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BUT impact software, hardware, hardware-software interface

This talk: Memory hierarchy for heterogeneous parallel systems

Global address space, coherence, consistency

But first …

Silver Bullets for End of Moore’s Law?

Parallelism                                        Specialization
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My Story (1988  2016)



• 1988 to 1989: What is a memory consistency model?

– Simplest model: sequential consistency (SC) [Lamport79]

• Memory operations execute one at a time in program order

• Simple, but inefficient

– Implementation/performance-centric view

• Order in which memory operations execute

• Different vendors w/ different models (orderings)

– Alpha, Sun, x86, Itanium, IBM, AMD, HP, Cray, … 

• Many ambiguities due to complexity, by design(?), …

Memory model = What value can a read return?

HW/SW Interface: affects performance, programmability, portability
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My Story (1988  2016)
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• 1988 to 1989: What is a memory model?

– What value can a read return?

• 1990s: Software-centric view: Data-race-free (DRF) model [ISCA90, …]

– Sequential consistency for data-race-free programs

• Distinguish data vs. synchronization (race)

• Data (non-race) can be optimized

• High performance for DRF programs
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• 1988 to 1989: What is a memory model?

– What value can a read return?

• 1990s: Software-centric view: Data-race-free (DRF) model [ISCA90, …]

– Sequential consistency for data-race-free programs

• 2000-05: Java memory model [POPL05]

– DRF model

6

My Story (1988  2016)



• 1988 to 1989: What is a memory model?

– What value can a read return?

• 1990s: Software-centric view: Data-race-free (DRF) model [ISCA90, …]

– Sequential consistency for data-race-free programs

• 2000-05: Java memory model [POPL05]

– DRF model BUT racy programs need semantics 

 No out-of-thin-air values
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• 1988 to 1989: What is a memory model?

– What value can a read return?

• 1990s: Software-centric view: Data-race-free (DRF) model [ISCA90, …]

– Sequential consistency for data-race-free programs

• 2000-05: Java memory model [POPL05]

– DRF model BUT racy programs need semantics 

 No out-of-thin-air values   DRF + big mess
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• 1988 to 1989: What is a memory model?

– What value can a read return?

• 1990s: Software-centric view: Data-race-free (DRF) model [ISCA90, …]

– Sequential consistency for data-race-free programs

• 2000-05: Java memory model [POPL05]

– DRF model + big mess

• 2005-08: C++ memory model [PLDI 2008]

– DRF model
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• 1988 to 1989: What is a memory model?

– What value can a read return?

• 1990s: Software-centric view: Data-race-free (DRF) model [ISCA90, …]

– Sequential consistency for data-race-free programs

• 2000-05: Java memory model [POPL05]

– DRF model + big mess

• 2005-08: C++ memory model [PLDI 2008]

– DRF model BUT need high performance; mismatched hardware

 Relaxed atomics
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• 2000-05: Java memory model [POPL05]
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• 1988 to 1989: What is a memory model?

– What value can a read return?

• 1990s: Software-centric view: Data-race-free (DRF) model [ISCA90, …]

– Sequential consistency for data-race-free programs

• 2000-08: Java, C++, … memory model [POPL05, PLDI08]

– DRF model + big mess (but after 20 years, convergence at last)
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• 1988 to 1989: What is a memory model?

– What value can a read return?

• 1990s: Software-centric view: Data-race-free (DRF) model [ISCA90, …]

– Sequential consistency for data-race-free programs

• 2000-08: Java, C++, … memory model [POPL05, PLDI08, CACM10]

– DRF model + big mess (but after 20 years, convergence at last)
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• 1988 to 1989: What is a memory model?

– What value can a read return?

• 1990s: Software-centric view: Data-race-free (DRF) model [ISCA90, …]

– Sequential consistency for data-race-free programs

• 2000-08: Java, C++, … memory model [POPL05, PLDI08, CACM10]

– DRF model + big mess (but after 20 years, convergence at last)

• 2008-14: Software-centric view for coherence: DeNovo protocol

– More performance-, energy-, and complexity-efficient than MESI

[PACT12, ASPLOS14, ASPLOS15]

• Began with DPJ’s disciplined parallelism [OOPSLA09, POPL11]

• Identified fundamental, minimal coherence mechanisms

• Loosened s/w constraints, but still minimal, efficient hardware
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• 1988 to 1989: What is a memory model?

– What value can a read return?

• 1990s: Software-centric view: Data-race-free (DRF) model [ISCA90, …]

– Sequential consistency for data-race-free programs

• 2000-08: Java, C++, … memory model [POPL05, PLDI08, CACM10]

– DRF model + big mess (but after 20 years, convergence at last)

• 2008-14: Software-centric view for coherence: DeNovo protocol

– More performance-, energy-, and complexity-efficient than MESI

[PACT12, ASPLOS14, ASPLOS15]

• 2014-: Déjà vu: Heterogeneous systems [ISCA15, Micro15]
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Traditional Heterogeneous SoC Memory Hierarchies

• Loosely coupled memory hierarchies

– Local memories don’t communicate with each other

– Unnecessary data movement
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Tightly Coupled SoC Memory Hierarchies

• Tightly coupled memory hierarchies: unified address space

– Entering mainstream, especially CPU-GPU

– Accelerator can access CPU’s data using same address
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Inefficient coherence and consistency

Specialized private memories still used for efficiency



Memory Hierarchies for Heterogeneous SoC
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• Efficient coherence (DeNovo), simple consistency (DRF)
[MICRO ’15, Top Picks ’16 Honorable Mention]

• Better semantics for relaxed atomics and evaluation
[in review]

• Integrate specialized memories in global address space
[ISCA ’15, Top Picks ’16 Honorable Mention]

EfficiencyProgrammability



Memory Hierarchies for Heterogeneous SoC

19

• Efficient coherence (DeNovo), simple consistency (DRF)
[MICRO ’15, Top Picks ’16 Honorable Mention]

• Better semantics for relaxed atomics and evaluation
[in review]

• Integrate specialized memories in global address space
[ISCA ’15, Top Picks ’16 Honorable Mention]

Focus: CPU-GPU systems with caches and scratchpads

EfficiencyProgrammability



CPU Coherence: MSI

• Single writer, multiple reader

– On write miss, get ownership + invalidate all sharers

– On read miss, add to sharer list

 Directory to store sharer list

Many transient states

Excessive traffic, indirection
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GPU Coherence with DRF

• With data-race-free (DRF) memory model

– No data races; synchs must be explicitly distinguished

– At all synch points

• Flush all dirty data: Unnecessary writethroughs

• Invalidate all data: Can’t reuse data across synch points

– Synchronization accesses must go to last level cache (LLC)

Simple, but inefficient at synchronization 21
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GPU Coherence with DRF

• With data-race-free (DRF) memory model

– No data races; synchs must be explicitly distinguished

– At all synch points

• Flush all dirty data: Unnecessary writethroughs

• Invalidate all data: Can’t reuse data across synch points

– Synchronization accesses must go to last level cache (LLC)
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• With data-race-free (DRF) memory model

– No data races; synchs must be explicitly distinguished

– At all synch points

• Flush all dirty data: Unnecessary writethroughs

• Invalidate all data: Can’t reuse data across synch points

– Synchronization accesses must go to last level cache (LLC)

– No overhead for locally scoped synchs

• But higher programming complexity

GPU Coherence with HRF
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heterogeneous HRF
[ASPLOS ’14]

global

and their scopes

Global

heterogeneous



Modern GPU Coherence & Consistency

Consistency Coherence

De Facto

Recent

24

Heterogeneous-race-free (HRF)

Scoped synchronization

Complex

No overhead for local synchs

Efficient for local synch

Data-race-free (DRF)

Simple

High overhead on synchs

Inefficient

DeNovo+DRF: Efficient AND simpler memory model

Do GPU models (HRF) need to be more complex than CPU models (DRF)? 

NO! Not if coherence is done right!



• Read hit: Don’t return stale data

• Read miss: Find one up-to-date copy

A Classification of Coherence Protocols

Invalidator

Writer Reader

Track 

up-to-

date 

copy 

Ownership

Writethrough

MESI

GPU

DeNovo
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• Reader-initiated invalidations

– No invalidation or ack traffic, directories, transient states

• Obtaining ownership for written data

– Reuse owned data across synchs (not flushed at synch points) 



DeNovo Coherence with DRF

• With data-race-free (DRF) memory model

– No data races; synchs must be explicitly distinguished

– At all synch points

• Flush all dirty data

• Invalidate all data

– Synchronization accesses must go to last level cache (LLC)

• 3% state overhead vs. GPU coherence + HRF
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DeNovo Configurations Studied
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• DeNovo+DRF:

– Invalidate all non-owned data at synch points

• DeNovo+RO+DRF:

– Avoids invalidating read-only data at synch points

• DeNovo+HRF:

– Reuse valid data if synch is locally scoped



Coherence & Consistency Summary
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Coherence + Consistency
Reuse Data

Owned Valid

Do Synchs 

at L1

X X X

local local local

V X V

V local V

(GD)

(GH)

(DD)

(DH)

(DD+RO) V read-only V

GPU       +   DRF

GPU       +   HRF

DeNovo-RO +  DRF

DeNovo +   DRF

DeNovo +  HRF



Evaluation Methodology
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• 1 CPU core + 15 GPU compute units (CU)

– Each node has private L1, scratchpad, tile of shared L2

• Simulation Environment

– GEMS, Simics, Garnet, GPGPU-Sim, GPUWattch, McPAT

• Workloads

– 10 apps from Rodinia, Parboil: no fine-grained synch

• DeNovo and GPU coherence perform comparably

– UC-Davis microbenchmarks + UTS from HRF paper: 

• Mutex, semaphore, barrier, work sharing

• Shows potential for future apps

• Created two versions of each: global, local/hybrid scoped synch
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DeNovo has 28% lower execution time than GPU with global synch
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Global Synch – Execution Time
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Global Synch – Energy

DeNovo has 51% lower energy than GPU with global synch
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TB

GPU+HRF is much better than GPU+DRF with local synch [ASPLOS ’14]

GD GH DD DD+RO DH
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TB

GPU+HRF is much better than GPU+DRF with local synch [ASPLOS ’14]

DeNovo+DRF comparable to GPU+HRF, but simpler consistency model

GD GH DD DD+RO DH
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TB

GPU+HRF is much better than GPU+DRF with local synch [ASPLOS ’14]

DeNovo+DRF comparable to GPU+HRF, but simpler consistency model

DeNovo-RO+DRF reduces gap by not invalidating read-only data

GD GH DD DD+RO DH
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TB

GPU+HRF is much better than GPU+DRF with local synch [ASPLOS ’14]

DeNovo+DRF comparable to GPU+HRF, but simpler consistency model

DeNovo-RO+DRF reduces gap by not invalidating read-only data

DeNovo+HRF is best, if consistency complexity acceptable

GD GH DD DD+RO DH
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Local Synch – Energy

Energy trends similar to execution time
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Memory Hierarchies for Heterogeneous SoC
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• Efficient coherence (DeNovo), simple consistency (DRF)
[MICRO ’15, Top Picks ’16 Honorable Mention]

• Better semantics for relaxed atomics and evaluation
[in review]

• Integrate specialized memories in global address space
[ISCA ’15, Top Picks ’16 Honorable Mention]

EfficiencyProgrammability
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Background: Atomic Ordering Constraints

Consistency
Data 

Data

DRF0

Synch 

Data

Synch 

Synch

Retains SC 

semantics?

V
Data - Acq, 

Rel - Data
VX

Allowed Reorderings

• Racy synchronizations implemented with atomics

• DRF0: simple and efficient

– All atomics assumed to order data accesses

– Atomics can’t be reordered with atomics

– Ensures SC semantics



39

Background: Atomic Ordering Constraints

Consistency
Data 

Data

DRF0

DRF1

Synch 

Data

Synch 

Synch

Retains SC 

semantics?

V
Data - Acq, 

Rel - Data
VX

V
DRF0 + 

unpaired
VX

Allowed Reorderings

• DRF1 uses more SW info to identify unpaired atomics

– Unpaired atomics do not order any data accesses

– Unpaired avoid invalidations/flushes for heterogeneous systems

– Ensures SC semantics
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Background: Atomic Ordering Constraints

Consistency
Data 

Data

DRF0

DRF1

DRF1 + relaxed

atomics

Synch 

Data

Synch 

Synch

Retains SC 

semantics?

V
Data - Acq, 

Rel - Data
VX

V
DRF0 + 

unpaired
VX

V
DRF1 +

relaxed
Xrelaxed

Allowed Reorderings

• Use more SW info to identify relaxed atomics

– Reordered, overlapped with all other memory accesses

– BUT violates SC: very hard to formalize and reason about



• CPUs: clear directions to programmers to avoid

– Only expert programmers of performance critical code use

– C, C++, Java: still no acceptable semantics!

• Heterogeneous Systems

– OpenCL, HSA, HRF: adopted similar consistency to DRF0

– But generally use simple, SW-based coherence

– Cost of staying away from relaxed atomics too high!

– DeNovo helps, but relaxed atomics still beneficial

41

Relaxed Atomics

Can we utilize additional SW info to give SC even with relaxed atomics?
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How Are Relaxed Atomics Used?

• Examined how relaxed atomics are used

– Collected examples from developers

– Categorized which relaxations are beneficial

– Extended DRF0/1 to allow varying levels of atomic relaxation 

• Contributions:

1. DRF2: preserves SC-centric semantics

2. Evaluated benefit of using relaxed atomics

• Usually small benefit (≤ 6% better perf for microbenchmarks)

• Gains sometimes significant (up to 60% better perf for PR)



• How existing apps use relaxed atomics:

1. Unpaired

2. Commutative

3. Non-Ordering

4. Quantum

43

Relaxed Atomic Use Cases



Accel

1. Threads concurrently update counters

– Read part of a data array, updated its counter
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Commutative – Event Counter
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Accel

1. Threads concurrently update counters

– Read part of a data array, updated its counter

– Increments race, so have to use atomics
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Commutative – Event Counter (Cont.)
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Accel

1. Threads concurrently update counters

– Read part of a data array, updated its counter

– Increments race, so have to use atomics

2. Once all threads done, one thread reads all counters
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Commutative – Event Counter (Cont.)

L1
Cache
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• DRF0 and DRF1 ensure SC semantics

– DRF0 overly restrictive: increments do not order data

– DRF1: little benefit because no reuse in data

• Relaxed atomics:

– Reorder, overlap atomics from same thread

– Commutative increments – result is same regardless of order

• DRF2

– Distinguish commutative: intermediate values not observable

– Define commutative races

– Program is DRF2 if DRF1 and no commutative races

– DRF2 systems give efficiency and SC to DRF2 programs
47

Commutative – Event Counter (Cont.)



Evaluation Methodology
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• Similar simulation environment

– Extended to compare DRF0, DRF1, and DRF2

– Do not compare to HRF because few apps use scopes

• Workloads

– Microbenchmarks

• Traditional use cases for relaxed atomics

• Stress memory system (high contention)

– All benchmarks from major suites with > 2% global atomics

• UTS, PageRank (PR), Betweeness Centrality (BC)

• Show 4 representative graphs for PR and BC
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Relaxed Atomic Microbenchmarks – Execution Time
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GD0 = GPU coherence with DRF0

GD1 = GPU coherence with DRF1

GD2 = GPU coherence with DRF2

DD0 = DeNovo coherence with DRF0

DD1 = DeNovo coherence with DRF1

DD2 = DeNovo coherence with DRF2



DRF1 and DRF2 do not significantly affect performance (≤ 6% on average)

DeNovo exploits synch reuse, outperforms GPU (DRF2: 11% avg)
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Relaxed Atomic Microbenchmarks – Execution Time
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Relaxed Atomic Microbenchmarks – Energy

HG_NO Flags SCHHG RC AVG

103 101
103

Energy trends similar to execution time
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Relaxed Atomic Apps – Execution Time

PR-2 PR-3 PR-4PR-1UTS BC-1 BC-2 BC-3 BC-4 AVG

Weakening consistency model helps a lot for PageRank (up to 60% for GPU)

DRF1 avoids costly synchronization overhead (23% average improvement)

DRF2 overlaps atomics (up to 21% better than DRF1)
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Energy somewhat similar to execution time trends

DRF2: DeNovo’s data and synch reuse reduces energy (23% avg vs GPU)
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Relaxed Atomic Apps – Energy

PR-2 PR-3 PR-4PR-1UTS BC-1 BC-2 BC-3 BC-4 AVG
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Memory Hierarchies for Heterogeneous SoC
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• Efficient coherence (DeNovo), simple consistency (DRF)
[MICRO ’15, Top Picks ’16 Honorable Mention]

• Better semantics for relaxed atomics and evaluation
[in review]

• Integrate specialized memories in global address space
[ISCA ’15, Top Picks ’16 Honorable Mention]

EfficiencyProgrammability



Specialized Memories for Efficiency
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• Heterogeneous SoCs use specialized memories for energy

• E.g., scratchpads, FIFOs, stream buffers, …

Scratchpad

Directly addressed: no tags/TLB/conflicts V X

Compact storage: no holes in cache lines V X

Cache



Specialized Memories for Energy
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• Heterogeneous SoCs use specialized memories for energy

• E.g., scratchpads, FIFOs, stream buffers, …

Can specialized memories be globally addressable, coherent?

Can we have our scratchpad and cache it too?

Scratchpad

Directly addressed: no tags/TLB/conflicts V X

Compact storage: no holes in cache lines V X

Global address space: implicit data movement X V

Coherent: reuse, lazy writebacks X V

Cache



Can We Have Our Scratchpad and Cache it Too?

• Make specialized memories globally addressable, coherent

– Efficient address mapping

– Efficient coherence protocol

• Focus: CPU-GPU systems with scratchpads and caches

– Up to 31% less execution time, 51% less energy
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Stash

Scratchpad Cache

+ Directly addressable

+ Compact storage

+ Global address space

+ Coherent



• Tension between programmability and efficiency

– Coherence: performs poorly for emerging apps

– Consistency: complicated, relaxed atomics worsen

– Specialized memories: not visible in global address space

• Insight: adjust coherence and consistency complexity

– Efficient coherence [MICRO ‘15, TP ‘16 HM]

– DRF consistency model [MICRO ‘15, TP ‘16 HM, in submission]

– Specialized mems in global addr space [ISCA ’15, TP ’16 HM]

– Future: optimize DeNovo; integrate more specialized mems; 

interface 58

Conclusion

EfficiencyProgrammability



• 1988 to 1989: What is a memory model?

– What value can a read return?

• 1990s: Software-centric view: Data-race-free (DRF) model [ISCA90, …]

– Sequential consistency for data-race-free programs

• 2000-08: Java, C++, … memory model [POPL05, PLDI08, CACM10]

– DRF model + big mess (but after 20 years, convergence at last)

• 2008-14: Software-centric view for coherence: DeNovo protocol

– More performance-, energy-, and complexity-efficient than MESI

[PACT12, ASPLOS14, ASPLOS15]

• 2014-16: Déjà vu: Heterogeneous systems [ISCA15, Micro15]

– Coherence, consistency, global addressability
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My Story (1988  2016)


