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Silver Bullets for End of Moore’s Law?

Parallelism Specialization
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BUT impact software, hardware, hardware-software interface

This talk: Memory hierarchy for heterogeneous parallel systems

Global address space, coherence, consistency
But first ...



My Story (1988 — 2016)



My Story (1988 — 2016)

* 1988 to 1989: What is a memory consistency model?

— Simplest model: sequential consistency (SC) [Lamport79]
« Memory operations execute one at a time in program order
 Simple, but inefficient

— Implementation/performance-centric view
« Order in which memory operations execute LD LD ST ST
+ Different vendors w/ different models (orderings) 1 1 F%ﬁe 1
— Alpha, Su.n., x86, Itanium, IBM,.AMD, HP,.Cray, 1D ST LD ST
« Many ambiguities due to complexity, by design(?), ...

Memory model = What value can a read return?
HW/SW Interface: affects performance, programmability, portability



My Story (1988 — 2016)

« 1988 to 1989: What is a memory model?
— What value can a read return?

« 1990s: Software-centric view: Data-race-free (DRF) model [ISCA90, ...]
— Sequential consistency for data-race-free programs
* Distinguish data vs. synchronization (race)
 Data (non-race) can be optimized
* High performance for DRF programs
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My Story (1988 — 2016)

1988 to 1989: What is a memory model?
— What value can a read return?

1990s: Software-centric view: Data-race-free (DRF) model [ISCA90, ...]
— Sequential consistency for data-race-free programs

2000-08: Java, C++, ... memory model [POPL0S, PLDI08, CACM10]
— DRF model + big mess (but after 20 years, convergence at last)

2008-14: Software-centric view for coherence: DeNovo protocol
— More performance-, energy-, and complexity-efficient than MESI
[PACT12, ASPLOS14, ASPLOS15]
« Began with DPJ’s disciplined parallelism [OOPSLA09, POPL11]
* |dentified fundamental, minimal coherence mechanisms
* Loosened s/w constraints, but still minimal, efficient hardw?4re



My Story (1988 — 2016)

1988 to 1989: What is a memory model?
— What value can a read return?

1990s: Software-centric view: Data-race-free (DRF) model [ISCA90, ...]
— Sequential consistency for data-race-free programs

2000-08: Java, C++, ... memory model [POPL0S, PLDI08, CACM10]
— DRF model + big mess (but after 20 years, convergence at last)

2008-14: Software-centric view for coherence: DeNovo protocol
— More performance-, energy-, and complexity-efficient than MESI
[PACT12, ASPLOS14, ASPLOS15]

2014-: Déja vu: Heterogeneous systems [ISCA15, Micro15]
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Traditional Heterogeneous SoC Memory Hierarchies

* Loosely coupled memory hierarchies
— Local memories don’t communicate with each other
— Unnecessary data movement

(V

A/V H\V \ccels.

L1 L1

Cache || Cache
osr | 2
—MEMI-

Main Memory

\o /

A tightly coupled memory hierarchy is needed

16



Tightly Coupled SoC Memory Hierarchies

* Tightly coupled memory hierarchies: unified address space
— Entering mainstream, especially CPU-GPU
— Accelerator can access CPU’s data using same address

Accelerator
Cache

Interconnection n/w

Inefficient coherence and consistency
Specialized private memories still used for efficiency

17



Memory Hierarchies for Heterogeneous SoC

Programmability Efficiency

 Efficient coherence (DeNovo), simple consistency (DRF)
[MICRO 15, Top Picks '16 Honorable Mention]

 Better semantics for relaxed atomics and evaluation
[in review]

* Integrate specialized memories in global address space
[ISCA’15, Top Picks '16 Honorable Mention]
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Memory Hierarchies for Heterogeneous SoC

Programmability Efficiency

 Efficient coherence (DeNovo), simple consistency (DRF)
[MICRO 15, Top Picks '16 Honorable Mention]

 Better semantics for relaxed atomics and evaluation
[in review]

* Integrate specialized memories in global address space
[ISCA’15, Top Picks '16 Honorable Mention]

Focus: CPU-GPU systems with caches and scratchpads
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CPU Coherence: MSI

L2 Cache,
Directory

Interconnection n/w

L1 Cache L1 Cache

L2 Cache,
Directory

« Single writer, multiple reader

— On write miss, get ownership + invalidate all sharers

— On read miss, add to sha
= Directory to store sharer list
— Many transient states
— Excessive traffic, indirection

rer list

Complex + inefficient



GPU Coherence with DRF

L2 Cache L2 Cache
Bank Bank

Interconnection n/w

 With data-race-free (DRF) memory model
— No data races; synchs must be explicitly distinguished
— At all synch points

 Flush all dirty data: Unnecessary writethroughs
* Invalidate all data: Can’t reuse data across synch points

— Synchronization accesses must go to last level cache (LLC)
Simple, but inefficient at synchronization
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GPU Coherence with DRF

 With data-race-free (DRF) memory model
— No data races; synchs must be explicitly distinguished
— At all synch points

 Flush all dirty data: Unnecessary writethroughs
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— Synchronization accesses must go to last level cache (LLC)
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GPU Coherence with HRF

heterogeneous  HRF
 With data-race-free (BRF) memory model [ASPLOS ’14]
— No data races; synchsAmust be explicitly distinguished

heterogeneous and their scopes
— At aIIAsynch points

global

 Flush all dirty data: Unnecessary writethroughs
* Invalidate all data: Can’t reuse data across synch points

Global

—VSynchronization accesses must go to last level cache (LLC)
— No overhead for locally scoped synchs

 But higher programming complexity

23



Modern GPU Coherence & Consistency

| Consistency Coherence
De Factd Data-race-free (DRF) High overhead on synchs
Simple Inefficient

Recent | Heterogeneous-race-free (HRF) | No overhead for local synchs
Scoped synchronization
Complex Efficient for local synch

Do GPU models (HRF) need to be more complex than CPU model

NO! Not if coherence is done right!

DeNovo+DRF: Efficient AND simpler memory model

24



A Classification of Coherence Protocols

Read hit: Don’t return stale data
Read miss: Find one up-to-date copy

Invalidator

Writer Reader
Ownership MESI DeNovo
Writethrough GPU

Reader-initiated invalidations

— No invalidation or ack traffic, directories, transient states
Obtaining ownership for written data

— Reuse owned data across synchs (not flushed at synch points)

25



DeNovo Coherence with DRF

Inval@latain
non-ovwed daiip

L2 Cache L2 Cache
Bank Bank

Interconnection n/w

 With data-race-free (DRF) memory model
— No data races; synchs must be explicitly distinguished

— At all synch points

« Flush-aii-dirty-data Obtain ownership for dirty data Can reuse
* Invalidate-al-data- all non-owned data owned data

t L1
— Synchronization accesses
3% state overhead vs. GPU coherence + HRF

canb

26



DeNovo Configurations Studied

 DeNovo+DRF:

— Invalidate all non-owned data at synch points

e DeNovo+RO+DREF:

— Avoids invalidating read-only data at synch points

e DeNovo+HRF:

— Reuse valid data if synch is locally scoped

27



Coherence & Consistency Summary

Reuse Data Do Synchs

Coherence + Consistency

Owned| Valid at L1
GPU + DRF(GD) X X X
GPU + HRF(GH) local local local
DeNovo + DRF (DD) V X V

DeNovo-RO + DRF (DD+RO)| V |read-only VvV

DeNovo + HRF (DH) V local V

28



Evaluation Methodology

* 1 CPU core + 15 GPU compute units (CU)

— Each node has private L1, scratchpad, tile of shared L2

 Simulation Environment
— GEMS, Simics, Garnet, GPGPU-Sim, GPUWattch, McPAT

 Workloads

— 10 apps from Rodinia, Parboil: no fine-grained synch
* DeNovo and GPU coherence perform comparably

— UC-Davis microbenchmarks + UTS from HRF paper:
« Mutex, semaphore, barrier, work sharing
» Shows potential for future apps

 Created two versions of each: global, local/hybrid scoped synch
29



Global Synch - Execution Time

FAM SLM SPM SPMBO AVG
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DeNovo has 28% lower execution time than GPU with global synch
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Global Synch - Energy

M Seriesl

M Series?2

m Series5  ® Series4d Series3
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DeNovo has 51% lower energy than GPU with global synch
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Local Synch - Execution Time

mGD WM GH W DD
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GPU+HREF is much better than GPU+DRF with local synch [ASPLOS ’14]
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Local Synch - Execution Time

mGD WM GH W DD
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GPU+HREF is much better than GPU+DRF with local synch [ASPLOS ’14]
DeNovo+DRF comparable to GPU+HREF, but simpler consistency model
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Local Synch - Execution Time
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GPU+HREF is much better than GPU+DRF with local synch [ASPLOS ’14]
DeNovo+DRF comparable to GPU+HREF, but simpler consistency model
DeNovo-RO+DRF reduces gap by not invalidating read-only data

34



Local Synch - Execution Time

mGD WM GH W DD
FAM | SLM ;, SPM ,SPMBO;, SS [SSBO; TBEX; TB | UTS | AVG
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GPU+HREF is much better than GPU+DRF with local synch [ASPLOS ’14]
DeNovo+DRF comparable to GPU+HREF, but simpler consistency model
DeNovo-RO+DRF reduces gap by not invalidating read-only data
DeNovo+HREF is best, if consistency complexity acceptable
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Local Synch - Energy

m Series5 W Series4 © Series3 W Series?2 W Seriesl
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Energy trends similar to execution time
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Memory Hierarchies for Heterogeneous SoC

Programmability Efficiency

 Efficient coherence (DeNovo), simple consistency (DRF)
[MICRO 15, Top Picks '16 Honorable Mention]

 Better semantics for relaxed atomics and evaluation
[in review]

* Integrate specialized memories in global address space
[ISCA’15, Top Picks '16 Honorable Mention]
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Background: Atomic Ordering Constraints

Allowed Reorderings

Consistenc Data Synch Synch | Retains SC
y Data Data Synch |semantics?
Data - Acq,
DRFO v Rel - Data X v

* Racy synchronizations implemented with atomics
* DRFO0: simple and efficient

— All atomics assumed to order data accesses
— Atomics can’t be reordered with atomics
— Ensures SC semantics

38



Background: Atomic Ordering Constraints

Allowed Reorderings
Consistenc Data Synch Synch | Retains SC
y Data Data Synch |semantics?
Data - Acq,
DRFO0 V Rel - Data X VvV
e
DRF1 V DRF.O X \
unpaired

DRF1 uses more SW info to identify unpaired atomics

— Unpaired atomics do not order any data accesses
— Unpaired avoid invalidations/flushes for heterogeneous systems
— Ensures SC semantics
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Background: Atomic Ordering Constraints

Allowed Reorderings
Consistenc Data Synch Synch | Retains SC
y Data Data Synch |semantics?
Data - Acq,
DRFO0 V Rel - Data X VvV
-
DRF1 V DRF.O X V
unpaired
DRF1_ + relaxed V DRF1 + relaxed X
atomics relaxed

« Use more SW info to identify relaxed atomics
— Reordered, overlapped with all other memory accesses
— BUT violates SC: very hard to formalize and reason about

40



Relaxed Atomics

* CPUs: clear directions to programmers to avoid
— Only expert programmers of performance critical code use
— C, C++, Java: still no acceptable semantics!

* Heterogeneous Systems
— OpenCL, HSA, HRF: adopted similar consistency to DRF0
— But generally use simple, SW-based coherence
— Cost of staying away from relaxed atomics too high!
— DeNovo helps, but relaxed atomics still beneficial

Can we utilize additional SW info to §&eesven with relaxed atomics?

41



How Are Relaxed Atomics Used?

» Examined how relaxed atomics are used
— Collected examples from developers
— Categorized which relaxations are beneficial
— Extended DRFO0/1 to allow varying levels of atomic relaxation

 Contributions:
1. DRF2: preserves SC-centric semantics

2. Evaluated benefit of using relaxed atomics
« Usually small benefit (< 6% better perf for microbenchmarks)
« Gains sometimes significant (up to 60% better perf for PR)

42



Relaxed Atomic Use Cases

. How existing apps use relaxed atomics:
Unpaired

( Commutative >

3. Non-Ordering
4. Quantum

43



Commutative — Event Counter

L2 Cache unters

1. Threads concurrently update counters
— Read part of a data array, updated its counter

44



Commutative — Event Counter (Cont.)

L2 Cache unters

1. Threads concurrently update counters
— Read part of a data array, updated its counter
— Increments race, so have to use atomics
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Commutative — Event Counter (Cont.)

Read all
counters

L2 Cache unters

1. Threads concurrently update counters
— Read part of a data array, updated its counter
— Increments race, so have to use atomics

2. Once all threads done, one thread reads all counters

46



Commutative — Event Counter (Cont.)

« DRFO0 and DRF1 ensure SC semantics

— DRFO overly restrictive: increments do not order data
— DREF1: little benefit because no reuse in data

* Relaxed atomics:
— Reorder, overlap atomics from same thread
— Commutative increments - result is same regardless of order

* DRF2

— Distinguish commutative: intermediate values not observable
— Define commutative races

— Program is DRF2 if DRF1 and no commutative races

— DRF2 systems give efficiency and SC to DRF2 programs

47



Evaluation Methodology

* Similar simulation environment
— Extended to compare DRF0, DRF1, and DRF2
— Do not compare to HRF because few apps use scopes

 Workloads

— Microbenchmarks
« Traditional use cases for relaxed atomics
« Stress memory system (high contention)
— All benchmarks from major suites with > 2% global atomics
« UTS, PageRank (PR), Betweeness Centrality (BC)
« Show 4 representative graphs for PR and BC

48



Relaxed Atomic Microbenchmarks — Execution Time

100%

Bl GDO0 = GPU coherence with DRF0
Il GD1 = GPU coherence with DRF1
¥ GD2 = GPU coherence with DRF2
Bl DDO0 = DeNovo coherence with DRF0
B DD1 = DeNovo coherence with DRF1
DD2 = DeNovo coherence with DRF2

80%

60%

40%

20%

0%

123456
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Relaxed Atomic Microbenchmarks — Execution Time

HG H HG _NO Flags SC RC AVG
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DRF1 and DRF2 do not significantly affect performance (< 6% on average)
DeNovo exploits synch reuse, outperforms GPU (DRF2: 11% avg)
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Relaxed Atomic Microbenchmarks - Energy

HG H HG NO Flags SC RC AVG
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Energy trends similar to execution time
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Relaxed Atomic Apps — Execution Time

UTS PR-1 PR-2 PR-3 PR-4 BC-1 BC-2 BC-3 BC4 AVG
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Weakening consistency model helps a lot for PageRank (up to 60% for GPU)
DRF1 avoids costly synchronization overhead (23% average improvement)
DRF2 overlaps atomics (up to 21% better than DRF1)
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Relaxed Atomic Apps - Energy

UTS PR-1 PR-2 PR3 PR4 BC1 BC-2 BC-3 BC4 AVG
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100% |

80% |-

Energy somewhat similar to execution time trends
DRF2: DeNovo’s data and synch reuse reduces energy (23% avg vs GPU)
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Memory Hierarchies for Heterogeneous SoC

Programmability Efficiency

 Efficient coherence (DeNovo), simple consistency (DRF)
[MICRO 15, Top Picks '16 Honorable Mention]

 Better semantics for relaxed atomics and evaluation
[in review]

* Integrate specialized memories in global address space
[ISCA’15, Top Picks '16 Honorable Mention]
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Specialized Memories for Efficiency

» Heterogeneous SoCs use specialized memories for energy
 E.g., scratchpads, FIFOs, stream buffers, ...

Scratcllpad Cache

<
><

Directly addressed: no tags/TLB/conflicts

<
>

Compact storage: no holes in cache lines
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Specialized Memories for Energy

» Heterogeneous SoCs use specialized memories for energy
 E.g., scratchpads, FIFOs, stream buffers, ...

Scratchpad  Cache

Directly addressed: no tags/TLB/conflicts

Compact storage: no holes in cache lines

Global address space: implicit data movement

< < ||

Coherent: reuse, lazy writebacks

Can specialized memories be globally addressable, coherent?
Can we have our scratchpad and cache it too?
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Can We Have Our Scratchpad and Cache it Too?

Scratchpad Cache

Stash

. | + Global address space
4 + Coherent

+ Directly addressable
+ Compact storage

* Make specialized memories globally addressable, coherent
— Efficient address mapping
— Efficient coherence protocol

* Focus: CPU-GPU systems with scratchpads and caches
— Up to 31% less execution time, 51% less energy
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Conclusion

 Tension between programmability and efficiency
— Coherence: performs poorly for emerging apps
— Consistency: complicated, relaxed atomics worsen
— Specialized memories: not visible in global address space

Programmability Efficiency

* Insight: adjust coherence and consistency complexity
— Efficient coherence [MICRO “15, TP “16 HM]
— DRF consistency model [MICRO ‘15, TP “16 HM, in submission]
— Specialized mems in global addr space [ISCA 15, TP ’16 HM]

— Future: optimize DeNovo; integrate more specialized mems;
interface o



My Story (1988 — 2016)

« 1988 to 1989: What is a memory model?
— What value can a read return?

« 1990s: Software-centric view: Data-race-free (DRF) model [ISCA90, ...]
— Sequential consistency for data-race-free programs

« 2000-08: Java, C++, ... memory model [POPL0S, PLDI08, CACM10]
— DRF model + big mess (but after 20 years, convergence at last)

« 2008-14: Software-centric view for coherence: DeNovo protocol

— More performance-, energy-, and complexity-efficient than MESI
[PACT12, ASPLOS14, ASPLOS15]

« 2014-16: Déja vu: Heterogeneous systems [ISCA15, Micro15]

— Coherence, consistency, global addressability
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