
Partial Online Cycle Elimination in Inclusion Constraint Graphs 

Manuel FBhndrich* Jeffrey S. Foster* Zhendong Su* Alexander Aiken* 

EECS Department 
University of California, Berkeley 

387 Soda Hall #1776 
Berkeley, CA 94720-1776 

{manuel,jfoster,zhendong,aiken}@cs.berkeley.edu 

Abstract 

Many program analyses are naturally formulated and im- 
plemented using inclusion constraints. We present new re- 
sults on the scalable implementation of such analyses based 
on two insights: first, that online elimination of cyclic con- 
straints yields orders-of-magnitude improvements in analy- 
sis time for large problems; second, that the choice of con- 
straint representation affects the quality and efficiency of 
online cycle elimination. We present an analytical model 
that explains our design choices and show that the model’s 
predictions match well with results from a substantial ex- 
periment. 

1 Introduction 

Inclusion constraints are a natural vehicle for expressing a 
wide range of program analyses including shape analysis, 
closure analysis, soft typing systems, receiver-class predic- 
tion for object-oriented programs, and points-to analysis for 
pointer-based programs, among others [Rey69, JM79, Shi88, 
PS91, AWL94, Hei94, And94, FFK+96, MW97]. Such anal- 
yses are efficient for small to medium size programs, but they 
are known to be impractical for large analysis problems. 

Inclusion constraint systems have natural graph repre- 
sentations. For example, the constraints X 2 y 5 2 are 
represented by nodes for the quantities X,Y, and 2 and 
directed edges (X, Y) and (Y, 2) for the inclusions. Resolv- 
ing the constraints corresponds to adding new edges to the 
graph to express relationships implied by, but not explicit 
in, the initial system. In this example, the transitive edge 
(X, 2) represents the implied constraint X C 2. 

The performance of constraint resolution can be im- 
proved by simplifying the constraint graph. Periodic simpli- 
fication performed during resolution helps to scale to larger 
analysis problems [FA96, FF97, MWS’I], but performance is 
still unsatisfactory. One problem is deciding the frequency 
at which to perform simplifications to keep a well-balanced 
cost-benefit tradeoff. Simplification frequencies in past ap- 
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proaches range from once for an entire module to once for 
every program expression. 

In this paper we show that cycle elimination in the con- 
straint graph (a particular simplification) is one key to mak- 
ing inclusion constraint analyses scale to large problems 
with good performance. Cyclic constraints have the form 
Xl c x2 E x3 . . . C X,, C_ Xr where the Xi are set variables. 
All variables on such a cycle are equal in all solutions of the 
constraints, and thus the cycle can be collapsed to a single 
variable. 

We take an extreme approach to simplification frequency 
by performing cycle detection and elimination online, i.e., 
at every update of the constraint graph. At first glance, 
this approach seems overly expensive, since the best known 
algorithm for online cycle detection performs a full depth- 
first search for half of all edge additions [Shm83]. 

Our contribution is to show that partial online cycle de- 
tection can be performed cheaply by traversing only cer- 
tain paths during the search for cycles. This approach is 
inspired by a non-standard graph representation called in- 
ductive form (IF) introduced in [AWSS]. In practice, our 
approach requires constant time overhead on every edge ad- 
dition and finds and eliminates about 80% of all variables 
involved in cycles. For our benchmarks, this approach radi- 
cally improves the scaling behavior, making analysis of large 
programs practical. Furthermore, we provide an analytical 
model to explain the performance of particular graph repre- 
sentations. 

Except ours, all implementations of inclusion constraint 
solvers we are aware of employ a standard graph represen- 
tation in which all edges are stored in adjacency lists and 
variable-variable edges always appear in successor lists. For 
example, the constraint X E y, between variables X and 
Y, is represented as a successor edge from node X to node 
y. Our measurements show that this standard form (SF), 
which is the one described in [Hei92] for use in set-based 
analysis (SBA), can also substantially benefit from partial 
online cycle elimination. 

As our benchmark we study a points-to analysis for 
C [And94, SH97] implemented using both SF and IF. For 
large programs (more than 10000 lines), online cycle elimi- 
nation reduces the execution time of our SF implementation 
by up to a factor of 13. Our implementation using IF and 
partial online cycle elimination outperforms SF with cycle 
elimination by up to a factor of 4, resulting in an overall 
speedup over standard implementations by up to 50. 

Our measurement methodology uses a single well- 
engineered constraint solver to perform a number of exper- 
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iments using SF and IF with and without cycle elimination. 
We validate our results by comparing with Shapiro and Hor- 
witz’s SF implementation (SH) of the same points-to anal- 
ysis [SH97]. Experiments show that our implementation of 
points-to analysis using SF without cycle elimination closely 
matches SH on our benchmarks. 

In Section 2, we define a language for set constraints, 
the particular constraint formalism we shall use. We also 
present the graph representations SF and IF and describe 
our cycle elimination algorithm. In Section 3 we describe 
the version of points-to analysis we study. Section 4 presents 
measurements illustrating the efficacy of our cycle elimi- 
nation algorithm. Section 5 studies an analytical model 
that explains why IF can outperform SF. Finally, Section 6 
presents related work, and Section 7 concludes. 

2 Definitions 

2.1 Set Constraints 

In this paper we use a small subset of the full language of 
set constraints [HJ90, AW92]. Constraints in our constraint 
language are of the form L 2 R, where L and R are set 
expressions. Set expressions consist of set variables X, Y, . . . 
from a family of variables Vars, terms constructed from n- 
ary constructors c E Con, an empty set 0, and a universal 
set 1. 

L,RE se ::= X]c(sei,...,se,))O)l 

Each constructor c is given a unique signature S, specifying 
the arity and variance of c. Intuitively, a constructor c 
is covatiant in an argument if the set denoted by a term 
c(. . .) becomes larger as the argument increases. Similarly, 
a constructor c is contravariant in an argument if the set 
denoted by a term c(. . . ) becomes smaller as the argument 
increases. 

We define solutions to set constraints without restricting 
ourselves to a particular model’ for set expressions. We 
simply assume that each constructor c is also equipped with 
an interpretation &. Given a vatiable assignment A of sets 
to variables, set expressions are interpreted as follows2: 

[X] A = A(X) 
[c(sel,... , se,)] A = qL(l[sel] A,. . . , [se,] A) 

A solution to a system of constraints { Li C &} is a variable 
assignment A such that [Lil A C I[&] A for all i. 

2.2 Constraint Graphs 

Solving a system of constraints involves computing an ex- 
plicit solved form of all solutions or of a particular solu- 
tion. We study two distinct solved forms: Standard form 
SF represents the least solution explicitly and is commonly 
used for implementing SBA [Hei92]. Inductive form IF com- 
putes a representation of all solutions and is usually used 
with more expressive constraints and in type-based analy- 
ses [AW93, MW97]. As an aside, it is worth noting that for 
some analysis problems we require a representation of all so- 
lutions because no least solution exists. For the purposes of 

‘Standard models are the termset model [Hei92, Kos93] or the 
ideal model IAW931. 

2The inte&re&ion of 0 and 1 depends on the model and is not 
shown. 

SU{XEX} w s 

SU{se&l} ++ S 

SU{OEse} * S 

SU {c(sel,. . . ,se,) C c(se:,. . . , se’,)} +3 
s u ui 

1 

{se& c se:} c covariant in i 
{sei > se:} c contravariant in i 

S U {c(. . . ) s d(. . . )} ti no solution 
ifd#c 

S U {c(. . . ) s 0) * no solution 
S U { 1 C 0) e no solution 

S U { 1 E a!(. . . )} * no solution 

Figure 1: Resolution rules R for SF and IF 

comparing the two forms we shall implicitly assume through- 
out that with respect to the variables of interest constraint 
systems have least solutions. 

The solved form of a constraint system is a directed graph 
G = (V, E) closed under a transitive closure rule, where 
the edges E represent atomic constraints and the vertices 
V axe variables, sources, and sinks. Sources are constructed 
terms appearing to the left of an inclusion, and sinks axe 
constructed terms appearing to the right of an inclusion. For 
the purposes of this paper, we treat 0 and 1 as constructors. 
A constraint is atomic if it is one of the three forms 

XCY variable-variable constraint 
2.; !(’ 5 source-variable constraint 

. . . variable-sink constraint - 

We use the set of resolution rules R shown in Figure 1 to 
transform constraints into atomic form. Each rule states 
that the system of constraints on the left has the same so- 
lutions as the system on the right. In a resolution engine 
these rules are used as left-to-right rewrite rules. 

The next sections describe how constraint graphs are rep- 
resented and closed by the two forms SF and IF. Both forms 
use adjacency lists to represent edges. Every edge (X,Y) 
in a graph is represented exclusively either as a predecessor 
edge (X E pred(y)) or as a successor edge (y E succ(X)). 

2.3 Standard Form 

Standard form (SF) represents edges in constraint graphs as 
follows: 

XCY X-Y successor edge 

c(...) G x c(...) ...+X predecessor edge 

X & c(. . . ) X-c(. . . ) successor edge 

We draw predecessor edges in graphs using dotted arrows 
and successor edges using plain arrows. New edges are added 
by the transitive closure rule: 

L.....cX-R e LCR 

Given a predecessor edge L -.-cX and a successor edge at 
X-R, a new constraint L c R is generated. We generate 
a constraint instead of an edge because rules in Figure 1 
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Lo c x i = l..k 
2 g Ri i = l..m 

Lk 

1 Close 

IF 

I Close 

Rl 

Figure 2: Example constraints in SF and IF 

may apply. Note that in this case, L is always of the form 
c(. . . ). This closure rule combined with rules R of Figure 1 
produces a Final graph containing an explicit form of the 
least solution LS of the constraints [Hei92]. 

SF makes the least solution explicit by propagating 
sources forward to all reachable variables via the closure 
rule. The particular choice of successor and predecessor 
representation is motivated by the need to implement the 
closure rule locally. Given a variable X, the closure rule 
must be applied exactly to all combinations of predecessor 
and the successor edges of X. 

Figure 2 shows an example system of constraints, the ini- 
tial SF graph, and the resulting closed SF graph (left). The 
example assumes that set expressions L1 . . . Lk are sources 
and RI... R, are sinks. The closure of the standard form 
adds transitive edges from each source Li to all variables 
reachable from X i.e., Yi . . . Yt, 2. Note that the edges from 
Ll . . . Lk to 2 are added 1 times each, namely along all 1 
edges Yi-2. The total work of closing the graph is 2kl 
edge additions, of which k(l - 1) additions are redundant, 
plus the work resulting from the km constraints Li C Rj 
(not shown). 

To see why cycle elimination can asymptotically reduce 
the amount of work to close a graph, suppose there is an ex- 
tra edge 2-X in Figure 2, forming a strongly connected 
component X, Yi , . . . , Yl, 2. If we collapse this component 
before adding the transitive edges Li *****+Yj, none of the 2kl 
transitive edge additions Li *..+Yj are performed (the km 
constraints Li E Rj are still produced of course). 

2.4 Inductive Form 

Inductive form (IF) exploits the fact that a variable-variable 
constraint X C Y can be represented either as a successor 

edge (Y E succ(X)) or as a predecessor edge (X E Fed(Y)). 
The representation for a particular edge is chosen as a func- 
tion of a fixed total order o : Vars + N on the variables. 
Edges in the constraint graph are represented as follows: 

i 

X-Y if o(X) > o(Y) 

XCY 
a successor edge 

X--Y if o(X) < o(Y) 
a predecessor edge 

The choice of the order o(a) can have substantial impact on 
the size of the closed constraint graph and the amount of 
work required for the closure. We assume that the order 
o(-) is randomly chosen. Choosing a good order is hard, 
and we have found that a random order performs as well or 
better than any other order we picked. 

The other two kinds of edges are represented as in stan- 
dard form, and the closure rule also remains unchanged: 

L....+X-R H L E R 

Notice that L may be a source or a variable-unlike SF, 
where L is always a source. In IF the closure rule can 
therefore directly produce transitive edges between vari- 
ables. (This is not to say that the closure of SF does not 
produce new edges between variables, but for SF such edges 
always involve the resolution rules R of Figure 1.) The clo- 
sure rule combined with the resolution rules R produces a 
final graph in inductive form [AW93]. 

The least solution of the constraints is not explicit in the 
closed inductive form. However, it is easily computed as 
follows: 

LS(Y) ={c(. . . ) 1 c(. . . ) . . ..+Y} u 
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insert-succ-edge (vertex from, vertex to) 
{ // variable vertices : o(from) > o(to) 

if ( pred-chain (from, to)) { // Cycle found 
collapse-cycle (...); 

I 
else 

insert-into-successor-list (from, to); 
1 

pred-chain (vertex from, vertex to) 
{ // TRUE if pred. chain to --> from 

if (from == to) return (TRUE); 
else { 

mark( from ); // from is visited 
for each v in predecessors of from 

if (! marked(v) && o(v) < o(from)) 
if (pred-chain (v, to)) 

return (TRUE); 
return (FALSE); 

1 
1 

Figure 3: Algorithms for cycle detection 

By the ordering o(.), we have o(X) < o(Y) for all X....+Y. 
Thus there exists a variable 21 with minimum index o(&) 
that has no predecessor edges to any other variables and 
LS(&) = {c(. . .) [ c(. . .) . ..+Z~}. Then AS(&) is com- 
puted using LS(2j) for j < i and (1). The time to compute 
LS for all variables is O(pJc) worst case, where p is the num- 
ber of edges and /c is the number of distinct sources in the 
final graph. In the rest of the paper, solving a system of 
constraints under IF always includes the computation of the 
least solution. 

The right side of Figure 2 shows the initial and ha1 
graph for the example constraints using IF. Note that some 
variable-varjable edges in IF are predecessor edges (dotted), 
whereas all variable-variable edges in SF are successor edges 
(solid). The ordering on the variables assumed in the ex- 
ample is o(X) < o(2) < o(yi). Note the extra variable- 
variable edge X *..+2 added by the closure rule for IF. As 
a result of this edge, the closure of IF adds edges from X 
to all a. Each of the variables &, . . . , Yl, 2 has a single 
predecessor edge to X, and thus their least solution is equal 
to LS(X) = {LI,... , Lk}. The total work of closing the 
graph is 1 + m edge additions, of which 1 - 1 additions are 
redundant, namely the addition of edge X....+Z through all 
yi, plus the work for the km transitive constraints Li 5 Rj 
(not shown). The work to compute the least solution is 
proportional to 1. 

2.5 Cycle Detection 

In this subsection we describe our cycle detection algorithm. 

Definition 2.1 (Path) A path of length k from a vertex u 
to a vertex v in a constraint graph G = (V, E) is a sequence 
of vertices (~0 , . . . ,Vk), such that U = 210, V = ‘ok, ‘“l..Vk-1 
are variable nodes, and vi-i-i E E or v~~~.~~.+~v~ E E 
for i = l..k. A path is simple if all vertices on the path are 
distinct. 

Definition 2.2 (Chain) A chain in a constraint graph is 
a simple path (X0,. . . , xk) consisting entirely of SUCCeSSOr 
edges XS-~-X~ for i = l..k (a successor chain), or con- 
sisting entirely of predecessor edges Xi-1 ...++Xi for i = l..k 
(a predecessor chain). 

A path (X0,. . . , xk) forms a cycle if X0 = Xk and k 2 1. 
AS we show in Section 4, cycles in constraint graphs are a 
major contributor to constraint resolution times. It is thus 
important to detect and eliminate cycles. Cycles can always 
be replaced with a single variable, since all variables on a 
cycle must be equal in all solutions of the constraints. 

Figure 4: A cyclic graph in IF 

Our algorithm (Figure 3) for online cycle elimination 
is a straight-forward implementation of the following idea. 
When adding a successor edge X-Y, we search (using 
pred-chain) along all predecessor edges starting from X for a 
predecessor chain JJ . . ..++X. Similarly, if we add a predeces- 
sor edge X ....+JJ, we search (using succ-chain, not shown) 
along all successor edges starting from Y for a successor 
chain y-+X. If such a chain exists, then we have found 
a cycle that can be eliminated. The search algorithm on 
the right in Figure 3 differs from depth-fist-search merely 
in that the next visited vertex must be less than the cur- 
rent vertex in the variable order o(.). Note that for IF 
this condition is already implied by the graph representa- 
tion; we include it for clarity and to make the algorithm 
work for SF. Detection for SF is slightly different since all 
variable-variable edges in SF are successors. Consequently, 
when adding a successor edge X-Y, we search (using 
succ-chain) along all successor edges starting from Y for a 
successor chain y-+X. The condition that we only fol- 
low successor edges if they point to lower indexed variables 
is crucial for SF. Without it, a full depth-first-search is per- 
formed at every graph update, which is impractical. Re- 
stricting the search to edges pointing to lower indexed vari- 
ables reduces search time but results in only partial cycle 
detection. 

For IF, cycle detection not only depends on the order o(.) 
but also on the order in which edges are added to the graph. 
Consider the example in Figure 4. Our approach detects 
this cycle only if the successor edge X3-X1 is added last, 
since in this case, the predecessor chain Xl ....+Xz ...+X3 is 
found. If the cycle is closed by adding either of the other 
edges the cycle is not detected. However, the closure of IF 
adds a transitive edge XZ-Xl and the sub-cycle (Xl, X2) 
is detected in all cases. It is a theorem that for any ordering 
of variables, IF exposes at least a two-cycle for every non- 
trivial strongly connected component (SCC).3 Thus, using 
inductive form guarantees at least part of every non-trivial 
SCC is eliminated by our method; this result does not hold 
for SF. 

‘A non-trivial strongly connected component consists of at least 
two vertices. 
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Figure 5: Example points-to graph 

Once a cycle is found, we must collapse it to obtain any 
performance benefits in the subsequent constraint resolu- 
tion. Collapsing a cycle involves choosing a witness variable 
on the cycle (we use the lowest indexed variable to preserve 
inductive form), redirecting the remaining variables on the 
cycle to the witness (through forwarding pointers), and com- 
bining the constraints of all variables on the cycle with those 
of the witness. 

Finally, note that although some cycles may be found in 
the initial constraints, many cycles only arise during reso- 
lution through the application of the resolution rules R. In 
the majority of our benchmarks, less than 20% of the vari- 
ables that are in strongly connected components in the final 
graph also appear in strongly connected components in the 
initial graph. 

3 Case Study: Andersen’s Points-to Analysis 

For a C program, points-to analysis computes a set of ab- 
stract memory locations (variables and heap) to which each 
expression could point. Andersen’s analysis computes a 
points-to graph [And94]. Graph nodes represent abstract 
memory locations, and there is an edge from a node z to a 
node y if x may contain a pointer to y. Informally, Ander- 
sen’s analysis begins with some initial points-to relationships 
and closes the graph under the rule: 

For an assignment ei = e2, anything in the points- 
to set for e2 must also be in the points-to set for 
el. 

Figure 5 shows the points-to graph computed by Andersen’s 
analysis for a simple C program. 

3.1 Formulation using Set Constraints 

Andersen’s set formulation of points-to graphs consists of a 
set of abstract locations {II , . . . , In}, together with set vari- 
ables Xl,, . . . , Xl, denoting the set of locations pointed to by 
11 , . . . , In. The example in Figure 5 has the set formulation 

gb 1 ~;p 

x:: = {I:} 

The association between a location li and its points-to set 
Xl, is implicit in Andersen’s formulation and results in an 
ad-hoc resolution algorithm. We use a different formulation 
that makes this association explicit and enables us to use a 
generic set constraint solver. We model locations by pairing 
location names and noints-to set variables with a construc- 
tor ref({li},Xli) akin to reference types in languages like 
ML lMTH901. 

Unlike th; type system of ML, which is equality-based, 
we need inclusion constraints. It is well known that sub- 
typing of references is unsound in the presence of update 

e:r 
&e : ref(O,~,T) 

e : 7 T C_ ref(l,T,‘iT) 7 fresh 
*e : 7 

(AdW 

(Deref) 

el=e2 : 72 

Figure 6: Constraint generation for Andersen’s analysis 

operations (e.g., Java arrays [GJSSG]). A sound approach is 
to turn inclusions between references into equality for their 
contents: ref(X) C ref(y) * X = Y. 

We adapt this technique to a purely inclusion-based sys- 
tem using a novel approach. We intuitively treat a refer- 
ence 1. as an object with a location name and two methods 
get : void + Xl, and set : Xi, + void, where the points-to 
set of the location acts both as the range of the get func- 
tion and the domain of the set function. Updating a lo- 
cation corresponds to applying the set function to the new 
value. Dereferencing a location corresponds to applying the 
get function. 

Translating this intuition, we add a third argument to 
the ref constructor that corresponds to the domain of the 
set function, and is thus contravariant. A location 1. is 
then represented by ref(1., Xl.,x) (to improve readability 
we overline contravariant arguments). To update an un- 
known location T with a set 7, it suffices to add a con- 
straint T c ref(l,l,T). For example, if ref(&,Xl,,z) C T, 
then the transitive constraint ref(Z=, Xl.,x) c ref(l,l,n 
is equivalent to 7 c Xl, (due to contravariance), which is 
the desired effect. Dereferencing is analogous, but involves 
the covariant points-to set of the ref constructor. 

To formally express Andersen’s points-to graph, we must 
associate with each location 1, a set variable yl= for the set of 
abstract location names and a constraint Xl, E ref (&, 1,0) 
that constrains YJ~ to be a superset of all names of locations 
in the points-to set Xi,. The points-to graph is then defined 
by the least solution for &. In our implementation we avoid 
using the location names 16 and the variables Yl,, and instead 
derive the points-to graph directly from the constraints. 

3.2 Constraint Generation 

Figure 6 gives a subset of the constraint-generation rules for 
Andersen’s analysis. For the full set of rules, see [FFA97]. 
The rules assign a set expression to each program expression 
and generate a system of set constraints as side conditions. 
The solution to the set constraints describes the points-to 
graph of the program. We write T for set expressions denot- 
ing locations. To avoid separate rules for L- and R-values, we 
infer sets denoting L-values for every expression. In (Var), 
the type ref&, XI.,%) associated with x therefore denotes 
the location of x and not its contents. 

We briefly describe the other rules in Figure 6. The 
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AST 
Node* 
700 

035 
1078 
1412 
a284 
a305 
302, 
ssss 
sac30 
6326 
0518 
0752 
811, 

10046 
15170 
ma8 
20900 
31210 
38802 
38874 
41497 
40292 
51223 
53874 
56938 
71091 
87301 

LOC 

428 
a03 
344 
324 
574 
445 

1179 
652 

1640 
1805 
298, 
4903 
a316 
4D30 

12046 
5761 
03.58 

a5120 
15214 
12845 
1831a 
a3943 
31105 
36155 
a1583 
2,381 
59689 

TotEll 
#Vers 
171 

319 
210 
a64 
3% 
207 
510 
241 

1024 
1378 
1811 
1855 
1971 
2764 
3587 
,111 
5617 
,009 
78.99 
0565 
0005 

12806 
13848 

9539 
11490 
11690 
13401 

I 
Nodes 
-73z 

637 
360 
415 
516 
sa5 
850 
304 

1804 
2028 
a**5 
3095 
aaoo 
4578 
6171 

la213 
9694 

11630 
12514 
15058 

9735 
13708 
20735 
1537a 
10067 
18083 
a1837 

Initid 
Edges 

Irll 
a97 
a10 
a40 
329 
176 
48, 
a41 

loao 
1292 
140, 
1008 
144a 
2317 
3380 
6283 
6691 
6507 
0904 
868, 
0450 
3631 

1040, 
9740 

12271 
10058 
11097 

i 
#VSAr* 
6 

B 
10 

4 
0 
4 
0 

17 
a0 
17. 

0 
a9 
50 

0 
30 

i:: 
63 

155 
34 

347 
108 
340 

91 
333 
400 
108 

5 
a 
3 

?I 
7 
7 
0 

t 
15 

3 
la 
10 
19 
a4 
63 

:: 

:: 
37 

140 
58 
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Table 1: Benchmark data common to all experiments 

address-of operator (Addr) adds a level of indirection to its 
operand by adding a ref constructor. The dereferencing op- 
erator (Deref) does the opposite, removing a ref and making 
the fresh variable 7 a superset of the points-to set of r. The 
second constraint in the assignment rule (Asst) transforms 
the right-hand side 72 from an L-value to an R-value 3, 
as in (Deref) (recall these rules infer sets representing L- 
values). The first constraint ~1 s ref(l,l,z) makes 71 a 
subset of the points-to set of ~1. The final constraint 72 E 71 
expresses exactly the intuitive meaning of assignment: the 
points-to set 5 of the left-hand side contains at least the 
points-to set 72 of the right-hand side. For example, the 
first statement of Figure 5, a = &b, generates the constraints 
71 = ref(L,&.,K) C ref(l, 1,711, and so 71 E XL, 
and 72 = ref(0, ref(.&, Xl,,%), . . .) 5 ref(1, K,a), and so 
ref(&,Xl,,K) C 72. The final constraint 72 5 71 implies 
the desired effect, namely ref(b, XI,,~) E Xl,. 

4 Measurements 

In this section we compare the commonly used implementa- 
tion strategy of set-based analysis [Hei92], which represents 
constraint graphs in standard form (SF), with the inductive 
form (IF) of [AW93]. We give empirical evidence that cycles 
in the constraint graph are the key inhibitors to scalabil- 
ity for both forms and that our online cycle elimination is 
cheap and improves the running times of both forms signif- 
icantly. Using online cycle elimination, analysis times us- 
ing inductive form come close to analysis times with perfect 
and zero-cost cycle elimination (measured using an oracle to 
predict cycles). Furthermore, on medium to large programs 
IF outperforms SF by factors of 2-4. This latter result is 
surprising, and we explore it on a more analytical level in 
Section 5. 

Our measurements use the C benchmark programs 
shown in Table 1. For each benchmark, the table lists the 
number of abstract syntax tree (AST) nodes, the number of 
lines in the preprocessed source, the number of set variables, 
the total number of distinct nodes in the graph (sources, 
variables, and sinks), and the number of edges in the initial 

Experiment 1 Description 
SF-Plain I Standard form. no cycle elimination 
IF-Plain Inductive form; no c&zle elimination 
SF-Oracle Standard form, with full (oracle) cycle elimination 
IF-Oracle Inductive form, with full (oracle) cycle elimination 
SF-Online Standard from, using IF online cycle elimination 
IF-Online Inductive form, with online cycle elimiuation 

Table 4: Experiments 

constraints (before closing the graph). Furthermore, the 
table contains the combined size of all non-trivial strongly 
connected components (SCC), the number of components, 
and the size of the largest component, both for the initial 
graph (before closure) and for the final graph (in any experi- 
ment). The difference in the combined size of SCCs between 
the initial and the final graph shows the need for online cycle 
elimination. If all cycles were present in the initial graph, 
online cycle elimination would be unnecessary. 

We use a single well-engineered constraint resolution li- 
brary to compare SF and IF. To validate that our results are 
not a product of our particular implementation, we compare 
our implementation of standard form to an independent im- 
plementation of points-to analysis written in C by Shapiro 
and Horwitz [SH97]. Their implementation corresponds to 
SF without cycle elimination, and we empirically verify that 
our implementation of SF produces the same trend on our 
benchmark suite. The scatter plot in Figure 12 shows that 
our implementation of SF without cycle elimination is usu- 
ally between 2 times faster and 2 times slower than SH (hor- 
izontal lines) on a subset of the benchmarks4 with a few 
exceptions where our implementation is significantly faster 
(flex, li, cvs, inform), and one program where our imple- 
mentation is substantially slower (tar). 

We performed the six experiments shown in Table 4. The 
first two are plain runs of the points-to analysis using SF and 
IF without cycle elimination. SF-Plain corresponds to clas- 
sic implementations of set-based analyses. The experiments 
SF-Oracle and IF-Oracle precompute the strongly connected 
components of the final graph and use that information as 

‘Not all benchmarks ran through SH. 
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Table 2: Benchmark data for IF-Plain, SF-Plain, IF-Oracle, and SF-Oracle 
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Table 3: Benchmark data for IF-Online and SF-Online 

an oracle. Whenever a fresh set variable is created, the or- 
acle predicts to which strongly connected component the 
variable will eventually belong. We substitute the witness 
variable of that component for the fresh variable. As a re- 
sult, the oracle experiment uses only a single variable (wit- 
ness) for each strongly connected component, and thus the 
graphs are acyclic. Since the oracle experiments avoid all 
unnecessary work related to cycles in the constraint graph 
(perfect cycle elimination), they provide lower bounds for 
the last two experiments, IF-Online and SF-Online, which 
use the online cycle detection and elimination algorithm de- 
scribed in Section 2.5. Furthermore, the oracle experiments 
directly compare the graph representations of IF and SF, 
independently of cycle elimination. 

Table 2 shows the results for the first four experiments. 
For each benchmark and experiment, we report the number 
of edges in the final graph, the total number of edge addi- 
tions (Work) including redundant ones, and the execution 
time in seconds. Note the large number of redundant edge 
additions for SF-Plain and IF-Plain. All experiments were 
performed using a single processor on a SPARC Enterprise- 
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5000. The reported CPU times are best out of three runs. 
As mentioned in Section 2.4, all reported times for IF include 
the time to compute the least solution. Figure 7 plots the 
analysis time for both SF-Plain and IF-Plain without cycle 
elimination against the number of AST nodes of the parsed 
program. As the size exceeds 15000 AST nodes there are 
many benchmarks where the analysis becomes impractical. 
Without cycle elimination, SF generally outperforms IF be- 
cause cycles add many redundant variable-variable edges in 
IF that lead to redundant work. 

The low numbers for the oracle runs IF-Oracle and SF- 
Oracle in Table 2 show that the bulk of work and execution 
time is attributable to strongly connected components in 
the constraint graph. Without cycles, the points-to analysis 
scales very well for both IF and SF. Our oracle approach 
failed for the three programs, screen, gawk, and povray, 
hence the missing points. 

Table 3 reports the measurement results for the online 
cycle elimination experiments. In addition to the informa- 
tion shown for the plain and oracle experiments, the ta- 
ble contains the number of variables that were eliminated 
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Figure 9: Speedups through online cycle detection Figure 10: Speedups through inductive form 

through cycle detection. Online cycle elimination is very 
effective for medium and large programs. Figure 8 plots 
the analysis times for online cycle elimination and the ora- 
cle experiments (note the scale change). The fastest analy- 
sis times are achieved by IF-Oracle, followed by SF-Oracle, 
IF-Online, and then SF-Online. IF-Online stays relatively 
close to the oracle times, while SF-Online performs some- 
what worse. This indicates that while our cycle detection 
algorithm is not perfect, it comes close. 

Figure 9 shows the total speedup of our approach over 
standard implementations (IF-Online over SF-Plain), and 
the speedup obtained solely through online cycle elimina- 
tion (SF-Online over SF-Plain). To show that our techniques 
help scaling, we plot the speedups vs. the absolute execution 
time of SF-Plain. As the execution time of the standard 
implementation grows, our speedup also grows. For very 
small programs, the cost of cycle elimination outweighs the 
benefits, but for medium and large programs, online cycle 
elimination improves analysis times substantially, for large 
programs by more than an order of magnitude. 

The performance benefit of inductive over standard form 
is illustrated more clearly in Figure 10. In this plot, we 

250 

can see that IF-Online is consistently faster for medium and 
large-sized programs (at least 10,000 AST nodes) than SF- 
Online.6 For large programs the difference is significant, 
with IF-Online outperforming SF-Online by over a factor of 
3.8 for the largest program. For very small programs, IF is 
at most 50% slower than SF, which in absolute times means 
only fractions of seconds. 

We can explain the performance difference of IF and SF 
by comparing the fraction of variables on cycles found by 
IF-Online and SF-Online (Figure 11). Throughout, SF finds 
only about half as many variables on cycles as IF, and the 
remaining cycles slow down SF. One reason for this differ- 
ence is that for SF, the cycle detection only searches suc- 
cessor chains. The analog to predecessor chains in SF are 
increasing chains. Searching increasing chains in SF results 
in a higher detection rate (57%), but the much higher cost 
outweighs any benefits. 

Our model in Section 5 explains why SF finds fewer cy- 
cles. The probability of finding chains of length greater than 

‘The outlier is the program flex; although flex is a large program, 
it contains large iuitialised arrays. Thus as far as points-to analysis 
is concerned, it actually behaves like a small program. 
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Figure 11: Fraction of variables on cycles found online 

2 is small. Thus cycles of larger size are detected with small 
probability. IF counteracts this trend by adding transitive 
variable-variable edges, thereby shortening cycle lengths. 

5 An Analytical Model 

In the last section, we saw that IF-Online and IF-Oracle both 
outperform SF-Online and SF-Oracle respectively, and that 
the simple online cycle elimination strategy is very effective, 
especially for IF. In this section we analytically compare the 
two different representations and answer three questions: 

(Ql) Why is IF a better representation than SF? 

(Q2) Why is partial online cycle elimination fast? 

(Q3) Why is the cycle elimination strategy more effective 
for IF? 

To answer these questions analytically, we need a 
tractable model of constraint graphs. We use the follow- 
ing simplifications and assumptions: 

l We assume that graph closure adds no edges through 
the resolution rules R. That is, we only consider edges 
added directly through the graph closure rule. 

. We consider random graphs G = (V, E) with n variable 
nodes, m source or sink nodes, and we assume for all 
pairs of distinct nodes u and v there is an edge (u, v) E 
E with probability p, for some constant p. 

l We consider only edges added through simple paths. 
Thus, the results correspond to the cases where we have 
perfect cycle detection i.e., IF-Oracle and SF-Oracle. 

These are strong assumptions. Nevertheless, this model pre- 
dicts our measurements quite well. The following two theo- 
rems summarize the results in this section. 

Theorem 5.1 For random graphs with p = $ and ratio 
L?l=z the expected number of edge additions for SF is 
approx!mately 2.5 times more than that for IF. 

10 
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Figure 12: Relative execution times of Shapiro and Horwitz’s 
SF implementation of C points-to analysis (SH) over SF-Plain 

Theorem 5.2 For random graphs with p = f, the ex- 
pected number of variable nodes reachable through prede- 
cessor or successor chains in IF from any given node is no 
more than 2.2. 

The parameters p and f are taken from our experiments 
described in Section 4. The probabilities p = i and p = $ 
are the the approximate densities of the initial and final IF 
graphs, respectively. 

Theorem 5.1 answers the first question (Ql). It explains 
why SF-Oracle does on average 4.1 times more work than 
IF-Oracle. The second question (Q2) is answered by Theo- 
rem 5.2. We expect partial online cycle detection to follow 
very few edges. We observe empirically that the number of 
reachable variables is close to two. To answer the third ques- 
tion (Q3), notice that since cycle detection searches chains 
in order of variable index, the probability of detecting a long 
cycle is exponentially small. However, in IF edges between 
variables are added to the constraint graph, thus shortening 
some long cycles and increasing the probability of detecting 
cycles. Although the same idea for detecting cycles can be 
applied to SF, it does not work as well since SF adds no 
transitive edges between variables. Figure 11 shows that for 
IF our simple strategy I?nds on average 80% of the variables 
involved in cycles, whereas the same strategy finds only 40% 
when used with SF. 

In the rest of the section, we establish Theorem 5.1 and 
Theorem 5.2. We introduce some notation and terminology 
used in the following discussion. We use u and v to denote 
either variable nodes or source and sink nodes, X or Xi to 
denote variable nodes, and c or c’ to denote source and sink 
nodes. A total order on the n variables is chosen uniformly 
at random from among all n! possible permutations. Finally, 
we say a graph edge (u, v) is added through a path p if (u, v) 
would be added by the graph closure rule considering only 
the nodes and edges of p. 

5.1 Edge Additions in Standard Form 

During the graph closure process edges may be added more 
than once because an edge may be implied by more than 
one path in the constraint graph (cf. Figure 2). Thus, a 
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constraint solver does work proportional to the number of 
edge additions, including redundant additions along differ- 
ent paths. 

Define the random variables XfL,V, to be the number of 
additions of the edge (u, v) through simple paths from u to v 
for the standard form. To calculate the total expected num- 
ber of edge additions, it suffices to calculate the expected 
number of additions E(X&,) of a given edge (u,v) and 
sum over all possible edges. 

For the standard form we consider two kinds of edges, 
(c, X) and (c,c’). We now calculate E(X&)) and 

W&I ,I. Notice that the edge (c,X) must be added 
through a simple path from c to X. For edges of the form 
(c, c’), we also need only consider the simple paths from c 
to c’. 

For each simple path from c to X of length i + 1, there 
are (“T1) choices of intermediate variable nodes. For each 
simpie’path from c to c’ of length i + 1, there are (y) choices 
of intermediate variable nodes. In both cases, each combi- 
nation of variable nodes may appear in i! possible orders. 
The probability that any particular sequence of the i + 2 
nodes (including c and X or c and c’) is a path is p’+‘. We 
obtain the following: 

W&)) = g p ; 1) i!pi+l 
i=l \ / 

E(X&)) = 2 ; i!p”+’ 0 
i=l \-/ 

Since there are mn. possible edges of the form (c, X) and 
m(m - 1) possible edges of the form (c,c’), the expected 
number of edge additions for the standard form is given by 

E(X”) = mnE(X&)) + m(m - l)E(X&,)) 

5.2 Edge Additions in Inductive Form 

Defme the random variables X&l to be the number of ad- 
ditions of the edge (u,v) through simple paths from u to 
v for the inductive form. We need to consider four kinds 
of edges: (Xr, Xe), (X,c), (c, X), and (cr,ce). Notice that 
the probability that a given edge (u,v) is added through a 
simple path p of 1 2 3 nodes from u to v depends only on 
1. Thus we let Pi(u,v) denote the probability that the edge 
(u,v) is added through a simple path from u to v with i 
nodes. We have the following equations: 

i!pif1Pi+2(Xly X2) 

= 

E(X[F,,=,l) = 2 ; i!pi+‘Pi+2(c,c’) 

id 0 

We next calculate for any 1 1 3 the probability PI (u, v) 
for any nodes u and v. 

Lemma 5.3 Let o(.) be a random total order on the vari- 
ables. Given a simple path p from u to v with 2 nodes, the 
following holds: 

1. Pi (u, v) = I&J if u and v are variable nodes; 

2. Pi(u, v) = & if one of u and v is a variable node and 
the other is a constructed node; 

3. Pl (u, v) = 1 if both u and v are constructed nodes. 

Proof. We prove the first case. Similar arguments apply to 
the other two cases. 

We first show Pl(u,v) 5 &. Recall that o(X) is the 
index of variable X. Assume the edge (21, v) is added through 
apath (u,Xr,... , Xl-s,v), we claim that O(U) and o(v) are 
the smallest indices on the path, i.e., O(U) < o(Xi) and 
o(v) < o(Xi) for all 1 5 i 2 1 - 2. For paths with three 
nodes, this claim is true by the closure rule, since the edge 
is only added if u +...+Xl and Xi + v are in the graph and, 
these edges imply that o(u) and o(v) are less than o(Xr). 
Suppose the claim is true for paths with at most k 2 3 
nodes. Consider a path (‘IL, Xl,. . . ,X,-r, v) with k+l nodes 
such that the edge (u, v) is added through the path. Notice 
there must exist a Xi with 1 5 i 5 k - 1 such that the 
edges (u, Xi) and (Xi,v) are added and O(U) < o(Xi) and 
o(v) < o(Xi). By induction, the claim holds for the shorter 
paths (u, . . . ,Xi)and(Xi,... , v). Thus, o(u) and o(v) must 
be the smallest indices on the path. There are n! possible 
orderings on the n variables and we claim that there are 
(7)(2(E - 2)!)(n - Z)! of th em satisfying the above condition. 
There are (1) possible ways of choosing the indices for the 
1 variables on the path. There are 2 ways of ordering u and 
v, and (I - 2)! ways of ordering the rest of the variables on 
the path. For the other (n - 1) variables we can order them 
in (n - 1)! ways. Thus we have 

fi(%V) 5 
(;) (2(Z - 2)!)(n - I)! 

I 71. 
2 

= l(l-l)’ 

We now show Pl(u,v) 2 &. Let o(e) be an ordering 
such that O(U) and o(v) are the smallest indices on the path 
&,X1,... , Xl,v). We show that the edge (u, v) is added 
through the path. The claim is clearly true for paths with 
three nodes. Suppose the claim holds for paths with at most 
k nodes. Consider a path (u, Xl,. . . , Xk-1, v) with k + 1 
nodes such that O(U) and o(v) have the smallest indices. Let 
Xi be the node such that o(Xi) < o(Xj) for all 1 5 j 5 k - 1 
with i # j. By induction, the claim holds for the two sub- 
paths (u, . . . ,Xi) and(Xi,... , v), i.e., the edges (u, Xi) and 
(Xi,v) are added through the respective subpaths. Thus, 
the edge (u, v) is added through the given path. Therefore, 
fi(u,v) 2 q&j. 0 

Since there are m(m - 1) edges of the form (c,c’), 2mn 
edges of the form (X, c) or (c, X), and n(n - 1) edges of the 
form (Xl, X2), the expected number of edge additions for 
the inductive form is given by 

E(XIF) = m(m - l)E(X[:,c~l) + 

2mnE(X$,d + 

n(n - ~)W%,X~)) 

5.3 Comparison 

To directly compare SF and IF it is necessary to make an 
additional assumption about the density of the initial graph. 
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In the following calculation, we assume p = $, which says 

that a typical initial graph has @$ edges. In practice, 
initial constraint graphs are sparse; all our benchmark pro- 
grams produce initial graphs of approximately this density. 

We have the following approximation [Knu73] 

(2) 

Using equation (2) we simplify E(XsF) and E(XIF) as 
follows 

E(X”) x m(E-1) -l-mcm~l)~ 

To obtain Theorem 5.1, we relate the expected edge ad- 
ditions to the amount of work done to close the constraint 
graphs. Since we consider only simple paths, the expected 
number of edge additions corresponds to the case where 
there are no cycles (i.e., the oracle runs in Section 4). For 
our benchmark programs, the typical ratio of z is about 
$ (See Table 1). Thus, asymptotically, E(XsF)/E(XIF) is 
about 2.5, i.e., using the standard form, we expect to do 2.5 
times as much work as using the inductive form. On our 
benchmarks we have measured an average of 4.1 times more 
work for SF. 

5.4 Cost of Online Cycle Elimination 

Next we establish that the expected number of reachable 
nodes from any given node is small. This result explains 
why the simple heuristic for detecting cycles is very cheap. 

Let X be any variable node and let RX be the random 
variable denoting the number of nodes reachable from X 
through a predecessor chain. Using the same method for 
calculating the expected number of edge additions, we con- 
sider all simple paths starting with X involving only variable 
nodes. We thus have 

Next, we approximate E(Rx). Let p = $ for some con- 
stant k. Then 

< ;(ek-l-k) 

The value of p here is the probability of an edge being 
present in the final constraint graph, not the initial one. If 
P= $, i.e., k = 2 (which holds roughly for our benchmarks) 
we have 

E(Rx) < ;(e2-1 -2) 

x 2.2 

completing the proof of Theorem 5.2. Note that for graphs 
denser than p = 2 the value E(Rx) 
method relies on s;arse graphs. 

climbs sharply-our 

6 Related Work 

There are three strands of related work: constraint simplifi- 
cation, points-to analysis, and sub-cubic time analyses. 

The importance of simplifications on constraint graphs 
has been recognized before. In contrast to our online ap- 
proach, prior work has focused on periodic simplification. 
In [FA96] the authors describe several simplifications to re- 
duce the heap requirements of graphs for a more complex 
constraint language. They give performance results ob- 
tained through simplifications at regular depths in the ab- 
stract syntax tree traversal. Simplification cost outweighs 
potential benefits when simplifications are performed fre- 
quently. 

Several papers explore the theoretical foundations of con- 
straint simplification [TS96, Pot96, FF97]. Among these, 
[FF97] implemented several simplifications in the context of 
a static debugger for Scheme. Constraint graphs are gen- 
erated separately for each module, simplified, and finally 
merged. They report substantial reduction in constraint 
graph sizes and speedups of analysis times. 

Marlow and Wadler use set constraints in a type system 
for Erlang [MW97]. Their system performs simplifications 
similar to [FA96, FF97] for every function declaration. They 
report that performance is poor for large sets of mutually 
recursive functions, which must be analyzed together. 

Points-to analysis with set constraints,is in Andersen’s 
thesis [And94]. Recent work by Shapiro and Horwitz [SH97] 
contrasts Andersen’s set based points-to analysis with the 
unification based points-to analysis of Steensgaard [SteSG]. 
They conclude that while Andersen’s analysis is substan- 
tially more precise than Steensgaard’s, its running time is 
impractical. However, our implementation of Andersen’s 
points-to analysis is generally competitive with [SH97]‘s im- 
plementation of Steensgaard’s algorithm. 

Inclusion constraint resolution algorithms usually have at 
least O(n3) time complexity. The lack of progress in achiev- 
ing scalable implementations of these algorithms has encour- 
aged interest in asymptotically faster algorithms that are ei- 
ther less precise or designed for special cases. Steensgaard’s 
system is an example of the former; the linear time closure- 
analysis algorithm for functional programs with bounded 
type size is an example of the latter [Mos96, HM97]. We 
plan to study the impact of online cycle elimination on the 
performance of closure analysis in future work. 

7 Conclusions 

We have shown that online elimination of cyclic constraints 
in inclusion constraint based program analyses yields orders- 
of-magnitude improvements in execution time. Our partial 
online cycle detection algorithm is cheap but effective and 
works best on a non-standard representation of constraint 
graphs. 
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