
Pradeep Ramachandran

With
Manlap Li, Siva Hari, Lei chen, Byn Choi, Swarup Sahoo, Rob Smolinski,

Sarita Adve, Vikram Adve, Yuanyuan Zhou

Department of Computer Science

University of Illinois at Urbana Champaign

swat@cs.uiuc.edu

The Glorious Age of Mooreʼs Law

•  2X transistors ⇒ 2X performance every 18 months

•  But every coin has two sides!
2

Reliability – The Dark Side of Mooreʼs Law

“As technology scales further, new challenges will emerge, … These
problems will inevitably lead to inherent unreliability in components,
posing serious design and test challenges.”

Shekhar Borkar, Intel fellow

“Statistically, the large number of components will lead to reliability,
aging, and defect limitations that could no longer be eliminated
through margins or overdesign.”

Ajith Amerasekera, TI fellow

•  More transistors with smaller feature sizes ⇒ more failures
-  Physical limitations in manufacturing, testing, etc.

•  Transistor failures cause losses of billions on dollars

•  Need to guarantee reliable operations from unreliable components
-  Identified by ITRS as a grand challenge in the late CMOS era

3

Handling Failures In-the-Field

•  Hardware will fail in-the-field due to several reasons

⇒ Need in-field detection, diagnosis, recovery, repair

•  Reliability problem pervasive across many markets
–  Traditional redundancy solutions (e.g., nMR) too expensive

⇒ Need low-cost solutions for multiple failure sources
*  Must incur low area, performance, power overhead

Transient errors
(High-energy particles)

Wear-out
(Devices are weaker)

Design Bugs … and so on

4

Fault

SWAT: A Low-Cost Reliability Solution

5

Observations

•  Need handle only hardware faults that propagate to software

•  Fault-free case remains common, must be optimized

⇒ SWAT: SoftWare Anomaly Treatment

 ⇒ Detect software anomalies, HW support for recovery

–  Zero to low overhead “always-on” monitors

 Diagnose cause after symptom detected

− May incur high overhead, but rarely invoked

6

Advantages of SWAT

•  Handles faults that matter, ignore fault-model, masked faults

•  Low, amortized overheads by optimizing for common case

–  Potential to exploit SW reliability solutions

•  Customizable and flexible to system needs

•  Holistic systems view enables novel solutions
–  Synergistic detection, diagnosis, recovery solutions

•  Beyond hardware reliability
–  Potential application to post-silicon test and debug

7

SWAT Operations

Error Symptom
detected

Fault Chkpt

Diagnosis

Recovery

Repair

Chkpt

8

SWAT Contributions

Fault Diagnosis [DSN’08]
µarch-level diagnosis

Fault Detection
Low-Cost HW, SW detectors [ASPLOS’08, DSN’08]

App-Aware SWAT to reduce SDCs, latency

Diagnosis

Fault Error Symptom
detected

Recovery

Repair

Chkpt Chkpt

SWAT-Sim [HPCA ‘09]
Accurate fault modeling

mSWAT [MICRO’09]
Multithreaded fault detection

Multicore fault diagnosis

Fault Recovery
HW support for fault recovery

Support to handle I/O

•  Overall, SWAT is a complete solution for In-core HW faults
-  Demonstrated on a wide spectrum of workloads 9

This Talk

Fault Diagnosis [DSN ‘08]
µarch-level diagnosis

Fault Detection
Low-Cost HW, SW detectors [ASPLOS’08, DSN’08]

App-Aware SWAT to reduce SDCs, latency

Diagnosis

Fault Error Symptom
detected

Recovery

Repair

Chkpt Chkpt

SWAT-Sim [HPCA ‘09]
Accurate fault modeling

mSWAT [MICRO’09]
Multithreaded fault detection

Multicore fault diagnosis

Fault Recovery
HW support for fault recovery

Support to handle I/O

10

Outline

•  Introduction to SWAT

•  Fault Detection

•  Fault Recovery

•  Fault Diagnosis

•  Conclusions and Future Work

11

SWAT Fault Detection

•  Simple detectors that observe anomalous SW behavior

•  Incur very low hardware area ⇒ low cost detectors

•  Incur near-zero perf overhead in fault-free operation

SWAT firmware

Fatal Traps

Division by zero,
RED state, etc.

Kernel Panic

OS enters panic
State due to fault

High OS

High contiguous
OS activity

Hangs

Simple HW hang
detector

App Abort

App abort due
to fault

Out of Bounds

Flag illegal
addresses

12

Evaluating SWAT Detectors

•  Full-system simulation with modern out-of-order processor
–  Simics functional + GEMS timing simulator

•  Apps: Mix of multimedia, I/O intensive and compute intensive
–  Faults injected at different points in app execution

•  µarch-level fault injections (single fault model)
–  Stuck-at, transient faults in latches of 8 µarch units
–  ~48,000 total faults ⇒ statistically significant

10M instr

Timing simulation

If no symptom, run to completion

Functional simulation

Fault

Masked or
Potential Silent Data

Corruption (SDC)

13

Metrics for Fault Detection

•  Potential SDC rate
–  SDC ⇒ undetected fault that changes app output
–  All unmasked, undetected faults are “potential” SDCs
*  “Potential” as some such faults may be tolerated

•  Detection Latency
–  Latency between arch state corruption and detection
*  Arch state = registers + memory

–  Long detection latencies impede fault recovery

14

Potential SDC rate for HW Faults

•  SWAT detectors effective for hardware faults

•  What fraction of Potential SDCs are true SDCs?

0%

20%

40%

60%

80%

100%

SP
EC

Se
rv

er

M
ed

ia

SP
EC

Se
rv

er

M
ed

ia

Permanents Transients

To
ta

l i
nj

ec
tio

ns

Potential SDC

Detected

Masked

0.6% 0.2% 1.2% 0.4% 0.4% 1.3%

15

Application-Aware SDC Analysis

•  SDC ⇒ undetected faults that corrupt app output

•  But, many applications can tolerate faults
–  Client may detect fault and retry request
–  Application may perform fault-tolerant computations
*  E.g., Same cost place & route, acceptable PSNR, etc.

⇒ Not all undetected faults may result in SDCs
-  For each application, define notion of fault tolerance

•  SWAT detectors cannot detect such acceptable changes
should not?

16

True SDCs in SWAT

•  Only 109/48,000 faults are true SDCs (0.2% of injected faults)
–  63% of potential SDCs tolerated by app

⇒ Simple SWAT detectors achieve low SDC rates

0

20

40

60

80

100

120

SP
EC

Se
rv

er

M
ed

ia

SP
EC

Se
rv

er

M
ed

ia

Permanents Transients

N
um

be
r o

f F
au

lts

SDC

App-Tolerated

7
(0.1%)

12
(0.1%)

17
(0.2%)

19
(0.2%)

31
(0.3%)

23
(0.5%)

17

Detection Latency

•  Detection latency dictates chkpt intervals, recovery

•  >98% of all faults detected in under 10M instructions
–  Prior work claims such faults are recoverable in HW
–  Our analysis follows with recovery

0%

20%

40%

60%

80%

100%

<10K <100K <1M <10M >10M

D
et

ec
te

d
Fa

ul
ts

Detection Latency (Instructions)

Permanent Faults

SPEC
Server
Media

0%

20%

40%

60%

80%

100%

<10K <100K <1M <10M >10M

D
et

ec
te

d
Fa

ul
ts

Detection Latency (Instructions)

Transient Faults

SPEC
Server
Media

18

Outline

•  Introduction to SWAT

•  Fault Detection

•  Fault Recovery

•  Fault Diagnosis

•  Conclusions and Future Work

19

•  SWAT uses checkpointing & rollback for fault recovery
–  “Always-on” ⇒ must incur minimal overhead

•  Recovery components
–  Arch state: Reg chkpt, mem undo log [SafetyNet, ReVive]

–  Device state: Reset device, restore driver [Nooks]

–  Input Replay: Rely on higher level protocols [ReVive I/O]

–  Outputs: Delay until guaranteed fault-free

SWAT Recovery

Reg chkpt Reg chkpt

Memory Log

ST

old val

ST

Buffer
Outputs

Device
Output

Commit
outputs

20

Output Buffering

•  External outputs cannot be rolled back after detection

⇒ Delay external outputs until guaranteed to be fault-free

•  Previous solution: Buffer outputs in dedicated SW [Revive I/O]

   No HW changes, exploit output semantics
  Outputs vulnerable to in-core faults, SW complex

•  Our solution: Buffer external outputs in dedicated HW
–  Low-level stores delayed ⇒ high overhead?
–  Does HW buffering require device HW changes?
–  How to reduce vulnerability of buffered outputs?

21

•  CPU communicates with devices through I/O loads & stores

•  HW buffer delays outputs until next chkpt
⇒ Committed outputs verified fault-free

•  Requires no changes to device HW

•  Simple buffer design, outputs ECC checked
⇒Outputs protected from faults

Architecture of HW Output Buffer

CPU

Memory$

Device

Device

Device
OUTPUT
BUFFER

Memory
Bus

PCI Bus

22

•  HW output buffering incurs fault-free overhead
–  Outputs to clients delayed ⇒ performance overhead
–  HW to store buffered outputs ⇒ area overhead

•  Evaluation setup: Output buffering on simulated server

•  Focused on I/O intensive workloads to study fault recovery
–  sshd, apache, mysql, squid w/ multithreaded requests

Measuring Fault-free Overheads

Network
CPU

Devices

CPU

Devices

HW
Output
Buffer

Simulated Server Simulated Client
SIMICS full-system simulator

Latency = 0.1ms

23

Performance Overhead on Client from Buffering

•  Chkpt interval ≤ 100K inst ⇒ <5% perf, <2KB area overhead

•  Interval of millions of instr ⇒ perf overheads up to 100X!

1

10

100

10K 100K 1M 2M 5M 10M

C
lie

nt
 E

xe
cu

tio
n

tim
e

w
ith

 b
uf

fe
rin

g/
w

ith
ou

t b
uf

fe
rin

g

Checkpoint Interval (in instructions)

apache

sshd

squid

mysql

X

X

X

24

Connecting Detection and Recovery

•  Recovery results ⇒ chkpt interval ≤100K instrs

•  Detection results ⇒ only 80% detected in 100K instrs

•  Need to reduce latency to enable practical solution
–  Shortcoming identified only when components combined
*  Commonly ignored in prior work

•  Goal: Reduce detection latency, enable low-cost solution

•  Strategy: Redefine latency from a recovery stand-point

25

•  Traditional defn. = arch state corruption to detection
–  Fault corrupts arch state ⇒ system unrecoverable?

•  But software may tolerate some corruptions!
–  E.g., a used only for a>0 changes from 5 to 10

•  New defn. = SW state corruption to detection
–  Chkpt intervals should be based on new definition

A New Definition for Detection Latency

Bad SW state

Soft Latency

Bad arch state

Hard latency

Fault
Detection

Recoverable
chkpt

Recoverable
chkpt

26

Evaluating SWAT Detection + Recovery

•  µarch-level fault injections into simulated server CPU
–  Server CPU and Memory timing simulated with GEMS

•  Detection: Simulate faults for 10M instructions with SWAT

•  Recovery: Restore system with different chkpt intervals
–  Rollback CPU & mem, buffer outputs, restore devices
–  Only required for evaluation, not in real system

Network
CPU

Devices

CPU

Devices

HW
Output
Buffer

Simulated Server Simulated Client
SIMICS full-system simulator

Latency = 0.1ms

Fault

27

0%

20%

40%

60%

80%

100%
10

K

10
0K

1M

10
M

In
je

ct
ed

 F
au

lts

Permanent Faults

Potential SDC
DUE
Recovered
Masked

11.2% 7.5% 6.5% 2.6%

0%

20%

40%

60%

80%

100%

10
K

10
0K

1M

10
M

In
je

ct
ed

 F
au

lts

Transient Faults

Potential SDC
DUE
Recovered
Masked

2.8% 2.6% 2.1% 1.5%

SWAT Detection + Recovery Results

•  95% of perm, trans faults masked or recovered at 100K inst
–  Only 44 faults (out of ~18K injected) are real SDCs

⇒ SWAT strategy effective for perm, trans HW faults
o  Low SDC rate, high recoverability, low overheads

28

Outline

•  Introduction to SWAT

•  Fault Detection

•  Fault Recovery

•  Fault Diagnosis - Overview

•  Conclusions and Future Work

29

Fault Diagnosis

•  Symptom-based detection is cheap but
–  Need to diagnose root cause of fault

•  Diagnosis leverages rollback/replay of SWAT recovery

•  Simple rollback, replay to distinguish SW bugs, transients

•  In the case of permanent faults …
–  Identify faulty core in multicore, refine to µarch-level

SW Bugs Transient
Fault

Permanent
Fault

Symptom

?

30

•  Challenges
–  Deterministic replay of multithread app expensive
–  Fault migrates through data sharing

⇒  Symptom from fault-free core, no known good core!

•  Key Ideas
-  Enable isolated deterministic replay
-  Emulate TMR for diagnosis

•  Results
–  Faulty core diagnosed in >95% of detected faults
*  All faults detected on fault-free cores diagnosed

–  >93% of faults diagnosed within 100K instructions

mSWAT: Multicore SWAT Diagnosis

31

TBFD: µarch-level Fault Refinement

•  Disabling core wasteful ⇒ need to refine to µarch-level

•  Faulty core identified ⇒ fault-free cores available

•  Strategy: Replay on good, faulty core & compare µarch inv.
–  Synthesize DMR for fault diagnosis

•  Results: >98% of faults diagnosed to faulty µarch unit

⇒ Diagnosis effective and invisible to end-user

Traditional DMR

P1 P2

=

Always on ⇒
Expensive

P1 P2

=

P1
Synthesized DMR

Fault-free

DMR only
on fault

32

Conclusion

•  SWAT strategy demonstrated on permanent, transient faults

•  Detection: Simple HW detectors effective
–  Low SDC rate, detection latency, fault-free overheads

•  Recovery: HW support for recovery, output buffering
–  High recoverability, minimal impact on fault-free exec

•  Diagnosis: Identify faulty core, µarch-level diagnosis

–  Effective diagnosis in the rare event of a fault

•  Overall, SWAT ⇒ Complete solution for in-core HW faults

33

Ongoing and Future Work

•  Prototyping SWAT on FPGA for real-world evaluation
–  Implementation on OpenSPARC FPGA

*  Collaboration with Univ. of Michigan CrashTest

•  Formal framework for why and where SWAT works
–  Reduce SDCs even further through more detectors
–  Identify hard-to-detect codes, provide SDC bounds

*  Collaboration with Intel

•  Application-level resiliency

–  Systematic exploitation for detection and recovery

•  Expanding SWAT to other types of faults
–  Faults in off-core components, other fault models

34

Pradeep Ramachandran

With
Manlap Li, Siva Hari, Lei chen, Byn Choi, Swarup Sahoo, Rob Smolinski,

Sarita Adve, Vikram Adve, Yuanyuan Zhou

Department of Computer Science

University of Illinois at Urbana Champaign

swat@cs.uiuc.edu

Backup Slides

•  Fault-free Operation

•  Recovery Operation

Operations of HW Output Buffer

St 1
St 2

Drain Stores
in background

Dev
St 1

Dev
St 2

Buffer
St 1

St 2

Fault
DetectionDev

St 3

Buffer

Discard st3
Reissue st1, st2

Dev
St 1

Dev
St 2

Buffer Stores
to Devices

Rollback
Arch
state,

Restore
Devices

St 1
St 2

Dev
St 3

37

Area Overhead from Buffering

•  Small HW buffers for intervals of under ≤100K instructions
–  ~2KB buffer for 100K instr ⇒ implementable on-core

⇒ Checkpoint interval ≤ 100K instr for practical recovery

0
2
4
6
8

10
12
14
16
18
20

10K 100K 1M 2M 5M 10M

O
ut

pu
t B

uf
fe

r s
iz

e
(in

 K
B

)

Checkpoint Interval (Instructions)

apache
sshd
squid
mysql

38

Measuring Detection Latency

•  New detection latency = SW state corruption to detection

•  But identifying SW state corruption is hard!
–  Need to know how faulty value used by application
–  If faulty value affects output, then SW state corrupted

•  Measure latency by rolling back to older checkpoints
–  Only for analysis, not required in real system

Fault
Detection

Bad arch state Bad SW state

New latency

Chkpt
Rollback &

Replay

Symptom Chkpt Fault effect
masked

Rollback &
Replay

39

Detection Latency - Server

•  Measuring new latency important to study recovery
•  New techniques significantly reduce detection latency

-  >90% of faults detected in <100K instructions
•  Reduced detection latency impacts recoverability

40%

50%

60%

70%

80%

90%

100%

<10k <100k <1m <10m >10m

D
et

ec
te

d
Fa

ul
ts

Detection Latency (Instructions)

Permanent Faults in Server

40%

50%

60%

70%

80%

90%

100%

<10k <100k <1m <10m >10m

D
et

ec
te

d
Fa

ul
ts

Detection Latency (Instructions)

Transient Faults in Server

New Latency out-of-bounds

New Latency SWAT

Old Latency SWAT

40

Overheads from Other Chkpt Components

•  Register checkpoint
–  Negligible overheads at 100K chkpt interval [SafetyNet]

•  Memory logging
–  Max log size at 100K chkpt interval = 450KB
*  Can be collected with small HW that is memory backed

–  <1% perf overheads at 100K chkpt interval [SafetyNet]

•  Device chkpt
–  <1% average perf overhead for 3 sample drivers [Nooks]

41

Importance of I/O for Fault Recovery

•  No device recovery, output buffering recoverability 89%

⇒ Critical components are required for recovery

0%

20%

40%

60%

80%

100%

Fu
ll

N
o

D
ev

N
o

I/O

Fu
ll

N
o

D
ev

N
o

I/O

Fu
ll

N
o

D
ev

N
o

I/O

Fu
ll

N
o

D
ev

N
o

I/O

10K 100K 1M 10M

In
je

ct
ed

 F
au

lts

Permanent Faults

Potential SDC

DUE

Recovered

Masked

42

