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We describe two improvements to Chaitin-style graph coloring register allocators. The first,

opttmzstw coloring, uses a stronger heuristic to find a k-coloring for the interference graph. The

second extends Chaitin’s treatment of remcttermlzzatz on to handle a larger class of values These
techniques are complementary. Optimistic coloring decreases the number of procedures that
require spill code and reduces the amount of spill code when spilhng is unavoidable. Rematerial-

ization lowers the cost of spilhng some values. This paper describes both of the techniques and
our experience budding and using register allocators that incorporate them. It provides a
detailed description of optimistic coloring and rematerialization. It presents experimental data to
show the performance of several versions of the register allocator on a suite of FORTRAN
programs. It discusses several insights that we discovered only after repeated implementation of
these allocators.
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1. INTRODUCTION

The relationship between run-time performance and effective use of a ma-

chine’s register set is well understood. In a compiler, the process of deciding

which values to keep in registers at each point in the generated code is called

register allocation. Values in registers can be accessed more quickly than

values in memory: On high-performance, microprocessor-based machines, the
difference in access time can be an order of magnitude. Thus, register

allocation has a strong impact on the run-time performance of the code that a

compiler generates. Because relative memory latencies are rising while regis-

ter latencies are not, the impact of allocation on performance is increasing. In

addition, features like superscalar instruction issues increase a program’s
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absolute demand for registers: If the machine issues two instructions in a

single cycle, it must have two sets of operands ready and in place at the start

of the cycle. This naturally increases the demand for registers.

Popular techniques for performing register allocation are based on a graph

coloring paradigm. These allocators construct a graph representing the con-

straints that the allocator must preserve. Using graph techniques, they

discover a mapping from values in the procedure to registers in the target

machine; the mapping must observe the constraints. The first graph coloring

allocator was built by Chaitin et al. [1981]. Another approach, called

priority-based coloring, was described by Chow and Hennessy [1984; 1990].

These two techniques have formed the core around which a rich literature

has emerged (see Section 7).

The techniques used in building graph coloring allocators can be improved.

In recent years, several important extensions to Chaitin’s basic techniques

have appeared [Bernstein et al. 1989; Nickerson 1990]. Nevertheless, prob-

lems remain. In practice, most of these problems appear as either overspilling

or a poor spill choice. ln the former case, the allocator fails to keep some

value in a register, even though a register is available throughout its lifetime.

In the latter case, the allocator chooses the “wrong” value to keep in a

register at some point in the code.

This paper presents two improvements to existing techniques for register

allocation via graph coloring. The next section provides necessary back-

ground, describing Chaitin’s allocator. The following two sections provide a

detailed description of optimistic coloring and rematerialization, two im-

provements to Chaitin’s approach. Section 5 presents experimental data to

show the performance of several versions of the register allocator on a suite of

FORTRAN programs. Section 6 discusses several insights that we discovered

only after repeated implementation of these allocators. Finally, Section 7

presents a discussion of related work.

2. REGISTER ALLOCATION VIA GRAPH COLORING

The notion of abstracting storage allocation problems to graph coloring dates

from the early 1960s [Lavrov 1961] (see Section 7). The first implementation

of a graph coloring register allocator was done by Chaitin and his colleagues

in the PL.8 compiler [Chaitin et al. 1981; Chaitin 1982]. Chow and Hennessy

later described a priority-based scheme for allocation based on a coloring

paradigm [Chow and Hennessy 1984; 1990]. Almost all subsequent work on

coloring-based allocation has followed from one of these two papers. Our own

work follows Chaitin’s scheme.

Any discussion of register allocation will contain several implicit assump-

tions. For our work, we assume that the allocator works on low-level interme-

diate code or assembly code. The code has been shaped by an optimization

phase. Before allocation, the code can reference an unlimited number of
registers. We call these “reallocation” registers virtual registers. The alloca-

tor does not work with the virtual registers; instead, it works with the

distinct live ranges in a procedure. A single virtual register can have several
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distinct values that are live in different parts of the program; each of these

values will become a separate live range. The allocator discovers all of the

separate live ranges and allocates them to physical registers on the target

machine.

To model register allocation as a graph coloring problem, the compiler first

constructs an interference graph G. The nodes in G correspond to live ranges,

and the edges represent interferences. Thus, there is an edge in G from node i

(live range 1,) to node j if 1, interferes with lJ, that is, iff they are simultane-

ously live at some point and cannot occupy the same register.1 The live

ranges that interfere with a particular live range 1, are called neighbors of 1,

in the graph; the number of neighbors is the degree, denoted l:.

An attractive feature of Chaitin’s approach is that machine-specific con-

straints on register use can be represented directly in the graph [Chaitin et

al. 1981]. Thus, the graph represents both the constraints embodied in the

program and those presented by the target architecture in a single, unified

structure. This is one of the key insights underlying graph coloring allocators:

The interference graph represents all of the constraints.

To find an allocation from G, the compiler looks for a k-coloring of G, that

is, an assignment of h colors to the nodes of G such that adjacent nodes

always have distinct colors. If we choose k to match the number of machine

registers, then we can map a k-coloring of G into a feasible register assign-

ment for the underlying code. Because graph coloring is NP-complete [Garey

and Johnson 1979], the compiler uses a heuristic method to search for a
coloring; it is not guaranteed to find a k-coloring for all k-colorable graphs. If

a k-coloring is not discovered, some values are spilled; that is, the values are

kept in memory rather than in registers.

Spilling one or more live ranges creates a new and different interference

graph. The compiler proceeds by iteratively spilling some live ranges and

attempting to color the resulting new graph. In practice, a Chaitin-style

allocator rarely requires more than three trips through this loop. Figure 1

illustrates a Chaitin-style allocator. It proceeds in seven phases:

(1) Renumber systematically renames live ranges. It creates a new live range
for each definition point. At each use point, it unions together the live

ranges that reach the use. Our implementation models this as an example

of the classical disjoint set union-find problem. (In the papers on the PL.8

compiler, this analysis is called “getting the right number of names”

[Chaitin et al. 1981]. The Hewlett-Packard Precision Architecture com-
piler papers refer to this as “web analysis” [Johnson and Miller 1986].)

(2) Build constructs the interference graph. Our implementation closely
follows the published descriptions of the PL.8 allocator [Chaitin et al.

1981; Chaitin 1982]. The interference graph is simultaneously repre-

sented as a bit-matrix and as a collection of adjacency lists.

1See Chaitin et al. [ 1981] for a complete discussion of interference.
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- renumber 4 build - coalesce - spilI costs ----+ simpJify — select -

Fig. 1. Chaitin’s allocator.
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Coalesce attempts to shrink the number of live ranges. Two live ranges 1,

and 1~ are combined if the initial definition of 1~ is a copy from 1, and they

do not otherwise interfere. Combining the two live ranges eliminates the

copy instruction. We denote the new live range 11~.

When the allocator combines 1, and 1~, it can construct an imprecise but

conservative approximation to the set of interferences for 1,~. The conser-

vative update lets the allocator batch together many combining steps. It

performs all of the coalescing possible with the update, and then repeats

both build and coalesce if coalescing has changed the graph.

Spill costs estimates, for each live range, the run-time cost of any

instructions that would be added if the item were spilled. This cost is

estimated by computing the number of loads and stores that would be

required to spill the live range, with each operation weighted by c X 10 ~,

where c is the operation’s cost on the target architecture and d is the

instruction’s loop-nesting depth.

Simplify constructs an ordering of the nodes. It creates an empty stack

and then repeats the following two steps until the graph is empty:

(a) If there exists a node 1, with 1: < k, remove 1, and all of its edges
from the graph. Place 1, on the stack for coloring.

(b) otherwise, choose a node 1, to spill. Remove 1, and all of its edges
from the graph. Mark 1, to be spilled.

After this, if any node is marked for spilling, the allocator inserts spill

code (see (6) below) and repeats the allocation process. If no spilling is

required, it proceeds to select (see (7) below).

Spill code is invoked if simplify decides to spill a node. Each spilled live

range is converted into a collection of tiny live ranges by inserting loads

before uses and stores after definitions, as required.

Select assigns colors to the nodes of the graph in the order determined by

simplify. It repeats the following steps until the stack is empty:

(a) Pop a live range from the stack,

(b) insert its corresponding node into G, and

(c) give it a color distinct from its neighbors.

understand why this works, consider the actions of simplify and select.

Simplify only moves 1, from the graph to the stack if l; < k. Any live range

that meets this condition is trivially colorable; that is, it will receive a color
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Fig, 2. Example graphs

independent of the colors assigned to its neighbors. Thus, simplify only

removes a node when it can prove that the node will get assigned a color. As

each live range is removed, the degrees of its neighbors are lowered. This, in

turn, may prove that they can be assigned colors.

Select assigns colors to the nodes in reverse order of removal. Thus, it

colors each node in a graph where it is trivially colorable; simplify ordered

the stack so that this must be true. In one sense, the ordering colors the most

constrained nodes first: 1, gets colored before 11 precisely because simplilv

proved that lJ was colorable independent of the specific color chosen for 1,.

As an example, consider finding a three-coloring for the “simple graph”

shown in Figure 2. First, simplify removes all of the nodes; it does not need

to spill any of them. One possible sequence of removals is a, c, b, d, e. Next,

select reinserts nodes into the graph, assigning colors. Node e is inserted first

and can be given any color, say red. Next, d is added; it can get any color

except red. Running through the entire stack might result in the assignment
e F red, d b blue, b ~ green, c * red, and a ~ blue.

The decision to spill a live range is made in simplify. When the allocator

cannot find a node that is trivially colorable, it selects a node to spill. The

metric for picking spill candidates is important. Chaitin [ 1982] suggests

choosing the node with the smallest ratio of spill cost divided by current

degree of the node.

Chaitin’s heuristic is not guaranteed to find the minimal coloring, nor can

it be guaranteed to find a Ii-coloring if it exists; after all, graph coloring is

NP-complete. For example, suppose we want to find a two-coloring of the

“diamond graph” shown in Figure 2. Clearly, one exists; for example, w - red,

x ~ blue, y ~ blue, and z ~ red. Applying simplify to the diamond graph

presents an immediate problem because there are no nodes with degree less

than two. Thus, some node is selected for spilling. If all spill costs are equal,

the allocator will make an arbitrary choice, for example x. After x is removed

from the graph and marked for spilling, simplify will remove the remaining

three nodes without further spilling. Since a node was marked to spill, the

allocator must insert spill code, rebuild the interference graph, and try again.
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Even though examples like the diamond graph exist, Chaitin’s technique

produces good allocations in practice. Several factors contribute to its success.

Allocation is based on global information in the form of a precise interference

graph. It includes a powerful mechanism to remove unneeded copies—

coalescing. Finally, it uses spill costs to g-aide the generation of spill code;

those spill costs encode simple information about the control-flow graph. Any

improvements to Chaitin’s work should retain these properties.

3. OPTIMISTIC COLORING

As part of the ParaScope programming environment [Cooper et al. 1993], we

built an optimizing compiler for FORTRAN running on uniprocessors. The

initial implementation included a register allocator that used Chaitin’s tech-

nique, as described in Section 2. The allocator worked well and seemed to

produce satisfactory allocations. It required modest amounts of time and

space at compile time. However, as we debugged other parts of the compiler,

we discovered several cases where it produced obviously flawed allocations.

3.1 A Motivating Problem

A particularly interesting case arose in the code generated for the singular

value decomposition (SVD) of Golub and Reinsch [1971]. The routine was

from the software library distributed with Forsythe et al.’s [1977] book on

numerical methods. It has 214 lines of code, excluding comments. The code

contains 37 DO-loops organized into five different loop nests. The first loop

nest is a simple array copy; four larger and more complex loop nests follow.

Figure 3 shows its structure.

In SVD, the allocator spilled many short live ranges in deference to the

longer, more expensive live ranges. In the array-copy loops, it spilled the loop

indices and limits even though several registers were unused in the loop.

After some study, we understood both why the register allocator overspilled

so badly and what situations provoked this behavior.

After optimization, about a dozen long live ranges extend from the initial-

ization portion of the code down into the large loop nests. As Figure 3 shows,

the long live ranges span the small array-copy loops. Because they span so

much of the code, they all have high degree in the interference graph.

Additionally, they have large spill costs because they are referenced often

inside deeply nested loops. They restrict the graph so much that the allocator

must spill some live ranges.

Initially, the allocator chooses to spill the indices and limits on the array-

copy loops. This choice is correct. Because these values have smaller esti-

mated spill costs than the longer live ranges, the allocator shouzd choose

them first. Unfortunately, spilling them does not help; the problem is in the

later loop nests. To alleviate the demand for registers in the large loop nests,
the allocator must spill more values. As it proceeds, it eventually spills most

of the longer live ranges. As a result, there are unused registers in the

array-copy loops (and the indices and limits are kept in memory).
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subroutine SVD(M, H, . . . )

do 1=1, li

do J=l, H

A(I, J) = B(I, J)

enddo

enddo

do

I
J

EI

11
many deepl.v-nes ted IOOPS

enddo II II
do

enddo

do
. . .

enddo

do
. . .

enddo

II

II

II

many long live ranges

Fig, 3. Structure of SVD.

3.2 An Improved Coloring Heuristic

Knowing that the allocator overspilled on both the diamond graph and the

SVD, we reconsidered the allocation process. Each of the examples highlights

a different problem:

(1)

(2)

The diamond graph is two-colorable; we can see that by inspection. The

allocator fails because the approximation that it uses to decide whether x

will get a color is too weak.

In looking for a k-coloring, the allocator approximates “x gets a color”

by “x has degree less than k .“ This is a sufficient condition for x to get a

color, but not a necessary condition. For example, x may have k neigh-

bors, but two of those neighbors may get assigned the same color. This is

precisely what happens in the diamond graph.

In SVD, the allocator must spill some live ranges. The heuristic for

picking a spill candidate selects-the small live rang& used in shallow loop

nests because they are less expensive to spill. Unfortunately, spilling

them is not productive; it does not alleviate register pressure in the major

loop nests.

At the time that the allocator makes the decisions, it cannot recognize
that the spills will not help. Similarly, the allocator cannot retract the

decisions later. Once spilled, a live range stays spilled.

The coloring heuristic explored by Matula and Beck [ 1983] finds a two-col-

oring for the diamond graph. Their algorithm differs only slightly from

Chaitin’s approach. To simplify the graph, they repeatedly remove the node of

smallest current degree, versus Chaitin’s approach of removing any node n

where n“ < k. After all nodes have been removed, they select colors in the

reverse of the order of deletion, in the same fashion as Chaitin.
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On the diamond graph, this heuristic generates a two-coloring. Chaitin’s

heuristic fails because it pessimistically assumes that all of the neighbors of a

node will get different colors. Matula and Beck’s heuristic discovers a two-col-

oring because it can capitalize on the case when two neighbors receive the

same color.

Unfortunately, Matula and Beck’s scheme simply finds a coloring; there is

no notion of finding a k-coloring for some particular k and no mechanism for

producing spill code. In real programs, this is a serious problem. Many

procedures require spill code; their interference graphs are simply not k-col-

orable. For example, the SVD routine must spill some live ranges; an optimal

coloring would not eliminate all spills.

We want an algorithm that combines Matula and Beck’s stronger coloring

heuristic with Chaitin’s mechanism for cost-guided spill selection. To achieve

this effect, we make two modifications to Chaitin’s original algorithm:

(1) In simplify, the allocator removes nodes that have degree less than h in
arbitrary order. Whenever, it discovers that all of the remaining nodes

have degree greater than k, it chooses a spill candidate. That node is

removed from the graph, but instead of marking it for spilling, simplify

optimistically pushes it on the stack, hoping that a color will be available

in spite of its high degree. Thus, it removes nodes in the same order as

Chaitin’s allocator, but spill candidates are included on the stack for

possible coloring.

(2) In select, the allocator may discover that no color is available for some
node. In that case, it leaves the node uncolored and continues with the

next node. Any uncolored node must be a node that Chaitin’s method

would spill. To see this, consider the case where a node n was removed

from a graph Grn yielding a new graph Gm + 1. In both methods, n is

inserted into Gm + 1, recovering G ‘n. Chaitin’s method guarantees that a

color is available for n in G ~. Our method guarantees this property for all

nodes except spill candidates. Thus, an uncolored node must be a spill

candidate, that is, a node that Chaitin would have spilled.

If all nodes receive colors, the allocation has succeeded. If any nodes are

uncolored, the allocator inserts spill code for the corresponding live

ranges, rebuilds the interference graph, and tries again.

The resulting allocator is shown in Figure 4. We call it an optimistic

allocator. The decision to insert spill code now occurs in select, rather than in

simplify. The rest of the allocator is unchanged from Chaitin’s scheme. In this

form, the allocator can handle both of the problems described at the begin-

ning of this section.

Deferring the spill decision has two powerful consequences. First, it elimi-

nates some unproductive spills. In Chaitin’s scheme, spill decisions are made

during simplify, before any nodes are assigned colors. When it selects a node

as a spill candidate, that live range is spilled. In our scheme, spill candidates
get placed on the stack with all of the other nodes. Only when select discovers

that no color is available is the live range actually spilled. This mechanism, in

effect, allows the allocator to reconsider spill decisions.
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+ renumber — build — coalesce — spill costs — .sim~lify d select +

Fig. 4. Optimistic allocator

Second, late spilling capitalizes on details of the color assignment to

provide a stronger coloring heuristic. In selecting a color for node x, it

examines the colors of all x‘s current neighbors. This provides a direct

measure of “does x get a color?” rather than estimating the answer with “is

.x” < k ?“ In particular, if two or more of x‘s neighbors receive the same color,

then x may receive a color even though x“ > k. The optimistic allocator finds

a two-coloring for the diamond graph.

Recall SVD. The live ranges for 1, J, M, and N are early spill candidates

because their spill costs are small. However, spilling them does not alleviate

register pressure inside the major loop nests. Thus, the allocator must spill

some of the large live ranges; this happens after the small live ranges have

been selected as spill candidates and placed on the stack. When the small live

ranges come off the stack in select, some of these large live ranges have been

spilled. The allocator can easily determine that colors are available for these

small live ranges in the early array-copy loops.

Optimistic coloring is a simple improvement to Chaitin’s pessimistic scheme.

Assume that we have two allocators, one optimistic and one pessimistic, and

that both use the same spill metric, for example, Chaitin’s metric of spill cost

divided by current degree. The optimistic allocator has a stronger coloring

heuristic in the following sense: It will color any graph that the pessimistic

allocator does, and it will color some graphs that the pessimistic allocator will

not. If spilling is necessary, the optimistic allocator will spill a subset of the

live ranges spilled by the pessimistic allocator.

Optimistic coloring helps generate better allocations. In a few cases, this

eliminates all spilling; the diamond graph is one such example. In many

cases, the cost of spilling is reduced; that is, the procedure executes fewer

cycles due to register spilling. Section 5 presents dynamic measurements of

the improvement. An implementation of this technique in the back-end of the

IBM XL compiler family for the RS/6000 architecture resulted in a decrease
of about 20 percent in estimated spill costs over the SPEC benchmark suite

(private communication of M. E. Hopkins during visit to Rice University,

February 1991).

4. REMATERIALIZATION

Even with optimistic coloring, the allocator must spill some live ranges. When

this happens, the allocator should choose the least expensive mechanism to

accomplish the spill. In particular, it should recognize cases where it is
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cheaper to recompute the value than to store and retrieve it from memory.

Consider the code fragments shown in Figure 5 (the notation [p] means “the

contents of the memory location addressed by p“).

Source. Note that p is constant in the first loop, but varying in the second

loop. The register allocator should take advantage of this situation.

Ideal. Imagine that high demand for registers in the first loop forces p to

be spilled; this column shows the desired result. In the upper loop, p is

loaded just before it is needed, using a “load-immediate” instruction. For the

lower loop, p is loaded just before the loop, again using a load-immediate

instruction.

Chaitin. This column illustrates the code that would be produced by a

Chaitin-style allocator. The entire live range of p has been spilled to memory,

with loads inserted before uses and stores inserted after definitions.

Splitting. The final column shows code we would expect from a “splitting”

allocator [Chow and Hennessy 1984; Larus and Hilfinger 1986; Gupta et al

1989; Callahan and Koblenz 1991]; the actual code might be worse. In fact,

our work on rematerialization was motivated by problems observed during

our own experiments with live range splitting [Briggs 1992]. Unfortunately,

examples of this sort are not discussed in the literature on splitting alloca-

tors, and it is unclear how best to extend these techniques to achieve the

Ideal solution.

This section divides into two major subsections. The first presents a

conceptual view of our approach to rematerialization. The second discusses

the implementation of these ideas in our allocator.

4.1 The Ideas

Chaitin et al. [1981] discussed several ideas for improving the quality of spill

code. They pointed out that certain values can be recomputed in a single

instruction and that the required operands will always be available for the

computation. They called these exceptional values neuer-killed and noted

that such values should be recalculated instead of being spilled and reloaded.

They further noted that an uncoalesced copy of a never-killed value can be

eliminated by recomputing it directly into the desired register. Together,

these techniques are termed rematerialization. In practice, opportunities for

rematerialization include

—immediate loads of integer constants and, on some machines, floating-point

constants;

—computing a constant offset from the frame pointer or the static data-area

pointer;

—loads from a constant location in either the frame or the static data-area;

and

—loading nonlocal frame pointers from a display.

The values must be cheaply computable from operands that are available

throughout the procedure.
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Fig. 5. Rematerialization versus spilling.

It is important to understand the distinction between live ranges and

values. A live range may comprise several values connected by common uses.

In the Source column of Figure 5, p denotes a single live range composed

from three values: the address Label, the result of the expression p + 1, and

(more subtly) the merge of those two values at the head of the second loop.

Chaitin’s allocator correctly handles rematerialization when spilling a live

range with a single value, but cannot handle more complex cases, like the

variable p in Figure 5. We have extended Chaitin’s work to take advantage of

rematerialization opportunities for complex, multivalued live ranges. Our

method tags each value with enough information to allow the allocator to

handle it correctly. To achieve this, we

(1) split each live range into its component values,

(2) tag each value with rematerialization information, and

(3) form new live ranges from connected values having identical tags.

This approach allows correct rematerialization of multivalued live ranges,

but introduces a new problem: minimizing unnecessary splits. The following

sections describe how to find values, how to propagate tags, how to split live
ranges, and how to remove unproductive splits.

4.1.1 Discovering Values. To find values, we construct the procedure’s

static single assignment (SSA) graph, a representation that transforms the
code so that each use of a value references exactly one definition [Gytron

et al. 1991]. To achieve this goal, the construction technique inserts special

definitions called @-nodes at those points where control-flow paths join and

different values merge. We actually use the pruned SSA graph, with dead

@-nodes eliminated [choi et al. 1991].
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A natural way to view the SSA graph for a procedure is as a collection of

values, each composed of a single definition and one or more uses. Each

value’s definition is either a single instruction or a @-node that merges two or

more values. By examining the defining instruction for each value, we can

recognize never-killed values and propagate this information throughout the

SSA graph.

4.1.2 Propagating Rematerialization Tags. To propagate tags, we use an

analog of Wegman and Zadeck’s [1991] sparse simple constant algorithm.2

We modify their lattice slightly to represent the necessary rematerialization

information. The new lattice elements may have one of three types:

T Top means that no information is known. A value defined by a copy

instruction or a +-node has an initial tag of T.

inst If a value is defined by an “appropriate” instruction (neuer-killed), it

should be rematerialized. The value’s tag is simply a pointer to the

instruction.

1 Bottom means that the value must be spilled and restored. Any value

defined by an “inappropriate” instruction is immediately tagged with

1.

Additionally, their meet operation m is modified correspondingly. The new

definition is

any n T= any

any n 1=1

inst, n instJ = instt if instc = instl

inst, n instl = 1 if instl + instJ

Note that instt = instJ compares the instructions on an operand-by-operand

basis. Since our instructions have at most two operands, this modification

does not affect the asymptotic complexity of propagation.

During propagation, each value will be tagged with a particular inst or ~.

Values defined by a copy instruction will have their tags lowered to inst or

J-, depending on the value that flows into the copy. Tags for values defined

by ~-nodes will be lowered to inst iff all of the values flowing into the node

have equivalent inst tags; otherwise, they are lowered to ~.

This process tags each value in the SSA graph with either an instruction or

1. If a value’s tag is L, spilling that value requires a normal, heavyweight

spill. If, however, its tag is an instruction, it can be rematerialized by issuing

the instruction specified by the tag—a lightweight spill. The tags are used in

two later phases of the allocator: Spill costs uses the tags to compute more

accurate spill costs, and Spill code uses the tags to emit the desired code.

2The more powerful sparse conditional constant algorithm is unnecessary; earlier optimization
has eliminated any control-flow paths that it would detect as nonexecutable.
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Fig. 6. Introducing splits

4.1.3 Inserting Splits. After propagation, the @nodes must be removed

and values renamed to recreate an executable program. Consider the example

in Figure 6. The Source column simply repeats the example introduced in

Figure 5. The SSA column show the effect of inserting a ~-node for p and

renaming the different values comprising p‘s live range. The Splits column

illustrates the copies necessary to distinguish the different values without

@-nodes. The final column (Minimal) shows a single copy required to isolate

the never-killed value p. from the other values comprising p. We avoid the

extra cop y by noting that p ~ and p ~ have identical tags after propagation

(both are L ) and may be treated together as a single live range plz.
Similarly, two connected values with the same inst tag would be combined

into a single live range.

For the purposes of rematerialization, the copies are placed perfectly: The

never-killed value has been isolated, and no further copies have been intro-

duced.3 The algorithm for removing +-nodes and inserting copies is described

in Section 4.2.1.

4.1.4 Removing Unproductive Splits. Our approach inserts the minimal

number of copies required to isolate the never-killed values. Nevertheless,

coloring can make some of these copies superfluous. Recall the Minimal

column in Figure 6. If neither p. nor p ~z are spilled and both receive the

same color, the copy connecting them is unnecessary. Because it has a real

run-time cost, the copy should be eliminated whenever possible. We cannot

simply use coalesce; it would remove all of the copies, losing the desired

3Note that the allocator could insert all of the copies suggested in the Splits column as a form of
liue range splzttmg. We are currently exploring the problem of performing live range splitting in

a Chaitin-style allocator. So far, our experimental results have been mixed [Briggs 1992]
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separation between values with different tags. Therefore, we use a pair of

limited coalescing mechanisms to remove unproductive copies: consematiue

coalescing and biased coloring. Conservative coalescing is a straightforward

modification of Chaitin’s coalesce phase. Conceptually, we add a single

constraint to coalesce: Only combine two live ranges if the resulting single

live range will not be spilled. Biased coloring increases the likelihood that live

ranges connected by a copy get assigned to the same register. Conceptually,

select tries to assign the same color to two live ranges connected by a copy.

Taken together, these two mechanisms remove most of the unproductive

copies.

4.2 Implementing Rematerialization

Chaitin-style allocators can be extended naturally to accommodate our ap-

proach. The high-level structure depicted in Figure 4 is unchanged, but

several low-level modifications are required. The next sections discuss the

enhancements required in renumber, coalesce, and select.

4.2.1 Renumber. Chaitin et al.’s [1981] version of renumber was based on

clef-use chains. Long before our interest in rematerialization, we adopted an

implementation strategy for renumber based on the pruned SSA graph.

Conceptually, this implementation has four steps:

(1) Determine liveness at each basic block using a sparse data-flow evalua-
tion graph [Choi et al. 1991].

(2) Insert @-nodes based on dominance frontiers [Cytron et al. 1991]. Avoid

inserting dead ~-nodes.

(3) Renumber the operands in every instruction to refer to values instead of
the original virtual registers. At the same time, accumulate availability

information for each block. The intersection of live and avail is needed at

each block to allow construction of a precise interference graph [Chaitin

et al. 1981].

(A) F’orm live ranges by unioning together all of the values reaching each
~-node using a fast disjoint set union. The disjoint set structure is

maintained while building the interference graph and coalescing (where

coalesces are further union operational

In our implementation, steps (s) and (4) are performed during a single walk

over the dominator tree. Using these techniques, renumber completely avoids

the use of bit-uectored flow analysis. Despite the apparent complexity of the

algorithms involved, it is very fast in practice and requires only a modest

amount of space.
Because renumber already uses the SSA graph, only modest changes are

required to support rematerialization. The modified renumber has six steps:

(l) Determine liveness at each basic block using a sparse data-flow evalua-
tion graph.

(2) Insert +-nodes based on dominance frontiers, still avoiding insertion of
dead ~-nodes.
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(3) Renumber the operands in each instruction to refer to values. At the same

time, initialize the rematerialization tags for all values.

(4) propagate tags using the sparse simple constant algorithm as modified in

Section 4.1.2.

(5) Examine each copy instruction. If the source and destination values have

identical inst tags, we can union them and remove the copy.

(6) Examine the operands of each ~-node. If an operand value has the same

tag as the result value, union the values; otherwise, insert a split (a

distinguished copy instruction) connecting the values in the correspond-

ing predecessor block.

Steps (5) and (6) are performed in a single walk over the dominator tree.

4.2.2 Conservative Coalescing. To prevent coalesce from removing the

splits so carefully introduced in renumber, we must limit its power. Specifi-

cally, it should never coalesce a split instruction if the resulting live range

may be spilled. In normal coalescing, two live ranges 1, and 1~ are combined if

1,1 is defined by a copy from 1, and if they do not otherwise interfere. In

conservative coalescing, we add an additional constraint: Combine two live

ranges connected by a split iff 1,1 has < k neighbors of significant degree,

where significant degree means a degree > k.

To understand why this restriction is safe (indeed, it is conservative), recall

Chaitin’s [1982] coloring heuristic. Before any spilling, nodes of degree < k

are removed from the graph. When a node is removed, the degrees of its

neighbors are reduced, perhaps allowing them to be removed. This process

repeats until the graph is empty or all remaining nodes have degree > k.

Therefore, for a node to be spilled, it must have at least k neighbors with

degree > k in the initial graph.

In practice, we perform two rounds of coalescing. Initially, all possible

copies are coalesced (except split instructions). The graph is rebuilt, and

coalescing is repeated until no more copies can be removed. Then, we begin

conservatively coalescing split instructions. Again, we repeatedly build the

interference graph and attempt further conservative coalescing until no more

splits can be removed.

In theory, we should not intermix conservative coalescing with unrestricted

coalescing since the result of an unrestricted coalesce may be spilled. For

example, 1, and lJ might be conservatively coalesced, only to have a later

coalesce of l,j with 1~ provoke the spilling of l,jk (since llj~ may have k or

more neighbors of significant degree). In practice, this may not prove to be a
problem; we have not measured this effect, If intermixing conservative coa-

lescing with unrestricted coalescing does not produce worse allocations, it

would simplify and speed the entire process.

Conservative coalescing directly improves the allocation. Each coalesce

removes an instruction from the resulting code—a split instruction that was

introduced by the allocator. In regions where there is little competition for

registers, conservative coalescing undoes all splitting. However, it cannot

undo all of the unproductive splits by itself,
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4.2.3 Biased Coloring. The second mechanism for removing useless splits

involves changing the order in which colors are considered for assignment. As

renumber inserts splits, it marks pairs of values connected by a split as

partners. When select assigns a color to li, it first tries colors already

assigned to one of 1,’s partners. With a careful implementation, this is no

more expensive than picking the first available color; it really amounts to

biasing the spectrum of colors by previous assignments to 1,’s partners.

The biasing mechanism can combine live ranges that conservative coalesc-

ing cannot. For example, 1, might have 2 k neighbors of significant degree,

but these neighbors might not interfere with each other and thus might all be

colored identically. Conservative coalescing cannot combine 1, with any of its

partners; the resulting live range would have too many neighbors of signifi-

cant degree. Biasing may be able to combine 1, and its partners because it is

applied after the allocator has shown that both live ranges will receive colors.

At that late point in allocation, combining them is a matter of choosing the

right colors. By virtue of its late application, the biasing mechanism uses a

detailed level of knowledge about the problem that is not available any

earlier in the process—for example, when coalescing is performed.

To increase the likelihood that biasing will match partners, we can add

limited lookahead. When picking a color for 1,, if it has an uncolored partner

lJ, the allocator can look for a color that is still available for lJ. On average, 1,

has a small number of partners; thus, we can add limited lookahead to

biased coloring without increasing the asymptotic complexity of select.

5. EMPIRICAL STUDIES

We have implemented these techniques in our optimizing compiler for FOR-

TRAN. The compiler has experimental code generators for the RT\PC, the

Spare, and the RS\6000. To experiment with register allocation, we have

built a series of allocators that are independent of any particular architecture

[Briggs 1992].

All of our experiments have involved Chaitin-style allocators; we have not

implemented any other kind of register allocator (e.g., those described in

Section 7). There are several reasons for this. First, each allocator requires a

large implementation effort. Second, the results would be suspect because we

have insight into tuning Chaitin-style allocators, but no practical experience

with other allocators. Finally, the results would present a clouded picture.

Since good experiments require controlled changes, we try to change only one

thing at a time.

Our experimental allocators work with routines expressed in ILOC, a

low-level intermediate language designed to allow extensive optimization. An

ILOC routine that assumes an infinite register set is rewritten in terms of a

particular target register set, with spill code added as necessary. The target

register set is specified in a small table and may be varied to allow conve-
nient experimentation with a wide variety of register sets.

After allocation, each ILOC routine is translated into a complete C routine.

Each C routine is compiled, and the resulting object files are linked into a
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LLE3: nop LLE3 :

LLA4: ldi ri4 8 LLA4: r14 = (int) (8) ; i++;

add r9 r15 rll r9 = r15 + rll;

mvf f15 fo f15 = fo; c++;
bc L023 goto L023 ;

L023: lddrr f14 r14 r9 L023: f14 = *((double *) (ri4 + r9)) ; 1++;

dabs f14 fi4 f14 = fabs(f14) ;

dadd fi5 f15 fi4 f15 = f15 + f14;

addi r14 r14 8 r14 = r14 + (8) ; a++;

sub r? rlo r14 r7 = riO - r14;

br ge r7 F16 17 if (r7 >= O) goto IJ6; else goto X7;

Fig 7. ILOC and C

complete program. There are several advantages to this approach:

—By inserting appropriate instrumentation during the translation to C, we

can collect accurate, dynamic measurements.

—Compilation to C allows us to test a single routine in the context of a

complete program running with real data.

—We can perform our tests in a machine-independent fashion, potentially

using a variety of register sets.

Simply timing actual machine code is inherently machine-dependent and

tends to obscure the effects of allocation. During the translation into C, we

can add instrumentation to count the number of times any specific ILOC

instruction is executed. For comparing register allocators, we are interested

in the number of loads, stores, copies, load-immediates, and add-immediates.

Figure 7 shows a small sample of ILOC code and the corresponding C

translation. Usually there is a one-to-one mapping between the ILOC state-

ments and the C translations, though some additional C is required for the

function header and declarations of the “register” variables, for example, rl ~

and f 15. Also note the simple instrumentation appearing immediately after

several of the statements. Of course, this sample is very simple, but the

majority of ILOC is no more complex.

5.1 The Target Machine

For the tests reported here, our target machine is defined to have 16 integer

registers and 16 floating-point registers. Each floating-point register can hold

a double-precision value, so no distinction is made between single-precision

and double-precision values once they are held in registers. Up to 4 integer

registers may be used to pass arguments (recall that arguments are passed

by reference in FORTRAN; therefore, the argument registers hold pointers to

the actual values); any remaining arguments are passed in the stack frame.

Function results are returned in an integer or floating-point register, as

appropriate. Ten of each register class are designated as callee-saves; the

remaining six (including the argument registers) are not preserved by the

callee.
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When reporting costs, we assume that each load and store requires two

cycles; all other instructions are assumed to require one cycle. Of course,

these are only simple approximations of the costs on any real machine.

5.2 Measuring Spill Costs

Since our instrumentation reports dynamic counts of all loads, stores, etc.,

we need a mechanism for isolating the instructions due to allocation. A

difficulty is that some spills are profitable. In other cases, the allocator

removes instructions, for example, copy instructions. Therefore, we tested

each routine on a hypothetical “huge” machine with 128 registers, assuming

this would give a nearly perfect allocation. The difference between the “huge”

results and the results for one of the allocators targeted to our “standard”

machine should equal the number of cycles added by the allocator to cope

with insufficient registers.

5.3 Experimental Results

Our test suite is a collection of 70 routines contained in 11 programs. Eleven

routines are from Forsythe et al.’s [1977] book on numerical methods. They

are grouped into 7 programs with simple drivers. The remaining 59 routines

are from the SPEC [1990] benchmark suite. Four of the SPEC programs were

used: doduc (41 routines), f pppp (12 routines), matrix3 00 (5 routines), and

tomcat v (1 routine). The 2 other FORTRAN programs in the suite (SP i c e

and nas a 7) require language extensions not yet supplied by our front-end.

Our results are presented as a sequence of comparisons in Tables I and II.

For each table, the first two columns give the program and subroutine name.

The third and fourth columns give the observed spill costs for the two

allocators being compared. These costs are calculated from dynamic counts of

instructions, as described earlier. The last column (Total) gives the percent-

age improvement in spill costs from the old allocator to the new one; large

positive numbers indicate significant improvements. The middle columns

show the contribution of each instruction type to the total.

All percentages have been rounded to the nearest integer. Insignificant

improvements are reported as O, and insignificant losses are reported as – O.

In cases where the result is zero, we simply show a dash. Since results are

rounded, a total entry may not equal the sum of the contributing entries.

Each table shows only routines where a difference was observed.4

Consider the first row in Table I. This row presents results for the routine

f min from the program f mi n. The allocator using Chaitin’s heuristic gener-

ated an allocation requiring 551 cycles of spill code; the optimistic allocator

required only 370 cycles. Sixteen percent of the savings came from having to

execute fewer loads, and 16 percent arose from fewer stores. There was a

further insignificant improvement due to executing fewer load-immediates.

The total improvement was 32 percent.

4The raw data for the tables are given in Appendix A of Briggs’ [ 1992] thesis.
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Table I. Effects of Optimistic Coloring

Table II. Effects of Rematerialization
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5.3.1 Optimistic Coloring. Table I shows a comparison of test results for

our allocator using two different coloring heuristics. The column labeled

“Original” gives data for a version using Chaitin’s coloring heuristic; the

column labeled “Optimistic” gives data for a version using our optimistic

coloring heuristic.

In our test suite of 70 routines, we measured improvements in 26 cases and

a single loss (an extra load and store were required). Improvements ranged

from tiny to quite large, sometimes reducing spill costs by over 40 percent.

The single loss was disappointing, since we have claimed that the optimistic

coloring heuristic can never spill more than Chaitin’s heuristic. However, we

must recall the structure of the allocator. After each attempt to color, spill

code is inserted, and the entire build–coalesce–color process is repeated. The

optimistic coloring heuristic will perform at least as well as Chaitin’s heuris-

tic on any graph, but after spilling, the two allocators will be facing different

problems.

5.3.2 Rematerialization. Table II summarizes the effect of our new ap-

proach to rematerialization. It compares two versions of the optimistic alloca-

tor that differ only in their handling of never-killed values. The column

labeled “Optimistic” gives data for a version that uses Chaitin’s limited

approach to rematerialization; the column labeled “Rematerialization” gives

data for a version incorporating our new method.

From the entire suite of 70 routines, we observed improvements in 28 cases

and degradations in only 2 cases. One loss was very small (2 loads, 2 stores,

and an extra copy); the other was somewhat larger. Improvements ranged

from tiny to reasonably large, with many greater than 20 percent. Of course,

adjusting the relative costs of each instruction, especially loads and stores,

changes the amount of improvement.

As expected, we see a pattern of fewer load instructions and more load-im-

mediate instructions. Typically, the number of stores and the number of

copies are also reduced. The reduced number of copy instructions suggests

that our heuristics for removing unhelpful splits are adequate in practice.

Note that this reduction is obtained in spite of the extra copies introduced by

renumber.

5.4 Allocation Costs

The improved allocations come at a cost in compile time. In the case of the

optimistic allocator, the coloring phase can be more expensive due to the need

to attempt a coloring even if spill candidates are discovered. Support for

rematerialization requires several extra steps. An extra pass over the code is

required to initialize rematerialization tags before propagation, and further

time is required to propagate the tags throughout the routine. Finally, at

least one extra pass is required to accomplish conservative coalescing. On the

other hand, the build–coalesce process may be slightly faster, since we can

eliminate some copies during renumber (recall step (5) in Section 4.2.1).

Table III shows comparative timings for the three allocators on three

routines from the SPEC suite. Times are given in seconds and were measured

with a 1OO-HZ clock on an unloaded IBM RS/6000 Model 540. Each run was
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Table III. Allocation Times (in seconds)

Phase
cja

renum

buzld

costs

cOlOT

sptll

renum

build

costs

co /or
spill

renum

bu,ld

costs

CO1OT

Spill

renum
bu,ld

costs

CO1OT

spill

Tenure
build

costs

color

total

repv~
oTig. opt.

.00 .00

.04 .03

.16 .16

.01 .01

.01 .02

.01 .01

.02 .02

.06 .06

.01 .01

.01 .01

.01 .00

.02 .01

.04 ,04

.01 .01

.01 .01

.40 .39

Remat.

.00

.04

.16

.01

.03

.01

.02

.06

.01

.02

.01

.02

.06

.01

.02

.47

Orig.
.00

.06

.38

.02

.03

.02

.02

.09

.01

.01

.09

.02

.05

.01

.02

.01

.02

.06

.01

.01

.01

.02

.05

.01

.02

.97

tomcatv II twldrv I

opt, Remat. Orig. opt.

.00 .01 .01 .01

.06 .07 .56 .56

.38 .42 9.88 9.84

.02 .02 .14 .16

.04 .06 1.12 1.08

m
w

.05 I .09

.01 .01 II I

iti

.02 .04

.85 1.13 13.55 13.65

Remat.

.01

.62

8.47

.14

1.61

.16

.14

.81

.06

.31

.04

.14

.80

.06

.31

13.67

repeated 10 times, and the results were averaged. The first column shows the

phase of allocation. Cfa stands for control-flow analysis and includes the time

required to compute forward and reverse dominators and dominance fron-

tiers. Build includes the entire build-coalesce loop. Color includes both

simplify and select. Note that tomcat v required more rounds of spilling than

the other routines. For each routine, the “Original” column gives times

required by the allocator with (lhaitin’s original coloring heuristic, the “Opti-

mistic” column gives the times required by the optimistic allocator, and the

“Rematerialization” column gives times required by the optimistic allocator

with improved rematerialization.

We selected three routines to illustrate performance over a range of sizes.

The first routine is repvi d, firom the program cloduc, with 144 noncomment

lines of FORTRAN. It compiles to a . text size of 1,284 bytes using IBMs

xl f compiler with full optimization. The second routine is t omc atv, with 133

lines and a . text size of 3,064 bytes. The largest routine is twl drv from the

program fpppp, with 881 lines and a . text size of 15,616 bytes. All three

routines appear in Table 1.

An obvious conclusion to draw from the data in Table 111 is that support for

rematerialization can require a small amount of additional compile time. On

the other hand, the optimistic coloring heuristic has very little cost and is

sometimes faster than Chaitin’s pessimistic heuristic.
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The results in Table III also illuminate a number of interesting details

about the behavior of all three allocators.

—The initial pass of the build-coalesce loop dominates the overall cost of

allocation (as noted by Chaitin). In comparison, additional iterations of the

color–spill process are quite inexpensive.

—In each case, the cost of renumber is higher for rematerialization, reflect-

ing the cost of propagating rematerialization tags.

—In most cases, the cost of the build–coalesce loop is higher for rematerial-

ization due to the additional passes of conservative coalescing.

—The very low cost of control-flow analysis illustrates the speed and practi-

cality of the algorithm for calculating dominance frontiers [Cytron et al.

1991].

—The higher cost of coloring in the first pass arises from the cost of choosing

nodes to spill. While the cost of coloring is linear in the size of the graph,

spill selection is 0(s on), where s is the number of spill choices and n is

the number of nodes. With a large number of spills, this term dominates

the cost of coloring.

We are pleased with the overall speed of the allocators. Our results appear to

be slightly faster than the times reported by IBMs xl f compiler for register

allocation and comparable to the times reported for optimization. In an

extensive comparison with priority-based coloring, our allocators appeared

much slower on very small routines, but much faster on very large routines

[Briggs 1992]. Of course, these speeds are not competitive with the fast, local

techniques used in nonoptimizing compilers [Fraser and Hanson 1991; 1992];

however, we believe that global optimization require global register alloca-

tion.

6. IMPLEMENTATION INSIGHT

To perform the experiments described in Section 5, we implemented several

versions of our allocator. Naturally, we gained some insight into the imple-

mentation of Chaitin-style graph coloring allocators. This section attempts to

convey those ideas in a concise form. We hope that it proves useful to other

implementors. When possible, we label an insight with the particular phase

of the allocator that it affects.

Constant ualues. The rematerialization scheme suggests that the compiler

should represent constants in a way that makes them visible to the allocator.
In our current compiler, integer constants are obvious in the code; they are

loaded using an integer load-immediate instruction. Noninteger constants are

stored in a static constant pool and loaded using a fixed offset from the static

data area pointer. This effectively hides them from rematerialization. Chang-

ing our intermediate representation to make these values visible would

expose them to rematerialization, improving the quality of the final code.

Build. Like Chaitin, we advocate building two representations of the

interference graph: both a bit matrix and a set of adjacency vectors. Many

implementations use a single representation and claim a space savings.
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However, both forms of the graph are needed for efficient execution of the

allocator.

In practice, we have not had problems with an explosion in the size of the

interference graph. Our allocator runs in a reasonable amount of space. For

example, the interference graph of tomcatv requires 146,404 bytes, while the

graph for t wl drv requires 3,357,640 bytes [Briggs 1992]. Usually, the bit

vectors for an iterative solution of the live variables problem are as large as

our interference graphs. This fact led us to use the sparse evaluation graph

techniques of Choi et al. [1991].

Coalescing. Coalescing is not transitive. Even though 1, and lJ do not

interfere and 1, and lh do not interfere, 1,J will interfere with lk if 1]

interferes with lk. Thus, the order of coalescing is important.

Coalescing should proceed from innermost loops outward. Inside-out coa-

lescing ensures that copies in more deeply nested loops get removed before

copies in outer loops. In practice, this makes a noticeable difference on many

routines.

Conservative coalescing and biased coloring. There is a direct trade-off

between the strength of conservative coalescing and the effectiveness of

biased coloring. In practice, we experimented with several different restric-

tions on coalescing. More precise (i.e., less conservative) restrictions on coa-

lescing increase the set of live ranges that it can combine; this decreases the

number of live ranges combined by biased coloring. It is unclear whether this

occurs because the more precise coalescing condition restricts freedom in the

graph or because it combines IIive ranges that biased coloring also will catch.

In any case, biased coloring cannot completely eliminate the need for conser-

vative coalescing.

Computing Spill Costs. In our allocator, spill costs is always executed.

Chaitin’s [1986] allocator waits until it must choose the first value to spill.

Each approach has its merits.

Some live ranges have negative spill costs. This suggests that it is less

expensive to store and reload them than to keep them in registers. Our

allocator computes spill costs early and aggressively removes live ranges with

negative spill cost.

Chaitin defers the computation of spill costs until the allocator recognizes

that it must spill. This speeds allocation on procedures that color without

spilling. Additionally, the allocator can skip the spill-cost computation for live

ranges that it has already removed from the graph.

Simplify. Rematerialization fundamentally changes the allocator. Live

ranges are unrelated in other Chaitin-style allocators. The order of removal

for trivially colored nodes has little noticeable effect on the results of alloca-

tion. The introduction of splits to isolate never-killed values and the use of

biased coloring change that fact. This gives a new importance to the relative

removal order of trivially colored nodes. When faced with multiple nodes that

can be removed, select should first remove nodes that have no partners. This

forces the nodes with partners to be colored first. They are colored in a less
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constrained graph. In practice, this increases the effectiveness

coloring.

Picking Spill Candidates. Introducing splits in order to support

. 451

of biased

remateri-

alization increases the number of nodes in the interference graph. This can

adversely effect the running time of simplify by increasing the time spent

searching for spill candidates. As described in Section 2, the search for a spill

candidate must examine each node remaining in the current graph. A naive

implementation repeats this process for each spill because the spill metric

includes the node’s current degree. Thus, choosing spill candidates takes

O(k . N) time, where k is the number of spills and N is the number of live

ranges in the original graph. Undoubtedly, some careful algorithmic work can

improve this situation. In practice, we refactored the comparison by noting

that

Replacing the floating-point divisions with integer multiplies improves the

constant factor.

Limited Backtracking. Select assigns colors to nodes in a somewhat arbi-

trary manner. Biased coloring capitalizes on this fact by carefully choosing

the order in cases where it matters. Nonetheless, improved color choice can

avoid some spills. In the optimistic allocator, we can add a limited form of

backtracking. When no color is available for node p, select can consider

recoloring one of p‘s neighbors to open up a color for p. Such backtracking

must be carefully constrained to avoid a combinatorial explosion.

While examining p’s neighbors to determine available colors, we can

accumulate the number of uses of each color and note which neighbor uses

each color. If no color remains for p and one of the colors is used by only one

of p‘s neighbors, select can try to recolor that neighbor. If it succeeds, a color

is available for p. Limited backtracking is easy to implement. It takes very

little compile time and rarely leads to degradation! On the other hand, it

rarely leads to a significant improvement [Briggs 1992]. It also fits into

biased coloring; however, experience suggests that limited lookahead (see

Section 4.2.3) produces more consistent improvement than limited backtrack-

ing in the biased scheme.

NP-Noise. In testing, we have often stumbled on a phenomenon that we

label NP-noise. When measuring the output of a process that involves heuris-
tic solution of an NP-complete problem, the answers often contain behavior

that seems anomalous. Sometimes the heuristic must pick from a set of

choices that have the same local cost. Different choices can lead to different

answers.

In the allocator, we use a linear-time heuristic to find the coloring. From a

5We have never seen it produce a worse allocation, though such situations are conceivable. It is
often better to save an expensive spill now instead of possibly saving less-expensive spills in the
future.
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decision-tree perspective, it picks a path through a tree in time proportional

to the height of the tree. Of course, the tree has an exponential number of

nodes. At each step, it picks based on local information—the history of

previous choices and the remaining nodes, Changing a local choice can lead to

a different global result. Thus, simple things like the ordering of nodes, how

ties are broken, and actual color assignments produce variations in the

output.

These variations make it difficult to compare two competing allocators. For

example, in Table II our rematerialization scheme produced worse code than

the optimistic allocator with Chaitin’s scheme for two of the routines, co lbur

and dde f llu in doduc. A heuristic that, in general, has better global behavior

can produce anomalous results in specific cases.

This effect may, in part, account for the effects seen by the Haifa group

with their “best of three” spilling scheme [Bernstein et al. 1989]. They smooth

out some of the NP-noise by using three different spill metrics and taking the

best result.

7. OTHER WORK

The relationship between economical use of memory and graph coloring has

been discussed for a long time. The first paper on this subject appears to be

Lavrov’s [1961] paper on minimizing memory use. He suggested building an

inconsistency graph and coloring it; he did not propose a practical method for

finding a coloring. Ershov and his colleagues [1962; 1966] built on this work

in the ALPHA project. They solved storage allocation problems by building an

interference graph and using a packing algorithm on it. By the late 1960’s

Cocke was clearly talking about applying these insights directly to register

allocation; both Kennedy [197 1] and Schwartz [ 1973] credited him with this

insight.

This early work on graph coloring register allocation emphasizes the

coloring problem with little consideration for the questions of spill choice and

placement. Algorithms by Cockle and Ershov (as reported by Schwartz [19731)

are concerned exclusively with minimizing the number of colors required.
There is no discussion of spill code, and the flow graph is ignored entirely.

The first complete register allocator based on graph coloring was described

by Chaitin et al. [1981]. Spilling is handled by a variety of heuristics, some

based on an interval analysis c~f the flow graph. Unfortunately, these ad hoc

techniques are expensive and not always effective. In a subsequent paper,

Chaitin [1982] introduced a simpler technique that attempted to solve the
spilling problem based on the interference graph and spill-cost estimates for

each live range. Section 2 describes this allocator.

Chow and Hennessy [1984; 1990] described a priority-based coloring

scheme. In their work, values initially reside in memory. They divided the
register set between local and global allocation. They built an imprecise

interference graph and colored constrained live ranges in priority order. Their

priority function used spill cost normalized by live-range length. When a

constrained live range could not be colored, they split it into smaller pieces

and tried to color them independently.
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Fabri [1979], in her work on minimizing memory storage requirements,

introduced a renaming transformation that is analogous to Chow’s live-range

splitting. She noted that, in some cases, splitting improved the resulting

coloring. She mentioned the idea’s applicability to register allocation

problems.

Several groups have refined Chow’s approach. Larus and Hilfinger [1986]

made several modifications. In their work, values initially reside in registers.

They eliminated local allocation, limited basic block sizes, and used a more

sophisticated live range splitting technique. Gupta et al. [1989] described an

approach that partitions the interference graph into subgraphs that are

colored individually and later merged.

Johnson and Miller [1986] described another priority-based allocator. They

assigned colors in order of decreasing degree in the interference graph. When

they had to spill, they examined both the current live range and all those that

have been assigned colors and spilled the value with minimal cost under their

spill metric. Their metric combined Chaitin’s notion of spill cost with a term

that included the impact of keeping a value in a register across loops where it

is live but not used. While we have not implemented a version of their

algorithm, we believe that their scheme will avoid problems like the one we

observed with the SVD routine. On the other hand, it will spill some live

ranges that Chaitin proved are trivially colored.

Bernstein et al. [1989] described a collection of techniques. They showed

that a best-of-three coloring scheme produced better results than Chaitin’s

original scheme. They imposed a “largest degree first” ordering when remov-

ing unconstrained nodes from the graph in simplify (Step (5a) in Section 2).

They introduced a cleaning heuristic to decrease the amount of spill code

generated within a single basic block. In our experience, these improvements

are orthogonal to those presented in this paper.

Callahan and Koblenz [1991] constructed a fine-grained hierarchical de-

composition of the flow graph, a tiling. Coloring is performed for individual

tiles, and the results are merged in two passes over the tree. Their algorithm

is explicitly parallel.

Of course, not all global allocators are built on the graph coloring paradigm.

Other approaches include the bin-packing allocators built by Digital Equip-

ment Corporation and the probabilistic allocator of Fischer and Proebsting

[Anklam et al. 1982; Fischer and Proebsting 1992]. It is difficult to compare

these techniques because (1) the implementations work on different interme-

diate representations, (2) they follow different optimizers, and (3) the compil-

ers target different machines.

8. SUMMARY

Optimistic coloring is a simple improvement over Chaitin’s original allocator.

It produces the same allocation as Chaitin’s method, except when it improves

on the result. The results in Table I show that this happens regularly. The
costs are nearly identical; occasionally, one method will require an extra trip

around the main loop for spill-code insertion. In another paper we showed

that optimistic allocators generate better allocations on machines that use
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register pairs for some values [Briggs et al. 1992]. Any implementation of a

Chaitin-style allocator shouldl incorporate this improvement; it makes a

significant difference in the allocation quality at little or no cost.

Our method of rematerializing neuer-killed values finds the maximum

extents for each nez]er-killed value. It ensures that the allocator will spill

these values in the least expensive way. In procedures where never-killed

values must be spilled, the result is better code. The results in Table II show

that this actually happens. When no opportunities for rematerialization exist,

the features added for rematerialization do not hurt. Additionally, the algo-

rithms that we describe in Section 4 are both fast and practical.
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