
Partial Online Cycle Elimination in Inclusion Constraint Graphs

Manuel FBhndrich* Jeffrey S. Foster* Zhendong Su* Alexander Aiken*

EECS Department
University of California, Berkeley

387 Soda Hall #1776
Berkeley, CA 94720-1776

{manuel,jfoster,zhendong,aiken}@cs.berkeley.edu

Abstract

Many program analyses are naturally formulated and im-
plemented using inclusion constraints. We present new re-
sults on the scalable implementation of such analyses based
on two insights: first, that online elimination of cyclic con-
straints yields orders-of-magnitude improvements in analy-
sis time for large problems; second, that the choice of con-
straint representation affects the quality and efficiency of
online cycle elimination. We present an analytical model
that explains our design choices and show that the model’s
predictions match well with results from a substantial ex-
periment.

1 Introduction

Inclusion constraints are a natural vehicle for expressing a
wide range of program analyses including shape analysis,
closure analysis, soft typing systems, receiver-class predic-
tion for object-oriented programs, and points-to analysis for
pointer-based programs, among others [Rey69, JM79, Shi88,
PS91, AWL94, Hei94, And94, FFK+96, MW97]. Such anal-
yses are efficient for small to medium size programs, but they
are known to be impractical for large analysis problems.

Inclusion constraint systems have natural graph repre-
sentations. For example, the constraints X 2 y 5 2 are
represented by nodes for the quantities X,Y, and 2 and
directed edges (X, Y) and (Y, 2) for the inclusions. Resolv-
ing the constraints corresponds to adding new edges to the
graph to express relationships implied by, but not explicit
in, the initial system. In this example, the transitive edge
(X, 2) represents the implied constraint X C 2.

The performance of constraint resolution can be im-
proved by simplifying the constraint graph. Periodic simpli-
fication performed during resolution helps to scale to larger
analysis problems [FA96, FF97, MWS’I], but performance is
still unsatisfactory. One problem is deciding the frequency
at which to perform simplifications to keep a well-balanced
cost-benefit tradeoff. Simplification frequencies in past ap-

*Supported in part by an NDSEG fellowship, NSF Young Inves-
tigator Award CCR-9457812, NSF Grant CCR-9416973, and a gift
from Rockwell Corporation.

Psrmisaion lo make digital or hard copies of aII or part of this work for
personal or classroom we is granted without fee provided that
copies are not made or distributed for profit or commercial sdvan-
tape and that copies bear this notice end the lull citation on the firs1 page.
To copy otherwiss. lo republish, to post on servera or lo
rsdistribute to lists. requires prior specific permission and/or a fee.
SIGPLAN ‘98 Montrssl. Canada
Q 1998 ACM 0-89791~987-4/98/0006...$5.00

proaches range from once for an entire module to once for
every program expression.

In this paper we show that cycle elimination in the con-
straint graph (a particular simplification) is one key to mak-
ing inclusion constraint analyses scale to large problems
with good performance. Cyclic constraints have the form
Xl c x2 E x3 . . . C X,, C_ Xr where the Xi are set variables.
All variables on such a cycle are equal in all solutions of the
constraints, and thus the cycle can be collapsed to a single
variable.

We take an extreme approach to simplification frequency
by performing cycle detection and elimination online, i.e.,
at every update of the constraint graph. At first glance,
this approach seems overly expensive, since the best known
algorithm for online cycle detection performs a full depth-
first search for half of all edge additions [Shm83].

Our contribution is to show that partial online cycle de-
tection can be performed cheaply by traversing only cer-
tain paths during the search for cycles. This approach is
inspired by a non-standard graph representation called in-
ductive form (IF) introduced in [AWSS]. In practice, our
approach requires constant time overhead on every edge ad-
dition and finds and eliminates about 80% of all variables
involved in cycles. For our benchmarks, this approach radi-
cally improves the scaling behavior, making analysis of large
programs practical. Furthermore, we provide an analytical
model to explain the performance of particular graph repre-
sentations.

Except ours, all implementations of inclusion constraint
solvers we are aware of employ a standard graph represen-
tation in which all edges are stored in adjacency lists and
variable-variable edges always appear in successor lists. For
example, the constraint X E y, between variables X and
Y, is represented as a successor edge from node X to node
y. Our measurements show that this standard form (SF),
which is the one described in [Hei92] for use in set-based
analysis (SBA), can also substantially benefit from partial
online cycle elimination.

As our benchmark we study a points-to analysis for
C [And94, SH97] implemented using both SF and IF. For
large programs (more than 10000 lines), online cycle elimi-
nation reduces the execution time of our SF implementation
by up to a factor of 13. Our implementation using IF and
partial online cycle elimination outperforms SF with cycle
elimination by up to a factor of 4, resulting in an overall
speedup over standard implementations by up to 50.

Our measurement methodology uses a single well-
engineered constraint solver to perform a number of exper-

85

iments using SF and IF with and without cycle elimination.
We validate our results by comparing with Shapiro and Hor-
witz’s SF implementation (SH) of the same points-to anal-
ysis [SH97]. Experiments show that our implementation of
points-to analysis using SF without cycle elimination closely
matches SH on our benchmarks.

In Section 2, we define a language for set constraints,
the particular constraint formalism we shall use. We also
present the graph representations SF and IF and describe
our cycle elimination algorithm. In Section 3 we describe
the version of points-to analysis we study. Section 4 presents
measurements illustrating the efficacy of our cycle elimi-
nation algorithm. Section 5 studies an analytical model
that explains why IF can outperform SF. Finally, Section 6
presents related work, and Section 7 concludes.

2 Definitions

2.1 Set Constraints

In this paper we use a small subset of the full language of
set constraints [HJ90, AW92]. Constraints in our constraint
language are of the form L 2 R, where L and R are set
expressions. Set expressions consist of set variables X, Y, . . .
from a family of variables Vars, terms constructed from n-
ary constructors c E Con, an empty set 0, and a universal
set 1.

L,RE se ::= X]c(sei,...,se,))O)l

Each constructor c is given a unique signature S, specifying
the arity and variance of c. Intuitively, a constructor c
is covatiant in an argument if the set denoted by a term
c(. . .) becomes larger as the argument increases. Similarly,
a constructor c is contravariant in an argument if the set
denoted by a term c(. . .) becomes smaller as the argument
increases.

We define solutions to set constraints without restricting
ourselves to a particular model’ for set expressions. We
simply assume that each constructor c is also equipped with
an interpretation &. Given a vatiable assignment A of sets
to variables, set expressions are interpreted as follows2:

[X] A = A(X)
[c(sel,... , se,)] A = qL(l[sel] A,. . . , [se,] A)

A solution to a system of constraints { Li C &} is a variable
assignment A such that [Lil A C I[&] A for all i.

2.2 Constraint Graphs

Solving a system of constraints involves computing an ex-
plicit solved form of all solutions or of a particular solu-
tion. We study two distinct solved forms: Standard form
SF represents the least solution explicitly and is commonly
used for implementing SBA [Hei92]. Inductive form IF com-
putes a representation of all solutions and is usually used
with more expressive constraints and in type-based analy-
ses [AW93, MW97]. As an aside, it is worth noting that for
some analysis problems we require a representation of all so-
lutions because no least solution exists. For the purposes of

‘Standard models are the termset model [Hei92, Kos93] or the
ideal model IAW931.

2The inte&re&ion of 0 and 1 depends on the model and is not
shown.

SU{XEX} w s

SU{se&l} ++ S

SU{OEse} * S

SU {c(sel,. . . ,se,) C c(se:,. . . , se’,)} +3
s u ui

1

{se& c se:} c covariant in i
{sei > se:} c contravariant in i

S U {c(. . .) s d(. . .)} ti no solution
ifd#c

S U {c(. . .) s 0) * no solution
S U { 1 C 0) e no solution

S U { 1 E a!(. . .)} * no solution

Figure 1: Resolution rules R for SF and IF

comparing the two forms we shall implicitly assume through-
out that with respect to the variables of interest constraint
systems have least solutions.

The solved form of a constraint system is a directed graph
G = (V, E) closed under a transitive closure rule, where
the edges E represent atomic constraints and the vertices
V axe variables, sources, and sinks. Sources are constructed
terms appearing to the left of an inclusion, and sinks axe
constructed terms appearing to the right of an inclusion. For
the purposes of this paper, we treat 0 and 1 as constructors.
A constraint is atomic if it is one of the three forms

XCY variable-variable constraint
2.; !(’ 5 source-variable constraint

. . . variable-sink constraint -

We use the set of resolution rules R shown in Figure 1 to
transform constraints into atomic form. Each rule states
that the system of constraints on the left has the same so-
lutions as the system on the right. In a resolution engine
these rules are used as left-to-right rewrite rules.

The next sections describe how constraint graphs are rep-
resented and closed by the two forms SF and IF. Both forms
use adjacency lists to represent edges. Every edge (X,Y)
in a graph is represented exclusively either as a predecessor
edge (X E pred(y)) or as a successor edge (y E succ(X)).

2.3 Standard Form

Standard form (SF) represents edges in constraint graphs as
follows:

XCY X-Y successor edge

c(...) G x c(...) ...+X predecessor edge

X & c(. . .) X-c(. . .) successor edge

We draw predecessor edges in graphs using dotted arrows
and successor edges using plain arrows. New edges are added
by the transitive closure rule:

L.....cX-R e LCR

Given a predecessor edge L -.-cX and a successor edge at
X-R, a new constraint L c R is generated. We generate
a constraint instead of an edge because rules in Figure 1

86

Lo c x i = l..k
2 g Ri i = l..m

Lk

1 Close

IF

I Close

Rl

Figure 2: Example constraints in SF and IF

may apply. Note that in this case, L is always of the form
c(. . .). This closure rule combined with rules R of Figure 1
produces a Final graph containing an explicit form of the
least solution LS of the constraints [Hei92].

SF makes the least solution explicit by propagating
sources forward to all reachable variables via the closure
rule. The particular choice of successor and predecessor
representation is motivated by the need to implement the
closure rule locally. Given a variable X, the closure rule
must be applied exactly to all combinations of predecessor
and the successor edges of X.

Figure 2 shows an example system of constraints, the ini-
tial SF graph, and the resulting closed SF graph (left). The
example assumes that set expressions L1 . . . Lk are sources
and RI... R, are sinks. The closure of the standard form
adds transitive edges from each source Li to all variables
reachable from X i.e., Yi . . . Yt, 2. Note that the edges from
Ll . . . Lk to 2 are added 1 times each, namely along all 1
edges Yi-2. The total work of closing the graph is 2kl
edge additions, of which k(l - 1) additions are redundant,
plus the work resulting from the km constraints Li C Rj
(not shown).

To see why cycle elimination can asymptotically reduce
the amount of work to close a graph, suppose there is an ex-
tra edge 2-X in Figure 2, forming a strongly connected
component X, Yi , . . . , Yl, 2. If we collapse this component
before adding the transitive edges Li *****+Yj, none of the 2kl
transitive edge additions Li *..+Yj are performed (the km
constraints Li E Rj are still produced of course).

2.4 Inductive Form

Inductive form (IF) exploits the fact that a variable-variable
constraint X C Y can be represented either as a successor

edge (Y E succ(X)) or as a predecessor edge (X E Fed(Y)).
The representation for a particular edge is chosen as a func-
tion of a fixed total order o : Vars + N on the variables.
Edges in the constraint graph are represented as follows:

i

X-Y if o(X) > o(Y)

XCY
a successor edge

X--Y if o(X) < o(Y)
a predecessor edge

The choice of the order o(a) can have substantial impact on
the size of the closed constraint graph and the amount of
work required for the closure. We assume that the order
o(-) is randomly chosen. Choosing a good order is hard,
and we have found that a random order performs as well or
better than any other order we picked.

The other two kinds of edges are represented as in stan-
dard form, and the closure rule also remains unchanged:

L....+X-R H L E R

Notice that L may be a source or a variable-unlike SF,
where L is always a source. In IF the closure rule can
therefore directly produce transitive edges between vari-
ables. (This is not to say that the closure of SF does not
produce new edges between variables, but for SF such edges
always involve the resolution rules R of Figure 1.) The clo-
sure rule combined with the resolution rules R produces a
final graph in inductive form [AW93].

The least solution of the constraints is not explicit in the
closed inductive form. However, it is easily computed as
follows:

LS(Y) ={c(. . .) 1 c(. . .)+Y} u

87

insert-succ-edge (vertex from, vertex to)
{ // variable vertices : o(from) > o(to)

if (pred-chain (from, to)) { // Cycle found
collapse-cycle (...);

I
else

insert-into-successor-list (from, to);
1

pred-chain (vertex from, vertex to)
{ // TRUE if pred. chain to --> from

if (from == to) return (TRUE);
else {

mark(from); // from is visited
for each v in predecessors of from

if (! marked(v) && o(v) < o(from))
if (pred-chain (v, to))

return (TRUE);
return (FALSE);

1
1

Figure 3: Algorithms for cycle detection

By the ordering o(.), we have o(X) < o(Y) for all X....+Y.
Thus there exists a variable 21 with minimum index o(&)
that has no predecessor edges to any other variables and
LS(&) = {c(. . .) [c(. . .) . ..+Z~}. Then AS(&) is com-
puted using LS(2j) for j < i and (1). The time to compute
LS for all variables is O(pJc) worst case, where p is the num-
ber of edges and /c is the number of distinct sources in the
final graph. In the rest of the paper, solving a system of
constraints under IF always includes the computation of the
least solution.

The right side of Figure 2 shows the initial and ha1
graph for the example constraints using IF. Note that some
variable-varjable edges in IF are predecessor edges (dotted),
whereas all variable-variable edges in SF are successor edges
(solid). The ordering on the variables assumed in the ex-
ample is o(X) < o(2) < o(yi). Note the extra variable-
variable edge X *..+2 added by the closure rule for IF. As
a result of this edge, the closure of IF adds edges from X
to all a. Each of the variables &, . . . , Yl, 2 has a single
predecessor edge to X, and thus their least solution is equal
to LS(X) = {LI,... , Lk}. The total work of closing the
graph is 1 + m edge additions, of which 1 - 1 additions are
redundant, namely the addition of edge X....+Z through all
yi, plus the work for the km transitive constraints Li 5 Rj
(not shown). The work to compute the least solution is
proportional to 1.

2.5 Cycle Detection

In this subsection we describe our cycle detection algorithm.

Definition 2.1 (Path) A path of length k from a vertex u
to a vertex v in a constraint graph G = (V, E) is a sequence
of vertices (~0 , . . . ,Vk), such that U = 210, V = ‘ok, ‘“l..Vk-1
are variable nodes, and vi-i-i E E or v~~~.~~.+~v~ E E
for i = l..k. A path is simple if all vertices on the path are
distinct.

Definition 2.2 (Chain) A chain in a constraint graph is
a simple path (X0,. . . , xk) consisting entirely of SUCCeSSOr
edges XS-~-X~ for i = l..k (a successor chain), or con-
sisting entirely of predecessor edges Xi-1 ...++Xi for i = l..k
(a predecessor chain).

A path (X0,. . . , xk) forms a cycle if X0 = Xk and k 2 1.
AS we show in Section 4, cycles in constraint graphs are a
major contributor to constraint resolution times. It is thus
important to detect and eliminate cycles. Cycles can always
be replaced with a single variable, since all variables on a
cycle must be equal in all solutions of the constraints.

Figure 4: A cyclic graph in IF

Our algorithm (Figure 3) for online cycle elimination
is a straight-forward implementation of the following idea.
When adding a successor edge X-Y, we search (using
pred-chain) along all predecessor edges starting from X for a
predecessor chain JJ++X. Similarly, if we add a predeces-
sor edge X+JJ, we search (using succ-chain, not shown)
along all successor edges starting from Y for a successor
chain y-+X. If such a chain exists, then we have found
a cycle that can be eliminated. The search algorithm on
the right in Figure 3 differs from depth-fist-search merely
in that the next visited vertex must be less than the cur-
rent vertex in the variable order o(.). Note that for IF
this condition is already implied by the graph representa-
tion; we include it for clarity and to make the algorithm
work for SF. Detection for SF is slightly different since all
variable-variable edges in SF are successors. Consequently,
when adding a successor edge X-Y, we search (using
succ-chain) along all successor edges starting from Y for a
successor chain y-+X. The condition that we only fol-
low successor edges if they point to lower indexed variables
is crucial for SF. Without it, a full depth-first-search is per-
formed at every graph update, which is impractical. Re-
stricting the search to edges pointing to lower indexed vari-
ables reduces search time but results in only partial cycle
detection.

For IF, cycle detection not only depends on the order o(.)
but also on the order in which edges are added to the graph.
Consider the example in Figure 4. Our approach detects
this cycle only if the successor edge X3-X1 is added last,
since in this case, the predecessor chain Xl+Xz ...+X3 is
found. If the cycle is closed by adding either of the other
edges the cycle is not detected. However, the closure of IF
adds a transitive edge XZ-Xl and the sub-cycle (Xl, X2)
is detected in all cases. It is a theorem that for any ordering
of variables, IF exposes at least a two-cycle for every non-
trivial strongly connected component (SCC).3 Thus, using
inductive form guarantees at least part of every non-trivial
SCC is eliminated by our method; this result does not hold
for SF.

‘A non-trivial strongly connected component consists of at least
two vertices.

88

Figure 5: Example points-to graph

Once a cycle is found, we must collapse it to obtain any
performance benefits in the subsequent constraint resolu-
tion. Collapsing a cycle involves choosing a witness variable
on the cycle (we use the lowest indexed variable to preserve
inductive form), redirecting the remaining variables on the
cycle to the witness (through forwarding pointers), and com-
bining the constraints of all variables on the cycle with those
of the witness.

Finally, note that although some cycles may be found in
the initial constraints, many cycles only arise during reso-
lution through the application of the resolution rules R. In
the majority of our benchmarks, less than 20% of the vari-
ables that are in strongly connected components in the final
graph also appear in strongly connected components in the
initial graph.

3 Case Study: Andersen’s Points-to Analysis

For a C program, points-to analysis computes a set of ab-
stract memory locations (variables and heap) to which each
expression could point. Andersen’s analysis computes a
points-to graph [And94]. Graph nodes represent abstract
memory locations, and there is an edge from a node z to a
node y if x may contain a pointer to y. Informally, Ander-
sen’s analysis begins with some initial points-to relationships
and closes the graph under the rule:

For an assignment ei = e2, anything in the points-
to set for e2 must also be in the points-to set for
el.

Figure 5 shows the points-to graph computed by Andersen’s
analysis for a simple C program.

3.1 Formulation using Set Constraints

Andersen’s set formulation of points-to graphs consists of a
set of abstract locations {II , . . . , In}, together with set vari-
ables Xl,, . . . , Xl, denoting the set of locations pointed to by
11 , . . . , In. The example in Figure 5 has the set formulation

gb 1 ~;p

x:: = {I:}

The association between a location li and its points-to set
Xl, is implicit in Andersen’s formulation and results in an
ad-hoc resolution algorithm. We use a different formulation
that makes this association explicit and enables us to use a
generic set constraint solver. We model locations by pairing
location names and noints-to set variables with a construc-
tor ref({li},Xli) akin to reference types in languages like
ML lMTH901.

Unlike th; type system of ML, which is equality-based,
we need inclusion constraints. It is well known that sub-
typing of references is unsound in the presence of update

e:r
&e : ref(O,~,T)

e : 7 T C_ ref(l,T,‘iT) 7 fresh
*e : 7

(AdW

(Deref)

el=e2 : 72

Figure 6: Constraint generation for Andersen’s analysis

operations (e.g., Java arrays [GJSSG]). A sound approach is
to turn inclusions between references into equality for their
contents: ref(X) C ref(y) * X = Y.

We adapt this technique to a purely inclusion-based sys-
tem using a novel approach. We intuitively treat a refer-
ence 1. as an object with a location name and two methods
get : void + Xl, and set : Xi, + void, where the points-to
set of the location acts both as the range of the get func-
tion and the domain of the set function. Updating a lo-
cation corresponds to applying the set function to the new
value. Dereferencing a location corresponds to applying the
get function.

Translating this intuition, we add a third argument to
the ref constructor that corresponds to the domain of the
set function, and is thus contravariant. A location 1. is
then represented by ref(1., Xl.,x) (to improve readability
we overline contravariant arguments). To update an un-
known location T with a set 7, it suffices to add a con-
straint T c ref(l,l,T). For example, if ref(&,Xl,,z) C T,
then the transitive constraint ref(Z=, Xl.,x) c ref(l,l,n
is equivalent to 7 c Xl, (due to contravariance), which is
the desired effect. Dereferencing is analogous, but involves
the covariant points-to set of the ref constructor.

To formally express Andersen’s points-to graph, we must
associate with each location 1, a set variable yl= for the set of
abstract location names and a constraint Xl, E ref (&, 1,0)
that constrains YJ~ to be a superset of all names of locations
in the points-to set Xi,. The points-to graph is then defined
by the least solution for &. In our implementation we avoid
using the location names 16 and the variables Yl,, and instead
derive the points-to graph directly from the constraints.

3.2 Constraint Generation

Figure 6 gives a subset of the constraint-generation rules for
Andersen’s analysis. For the full set of rules, see [FFA97].
The rules assign a set expression to each program expression
and generate a system of set constraints as side conditions.
The solution to the set constraints describes the points-to
graph of the program. We write T for set expressions denot-
ing locations. To avoid separate rules for L- and R-values, we
infer sets denoting L-values for every expression. In (Var),
the type ref&, XI.,%) associated with x therefore denotes
the location of x and not its contents.

We briefly describe the other rules in Figure 6. The

89

AST
Node*
700

035
1078
1412
a284
a305
302,
ssss
sac30
6326
0518
0752
811,

10046
15170
ma8
20900
31210
38802
38874
41497
40292
51223
53874
56938
71091
87301

LOC

428
a03
344
324
574
445

1179
652

1640
1805
298,
4903
a316
4D30

12046
5761
03.58

a5120
15214
12845
1831a
a3943
31105
36155
a1583
2,381
59689

TotEll
#Vers
171

319
210
a64
3%
207
510
241

1024
1378
1811
1855
1971
2764
3587
,111
5617
,009
78.99
0565
0005

12806
13848

9539
11490
11690
13401

I
Nodes
-73z

637
360
415
516
sa5
850
304

1804
2028
a**5
3095
aaoo
4578
6171

la213
9694

11630
12514
15058

9735
13708
20735
1537a
10067
18083
a1837

Initid
Edges

Irll
a97
a10
a40
329
176
48,
a41

loao
1292
140,
1008
144a
2317
3380
6283
6691
6507
0904
868,
0450
3631

1040,
9740

12271
10058
11097

i
#VSAr*
6

B
10

4
0
4
0

17
a0
17.

0
a9
50

0
30

i::
63

155
34

347
108
340

91
333
400
108

5
a
3

?I
7
7
0

t
15

3
la
10
19
a4
63

::

::
37

140
58

87

Table 1: Benchmark data common to all experiments

address-of operator (Addr) adds a level of indirection to its
operand by adding a ref constructor. The dereferencing op-
erator (Deref) does the opposite, removing a ref and making
the fresh variable 7 a superset of the points-to set of r. The
second constraint in the assignment rule (Asst) transforms
the right-hand side 72 from an L-value to an R-value 3,
as in (Deref) (recall these rules infer sets representing L-
values). The first constraint ~1 s ref(l,l,z) makes 71 a
subset of the points-to set of ~1. The final constraint 72 E 71
expresses exactly the intuitive meaning of assignment: the
points-to set 5 of the left-hand side contains at least the
points-to set 72 of the right-hand side. For example, the
first statement of Figure 5, a = &b, generates the constraints
71 = ref(L,&.,K) C ref(l, 1,711, and so 71 E XL,
and 72 = ref(0, ref(.&, Xl,,%), . . .) 5 ref(1, K,a), and so
ref(&,Xl,,K) C 72. The final constraint 72 5 71 implies
the desired effect, namely ref(b, XI,,~) E Xl,.

4 Measurements

In this section we compare the commonly used implementa-
tion strategy of set-based analysis [Hei92], which represents
constraint graphs in standard form (SF), with the inductive
form (IF) of [AW93]. We give empirical evidence that cycles
in the constraint graph are the key inhibitors to scalabil-
ity for both forms and that our online cycle elimination is
cheap and improves the running times of both forms signif-
icantly. Using online cycle elimination, analysis times us-
ing inductive form come close to analysis times with perfect
and zero-cost cycle elimination (measured using an oracle to
predict cycles). Furthermore, on medium to large programs
IF outperforms SF by factors of 2-4. This latter result is
surprising, and we explore it on a more analytical level in
Section 5.

Our measurements use the C benchmark programs
shown in Table 1. For each benchmark, the table lists the
number of abstract syntax tree (AST) nodes, the number of
lines in the preprocessed source, the number of set variables,
the total number of distinct nodes in the graph (sources,
variables, and sinks), and the number of edges in the initial

Experiment 1 Description
SF-Plain I Standard form. no cycle elimination
IF-Plain Inductive form; no c&zle elimination
SF-Oracle Standard form, with full (oracle) cycle elimination
IF-Oracle Inductive form, with full (oracle) cycle elimination
SF-Online Standard from, using IF online cycle elimination
IF-Online Inductive form, with online cycle elimiuation

Table 4: Experiments

constraints (before closing the graph). Furthermore, the
table contains the combined size of all non-trivial strongly
connected components (SCC), the number of components,
and the size of the largest component, both for the initial
graph (before closure) and for the final graph (in any experi-
ment). The difference in the combined size of SCCs between
the initial and the final graph shows the need for online cycle
elimination. If all cycles were present in the initial graph,
online cycle elimination would be unnecessary.

We use a single well-engineered constraint resolution li-
brary to compare SF and IF. To validate that our results are
not a product of our particular implementation, we compare
our implementation of standard form to an independent im-
plementation of points-to analysis written in C by Shapiro
and Horwitz [SH97]. Their implementation corresponds to
SF without cycle elimination, and we empirically verify that
our implementation of SF produces the same trend on our
benchmark suite. The scatter plot in Figure 12 shows that
our implementation of SF without cycle elimination is usu-
ally between 2 times faster and 2 times slower than SH (hor-
izontal lines) on a subset of the benchmarks4 with a few
exceptions where our implementation is significantly faster
(flex, li, cvs, inform), and one program where our imple-
mentation is substantially slower (tar).

We performed the six experiments shown in Table 4. The
first two are plain runs of the points-to analysis using SF and
IF without cycle elimination. SF-Plain corresponds to clas-
sic implementations of set-based analyses. The experiments
SF-Oracle and IF-Oracle precompute the strongly connected
components of the final graph and use that information as

‘Not all benchmarks ran through SH.

90

Be”.hnlMk Edges
allroots 384
diff.diffh ,11
Dnngrnm 610
genetic 515
ks 3386
“1 315
ft 3766
co”lpr+o* 402
rcMor 5777
compiler 2733
c.ssembler 5219
ML-typecheek 17908
eqntott 15667
sinwlntor 29935
l~S*-l?? 76789
li 113042,
flex-2.4.7 98301
pmake 364732
mnke-3.72.1 74,878
inform-5.5 236017
tnr-1.11.2 278820
screen-3.6.2 963242
EVB-1 .a 214220
agmls-1.1 1706442
e*premo 859093
gawk-3.0.3 1653812
povmy-2.2 2710342

IF-Ph,rl
Work

441
782
557
672

15362
428

19821
742

24887
3648
9844

169253
132260
6718.36

3047616
177872021

2231538
28462390
Q6349223
1623679.5
181?5919

130Pi98316
6702128

362820558
78018098

267208OQ3
490070572

Time(s)

008
0:13
0.09
0.13
0.46
0.11
0.61
0.15
1.30
0.61
1.21
5.38
3.63

14.48
64.43

4349.04
62.20

669.97
2287.20

359.31
433.98

2988.00
161.33

8686.46
1903.74
6605.69

12159.00

Edges
aQo

606
412
446

1278
280

1204
366

3168
3027
4016

21860
4291

36280
72045

1740142
15736

306771
6Q3860
222182
250474
640161
116513

14,264,
741816
922422

1084147

300
661
450
406

2332
381

1733
520

5070
3992
4916

14Q501
,085

28285,
678170

10363Q138
27498

8582058
43941107

.5606608
5842830

3879,130
8Q1083

140867874
23276456
414QQ85,

179010002

Time(s)
0.06

0.11
0.10
0.10
0.17
0.10
0.10
0.14
0.60
0.50
0.85
3.45
0.86
8.07

12.51
1629.02

4.70
134.45
624.01

90.64
80.30

610.8,
22.96

2077.24
373.30
686.Q2

2966.48

Edges

322
686
450
488
663
301

1008
376

2302
2.571
3552
3826
2927
4838
8412

13360
12954
15485
10967
31091
18711

-
26364
26050
32318

-

Work
907

762
483
542
078
414

1251
570

3309
3378
4326
GOOK
4030
6578

13796
76391
20795
4,806

119389
OS132
37260

-

43685
179301
123335

-

s

Time(s)
---Km

0.10
0.07
0.10
0.15
0.13
0.33
0.13
0.62
0.72
1.44
1.24
1.06
1.Q8
3.31

10.62
6.61
6.00

12.24
14.53

6.81
-

9.08
10.15
15.46

-

Table 2: Benchmark data for IF-Plain, SF-Plain, IF-Oracle, and SF-Oracle

Edges

261
688
369
432
850
272
832
317

2407
2655
3640
6606
2682

1296,
34029

470045
13100

133477
268863
11543,

84316
-

67253
532076
343268

jF-Olacl
Work

284
OS?
393
481

1181
373

1024
403

3470
3476
4367
QJQ2
3868

16140
49028

786496
2114,

234533
484661
178675
136277

106422
905743
591302

-

AST

700
936

1078
1412
2284
2306
3027
3333
6269
5326
6316
0762
811,

10040
15119
16828
29960
31210
36892
38874
41407
49282
51223
53874
56038
71081
8,391

see
#Vnrs

10
13
23
14
37

7
'IO
2,

104
a9
06

206
232
290
357

1736
356
775
866
606
831
804
75.5

1201
1773
17913
1678

n-
Elim. Edges
10 -xc

7 697
IS 493

6 602
31 1136

4 308
44 1390
15 448
64 2893
17 2703
70 4061

238 6519
163 4074
206 ,344
269 10943

1284 28386
279 14678
660 21413
786 40498
422 35374
674 24216
781 39728
581 30677

1075 46568
1231 41390
1438 36103
1292 8,130

Work The(*)
408 o.00

767 0.11
536 0.11
556 0.13

1742 0.23
419 0.11

1800 0.29
669 0.16

4168 0.0,
3524 0.72
5016 1.13

11168 1.67
6264 1.10

14366 2.89
18121 3.65

1669.51 30.25
23842 6.50
83686 14.94

283025 40.10
110442 18.64

50122 0.20
235411 40.6,

52408 12.91
314633 63.55
155881 27.89
176OQ7 31.16
336573 58.63

Elim.
7

:
2

13
1

22
10
15

6
26
40
56
Ql

141
678
12.5
291
479
260
413
553
263
830
515
615
782

Edges
286

607
407
444

1182
270

1241
356

3079
3013
4004

21158
SD31

32521
58106

1260930
15246

213492
471810
168QTQ
153672
384080

89744
901331
54.5501
SQOBSQ

1382071

Table 3: Benchmark data for IF-Online and SF-Online

an oracle. Whenever a fresh set variable is created, the or-
acle predicts to which strongly connected component the
variable will eventually belong. We substitute the witness
variable of that component for the fresh variable. As a re-
sult, the oracle experiment uses only a single variable (wit-
ness) for each strongly connected component, and thus the
graphs are acyclic. Since the oracle experiments avoid all
unnecessary work related to cycles in the constraint graph
(perfect cycle elimination), they provide lower bounds for
the last two experiments, IF-Online and SF-Online, which
use the online cycle detection and elimination algorithm de-
scribed in Section 2.5. Furthermore, the oracle experiments
directly compare the graph representations of IF and SF,
independently of cycle elimination.

Table 2 shows the results for the first four experiments.
For each benchmark and experiment, we report the number
of edges in the final graph, the total number of edge addi-
tions (Work) including redundant ones, and the execution
time in seconds. Note the large number of redundant edge
additions for SF-Plain and IF-Plain. All experiments were
performed using a single processor on a SPARC Enterprise-

Work TitlW(*)

305 0.08
656 0.12
441 0.00
494 0.11

2006 0.20
380 0.11

1828 0.24
526 0.14

4849 0.71
3961 0.64
4831 1.00

148172 4.00
0408 1.02

130041 4.40
126138 6.83

3285073 06.88
25828 4.92

484218 21.86
1740032 54.40

3,815, 20.13
347858 14.92

1044965 46.29
1,1,94 13.20

4086267 113.63
1126267 55.61
ll?b?31 74.42
8037706 224.80

Time(n)
0.07

0.10
0.09
0.14
0.15
0.11
0.21
0.13
0.63
0.74
0.83
1.15
0.81
2.05
3.79

29.73
4.99

12.71
21.24
13.44

8.15
-

11.28
44.35
28.83

-

5000. The reported CPU times are best out of three runs.
As mentioned in Section 2.4, all reported times for IF include
the time to compute the least solution. Figure 7 plots the
analysis time for both SF-Plain and IF-Plain without cycle
elimination against the number of AST nodes of the parsed
program. As the size exceeds 15000 AST nodes there are
many benchmarks where the analysis becomes impractical.
Without cycle elimination, SF generally outperforms IF be-
cause cycles add many redundant variable-variable edges in
IF that lead to redundant work.

The low numbers for the oracle runs IF-Oracle and SF-
Oracle in Table 2 show that the bulk of work and execution
time is attributable to strongly connected components in
the constraint graph. Without cycles, the points-to analysis
scales very well for both IF and SF. Our oracle approach
failed for the three programs, screen, gawk, and povray,
hence the missing points.

Table 3 reports the measurement results for the online
cycle elimination experiments. In addition to the informa-
tion shown for the plain and oracle experiments, the ta-
ble contains the number of variables that were eliminated

91

6000 -

200

150

100

50

0
20000 40000 60000 8OOcxl

AST nodes
20000 40000 60000 80000

AST nodes

Figure 7: SF and IF without cycle elimination Figure 8: Analysis times with cycle detection and oracle

5

4.5 -

20 -
*

++
0; +

10 - xx +

++ +
5- r:

,

3.5 -
.

3 -

2- $.. +
+

+

1 -
+ i$:g +:

0.5 ’ F ‘I .+., . ‘I . ’ ‘(‘I . +
0.01 0.1 10 loo

Adolute time(s) SF-Plain
1000 10000

2.5 - . .
0

2 - .

1.5 - l * . o
.

1 foe . l .

0.66 +- 2 __________-_ -- _____ 2 ___-_- _-_- _________-_-- - _-___ -_-.-- ------ _-_-

0 20000 40000 60000 80000
AST nodes

Figure 9: Speedups through online cycle detection Figure 10: Speedups through inductive form

through cycle detection. Online cycle elimination is very
effective for medium and large programs. Figure 8 plots
the analysis times for online cycle elimination and the ora-
cle experiments (note the scale change). The fastest analy-
sis times are achieved by IF-Oracle, followed by SF-Oracle,
IF-Online, and then SF-Online. IF-Online stays relatively
close to the oracle times, while SF-Online performs some-
what worse. This indicates that while our cycle detection
algorithm is not perfect, it comes close.

Figure 9 shows the total speedup of our approach over
standard implementations (IF-Online over SF-Plain), and
the speedup obtained solely through online cycle elimina-
tion (SF-Online over SF-Plain). To show that our techniques
help scaling, we plot the speedups vs. the absolute execution
time of SF-Plain. As the execution time of the standard
implementation grows, our speedup also grows. For very
small programs, the cost of cycle elimination outweighs the
benefits, but for medium and large programs, online cycle
elimination improves analysis times substantially, for large
programs by more than an order of magnitude.

The performance benefit of inductive over standard form
is illustrated more clearly in Figure 10. In this plot, we

250

can see that IF-Online is consistently faster for medium and
large-sized programs (at least 10,000 AST nodes) than SF-
Online.6 For large programs the difference is significant,
with IF-Online outperforming SF-Online by over a factor of
3.8 for the largest program. For very small programs, IF is
at most 50% slower than SF, which in absolute times means
only fractions of seconds.

We can explain the performance difference of IF and SF
by comparing the fraction of variables on cycles found by
IF-Online and SF-Online (Figure 11). Throughout, SF finds
only about half as many variables on cycles as IF, and the
remaining cycles slow down SF. One reason for this differ-
ence is that for SF, the cycle detection only searches suc-
cessor chains. The analog to predecessor chains in SF are
increasing chains. Searching increasing chains in SF results
in a higher detection rate (57%), but the much higher cost
outweighs any benefits.

Our model in Section 5 explains why SF finds fewer cy-
cles. The probability of finding chains of length greater than

‘The outlier is the program flex; although flex is a large program,
it contains large iuitialised arrays. Thus as far as points-to analysis
is concerned, it actually behaves like a small program.

92

1.2
IF-Online l

SF-Online +
1 l *

P 0
0

+

0.8 - * :,
l * ** 4 * .

l * .
. . . +
o* 0 +

0.6 - +*
++ * .I +

+
+ +

OL
0 20000 40000 60000 80000

AST nodes

Figure 11: Fraction of variables on cycles found online

2 is small. Thus cycles of larger size are detected with small
probability. IF counteracts this trend by adding transitive
variable-variable edges, thereby shortening cycle lengths.

5 An Analytical Model

In the last section, we saw that IF-Online and IF-Oracle both
outperform SF-Online and SF-Oracle respectively, and that
the simple online cycle elimination strategy is very effective,
especially for IF. In this section we analytically compare the
two different representations and answer three questions:

(Ql) Why is IF a better representation than SF?

(Q2) Why is partial online cycle elimination fast?

(Q3) Why is the cycle elimination strategy more effective
for IF?

To answer these questions analytically, we need a
tractable model of constraint graphs. We use the follow-
ing simplifications and assumptions:

l We assume that graph closure adds no edges through
the resolution rules R. That is, we only consider edges
added directly through the graph closure rule.

. We consider random graphs G = (V, E) with n variable
nodes, m source or sink nodes, and we assume for all
pairs of distinct nodes u and v there is an edge (u, v) E
E with probability p, for some constant p.

l We consider only edges added through simple paths.
Thus, the results correspond to the cases where we have
perfect cycle detection i.e., IF-Oracle and SF-Oracle.

These are strong assumptions. Nevertheless, this model pre-
dicts our measurements quite well. The following two theo-
rems summarize the results in this section.

Theorem 5.1 For random graphs with p = $ and ratio
L?l=z the expected number of edge additions for SF is
approx!mately 2.5 times more than that for IF.

10

2

1

0.5

0.1
100 1000 10000 100000

AST nodes

Figure 12: Relative execution times of Shapiro and Horwitz’s
SF implementation of C points-to analysis (SH) over SF-Plain

Theorem 5.2 For random graphs with p = f, the ex-
pected number of variable nodes reachable through prede-
cessor or successor chains in IF from any given node is no
more than 2.2.

The parameters p and f are taken from our experiments
described in Section 4. The probabilities p = i and p = $
are the the approximate densities of the initial and final IF
graphs, respectively.

Theorem 5.1 answers the first question (Ql). It explains
why SF-Oracle does on average 4.1 times more work than
IF-Oracle. The second question (Q2) is answered by Theo-
rem 5.2. We expect partial online cycle detection to follow
very few edges. We observe empirically that the number of
reachable variables is close to two. To answer the third ques-
tion (Q3), notice that since cycle detection searches chains
in order of variable index, the probability of detecting a long
cycle is exponentially small. However, in IF edges between
variables are added to the constraint graph, thus shortening
some long cycles and increasing the probability of detecting
cycles. Although the same idea for detecting cycles can be
applied to SF, it does not work as well since SF adds no
transitive edges between variables. Figure 11 shows that for
IF our simple strategy I?nds on average 80% of the variables
involved in cycles, whereas the same strategy finds only 40%
when used with SF.

In the rest of the section, we establish Theorem 5.1 and
Theorem 5.2. We introduce some notation and terminology
used in the following discussion. We use u and v to denote
either variable nodes or source and sink nodes, X or Xi to
denote variable nodes, and c or c’ to denote source and sink
nodes. A total order on the n variables is chosen uniformly
at random from among all n! possible permutations. Finally,
we say a graph edge (u, v) is added through a path p if (u, v)
would be added by the graph closure rule considering only
the nodes and edges of p.

5.1 Edge Additions in Standard Form

During the graph closure process edges may be added more
than once because an edge may be implied by more than
one path in the constraint graph (cf. Figure 2). Thus, a

93

constraint solver does work proportional to the number of
edge additions, including redundant additions along differ-
ent paths.

Define the random variables XfL,V, to be the number of
additions of the edge (u, v) through simple paths from u to v
for the standard form. To calculate the total expected num-
ber of edge additions, it suffices to calculate the expected
number of additions E(X&,) of a given edge (u,v) and
sum over all possible edges.

For the standard form we consider two kinds of edges,
(c, X) and (c,c’). We now calculate E(X&)) and

W&I ,I. Notice that the edge (c,X) must be added
through a simple path from c to X. For edges of the form
(c, c’), we also need only consider the simple paths from c
to c’.

For each simple path from c to X of length i + 1, there
are (“T1) choices of intermediate variable nodes. For each
simpie’path from c to c’ of length i + 1, there are (y) choices
of intermediate variable nodes. In both cases, each combi-
nation of variable nodes may appear in i! possible orders.
The probability that any particular sequence of the i + 2
nodes (including c and X or c and c’) is a path is p’+‘. We
obtain the following:

W&)) = g p ; 1) i!pi+l
i=l \ /

E(X&)) = 2 ; i!p”+’ 0
i=l \-/

Since there are mn. possible edges of the form (c, X) and
m(m - 1) possible edges of the form (c,c’), the expected
number of edge additions for the standard form is given by

E(X”) = mnE(X&)) + m(m - l)E(X&,))

5.2 Edge Additions in Inductive Form

Defme the random variables X&l to be the number of ad-
ditions of the edge (u,v) through simple paths from u to
v for the inductive form. We need to consider four kinds
of edges: (Xr, Xe), (X,c), (c, X), and (cr,ce). Notice that
the probability that a given edge (u,v) is added through a
simple path p of 1 2 3 nodes from u to v depends only on
1. Thus we let Pi(u,v) denote the probability that the edge
(u,v) is added through a simple path from u to v with i
nodes. We have the following equations:

i!pif1Pi+2(Xly X2)

=

E(X[F,,=,l) = 2 ; i!pi+‘Pi+2(c,c’)

id 0

We next calculate for any 1 1 3 the probability PI (u, v)
for any nodes u and v.

Lemma 5.3 Let o(.) be a random total order on the vari-
ables. Given a simple path p from u to v with 2 nodes, the
following holds:

1. Pi (u, v) = I&J if u and v are variable nodes;

2. Pi(u, v) = & if one of u and v is a variable node and
the other is a constructed node;

3. Pl (u, v) = 1 if both u and v are constructed nodes.

Proof. We prove the first case. Similar arguments apply to
the other two cases.

We first show Pl(u,v) 5 &. Recall that o(X) is the
index of variable X. Assume the edge (21, v) is added through
apath (u,Xr,... , Xl-s,v), we claim that O(U) and o(v) are
the smallest indices on the path, i.e., O(U) < o(Xi) and
o(v) < o(Xi) for all 1 5 i 2 1 - 2. For paths with three
nodes, this claim is true by the closure rule, since the edge
is only added if u +...+Xl and Xi + v are in the graph and,
these edges imply that o(u) and o(v) are less than o(Xr).
Suppose the claim is true for paths with at most k 2 3
nodes. Consider a path (‘IL, Xl,. . . ,X,-r, v) with k+l nodes
such that the edge (u, v) is added through the path. Notice
there must exist a Xi with 1 5 i 5 k - 1 such that the
edges (u, Xi) and (Xi,v) are added and O(U) < o(Xi) and
o(v) < o(Xi). By induction, the claim holds for the shorter
paths (u, . . . ,Xi)and(Xi,... , v). Thus, o(u) and o(v) must
be the smallest indices on the path. There are n! possible
orderings on the n variables and we claim that there are
(7)(2(E - 2)!)(n - Z)! of th em satisfying the above condition.
There are (1) possible ways of choosing the indices for the
1 variables on the path. There are 2 ways of ordering u and
v, and (I - 2)! ways of ordering the rest of the variables on
the path. For the other (n - 1) variables we can order them
in (n - 1)! ways. Thus we have

fi(%V) 5
(;) (2(Z - 2)!)(n - I)!

I 71.
2

= l(l-l)’

We now show Pl(u,v) 2 &. Let o(e) be an ordering
such that O(U) and o(v) are the smallest indices on the path
&,X1,... , Xl,v). We show that the edge (u, v) is added
through the path. The claim is clearly true for paths with
three nodes. Suppose the claim holds for paths with at most
k nodes. Consider a path (u, Xl,. . . , Xk-1, v) with k + 1
nodes such that O(U) and o(v) have the smallest indices. Let
Xi be the node such that o(Xi) < o(Xj) for all 1 5 j 5 k - 1
with i # j. By induction, the claim holds for the two sub-
paths (u, . . . ,Xi) and(Xi,... , v), i.e., the edges (u, Xi) and
(Xi,v) are added through the respective subpaths. Thus,
the edge (u, v) is added through the given path. Therefore,
fi(u,v) 2 q&j. 0

Since there are m(m - 1) edges of the form (c,c’), 2mn
edges of the form (X, c) or (c, X), and n(n - 1) edges of the
form (Xl, X2), the expected number of edge additions for
the inductive form is given by

E(XIF) = m(m - l)E(X[:,c~l) +

2mnE(X$,d +

n(n - ~)W%,X~))

5.3 Comparison

To directly compare SF and IF it is necessary to make an
additional assumption about the density of the initial graph.

94

In the following calculation, we assume p = $, which says

that a typical initial graph has @$ edges. In practice,
initial constraint graphs are sparse; all our benchmark pro-
grams produce initial graphs of approximately this density.

We have the following approximation [Knu73]

(2)

Using equation (2) we simplify E(XsF) and E(XIF) as
follows

E(X”) x m(E-1) -l-mcm~l)~

To obtain Theorem 5.1, we relate the expected edge ad-
ditions to the amount of work done to close the constraint
graphs. Since we consider only simple paths, the expected
number of edge additions corresponds to the case where
there are no cycles (i.e., the oracle runs in Section 4). For
our benchmark programs, the typical ratio of z is about
$ (See Table 1). Thus, asymptotically, E(XsF)/E(XIF) is
about 2.5, i.e., using the standard form, we expect to do 2.5
times as much work as using the inductive form. On our
benchmarks we have measured an average of 4.1 times more
work for SF.

5.4 Cost of Online Cycle Elimination

Next we establish that the expected number of reachable
nodes from any given node is small. This result explains
why the simple heuristic for detecting cycles is very cheap.

Let X be any variable node and let RX be the random
variable denoting the number of nodes reachable from X
through a predecessor chain. Using the same method for
calculating the expected number of edge additions, we con-
sider all simple paths starting with X involving only variable
nodes. We thus have

Next, we approximate E(Rx). Let p = $ for some con-
stant k. Then

< ;(ek-l-k)

The value of p here is the probability of an edge being
present in the final constraint graph, not the initial one. If
P= $, i.e., k = 2 (which holds roughly for our benchmarks)
we have

E(Rx) < ;(e2-1 -2)

x 2.2

completing the proof of Theorem 5.2. Note that for graphs
denser than p = 2 the value E(Rx)
method relies on s;arse graphs.

climbs sharply-our

6 Related Work

There are three strands of related work: constraint simplifi-
cation, points-to analysis, and sub-cubic time analyses.

The importance of simplifications on constraint graphs
has been recognized before. In contrast to our online ap-
proach, prior work has focused on periodic simplification.
In [FA96] the authors describe several simplifications to re-
duce the heap requirements of graphs for a more complex
constraint language. They give performance results ob-
tained through simplifications at regular depths in the ab-
stract syntax tree traversal. Simplification cost outweighs
potential benefits when simplifications are performed fre-
quently.

Several papers explore the theoretical foundations of con-
straint simplification [TS96, Pot96, FF97]. Among these,
[FF97] implemented several simplifications in the context of
a static debugger for Scheme. Constraint graphs are gen-
erated separately for each module, simplified, and finally
merged. They report substantial reduction in constraint
graph sizes and speedups of analysis times.

Marlow and Wadler use set constraints in a type system
for Erlang [MW97]. Their system performs simplifications
similar to [FA96, FF97] for every function declaration. They
report that performance is poor for large sets of mutually
recursive functions, which must be analyzed together.

Points-to analysis with set constraints,is in Andersen’s
thesis [And94]. Recent work by Shapiro and Horwitz [SH97]
contrasts Andersen’s set based points-to analysis with the
unification based points-to analysis of Steensgaard [SteSG].
They conclude that while Andersen’s analysis is substan-
tially more precise than Steensgaard’s, its running time is
impractical. However, our implementation of Andersen’s
points-to analysis is generally competitive with [SH97]‘s im-
plementation of Steensgaard’s algorithm.

Inclusion constraint resolution algorithms usually have at
least O(n3) time complexity. The lack of progress in achiev-
ing scalable implementations of these algorithms has encour-
aged interest in asymptotically faster algorithms that are ei-
ther less precise or designed for special cases. Steensgaard’s
system is an example of the former; the linear time closure-
analysis algorithm for functional programs with bounded
type size is an example of the latter [Mos96, HM97]. We
plan to study the impact of online cycle elimination on the
performance of closure analysis in future work.

7 Conclusions

We have shown that online elimination of cyclic constraints
in inclusion constraint based program analyses yields orders-
of-magnitude improvements in execution time. Our partial
online cycle detection algorithm is cheap but effective and
works best on a non-standard representation of constraint
graphs.

Acknowledgments

We would like to thank David Gay, Raph Levien, and the
anonymous referees for helpful comments on improving the
paper. Special thanks go to Mark Shapiro and Susan Hor-
witz for providing their Points-to implementations for com-
parison.

95

References

[And941

[AW92]

[AW93]

[AWL941

[FA96]

[FFS’I]

[FFA97]

L. 0. Andersen. Program Analysis and Special-
ization for the C Progmmmkzg Language. PhD
thesis, DIKU, University of Copenhagen, May
1994. DIKU report 94/19.

A. Aiken and E. Wimmers. Solving Systems of
Set Constraints. In Symposium on Logic in Com-
puter Science, pages 329-340, June 1992.

A. Aiken and E. Wimmers. Type Inclusion Con-
straints and Type Inference. In Proceedings of
the 1993 Conference on Functional Programming
Languages and Computer Architecture, pages 31-
41, Copenhagen, Denmark, June 1993.

A. Aiken, E. Wimmers, and T.K. Lakshman. Soft
typing with conditional types. In Twenty-First
Annual ACM Symposium on Principles of Pro-
gramming Languages, January 1994.

M. Ftindrich and A. Aiken. Making Set-
Constraint Based Program Analyses Scale. In
First Workshop on Set Constraints at CP’g6,
Cambridge, MA, August 1996. Available as
Technical Report CSD-TR-96-917, University of
California at Berkeley.

C. Flanagan and M. Felleisen. Componential Set-
Based Analysis. In PLDI’97 [PLD97].

J. Foster, M. Ftindrich, and A. Aiken. Flow-
Insensitive Points-to Analysis with Term and Set
Constraints. Technical Report UCB//CSD-97-
964, U. of California, Berkeley, August 1997.

[FFK+96] C. Flanagan, M. Flat& S. Krishnamurthi,
S. Weirich. and M. Felleisen. Catching Bugs in
the Web of Program Invariants. In Pioceekgs
of the 1996 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation,
pages 23-32, May 1996.

[GJS96]

[Hei92]

[Hei94]

[HJ90]

[HM97]

[JM79]

James Gosling, Bill Joy, and Guy Steele. The
Java Language Spec$cation, chapter 10, pages
199-200. Addison Wesley, 1996.

N. Heintze. Set Based Program Analysis. PhD
thesis, Carnegie Mellon University, 1992.

N. Heintze. Set Based Analysis of ML Programs.
In Proceedings of the 1994 ACM Conference on
LISP and FPrnctional Programming, pages 306-
17, June 1994.

N. Heintae and J. Jaffar. A decision procedure
for a class of Herbrand set constraints. In Sympo-
sium on Logic in Computer Science, pages 42-51,
June 1990.

N. Heintze and D. McAllester. Linear-Time Sub-
transitive Control Flow Analysis. In PLDI’97
[PLD97].

N. D. Jones and S. S. Muchnick. Flow Anal-
ysis and Optimization of LISP-like Structures.
In Sk&h Annual ACM Symposium on Principles
of Programming Languages, pages 244-256, Jan-
uary 1979.

[Knu73]

[Koz93]

[MosSG]

[MTHSO]

[MW97]

[PLD97]

[Pot961

[PS91]

@w691

[SH97]

[ShiSS]

[Shm83]

[Ste96]

[TSSG]

D. Knuth. The Art of Computer Programming,
Fundamental Algorithms, volume 1. Addison-
Wesley, Reading, Mass., 2 edition, 1973.

D. Kozen. Logical Aspects of Set Constraints. In
E. Bijrger, Y. Gurevich, and K. Meinke, editors,
Proc. 1993 Conf. Computer Science Logic (CSL
‘93), volume 832 of Lecture Notes in Computer
Science, pages 175-188. Springer-Verlag, 1993.

C. Mossin. Flow Analysis of Typed Higher-Order
Programs. PhD thesis, DIKU, Department of
Computer Science, University of Copenhagen,
1996.

Robin Milner, Mads Tofte, and Robert Harper.
The Definition of Standard ML. MIT Press,
1990.

S. Marlow and P. Wadler. A Practical Subtyping
System For Erlang. In Proceedings of the Inter-
national Conference on Functional Programming
(ICFP ‘97), June 1997.

Proceedings of the 1997 ACM SIGPLAN Confer-
ence on Programming Language Design and Im-
plementation, June 1997.

F. Pottier. Simplifying Subtyping Constraints. In
Proceedings of the 1996 ACM SIGPLAN Inter-
national Conference on Functional Programming
(ICFP ‘961, pages 122-133, January 1996.

J. Palsberg and M. I. Schwartzbach. Object-
Oriented Type Inference. In Proceedings of the
ACM Conference on Object-Oriented program-
ming: Systems, Languages, and Applications,
October 1991.

J. C. Reynolds. Automatic Computation of Data
Set Definitions, pages 456-461. Information Pro-
cessing 68. North-Holland, 1969.

M. Shapiro and S. Horwitz. Fast and ACCU-
rate Flow-Insensitive Points-To Analysis. In Pro-
ceedings of the 84th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Program-
ming Languages, pages 1-14, January 1997.

0. Shivers. Control Flow Analysis in Scheme. In
Proceedings of the ACM SIGPLAN ‘88 Confer-
ence on Programming Language Design and Im-
plementation, pages 164-174, June 1988.

0. Shmueli. Dynamic Cycle Detection. Informa-
tion Processing Letters, 17(4):185-188, 8 Novem-
ber 1983.

B. Steensgaard. Points-to Analysis in Almost
Linear Time. In Proceedings of the i&d Annual
ACM SIGPLAN-SIGACT Symposium on Ptin-
ciples of Programming Languages, pages 32-41,
January 1996.

V. Trifonov and S. Smith. Subtyping Con-
strained Types. In Proceedings of the 3rd Inter-
national Static Analysis Symposium, pages 349-
365, September 1996.

96

