
Semantics of
Shared Variables & Synchronization

a.k.a. Memory Models

Acks: Vikram Adve, Rob Bocchino, Lawrence Crowl, Kourosh Gharachorloo,

Mark Hill, Doug Lea, Jeremy Manson, Paul McKenney, Clark Nelson, Bill Pugh,

Marc Snir, Herb Sutter, and many others

Sarita V. Adve
University of Illinois
sadve@illinois.edu

Hans-J. Boehm
HP Labs
hans.boehm@hp.com

Shared Variable Semantics or Memory Models

Parallelism for the masses!

Shared-memory, threads most common

Memory model = Legal values for reads

Parallelism for the masses!

Shared-memory, threads most common

Memory model = Legal values for reads

Shared Variable Semantics or Memory Models

Parallelism for the masses!

Shared-memory, threads most common

Memory model = Legal values for reads

Shared Variable Semantics or Memory Models

Parallelism for the masses!

Shared-memory, threads most common

Memory model = Legal values for reads

Shared Variable Semantics or Memory Models

Parallelism for the masses!

Shared-memory, threads most common

Memory model = Legal values for reads

Shared Variable Semantics or Memory Models

Parallelism for the masses!

Shared-memory, threads most common

Memory model = Legal values for reads

Shared Variable Semantics or Memory Models

Our goals

• Demystify

• Convey pitfalls

• Convey fundamental problems

• Motivate new research

What is a Memory Model?

• Memory model defines what values a read can return

Initially A=B=Flag=0

Thread 1 Thread 2

A = 26 while (Flag != 1) {;}

B = 90 r1 = B

… r2 = A

Flag = 1 …

90
26 0

• Are concurrent accesses allowed?

• What is a concurrent access?

• When do updates become visible to other threads?

• Can an update be partially visible?

• …

Why Should You Care?

• Interface between program and transformers of program

– Affects programmer, compiler, runtime, hardware, …

C++ program Compiler

Dynamic
optimizer

Hardware

• Weakest system component exposed to the programmer

– Not just a “hardware problem” nor just a “compiler problem”

– Not just a processor issue; memory design affects system model

A
ssem

bly

Desirable Properties of a Memory Model

• 3 Ps

– Programmability

– Performance

– Portability

• Challenge: hard to satisfy all 3 Ps

This Tutorial
• The problem

– Sequential consistency (SC) is intuitive

– But performance? And is SC really easy enough?

• Recent consensus: data-race-free

– SC only for good (data-race-free) programs

• Some research and practice pitfalls

• BUT data-race-free not the full answer

– Ultimate performance on current hardware?

– Undefined race semantics complicate safety, debugging, …

• Need new approach

– Some ongoing research

The Single Thread Model

• Program text defines total order = program order

• Single thread model

– Memory accesses execute one-at-a-time in program order

⇒⇒⇒⇒ Read returns value of last write

• BUT hardware & compilers overlap, reorder accesses

– Obey model by respecting control/data dependences

⇒⇒⇒⇒ Easy to use + high performance

Implicit Multithreaded Model

• Sequential consistency (SC)

– Accesses of each thread occur in program order

– All accesses occur in some sequential order (atomically)

MEMORY

T1 T3T2 Tn

Still Need Synchronization
Initially X = 0

Thread 1 Thread 2

r1 = X; r2 = X;

X = r1+1; X = r2+1;

Still Need Synchronization
Initially X = 0

Thread 1 Thread 2

r1 = X; r2 = X;

X = r1+1; X = r2+1;

SC allows all program order consistent interleavings

Still Need Synchronization
Initially X = 0

Thread 1 Thread 2

r1 = X;

X = r1+1;

r2 = X;

X = r2+1;

SC allows all program order consistent interleavings

Still Need Synchronization
Initially X = 0

Thread 1 Thread 2

r1 = X;

r2 = X;

X = r1+1;

X = r2+1;

Result: r1=r2=0, X = 1

SC allows all program order consistent interleavings

Still Need Synchronization
Initially X = 0

Thread 1 Thread 2

lock(L) lock(L)

r1 = X; r2 = X;

X = r1+1; X = r2+1;

unlock(L) unlock(L)

Use locks (or other synch) to restrict interleavings

Still Need Synchronization
Initially X = 0

Thread 1 Thread 2

lock(L) lock(L)

r1 = X; r2 = X;

X = r1+1; X = r2+1;

unlock(L) unlock(L)

Use locks (or other synch) to restrict interleavings

Second lock must wait until first unlock

SC and Synchronization

• SC = program order + atomicity for memory accesses

• What is a memory access?

– Load, Store

– Synchronization

* Locks/unlocks, Fetch&Add, Compare&Swap, …

* Transaction begin/end like single lock (approximately)

* System must ensure read-modify-write is“atomic”

Understanding Program Order – Example 1

• Dekker’s algorithm for critical sections

Initially Flag1 = Flag2 = 0

Thread 1 Thread 2

Flag1 = 1 Flag2 = 1

if (Flag2 == 0) if (Flag1 == 0)

critical section critical section

• Can happen on most hardware

– E.g., store buffers with load bypassing (no caches needed)

• Can happen with most compilers (more later)

01

Understanding Program Order - Example 2

Initially A = Flag = 0

Thread 1 Thread 2

A = 26; while (Flag != 1) {;}

Flag = 1; ... = A; 026

• Can happen if hardware overlaps/reorders stores or loads

• Can happen with most compilers

Understanding Program Order: Summary

SC limits program order relaxation

• Write →→→→ Read

• Write →→→→ Write

• Read →→→→ Read, Write

Understanding Atomicity

• Isolation

– Nobody sees half-done access; e.g., partial word update

– Related to access granularity (more later)

• Serializability

– Access appears to occur at the same time to everyone

– Needs careful handling when multiple copies

– Focus next

Understanding Atomicity

• A mechanism needed to propagate a write to other copies

– Cache coherence protocol

* Invalidate or update old copies in other caches

P1

CACHE

MEMORY MEMORY

A OLD

P2 Pn

A OLD

A OLD

BUS or NETWORK

Understanding Atomicity - Example 1
Initially A = B = C = 0

Thread 1 Thread 2 Thread 3 Thread 4

A = 1; A = 2; while (B != 1) {;} while (B != 1) {;}

B = 1; C = 1; while (C != 1) {;} while (C != 1) {;}

r1 = A; r2 = A; 1 1

Can happen if updates of A reach Threads 3, 4 in different order

Coherence protocol must serialize writes to same location

(Writes to same location should be seen in same order by all)

Coherence example

2

Understanding Atomicity - Example 2

Initially A = B = 0

Thread 1 Thread 2 Thread 3

A = 1; while (A != 1) {;} while (B != 1) {;}

B = 1; r1 = A; 1

Can happen if read returns new value before all copies see it

E.g., Threads 1, 2 share a cache

2 sees 1’s write

3 sees 2’s write before 1’s write

Causality example

0

Understanding Atomicity – Example 3

Initially X = Y = 0

Thread 1 Thread 2 Thread 3 Thread 4

X=1 Y=1 r1 = X r3 = Y

r2 = Y r4 = X

Can happen if

Threads 1 and 3 share the same cache, 3 sees 1’s write early

Threads 2 and 4 share the same cache, 4 sees 2’s write early

Independent reads, independent writes (IRIW) example

1 1

0 1 0

SC Summary for Hardware

SC limits

– Program order relaxation:

• Write →→→→ Read

• Write →→→→ Write

• Read →→→→ Read, Write

– Unserialized writes to the same location

– Reading a write before it is seen by all

6/8/2010 30

Compiler issues
with sequential consistency

• Limits compiler reordering in addition to
hardware reordering.
– Compiler wants to perform loads early, stores

late.
– Hides latency, as for hardware.
– E.g. for Dekker’s example, if r1 and r2 are used

immediately, it’s tempting to move up loads:

Flag1 = 1;

r1 = Flag2;

Flag2 = 1;

r2 = Flag1;

Thread 1: Thread 1:

6/8/2010 31

Cost of restricting compiler
movement

• Intuition:
– Moving loads out of loops is important.
– Not generally possible with sequential

consistency.
– More important issue than hardware

reordering?
• But:

– Very sensitive to whole program analysis.
– Empirical results are much more mixed.

• E.g. Sura et al PPoPP 05, DRFx paper in
PLDI ’10

• Not comfortable outlawing these
optimizations.

for (i = …) {

a[i] += *p;

}

reload?

6/8/2010 32

Usability issue
with sequential consistency

• Sensitive to memory access granularity:
Thread 1 Thread 2
x = 300; x = 100;

– may result in x = 356 with sequentially consistent byte
accesses.

• Need to reason at level of memory accesses.
– Not programmer meaningful.

• Want to reason about interleaving of
“communication-free” source code sections.

This Tutorial
• The problem

– Sequential consistency (SC) is intuitive

– But performance? And is SC really easy enough?

• Recent consensus: data-race-free

– SC only for good (data-race-free) programs

• Some research and practice pitfalls

• BUT data-race-free not the full answer

– Ultimate performance on current hardware?

– Undefined race semantics complicate safety, debugging, …

• Need new approach

– Some ongoing research

6/8/2010 34

Real threads programming model
(1)

• Two memory accesses conflict if they
– access the same scalar variable*
– at least one access is a store.

• Two ordinary memory accesses participate in a data
race if they
– conflict, and
– can occur simultaneously

• i.e. appear as adjacent operations in interleaving.

• A program is data-race-free (on a particular input) if no
sequentially consistent execution results in a data race.

*to be refined for bit-fields

6/8/2010 35

Real threads programming model
(2)

• Sequential consistency only for data-race-
free programs!
– Avoid anything else.

• Data races are prevented by
– locks (or atomic sections) to restrict

interleaving

– declaring synchronization variables (stay
tuned …)

Alternate data-race-free definition:
happens-before

• Memory access a happens-before b if
– a precedes b in program order.
– a and b are synchronization operations,

and b observes the results of a, thus
enforcing ordering between them.

• e.g. a unlocks m, b subsequently locks m.
– Or there is a c such that a happens-before

c and c happens-before b.
• Two ordinary memory operations a

and b participate in a data race in a
particular execution, if neither
– a happens-before b,
– nor b happens-before a.

lock(m);

t = x + 1;

x = t;

unlock(m)

lock(m);

t = x + 1;

x = t;

unlock(m)

Thread 1:

Thread 2:

• Set of data-race-free programs usually the
same.

6/8/2010 37

Data Races

• Are defined in terms of sequentially
consistent executions.

• If x and y are initially zero, this does not
have a data race:

Thread 1 Thread 2
if (x) if (y)

y = 1; x = 1;

6/8/2010 38

Bit-fields

• Is this a data race?
• Yes.

– Real hardware can’t update them independently.
• Stay tuned for illustration of why this matters.

– Races in C++0x are defined in terms of “memory locations”.
– “Memory location” is either

• scalar variable, or
• contiguous bit-field sequence.

structstructstructstruct { { { { intintintint a:3; a:3; a:3; a:3; intintintint b:2;} x;b:2;} x;b:2;} x;b:2;} x;

x.ax.ax.ax.a = 1;= 1;= 1;= 1; x.bx.bx.bx.b = 2;= 2;= 2;= 2;

Thread 1: Thread 2:

6/8/2010 39

SC for DRF programming model
advantages over SC

• Supports important hardware & compiler
optimizations.

• DRF restriction �Independence from
memory access granularity.
– Hardware independence.

– Synchronization-free library calls are atomic.
– Really a different and better programming

model than SC.

Library implemented objects often
behave like built-in data

• HashSet operations participate in a data-
race if two threads simultaneously access
the same HashSet, and one is an update.

• In race-free programs HashSet operations
are atomic.

• HashSets may be shared or private.
– If shared, caller arranges for synchronization.

6/8/2010 41

Synchronization variables

• Java: volatile, java.util.concurrent.atomic.
• C++0x: atomic<int>
• C1x, C++0x: atomic_int, _Atomic(int)
• Guarantee indivisibility of operations.
• “Don’t count” in determining whether there is a data race:

– Programs with “races” on synchronization variables are still
sequentially consistent.

– Though there may be “escapes”.

• Dekker’s algorithm “just works” with synchronization
variables.

6/8/2010 42

As expressive as races

bool x_init;

if (!x_init) {

l.lock();

if (!x_init) {

initialize x;

x_init = true;

}

l.unlock();

}

use x;

atomic<bool> x_init;

if (!x_init) {

l.lock();

if (!x_init) {

initialize x;

x_init = true;

}

l.unlock();

}

use x;

Double-checked locking:
Wrong!

Double-checked locking:
Correct (C++0x):

6/8/2010 43

Some variants
C++ draft (C++0x)

C draft (C1x)

SC for DRF*,
Data races are errors

Java SC for DRF**,
More details later.

Posix threads SC for drf (sort of, no atomics)

Ada 83 SC for drf (sort of)

OpenMP, Fortran 2008 SC for drf
(except atomics, sort of)

.Net Getting there, we hope ☺

* Except explicitly specified memory ordering. ** Except some j.u.c.atomic.

SC for DRF implementation model
(1)

• Very restricted reordering of
memory operations around
synchronization operations:
– Compiler either understands these, or

treats them as opaque, potentially
updating any location.

– Synchronization operations include
instructions to limit or prevent
hardware reordering (“memory
fences”).

• e.g. lock acquisition, release, atomic
store, might contain memory fences.

lock();lock();lock();lock();

unlock();unlock();unlock();unlock();

synch-free

code

region

synch-free

code

region

SC for DRF implementation model
(2)

• Code may be reordered
between synchronization
operations.
– Another thread can only tell if it

accesses the same data between
reordered operations.

– Such an access would be a data
race.

• If data races are disallowed
(e.g. Posix, Ada, C++0x, not
Java), compiler may assume
that variables don’t change
asynchronously.

lock();lock();lock();lock();

unlock();unlock();unlock();unlock();

synch-free

code

region

synch-free

code

region

6/8/2010 46

Possible effect of “no asynchronous
changes” compiler assumption:

• Assume switch
statement compiled as
branch table.

• May assume x is in
range.

• Asynchronous change to
x causes wild branch.
– Not just wrong value.

• Rare, but possible in
current compilers?

unsigned x;

If (x < 3) {

… // async x change
switch(x) {

case 0: …

case 1: …

case 2: …

}

}

6/8/2010 4747

SC for DRF implementation
constraints: Compilers

• Compilers must not introduce visible data
races.

• Unfortunately, sequentially correct
optimization can.

• Most current compilers do. �

• Some examples:

6/8/2010 48

Introducing Races:
Struct field update

struct {char a; int b:5; int c:11; char d;} x;

• Is it safe to protect c and d with separate locks?

Thread1:

x.c = 1;

Thread2:

x.d = 1;

commonly implemented as

Thread1:

tmp = x;

tmp.c = 1;

x = tmp;

Thread2:

x.d = 1;

6/8/2010 49

Struct field update (contd 1):
struct {char a; int b:5; int c:11; char d;} x;

• Is it safe to protect c and d with separate locks?

Thread1:

tmp = x;

tmp.c = 1;

x = tmp;

Thread2:

x.d = 1;

a: 0; b: 0; c: 0; d: 0;x:

6/8/2010 50

Struct field update (contd 2):
struct {char a; int b:5; int c:11; char d;} x;

• Is it safe to protect c and d with separate locks?

Thread1:

tmp = x;

tmp.c = 1;

x = tmp;

Thread2:

x.d = 1;

a: 0; b: 0; c: 0; d: 0;x:

tmp: a: 0; b: 0; c: 0; d: 0;

6/8/2010 51

Struct field update (contd 3):
struct {char a; int b:5; int c:11; char d;} x;

• Is it safe to protect c and d with separate locks?

Thread1:

tmp = x;

tmp.c = 1;

x = tmp;

Thread2:

x.d = 1;

a: 0; b: 0; c: 0; d: 0;x:

tmp: a: 0; b: 0; c: 1; d: 0;

6/8/2010 52

Struct field update (contd 4):
struct {char a; int b:5; int c:11; char d;} x;

• Is it safe to protect c and d with separate locks?

Thread1:

tmp = x;

tmp.c = 1;

x = tmp;

Thread2:

x.d = 1;

a: 0; b: 0; c: 0; d: 1;x:

tmp: a: 0; b: 0; c: 1; d: 0;

6/8/2010 53

Struct field update (contd 5):
struct {char a; int b:5; int c:11; char d;} x;

• Is it safe to protect c and d with separate locks?

Thread1:

tmp = x;

tmp.c = 1;

x = tmp;

Thread2:

x.d = 1;

a: 0; b: 0; c: 0; d: 1;x:

tmp: a: 0; b: 0; c: 1; d: 0;a: 0; b: 0; c: 1; d: 0;

6/8/2010 54

Struct field update (contd 6):
struct {char a; int b:5; int c:11; char d;} x;

• Is it safe to protect c and d with separate locks?

Thread1:

tmp = x;

tmp.c = 1;

x = tmp;

Thread2:

x.d = 1;

a: 0; b: 0; c: 1; d: 0;x:

•This behavior is currently allowed and common.

�No two fields can safely be independently updated.

6/8/2010 55

Introducing Races:
Register Promotion 1

[g is global]

for(...) {

if(mt) lock();

use/update g;

if(mt) unlock();

}

r = g;

for(...) {

if(mt) {

g = r; lock(); r = g;

}

use/update r instead of g;

if(mt) {

g = r; unlock(); r = g;

}

}

g = r;

6/8/2010 5656

Introducing Races:
Register Promotion 2

int count; // global, possibly shared

…

for (p = q; p != 0; p = p -> next)

if (p -> data > 0) ++count;

int count; // global, possibly shared

…

reg = count;

for (p = q; p != 0; p = p -> next)

if (p -> data > 0) ++reg;

count = reg; // may spuriously assign to count

6/8/2010 57

Introducing data races:
Potentially infinite loops

• x may not be accessed!
• Prohibited in Java.
• Allowed by giving undefined behavior to

such infinite loops in C++0x.
(Controversial.)

while (…) { a[i] = 1; }

x = 1;

x = 1;

while (…) { a[i] = 1; }

?

6/8/2010 58

Some added data races are
sometimes OK

• May add data race if loop iterates 0 times.
• Disallowed as C++0x source transformation.
• But racing load with unused result is benign in most target ISAs, and

in Java.
• Generally allowed as compiler transformation.
• Incorrect if hardware were to detect data races.

– Use prefetch instead, or avoid load in zero-iteration case.

while (…) {

…; y = g; …

}

r = g;

while (…) {

…; y = r; …

}

?

6/8/2010 59

Synchronization primitives need
careful definition

• lock(), unlock(), like all other
synchronization accesses, cannot be visibly
reordered w.r.t. other accesses.

• But moving memory accesses into critical
section is not detectable by a data-race-free
program using only lock(), unlock(). (Cf.
Boehm, PPoPP 07)

• Implementations that allow one-way reordering
are common, and faster.

• But what about trylock()/timedlock()?

6/8/2010 6060

Trylock restricts lock() reordering:

• Some really awful code:

x = 42;

lock();

while (trylock() == SUCCESS)

unlock();

assert (x == 42);

Thread 1: Thread 2:

• Note:

• Example requires tweaking to be pthreads-compliant.

• In some happens-before formulations, this has a data race

Don’t try this at home!!

• Can’t move x = 42 into “critical section”!

6/8/2010 6161

With Trylock:
Critical section reordering?

• Reordering of memory operations with respect to critical
sections:

Expected (& Java): Naïve pthreads: Optimized pthreads

unlock()

lock()

unlock()

lock()

unlock()

lock()

6/8/2010 6262

Some open source pthread lock
implementations (2006):

lock() lock()

[technically incorrect]

NPTL

{Alpha, PowerPC}

{mutex, spin}

[Correct, slow]

NPTL

Itanium (&X86)

mutex

[Correct]

NPTL

{ Itanium, X86 }

spin

[Incorrect]

FreeBSD

Itanium

spin

unlock() unlock()

lock()

unlock() unlock()

lock()

SC for DRF Implementation: Hardware

• Hardware models took different trajectory from DRF

• Largely motivated by hardware optimizations

• Next

– Brief overview of hardware models

– Mapping DRF to hardware models

– Limitations with current hardware

• Problems with fences

Classification for Relaxed Hardware Models
• Typically described as hardware optimizations

– Program order relaxation:

• Write →→→→ Read

• Write →→→→ Write

• Read →→→→ Read, Write

– Read others’ write early

– Read own write early

• All models provide

– Some form of write serialization

– Some form of single thread data/control dependences

• Subtleties for models that relax Read →→→→ Read (not covered here)

– Safety net (e.g., fences, memory barriers) to prohibit optimization

– Atomic RMW, with some subtle differences (not covered here)

• Many subtleties, ambiguities not covered here

Major Relaxed Hardware Models*

sync, lwsync��������������������PowerPC

various MEMBARs����������������RMO

MB, WMB����������������Alpha

release, acquire,
nsync, RMW

��������������������RCpc

release, acquire,
nsync, RMW

����������������RCsc

synchronization����������������WO

RMW, STBAR������������PSO

RMW������������PC

RMW, fences��������TSO (x86)

serialization
instructions

����IBM 370

Safety NetRead Own
Write Early

Read Others’
Write Early

R →→→→RW
Order

W →→→→W
Order

W →→→→R
Order

Relaxation

* HP PA-RISC and MIPS R10000 processors potentially SC (depending on rest of system)

LD.acq, ST.rel, mf����������������Itanium

Mapping DRF to Hardware Models

• Use safety net to prohibit hardware model optimizations

– But most focus on program order, not atomicity

– DRF requires SC synch ⇒⇒⇒⇒ program order + atomicity

– Many subtle issues

• For some hardware, fences not sufficient

• For others, fences over-constrain

• Unintended hardware/software mismatch

• Don’t forget access granularity

Mapping DRF to Hardware: Program Order

• For program order, sufficient to enforce

• E.g., TSO/x86: need care for Synch Store →→→→ Synch Load

– Insert mfence/membar after each Synch Store

– Or convert Synch Store to RMW (xchg)

• E.g., PowerPC: also need care for Synch Load →→→→ X

– Insert additional fence after each Synch Load

(many subtleties not covered here)

Synch

Synch

Data

Synch Store

Synch Load

Data

Mapping DRF to Hardware: Atomicity

Independent reads, independent writes (IRIW):

X and Y are synch and initially 0

Thread 1 Thread 2 Thread 3 Thread 4

X=1 Y=1 r1 = X r3 = Y

fence fence

r2 = Y r4 = X

• Must prohibit reading others’ write too early

– Can happen if threads share caches (see previous slide)

– Some hardware specs were vague on IRIW

• But programmers don’t use IRIW!

– Why pay cost of SC if programmers won’t use it?

• Much pressure to change SC semantics for synch

1 1

0 1 0

Change SC Synch Requirement of DRF?

• Much pressure to change SC for synch to allow IRIW opt

– Showed IRIW opt gives unacceptable behavior for other codes

• Violates composition of write causality + coherence

– No simple alternate model found

• Problem with IRIW

– Mainly hardware-software mismatch

– Ensuring we don’t read synch writes too early is not hard

• Ensure for all stores or

• Ensure only for clearly marked synch stores (e.g., xchg for x86)

• Be careful with fences

• Current status

– X86 spec is now changed so all stores atomic

– PowerPC still requires heavyweight fence

More Problems with Fences

• IRIW discussion showed fences often under-constrained

• Next: Fences often over-constrained

Fences May Over-constrain (1 of 2)

• Fences typically order all prior LD/ST w.r.t. all later LD/ST

– We want ordering w.r.t. specific synchronization accesses

ssss is a synchronization variable

x = 1;x = 1;x = 1;x = 1;

s = 2; s = 2; s = 2; s = 2; // includes fence

r1 = y;r1 = y;r1 = y;r1 = y;

– Unnecessarily prevents reordering of x = 1 and r1 = y;

• One solution: distinguish synch LD/ST in hardware

Fences May Over-constrain (2 of 2)

• Don't really need program order

Thread1 Thread2

A = 26; while (Flag != 1) {;}

B = 90; … = B;

Flag = 1; … = A;

• Can postpone stores of A, B to load, Flag, 1

• Can postpone stores of A, B to loads of A, B

• Can exploit last two observations with

– Lazy invalidations

– Lazy release consistency on software DSMs

Fences Summary

• Memory ordering prescribes interactions between threads

• Most fences constrain interactions within a thread

⇒⇒⇒⇒ Fundamental mismatch

Don't Forget Access Granularity

• Data-race-freedom guaranteed for byte (or higher) granularity

• x.cx.cx.cx.c = = = = ‘‘‘‘aaaa’; may not visibly read and rewrite adjacent fields

• Byte stores must be implemented with

– Byte store instruction, or

– Atomic read-modify-write

• Typically expensive on multiprocessors

DRF Summary So Far

• SC for DRF programs is minimal programming model

• But some hardware-software mismatch

– Many attempts for alternatives, but unsuccessful

• But what about programs with races?

– Key open problem in language semantics

Initial Alternatives to DRF (1 of 2)

• Use hardware-centric models

– But not suitable for programming models

– No common model covers all desirable optimizations

• Sequential Consistency

– Use hardware speculation, prefetching to overcome perf limits

• But complex hardware (interface must last through trends)

• But compilers still limited by SC (previous slides)

• But SC not good enough model (previous slides)

Initial Alternatives to DRF (2 of 2)
• Happens-before consistency

– If X, Y conflict & X happens-before Y, then X executes before Y

Thread1 Thread2

A = 26; while (Flag != 1) {;}

B = 90; … = B;

Flag = 1; … = A;

– But does not give SC for data-race-free programs

Initially A=B=0

Thread1 Thread2

If (A==1) B=1 if (B==1) A=1

Happens-before consistency allows A=B=1

• More alternatives coming up later

This Tutorial
• The problem

– Sequential consistency (SC) is intuitive

– But performance? And is SC really easy enough?

• Recent consensus: data-race-free

– SC only for good (data-race-free) programs

• Some research and practice pitfalls

• BUT data-race-free not the full answer

– Ultimate performance on current hardware?

– Undefined race semantics complicate safety, debugging, …

• Need new approach

– Some ongoing research

6/8/2010 79

Research and practice pitfalls

• Our goal is not to embarrass authors of
prior work.

• Much of what we cite predates clarity
about memory models, or was intended for
sequential code.

• And we might even be confused about
some of this.

• But: Beware of “established practice” in
this field!

6/8/2010 80

Research and practice pifalls

• We’ve already seen a few mis-steps:
– Posix (since 1995), Ada 83, … are very clear that

data races are disallowed.
• But we found substantial disagreement as to what a data

race is.
– Including among committee members, researchers, …

– Confusion about lock ordering semantics
– Similar issues with e.g. gcc __sync operations.

• Nobody gets explicit memory ordering right?

– Memory fences are pervasive.
• But are they the right mechanism?

• Some more:

6/8/2010 81

Uncertainty about hardware
memory models

• Some processor vendors published
precise memory models.

• Others did not (e.g. X86 before 2007).
• Hard to fix with multiple processor &

chipset vendors (e.g. X86, MIPS)
• Recent efforts by academics, notably

Peter Sewell’s group, help.
• Don’t believe e.g. pre-2006 x86 hardware

specs! (If you figure out what they mean.)

Sequential consistency by fence
insertion

• Many papers, starting with Shasha & Snir,
April 88, TOPLAS, look at sequential
consistency enforcement with fences, but

• Too little attention was paid to whether
real hardware fences could do this at all.
– Unclear for X86 and PowerPC until 2007+.

– Fences + ordinary ld/st insufficient for Itanium.
• Need st.rel for store atomicity (serializability).

6/8/2010 83

Infinite loops

• Published compiler
optimizations (e.g. “Lazy
Code Motion”, by Knoop et
al, PLDI ’92 most influential
paper) usually consider only
paths from start node to end
node in CFG?
– Not always safe in Java.
– Issue not addressed in

literature?

?

Assuming that libraries are “thread-
safe” or “thread-unsafe”.

• Most libraries should ensure that:
– Simultaneous “read” accesses are safe.

• No hidden updates, e.g. unprotected reference counts!
– Simultaneous accesses to logically disjoint objects

are safe.
• No hidden shared data structures.

• Client locks when there is a logical data race.
– Just like built-in scalar types.

• Minimal overhead for thread-local use.
• This is not “thread-safe” by most definitions.
• This is not completely “thread-unsafe”.

6/8/2010 85

Assuming sequential consistency
when unwarranted

• Common in programming language research literature.
• One example:

– “Atomic set serializability” (Hammer et al., 2008) looks for
atomicity bugs by finding certain access sequences .

– Detects a subset of what we call data races.
– Accesses do not form a sequence unless they are data-race-free

(our definition).

• But sequential consistency should continue to play an
important analysis. Can verify safety by:
– Ensuring DRF using SC analysis.
– Verifying properties using SC analysis.

6/8/2010 86

Sequential consistency in compiler
program analysis

• Program analysis based purely on sequential
consistency is unsound for Java:
– Actual executions allow more behaviors.

• Program analysis based on sequential
consistency is sound, but weak for C++0x:
– Programs without races are SC.
– Programs with races may be “miscompiled”.
– But the absence of races provides a lot of additional

information:
• e.g. atomicity of sync-free regions.

Assuming shared objects must be
accessed in critical sections

• E.g. ignoring “privatization safety” for
transactional memory.

tmp1 = new foo();

tmp1.value = 17;

q.put(tmp1);

tmp2 = q.take();

… tmp2.value …

Thread 1: Thread 2:

6/8/2010 88

Incorrect modeling of
synchronization primitives

• Condition variable waits may return
spuriously in Java 5+/pthreads/C++0x.

• Cannot assume that wait() blocks until
notify(). (E.g. MHP analysis)

• For partial correctness purposes, wait()
is equivalent to unlock(); lock().

• Analyzing wait()/notify() requires
reasoning about underlying predicate!

6/8/2010 89

Dubious definition of
synchronization primitives

• Example: Boost threads defines thread
destructor to detach associated thread.

intintintint f () {f () {f () {f () {

intintintint x, y;x, y;x, y;x, y;

thread thread thread thread t(computet(computet(computet(compute, &x); // compute value of x, &x); // compute value of x, &x); // compute value of x, &x); // compute value of x

y = y = y = y = do_something_elsedo_something_elsedo_something_elsedo_something_else();();();();

t.joint.joint.joint.join();();();();

return x + y;return x + y;return x + y;return x + y;

}}}}

• What if do_something_else() throws?

6/8/2010 90

Some common features don’t
combine well

• Detached threads (e.g. Posix)
– Run until they finish or process ends

– e.g. a service for a library

• C++ destructors for static objects
– Called just before process shutdown

• Detached threads run with invalid global
variables just before shutdown?!

This Tutorial
• The problem

– Sequential consistency (SC) is intuitive

– But performance? And is SC really easy enough?

• Recent consensus: data-race-free

– SC only for good (data-race-free) programs

• Some research and practice pitfalls

• BUT data-race-free not the full answer

– Ultimate performance on current hardware?

– Undefined race semantics complicate safety, debugging, …

• Need new approach

– Some ongoing research

6/8/2010 92

But data-race-free not the full
answer

• Sequential Consistency, even for data-
race-free programs, may be expensive on
current hardware.
– Too expensive for some highly tuned

performance critical applications?

• Undefined semantics for data races are
not always acceptable.
– For debugging.
– For sand-boxed code.

Sequential consistency may be
expensive

• We require sequential consistency for
volatile/atomic operations.

• Many lock-free algorithms don’t need full
sequential consistency, e.g.
– Simple event counter, read only after all threads

complete.
• Need atomic increment. Visibility to other threads

unimportant.

– “Done” flag can usually become visible late.
– PLDI 05 Parallel Sieve or Eratosthenes example is

immune to all memory access reordering.

6/8/2010 94

Good reasons for enforcing
sequential consistency anyway:

• It’s really hard to explicitly specify memory
visibility ordering correctly.

• In our experience, such specifications are
usually wrong.

• It’s hard to keep violations of sequential
consistency local:
– Library routines using non-sequentially

consistent behavior internally are often visibly
not sequentially consistent.

6/8/2010 95

But can we afford that much
sequential consistency?

• Answer varies depending on hardware
and algorithm.
– On X86, major cost is that atomic stores turn

into atomic XCHG instruction.
• (1 cycle � dozens of cycles)
• Often negligible compared to coherence misses

– On PowerPC, atomic loads require (?) heavy
weight fence.

• Probably less acceptable.

– Most others somewhere in between.

6/8/2010 96

Bottom Line

• Languages grow “loopholes” to avoid overhead
for sequentially consistent atomics.

• For C++0x/C1x, the “loopholes” drove the
memory model specification

• Possibly a temporary issue?
• C++0x/C1x: Explicit memory_order_

specifications.

• Java: A growing list of more ad hoc exceptions.
– Worse alternative: growing use of unsafe code.

6/8/2010 97

C++0x Approach(1)

• Pairs of atomic operations cannot form a data
race.

• Operations that do not specify
memory_order_seq_cst (the default) are not
guaranteed to execute in a single total order.

• A memory_order_release store still
happens-before a memory_order_acquire
load that reads the value.

• Atomic load may see any store that doesn’t
happen after it, and is not hidden by another
store that “happens between” the two.

6/8/2010 98

C++0x Approach(2)

• A memory_order_relaxed operation also drops that
requirement.

• But operations on a single variable still behave as
though they were interleaved (cache coherent).

• A memory_order_consume operation behaves like
memory_order_acquire, but only with respect to
subsequent data-dependent operations.

• (And there are explicit fences if you really want them.)

6/8/2010 99

Dekker’s with C++0x low-level
atomics

• r1 = r2 = 0 is possible outcome.
• No cross-thread happens-before relationships � no constraints.
• Same as memory_order_relaxed.
• Allows ordinary MOV on X86, much cheaper on PowerPC.

x.store(1,memory_order_release);x.store(1,memory_order_release);x.store(1,memory_order_release);x.store(1,memory_order_release);

r1 = r1 = r1 = r1 = y.load(memory_order_acquirey.load(memory_order_acquirey.load(memory_order_acquirey.load(memory_order_acquire););););

y.store(1,memory_order_release);y.store(1,memory_order_release);y.store(1,memory_order_release);y.store(1,memory_order_release);

r2 = r2 = r2 = r2 = x.load(memory_order_acquirex.load(memory_order_acquirex.load(memory_order_acquirex.load(memory_order_acquire););););

atomic<int> x, y;
Thread 1:

Thread 2:

C++0x fine-tuned double-checked
locking

atomic<bool> x_init;

if (!x_init.load(memory_order_acquire) {

l.lock();

if (!x_init.load(memory_order_relaxed) {

initialize x;

x_init.store(true, memory_order_release);

}

l.unlock();

}

use x;

Non-sequentially-consistent
constructs in Java

• j.u.c.atomic.AtomicInteger.lazySet()
is roughly equivalent to
store(…, memory_order_release)

• weakCompareAndSet() behaves roughly like
memory_order_relaxed.

• Ordinary variables can be used roughly like
memory_order_relaxed.
– But even weaker: No cache coherence:

x = 1;x = 1;x = 1;x = 1;

x = 2;x = 2;x = 2;x = 2;

r1 = x;r1 = x;r1 = x;r1 = x;

r2 = x;r2 = x;r2 = x;r2 = x;

– Allows r1 = 2 and r2 = 1.

Semantics for Programs with Data Races

• DRF doesn’t define semantics of programs with data races

– Legal for computer to catch fire

• How to debug programs with data races?

• How to deal with safe languages like Java?

– Java cannot have undefined semantics for ANY program

– Must limit damage from data races in untrusted code

– Goal: Safety w/ maximum system flexibility

– Problem: “safety, limited damage” w/ threads very vague

Java Memory Model Highlights (1 of 5)
• Quick consensus for SC for DRF programs

• About 5 years for semantics for data races!

Initially X=Y=0

Thread 1 Thread 2

r1 = X r2 = Y

Y = r1 X = r2

Can X = Y = r1 = r2 = 42?

Out-of-thin-air example

• Data races produce causality loops!

– Definition of a causality loop was surprisingly hard

– Common compiler optimizations seem to violate“causality”

<your bank password>?

speculate 42

Java Memory Model Highlights (2 of 5)

• Common compiler optimizations violate causality

Initially X=0, Y=1

Thread 1 Thread 2

r1 = X r3 = Y

r2 = X X = r3

if (r1==r2) Y=2

• r1=r2=r3=2 seems to violate causality

• But compiler can eliminate redundant reads, move Y=2

• Challenge: Allow above but not thin-air causality loop

Java Memory Model Highlights (3 of 5)

• Key insights:

– Out-of-thin-air value comes from “thin air”

– Values in other causality violation come from some

reasonable execution of program

⇒ Somehow allow only speculative values from executions

that are somehow reasonable

• Took 5 years!

Java Memory Model Highlights (4 of 5)

• Non-operational spec: given an execution, is it legal?

– Commit several accesses at a time until all committed

• New commit candidates from well-formed executions

containing currently committed accesses

• But what is well-formed?

– SC is one possibility, but allows some controversial executions

– Final choice

• Happens-before consistent

• Uncommitted read does not return value of a racing write

– Always returns write that happens-before it

Java Memory Model Highlights (5 of 5)

• Problem: Incredibly complex!

• Problem: Adding synch allows more legal values

– Gave some surprising but acceptable behaviors

• Worse: Aspinall & Sevcik discovered a bug [VAMP’07]!

– Invalidates key theorem for reordering independent instructions

• Fix causality treatment??

Not me!!!

Lessons Learned from Java and C++

• SC for data-race-free minimal baseline

• Specifying semantics for programs with data races is HARD

– But “no semantics for data races” also has problems

• Not an option for safe languages; debugging; …

• Hardware-software mismatch for some code

– “Simple” optimizations have unintended consequences

⇒State-of-the-art is fundamentally broken

Lessons Learned from Java and C++

• SC for data-race-free minimal baseline

• Specifying semantics for programs with data races is HARD

– But “no semantics for data races” also has problems

• Not an option for safe languages; debugging; …

• Hardware-software mismatch for some code

– “Simple” optimizations have unintended consequences

⇒State-of-the-art is fundamentally broken

• Next: two ongoing research approaches that we are

(separately) working on

– Final solution may be a mix of these, one of these, or neither

Lessons Learned from Java and C++

• SC for data-race-free minimal baseline

• Specifying semantics for programs with data races is HARD

– But “no semantics for data races” also has problems

• Not an option for safe languages; debugging; …

• Hardware-software mismatch for some code

– “Simple” optimizations have unintended consequences

⇒State-of-the-art is fundamentally broken

Lessons Learned

• SC for data-race-free minimal baseline

• Specifying semantics for programs with data races is HARD

– But “no semantics for data races” also has problems

• Not an option for safe languages; ebugging; correctness checking tools

• Hardware-software mismatch for some code

– “Simple” optimizations have unintended consequences

⇒State-of-the-art is fundamentally broken

Banish shared-memory?

Lessons Learned

• SC for data-race-free minimal baseline

• Specifying semantics for programs with data races is HARD

– But “no semantics for data races” also has problems

• Not an option for safe languages; debugging; correctness checking tools

• Hardware-software mismatch for some code

– “Simple” optimizations have unintended consequences

⇒State-of-the-art is fundamentally broken

Banish wild shared-memory!

Lessons Learned

• SC for data-race-free minimal baseline

• Specifying semantics for programs with data races is HARD

– But “no semantics for data races” also has problems

• Not an option for safe languages; debugging; correctness checking tools

• Hardware-software mismatch for some code

– “Simple” optimizations have unintended consequences

⇒State-of-the-art is fundamentally broken

• We need

– Higher-level disciplined models that enforce discipline

– Hardware co-designed with high-level models

Banish wild shared-memory!

Lessons Learned

• SC for data-race-free minimal baseline

• Specifying semantics for programs with data races is HARD

– But “no semantics for data races” also has problems

• Not an option for safe languages; debugging; correctness checking tools

• Hardware-software mismatch for some code

– “Simple” optimizations have unintended consequences

⇒State-of-the-art is fundamentally broken

• We need

– Higher-level disciplined models that enforce discipline

– Hardware co-designed with high-level models

Banish wild shared-memory!

Deterministic Parallel Java [V. Adve et al.]

DeNovo hardware [S. Adve et al.]

Key: What Discipline, How to Enforce?

• Obvious discipline: Data-race-free

– Enforcement: Ideally, language prohibits by design

Else, runtime catches as exception

• But even data-race-free parallel programs are too hard

– Multiple interleavings due to unordered synchronization (or races)

– Makes reasoning and testing hard

• But many algorithms are deterministic

– Fixed input gives fixed output

– Standard model for sequential programs

– Also holds for many transformative parallel programs

Why write such an algorithm in non-deterministic style,

then struggle to understand and control its behavior?

Deterministic-by-Default Programming Model

• Parallel programs should be deterministic-by-default

– Sequential semantics (easier than SC!)

• If non-determinism is needed

– Should be explicitly requested

– Should be isolated from deterministic parts

• Enforcement:

– Ideally, language prohibits by design

– Else, runtime

State-of-the-art

• Many deterministic languages today

– Functional, pure data parallel, some domain-specific, …

– Much recent work on runtime, library-based approaches

• Our work: Language approach for modern O-O methods

– Deterministic Parallel Java (DPJ) [V. Adve et al.]

Deterministic Parallel Java (DPJ)
• Object-oriented type and effect system

– Use “named” regions to partition the heap

– Annotate methods with effect summaries: regions read or written

– If program type-checks, guaranteed deterministic

* Simple, modular compiler checking

* No run-time checks today, may add in future

– Side benefit: regions, effects are valuable documentation

• Extended sequential subset of Java (DPC++ ongoing)

– Initial evaluation for expressivity, performance [Oopsla09]

– Integrating disciplined non-determinism

– Encapsulating frameworks and unchecked code

– Semi-automatic tool for effect annotations [ASE09]

DeNovo Hardware Project [HotPar'10]

• Design hardware to exploit disciplined parallelism

– Simpler hardware

– Scalable performance

– Power/energy efficiency

• Working with DPJ as example disciplined model

– Exploit data-race-freedom, region/effect information

* Simpler coherence

* Efficient communication: point to point, bulk, …

* Efficient data layout: region vs. cache line centric memory

* Best of message passing and shared memory

Dynamic race avoidance

• A less drastic alternative:

– Stay with (more or less) existing programming languages.

– Outlaw data races everywhere, even in Java.

– Detect all violations.

– Raise exception so race outcome cannot be observed.

– No need to specify race semantics:

• SC for data-race-free suffices.

Making dynamic race avoidance real

• We know how to precisely detect data races (e.g.
Goldilocks (Elmas et al., PLDI 07), FastTrack (Flanagan
& Freund, PLDI 09) work).

• Slow for always-on, large worst-case space overhead.

• Alternative:
– Don’t detect all races. (Detect as many as possible for
debugging purposes.)

– But guarantee at least SC if race is not detected.

– DRFx (Marino et al., PLDI 10): Guarantee only SC.

– Conflict Exceptions (Lucia et al., ISCA 10): Guarantee also
atomicity for synchronization-free-regions.

PL semantics with dynamic data-race
detection

• Programs with data-races may abort.

• Programs that don’t abort have (at least) sequentially

consistent semantics.

Personal opinion

1. Sequential consistency for data-race-free programs,

with race detection

is a much better programming model than

2. Sequential consistency

Let’s work on the former, not the latter!

Conclusions

• Increasing consensus for “sequential
consistency for data-race-free” as the
fundamental model.

• This is a big improvement, but:
– This probably reflects existing software
practice better than existing research.

– This doesn’t sufficiently solve the problem
for Java.

– It exposes hardware/software mismatches.

• Less confusion, but still enough.

?

Open Issues

• We need a better story for shared variable semantics in

languages like Java!

• We need a better debugging story for all programming

languages.

• We need to avoid choice between poor performance or

incomprehensible memory ordering primitives.

– Better hardware?

