
Stash: Have Your Scratchpad and Cache it Too

Matthew D. Sinclair

with:

Rakesh Komuravelli, Johnathan Alsop,

Muhammad Huzaifa, Maria Kotsifakou,

Prakalp Srivastava, Sarita V. Adve, and Vikram S. Adve

University of Illinois @ Urbana-Champaign

hetero@cs.illinois.edu

SoCs Need an Efficient Memory Hierarchy

2

• Energy-efficient memory hierarchy is essential

– Heterogeneous SoCs use specialized memories

– E.g., scratchpads, FIFOs, stream buffers, …

Scratchpad

Directly addressed: no tags/TLB/conflicts X

Compact storage: no holes in cache lines X

Cache

SoCs Need an Efficient Memory Hierarchy

3

• Energy-efficient memory hierarchy is essential

– Heterogeneous SoCs use specialized memories

– E.g., scratchpads, FIFOs, stream buffers, …

Can specialized memories be globally addressable, coherent?

Can we have our scratchpad and cache it too?

Scratchpad

Directly addressed: no tags/TLB/conflicts X

Compact storage: no holes in cache lines X

Global address space: implicit data movement X

Coherent: reuse, lazy writebacks X

Cache

Can We Have Our Scratchpad and Cache it Too?

• Make specialized memories globally addressable, coherent

– Efficient address mapping

– Efficient coherence protocol

• Focus: CPU-GPU systems with scratchpads and caches

– Up to 31% less execution time, 51% less energy

4

Stash

Scratchpad Cache

+ Directly addressable

+ Compact storage

+ Global address space

+ Coherent

Outline

• Motivation

• Background: Scratchpads & Caches

• Stash Overview

• Implementation

• Results

• Conclusion

5

Global Addressability

• Scratchpads

– Part of private address space: not globally addressable

 Explicit movement

• Cache

+ Globally addressable: part of global address space

 Implicit copies, no pollution, support for conditional accesses

6

GPU

Cache

Interconnection n/w

Scratchpad

L2 $ Bank

CPU

Cache

Registers

L2 $ Bank

, pollution, poor conditional accs support

Coherence: Globally Visible Data

• Scratchpads

– Part of private address space: not globally visible

 Eager writebacks and invalidations on synchronization

• Cache

+ Globally visible: data kept coherent

 Lazy writebacks as space is needed, reuse data across synch

7

Stash – A Scratchpad, Cache Hybrid

8

Scratchpad

Directly addressed: no tags/TLB/conflicts X

Compact storage: no holes in cache lines X

Global address space: implicit data move. X

Coherent: reuse, lazy writebacks X

Cache Stash

Related Work

• Caches:

– Changing Data Layout [HPCA ’99, SC ‘11]

– Elide Tag Accesses [MICRO ’13, ISPLED ‘14]

• Scratchpads:

– Bypassing L1 cache [Southern Island ‘09]

– Virtualizing Private Memories

• [ISPLED ‘11, ISPLED ‘12, UC-B MS ’09, TACO ‘12]

– Scratchpads with DMA support [SC ‘11, PACT ‘14]

• Compare stash to scratchpads with DMA support
9

Outline

• Motivation

• Background: Scratchpads & Caches

• Stash Overview

• Implementation

• Results

• Conclusion

10

Stash: Directly & Globally Addressable

11

• Like scratchpad: directly addressable (for hits)

• Like cache: globally addressable (for misses)

– Implicit loads, no cache pollution

Accelerator

Scratchpad

… …

500 505

// A is global mem addr
// scratch_base == 500
for (i = 500; i < 600; i++) {
 reg ri = load[A+i-500];
 scratch[i] = ri ;
}
reg r = scratch_load[505];

// A is global mem addr
// Compiler info: stash_base[500] -> A (M0)
// Rk = M0 (index in map)

reg r = stash_load[505, Rk];

Accelerator

Stash

… …

500 505

Generate
load[A+5]

500A M0

Map

Stash: Globally Visible

• Stash data can be accessed by other units

• Needs coherence support

• Like cache

– Keep data around – lazy writebacks

– Intra- or inter-kernel data reuse on the same core
12

L2 $
Bank

Interconnection n/w

GPU

Stash

L2 $
Bank

CPU

Cache

Registers
Map

 $

Stash: Compact Storage

• Caches: cache line granularity storage (“holes” waste)

– Do not compact data

• Like scratchpad, stash compacts data

L2 $
Bank

CU 3

Interconnection n/w

CU 1 CU 2

L2 $
Bank

13

Outline

• Motivation

• Background: Scratchpads & Caches

• Stash Overview

• Implementation

• Results

• Conclusion

14

Stash Software Interface

• Software gives a mapping for each stash allocation

– One map entry (instruction) per stash array per thread block

– Map 2D non-contiguous global regions to stash

15

…

…

.

.

.

Global

…

Stash

Stash Hardware

16

Data Array

S
t
a
t
e

…

Map index

table

…

Stash-Map

VA

PA

VP-map stash_load[505, Rk];

V Stash
base

VA
base

Field size,
Object size

Row size,
Stride size,

#strides

isCoh #Dirty
Data

TLB

RTLB

Coherence Support for Stash

• Stash data needs to be kept coherent

• Extend a coherence protocol for three features

– Track stash data at word granularity

– Capability to merge partial lines when stash sends data

– Modify directory to record the modifier and stash-map ID

• We choose to extend the DeNovo protocol

– Simple, low overhead, hybrid of CPU and GPU protocols

17

DeNovo Coherence (1/2)

• Read hit – don’t return stale data

– Before next parallel phase, selectively self-invalidates

• Needn’t invalidate data it accessed in previous phase

• Read miss – Find one up-to-date copy

– Before end of phase, write miss registers at “directory”

– Shared LLC data arrays double as directory

• Keep valid data or registered core ID

• Stash extension: store map ID at registry

18

registry

• Assume (for now): Private L1, shared L2; single word line

– Data-race freedom at word granularity

• Line-based DeNovo: word coherence, line address/transfer

DeNovo Coherence (2/2)

Invalid Valid

Registered

Read

Write
Write

Read, Write

Read
No transient states

No invalidation traffic

No directory storage overhead

No false sharing (word coherence)

19

Outline

• Motivation

• Background: Scratchpads & Caches

• Stash Overview

• Implementation

• Results

• Conclusion

20

Evaluation

• Simulation Environment

– GEMS + Simics + Princeton Garnet N/W + GPGPU-Sim

– Extend McPAT and GPUWattch for energy evaluations

• Workloads:

– 4 microbenchmarks: implicit, reuse, pollution, on-demand

– Heterogeneous workloads: Rodinia, Parboil, SURF

• 1 CPU Core (15 for microbenchmarks)

• 15 GPU Compute Units (1 for microbenchmarks)

• 32 KB L1 Caches, 16 KB Stash/Scratchpad

21

0%

20%

40%

60%

80%

100%
Sc

r C

Sc
r+

D St Sc
r C

Sc
r+

D St Sc
r C

Sc
r+

D St Sc
r C

Sc
r+

D St Sc
r C

Sc
r+

D St

Evaluation (Microbenchmarks) – Execution Time

22

Implicit
Implicit

Scr = Baseline configuration

C = All requests use cache

Scr+D = All requests use scratchpad w/ DMA

St = Converts scratchpad requests to stash

0%

20%

40%

60%

80%

100%
Sc

r C

Sc
r+

D St Sc
r C

Sc
r+

D St Sc
r C

Sc
r+

D St Sc
r C

Sc
r+

D St Sc
r C

Sc
r+

D St

Evaluation (Microbenchmarks) – Execution Time

23

No explicit loads/stores

Implicit

0%

20%

40%

60%

80%

100%
Sc

r C

Sc
r+

D St Sc
r C

Sc
r+

D St Sc
r C

Sc
r+

D St Sc
r C

Sc
r+

D St Sc
r C

Sc
r+

D St

Evaluation (Microbenchmarks) – Execution Time

24

Implicit

No cache pollution

Pollution

0%

20%

40%

60%

80%

100%
Sc

r C

Sc
r+

D St Sc
r C

Sc
r+

D St Sc
r C

Sc
r+

D St Sc
r C

Sc
r+

D St Sc
r C

Sc
r+

D St

Evaluation (Microbenchmarks) – Execution Time

25

Implicit
Implicit Pollution Reuse On-Demand

Only bring needed data

0%

20%

40%

60%

80%

100%
Sc

r C

Sc
r+

D St Sc
r C

Sc
r+

D St Sc
r C

Sc
r+

D St Sc
r C

Sc
r+

D St Sc
r C

Sc
r+

D St

Evaluation (Microbenchmarks) – Execution Time

26

Implicit
Implicit Pollution Reuse

Data compaction, reuse

On-Demand

0%

20%

40%

60%

80%

100%
Sc

r C

Sc
r+

D St Sc
r C

Sc
r+

D St Sc
r C

Sc
r+

D St Sc
r C

Sc
r+

D St Sc
r C

Sc
r+

D St

Evaluation (Microbenchmarks) – Execution Time

27

Implicit
Implicit Pollution Reuse Average

• Avg: 27% vs. Scratch, 13% vs. Cache, 14% vs. DMA

On-Demand

Evaluation (Microbenchmarks) – Energy

• Avg: 53% vs. Scratch, 36% vs. Cache, 32% vs. DMA

0%

20%

40%

60%

80%

100%

Sc
r C

Sc
r+

D St Sc
r C

Sc
r+

D St Sc
r C

Sc
r+

D St Sc
r C

Sc
r+

D St Sc
r C

Sc
r+

D St

GPU Core+ L1 D$ Scratch/Stash L2 $ N/W

Implicit Pollution Reuse Average

28

On-Demand

0%

20%

40%

60%

80%

100%

Scr C St Scr C St Scr C St Scr C St Scr C St Scr C St Scr C St Scr C St

29

Evaluation (Apps) – Execution Time

BP NW PF SGEMM ST AVERAGE SURF
106

102 103 103

Scr = Reqs use type specified by original app

C = All reqs use cache

St = Converts scratchpad reqs to stash

0%

20%

40%

60%

80%

100%

Scr C St Scr C St Scr C St Scr C St Scr C St Scr C St Scr C St Scr C St

30

Evaluation (Apps) – Execution Time

BP NW PF SGEMM ST AVERAGE SURF LUD

• Avg: 10% vs. Scratch, 12% vs. Cache (max: 22%, 31%)

– Source: implicit data movement

• Comparable to Scratchpad+DMA

121
106

102 103 103

0%

20%

40%

60%

80%

100%

Scr C St Scr C St Scr C St Scr C St Scr C St Scr C St Scr C St Scr C St

GPU Core+ L1 D$ Scratch/Stash L2 $ N/W

• Avg: 16% vs. Scratch, 32% vs. Cache (max: 30%, 51%)

168 120 180 126
108 128

LUD SURF BP NW PF SGEMM ST AVERAGE

Evaluation (Apps) – Energy

31

Conclusion

32

• Make specialized memories globally addressable, coherent

– Efficient address mapping (only for misses)

– Efficient software-driven hardware coherence protocol

• Stash = scratchpad + cache

– Like scratchpads: Directly addressable and compact storage

– Like caches: Globally addressable and globally visible

• Reduced execution time and energy

• Future Work:

– More accelerators & specialized memories; consistency models

