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ABSTRACT Kildall has developed data propagation algorithms for code optimization m a general 
lattice theoretic framework. In another directmn, Hecht and Ullman gave a strong upper bound on 
the number of iterations required for propagation algorithms when the data is represented by bit 
vectors and depth-first ordering of the flow graph is used The present paper combines the ideas of 
these two papers by considering conditions under whmh the bound of Hecht and Ullman applies to 
the depth-first veremn of Klldall's general data propagation algorithm. It is shown that the following 
condition is necessary and sufficient Let f and g be any two functions which could be associated 
with blocks of a flow graph, let x be an arbitrary lattice element, and let 0 be the lattice zero Then 
(*) (Vf,g,x) [fg(0) > g(0)A f(x) /~ x] Then it is shown that several of the particular instances of 
the techniques Kildall found useful do not meet condition (*) 

KEy WORDS ANn PnaASES. code optimization, data flow analysis, reducible flow graph, semilat- 
rice, depth-first search, constant propagation, available expressmns 
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1. lntroductio~ 

Pecforming compile time optimization involves solving a class of problems each of which 
can be dealt with in essentially the same manner.  These problems, called "global data 
flow analysis problems," involve determination and collection of information which is 
distributed throughout the program. 

The interval approach [1-4, 9, 12] has been used to solve this class of problems when 
the flow graph of the program has a property called "reducibility." A second approach, 
using iteration of a data propagation step, has recently appeared in the literature [10, 13]. 
Its origins go back to at least 1961, when it was used by Vyssotsky m a Fortran compiler 
[14]. Developments regarding this approach, which we shall term the "iterative ap- 
proach," have taken two directions. First, Klldall [10] expresses the class of problems 
which can be solved using the lterative approach in a very general lattice theoretic frame- 
work. The bit-vector representation of data used in previous work on data propagation 
is a special case of the techniques described in [10]. 

The second direction which research into iterative methods has taken is typified by [5]. 
There, considering only bit-vector represented data, it was shown that  depth-first search 
provided an efficient ordering of the nodes of a flow graph, and in fact d -.p 2 iterations 
were sufficient for the usual kinds of data flow problems, where d, the loop Interconnected- 
hess parameter of a flow graph, is the maximum number of back edges (according to any 
depth-first spanning tree) in a cycle-free path. In  practice, d is often 3 or less [11]. 

In  the present paper we provide a necessary and sufficient condition for the bound 
of [5] 1 to apply to Kildall's lattice theoretic formulation of flow analysis problems when 
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dep th- f i r s t  o rder ing  of t he  nodes  is used. W e  t h e n  see t h a t  t he  app l i ca t ions  of his  al- 
g o r i t h m  sugges ted  b y  Kildal l  do no t  m e e t  t he  cr i ter ion.  I t  is possible,  however ,  t h a t  or- 
der ings  o the r  t h a n  dep th - f i r s t  m a y  m a k e  i t e r a t i on  efficient in  these  cases, a n d  we do no t  
wish to imp ly  t h a t  Ki lda l l ' s  t echn iques  are  inefficient u n d e r  all possible  c i r cums tances  

2. Background 

A flow graph is a t r ip le  G = (N,E,no), where :  
(1)  N is a f ini te  se t  of nodes. 
(2)  E is a subse t  of N X N called t he  edges. T h e  edge (x,y)  enters node  Y and  leaves 

node  x. We  say  t h a t  x is a predecessor of y, a n d  y is a successor of x. 
(3)  no in N is t he  initial ~ode. T h e r e  is a path 2 f rom no to  eve ry  node.  
A depth-first spanning tree 3 ( D F S T )  of a flow g r a p h  is a t r ee  w i t h  order  on  t h e  sons 

of any  node  (o rde red  t r ee )  g rown b y  A lgo r i t hm D [7]. 

ALGORITHM D: DFST of a flow graph G 
Input .  Flow graph G with n nodes. 
Output.  (1) A DFST for G, (2) a numbering rPostorder of the nodes from 1 to n indicating the 

reverse of the order in which each node was last  vmited. 
Method. 
[DI] The root of the DFST is the initial node of G. Let this node be the node m whmh m vmlted in 

step D2 ~ will be used to number nodes in rPostorder Initially, ~ ~-- n. 
[D21 [visit node m] If node m has a successor x not already on the DFST, make x the rightmost 

son of m so far placed in the spanmng tree, adding edge (re,x) to the tree. If such an x is 
found, it becomes the node m to be visited next by repeating step D2 on x. If there is no such 
x, go to step D3. 

[D3] Let m be the node being visited, 
rPostorder (m) ~-- i,  
~ ~-.-~- 1; 
i f  m is the root then h a l t  
else execute step D2 on the father of m 

Le t  G = (N,E,  no) be  a flow g r a p h  a n d  le t  T = (N ,E ' )  be a D F S T  for G. T h e  edges 
in E fall i n to  t h r e e  classes: 

(1)  Edges  which  r u n  f rom a node  to  a p roper  d e s c e n d a n t  are  called forward edges. 4 
(2)  Edges  which  r u n  f rom a node  to  a n  ances to r  ( inc lud ing  i tself)  are cal led back 

edges. 
(3)  Edges  wh ich  r u n  b e t w e e n  nodes  u n r e l a t e d  b y  t he  ances to r -de scendan t  r e l a t i on  

are  called cross-edges. 
Observatwn 1. Le t  G = (N,E,no) be a flow g r a p h  a n d  let  T be  a D F S T  of G. Le t  a 

and  b be  nodes  in G. T h e n  (b,a) in  E is a b a c k  edge if a n d  only  if r P o s t o r d e r ( b )  .> rPos t -  
o r d e r ( a ) .  

Observation 2. Let  G = (N,E,no) be a flow g r a p h  and  T be  a D F S T  of G. T h e n  every  
cycle of G con ta ins  a t  leas t  one b a c k  edge. 

Defin~twn. Le t  G = (N,E,~o) be  a flow g r a p h  a n d  T = (N ,E ' )  be  a D F S T  of G 
We define d( G,T),  t h e  loop connectedness of G with respect to T, to  be t he  la rges t  n u m b e r  
of b a c k  edges found  in a n y  cycle-free p a t h  of G. Often,  when  T is unde r s tood ,  we shal l  
wr i te  d(G) for d(G,T).  For  t h e  wide class of flow g raphs  k n o w n  as " r educ ib l e "  flow 
g raphs  [3], i t  h a s  been  shown  [6] t h a t  d(G,T) is in fac t  i n d e p e n d e n t  of which  D F S T  T 
is chosen  

Apath f r o m n l t o n ~ m a s e q u e n c e o f n o d e s n ~ , n ~ ,  .. , n ~ s u c h t h a t  (n,, n,+~) is in E for 1 < ~ < 
k - -  1. The path length ls k -- 1 Ifn~ = n~andk  > 1, t h e p a t h l s  acycle. 

For a qmck definition, a tree m a flow graph such that  no node has more than one predecessor The 
terin root of a tree m a synonym for initial node, son IS used for successor, and father for predecessor. 
Ancestor and descendant are terms used for the reflexive and transitive closure of the father and son 
relations, respecttvely. 
4 Some authors call edges in E' tree edges, reserving "forward" for edges not in E 
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Having introduced the terminology needed for flow graphs, we now proceed to the 
second area in which a series of definitions are necessary, namely latt ice algebra. A semi- 
lattice is a set L with a binary meet opera t ion /~  such tha t  for all a, b, and c in L:  

a / ~  a = a ( idempotent) ,  a / ~  b = b A a (commutat ive) ,  
a / ~  (b A c) = (a  A b) /~ c (associative).  

Given a semilattice L and elements a, b E L, we say tha t  a _> b if and only if a A b = 
b, a ~ b if and only if a _> b and a ~ b. We also extend the notat ion of the meet opera- 
tion by saying ^~<,<~x, -- x~/~ x2 A - ' "  A x~. 

A semilattice L is said to have a zero element 0 if for all x E L, 0 A x = 0. L is said 
have a one element 1, if for all x E L, 1 A x = x. We assume from here on tha t  every 
semilattice has a zero element, but  not  necessarily a one element. 

Given a semilattice L, a sequence x,, x2, • • • , x~ of elements of L is said to be a chain 
if for 1 _< i < n w e h a v e x ,  > x,+,. L i s s a i d  to be bounded if for e a c h x  E L there 
is a constant  b, such tha t  any chain beginning with x has length at  most b,. 

If L is bounded, then we can take meets over countably infinite sets if we define ^,es x, 
where S = {x,, x~, . - .  }, to be l im~. ,  ^,<,<~ x,. The fact tha t  L is bounded assures us 
tha t  the l imit  does exist. 

3. Global Data Flow Problems 

Following [10], we t reat  da t a  flow analysis problems as follows. We choose a semilattice 
L and a t tach to its elements a "meaning," normally da ta  which could reach a point in 
a flow graph. We associate with each node of the flow graph a function f from L to L 
which intuit ively represents how da ta  is transformed when control passes through the 
block of code represented by tha t  node. 

In  what  follows we find i t  necessary to consider the set of all functions which could be 
associated with some node of a flow graph. That  is, having selected a semilattice L and 
an intended meaning for lat t ice elements, the admissible functions ate those which reflect 
the action of straight-line blocks of code on elements of L. We abstract  the notion of 
such a set of functions in the  following definition. 

Given a bounded semilattice L, a set of functions F on L is said to be an admissible 
set of functions for L if and only if the following conditions are satisfied: 

IF1] E a c h ]  E F distributes over A ,  i.e. for any x and y in L, f ( x  A y)  = f ( x )  A f ( y ) .  
[F2] There exists an ident i ty  function e in F such tha t  for all x E L, e(x) = x. 
[F3] F is closed under composition, i.e. f and g in F impliesfg E F, where for all x E L, 

[fgl(x) -- : (g (x ) ) .  
[F4] For  each x E L, there exists a finite subset H c F such tha t  x = ^serif(0) .  
Conditions [F2] and [F3| reflect obvious properties of straight-line blocks of code. 

Tha t  is, [F3] comes from the fact tha t  the concatenation of two blocks is a block, and 
[F2] comes from the reasonable assumption tha t  a block can be empty.  [F1], on the other 
hand, is not universally true. I t  is used in [10] to prove the uniqueness of the output  to 
Kildall 's  algorithm. The justification for condition [F4] is the following lemma. 

Observatwn 3, Let L be a bounded semilattice and let F be a set of functions on L 
such tha t  F satisfies [F1] with respect to L. Then for any finite subset J ~ L, 

f ( ^ x) = ^ f(x). 
zEJ =EJ 

Gwen a bounded sem~lattzce L and F a set of functions on L satisfying [F1]- LEMMA 1. 
[F3], ~f we let 

L' = {x l3 fx ,  . . . , f ~  E F and x -- ^ f , (0 ) l ,  

then F is an admissible set of funchons for L'. 
PROOF. Since any subset of L, which is closed under A ,  satisfies the idempotent,  
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commutative, and associative properties with respect to A and hence is a semilattice, 
it suffices to show that F satisfies [F1]-[F3] with respect to L p if F satisfies [F1]-[F3] with 
respect to L. 

[F1] and [F2] are trivially satisfied by F with respect to L p, because L'  is a subset of 
L. Assume F does not satisfy [F3] with respect to L', i.e. there exists x E L'  and f, g E F 
such that fg(x)  E L - L'. Wewant  todrawa contradiction, x E L' implies x = ^h~, h(0) 
for some finite H c F. Thus 

fg(x)  = fg( ^ h(0))  = ^ fgh(O) (by Observation 3). 
hEH hEH 

Hence fg(x)  should have been included in L'  by definition. [] 
Some additional useful observations are the following. 
Observation 4. Given bounded semilattiee L and associated F, for all f E F and 

x, y E L, x > y impliesf(x) ~ f ( y ) .  
Observatwn 5. For any bounded semi]attice L and any countable J ~ L, if for all 

x E J w e h a v e x  > y, then^~e~x > y. 
We now introduce the basic formalism for our expression of data flow problems. A 

data flow analysis framework is a triple D = (L ,A ,F )  where L is a bounded semilattice 
with meet A,  and F is an admissible set of functions for L. A partzcular instance of D = 
( L , A , F )  is a pair I = (G,M) where (1) G = (N,E,no) is a flow graph and (2) M : N  -~ 
F is a function which maps each node in N to a function in F. 

Convention. Given a particular instance I = (G,M) of D = ( L , A , F ) ,  if the nodes 
of G are labeled by rPostorder with respect to a DFST of G, we associate the nodes of 
G with their labels. We let f, denote M(i ) ,  the function in F which is associated with 
node ~. Let P = 11, i2, . . .  , i~, im+l be a path in G. Then we may use f~( . )  for 
f,~ (f,~_~ ( . . - f ,~  ( . )  . . .  )). Note thatf,~+~ is not in the composition. If m = 0, then 
fe = e, the identity function. 

4. The Depth-First Version of Kildall's Algomthm 

We now give an iterative algorithm to find what is essentially the maximum solution to 
the equations implied by an instance of a data flow problem. I t  is essentially the algorithm 
of [10] but  with the important difference that the nodes are visited in turn in the rPost- 
order sequence. The following definitions are essential: 

PRED(3)  = {q ] q is a predecessor of j}. 
PRED*( j )  = {q i q E PRED(3)  and q < j in reostorder, i.e. (q,3) is not a back edge}. 

ALGORITHM K 
Input. A partmular instance I = (G,M) of data flow analysis framework D = (L,F), where G = 

(N,E,no) is a flow graph with k nodes. Take N to be I1, 2, ... , kl, and assume the nodes 
a r e  numbered by rPostorder Execute the program of Figure 1 

Conventwn. We say that  n iterations of Algorithm K have been applied, where n > 1, 
if the for  loop beginning at step 1 has been executed once and the for  loop beginning 
at step 2 has been executed n - 1 times. 

THEOaEM 1 [10]. Given a particular instance I = (G,M) of D = ( L , A , F )  as input, 
Algorithm K will eventually halt. At  the completion of Algorithm K, 

A[i] -- ^ r e ( o ) ,  1 < i <  k, 
PEPATH($) 

where P A T H ( I )  = {P I P ~s a path in G from node 1 to node ~}. [] 
LEMMA 2. Given instance I = ( G,M) of data flow analyszs framework D = ( L , A , F ) ,  

and T a D F S T  for G, after the n-th iteration of Algorithm K, 

A[i] = ^ re(o) ,  1 < I < k, 
PEPATH(n)($) 
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begin 
temp e l emen t  of  L, 
A array [1 k] of  e l emen t s  of  L, 
j in teger ,  change Boolean; 
A[I] = O, 

Step 1. for j = 2 un t i l  k do A[j]  = ^~,VR~O*(,)Jq(A[q]);. 
change = t rue  
while change do 

begin  
change = false, 

Step2 f o r  2 = 2 u n t i l  k d o  
begin  

temp = %,va~v¢~)fq(A[q]), 
i f  temp ~ A[j] t h e n  

begin  
change = true,  
A[3] = temp 

end 
end  

end 
end 

FIo. 1. P rogram for Algomthm K 

where PATH(^) ( i )  = { P I P  E P A T H ( z )  and P contains at most n -- 1 back edges 
according to the rPostorder z~duced by T}. 

PROOF. The proof is by induction on n, the number of iterations of Algorithm K 
already completed. 

Basis (n = 1). We proceed by induction on the rPostorder 2 of the nodes of G. 
Baszs (2 = 1). I t  is obvious that  the trivial path is the only element in PATH(Z)(1) 

because any edge entering node 1 has to be a back edge. Thus, A[1] should equal e(0) = 
0. As we assign A[1] :=  0 in the first iteration, the basis is done. 

Inductwn step (j > 1). By Observation 1, all and only the back-edge-free paths from 
1 to 3 can be written as (P,3}, ~ where P is a path from 1 to q E PRED*( j ) .  By the in- 
duction hypothesis, A[q] = hpCp.~Tt~(l)(q)fp(0) for each q E PRED*( j ) .  Step 1 of Al- 
gorithm K assures 

A[j] = ^ fq(A[q]) = ^ A f(p,,>(O) = ^ f0(O). 
q6 PRED*(J) qE PROD* (./) P6PAT/~ ( I )  (q) QEPATH(I ) (y )  

This completes the induction on .7 for the case n = 1. 
Induction step (n > 1). We proceed by induction onff again. 
Basis (2 = 1). I t  is obvious that  0 = ^pepAT~(')(z)fP(0) __> ^ ~ePAT~(,)(1)fP(O). 

Thus ^PCeAT~(-)u)fP(0) = 0. After n iterations of Algorithm K, A[1] is still assigned 
0, so A[1] -- ^PePATH(')(1)f~,(0) after the nth iteration. 

lnductzon step (3 > 1). Every path Q in PATH(')(3)  is of the form (P,q) where 
either: 

(i) q E PRED*( j )  and P E PATH(' ) (q) ,  or 
(ii) q E P R E D ( j )  - PRED*( j )  and P E PATH(~-~)(q). 

That is, (ii) represents the case where edge (q,y) is a back edge, i.e. q _> 2, and (i) repre- 
sents the opposite case, where q < .7. When in Algorithm K temp is computed for j in 
the nth pass, A[q] will be 

( a )  ap£pATH(a)(q) f e ( 0 )  if q < j, i.e. case (i) applies to q, and 
(b) ^P~eATn(--X)(q)fp(0) if q > 3, i.e. case (ii) applies. 

Note that  part (a) follows by the inductive hypothesis for j and (b) follows by the 
inductive hypothesis for n. 

From the above it is immediate that on the nth pass temp is set equal to 
^~eexvH(-)o) f~(0), and thus A[.7] is given this value if it does not already have it. [] 

We use (P, 3) to denote a pa t h  consis t ing  of the  nodes of p a t h  P followed by 3. Similar,  hopeful ly  
t r a n s p a r e n t  no ta t ion  will be used  th roughout .  



Global Data Flow Analysis and Iteratwe Algomthms 163 

LEMMA 3. Gwen dnstance I = (G,M) of framework D = ( L , A , F ) ,  and a fixed rPost- 
order for G, Algomthra K will halt after no more then n iteratwns i f  and only i f  for each node 
j C N,  and for each path P E P A T H ( g )  there exist Px, " "  ,P~, each in P A T H  (~-1) ( j ) ,  
and fp(O) > ^l_<j<~fp,(0). 

PROOF. ( i f ) .  In  this case by Observation 5 we have 

^ f Q ( 0 )  = ^ f ~ ( 0 ) ,  
QEPATH(n) ($) QEPATH(n-1) (3) 

so temp = A[3] will always hold on the nth pass of Algorithm K, and change will be 
false at the end of that pass. 

(only if) .  Suppose that  Algorithm K halts after the ruth pass, m < n. Then for ar- 
bitrary node 3 and P E PATH(3) we must have fp(0) >_ ^QeeATrI(~--~)(j)fQ (0). We 
must show that there is a finite subset S of PATH"-~( j )  such that  fp(0) > ^QesfQ(O). 
Enumerate PATH(m-X)(3 ) as Q~, Q~, . - .  in any order, and let x, = ^L<~<_,f~,(O). Surely 
x, > x,+~ for all ~. By the boundedness condition there can on]y be a finite number of 
d's for which x, > x,+~. Let d0 be the last and let S = {Q~, Q:, . . - ,  Q,0}. Then 
^~e~*TH(,~-~)(~) f~(0) = ^~esf~(0), SO S ~s the desired finite subset. 

5. The Mare Result 

We are now ready to characterize those data flow analysis frameworks for which depth- 
first search yields "rapid" convergence of Kildall's algorithm. 

THEORE.~I 2. Let D = ( L , A , F )  be a data flow analyses framework. The~ Algomthm 
K halts after at most d(G) + 3 dteratw~s 6 for every instance I = (G,M) of D and every 
rPostorder definable for G = ( N,E, t~) ,  ~f and o~dy , f  D satisfies condition (*) : 

(VL g ~ F)(Vx ~ L)[f.q(0) > g(0) A f ( x )  A x]. ( , )  

Formally, the theorem can be stated: 

(VD){[(VI = (G,M) an instance of D)(Algori thm K 
halts after at most d(G) + 3 iterations)] ~ (.)} 

PROOF. ($f). By Lemma 3, it suffices to show that for each 3 E N and each path 
P E PATH(?) ,  there exist paths P1, " '  ,Pro in PATH(n+2)(2 ) such that  fe(0)  _> 
a~<,_<mfp,(0). We want to prove the above by induction on k, the number of back 
edges contained in P = /1, v~, - . .  , ~r, where dt = 1 and ir = 2. 

Basds(O < k < d +  1). This case is trlvial; lust let m = l a n d P ~  = P. 
Inductwn step (k > d + 1). Since P contains more than d + 1 back edges, it cannot 

be cycle free by definition of d. Let us pick the highest number a such that  ~ = ~b for 
some b > a. We clmm that  the path P~ = ~, • •. , ia must contain at least oneback edge, 
for the path i,+x, -- .  , ~r is cycle free and thus has at most d back edges. (in, in+l) may 
be a back edge, but  P is assumed to have more than d + 1 back edges, so the claim 
follows. The path P2 = d~, • , db contains at least one back edge by Observation 2. 
We let P3 = ib, - . .  , dr, and let P4 be a back-edge-free path from node 1 to node i, as 
shown in Figure 2. I t  is a property of DFST's  that  P4 exists, since P4 may follow the 
tree. 

Now we let x = fp,(O). 

fp(O) = fp~ (fe~ (fP, (0)) ) by definition 

>_ fP3(fe~(O) A fP2(X) A x) by assumption 

= f~(fp~(O) A fp2 ( fp , (O) )  A f p , ( O ) )  

= fpj~,~(o) A f p ~ f ~ f ~ , ( o )  A f~,f~,(0) 
= fp,(O) A fP,(O) A fp"(O), 

6 Recall that d(G) stands for d(G,T) where T is the DFST defining the rPostorder m question 
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PI 

FzG 2. Decomposition of psth P 

G= T= I ~ 

n + l  2 

_ ~ L ~ . . / " ' ~  

• n + 2  f 

o) FLOWGRAPH OF G b) A DFST FOR G SHOWING r POSTORDER 
NUMBERING 

Fie 3 Counterexsmple withj~(x) ~ f(x) A x 

/ / f  n+l 

/ T .- 

iN,r--, 

a) FLOW GRAPH OF G b) A DFST FOR G SHOWING r POSTORDER 
NUMBERING 

FZG 4. Counterexample wzth •(x) _> f(x) /k x 

where P '  = il, . . .  , ia,~b+l, " ' "  , i , ,  P "  = (P4,~a+l, " "  , ~b, ib+l, "'" , i,}, P "  = {P4, 
~b+1, " " " , ~,}. P ' ,  P " ,  and P "  are each pa ths  in G and contain a t  most  k --  1 back edges. 

T h e  induct ion  step follows immedia te ly .  
(only  zf) .  Suppose the  condi t ion (*) is not  satisfied, i.e. 

( 3 x  E L ) ( 3 ] ,  g E F)[ fg (O)  > g(O) A / ( x )  A x]. 
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By condition [F4] of F being admissible for L, there exist hi, h2, . ." h~ E F such that  
x = ^1<,_<~ h, (0). We have two cases to consider. 

Case 1. fi(x) ~ f (x)  A x. The particular instance I = (G,M) as shown in Figure 
3 will do the job, where d(G) = 0. After the third iteration of Algorithm K we have 
A[~ + 2] = x A f (x)  A if(x), while A[n + 2] = x A f (x)  after the second iteration. 
Hence Algorithm K will take at least 4 > (0 + 3) iterations. 

Case 2. fi(x) >_ f(x)  A x. The particular instance I = (G,M) with the DFST of 
G grown as shown in Figure 4 will do. We see d(G,T) = 2. 

After the first iteration: 

A[n + 2l = x 

A[n + 3] = x 

A In + 4] = x 

A In + 5] = x 

A In + 6] = 0 

After the second iteration: 

A In + 2] = x 

A[n + 31 = x A f(x) 

A [ n + 4 ]  = x A f ( x )  

A [ n +  5] = x A g ( 0 )  

A[n + 6] = 0 

After the third iteration: 

A[n + 

A[n + 

A[n + 

A[n + 

2] = g(0) A f (x)  A x 

3] = g(0)  A f(x) A x A #(x)  

(by assumption) = g(O) A f(x)  A x 

41 = g(0) A f (x)  A x 

5] = g(0) A f (x)  A x 

afn + 6] = 0 

After the fourth iteration: 

A[n + 2] = g(0) A ](x) A x 

A[n + 31 = q(0)  A f ( x )  A x A fg(O) 

A[n + 4] = g(0) A f (x)  A x A fg(O) 

A[n + 5] = g(0) A f (x)  A x 

A[n + 6] = 0 

After the fifth iteration: 

A[n + 2] = g(0) A f (x)  A x A fg(O) 

A[n + a] -- g(O) A f(x)  A x m fg(O) A fig(O) 

A[n + 4] = g(0) A f (x)  A x A fg(O) A fig(O) 

= g(O) A ](x) A x A fg(O) (by assumption) 

Ain + 5] = g(0) A f (x)  A x A fg(O) 

A[n + 6] = 0 

A[n + 2] = g(0) A f (x)  A x after the fourth iteration and A[n + 2] = g(0) A 
f (x)  A x A fg(O) after the fifth iteration. By the hypothesis that  ( . )  does not hold 
for f, g, and x, we have g(0) A f (x)  A x ~ g(O) A f(x)  A x A fg(O). Thus Algorithm 
K will take at least 6 > (d(G) + 3 )  = 5 iterations, and in fact, it does halt after six itera- 
tions. 

In  general, any I = (G,M) with T' grown as shown in Figure 5 will take Algorithm 
K at least 2d + 2 iterations before it halts. [] 

We have completed the proof of Theorem 2. Let us remind the reader that  Theorem 2 
does not make the (false) claim that  unless ( , )  is satisfied for framework D, there is no 
instance I = (G,M) of D for which Algorithm K takes at most d(G) + 3 iterations. 
Formally, the false statement is: 

(VD) (V  instances I = (G,M) of D) 
[Algorithm K converges in d(G) W 3 iterations ~ ( , ) ] .  

I t  is also worth noting a few statements about a framework D = (L ,A,F)  which are 
equivalent to (*) and a few that  are not. We leave the proofs to the reader. 
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Observatwn 6. ( , )  is equivalent to 

(Vf E F)(Vx, y E L)[f(y) > y A f(x) A x] 
and to 

(Vf, g'E F)(Vx, y E L)~fg(y) _> g(y) /k f (x)  /~ x], 

and if L has a one element 1, to 

(Vf, g E F)[fg(O) >_ g(O) A f (1) ]  
and to 

(Vf E F)(Vx E L)~(z)  >_ x A f (1)] .  

Observahon 7. ( , )  Is implied by 

( W  E F)(Vx E L)[f(x) _> x] 
and implies 

(Vf E F)(Vx E L)[ff(x) ~ f(x) A x], 

but  is equivalent to neitheP of these statements.  

6. Some Specific Data Flow Analysis Frameworks 

In his paper  [10], Kildall  handles constant propagation by a global da ta  flow analysis 
fi 'amework CP = (L,A,F), where V = {X1, X2, " . .  } for some infinite set of variable 
names; C is equal to the set of all values assumed by  variables; L is the set of functions 
from finite subsets of V to C; 0 E L is the function which is undefined for all X,. The % 

meet operation /k on L is set intersection3 Intuit ively,  z E L stands for the information 
about variables which we may assume at  certain points of the program flow graph. 
(v,c) E z implies the variable v has value c. 

We define a notat ion for functions in F based on the sequence of assignment s tatements  
whose effect they are to model. 

(1) For  each assignment s ta tement  X :=  ~(Y1, " ", Y,~), m ~ 1, for X and Yi, "" ", 

Recall  t ha t  a funct ion  f -  V -~ C is a se t  of pairs  (v,c) with  v E V and c E C. We shall  hencefor th  
t r ea t  members  of L as subse t s  of V X C. 
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Y,~ in V, there is a function f in F such tha t  for z E L, f ( z )  = z' is defined by :  
( i)  For U ~ X,  z ' (U)  = z (U)  if z (U)  is defined, and z ' (U)  is undefined otherwise. 
(ii) z ' ( X )  is the value ~(cl, . .  • , e~) if z(Y,)  = c, for 1 < , < m, and z ' (X )  is un- 

defined otherwise. 
We denote this function by  (X :=  ~(Y1, " ", ym)). 
(2) For  each assignment s ta tement  X :=  c, where c E C is a constant, the function 

f in F is defined as in (1),  but  (ii) reads: 
( i i ) '  z ' ( X )  = e. 

We denote this function by (X :=  e). 
(3) For  each assignment s ta tement  X :=  Y, where X and Y are in V, the function 

f i n  F is defined as in (1),  but  (ii) reads: 
(ii)" z'(X) = z (F) .  

We denote this function by (X :=  Y). 
(4) e E F, where e(z) = z for all z E L. 
(5) If  f,  g E F, thenfg  E F. 
I t  happens that  the framework CP is not distr ibutive under the normal interpretat ion 

of "values" [8]. We shall show here that  CP does not satisfy ( , ) .  Then we shall give an 
interpretat ion of values for which CP is distr ibutive and show tha t  ( . )  still is not  satis- 
fied. 

THEOREM 3. CP, w*th the usual amthmetic ~nterpretat~on of "values," does not sat- 
isfy ( . ) .  

PROOF. Let x be {(A,3), (B,1), (C,2)} and let g be the composition of the functions 
associated with the assignment s tatements:  D :=  1, E :=  2, A :=  D + E, s i.e. g = 
(A := D + E) o (E :=  2) o (D :=  1 ) . L e t f b e t h e f u n c t i o n ( A  := B -4- C). Then 
f ( x )  = x, g(O) = {(A,3), (D,1),  (E,2)}, and fg(O) = {(D,1), (W,2)}. Then fg(0)  
g(0) A f ( x )  A z  = {(A,3)}. [] 

In  order tha t  CP be distr ibutive it is necessary tha t  operator symbols be given a free 
interpretat ion (see [8]). That  is, values are formulas involving integers or reals and the 
operator symbols. The effect of applying m-ary operator <# to formulas Fi, F2, - • • , F, ,  
is the formula ~o(F1, F2, • - • , Fro). 

THEOREM 4. CP under a free ~nterpretatwn of operators does not satisfy ( , ) .  
PROOF. The same proof as tha t  for Theorem 3 goes through if we replace (A,3) in 

x b y ( A ,  1 + 2 ) .  [] 
We should observe that  only Theorem 4 is significant, since the effect on nondistribu- 

t ive frameworks of ( . )  not holding has not been investigated. Also, the same remarks 
as we made here for the  framework CP apply to the "s tructured par t i t ion"  lat t ice of 
[10l. 

Now let us consider a case where ( . )  does hold. The usual bit  vector common sub- 
expression detection strategy can be expressed as the da ta  flow analysis framework 
CSE = ( L , A , F ) ,  where L is the set of bit  vectors of length n. For  x, y E L, x A y is 
the bitwise product  (logical AND) .  The 0 element in L is the word of all O's. Fur ther-  
more, L has a one element 1, namely the vector of all l ' s .  

F consists of functions f which may be denoted (KILL,  GEN>, where G l e n  and K I L L  
are each n-bit  vectors, with G E N  A K I L L  = 0. For  z C L, we define f ( z )  = 
(z A ~ K I L L )  V GEN;  the symbols A ,  V,  and-~ s tand for A N D  (bitwise product) ,  
OR (bitwise sum),  and NOT (bitwise complement) ,  respectively. 

We see tha t  F is closed under composition, because given g = (KILL~,GEN~), f = 
(KIL~ ,GEN2) ,  then fg = (KILL ' ,GEN' ) ,  where K I L L '  = [KILL~ A ~ G E N d  V KILLs,  
and G E N '  = [GEN1 A m KILL2] V GEN2. 

(0,0) is the identi ty,  and we leave dis t r ibut ivi ty  for the reader to check. 
Finally, given x E /~ we have x = (0,x) (0), so condition [F4] is satisfied. 
THEOREM 5. The global opt,m,zation problem CSE satisfies condition ( . ) .  

8 The use of infix rather than postfix notation should not confuse the reader 
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begin 
temp- e l e m e n t  o f  L;  
A array [1 . k] of  e l ements  of L, 
3 integer; change Boolean, 
A h l  = 0,  
for  3 = 2 u n t i l  /c do  A[ 3] :=  i ,  
change :=  t r u e ,  
while  change do 

begin 
change = :false, 
for.] = 2 u n t i l  k do 

begin 
temp ~ ^~.r~v~,)f~(A[q]); 
i f  temp ~ A[3] then  

begin 
change "~ true,  
A[?] .= temp 

end 
end 

end 
end 

FIG. 6 Program for Algorithm MK 

PROOF. By Observation 6, i t  suffices to show tha t  if the / th  bi t  of the word 
g(0) A f (1 )  is equal to 1, then the i th  bit  of the wordfg(0)  is also equal to 1, where g = 
(KILLi,GEN~) and f = (KILI.~,GEN2~. 

The i th  bi t  of g(0) /~ f (1 )  is equal to 1 iff (1) the  i th  bit  of GENi  = 1, and (2) the 
~th bi t  of KILLs = 0. N o w f g  = ( K I L L ' , G E N ' ) ,  where G E N '  = ( G E N  A ~ K I L I a )  V 
GEN2. Since 1 in a bit  of GEN2 implies 0 in the corresponding bit  of KILLs,  by  (1) and 
(2) either GEN~ A ~ K I L L 2  has the , th  bit  equal to 1 or GEN2 has the ~th bi t  equa l to  1. 
Hence the word fg(O) has the i th  bit  equal to 1. [] 

7. A Particular Case: When L Contains a 1 Element 

If  L contains a 1 element, we can apply  a slightly modified version of Algorithm K to 
achieve a bet ter  t ime bound. 

ALGORITHM MK 
Input: A particular instanceJ = (G,M) of D = (L,A,F), where G = (N,E,no) is a flow graph with 

k nodes and L contains a 1 element. Take N to be {1, 2, . . .  , kl and assume the nodes are 
numbered by rPostorder Execute the program of Figure 6. 

Convention. We say tha t  n i terations of Algori thm M K  have been applied, where 
n >_ 1, if the loop beginning at  step 1 has been applied n times. 

L:EMMA 4. Given instance J = (G,M) of data flow analysis framework D = ( L , A , F ) ,  
where L contains a one element 1, and given an rPostorder for G, after the n-th Iteration of 
Algorithm M K ,  

A[j] = ( ^ fQ(0)) A ( ^ f~(1) )  
QE PATB(n)(3) QEXPATtI(n)($) 

fl~r 1 < j ~ k, where X P A T H ( ~ ) ( j )  = {P I P is a path in  G from an arbitrary node to 
node 3, P contains n back edges, and the first edge in  path P is a back edge}. I f  X P A  T H  (~) ( j )  
=: ~ ,  we let 

^ f q ( 1 )  = 1. 
Q6XPATH(~)($) 

PROOF. The proof is similar to tha t  of Lemma 2, and we omit  it. [] 
THEOREM 6. Given a particular instance J = ( G,M) of framework D = ( L , A , F )  as 
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input, where L contains a one element 1, Algorithm M K  will eventually halt. A t  the comple- 
tion of Algorithm M K ,  

A[j] = ^ f~(O),  1 < 2  g k. 
OEPATTU(3) 

PaOOF. A direct consequence of Lemma 4 and Theorem 1. [:J 
LEMMA 5. Gwen J = ( G,M)  of D = ( L , / \ , F ) ,  where L contains a one element 1, and 

qiven an rPostorder for G, Algorithm M K  will halt after no more than a ~terations i f f  for 
each node q in N and for each path P from node 1 to node q, there exist 

(1) paths P1, • " , Pro, each going from node 1 to node q and containing no more than 
n -- 2 back edges, and 

(2) paths Qi, • • • , Ql, each of whwh zs a path from an arbitrary node to node q, such 
that each path contains n - 1 back edges and the first edge in  the path is a back edge satisfy- 
ing the condition 

re(o) = ^ fp,(O)A ^ fq,(1). 
l < * < m  l ~ , < z  

PROOF. ( ,f) .  Let 

We must  show tha t  

^ f ~ ( 0 )  A ^ f ~ ( 1 ) .  
Q ~P/~.TK(n--1) (3) Q E XPAT~i(n-- 1 ) ($) 

^ f Q ( o )  A ^ f ~ ( 1 )  = x.  
Q E PATH (n) (j) Q E XPATH (n) (3) 

By hypothesis, for every Q C PATH(n~(j) we have fo(0)  > x. For  Q in XPATH(~)(3),  
consider Q' formed by  prefixing to Q a path  from the initial node along the D F S T  on 
which the given rPostorder  is based. Surely fq(1)  > fo '  (0).  But fq,  (0) > x is given. 

(only i f ) .  This par t  is analogous to Lemma 3 and we omit it. [] 
THEOREM 7. Let D = ( L , A , F )  be a data flow analysis framework, where L contains a 

one element 1. Then Algorithm M K  halts after at most d( G) -~ 2 iterations for every instance 
J = (G,M)  of D and every rPostorder definable for G = (N,E,no) ,  i f  and only i f  D satisfies 
condition (**) : 

(Vf, g E F)(Yx ~ L)~g(0) > g(0) A f(1)]? (**) 

Formal ly  the theorem can be s ta ted:  

( V D )  { [VJ  = (G,M) an instance of D) (Algorithm M K  
halts after d(G) -4- 2 i terations)] ~ (**)}. 

PROOF. ( i f ) .  B~y Lemma 5, it  suffices to show that  for each node j E N and each 
pa th  P E P A T H ( j ) ,  there exist paths P1, • • • , P~  in PATH(d+1)(3 ) and paths Q1, • • ", Qt 
in XPATH(d+I)( j) ,  where d = d(G),  such tha t  

re(o) > ^ :p,(O) A ^ :~,(1). 
l_<,_<m , < , < z  

We want to prove the above by induction on k, the number of back edges contained in P.  
Bas i s (O_< k < d). This case is trivial;  just  l e t m  = 1, l = 0, andP1  = P.  
Induction step (k > d). Since P contains more than d back edges, the pa th  P = 

il, . . .  , in must contain a cycle. Let us pick the highest number a such tha t  i ,  = ib for 
some b > a. 

Case 1 (The pa th  i,,i,+l, . . .  , ib-1, ib, "." , i, contains at  most d back edges.) The 
proof goes exactly as Theorem 2. 

Case 2(a)  (The pa th  in, L+i, " " , in-l, ib, "'" , in contains d + 1 back edges and 
b ~ r.)  Note tha t  (i, ,  *,+1) must be a back edge, because i~+~, • • • , i~ is cycle free. 

• Note  that (**) m equivalent to (*) when L has a unit, by Observation 6. 
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We let (note tha t  both i~+l and ib+l are successors of i , ) :  P1 = il, . . .  , Q, ib+l; 
P2 = a back-edge-free pa th  from node 1 to node /~+1; P3 = i~+,, . . . ,  ib+l; P4 = 
ib+~, . . . , / ~ ;  x = fp~(0 ) .  

/ . ( 0 )  = f . j e J . l ( o )  1° 

_> f e , ( f e~ (o )  A f~ s ( l ) )  (by  assumption) 

>_ f . . ( f . , (o )  A f .~ (x ) )  = f . j . ~ ( o )  A f . j . j . ~ ( o )  = f~,(o) A f . . (o) ,  

where P '  = ~1, • • , ~, ib+l, . .  • , ,, and P" = P2, ~+2, "" • , *b, i b + l ,  " " "  , $ r ) .  P'  and 
P" are each seen to be from 1 to 3 = i,  with fewer than  k back edges. The induction 
follows in this ease. 

Case 2(b)  (The pa th  i~, i~+1, . .  • , ib, "" • , i~ contains d + 1 back edges and b = r, 
i.e. ~a = ~b = ~ = 3") Again we see tha t  (~,  to+l) must be a back edge. 

Let  P~ = i~, . . .  , i~, P2 = i~, . - - ,  *b. Then fp = fade1(0)  _~ r e , (0 )  A r e , ( 1 ) ,  by 
assumption. Since P~ is a pa th  in G with fewer than k back edges and P~ is a pa th  in G 
with d + 1 back edges, and the first edge in P~ is a back edge, the induction follows. 

(only , f ) .  This direction follows from Theorem 2. [] 

8. Conncluswns 

We have examined Kildall 's  latt ice-theoretic formulation of global da ta  flow analysis 
problems with an eye toward when depth-first  ordering (rPostorder)  yields an efficient 
i terat ive algorithm. The condition 

(Vf ,  g E F ) ( V x  E L)[fg(O) > g(0) A f ( x )  A x ]  (*) 

for a da ta  flow analysis framework D = ( L , A , F )  was shown necessary and sufficient 
for the depth-first version of Kildall 's  algorithm to converge after d(G) + 3 passes 
on an arbi t rary  instance ( G , M )  of D. 

In  the case where the semilattice has a one element, condition ( , )  is equivalent to 

(Vf, g E F)[fg(O) _> g(O) A f ( l ) ] .  (**) 

K~ldall's algorithm, using depth-first ordering and taking advantage of the presence 
of the one element, works in d(G) + 2 passes iff condition (**) is satisfied. 

Combining the result of [5], which shows tha t  the loop connectedness of a reducible 
flow graph never exceeds its interval  depth, together with the empirical results of [11], 
which indicates tha t  the interval depth averages 2.75, we may expect tha t  five or six 
passes wi]l be sufficient most of the time if the da ta  flow analysis framework meets condi- 
t ion ( . )  and depth-first  ordering is used in Kildall 's  algorithm. 

I t  was seen that  the da ta  flow analysis frameworks used by  Kildall  for constant propa- 
gation and common subexpression elimination do not meet condition ( .) ,  while the usual 
bit  vector frameworks of, e g. [1, 4, 5, 9, 12, 13], have a one element and meet condition 
(**). Thus, while Kildall 's  methods enable us to detect  certain instances of constant  
propagation or common subexpressions tha t  are not  detectable by the bit  vector meth- 
ods, it is possible that  too high a price (in terms of computat ion time) must be paid for 
the extra information gathered by this framework. 
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