
Rethinking Shared-Memory Languages and Hardware

Sarita V. Adve
University of Illinois
sadve@illinois.edu

Acks: M. Hill, K. Gharachorloo, H. Boehm, D. Lea, J. Manson, W. Pugh, H.
Sutter, V. Adve, R. Bocchino, T. Shpeisman, M. Snir, A. Welc, N. Carter, B.

Choi, C. Chou, R. Komuravelli, R. Smolinski, H. Sung, N. Honarmand

Memory Consistency Models

Parallelism for the masses!
Shared-memory most common

Memory model = Legal values for reads

Memory Consistency Models

Parallelism for the masses!
Shared-memory most common

Memory model = Legal values for reads

Memory Consistency Models

Parallelism for the masses!
Shared-memory most common

Memory model = Legal values for reads

Memory Consistency Models

Parallelism for the masses!
Shared-memory most common

Memory model = Legal values for reads

Memory Consistency Models

Parallelism for the masses!
Shared-memory most common

Memory model = Legal values for reads

20 Years of Memory Models … & Beyond

• Memory model is at the heart of concurrency semantics
– 20 year journey from confusion to convergence at last!
– Hard lessons learned
– Implications for future software and hardware

• Current way to specify concurrency semantics is too hard
– Fundamentally broken for software and hardware

• Must rethink parallel languages and hardware
– E.g., Deterministic Parallel Java (DPJ) language, DeNovo architecture

Outline
• Memory Models

– Desirable properties
– State-of-the-art: Data-race-free, Java, C++
– Implications

• Deterministic Parallel Java (DPJ)

• DeNovo

• Conclusions

8

What is a Memory Model?

• Memory model defines what values a read can return

Initially A=B=C=Flag=0
Thread 1 Thread 2
A = 26 while (Flag != 1) {;}
B = 90 r1 = B
… r2 = A
Flag = 1 …

90
26 0

Desirable Properties of a Memory Model
• Memory model is an interface between a program and its transformers

C++ program Compiler

Dynamic
optimizer

Hardware

• Weakest system component exposed to the programmer

• Must satisfy 3 P properties
– Programmability, Performance, Portability

Challenge: hard to satisfy all 3 Ps

Assem
bly

Programmability – SC [Lamport79]

• Programmability: Sequential consistency (SC) most intuitive
– Operations of a single thread in program order
– All operations in a total order or atomic

• But Performance?
– Recent (complex) hardware techniques boost performance with SC
– But compiler transformations still inhibited

• But Portability?
– Almost all hardware, compilers violate SC today

⇒ SC not practical, but…

Next Best Thing – SC Almost Always

• Parallel programming too hard even with SC
– Programmers (want to) write well structured code
– Explicit synchronization, no data races

Thread 1 Thread 2
Lock(L) Lock(L)

Read Data1 Read Data2
Write Data2 Write Data1
… …

Unlock(L) Unlock(L)

– SC for such programs much easier: can reorder data accesses

⇒ Data-race-free model [AdveHill90]
– SC for data-race-free programs
– No guarantees for programs with data races

Definition of a Data Race
• Distinguish between data and non-data (synchronization) accesses
• Only need to define for SC executions ⇒ total order
• Two memory accesses form a race if

– From different threads, to same location, at least one is a write
– Occur one after another

Thread 1 Thread 2
Write, A, 26
Write, B, 90

Read, Flag, 0
Write, Flag, 1

Read, Flag, 1
Read, B, 90
Read, A, 26

• A race with a data access is a data race
• Data-race-free-program = No data race in any SC execution

Data-Race-Free Model
Data-race-free model = SC for data-race-free programs

– Does not preclude races for wait-free constructs, etc.
∗ Requires races be explicitly identified as synchronization
∗ E.g., use volatile variables in Java, atomics in C++

– Dekker’s algorithm
Initially Flag1 = Flag2 = 0

volatile Flag1, Flag2

Thread1 Thread2
Flag1 = 1 Flag2 = 1
if Flag2 == 0 if Flag1 == 0

//critical section //critical section

SC prohibits both loads returning 0

Data-Race-Free Approach

• Programmer’s model: SC for data-race-free programs

• Programmability
– Simplicity of SC, for data-race-free programs

• Performance
– Specifies minimal constraints (for SC-centric view)

• Portability
– Language must provide way to identify races
– Hardware must provide way to preserve ordering on races
– Compiler must translate correctly

1990's in Practice (The Memory Models Mess)

• Hardware
– Implementation/performance-centric view
– Different vendors had different models – most non-SC

∗ Alpha, Sun, x86, Itanium, IBM, AMD, HP, Cray, …
– Various ordering guarantees + fences to impose other orders
– Many ambiguities - due to complexity, by design(?), …

• High-level languages
– Most shared-memory programming with Pthreads, OpenMP

∗ Incomplete, ambiguous model specs
∗ Memory model property of language, not library [Boehm05]

– Java – commercially successful language with threads
∗ Chapter 17 of Java language spec on memory model
∗ But hard to interpret, badly broken [Schuster et al., Pugh et al.]

LD

LD

LD

ST

ST

ST

ST

LD

Fence

2000 – 2004: Java Memory Model

• ~ 2000: Bill Pugh publicized fatal flaws in Java model

• Lobbied Sun to form expert group to revise Java model

• Open process via mailing list
– Diverse participants
– Took 5 years of intense, spirited debates
– Many competing models
– Final consensus model approved in 2005 for Java 5.0

[MansonPughAdve POPL 2005]

Java Memory Model Highlights

• Quick agreement that SC for data-race-free was required

• Missing piece: Semantics for programs with data races
– Java cannot have undefined semantics for ANY program
– Must ensure safety/security guarantees

∗ Limit damage from data races in untrusted code

• Goal: Satisfy security/safety, w/ maximum system flexibility
– Problem: “safety/security, limited damage” w/ threads very vague

…. and hard!

Java Memory Model Highlights

Initially X=Y=0

Thread 1 Thread 2

r1 = X r2 = Y

Y = r1 X = r2

Is r1=r2=42 allowed?

42?

42

42

42

Java Memory Model Highlights

Initially X=Y=0

Thread 1 Thread 2

r1 = X r2 = Y

Y = r1 X = r2

Is r1=r2=42 allowed? YES!

42

42

42

42

Data races produce causality loop!

• Definition of a causality loop was surprisingly hard
• Common compiler optimizations seem to violate“causality”

Java Memory Model Highlights

• Final model based on consensus, but complex
– Programmers can (must) use “SC for data-race-free”
– But system designers must deal with complexity
– Correctness tools, racy programs, debuggers, …??
– Bugs discovered [SevcikAspinall08] …. remain unresolved

2005 - :C++, Microsoft Prism, Multicore

• ~ 2005: Hans Boehm initiated C++ concurrency model
– Prior status: no threads in C++, most concurrency w/ Pthreads

• Microsoft concurrently started its own internal effort

• C++ easier than Java because it is unsafe
– Data-race-free is plausible model

• BUT multicore ⇒ New h/w optimizations, more scrutiny
– Mismatched h/w, programming views became painfully obvious

∗ Fences define per-thread order, synch orders multiple threads

– Debate that SC for data-race-free inefficient w/ hardware models

Hardware Implications of Data-Race-Free
• Synchronization (volatiles/atomics) must appear SC

– Each thread’s synch must appear in program order
synch Flag1, Flag2

Thread 1 Thread 2

Flag1 = 1 Flag2 = 1

Fence Fence

if Flag2 == 0 if Flag1 == 0

critical section critical section

SC ⇒ both reads cannot return 0

– Requires efficient fences between synch stores/loads
– All synchs must appear in a total order (atomic)

Independent reads, independent writes (IRIW):
Initially X=Y=0

T1 T2 T3 T4
X = 1 Y = 1 … = Y … = X

fence fence
… = X … = Y

SC ⇒ no thread sees new value until old copies invalidated
– Shared caches w/ hyperthreading/multicore make this harder
– Programmers don’t usually use IRIW
– Why pay cost for SC in h/w if not useful to s/w?

0

Implications of Atomic Synch Writes

1 1

0

C++ Challenges

• 2006: Pressure from hardware vendors to remove SC baseline

• But what is alternative?
– Must allow some hardware optimizations
– But must be teachable to undergrads

• Showed such an alternative (probably) does not exist

C++ Compromise
• Default C++ model is data-race-free [BoehmAdve PLDI 2008]

• But
– Some systems need expensive fence for SC
– Some programmers really want more flexibility

∗ C++ specifies low-level (complex) model only for experts
∗ Not advertising this

Lessons Learned
• SC for data-race-free minimal baseline

• Specifying semantics for programs with data races is HARD
– But “no semantics for data races” also has problems

∗ Not an option for safe languages; debugging; correctness checking tools

• Hardware-software mismatch for some code
– “Simple” optimizations have unintended consequences

⇒State-of-the-art is fundamentally broken

Lessons Learned
• SC for data-race-free minimal baseline

• Specifying semantics for programs with data races is HARD
– But “no semantics for data races” also has problems

∗ Not an option for safe languages; ebugging; correctness checking tools

• Hardware-software mismatch for some code
– “Simple” optimizations have unintended consequences

⇒State-of-the-art is fundamentally broken

Banish shared-memory?

Lessons Learned
• SC for data-race-free minimal baseline

• Specifying semantics for programs with data races is HARD
– But “no semantics for data races” also has problems

∗ Not an option for safe languages; debugging; correctness checking tools

• Hardware-software mismatch for some code
– “Simple” optimizations have unintended consequences

⇒State-of-the-art is fundamentally broken

• We need
– Higher-level disciplined programming models that enforce discipline
– Hardware co-designed with high-level models

Banish wild shared-memory!

Need disciplined shared memory!

What is Shared-Memory?

Shared-Memory =

Global address space

+

Implicit, anywhere communication, synchronization

What is Shared-Memory?

Shared-Memory =

Global address space

+

Implicit, anywhere communication, synchronization

What is Shared-Memory?

Wild Shared-Memory =

Global address space

+

Implicit, anywhere communication, synchronization

What is Shared-Memory?

Wild Shared-Memory =

Global address space

+

Implicit, anywhere communication, synchronization

What is Shared-Memory?

Disciplined Shared-Memory =

Global address space

+

Implicit, anywhere communication, synchronization

Explicit, structured side-effects

Benefits of Explicit Effects
• Strong safety properties

– Determinism-by-default
∗ Sequential reasoning, parallel performance model

– Safe non-determinism only when explicitly requested
∗ Data-race-freedom, strong isolation, serializability, composition

– Simplifies test/debug, composability, maintainability, …

• Efficiency: power, complexity, performance
– Simplify coherence and consistency
– Optimize communication and storage layout

∗ Memory hierarchy driven by explicit effects vs. cache lines

⇒ Simple programming model AND
Power-, complexity-, performance-scalable hardware

Our Approach

Disciplined Shared Memory

Deterministic Parallel Java (DPJ) [Vikram Adve et al.]
• No data races, determinism-by-default, safe non-determinism
• Simple semantics, safety, and composability

DeNovo [Sarita Adve et al.]
• Simple coherence and consistency
• Software-driven coherence, communication, data layout
• Power-, complexity-, performance-scalable hardware

explicit effects +
structured

parallel control

explicit effects +
structured

parallel control

Outline
• Memory Models

– Desirable properties
– State-of-the-art: Data-race-free, Java, C++
– Implications

• Deterministic Parallel Java (DPJ)

• DeNovo

• Conclusions

37

DPJ Project Overview
• Deterministic-by-default parallel language [OOPSLA09]

– Extension of sequential Java; fully Java-compatible
– Structured parallel control: nested fork-join
– Novel region-based type and effect system
– Speedups close to hand-written Java programs
– Expressive enough for irregular, dynamic parallelism

• Disciplined support for non-deterministic code [POPL11]
– Non-deterministic, deterministic code can co-exist safely
– Explicit, data race-free, isolated

• Semi-automatic tool for effect annotations [ASE09]
• Encapsulating frameworks, unchecked code [ECOOP11]

• Software: http://dpj.cs.illinois.edu/

Regions and Effects
• Region: a name for a set of memory locations

– Programmer assigns a region to each field and array cell
– Regions partition the heap

• Effect: a read or write on a region
– Programmer summarizes effects of method bodies

• Compiler checks that
– Region types are consistent, effect summaries are correct
– Parallel tasks are non-interfering (no conflicts)
– Simple, modular type checking (no inter-procedural ….)

• Programs that type-check are guaranteed determinism

• Side benefit: regions, effects are valuable documentation

Example: A Pair Class

class Pair {
region One, Two;
int one in One;
int two in Two;
void setOne(int one) writes One {

this.one = one;
}
void setTwo(int two) writes Two {

this.two = two;
}
void setOneTwo(int one, int two) writes
One; writes Two {

cobegin {
setOne(one); // writes One
setTwo(two); // writes Two

}
}
}

Pair

Pair.One one 3

Pair.Two two 42

Declaring and using region names

Region names have static
scope (one per class)

41

Example: A Pair Class

Writing method effect summaries

class Pair {
region One, Two;
int one in One;
int two in Two;
void setOne(int one) writes One {

this.one = one;
}
void setTwo(int two) writes Two {

this.two = two;
}
void setOneTwo(int one, int two) writes
One; writes Two {

cobegin {
setOne(one); // writes One
setTwo(two); // writes Two

}
}
}

Pair

Pair.One one 3

Pair.Two two 42

42

Example: A Pair Class

Expressing parallelism

class Pair {
region One, Two;
int one in One;
int two in Two;
void setOne(int one) writes One {

this.one = one;
}
void setTwo(int two) writes Two {

this.two = two;
}
void setOneTwo(int one, int two) writes
One; writes Two {

cobegin {
setOne(one); // writes One
setTwo(two); // writes Two

}
}
}

Pair

Pair.One one 3

Pair.Two two 42

Inferred effects

Example: Trees
class Tree<region P> {

region L, R;
int data in P
Tree<P:L> left;
Tree<P:R> right;
int increment() writes P:* {

++data; // infer: writes P
cobegin {

left.increment(); // infer: writes P:L:*
right.increment(); // infer: writes P:R:*

}
}

}

X

X:L X:R

Tree<X> root

Safe Non-Determinism
• Intentional non-determinism is sometimes desirable

– Branch-and-bound; graph algorithms; clustering
– Will often be combined with deterministic algorithms

• DPJ mechanisms
– foreach_nd, cobegin_nd
– Atomic sections and atomic effects
– Only atomic effects within non-deterministic tasks can interfere

• Guarantees
– Explicit: Non-determinism cannot happen by accident
– Data race-free: Guaranteed for all legal programs
– Isolated: Deterministic, non-det parts isolated, composable

Outline
• Memory Models

– Desirable properties
– State-of-the-art: Data-race-free, Java, C++
– Implications

• Deterministic Parallel Java (DPJ)

• DeNovo

• Conclusions

45

DeNovo Goals
• If software is disciplined, how to build hardware?

– Goal: power-, complexity-, performance-scalability

• Strategy:
– Many emerging software systems with disciplined shared-memory

∗ DeNovo uses DPJ as driver
∗ End-goal: language-oblivious interface

– Focus so far on deterministic codes
∗ Common and best case
∗ Extending to safe non-determinism, legacy codes

– Hardware scope: full memory hierarchy
∗ Coherence, consistency, communication, data layout, off-chip memory

46

DeNovo: Today’s Focus

• Coherence, consistency, communication
– Complexity

∗ Subtle races and numerous transient sates in the protocol
∗ Hard to extend for optimizations

– Storage overhead
∗ Directory overhead for sharer lists

– Performance and power inefficiencies
∗ Invalidation and ack messages
∗ False sharing
∗ Indirection through the directory
∗ Suboptimal communication granularity of cache line …

Results So Far

• Simplicity
– Compared DeNovo protocol complexity with MESI
– 15X fewer reachable states, 20X faster with model checking

• Extensibility
– Direct cache-to-cache transfer
– Flexible communication granularity

• Storage overhead
– No storage overhead for directory information
– Storage overheads beat MESI after tens of cores and scale beyond

• Performance/Power
– Up to 75% reduction in memory stall time
– Up to 72% reduction in network traffic

Memory Consistency Model

• Guaranteed determinism
⇒ Read returns value of last write in sequential order
1. Same task in this parallel phase
2. Or before this parallel phase

LD 0xa

ST 0xa
Parallel
Phase

ST 0xaCoherence
Mechanism

Cache Coherence

• Coherence Enforcement
1. Invalidate stale copies in caches
2. Track up-to-date copy

• Explicit effects
– Compiler knows all regions written in this parallel phase
– Cache can self-invalidate before next parallel phase

∗ Invalidates data in writeable regions not accessed by itself

• Registration
– Directory keeps track of one up-to-date copy
– Writer updates before next parallel phase

Basic DeNovo Coherence

• Assume (for now): Private L1, shared L2; single word line
– Data-race freedom at word granularity

• L2 data arrays double as directory
– Keep valid data or registered core id, no space overhead

• L1/L2 states

• Touched bit set only if read in the phase

registry

Invalid Valid

Registered

Read

Write Write

Example Run

R X0 V Y0

R X1 V Y1

R X2 V Y2

V X3 V Y3

V X4 V Y4

V X5 V Y5

class S_type {
X in DeNovo-region ;
Y in DeNovo-region ;

}
S _type S[size];
...
Phase1 writes { // DeNovo effect

foreach i in 0, size {
S[i].X = …;

}
self_invalidate();

}

L1 of Core 1
R X0 V Y0

R X1 V Y1

R X2 V Y2

I X3 V Y3

I X4 V Y4

I X5 V Y5

L1 of Core 2
I X0 V Y0

I X1 V Y1

I X2 V Y2

R X3 V Y3

R X4 V Y4

R X5 V Y5

Shared L2

R C1 V Y0

R C1 V Y1

R C1 V Y2

R C2 V Y3

R C2 V Y4

R C2 V Y5

Registered
Valid
Invalid

V X0 V Y0

V X1 V Y1

V X2 V Y2

V X3 V Y3

V X4 V Y4

V X5 V Y5

V X0 V Y0

V X1 V Y1

V X2 V Y2

V X3 V Y3

V X4 V Y4

V X5 V Y5

V X0 V Y0

V X1 V Y1

V X2 V Y2

V X3 V Y3

V X4 V Y4

V X5 V Y5

V X0 V Y0

V X1 V Y1

V X2 V Y2

R X3 V Y3

R X4 V Y4

R X5 V Y5

Registration Registration

Ack Ack

Addressing Limitations

• Addressing current limitations
– Complexity

∗ Subtle races and numerous transient sates in the protocol
∗ Hard to extend for optimizations

– Storage overhead
∗ Directory overhead for sharer lists

– Performance and power overhead
∗ Invalidation and ack messages
∗ False-sharing
∗ Indirection through the directory
∗ Suboptimal communication granularity of cache line …

✔

✔

✔

Practical DeNovo Coherence

• Basic protocol impractical
– High tag storage overhead (a tag per word)

• Address/Transfer granularity > Coherence granularity

• DeNovo Line-based protocol
– Traditional software-oblivious spatial locality
– Coherence granularity still at word

∗ no word-level false-sharing
Line Merging Cache

V V RTag

Storage Overhead

29 Cores

DeNovo overhead is scalable and beats MESI after 29 cores

Addressing Limitations

• Addressing current limitations
– Complexity

∗ Subtle races and numerous transient sates in the protocol
∗ Hard to extend for optimizations

– Storage overhead
∗ Directory overhead for sharer lists

– Performance and power overhead
∗ Invalidation and ack messages
∗ False-sharing
∗ Indirection through the directory
∗ Suboptimal communication granularity of cache line …

✔

✔

✔
✔

Extensions

• Traditional directory-based protocols
⇒ Sharer-lists always contain all the true sharers

• DeNovo protocol
⇒ Registry points to latest copy at end of phase

⇒ Valid data can be copied around freely

Extensions (1 of 2)
• Basic with Direct cache-to-cache transfer

– Get data directly from producer
– Through prediction and/or software-assistance
– Convert 3-hop misses to 2-hop misses

L1 of Core 1
…

…

R X0 V Y0 V Z0

R X1 V Y1 V Z1

R X2 V Y2 V Z2

I X3 V Y3 V Z3

I X4 V Y4 V Z4

I X5 V Y5 V Z5

X3

L1 of Core 2
…

…

I X0 V Y0 V Z0

I X1 V Y1 V Z1

I X2 V Y2 V Z2

R X3 V Y3 V Z3

R X4 V Y4 V Z4

R X5 V Y5 V Z5

Shared L2
…

…

R C1 V Y0 V Z0

R C1 V Y1 V Z1

R C1 V Y2 V Z2

R C2 V Y3 V Z3

R C2 V Y4 V Z4

R C2 V Y5 V Z5

Registered
Valid
Invalid

LD X3

LD X3

Extensions (2 of 2)

• Basic with Flexible communication
– Software-directed data transfer
– Transfer “relevant” data together
– Effect of AoS-to-SoA transformation w/o programmer/compiler

L1 of Core 1
…

…

R X0 V Y0 V Z0

R X1 V Y1 V Z1

R X2 V Y2 V Z2

I X3 V Y3 V Z3

I X4 V Y4 V Z4

I X5 V Y5 V Z5

L1 of Core 2
…

…

I X0 V Y0 V Z0

I X1 V Y1 V Z1

I X2 V Y2 V Z2

R X3 V Y3 V Z3

R X4 V Y4 V Z4

R X5 V Y5 V Z5

Shared L2
…

…

R C1 V Y0 V Z0

R C1 V Y1 V Z1

R C1 V Y2 V Z2

R C2 V Y3 V Z3

R C2 V Y4 V Z4

R C2 V Y5 V Z5

Registered
Valid
Invalid

X3

LD X3

Y3 Z3

Extensions (2 of 2)

• Basic with Flexible communication
– Software-directed data transfer
– Transfer “relevant” data together
– Effect of AoS-to-SoA transformation w/o programmer/compiler

L1 of Core 1
…

…

R X0 V Y0 V Z0

R X1 V Y1 V Z1

R X2 V Y2 V Z2

I X3 V Y3 V Z3

I X4 V Y4 V Z4

I X5 V Y5 V Z5

L1 of Core 2
…

…

I X0 V Y0 V Z0

I X1 V Y1 V Z1

I X2 V Y2 V Z2

R X3 V Y3 V Z3

R X4 V Y4 V Z4

R X5 V Y5 V Z5

Shared L2
…

…

R C1 V Y0 V Z0

R C1 V Y1 V Z1

R C1 V Y2 V Z2

R C2 V Y3 V Z3

R C2 V Y4 V Z4

R C2 V Y5 V Z5

Registered
Valid
Invalid

X3

X4

X5

R X0 V Y0 V Z0

R X1 V Y1 V Z1

R X2 V Y2 V Z2

V X3 V Y3 V Z3

V X4 V Y4 V Z4

V X5 V Y5 V Z5

Evaluation
• Simplicity

– Formal verification of coherence protocol
– Comparing reachable states

• Performance/Power
– Simulation experiments

• Extensibility
– DeNovo extensions

Protocol Verification

• DeNovo vs. MESI word with Murphi model checking

• Correctness
– Three bugs in DeNovo protocol

∗ Mistakes in translation from high level spec
∗ Simple to fix

– Six bugs in MESI protocol
∗ Two deadlock scenarios
∗ Unhandled races due to L1 writebacks
∗ Several days to fix

• Complexity
– 15x fewer reachable states for DeNovo
– 20x difference in the runtime

0%

50%

100%

150%

200%

250%
M

w
or

d
D

w
or

d
M

lin
e

D
lin

e
D

fle
xW

D
fle

xL

M
w

or
d

D
w

or
d

M
lin

e
D

lin
e

D
fle

xW
D

fle
xL

M
w

or
d

D
w

or
d

M
lin

e
D

lin
e

D
fle

xW
D

fle
xL

M
w

or
d

D
w

or
d

M
lin

e
D

lin
e

D
fle

xW
D

fle
xL

M
w

or
d

D
w

or
d

M
lin

e
D

lin
e

D
fle

xW
D

fle
xL

M
w

or
d

D
w

or
d

M
lin

e
D

lin
e

D
fle

xW
D

fle
xL

M
em

or
y

St
al

l T
im

e Mem Hit
Remote L1 Hit
L2 Hit

Memory Stall Time

FFT LU kdFalse kdPadBarnes Bodytrack

0%

50%

100%

150%

200%

250%
M

w
or

d
D

w
or

d
M

lin
e

D
lin

e
D

fle
xW

D
fle

xL

M
w

or
d

D
w

or
d

M
lin

e
D

lin
e

D
fle

xW
D

fle
xL

M
w

or
d

D
w

or
d

M
lin

e
D

lin
e

D
fle

xW
D

fle
xL

M
w

or
d

D
w

or
d

M
lin

e
D

lin
e

D
fle

xW
D

fle
xL

M
w

or
d

D
w

or
d

M
lin

e
D

lin
e

D
fle

xW
D

fle
xL

M
w

or
d

D
w

or
d

M
lin

e
D

lin
e

D
fle

xW
D

fle
xL

M
em

or
y

St
al

l T
im

e Mem Hit
Remote L1 Hit
L2 Hit

Memory Stall Time

FFT LU kdFalse kdPadBarnes Bodytrack

• DeNovo vs. MESI word: simplicity doesn’t reduce performance

0%

50%

100%

150%

200%

250%
M

w
or

d
D

w
or

d
M

lin
e

D
lin

e
D

fle
xW

D
fle

xL

M
w

or
d

D
w

or
d

M
lin

e
D

lin
e

D
fle

xW
D

fle
xL

M
w

or
d

D
w

or
d

M
lin

e
D

lin
e

D
fle

xW
D

fle
xL

M
w

or
d

D
w

or
d

M
lin

e
D

lin
e

D
fle

xW
D

fle
xL

M
w

or
d

D
w

or
d

M
lin

e
D

lin
e

D
fle

xW
D

fle
xL

M
w

or
d

D
w

or
d

M
lin

e
D

lin
e

D
fle

xW
D

fle
xL

M
em

or
y

St
al

l T
im

e Mem Hit
Remote L1 Hit
L2 Hit

Memory Stall Time

FFT LU kdFalse kdPadBarnes Bodytrack

• DeNovo vs. MESI word: simplicity doesn’t reduce performance
• DeNovo line much better than MESI line with false sharing

0%

50%

100%

150%

200%

250%
M

w
or

d
D

w
or

d
M

lin
e

D
lin

e
D

fle
xW

D
fle

xL

M
w

or
d

D
w

or
d

M
lin

e
D

lin
e

D
fle

xW
D

fle
xL

M
w

or
d

D
w

or
d

M
lin

e
D

lin
e

D
fle

xW
D

fle
xL

M
w

or
d

D
w

or
d

M
lin

e
D

lin
e

D
fle

xW
D

fle
xL

M
w

or
d

D
w

or
d

M
lin

e
D

lin
e

D
fle

xW
D

fle
xL

M
w

or
d

D
w

or
d

M
lin

e
D

lin
e

D
fle

xW
D

fle
xL

M
em

or
y

St
al

l T
im

e Mem Hit
Remote L1 Hit
L2 Hit

Memory Stall Time

FFT LU kdFalse kdPadBarnes Bodytrack

• DeNovo vs. MESI word: simplicity doesn’t reduce performance
• DeNovo line much better than MESI line with false sharing
• Benefit of lines is app-dependent

0%

50%

100%

150%

200%

250%
M

w
or

d
D

w
or

d
M

lin
e

D
lin

e
D

fle
xW

D
fle

xL

M
w

or
d

D
w

or
d

M
lin

e
D

lin
e

D
fle

xW
D

fle
xL

M
w

or
d

D
w

or
d

M
lin

e
D

lin
e

D
fle

xW
D

fle
xL

M
w

or
d

D
w

or
d

M
lin

e
D

lin
e

D
fle

xW
D

fle
xL

M
w

or
d

D
w

or
d

M
lin

e
D

lin
e

D
fle

xW
D

fle
xL

M
w

or
d

D
w

or
d

M
lin

e
D

lin
e

D
fle

xW
D

fle
xL

M
em

or
y

St
al

l T
im

e Mem Hit
Remote L1 Hit
L2 Hit

Memory Stall Time

FFT LU kdFalse kdPadBarnes Bodytrack

• DeNovo vs. MESI word: simplicity doesn’t reduce performance
• DeNovo line much better than MESI line with false sharing
• Benefit of lines is app-dependent
• DeNovo with flexible transfer is best: up to 75% reduction vs. MESI line

Network traffic

0%

50%

100%

150%

200%

250%
M

w
or

d
D

w
or

d
M

lin
e

D
lin

e
D

fle
xW

D
fle

xL

M
w

or
d

D
w

or
d

M
lin

e
D

lin
e

D
fle

xW
D

fle
xL

M
w

or
d

D
w

or
d

M
lin

e
D

lin
e

D
fle

xW
D

fle
xL

M
w

or
d

D
w

or
d

M
lin

e
D

lin
e

D
fle

xW
D

fle
xL

M
w

or
d

D
w

or
d

M
lin

e
D

lin
e

D
fle

xW
D

fle
xL

M
w

or
d

D
w

or
d

M
lin

e
D

lin
e

D
fle

xW
D

fle
xL

N
et

w
or

k
fli

ts

DeNovo has less network traffic than MESI
Up to 72% reduction

FFT LU kdFalse kdPadBarnes Bodytrack

DeNovo Summary
• Simplicity

– Compared DeNovo protocol complexity with MESI
– 15X fewer reachable states, 20X faster with model checking

• Extensibility
– Direct cache-to-cache transfer
– Flexible communication granularity

• Storage overhead
– No storage overhead for directory information
– Storage overheads beat MESI after tens of cores and scale beyond

• Performance/Power
– Up to 75% reduction in memory stall time
– Up to 72% reduction in network traffic

• Future work: Data layout, off-chip mem, non-det/legacy codes, …

Conclusions (1 of 2)

• Current way to specify shared-memory semantics fundamentally broken
– Best we can do is SC for data-race-free programs
– But not good enough

∗ Cannot hide from programs with data races
∗ Mismatched h/w-s/w: simple optimizations give unintended consequences

• Need
– High-level disciplined models that enforce discipline
– Hardware co-designed with high-level model

• Previous memory models convergence from similar process
– But this time, let’s co-design software and hardware

Conclusions (2 of 2)

Disciplined Shared Memory

Deterministic Parallel Java (DPJ) [Vikram Adve et al.]
• No data races, determinism-by-default, safe non-determinism
• Simple semantics, safety, and composability

DeNovo [Sarita Adve et al.]
• Simple coherence and consistency
• Software-driven coherence, communication, data layout
• Power-, complexity-, performance-scalable hardware

explicit effects +
structured

parallel control

explicit effects +
structured

parallel control

Future work: LOTS!

