Towards Principled Error-Efficient Systems

Sarita Adve
University of Illinois at Urbana-Champaign
sadve@illinois.edu

IOLTS 2020 Keynote

Collaborators:
Abdulrahman Mahmoud, Radha Venkatagiri, Vikram Adve, Khalique Ahmed, Christopher Fletcher, Siva Hari, Maria Kotsifakou, Darko Marinov, Sasa Misailovic, Hashim Sharif, Yifan Zhao, and others

This work is supported in part by DARPA, NSF, a Google Faculty Research Award, and by the Applications Driving Architecture (ADA) Research center (JUMP center co-sponsored by SRC and DARPA)
Errors are becoming ubiquitous
Errors (Must Prevent)

A problem has been detected and Windows has been shut down to prevent damage to your computer.
The problem seems to be caused by the following file: kbuhid.sys
MANUALLY_INITIATED_CRASH
If this is the first time you’ve seen this stop error screen, restart your computer. If this screen appears again, follow these steps:
Check to make sure any new hardware or software is properly installed. If this is a new installation, ask your hardware or software manufacturer for any Windows updates you might need.
If you added or removed software, disable or re-enable any newly installed hardware or software. Disable BIOS memory options such as caching or shadowing. If you need to use safe mode to remove or disable components, restart your computer, press F8 to select Advanced Startup Options, and then select Safe Mode.
Technical Information:
*** STOP: 0x000000e2 (0x00000000, 0x00000000, 0x00000000, 0x00000000)
*** kbuhid.sys - Address 0x94ef100 base at 0x94ef000 DateStamp 0x4a5bc705

Cosmic particles can change elections and cause planes to fall through the sky, scientists warn

Tiny invisible particles can cause bits of information held by computers to ‘flip’ with potentially serious ramifications

Ian Johnston Science Correspondent in Boston | @montaukan |
Friday 17 February 2017 15:45 |

Computer error behind Qantas midair drama

Updated 14 Oct 2008, 5:58am

Authorities have blamed a faulty onboard computer system for last week’s mid-flight incident on a Qantas flight to Perth.

EE Times

HOME NEWS PERSPECTIVES DESIGNLINES VIDEOS RADIO EDUCATION

Toyota Case: Single Bit Flip That Killed

By Juniko Yoshida, 10:25:13 1 108
Errors (Must Prevent)

Designs that aim to prevent all errors

Key Facilitator: Moore’s Law + Dennard Scaling

Power, Performance, Area are now limiting factors
Applications Provide Opportunities

Algorithm / Application
Applications Provide Opportunities

Algorithm / Application

Execution

Output

Perfect

Perfect

© MIT News
Applications Provide Opportunities

Algorithm / Application

Execution

Output

Perfect
Can tolerate errors

Perfect
Sufficient Quality

© MIT News
Expensive

Cheap(er)

User Acceptable Output

Prevent all

Tolerate some

Errors 😈 (Tolerable)

Low-Cost Resiliency
Errors 🌟 (Desirable)

Approximate Computing

Expensive

Precise computation

Cheap(er)

Approximate computation

User Acceptable Output
Error-Efficient Systems

Error-Efficient
Only prevent as many (HW or SW) errors as absolutely needed (allow others)

Conserve resources across the system stack
Error-Efficient Systems

Adoption Challenges:

- Lack of principled and unified methodologies
- Excessive programmer burden
Research Vision

1. Enable error-efficiency as a first-class metric for novice and expert users

2. Principled and unified error-efficiency workflow across the system stack
Outline

• **Software-centric error analysis** and error efficiency: Approxilyzer, Winnow

• Software testing for hardware errors: Minotaur

• Domain-specific error efficiency: HarDNN

• Compiler and runtime for **hardware and software error efficiency**: ApproxTuner

• Putting it Together: Towards a Discipline for Error-Efficient Systems
Objective of Error Analysis

How do (hardware) errors affect program output?
Error Outcome of Single Error

Sobel

Output Corruption!

Single error injection
Quantifying Output Quality

Sobel

Quality Metric
(domain specific)

Image difference
(rmse)

7%
Quality degradation

Single error injection

Output Corruption!
Is Output Quality Acceptable?

Quality Metric (domain specific)

Quality Threshold = 10%

Image difference (rmse)

Sobel

7%

Quality degradation

Single error injection

User-Acceptable Output Corruption!
Error Outcome of Single Error

Sobel

APPLICATION
Error Outcome of All Errors

Sobel
Challenges of Automated Error Analysis

- **Accurate**: Precisely calculate output quality
- **Comprehensive**: All errors (for given error model)
- **Automatic**: Minimal programmer burden
- **Cheap**: Many error injections = expensive!
- **General Methodology**: Applications + Error Models

Meeting ALL of the above requirements is hard
Tools Suite for Automated Error Analysis

- **Accurate**: Precisely calculate output quality ✓
- **Comprehensive**: All errors (for given error model) ✓
- **Automatic**: Minimal Programmer Burden ✓
- **Cheap**: Many error injections = expensive! ✓
- **General Methodology**: Applications + Error Models ✓

Tool Suite: Relyzer, Approxilyzer, gem5-Approxilyzer, Winnow

ISCA’14, MICRO’16, DSN’19, In Review
Error Model

• Perturbation in program state (instructions + data)
 ▪ Caused by underlying fault in hardware

• Error Model for Instructions
 ▪ Single bit transient errors in operand registers of dynamic instructions

• Error Model for Data
 ▪ Multi-bit (random 1-bit, 2-bit, 4-bit, 8-bit) transient errors in memory

Error Analysis Output:
Application Data Error Profile + Application Instruction Error Profile
Quality Metric
+

Unmodified Program
+

Quality Threshold (Optional)

Error Analysis

Error Analysis User Interface: Inputs
Error Analysis User Interface: Output

Quality Metric +

Unmodified Program +

Quality Threshold (Optional)

Error Analysis

Comprehensive Error Profile
Comprehensive Error Profile

Quality Metric +
Unmodified Program +
Quality Threshold (Optional)

Error Analysis

Comprehensive Error Profile

Error outcome (for all error sites)

0x400995, 594769813038500, r8, 14, Integer, Source :: QD - 0.0218
Error Outcome for One Error Site

Quality Metric

+ Unmodified Program

+ Quality Threshold (Optional)

Error Analysis

Comprehensive Error Profile

Error outcome (for one error site)

0x400995, 594769813038500, r8, 14, Integer, Source :: QD - 0.0218

Error Site Description

Error Outcome
Error Outcome for One Error Site

Error Model: Single bit errors in operand registers of dynamic instructions

0x400995, 594769813038500, r8, 14, Integer, Source :: QD - 0.0218

Error Site Description
Error Outcome for One Error Site

Error Site: *Dynamic instruction* + *Operand Register* + *Register Bit*

0x400995, 594769813038500, r8, 14, Integer, Source :: QD - 0.0218

PC + Cycle = Dynamic instruction
Error Outcome for One Error Site

Error Site: Dynamic instruction + Operand Register + Register Bit

0x400995, 594769813038500, r8, 14, Integer, Source :: QD - 0.0218

Register Name Register Bit
Error Outcome for One Error Site

Quality Metric + Unmodified Program + Quality Threshold (Optional)

Error Analysis

Comprehensive Error Profile

Error outcome (for one error site)

Error Site: Dynamic instruction + Operand Register + Register Bit

0x400995, 594769813038500, r8, 14, Integer, Source :: QD - 0.0218

Register Type

Operand Type
Error Outcome for One Error Site

Quality Metric + ________________________________

Unmodified Program

+ ________________________________

Quality Threshold (Optional)

Error Analysis

Comprehensive Error Profile

Error outcome (for one error site)

Error Outcome: Impact of an error, at this error site, on program output

0x400995, 594769813038500, r8, 14, Integer, Source :: QD - 0.0218

Error Outcome
Error Outcome for One Error Site

Error Outcome: Impact of an error, at this error site, on program output

0x400995, 594769813038500, r8, 14, Integer, Source :: QD - 0.0218
Error Outcome for One Error Site

Quality Metric

\[\text{Quality Metric} + \text{Unmodified Program} + \text{Quality Threshold (Optional)} \]

Error Analysis

Comprehensive Error Profile

Error outcome (for one error site)

Error Model: 1-bit transient error in (data bit stored) in DRAM

\[\text{Address} \rightarrow \text{Bit} \rightarrow \text{Quality Degradation} \]

\[\text{0x40a670, 342769813038500, Read, 0x6a10a, 2, 7} :: \text{QD - 0.0008} \]

\[\text{PC + Cycle = Dynamic instruction} \rightarrow \text{Access Type} \rightarrow \text{Byte Offset} \]
Error Outcome for One Error Site

Quality Metric

+

Unmodified Program

+

Quality Threshold (Optional)

Error Analysis

Comprehensive Error Profile

Error outcome (for one error site)

0x400995, 594769813038500, r8, 14, Integer, Source :: QD - 0.0218
Error Outcome for All Error Sites

Quality Metric

+

Unmodified Program

+

Quality Threshold (Optional)

Error Analysis

Comprehensive Error Profile

Error outcome (for all error sites)

Billions of error sites in average programs \rightarrow Error injections in all expensive!
Errors flowing through similar control+data paths produce similar outcomes
Errors flowing through similar control+data paths produce similar outcomes
Error Pruning Using Equivalence

Equivalence Classes (control + data heuristics)

Errors flowing through similar control+data paths produce similar outcomes
Error Pruning Using Equivalence

Inject error in Pilot
Pilot outcome = Outcome of all errors in class

Few error injections to predict the outcome of all errors
Comprehensive Error Profile with Few Injections

Quality Metric
+ Unmodified Program
+ Quality Threshold (Optional)

Error Analysis

Comprehensive Error Profile

Error outcome (for all error sites)

Up to 5 orders of magnitude reduction is error injections
Validation of Equivalence Heuristics

- Heuristics used to build equivalence classes need validation
 - Does the pilot accurately represent its equivalence class?

Equivalence class (EC)

- Pilot (Representative error-site from EC)
Validation of Equivalence Heuristics

- Heuristics used to build equivalence classes need validation
 - Does the pilot accurately represent its equivalence class?

Equivalent class (EC)

- Pilot (Representative error-site from EC)
- Population
Validation of Equivalence Heuristics

• Heuristics used to build equivalence classes need validation
 ▪ Does the pilot accurately represent its equivalence class?

Equivalence class (EC)

Pilot = Error Outcome E

100% Validation Accuracy

All in Population = Error Outcome E

~ 7 million error injections to validate this technique
Validation Accuracy: Data Errors

On average, >97% (up to 99%) validation accuracy
On average, >97% (up to 99%) validation accuracy
Customized Error Efficiency: Use Case 1

Instruction Error Profile → Customized Ultra Low-Cost Resiliency

• Selectively protect instructions
 ▪ End-to-end output quality is not acceptable to user/application
 ▪ Protection Scheme: Instruction duplication
 ▪ Less instructions protected → Reduced resiliency overhead

• Optimal (custom) resiliency solution
 ▪ Quality vs. resiliency coverage vs. overhead
Ultra-Low Cost Resiliency (Water)

Protect All Output Corruptions

99% Resiliency Coverage →

% Resiliency Coverage

% Overhead
Ultra-Low Cost Resiliency (Water)

Significant resiliency overhead savings for small loss of quality
Customized Error Efficiency: Use Case 2

Data Error Profile → Approximate Computing

Identify first-order approximable data in a program
Customized Approximate Computing (FFT)

Data Bytes in Application (%) vs. Approximation Target (%)

- 1-Bit
- 90% approximate ➔
Customized Approximate Computing (FFT)

77% of data bytes are approximable 90% of the time when corrupted with a single-bit error.
Customized Approximate Computing (FFT)

Data Bytes in Application (%) vs. Approximation Target (%)

- 1-Bit
- 2-Bit
- 4-Bit
- 8-Bit

Approximation Target: 90% approximate

90% approximate →
Customized Approximate Computing (Swaptions)
Approximate Memory Technique \rightarrow Lower DRAM refresh rate to save power*

*Flikker [ASPLOS’11]
Mapping Data to Approximate Memory

Approximate Memory Technique \rightarrow Lower DRAM refresh rate to save power*

*Flikker [ASPLOS’11]
Approximate Memory Technique \rightarrow Lower DRAM refresh rate to save power*

*Flikker [ASPLOS'11]

Mapping Data to Approximate Memory

Application Data

- **Critical**
 - High Refresh
 - No Errors

- **Non-Critical**
 - Low Refresh
 - Some Errors

Automatic identification of Critical data

Swaptions

- Quality Threshold = 0.001
- Mapping Accuracy = 99.9%
- Power Savings = 23%
• Software-centric error analysis and error efficiency: Approxilyzer, Winnow

• Software testing for hardware errors: Minotaur

• Domain-specific error efficiency: HarDNN

• Compiler and runtime for hardware and software error efficiency: ApproxTuner

• Putting it Together: Towards a Discipline for Error-Efficient Systems
Minotaur: Key Idea

Analyzing software for...

...hardware errors ≈ ...software bugs

Leverage software testing techniques to improve hardware error analysis
Minotaur adapts four software testing techniques to hardware error analysis.
Input Quality for Error Analysis → PC coverage
High quality (fast) minimized inputs from (slow) standard inputs
Prioritize analyzing specific program locations based on analysis objectives

Terminate analysis (early) when objective is met
Prioritize analysis over fast, (potentially) inaccurate inputs first
4X average speedup in error analysis
10x average speedup (upto 39x) for analysis targeting low-cost resiliency
18x average speedup (up to 55x) for analysis targeting approximate computing
Outline

• Software-centric error analysis and error efficiency: Approxilyzer, Winnow

• Software testing for hardware errors: Minotaur

• Domain-specific error efficiency: HarDNN

• Compiler and runtime for hardware and software error efficiency: ApproxTuner

• Putting it Together: Towards a Discipline for Error-Efficient Systems
Deep Neural Networks (DNNs)

- Deep Neural Networks (DNNs) used in many application domains
 - Entertainment/personal devices to safety-critical autonomous cars
 - DNN software accuracy is < 100%: ResNet50 on ImageNet is ~76% accurate
 - But must execute “reliably” in the face of hardware errors

- Traditional reliability solution:

 ![Tesla’s Full Self-Driving Chip (FSD), 2019](https://www.extremetech.com/extreme/290029-tesla-well-have-full-self-driving-by-2020-robo-taxis-too)

 ~2X Overhead in area, power

- Can we use domain knowledge to reduce overheads of DNN resilience?
HarDNN: Approach

• Software-directed approach for hardening CNNs for inference

Target Granularity

Identify DNN component granularity for analysis

Vulnerability Estimation

Efficiently estimate DNN component vulnerability

Selective Protection

Selectively protect to meet coverage and overhead targets

High, tunable resiliency with low overhead

SARA’20, arXiv’20, DSML’20
HarDNN Challenges

• *What granularity* components to protect?
 – Challenge: Identify granularity for selective protection

• *Which* components to protect?
 – Challenge: Accurately estimate vulnerability of each component

• *How* to protect?
 – Challenge: Low-cost protection mechanism
What Granularity Components to Target?

CNN computation hierarchy

Key computation: Convolution on feature maps
What Granularity Components to Target?

- Full network
 - Rerun inference in its entirety

- Layer
 - Estimate vulnerability of layer, duplicate vulnerable layers by running Itwice

- Feature Map
 - Estimate vulnerability of feature map, duplicate vulnerable fmaps by duplicating filters

- Neuron
 - Estimate vulnerability of neuron, duplicate vulnerable neurons

- Instruction
Feature Map (Fmap) Granularity

• Robustness to translational effects of inputs

 ![Car symbol](image)

• Granularity “sweet spot”
 – Fine-grained + composable to layers

<table>
<thead>
<tr>
<th>Network-Dataset</th>
<th>Conv Layers</th>
<th>Fmaps</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlexNet-ImageNet</td>
<td>5</td>
<td>1,152</td>
</tr>
<tr>
<td>VGG19-ImageNet</td>
<td>16</td>
<td>5,504</td>
</tr>
<tr>
<td>SqueezeNet-ImageNet</td>
<td>26</td>
<td>3,944</td>
</tr>
<tr>
<td>ShuffleNet-ImageNet</td>
<td>56</td>
<td>8,090</td>
</tr>
<tr>
<td>GoogleNet-ImageNet</td>
<td>57</td>
<td>7,280</td>
</tr>
<tr>
<td>MobileNet-ImageNet</td>
<td>52</td>
<td>17,056</td>
</tr>
<tr>
<td>ResNet50-ImageNet</td>
<td>53</td>
<td>26,560</td>
</tr>
</tbody>
</table>
How to Estimate Feature Map Vulnerability

- $P_{prop} = \text{Probability an error in fmap causes a Top-1 misclassification}$
- Use statistical injection for neurons within feature map

- BUT mismatches are relatively rare, takes too many injections to converge
- Insight: Replace binary view of error propagation with continuous view
- Cross-entropy loss: Used to train DNNs to determine/enhance goodness of network
Loss: Continuous Metric for Error Propagation

Insight: Replace binary view of propagation with continuous view
Use cross-entropy loss

Convolutional Neural Network Classification

Input

Convolutional Neural Network

Feature Maps

Softmax

Classification

Loss 0.18

83%
11%
6%

CAR ✓
TRUCK ×
BICYCLE ×
Loss: Continuous Metric for Error Propagation

Insight: Replace binary view of propagation with continuous view
Use cross-entropy loss
Loss: Continuous Metric for Error Propagation

Insight: Replace binary view of propagation with continuous view
Use cross-entropy loss
Loss: Continuous Metric for Error Propagation

Our metric: average delta cross entropy loss:

$$\Delta L_{Fmap} = \frac{\sum_{i}^{N} |L_{golden} - L_i|}{N}$$

$$P_{prop} \text{ for Fmap} = \frac{\Delta L_{Fmap}}{\sum_{i}^{N} \Delta L_{Fmap}}$$
Mismatch vs. Loss: Which Converges Faster?

- How many injections per feature map? Sweep from 64 to 12,288
 - Use Manhattan distance from 12,288 injections to quantify “similarity” of vulnerability estimates

Mismatch and Loss vulnerability estimates converge with increasing injections
Loss converges faster
How to Protect?

• Objective: Duplicate computations (MACs) of vulnerable feature maps

• Duplication Strategy: Filter Duplication
 – Software directed approach: portable across different HW backends
 – Duplicates the corresponding filter to recompute output fmap
 – Validate computations off the critical path
Overhead vs. Coverage

Overhead (MACs) sub-linear to coverage
SqueezeNet: 10X reduction in errors for 30% additional computation
Next step: combination with other granularities, prune injection space
Outline

• Software-centric error analysis and error efficiency: Approxilyzer, Winnow

• Software testing for hardware errors: Minotaur

• Domain-specific error efficiency: HarDNN

• Compiler and runtime for hardware and software error efficiency: ApproxTuner

• Putting it Together: Towards a Discipline for Error-Efficient Systems
ApproxTuner: Hardware + Software Approx

• Unified compiler+runtime framework for software and hardware approximations

• Goal:
 For each operation in the application
 – select hardware and/or software approximation with
 – acceptable end-to-end accuracy and maximum speedup (minimum energy)

• Currently for applications with tensor operations; e.g., DNNs

• Example approximations studied
 – Software: Perforated convolutions, filter sampling, reduction sampling
 – Hardware: lower precision, PROMISE analog accelerator [ISCA18]
ApproxTuner Innovations

• Combines multiple software and hardware approximations

• Uses predictive models to compose accuracy impact of multiple approximations

• 3-phase approximation tuning
 • Development-time preserves hardware portability via ApproxHPVM IR
 • Install-time allows hardware-specific approximations
 • Run-time allows dynamic approximation tuning

• Federated Tuning for efficiency at install-time
 • Install-time tuning is expensive under resource constraints
GPU Speedup and Energy Reduction

Approximations: Sampling, Perforation, FP16

2.1x mean speedup and 2x mean energy reduction with 1% QoS loss
Federated vs Empirical: Energy Reduction

Approximations: PROMISE accelerator, Sampling, Perforation, FP16

Federated-p1 gives 4.5x energy reduction, comparable to empirical tuning
Runtime tuning helps maintain responsiveness in face of frequency changes
Outline

• Software-centric error analysis and error efficiency: Approxilyzer, Winnow

• Software testing for hardware errors: Minotaur

• Domain-specific error efficiency: HarDNN

• Compiler and runtime for hardware and software error efficiency: ApproxTuner

• Putting it Together: Towards a Discipline for Error-Efficient Systems
Towards a Discipline for Error-Efficient Systems

End of Moore’s law and Dennard scaling motivate error efficient systems

- Integrate hardware errors in software engineering workflow
- Integrate hardware and software error optimization for error efficient system workflows
Towards a Discipline for Error-Efficient Systems

- App Component
- Input Generation
- HW-aware error models
- Efficient error injections
- Error outcome prediction

- Test Quality
- Test Minimization
- Automated Generation
- Context Sensitivity
- Automated Hardening
- Fast DNN Checkers
- Error-Efficient Code Transformations

Development/design time + Install time + Run time

End of Moore’s law and Dennard scaling motivate error efficient systems
- Integrate hardware errors in software engineering workflow
- Integrate hardware and software error optimization for error efficient system workflows