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Parallelism for the masses!

Shared-memory, threads most common

Memory model = Legal values for reads

Shared Variable Semantics or Memory Models

Our goals

• Demystify

• Convey pitfalls

• Convey fundamental problems

• Motivate new research



What is a Memory Model?

• Memory model defines what values a read can return

Initially A=B=Flag=0

Thread 1                       Thread 2    

A = 26                            while (Flag != 1) {;}

B = 90                            r1 = B  

… r2 = A       

Flag = 1 …

90
26 0

• Are concurrent accesses allowed?

• What is a concurrent access?

• When do updates become visible to other threads?

• Can an update be partially visible?

• …



Why Should You Care?

• Interface between program and transformers of program

– Affects programmer, compiler, runtime, hardware, …

C++ program Compiler

Dynamic 
optimizer

Hardware

• Weakest system component exposed to the programmer

– Not just a “hardware problem” nor just a “compiler problem”

– Not just a processor issue; memory design affects system model

A
ssem

bly



Desirable Properties of a Memory Model

• 3 Ps

– Programmability

– Performance

– Portability

• Challenge: hard to satisfy all 3 Ps



This Tutorial
• The problem

– Sequential consistency (SC) is intuitive

– But performance? And is SC really easy enough?

• Recent consensus: data-race-free

– SC only for good (data-race-free) programs

• Some research and practice pitfalls

• BUT data-race-free not the full answer

– Ultimate performance on current hardware?

– Undefined race semantics complicate safety, debugging, …

• Need new approach

– Some ongoing research



The Single Thread Model

• Program text defines total order = program order

• Single thread model

– Memory accesses execute one-at-a-time in program order

⇒⇒⇒⇒ Read returns value of last write

• BUT hardware & compilers overlap, reorder accesses

– Obey model by respecting control/data dependences

⇒⇒⇒⇒ Easy to use + high performance



Implicit Multithreaded Model

• Sequential consistency (SC)

– Accesses of each thread occur in program order

– All accesses occur in some sequential order (atomically)

MEMORY

T1 T3T2 Tn



Still Need Synchronization
Initially  X = 0

Thread 1 Thread 2

r1 = X; r2 = X;

X = r1+1;                               X = r2+1;
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Still Need Synchronization
Initially  X = 0

Thread 1 Thread 2

r1 = X;

r2 = X;

X = r1+1;                               

X = r2+1;

Result: r1=r2=0, X = 1

SC allows all program order consistent interleavings



Still Need Synchronization
Initially  X = 0

Thread 1 Thread 2

lock(L)                                  lock(L)

r1 = X; r2 = X;

X = r1+1;                               X = r2+1;

unlock(L)                               unlock(L)

Use locks (or other synch)  to restrict interleavings



Still Need Synchronization
Initially  X = 0

Thread 1 Thread 2

lock(L)                                  lock(L)

r1 = X; r2 = X;

X = r1+1;                               X = r2+1;

unlock(L)                               unlock(L)

Use locks (or other synch)  to restrict interleavings

Second lock must wait until first unlock



SC and Synchronization

• SC = program order + atomicity for memory accesses

• What is a memory access?

– Load, Store

– Synchronization

* Locks/unlocks, Fetch&Add, Compare&Swap, …

* Transaction begin/end like single lock (approximately)

* System must ensure read-modify-write is“atomic”



Understanding Program Order – Example 1

• Dekker’s algorithm for critical sections

Initially Flag1 = Flag2 = 0

Thread 1 Thread 2 

Flag1 = 1 Flag2 = 1 

if (Flag2 == 0) if (Flag1 == 0) 

critical section                  critical section

• Can happen on most hardware

– E.g., store buffers with load bypassing (no caches needed)

• Can happen with most compilers (more later)

01



Understanding Program Order - Example 2

Initially A = Flag = 0

Thread 1 Thread 2 

A = 26; while (Flag != 1) {;} 

Flag = 1; ... = A; 026

• Can happen if hardware overlaps/reorders stores or loads

• Can happen with most compilers



Understanding Program Order: Summary

SC limits program order relaxation

• Write →→→→ Read

• Write →→→→ Write 

• Read →→→→ Read, Write



Understanding Atomicity

• Isolation

– Nobody sees half-done access; e.g., partial word update

– Related to access granularity (more later)

• Serializability

– Access appears to occur at the same time to everyone

– Needs careful handling when multiple copies

– Focus next



Understanding Atomicity

• A mechanism needed to propagate a write to other copies 

– Cache coherence protocol

* Invalidate or update old copies in other caches

P1

CACHE

MEMORY MEMORY

A OLD

P2 Pn

A OLD

A OLD

BUS or NETWORK



Understanding Atomicity - Example 1
Initially A = B = C = 0 

Thread 1        Thread 2 Thread 3                    Thread 4

A = 1; A = 2;               while (B != 1) {;} while (B != 1) {;} 

B = 1; C = 1;               while (C != 1) {;}        while (C != 1) {;}

r1 = A;         r2 = A;    1 1

Can happen if updates of A reach Threads 3, 4 in different order

Coherence protocol must serialize writes to same location

(Writes to same location should be seen in same order by all)

Coherence example

2



Understanding Atomicity - Example 2

Initially A = B = 0 

Thread 1             Thread 2 Thread 3

A = 1; while (A != 1) {;} while (B != 1) {;} 

B = 1; r1 = A;    1

Can happen if read returns new value before all copies see it

E.g., Threads 1, 2 share a cache

2 sees 1’s write

3 sees 2’s write before 1’s write

Causality example

0



Understanding Atomicity – Example 3

Initially X = Y = 0

Thread 1         Thread 2         Thread 3         Thread 4

X=1                 Y=1                 r1 = X              r3 = Y

r2 = Y       r4 = X

Can happen if 

Threads 1 and 3 share the same cache, 3 sees 1’s write early

Threads 2 and 4 share the same cache, 4 sees 2’s write early

Independent reads, independent writes (IRIW) example

1 1

0 1 0



SC Summary for Hardware

SC limits

– Program order relaxation:

• Write →→→→ Read

• Write →→→→ Write 

• Read →→→→ Read, Write

– Unserialized writes to the same location

– Reading a write before it is seen by all
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Compiler issues
with sequential consistency

• Limits compiler reordering in addition to 
hardware reordering.
– Compiler wants to perform loads early, stores 

late.
– Hides latency, as for hardware.
– E.g. for Dekker’s example, if r1 and r2 are used 

immediately, it’s tempting to move up loads:

Flag1 = 1;

r1 = Flag2;

Flag2 = 1;

r2 = Flag1;

Thread 1: Thread 1:
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Cost of restricting compiler 
movement

• Intuition:
– Moving loads out of loops is important.
– Not generally possible with sequential 

consistency.
– More important issue than hardware 

reordering?
• But:

– Very sensitive to whole program analysis.
– Empirical results are much more mixed.

• E.g. Sura et al PPoPP 05, DRFx paper in 
PLDI ’10

• Not comfortable outlawing these 
optimizations.

for (i = …) {

a[i] += *p;

}

reload?
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Usability issue
with sequential consistency

• Sensitive to memory access granularity:
Thread 1 Thread 2
x = 300; x = 100;

– may result in x = 356 with sequentially consistent byte 
accesses.

• Need to reason at level of memory accesses.
– Not programmer meaningful.

• Want to reason about interleaving of 
“communication-free” source code sections.



This Tutorial
• The problem

– Sequential consistency (SC) is intuitive

– But performance? And is SC really easy enough?

• Recent consensus: data-race-free

– SC only for good (data-race-free) programs

• Some research and practice pitfalls

• BUT data-race-free not the full answer

– Ultimate performance on current hardware?

– Undefined race semantics complicate safety, debugging, …

• Need new approach

– Some ongoing research
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Real threads programming model
(1)

• Two memory accesses conflict if they
– access the same scalar variable*
– at least one access is a store.

• Two ordinary memory accesses participate in a data 
race if they
– conflict, and
– can occur simultaneously

• i.e. appear as adjacent operations in interleaving.

• A program is data-race-free (on a particular input) if no 
sequentially consistent execution results in a data race.

*to be refined for bit-fields
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Real threads programming model
(2)

• Sequential consistency only for data-race-
free programs!
– Avoid anything else.

• Data races are prevented by
– locks (or atomic sections) to restrict 

interleaving

– declaring synchronization variables (stay 
tuned …)



Alternate data-race-free definition:
happens-before

• Memory access a happens-before b if
– a precedes b in program order.
– a and b are synchronization operations, 

and b observes the results of a, thus 
enforcing ordering between them.

• e.g. a unlocks m, b subsequently locks m.
– Or there is a c such that a happens-before 

c and c happens-before b.
• Two ordinary memory operations a

and b participate in a data race in a 
particular execution, if neither
– a happens-before b,
– nor b happens-before a.

lock(m);

t = x + 1;

x = t;

unlock(m)

lock(m);

t = x + 1;

x = t;

unlock(m)

Thread 1:

Thread 2:

• Set of data-race-free programs usually the 
same.
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Data Races

• Are defined in terms of sequentially 
consistent executions.

• If x and y are initially zero, this does not
have a data race:

Thread 1 Thread 2
if (x) if (y)

y = 1; x = 1;



6/8/2010 38

Bit-fields

• Is this a data race?
• Yes.

– Real hardware can’t update them independently.
• Stay tuned for illustration of why this matters.

– Races in C++0x are defined in terms of “memory locations”.
– “Memory location” is either

• scalar variable, or
• contiguous bit-field sequence.

structstructstructstruct { { { { intintintint a:3; a:3; a:3; a:3; intintintint b:2;} x;b:2;} x;b:2;} x;b:2;} x;

x.ax.ax.ax.a = 1;= 1;= 1;= 1; x.bx.bx.bx.b = 2;= 2;= 2;= 2;

Thread 1: Thread 2:
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SC for DRF programming model 
advantages over SC

• Supports important hardware & compiler 
optimizations.

• DRF restriction �Independence from 
memory access granularity.
– Hardware independence.

– Synchronization-free library calls are atomic.
– Really a different and better programming 

model than SC.



Library implemented objects often 
behave like built-in data

• HashSet operations participate in a data-
race if two threads simultaneously access 
the same HashSet, and one is an update.

• In race-free programs HashSet operations 
are atomic.

• HashSets may be shared or private.
– If shared, caller arranges for synchronization.
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Synchronization variables

• Java: volatile, java.util.concurrent.atomic.
• C++0x: atomic<int>
• C1x, C++0x: atomic_int, _Atomic(int)
• Guarantee indivisibility of operations.
• “Don’t count” in determining whether there is a data race:

– Programs with “races” on synchronization variables are still 
sequentially consistent.

– Though there may be “escapes”.

• Dekker’s algorithm  “just works” with synchronization 
variables.
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As expressive as races

bool x_init;

if (!x_init) {

l.lock();

if (!x_init) {

initialize x;

x_init = true;

}

l.unlock();

}

use x;

atomic<bool> x_init;

if (!x_init) {

l.lock();

if (!x_init) {

initialize x;

x_init = true;

}

l.unlock();

}

use x;

Double-checked locking: 
Wrong!

Double-checked locking: 
Correct (C++0x):
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Some variants
C++ draft (C++0x)

C draft (C1x)

SC for DRF*,
Data races are errors

Java SC for DRF**, 
More details later.

Posix threads SC for drf (sort of, no atomics)

Ada 83 SC for drf (sort of)

OpenMP, Fortran 2008 SC for drf
(except atomics, sort of)

.Net Getting there, we hope ☺

* Except explicitly specified memory ordering.  ** Except some j.u.c.atomic.



SC for DRF implementation model 
(1)

• Very restricted reordering of 
memory operations around 
synchronization operations:
– Compiler either understands these, or 

treats them as opaque, potentially 
updating any location.

– Synchronization operations include 
instructions to limit or prevent 
hardware reordering (“memory 
fences”).

• e.g. lock acquisition, release, atomic 
store, might contain memory fences.

lock();lock();lock();lock();

unlock();unlock();unlock();unlock();

synch-free

code

region

synch-free

code

region



SC for DRF implementation model 
(2)

• Code may be reordered 
between synchronization 
operations.
– Another thread can only tell if it 

accesses the same data between 
reordered operations.

– Such an access would be a data 
race.

• If data races are disallowed
(e.g. Posix, Ada, C++0x, not
Java), compiler may assume 
that variables don’t change 
asynchronously.

lock();lock();lock();lock();

unlock();unlock();unlock();unlock();

synch-free

code

region

synch-free

code

region
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Possible effect of “no asynchronous 
changes” compiler assumption:

• Assume switch 
statement compiled as 
branch table.

• May assume x is in 
range.

• Asynchronous change to 
x causes wild branch.
– Not just wrong value.

• Rare, but possible in 
current compilers?

unsigned x;

If (x < 3) {

… // async x change
switch(x) {

case 0: …

case 1: …

case 2: …

}

}
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SC for DRF implementation 
constraints: Compilers

• Compilers must not introduce visible data 
races.

• Unfortunately, sequentially correct 
optimization can.

• Most current compilers do. �

• Some examples:
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Introducing Races:
Struct field update

struct {char a; int b:5; int c:11; char d;} x;

• Is it safe to protect c and d with separate locks?

Thread1:

x.c = 1;

Thread2:

x.d = 1;

commonly implemented as

Thread1:

tmp = x;

tmp.c = 1;

x = tmp;

Thread2:

x.d = 1;
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Struct field update (contd 1):
struct {char a; int b:5; int c:11; char d;} x;

• Is it safe to protect c and d with separate locks?

Thread1:

tmp = x;

tmp.c = 1;

x = tmp;

Thread2:

x.d = 1;

a: 0; b: 0; c: 0;  d: 0;x:
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Struct field update (contd 2):
struct {char a; int b:5; int c:11; char d;} x;

• Is it safe to protect c and d with separate locks?

Thread1:

tmp = x;

tmp.c = 1;

x = tmp;

Thread2:

x.d = 1;

a: 0; b: 0; c: 0;  d: 0;x:

tmp: a: 0; b: 0; c: 0;  d: 0;
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Struct field update (contd 3):
struct {char a; int b:5; int c:11; char d;} x;

• Is it safe to protect c and d with separate locks?

Thread1:

tmp = x;

tmp.c = 1;

x = tmp;

Thread2:

x.d = 1;

a: 0; b: 0; c: 0;  d: 0;x:

tmp: a: 0; b: 0; c: 1;  d: 0;



6/8/2010 52

Struct field update (contd 4):
struct {char a; int b:5; int c:11; char d;} x;

• Is it safe to protect c and d with separate locks?

Thread1:

tmp = x;

tmp.c = 1;

x = tmp;

Thread2:

x.d = 1;

a: 0; b: 0; c: 0;  d: 1;x:

tmp: a: 0; b: 0; c: 1;  d: 0;
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Struct field update (contd 5):
struct {char a; int b:5; int c:11; char d;} x;

• Is it safe to protect c and d with separate locks?

Thread1:

tmp = x;

tmp.c = 1;

x = tmp;

Thread2:

x.d = 1;

a: 0; b: 0; c: 0;  d: 1;x:

tmp: a: 0; b: 0; c: 1;  d: 0;a: 0; b: 0; c: 1;  d: 0;



6/8/2010 54

Struct field update (contd 6):
struct {char a; int b:5; int c:11; char d;} x;

• Is it safe to protect c and d with separate locks?

Thread1:

tmp = x;

tmp.c = 1;

x = tmp;

Thread2:

x.d = 1;

a: 0; b: 0; c: 1;  d: 0;x:

•This behavior is currently allowed and common.

�No two fields can safely be independently updated.



6/8/2010 55

Introducing Races:
Register Promotion 1

[g is global]

for(...) {

if(mt) lock();

use/update g;

if(mt) unlock();

}

r = g;

for(...) {

if(mt) {

g = r; lock(); r = g;

}

use/update r instead of g;

if(mt) {

g = r; unlock(); r = g;

}

}

g = r;
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Introducing Races:
Register Promotion 2

int count; // global, possibly shared

…

for (p = q; p != 0; p = p -> next)

if (p -> data > 0) ++count;

int count; // global, possibly shared

…

reg = count;

for (p = q; p != 0; p = p -> next)

if (p -> data > 0) ++reg;

count = reg; // may spuriously assign to count 
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Introducing data races:
Potentially infinite loops

• x may not be accessed!
• Prohibited in Java.
• Allowed by giving undefined behavior to 

such infinite loops in C++0x.  
(Controversial.)

while (…) { a[i] = 1; }

x = 1;

x = 1;

while (…) { a[i] = 1; }

?
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Some added data races are 
sometimes OK

• May add data race if loop iterates 0 times.
• Disallowed as C++0x source transformation.
• But racing load with unused result is benign in most target ISAs, and 

in Java.
• Generally allowed as compiler transformation.
• Incorrect if hardware were to detect data races. 

– Use prefetch instead, or avoid load in zero-iteration case.

while (…) {

…; y = g; …

}

r = g;

while (…) {

…; y = r; …

}

?
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Synchronization primitives need 
careful definition

• lock(), unlock(), like all other 
synchronization accesses, cannot be visibly 
reordered w.r.t. other accesses.

• But moving memory accesses into critical 
section is not detectable by a data-race-free 
program using only lock(), unlock().  (Cf. 
Boehm, PPoPP 07)

• Implementations that allow one-way reordering 
are common, and faster.

• But what about trylock()/timedlock()?
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Trylock restricts lock() reordering:

• Some really awful code:

x = 42;

lock();

while (trylock() == SUCCESS)

unlock();

assert (x == 42);

Thread 1: Thread 2:

• Note:

• Example requires tweaking to be pthreads-compliant.

• In some happens-before formulations, this has a data race

Don’t try this at home!!

• Can’t move x = 42 into “critical section”!
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With Trylock:
Critical section reordering?

• Reordering of memory operations with respect to critical 
sections:

Expected (& Java):    Naïve pthreads:   Optimized pthreads

unlock()

lock()

unlock()

lock()

unlock()

lock()
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Some open source pthread lock 
implementations (2006):

lock() lock()

[technically incorrect]

NPTL

{Alpha, PowerPC}

{mutex, spin}

[Correct, slow]

NPTL

Itanium (&X86)

mutex

[Correct]

NPTL

{ Itanium, X86 }

spin

[Incorrect]

FreeBSD

Itanium

spin

unlock() unlock()

lock()

unlock() unlock()

lock()



SC for DRF Implementation: Hardware

• Hardware models took different trajectory from DRF

• Largely motivated by hardware optimizations

• Next

– Brief overview of hardware models

– Mapping DRF to hardware models

– Limitations with current hardware

• Problems with fences



Classification for Relaxed Hardware Models
• Typically described as hardware optimizations

– Program order relaxation:

• Write →→→→ Read

• Write →→→→ Write 

• Read →→→→ Read, Write

– Read others’ write early

– Read own write early

• All models provide 

– Some form of write serialization

– Some form of single thread data/control dependences

• Subtleties for models that relax Read →→→→ Read (not covered here)

– Safety net (e.g., fences, memory barriers) to prohibit optimization

– Atomic RMW, with some subtle differences (not covered here)

• Many subtleties, ambiguities not covered here 



Major Relaxed Hardware Models*

sync, lwsync��������������������PowerPC

various MEMBARs����������������RMO

MB, WMB����������������Alpha

release, acquire, 
nsync, RMW

��������������������RCpc

release, acquire, 
nsync, RMW

����������������RCsc

synchronization����������������WO

RMW, STBAR������������PSO

RMW������������PC

RMW, fences��������TSO (x86)

serialization 
instructions

����IBM 370

Safety NetRead Own 
Write Early

Read Others’
Write Early

R →→→→RW 
Order

W →→→→W 
Order

W →→→→R 
Order

Relaxation

* HP PA-RISC and MIPS R10000 processors potentially SC (depending on rest of system)

LD.acq, ST.rel, mf����������������Itanium



Mapping DRF to Hardware Models

• Use safety net to prohibit hardware model optimizations

– But most focus on program order, not atomicity

– DRF requires SC synch ⇒⇒⇒⇒ program order + atomicity

– Many subtle issues

• For some hardware, fences not sufficient

• For others, fences over-constrain

• Unintended hardware/software mismatch

• Don’t forget access granularity



Mapping DRF to Hardware: Program Order

• For program order, sufficient to enforce 

• E.g., TSO/x86: need care for Synch Store →→→→ Synch Load

– Insert mfence/membar after each Synch Store

– Or convert Synch Store to RMW (xchg)

• E.g., PowerPC: also need care for Synch Load →→→→ X

– Insert additional fence after each  Synch Load 

(many subtleties not covered here)

Synch

Synch

Data

Synch Store

Synch Load

Data



Mapping DRF to Hardware: Atomicity

Independent reads, independent writes (IRIW):

X and Y are synch and initially 0

Thread 1         Thread 2         Thread 3         Thread 4

X=1                 Y=1                 r1 = X   r3 = Y

fence              fence

r2 = Y              r4 = X

• Must prohibit reading others’ write too early

– Can happen if threads share caches (see previous slide)

– Some hardware specs were vague on IRIW

• But programmers don’t use IRIW!

– Why pay cost of SC if programmers won’t use it?

• Much pressure to change SC semantics for synch

1 1

0 1 0



Change SC Synch Requirement of DRF?

• Much pressure to change SC for synch to allow IRIW opt

– Showed IRIW opt gives unacceptable behavior for other codes

• Violates composition of  write causality + coherence

– No simple alternate model found

• Problem with IRIW

– Mainly hardware-software mismatch

– Ensuring we don’t read synch writes too early is not hard

• Ensure for all stores or

• Ensure only for clearly marked synch stores (e.g., xchg for x86)

• Be careful with fences

• Current status

– X86 spec is now changed so all stores atomic

– PowerPC still requires heavyweight fence



More Problems with Fences

• IRIW discussion showed fences often under-constrained

• Next: Fences often over-constrained



Fences May Over-constrain (1 of 2)

• Fences typically order all prior LD/ST w.r.t. all later LD/ST

– We want ordering w.r.t. specific synchronization accesses

ssss is a synchronization variable

x = 1;x = 1;x = 1;x = 1;

s = 2;  s = 2;  s = 2;  s = 2;  // includes fence

r1 = y;r1 = y;r1 = y;r1 = y;

– Unnecessarily prevents reordering of x = 1 and r1 = y;

• One solution: distinguish synch LD/ST in hardware



Fences May Over-constrain (2 of 2)

• Don't really need program order

Thread1 Thread2 

A =  26; while (Flag != 1)  {;}

B =  90;                               … = B;

Flag = 1; … = A; 

• Can postpone stores of A, B to load, Flag, 1

• Can postpone stores of A, B to loads of A, B

• Can exploit last two observations with

– Lazy invalidations

– Lazy release consistency on software DSMs



Fences Summary

• Memory ordering prescribes interactions between threads

• Most fences constrain interactions within a thread

⇒⇒⇒⇒ Fundamental mismatch



Don't Forget Access Granularity

• Data-race-freedom guaranteed for byte (or higher) granularity

• x.cx.cx.cx.c = = = = ‘‘‘‘aaaa’;   may not visibly read and rewrite adjacent fields

• Byte stores must be implemented with

– Byte store instruction, or

– Atomic read-modify-write

• Typically expensive on multiprocessors



DRF Summary So Far

• SC for DRF programs is minimal programming model

• But some hardware-software mismatch

– Many attempts for alternatives, but unsuccessful

• But what about programs with races?

– Key open problem in language semantics



Initial Alternatives to DRF (1 of 2)

• Use hardware-centric models

– But not suitable for programming models

– No common model covers all desirable optimizations

• Sequential Consistency

– Use hardware speculation, prefetching to overcome perf limits

• But complex hardware (interface must last through trends)

• But compilers still limited by SC (previous slides)

• But SC not good enough model (previous slides)



Initial Alternatives to DRF (2 of 2)
• Happens-before consistency

– If X, Y conflict & X happens-before Y, then X executes before Y

Thread1 Thread2 

A =  26; while (Flag != 1)  {;}

B =  90;                                   … = B;

Flag = 1; … = A; 

– But does not give SC for data-race-free programs

Initially A=B=0

Thread1 Thread2 

If (A==1) B=1                          if (B==1) A=1

Happens-before consistency allows A=B=1

• More alternatives coming up later



This Tutorial
• The problem

– Sequential consistency (SC) is intuitive

– But performance? And is SC really easy enough?

• Recent consensus: data-race-free

– SC only for good (data-race-free) programs

• Some research and practice pitfalls

• BUT data-race-free not the full answer

– Ultimate performance on current hardware?

– Undefined race semantics complicate safety, debugging, …

• Need new approach

– Some ongoing research
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Research and practice pitfalls

• Our goal is not to embarrass authors of 
prior work.

• Much of what we cite predates clarity 
about memory models, or was intended for 
sequential code.

• And we might even be confused about 
some of this.

• But: Beware of “established practice” in 
this field!
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Research and practice pifalls

• We’ve already seen a few mis-steps:
– Posix (since 1995), Ada 83, … are very clear that 

data races are disallowed.
• But we found substantial disagreement as to what a data 

race is.
– Including among committee members, researchers, …

– Confusion about lock ordering semantics
– Similar issues with e.g. gcc __sync operations.

• Nobody gets explicit memory ordering right?

– Memory fences are pervasive.
• But are they the right mechanism?

• Some more:
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Uncertainty about hardware 
memory models

• Some processor vendors published 
precise memory models.

• Others did not (e.g. X86 before 2007).
• Hard to fix with multiple processor & 

chipset vendors (e.g. X86, MIPS)
• Recent efforts by academics, notably 

Peter Sewell’s group, help.
• Don’t believe e.g. pre-2006 x86 hardware 

specs!  (If you figure out what they mean.)



Sequential consistency by fence 
insertion

• Many papers, starting with Shasha & Snir, 
April 88, TOPLAS, look at sequential 
consistency enforcement with fences, but

• Too little attention was paid to whether 
real hardware fences could do this at all.
– Unclear for X86 and PowerPC until 2007+.

– Fences + ordinary ld/st insufficient for Itanium.
• Need st.rel for store atomicity (serializability).
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Infinite loops

• Published compiler 
optimizations (e.g. “Lazy 
Code Motion”, by Knoop et 
al, PLDI ’92 most influential 
paper) usually consider only 
paths from start node to end 
node in CFG?
– Not always safe in Java.
– Issue not addressed in 

literature?

?



Assuming that libraries are “thread-
safe” or “thread-unsafe”.

• Most libraries should ensure that:
– Simultaneous “read” accesses are safe.

• No hidden updates, e.g. unprotected reference counts!
– Simultaneous accesses to logically disjoint objects 

are safe.
• No hidden shared data structures.

• Client locks when there is a logical data race.
– Just like built-in scalar types.

• Minimal overhead for thread-local use.
• This is not “thread-safe” by most definitions.
• This is not completely “thread-unsafe”.
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Assuming sequential consistency
when unwarranted

• Common in programming language research literature.
• One example:

– “Atomic set serializability” (Hammer et al., 2008) looks for 
atomicity bugs by finding certain access sequences .

– Detects a subset of what we call data races.
– Accesses do not form a sequence unless they are data-race-free 

(our definition).

• But sequential consistency should continue to play an 
important analysis.  Can verify safety by:
– Ensuring DRF using SC analysis.
– Verifying properties using SC analysis.



6/8/2010 86

Sequential consistency in compiler 
program analysis

• Program analysis based purely on sequential 
consistency is unsound for Java:
– Actual executions allow more behaviors.

• Program analysis based on sequential 
consistency is sound, but weak for C++0x:
– Programs without races are SC.
– Programs with races may be “miscompiled”.
– But the absence of races provides a lot of additional 

information:
• e.g. atomicity of sync-free regions.



Assuming shared objects must be 
accessed in critical sections

• E.g. ignoring “privatization safety” for 
transactional memory.

tmp1 = new foo();

tmp1.value = 17;

q.put(tmp1);

tmp2 = q.take();

… tmp2.value …

Thread 1: Thread 2:
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Incorrect modeling of 
synchronization primitives

• Condition variable waits may return 
spuriously in Java 5+/pthreads/C++0x.

• Cannot assume that wait() blocks until 
notify(). (E.g. MHP analysis)

• For partial correctness purposes, wait()
is equivalent to unlock(); lock().

• Analyzing wait()/notify() requires 
reasoning about underlying predicate!
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Dubious definition of
synchronization primitives

• Example: Boost threads defines thread 
destructor to detach associated thread.

intintintint f () {f () {f () {f () {

intintintint x, y;x, y;x, y;x, y;

thread thread thread thread t(computet(computet(computet(compute, &x);  // compute value of x, &x);  // compute value of x, &x);  // compute value of x, &x);  // compute value of x

y = y = y = y = do_something_elsedo_something_elsedo_something_elsedo_something_else();();();();

t.joint.joint.joint.join();();();();

return x + y;return x + y;return x + y;return x + y;

}}}}

• What if do_something_else() throws?
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Some common features don’t 
combine well

• Detached threads (e.g. Posix)
– Run until they finish or process ends

– e.g. a service for a library

• C++ destructors for static objects
– Called just before process shutdown

• Detached threads run with invalid global 
variables just before shutdown?!



This Tutorial
• The problem

– Sequential consistency (SC) is intuitive

– But performance? And is SC really easy enough?

• Recent consensus: data-race-free

– SC only for good (data-race-free) programs

• Some research and practice pitfalls

• BUT data-race-free not the full answer

– Ultimate performance on current hardware?

– Undefined race semantics complicate safety, debugging, …

• Need new approach

– Some ongoing research
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But data-race-free not the full 
answer

• Sequential Consistency, even for data-
race-free programs, may be expensive on 
current hardware.
– Too expensive for some highly tuned 

performance critical applications?

• Undefined semantics for data races are 
not always acceptable.
– For debugging.
– For sand-boxed code.



Sequential consistency may be 
expensive

• We require sequential consistency for 
volatile/atomic operations.

• Many lock-free algorithms don’t need full 
sequential consistency, e.g.
– Simple event counter, read only after all threads 

complete.
• Need atomic increment.  Visibility to other threads 

unimportant.

– “Done” flag can usually become visible late.
– PLDI 05 Parallel Sieve or Eratosthenes example is 

immune to all memory access reordering.
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Good reasons for enforcing 
sequential consistency anyway:

• It’s really hard to explicitly specify memory 
visibility ordering correctly.

• In our experience, such specifications are 
usually wrong.

• It’s hard to keep violations of sequential 
consistency local:
– Library routines using non-sequentially 

consistent behavior internally are often visibly 
not sequentially consistent.
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But can we afford that much 
sequential consistency?

• Answer varies depending on hardware 
and algorithm.
– On X86, major cost is that atomic stores turn 

into atomic XCHG instruction.
• (1 cycle � dozens of cycles)
• Often negligible compared to coherence misses

– On PowerPC, atomic loads require (?) heavy 
weight fence.

• Probably less acceptable.

– Most others somewhere in between.
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Bottom Line

• Languages grow “loopholes” to avoid overhead 
for sequentially consistent atomics.

• For C++0x/C1x, the “loopholes” drove the 
memory model specification

• Possibly a temporary issue?
• C++0x/C1x: Explicit memory_order_

specifications.

• Java: A growing list of more ad hoc exceptions.
– Worse alternative: growing use of unsafe code.
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C++0x Approach(1)

• Pairs of atomic operations cannot form a data 
race.

• Operations that do not specify 
memory_order_seq_cst (the default) are not 
guaranteed to execute in a single total order.

• A memory_order_release store still 
happens-before a memory_order_acquire
load that reads the value. 

• Atomic load may see any store that doesn’t 
happen after it, and is not hidden by another 
store that “happens between” the two.
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C++0x Approach(2)

• A memory_order_relaxed operation also drops that 
requirement.

• But operations on a single variable still behave as 
though they were interleaved (cache coherent).

• A memory_order_consume operation behaves like 
memory_order_acquire, but only with respect to 
subsequent data-dependent operations.

• (And there are explicit fences if you really want them.)
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Dekker’s with C++0x low-level 
atomics

• r1 = r2 = 0 is possible outcome.
• No cross-thread happens-before relationships � no constraints.
• Same as memory_order_relaxed.
• Allows ordinary MOV on X86, much cheaper on PowerPC.

x.store(1,memory_order_release);x.store(1,memory_order_release);x.store(1,memory_order_release);x.store(1,memory_order_release);

r1 = r1 = r1 = r1 = y.load(memory_order_acquirey.load(memory_order_acquirey.load(memory_order_acquirey.load(memory_order_acquire););););

y.store(1,memory_order_release);y.store(1,memory_order_release);y.store(1,memory_order_release);y.store(1,memory_order_release);

r2 = r2 = r2 = r2 = x.load(memory_order_acquirex.load(memory_order_acquirex.load(memory_order_acquirex.load(memory_order_acquire););););

atomic<int> x, y;
Thread 1:

Thread 2:



C++0x fine-tuned double-checked 
locking

atomic<bool> x_init;

if (!x_init.load(memory_order_acquire) {

l.lock();

if (!x_init.load(memory_order_relaxed) {

initialize x;

x_init.store(true, memory_order_release);

}

l.unlock();

}

use x;



Non-sequentially-consistent 
constructs in Java

• j.u.c.atomic.AtomicInteger.lazySet()
is roughly equivalent to
store(…, memory_order_release)

• weakCompareAndSet() behaves roughly like 
memory_order_relaxed.

• Ordinary variables can be used roughly like 
memory_order_relaxed.
– But even weaker: No cache  coherence:

x = 1;x = 1;x = 1;x = 1;

x = 2;x = 2;x = 2;x = 2;

r1 = x;r1 = x;r1 = x;r1 = x;

r2 = x;r2 = x;r2 = x;r2 = x;

– Allows r1 = 2 and r2 = 1.



Semantics for Programs with Data Races

• DRF doesn’t define semantics of programs with data races

– Legal for computer to catch fire

• How to debug programs with data races?

• How to deal with safe languages like Java?

– Java cannot have undefined semantics for ANY program

– Must limit damage from data races in untrusted code

– Goal: Safety w/ maximum system flexibility

– Problem: “safety, limited damage” w/ threads very vague



Java Memory Model Highlights (1 of 5)
• Quick consensus for SC for DRF programs

• About 5 years for semantics for data races!

Initially X=Y=0

Thread 1           Thread 2                                            

r1 = X           r2 = Y

Y = r1          X = r2

Can X = Y = r1 = r2 = 42?

Out-of-thin-air example

• Data races produce causality loops!

– Definition of a causality loop was surprisingly hard

– Common compiler optimizations seem to violate“causality”

<your bank password>?

speculate 42



Java Memory Model Highlights (2 of 5)

• Common compiler optimizations violate causality

Initially X=0, Y=1

Thread 1                     Thread 2

r1 = X                           r3 = Y

r2 = X                            X = r3

if (r1==r2) Y=2

• r1=r2=r3=2 seems to violate causality

• But compiler can eliminate redundant reads, move Y=2

• Challenge: Allow above but not thin-air causality loop



Java Memory Model Highlights (3 of 5)

• Key insights:

– Out-of-thin-air value comes from “thin air”

– Values in other causality violation come from some 

reasonable execution of program

⇒ Somehow allow only speculative values from executions 

that are somehow reasonable

• Took 5 years!



Java Memory Model Highlights (4 of 5)

• Non-operational spec: given an execution, is it legal?

– Commit several accesses at a time until all committed

• New commit candidates from well-formed executions 

containing currently committed accesses

• But what is well-formed?

– SC is one possibility, but allows some controversial executions

– Final choice

• Happens-before consistent

• Uncommitted read does not return value of a racing write

– Always returns write that happens-before it



Java Memory Model Highlights (5 of 5)

• Problem: Incredibly complex!

• Problem: Adding synch allows more legal values

– Gave some surprising but acceptable behaviors

• Worse: Aspinall & Sevcik discovered a bug [VAMP’07]!

– Invalidates key theorem for reordering independent instructions

• Fix causality treatment?? 

Not me!!!



Lessons Learned from Java and C++

• SC for data-race-free minimal baseline

• Specifying semantics for programs with data races is HARD

– But “no semantics for data races” also has problems

• Not an option for safe languages; debugging; …

• Hardware-software mismatch for some code

– “Simple” optimizations have unintended consequences

⇒State-of-the-art is fundamentally broken
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• SC for data-race-free minimal baseline

• Specifying semantics for programs with data races is HARD

– But “no semantics for data races” also has problems

• Not an option for safe languages; debugging; …

• Hardware-software mismatch for some code

– “Simple” optimizations have unintended consequences

⇒State-of-the-art is fundamentally broken

• Next: two ongoing research approaches that we are 

(separately) working on

– Final solution may be a mix of these, one of these, or neither
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• We need

– Higher-level disciplined models that enforce discipline
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Deterministic Parallel Java [V. Adve et al.] 

DeNovo hardware [S. Adve et al.]



Key: What Discipline, How to Enforce?

• Obvious discipline: Data-race-free

– Enforcement: Ideally, language prohibits by design

Else, runtime catches as exception

• But even data-race-free parallel programs are too hard

– Multiple interleavings due to unordered synchronization (or races)

– Makes reasoning and testing hard

• But many algorithms are deterministic

– Fixed input gives fixed output

– Standard model for sequential programs

– Also holds for many transformative parallel programs

Why write such an algorithm in non-deterministic style,      

then struggle to understand and control its behavior?



Deterministic-by-Default Programming Model

• Parallel programs should be deterministic-by-default

– Sequential semantics (easier than SC!)

• If non-determinism is needed

– Should be explicitly requested

– Should be isolated from deterministic parts

• Enforcement: 

– Ideally, language prohibits by design

– Else, runtime



State-of-the-art

• Many deterministic languages today

– Functional, pure data parallel, some domain-specific, …

– Much recent work on runtime, library-based approaches

• Our work: Language approach for modern O-O methods

– Deterministic Parallel Java (DPJ) [V. Adve et al.]



Deterministic Parallel Java (DPJ)
• Object-oriented type and effect system

– Use “named” regions to partition the heap

– Annotate methods with effect summaries: regions read or written

– If program type-checks, guaranteed deterministic

* Simple, modular compiler checking

* No run-time checks today,  may add in future

– Side benefit: regions, effects are valuable documentation

• Extended sequential subset of Java (DPC++ ongoing)

– Initial evaluation for expressivity, performance [Oopsla09]

– Integrating disciplined non-determinism

– Encapsulating frameworks and unchecked code

– Semi-automatic tool for effect annotations [ASE09]



DeNovo Hardware Project [HotPar'10]

• Design hardware to exploit disciplined parallelism

– Simpler hardware

– Scalable performance

– Power/energy efficiency

• Working with DPJ as example disciplined model

– Exploit data-race-freedom, region/effect information

* Simpler coherence

* Efficient communication: point to point, bulk, …

* Efficient data layout: region vs. cache line centric memory

* Best of message passing and shared memory



Dynamic race avoidance

• A less drastic alternative:

– Stay with (more or less) existing programming languages.

– Outlaw data races everywhere, even in Java.

– Detect all violations.

– Raise exception so race outcome cannot be observed.

– No need to specify race semantics:

• SC for data-race-free suffices.



Making dynamic race avoidance real

• We know how to precisely detect data races (e.g. 
Goldilocks (Elmas et al., PLDI 07), FastTrack (Flanagan 
& Freund, PLDI 09) work).

• Slow for always-on, large worst-case space overhead.

• Alternative:
– Don’t detect all races.  (Detect as many as possible for 
debugging purposes.)

– But guarantee at least SC if race is not detected.

– DRFx (Marino et al., PLDI 10): Guarantee only SC.

– Conflict Exceptions (Lucia et al., ISCA 10): Guarantee also 
atomicity for synchronization-free-regions.



PL semantics with dynamic data-race 
detection

• Programs with data-races may abort.

• Programs that don’t abort have (at least) sequentially 

consistent semantics.



Personal opinion

1. Sequential consistency for data-race-free programs, 

with race detection

is a much better programming model than

2. Sequential consistency

Let’s work on the former, not the latter!



Conclusions

• Increasing consensus for “sequential 
consistency for data-race-free” as the 
fundamental model.

• This is a big improvement, but:
– This probably reflects existing software 
practice better than existing research.

– This doesn’t sufficiently solve the problem 
for Java.

– It exposes hardware/software mismatches.

• Less confusion, but still enough.

?     



Open Issues

• We need a better story for shared variable semantics in 

languages like Java!

• We need a better debugging story for all programming 

languages.

• We need to avoid choice between poor performance or 

incomprehensible memory ordering primitives.

– Better hardware?


