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SoCs Need an Efficient Memory Hierarchy 
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• Energy-efficient memory hierarchy is essential 

– Heterogeneous SoCs use specialized memories 

– E.g., scratchpads, FIFOs, stream buffers, … 

 

 

 

 

 

 

 

Scratchpad 

Directly addressed: no tags/TLB/conflicts  X 

Compact storage: no holes in cache lines  X 

Cache 
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• Energy-efficient memory hierarchy is essential 

– Heterogeneous SoCs use specialized memories 
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Can specialized memories be globally addressable, coherent? 

Can we have our scratchpad and cache it too? 

Scratchpad 

Directly addressed: no tags/TLB/conflicts  X 

Compact storage: no holes in cache lines  X 

Global address space: implicit data movement X  

Coherent: reuse, lazy writebacks X  

Cache 



Can We Have Our Scratchpad and Cache it Too? 

• Make specialized memories globally addressable, coherent 

– Efficient address mapping 

– Efficient coherence protocol 

• Focus: CPU-GPU systems with scratchpads and caches 

– Up to 31% less execution time, 51% less energy 
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Stash 

Scratchpad Cache 

+ Directly addressable 

+ Compact storage 

+ Global address space 

+ Coherent 



Outline 

• Motivation 

• Background: Scratchpads & Caches 

• Stash Overview 

• Implementation 

• Results 

• Conclusion 
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Global Addressability 

• Scratchpads 

– Part of private address space: not globally addressable 

 Explicit movement 

 

 

 

 

 

 

• Cache 

+ Globally addressable: part of global address space 

 Implicit copies, no pollution, support for conditional accesses 

6 

GPU 
 
 
 

Cache 

Interconnection n/w 

Scratchpad 

L2 $ Bank 

CPU 
 
 
 

Cache 

Registers 

L2 $ Bank 

, pollution, poor conditional accs support 



Coherence: Globally Visible Data 

• Scratchpads 

– Part of private address space: not globally visible 

 Eager writebacks and invalidations on synchronization 

 

• Cache 

+ Globally visible: data kept coherent 

 Lazy writebacks as space is needed, reuse data across synch 
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Stash – A Scratchpad, Cache Hybrid 
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Scratchpad 

Directly addressed: no tags/TLB/conflicts  X  

Compact storage: no holes in cache lines  X  

Global address space: implicit data move. X   

Coherent: reuse, lazy writebacks X   

Cache Stash 



Related Work 

• Caches: 

– Changing Data Layout [HPCA ’99, SC ‘11] 

– Elide Tag Accesses [MICRO ’13, ISPLED ‘14] 

• Scratchpads: 

– Bypassing L1 cache [Southern Island ‘09] 

– Virtualizing Private Memories 

• [ISPLED ‘11, ISPLED ‘12, UC-B MS ’09, TACO ‘12] 

– Scratchpads with DMA support [SC ‘11, PACT ‘14] 

 

 

• Compare stash to scratchpads with DMA support 
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Outline 

• Motivation 

• Background: Scratchpads & Caches 

• Stash Overview 

• Implementation 

• Results 

• Conclusion 
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Stash: Directly & Globally Addressable 
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• Like scratchpad: directly addressable (for hits) 

• Like cache: globally addressable (for misses) 

– Implicit loads, no cache pollution 

 
 
 
 
 
 

Accelerator 

Scratchpad 

… … 

500 505 

// A is global mem addr 
// scratch_base == 500 
for (i = 500; i < 600; i++) { 
     reg ri = load[A+i-500]; 
     scratch[i] = ri ; 
} 
reg r = scratch_load[505]; 

// A is global mem addr 
// Compiler info: stash_base[500] -> A (M0) 
// Rk = M0 (index in map) 
 
 
 
reg r = stash_load[505, Rk ]; 

 
 
 
 
 
 

Accelerator 

Stash 

… … 

500 505 

Generate  
load[A+5] 

500A M0 

Map 



Stash: Globally Visible 

• Stash data can be accessed by other units 

• Needs coherence support 

 

 

 

 

 

 

 

• Like cache 

– Keep data around – lazy writebacks 

– Intra- or inter-kernel data reuse on the same core 
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Interconnection n/w 

GPU 
 
 
 

Stash 
 

L2 $ 
Bank 

CPU 
 
 
 

Cache 
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Stash: Compact Storage 

• Caches: cache line granularity storage (“holes”  waste) 

– Do not compact data 

 

 

 

 

 

 

 

• Like scratchpad, stash compacts data 

L2 $  
Bank 

CU 3 

Interconnection n/w 

CU 1 CU 2 

L2 $ 
Bank 
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Outline 

• Motivation 

• Background: Scratchpads & Caches 

• Stash Overview 

• Implementation 

• Results 

• Conclusion 
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Stash Software Interface 

• Software gives a mapping for each stash allocation 

– One map entry (instruction) per stash array per thread block 

– Map 2D non-contiguous global regions to stash 
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Stash Hardware 
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Data Array 
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t 
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… 

Map index  

table 

 
… 
 

Stash-Map 

VA 

PA 

VP-map stash_load[505, Rk]; 

V Stash 
base 

VA 
base 

Field size, 
Object size 

Row size, 
Stride size, 

#strides 

isCoh #Dirty 
Data 

TLB 

RTLB 



Coherence Support for Stash 

• Stash data needs to be kept coherent 

 

• Extend a coherence protocol for three features 

– Track stash data at word granularity 

– Capability to merge partial lines when stash sends data 

– Modify directory to record the modifier and stash-map ID 

 

• We choose to extend the DeNovo protocol 

– Simple, low overhead, hybrid of CPU and GPU protocols 
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DeNovo Coherence (1/2) 

• Read hit – don’t return stale data 

– Before next parallel phase, selectively self-invalidates  

• Needn’t invalidate data it accessed in previous phase 

 

• Read miss – Find one up-to-date copy 

– Before end of phase, write miss registers at “directory”  

– Shared LLC data arrays double as directory 

• Keep valid data or registered core ID 

• Stash extension: store map ID at registry 
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registry 



• Assume (for now): Private L1, shared L2; single word line 

– Data-race freedom at word granularity 

 

 

 

 

 

 

 

 

• Line-based DeNovo: word coherence, line address/transfer 

 

DeNovo Coherence (2/2) 

Invalid Valid 

Registered 

Read 

Write 
Write 

Read, Write 

Read 
No transient states 

 

No invalidation traffic 

 

No directory storage overhead 

 

No false sharing (word coherence) 
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Outline 

• Motivation 

• Background: Scratchpads & Caches 

• Stash Overview 

• Implementation 

• Results 

• Conclusion 
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Evaluation 

• Simulation Environment 

– GEMS + Simics + Princeton Garnet N/W + GPGPU-Sim 

– Extend McPAT and GPUWattch for energy evaluations 

 

• Workloads: 

– 4 microbenchmarks: implicit, reuse, pollution, on-demand 

– Heterogeneous workloads: Rodinia, Parboil, SURF 

 

• 1 CPU Core (15 for microbenchmarks) 

• 15 GPU Compute Units (1 for microbenchmarks) 

• 32 KB L1 Caches, 16 KB Stash/Scratchpad 
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Implicit 
Implicit 

Scr  = Baseline configuration 

C  = All requests use cache 

Scr+D  = All requests use scratchpad w/ DMA 

St  = Converts scratchpad requests to stash 
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No explicit loads/stores 

Implicit 
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Implicit 

No cache pollution 

Pollution 
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Implicit 
Implicit Pollution Reuse On-Demand 

Only bring needed data 
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Implicit 
Implicit Pollution Reuse 

Data compaction, reuse 

On-Demand 
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Implicit 
Implicit Pollution Reuse Average 

• Avg: 27% vs. Scratch, 13% vs. Cache, 14% vs. DMA 

On-Demand 



Evaluation (Microbenchmarks) – Energy 

• Avg: 53% vs. Scratch, 36% vs. Cache, 32% vs. DMA 
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On-Demand 
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Evaluation (Apps) – Execution Time 

BP NW PF SGEMM ST AVERAGE SURF 
106 

102 103 103 

Scr  = Reqs use type specified by original app 

C    = All reqs use cache 

St  = Converts scratchpad reqs to stash 
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Evaluation (Apps) – Execution Time 

BP NW PF SGEMM ST AVERAGE SURF LUD 

• Avg: 10% vs. Scratch, 12% vs. Cache (max: 22%, 31%) 

– Source: implicit data movement 

• Comparable to Scratchpad+DMA 
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Conclusion 
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• Make specialized memories globally addressable, coherent 

– Efficient address mapping (only for misses) 

– Efficient software-driven hardware coherence protocol 

• Stash = scratchpad + cache 

– Like scratchpads: Directly addressable and compact storage 

– Like caches: Globally addressable and globally visible 

• Reduced execution time and energy 

• Future Work: 

– More accelerators & specialized memories; consistency models 

 

 


