge.

Let P~ = i~, . . . , i~, P2 = i~, . - - , *b. Then fp = fade1(0) _~ r e , (0) A r e , (1) , by
assumption. Since P~ is a pa th in G with fewer than k back edges and P~ is a pa th in G
with d + 1 back edges, and the first edge in P~ is a back edge, the induction follows.

(only , f) . This direction follows from Theorem 2. []

8. Conncluswns

We have examined Kildall 's latt ice-theoretic formulation of global da ta flow analysis
problems with an eye toward when depth-first ordering (rPostorder) yields an efficient
i terat ive algorithm. The condition

(Vf , g E F) (V x E L)[fg(O) > g(0) A f (x) A x] (*)

for a da ta flow analysis framework D = (L , A , F) was shown necessary and sufficient
for the depth-first version of Kildall 's algorithm to converge after d(G) + 3 passes
on an arbi t rary instance (G , M) of D.

In the case where the semilattice has a one element, condition (,) is equivalent to

(Vf, g E F)[fg(O) _> g(O) A f (l)] . (**)

K~ldall's algorithm, using depth-first ordering and taking advantage of the presence
of the one element, works in d(G) + 2 passes iff condition (**) is satisfied.

Combining the result of [5], which shows tha t the loop connectedness of a reducible
flow graph never exceeds its interval depth, together with the empirical results of [11],
which indicates tha t the interval depth averages 2.75, we may expect tha t five or six
passes wi]l be sufficient most of the time if the da ta flow analysis framework meets condi-
t ion (.) and depth-first ordering is used in Kildall 's algorithm.

I t was seen that the da ta flow analysis frameworks used by Kildall for constant propa-
gation and common subexpression elimination do not meet condition (.) , while the usual
bit vector frameworks of, e g. [1, 4, 5, 9, 12, 13], have a one element and meet condition
(**). Thus, while Kildall 's methods enable us to detect certain instances of constant
propagation or common subexpressions tha t are not detectable by the bit vector meth-
ods, it is possible that too high a price (in terms of computat ion time) must be paid for
the extra information gathered by this framework.

ACKNOWLEDGMENT. The authors would like to thank both referees for their careful
reading of the manuscript and for a number of improvements which they suggested.

REFERENCES

1. AHO, A V., ANn ULL~AN, J.D The Theory of Parsing, Translation and Compiling, Vol. II"
Compiling. Prentice-Hall, Englewood Cliffs, N J., 1973

10 Note that re1 is the composition of the functions associated with nodes ,1, . ' . , *~ but not *b+~.
S~nilarly, re, does not include the effect of *b+t Thus fp Is the composition of fe~, ffe,, and fP4, even
though P is not the concatenation of paths Pi, Pa, and P4.

Global Data Flow Analysis and Iterative Algorithms 171

2. ALLEN, F.E. Program optnnizatlon. Annual Review m Automatic Programming, Vol. 5, Per-
gamon Press, New York, 1969, 239-307.

3. ALLEN, F.E. Control flow analysm SIGPLAN Notices 5, 7 (July 1970), 1-19.
4. C o c ~ , J Global common subexpression elnnination SIGPLAN Notices 5, 7 (July 1970),

20-24.
5. HECHT, M.S., AND ULLMAN, J.D. Analysis of a snnple algorithm for global flow problems. Proc.

ACM Conf, on Principles of Programming Languages, Oct. 1973, pp. 207-217.
6 HECHT, M S., AND UL~AN, J D Characterizations of reducible flow graphs. J. ACM 21, 3

(July 1974), 367-375.
7. HOPCROFT, J . E , AND TARJAN, R.E. Algorithm 447--Efficmnt algortthms for graph mampula-

tion. Comm ACM 16, 6 (June 1973), 372-378.
8. KAM, J.B., AND ULL~AN, J D Monotone data flow analysis frameworks TR-169, Dep. of

Elec. Eng., Computer Sciences Lab., Princeton U., Princeton, N J , Jan 1975
9 KENNEDY, K A global flow analysis algorithm Int J Computer Math. 3, 1 (Dec 1971), 5-15.

10 KILDALL, G A Global expression optnnization during compilation. TR 724)6-02, Computer
Scl Group, U. of Washington, Seattle, Wash , June 1972. See also Proc. ACM Conf. on Prin-
ciples of Programming Languages, Oct. 1973, pp 194-206

11. KNUTH, D.E. An empirmal study of FORTRAN programs. Software Pratt and Exper. l, 2
(April 1971), 105-134

12. SCHAEFER, M. A Mathematical Theory o] Global Flow Analysis Prentice-Hall, Englewood
Chffs, N J., 1973.

13. ULLMAN, J D Fast algorithms for the elimination of common subexpressions Aeta Informatzea
Z, 3 (Dec. 1973), 191-213

14. VYSSOTSKY, V.A. Private communication to M.S. Hecht, June 1973

RECEIVED MARCH 1974; REVISED JANUARY 1975

Journal of the Association for Computing Machinery, Vol 23, No 1, January 1970

