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Shared-memory most common

Memory model = Legal values for reads

S5
Q




Memory Consistency Models

Parallelism for the masses!
Shared-memory most common

Memory model = Legal values for reads

v




Memory Consistency Models

Parallelism for the masses!
Shared-memory most common

Memory model = Legal values for reads

%




Memory Consistency Models

Parallelism for the masses!
Shared-memory most common

Memory model = Legal values for reads
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Parallelism for the masses!
Shared-memory most common

Memory model = Legal values for reads



20 Years of Memory Models ... & Beyond

« Memory model is at the heart of concurrency semantics
— 20 year journey from confusion to convergence at last! s

. J

— Hard lessons learned

— Implications for future software and hardware

« Current way to specify concurrency semantics is too hard R

— Fundamentally broken for software and hardware P‘ <

« Must rethink parallel languages and hardware

- E.g., Deterministic Parallel Java (DPJ) language, DeNovo architecture



* Memory Models
— Desirable properties
— State-of-the-art: Data-race-free, Java, C++

— Implications
« Deterministic Parallel Java (DPJ)
* DeNovo

* Conclusions



What is a Memory Model?

« Memory model defines what values a read can return

Initially A=B=C=Flag=0
Thread 1 Thread 2

A =26 while (Flag = 1) {;}
B =90 =B <+—
2=A <« 0

Flag=1



Desirable Properties of a Memory Model

« Memory model is an interface between a program and its transformers

« Weakest system component exposed to the programmer

« Must satisfy 3 P properties

— Programmability, Performance, Portability

Challenge: hard to satisfy all 3 Ps



Programmability — SC [Lamport79]

« Programmability: Sequential consistency (SC) most intuitive
— Operations of a single thread in program order

— All operations in a total order or atomic

o ButPerformance?

— Recent (complex) hardware techniques boost performance with SC

— But compiler transformations still inhibited

« But Portability?

— Almost all hardware, compilers violate SC today

—> SC not practical, but...



Next Best Thing — SC Almost Always

 Parallel programming too hard even with SC
— Programmers (want to) write well structured code
— Explicit synchronization, no data races

Thread 1 Thread 2
Lock(L) Lock(L)
Read Datal Read Data2
Write Data2 Write Datal
Unlock(L) Unlock(L)

— SC for such programs much easier: can reorder data accesses

— Data-race-free model [AdveHill90]
— SC for data-race-free programs
— No guarantees for programs with data races



Definition of a Data Race

 Distinguish between data and non-data (synchronization) accesses
* Only need to define for SC executions = total order

« Two memory accesses form a race If

— From different threads, to same location, at least one Is a write
— QOccur one after another

Thread 1 Thread 2
Write, A, 26
Write, B, 90
Read, Flag, 0
Write, Flag, 1
Read, Flag, 1
Read, B, 90
Read, A, 26

o A race with a data access IS a data race

« Data-race-free-program = No data race in any SC execution



Data-Race-Free Model

Data-race-free model = SC for data-race-free programs

— Does not preclude races for wait-free constructs, etc.
* Requires races be explicitly identified as synchronization
* E.Q., use volatile variables in Java, atomics in C++
— Dekker’s algorithm
Initially Flagl = Flag2 =0

volatile Flagl, Flag2

Threadl Thread?
Flagl=1 Flag2=1
if Flag2 == if Flagl ==

/lcritical section /lcritical section

SC pronhibits both loads returning 0



Data-Race-Free Approach

« Programmer’s model: SC for data-race-free programs

* Programmability

— Simplicity of SC, for data-race-free programs

o Performance

— Specifies minimal constraints (for SC-centric view)

 Portability
— Language must provide way to identify races
— Hardware must provide way to preserve ordering on races

— Compiler must translate correctly



1990's in Practice (The Memory Models Mess)

e Hardware
— Implementation/performance-centric view LD LD ST ST
— Different vendors had different models — most non-SC 1 1 Fgffe 1
* Alpha, Sun, x86, Itanium, IBM, AMD, HP, Cray, ...
| _ _ LD ST LD ST
— Various ordering guarantees + fences to impose other orders
— Many ambiguities - due to complexity, by design(?), ...

« High-level languages
— Most shared-memory programming with Pthreads, OpenMP
* Incomplete, ambiguous model specs
* Memory model property of language, not library [BoehmO05]
— Java - commercially successful language with threads

* Chapter 17 of Java language spec on memory model
* But hard to interpret, badly broken [Schuster et al., Pugh et al ]



2000 — 2004: Java Memory Model

« ~2000: Bill Pugh publicized fatal flaws in Java model
« Lobbied Sun to form expert group to revise Java model

« QOpen process via mailing list
— Diverse participants
— Took 5 years of intense, spirited debates
— Many competing models

— Final consensus model approved in 2005 for Java 5.0
[MansonPughAdve POPL 2005]



Java Memory Model Highlights

« Quick agreement that SC for data-race-free was required

« Missing piece: Semantics for programs with data races

— Java cannot have undefined semantics for ANY program

— Must ensure safety/security guarantees
* Limit damage from data races in untrusted code

« Goal: Satisfy security/safety, w/ maximum system flexibility

— Problem: “safety/security, limited damage” w/ threads very vague
....and hard!



Java Memory Model Highlights

Initially X=Y=0
Thread 1 Thread 2

42? i1=X 2=Y 4

42 Y=1r1 >< X=r2 42

IS r1=r2=42 allowed?



Java Memory Model Highlights

Initially X=Y=0
Thread 1 Thread 2

42 r1=X 2=Y 4

42 Y=r1 >< X=r2 42

Is r1=r2=42 allowed?  YES!

Data races produce causality loop!

 Definition of a causality loop was surprisingly hard

« Common compiler optimizations seem to violate“causality”



Java Memory Model Highlights

« Final model based on consensus, but complex
— Programmers can (must) use “SC for data-race-free”
— But system designers must deal with complexity
— Correctness tools, racy programs, debuggers, ...??
— Bugs discovered [SevcikAspinall08] .... remain unresolved



2005 - :C++, Microsoft Prism, Multicore

« ~2005: Hans Boehm initiated C++ concurrency model

— Prior status: no threads in C++, most concurrency w/ Pthreads
« Microsoft concurrently started its own internal effort

o C++ easier than Java because it is unsafe

— Data-race-free Is plausible model

« BUT multicore = New h/w optimizations, more scrutiny

— Mismatched h/w, programming views became painfully obvious

* Fences define per-thread order, synch orders multiple threads

— Debate that SC for data-race-free inefficient w/ hardware models



Hardware Implications of Data-Race-Free

« Synchronization (volatiles/atomics) must appear SC
— Each thread’s synch must appear in program order
synch Flagl, Flag2

Thread 1 Thread 2
Flagl=1 Flag2 =1
——— Fence Fence
if Flag2 ==0 if Flagl == 0
critical section critical section

SC = both reads cannot return 0

— Requires efficient fences between synch stores/loads

— All synchs must appear in a total order (atomic)



Implications of Atomic Synch Writes

Independent reads, independent writes (IRIW):
Initially X=Y=0
T1 T2 T3 T4
X=1 y=1 =Y —1 =X «—1

fence fence
LEX—=0 L=y <—>$(

SC = no thread sees new value until old copies invalidated
— Shared caches w/ hyperthreading/multicore make this harder
— Programmers don’t usually use IRIW
— Why pay cost for SC in h/w if not useful to s/w?



C++ Challenges

o 20006: Pressure from hardware vendors to remove SC baseline

« Butwhat is alternative?
— Must allow some hardware optimizations

— But must be teachable to undergrads

« Showed such an alternative (probably) does not exist



C++ Compromise

« Default C++ model is data-race-free [BoehmAdve PLDI 2008]
« But

— Some systems need expensive fence for SC

— Some programmers really want more flexibility
* C++ specifies low-level (complex) model only for experts

* Not advertising this



| essons Learned

o SC for data-race-free minimal baseline

« Specifying semantics for programs with data races is HARD

— But “no semantics for data races” also has problems

* Not an option for safe languages; debugging; correctness checking tools

o Hardware-software mismatch for some code

- “Simple” optimizations have unintended consequences

—> State-of-the-art is fundamentally broken



| essons Learned

Banish shared-memory?



| essons Learned

Banish-wild shared-memory!

Need disciplined shared memory!

« We need
— Higher-level disciplined programming models that enforce discipline

— Hardware co-designed with high-level models



What is Shared-Memory?

Shared-Memory =

Global address space

+

Implicit, anywhere communication, synchronization
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What is Shared-Memory?

Wild Shared-Memory =

Global address space
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What is Shared-Memory?

Disciplined Shared-Memory =

Global address space

;
icit_anvw cation_synchronizat

Explicit, structured side-effects



Benefits of Explicit Effects

« Strong safety properties

— Determinism-by-default
* Sequential reasoning, parallel performance model

— Safe non-determinism only when explicitly requested
* Data-race-freedom, strong isolation, serializability, composition

— Simplifies test/debug, composability, maintainability, ...

 Efficiency: power, complexity, performance

— Simplify coherence and consistency

— Optimize communication and storage layout
% Memory hierarchy driven by explicit effects vs. cache lines

= Simple programming model AND
Power-, complexity-, performance-scalable hardware



Our Approach

-
Deterministic Parallel Java (DPJ) [Vikram Adve et al ]

» No data races, determinism-by-default, safe non-determinism
(Simple semantics, safety, and composability

J

explicit effects +

structured Disciplined Shared Memory
parallel control

(DeNovo [Sarita Adve et al ] A
e Simple coherence and consistency

o Software-driven coherence, communication, data layout

\.» Power-, complexity-, performance-scalable hardware y
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DPJ Project Overview

« Deterministic-by-default parallel language [OOPSLA09]

Extension of sequential Java; fully Java-compatible
Structured parallel control: nested fork-join

Novel region-based type and effect system
Speedups close to hand-written Java programs
Expressive enough for irregular, dynamic parallelism

 Disciplined support for non-deterministic code [POPL11]

Non-deterministic, deterministic code can co-exist safely
Explicit, data race-free, isolated

« Semi-automatic tool for effect annotations [ASEQ9]

* Encapsulating frameworks, unchecked code [ECOOP11]

« Software: http://dpj.-.cs.i1llinois.edu/



Regions and Effects

« Region: a name for a set of memory locations
— Programmer assigns a region to each field and array cell
— Regions partition the heap

« Effect: aread or write on a region
— Programmer summarizes effects of method bodies

« Compiler checks that
— Region types are consistent, effect summaries are correct
— Parallel tasks are non-interfering (no conflicts)
— Simple, modular type checking (no inter-procedural ....)

« Programs that type-check are guaranteed determinism

 Side benefit: regions, effects are valuable documentation



Example: A Pair Class

class Pair {
region One, Two;
int one in One;

int two in Two; Region names have static
scope (one per class)

Pair

Pair.One one 3

Palir.Two two | 42

Declaring and using region names



Example: A Pair Class

class Pair {

vold setOne(int one) writes One {

this.one = one;

} 1

vold setTwo (int two) writes Two Pailr
this.two = two;

} Pair.One | one 3

Palir.Two two | 42

Writing method effect summaries

41



Example: A Pair Class

class Pair {

Pair

Pair.One one
vold setOneTwo (1nt one, 1nt two) writes

One; writes Two { Pair. Two EWO
cobegin {
setOne (one) ; // writes One
setTwo (two) ; // writes Two
}
} Inferred effects

Expressing parallelism

42

42



Example: Trees

class Tree<region P> { Tree<X> 100t
region L, R; X /
Int data in P
Tree<P:L> left;
Tree<P:R> right; X:L }* | X:R
Int increment() writes P:* { / \
++data; [l Infer: writes P
cobegin { \
left.increment();  // infer: writes P:L:* / \ ) \
right.increment(); // infer: writes P:R:*
}
}

}



Safe Non-Determinism

 Intentional non-determinism is sometimes desirable
— Branch-and-bound; graph algorithms; clustering
— Will often be combined with deterministic algorithms

 DPJ mechanisms

— foreach_nd, cobegin _nd
— Atomic sections and atomic effects
— Only atomic effects within non-deterministic tasks can interfere

o (Guarantees

— Explicit: Non-determinism cannot happen by accident
— Data race-free: Guaranteed for all legal programs
— Isolated: Deterministic, non-det parts isolated, composable



* Memory Models
— Desirable properties
— State-of-the-art: Data-race-free, Java, C++

— Implications
« Deterministic Parallel Java (DPJ)
* DeNovo

* Conclusions
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DeNovo Goals

« |f software Is disciplined, how to build hardware?

— Goal: power-, complexity-, performance-scalability

o Strategy:

— Many emerging software systems with disciplined shared-memory
* DeNovo uses DPJ as driver
* End-goal: language-oblivious interface

— Focus so far on deterministic codes
* Common and best case

* Extending to safe non-determinism, legacy codes

— Hardware scope: full memory hierarchy
* Coherence, consistency, communication, data layout, off-chip memory

46



DeNovo: Today’s Focus

« Coherence, consistency, communication

—  Complexity
* Subtle races and numerous transient sates in the protocol
* Hard to extend for optimizations

—  Storage overhead
* Directory overhead for sharer lists

— Performance and power inefficiencies
* |nvalidation and ack messages
* False sharing
* |ndirection through the directory
* Suboptimal communication granularity of cache line ...



Results So Far

« Simplicity
— Compared DeNovo protocol complexity with MESI
— 15X fewer reachable states, 20X faster with model checking

« Extensibility
— Direct cache-to-cache transfer
— Flexible communication granularity

« Storage overhead
— No storage overhead for directory information
— Storage overheads beat MESI after tens of cores and scale beyond

« Performance/Power
— Up to 75% reduction in memory stall time
— Up to 72% reduction in network traffic



Memory Consistency Model

« Guaranteed determinism
= Read returns value of last write in sequential order

1. Same task in this parallel phase

2. Or before this parallel phase

SR

—Y
Coherence /ST Oxa
Mechanism Parallel
Phase
N
v

LD Oxﬁ/




Cache Coherence

« Coherence Enforcement

1. | Invalidate stale copies in caches |

2. |Track up-to-date copy |

« EXxplicit effects
— Compiler knows all regions written in this parallel phase

— Cache can self-invalidate before next parallel phase

* |nvalidates data in writeable regions not accessed by itself

« Registration
— Directory keeps track of one up-to-date copy
— Writer updates before next parallel phase



Basic DeNovo Coherence

« Assume (for now): Private L1, shared L2; single word line
— Data-race freedom at word granularity

+ L2 data arrays double as directory- registry

— Keep valid data or registered core id, no space overhead

o L1/L2 states

Invalid

Write Write

Registered

« Touched bit set only if read in the phase



Example Run

=) (lass S_type { L1 of Core 1 L1 of Core 2
X in DeNovo-region @ ;

Y in DeNovo-region | ; :
}
S type SJsize]; C
K
Phasel writes @ { // DeNovo effect R
foreach 1in 0, size {
} S[i]X=...; Reglstration Shared Lo/ Registratign
self_invalidate(m ); -
} - I Ack
__________________ % 5 v
' Registered ! v Vv
i Valid B V
Invalid ¥ V

___________________




Addressing Limitations

« Addressing current limitations

—  Complexity
% Subtle races and numerous transient sates in the protocol |/
* Hard to extend for optimizations

—  Storage overhead
* Directory overhead for sharer lists V

— Performance and power overhead

+ Invalidation and ack messages ¢/’
mmm) = False-sharing
* |ndirection through the directory
* Suboptimal communication granularity of cache line ...



Practical DeNovo Coherence

 Basic protocol impractical

— High tag storage overhead (a tag per word)
« Address/Transfer granularity > Coherence granularity

« DeNovo Line-based protocol
— Traditional software-oblivious spatial locality

— Coherence granularity still at word

* no word-level false-sharing
Line Merging Cache

Tag Y V |R




Storage Overhead
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Addressing Limitations

« Addressing current limitations

—  Complexity
% Subtle races and numerous transient sates in the protocol |/
mmm) + Hard to extend for optimizations

~  Storage overhead ¢/
* Directory overhead for sharer lists

— Performance and power overhead

+ Invalidation and ack messages ¢/’
+ False-sharing ¢/
=) *+ [ndirection through the directory
* Suboptimal communication granularity of cache line ...



Extensions

 Traditional directory-based protocols
= Sharer-lists always contain all the true sharers

« DeNovo protocol
—=> Registry points to latest copy at end of phase

—> Valid data can be copied around freely



« Basic with Direct cache-to-cache transfer

Extensions (1 of 2)

— Get data directly from producer

— Through prediction and/or software-assistance

— Convert 3-hop misses to 2-hop misses

L1 of Core 1

- |=|=1|R|R|R

< I<I<I<I<|I<

< I <I<I<I<|I<

L1 of Core 2
P I v Vv
S Ka— | v i v
I Vv Vv
LD X, R v v
R Vv Vv
LD X, R Vv Vv
Shared L2
| Registered |
' Valid

___________________



Extensions (2 of 2)

« Basic with Flexible communication
— Software-directed data transfer
— Transfer “relevant” data together
— Effect of AoS-to-SoA transformation w/o programmer/compiler

L1 of Core 1 L1 of Core 2

' Registered
' Valid

___________________




Extensions (2 of 2)

« Basic with Flexible communication
— Software-directed data transfer
— Transfer “relevant” data together
— Effect of AoS-to-SoA transformation w/o programmer/compiler

L1 of Core 1 L1 of Core 2

' Registered
' Valid

___________________




Evaluation

« Simplicity
— Formal verification of coherence protocol
— Comparing reachable states

o Performance/Power

— Simulation experiments

« Extensibility

— DeNovo extensions



Protocol Verification

« DeNovo vs. MESI word with Murphi model checking

o Correctness

— Three bugs in DeNovo protocol
* Mistakes in translation from high level spec
* Simple to fix
— Six bugs in MESI protocol
* Two deadlock scenarios
* Unhandled races due to L1 writebacks
* Several days to fix

« Complexity
— 15x fewer reachable states for DeNovo
— 20x difference in the runtime
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Memory Stall Time
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e DeNovo line much better than MESI line with false sharing

* Benefit of lines is app-dependent

« DeNovo with flexible transfer is best: up to 75% reduction vs. MESI line
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DeNovo has less network traffic than MESI

Up to 72% reduction



DeNovo Summary

« Simplicity

— Compared DeNovo protocol complexity with MESI
— 15X fewer reachable states, 20X faster with model checking

« Extensibility

— Direct cache-to-cache transfer

— Flexible communication granularity
« Storage overhead

— No storage overhead for directory information
— Storage overheads beat MESI after tens of cores and scale beyond

o Performance/Power

— Up to 75% reduction in memory stall time
— Up to 72% reduction in network traffic

 Future work: Data layout, off-chip mem, non-det/legacy codes, ...



Conclusions (1 of 2)

« Current way to specify shared-memory semantics fundamentally broken

— Best we can do is SC for data-race-free programs

— But not good enough
* Cannot hide from programs with data races
* Mismatched h/w-s/w: simple optimizations give unintended consequences

* Need

— High-level disciplined models that enforce discipline

— Hardware co-designed with high-level model

« Previous memory models convergence from similar process

— But this time, let’s co-design software and hardware



Conclusions (2 of 2)

-
Deterministic Parallel Java (DPJ) [Vikram Adve et al ]

» No data races, determinism-by-default, safe non-determinism
(Simple semantics, safety, and composability

J

explicit effects +

structured Disciplined Shared Memory
parallel control

(DeNovo [Sarita Adve et al ] A
e Simple coherence and consistency

o Software-driven coherence, communication, data layout

\.» Power-, complexity-, performance-scalable hardware y

Future work: LOTS!



