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Abstract

Software bugs are everywhere. Not only do they infest software during development, but they
escape our extermination efforts and enter production code. In addition to severe frustration
to customers, software failures result in billions of dollars of lost revenue to service providers.
The most important steps for debugging and eliminating a software failure are reproducing
the failure and finding its root cause, either during development time or during production
run. Currently, debugging is a costly, time-consuming and manual process. Automating
some of these steps will greatly help developers, reduce costs, increase productivity and
software reliability. In this thesis proposal, I propose a novel way of doing automated
software bug diagnosis.

Reproducing bug symptoms is a prerequisite for performing automatic bug diagnosis.
Do bugs have characteristics that ease or hinder automatic bug diagnosis? As a first step,
we conducted a thorough empirical study of several key characteristics of bugs that affect
reproducibility at the production site [1]. We manually examined 266 randomly selected
bug reports of six server applications and consider their implications on automatic bug
diagnosis tools. Our results were promising. From the study, we found that nearly 82%
of bug symptoms can be reproduced deterministically by re-running with the same set of
inputs at the production site. We further found that very few input requests are needed to
reproduce most failures; in fact, just one input request after session establishment suffices to
reproduce the failure in nearly 77% of the cases. We describe the implications of the results
on reproducing software failures and designing automated diagnosis tools for production

runs.
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We also propose an automatic diagnosis technique for isolating the root cause(s) of soft-
ware failures after it is reproduced [2]. We use likely program invariants, constructed using
automatically generated good inputs that are close to the fault-triggering input, to select
a set of candidate program locations which are possible root causes. We then trim the set
of candidate root causes using software-implemented dynamic backwards slicing, plus two
new filtering heuristics: dependence filtering, and filtering via multiple failing inputs that
are also close to original failing input. Experimental results on 13 reported software bugs
of three large open-source servers MySQL, Squid, Apache web server and LLVM C/C++
clang compiler show that we are able to narrow down the number of candidate bug locations
to between 5 and 28 locations for 12 out of 13 software bugs, even in programs that are
hundreds of thousands of lines long. In our earlier work, we also showed invariants based

techniques can be leveraged to effectively detect permanent hardware faults [3].
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Chapter 1

Introduction

1.1 Motivation

In-field software failures are becoming increasingly common with the increasing complexity
of software. In addition to causing severe inconvenience to customers, such software failures
result in billions of dollars of lost revenue to service providers [4, 5, 6]. To this end, increasing
the reliability of systems is becoming critically important.

Software development is a manual and complex process and is error prone. Hence, in
spite of tremendous improvements in software engineering, testing and software reliability |7,
8,9, 10, 11, 12, 13], not only do the software bugs infest software during development, but
they escape our extermination efforts during testing and enter production code.

Debugging is the process of eliminating a software failure by reproducing the same failure,
finding the faulty program statements which are root cause of the failure (referred to as
bug diagnosis or fault localization) and then rectifying the faulty statements either during
development time or during production run. Debugging is a very complex job for various
reasons. Reproducing the same failure is very difficult, especially for longer running and
multi-threaded applications. Locating the root causes is also extremely difficult as the
point of failure symptom may be much later than when the faulty statements are executed.
Production run failures are especially difficult to diagnose due to lack of enough information
about failures.

Currently, debugging is mostly a manual process which is very costly and time-consuming.

The use of automatic software bug diagnosis (also called fault localization) techniques, which



automatically identifies the buggy lines in the program responsible for a given failure, is
a promising solution for fixing bugs found during development time or production runs.
Automatic bug diagnosis has the potential to speed up identification of root causes of failure
(both during development and production runs), create reduced test cases for filing bug
reports, and automatically repair the software while it is in production. Automating some
of the debugging steps will greatly help developers, reduce costs, increase productivity and
software reliability.

One challenge for automated diagnosis tools is that they generally require mechanisms
to roll back and replay program inputs repeatedly for reproducing the failure in order to
evaluate different root causes. Non-deterministic failures are also difficult to reproduce. Also,
generating minimal test cases can make bug diagnosis process easier and more accurate.
Techniques to simplify the failure reproduction and minimal test input generation processes
will greatly help automated bug diagnosis.

In this thesis, we conducted an empirical study of software bugs of six widely used server
“infrastructure” programs to identify the characteristics of server bugs which facilitate or
hinder debugging activities like minimal test input generation and automated bug diagnosis.
We also developed a novel framework to automatically diagnose root causes(s) of software
bugs using likely program invariants. We experimentally evaluated our approach on 13 server
and compiler bugs.

Next, we describe the motivation and goals of our empirical study of server software bugs
along with the important findings and contributions. We then describe the motivation and
goals of our automated diagnosis framework followed by the important contributions of this

work.



1.2 Empirical Study of Server Bugs

Efficiently reproducing the same failures repeatedly and generating minimal test cases are
difficult tasks which can simplify automated bug diagnosis. Server applications make these
challenges even more difficult as they run for long periods of time, handle large amounts of
data over that time, and perform concurrent processing of input. Do the failures in server
applications lend themselves to being automatically reproduced? Are there characteristics of
server applications that ease or frustrate attempts to perform automatic bug diagnosis? Are
there characteristics of inputs that ease the procedure to find a minimal test case? We aim to
answer these questions through an empirical study of real-world bugs in server applications.

We studied the above questions using public bug databases and committed bug fixes
(patches) for six large open-source, server “infrastructure” programs that are widely used
to build servers and Web server applications: Squid, Apache, Subversion (SVN), MySQL,
the OpenSSH Secure Shell Server (sshd), and the Tomcat Application Server. Among the
several servers we considered for this study, we attempted to include a mix of stateless
and stateful servers. We randomly selected and manually analyzed a total of 266 randomly
selected bugs and 30 specifically selected concurrency bugs in these six programs to answer

these questions!.

1.2.1 Findings and Contributions

The main findings of our study are as follows. Here, we define an “input” as a logical request
from the client to the server that needs to be buffered to be able to reproduce a failure (see

Section 3.3):

1. Nearly 77% of the failures due to software bugs can be reproduced with just one input

request (excluding session establishment inputs like login and select database requests).

TA detailed spreadsheet with all these bugs can be found at
http://sva.cs.illinois.edu/ICSE2010/bug_statistics.xls



Among the remaining bugs with clear information, only 12 out of the 30 multiple-input

failures need more than 3 inputs to trigger a symptom.

2. Among the 30 cases that require more than one input request to trigger a fault, in a
majority of them (17 cases), all the necessary inputs are likely to occur within a short

duration of time.

3. For most of the failures, the time duration between the first faulty input and the

symptom is small.

4. For the majority of overall bugs (nearly 63%), the failure symptom is an incorrect
output. In two of the applications (Squid and Tomcat), we find many fewer incorrect
output symptoms compared to other applications; our analysis leads us to believe that
this is because Squid and Tomcat use many more assertions and exception handlers,

respectively.

5. Nearly 82% of all the analyzed faults were reported to have deterministic behavior
(i.e. the fault triggers the same symptom each time the application is run with the
same set of input requests in the same order, on a fixed architecture/OS platform
and a configuration). This holds for stateful applications as well as for extensively

multi-threaded applications like Apache, MySQL, and Tomcat.

6. Concurrency bugs (e.g., data races or deadlocks) form a small fraction (<2%) of all bugs
(even in highly concurrent applications), but they have very different, more complex
characteristics: nearly all are non-deterministic, they usually require more inputs to
trigger, they have more hangs/crashes and fewer incorrect output symptoms, but about
17% of them show different failure symptoms in different executions for the same

inputs.

Our results have several implications for automated bug diagnosis tools:



1. Most bug failures can be automatically reproduced by replaying just the last input.
Furthermore, most failures, including both single and multi-input failures, are triggered
within a short time after receiving the first faulty input. In cases where multiple
inputs are needed to trigger a fault, the required inputs are also likely to be clustered
together in the input stream. Therefore, tools can optimize their search for inputs that
reproduce the failure by first trying a small number of the most recent inputs received
before the failure was detected. Systems can buffer only a small suffix of the inputs

for each server instance.

2. New techniques are needed to detect the internal data corruptions that cause incor-
rect outputs as they are the most common symptom. Inserting more assertions or

exceptions manually or automatically appears to be a promising approach.

3. Isolating fault-triggering inputs for concurrency bugs and reproducing failures of such
bugs reliably is significantly harder than for other bugs, but tools can exploit the fact
that there are fewer incorrect output errors and many more hangs/crashes (i.e., failure

detection is somewhat easier).

One perhaps surprising implication of the present study is that a simple restart/replay
approach is likely to work for most bugs in real-world server programs, as described in Sec-
tion 3.7. Based on these results, we also propose a new low-cost technique to reproduce
failures during production and development. Automated bug diagnosis tools can buffer a
suffix of the input requests to the server and upon failure, restart the server and replay the
suffix of inputs to attempt to reproduce the failure. A few preliminary experiments suggest
this approach may be able to reproduce server failures without checkpointing the server
state. Checkpointing-based rollback and replay is not practical as lightweight checkpoint-
ing requires operating system support [7] and multithreaded processes also complicate the
checkpointing procedure. Simple restart/replay approach may be a more feasible approach

than checkpointing.



1.3 Automated Diagnosis of Software Bugs

After reproducing a failure, the next step for eliminating a software failure is to find its root
cause. Given a program and a “failing input,” i.e., an input for which the program encounters
a failure, bug diagnosis or fault localization is the problem of identifying one or more possible
locations in a program that must be changed to prevent the failure in future executions. This
is a very important, costly and time-consuming manual step in debugging software failures.
Automating this fault localization process can significantly increase programmer productivity
and reduce software development costs.

There has been much previous work on this problem [10, 11, 12, 14, 15, 16, 17, 18, 13,
19, 20], but the overall problem is far from solved, and, to our knowledge, no such tools are
used in real world development. Simple statistical techniques such as Tarantula [17, 18] turn
out to be useful only in relatively few bugs, as our results corroborate (see Section 6.2.4).
Some tools [21] are slow and may not be suitable for large applications. Other tools [15] may
report too many source lines as potential root causes of the bug (i.e., report too many false
positives). Some tools [22, 23, 20] often fail to report source lines containing the root cause
(i.e., often have false negatives). Some tools [16] also may be impractical due to special
hardware requirements. Others use systematic but unscalable techniques like comparing the
memory states of passing and failing runs [20] or SMT solver-based approaches [24]. In fact,
for many of these approaches, it is not clear how they will scale to large, realistic programs.
A recent study [25] has shown that existing fault localization approaches, in practice, do
not help programmers much. Currently, there is no practical and usable technique that
can pinpoint the root cause of failures in large programs realistically and efficiently without
generating a large number of false positives. The goal of our work is to address the drawbacks
of the existing approaches and improve the state of the art in fault localization.

Our work on fault localization extends previous work that uses invariant-based diagnosis

to narrow down the root causes of bugs. Informally, likely program invariants are program



properties that are observed to hold in some set of successful executions but may not neces-
sarily hold for all executions [26]. Invariant-based approaches first extract likely invariants in
some manner, and then run the program on an input that triggers the bug. Any invariants
that are violated in this failing execution are assumed to be potential root causes [15]. In-
variants can be very useful in identifying candidate root cause(s) as they provide an efficient
way to compare passing and failing runs.

We propose a sophisticated approach combining likely program invariants with novel
filtering techniques to narrow down a possible set of locations that have to be changed to
eliminate a failure (“candidate root causes”). Current invariant-based approaches [15] often
report too many false positives (i.e. too many extra source lines as potential root causes). An
earlier work by Pytlik et.al. [27] used invariants for fault localization of Siemens benchmark
suite without much success possibly due to the fact that they used general test inputs to
generate invariants. We extend the previous invariants-based work in two ways. First,
instead of generating invariants from many randomly selected inputs, we use systematic
algorithms based on delta debugging (ddmin) [21] to automatically construct a small set of
inputs which are very similar to the failure-triggering input but that do not trigger the fault
and train invariants using these inputs. This process yields stricter invariants that are better
able to find root causes (though this can result in more false positives). Second, we employ
several techniques to filter out the false positive invariants as tighter invariants can yield
more false positives. We use dynamic backward slicing to filter out failed invariants that
do not influence the observed failure symptom. Additionally, we have developed two novel
heuristics to further narrow down the root causes of failure. First heuristics called dependence
filtering removes a failed invariant from the candidate root causes, if it is dependent upon
another failed invariant without any intervening passing invariant. Second, we can focus on
invariants that fail for each of the inputs from a small set of failure-inducing inputs which
are similar to the original input.

We evaluated our approach using three large open-source, server “infrastructure” ap-



plications: Squid, Apache, MySQL and LLVM C/C++ clang compiler. We used eight
previously reported bugs from server applications and five clang compiler bugs to evaluate
our approach. To the best of our knowledge, our evaluation uses larger applications than
any previous approaches except one [12]. We used an automated procedure based on ddmin
to construct the passing and failing inputs that are “close” to the failing input for Squid
and MySQL. For clang compiler bugs, we used C-Reduce [28], which is a tool to minimize
an input which produces a given software failure. to automatically generate similar passing
and failing inputs. For Apache, we manually constructed passing and failing inputs using a

systematic algorithm.

1.3.1 Findings and Contributions

To summarize, our main contributions are:

1. We present a novel invariants-based approach for fault localization, based on training
the invariants with a small set of automatically constructed “good inputs” that are
close to a given failing input. Our results show that this approach yields a more
precise set of root causes than previous work. Moreover, we are the first to perform

this combination in software without special-purpose hardware support.

2. We present novel heuristics for reducing false positives in the diagnosis results. These
heuristics have valuable synergy with the core invariant strategy because they leverage
the other analysis techniques, including input construction and dynamic dataflow and

dependence analysis.

3. We evaluate our approach for real bugs in a larger and more realistic set of applications

than all previous work except one [12].

4. Our results show that the approach is extremely effective at reducing the set of pos-

sible root causes, even in large programs, and that each of the filtering steps (except



multiple-input filtering) makes an important contribution in reducing this set. For the
eight server bugs, the slicing step removes nearly 75% of the false candidates, depen-
dence filtering removes an additional 60% of the remaining ones on average, and using

multiple faulty inputs removes a few more.

5. Overall, we reduce the number of candidate root causes to a range of only 5-17 program

expressions per bug, even in programs of hundreds of thousands of lines of code.

6. As compared to Tarantula [17] and Ochiai [18] approaches, which have been used for
similar comparisons in previous work, we find that their approach is slightly better in
the two best cases, but is extremely inconsistent, with thousands of candidate locations

in 6 out of 8 bugs.

7. Additionally, we evaluated our approach on few compiler bugs since they tend to have
different characteristics and generally more complex than bugs of other applications.
For the five clang bugs, slicing step removes nearly 80% of the false candidates and
dependence filtering removes nearly 50% of the remaining ones on average. Overall,
we reduce the number of candidate root causes to a range of only 17-28 per bug except

1 bug where we failed to find the root cause.

Invariants can be leveraged for solving a wide variety of problems. In our earlier work, we
used invariants based technique to successfully detect permanent hardware faults [3]. Hence,
implementation costs of our diagnosis tool can be partially shared by leveraging invariants
for solving other related problems.

In future, we plan to work on additional algorithms and filtering techniques like SMT
solver and value-replacement based approaches to reduce the candidate set of root causes
further. Our current implementation can not effectively handle missing code bugs like miss-
ing initialization. We also plan to explore other varieties of invariants at more program

points and invariants on more types of program values so that we can diagnose more variety



of bugs including concurrency bugs. We also plan to develop our automated input genera-
tion algorithms further and make them more robust. We also plan to extend our work to
automatically isolate root cause(s) for failures during production runs. Finally, we would
like evaluate with more applications and bugs.

The rest of the document is organized as follows. Chapter 2 presents the earlier work
related to our bug diagnosis framework. Chapter 3 describes the details of our empirical
study of server software bugs along with the results of the study. Chapter 4 gives the
overview of our developed automated bug diagnosis framework and further describes how
initial candidate set of root cause(s) are selected using automatically generated inputs and
invariants. Chapter 5 explains the details of various filtering techniques we use like dynamic
backward slicing, dependence filtering and multiple-input filtering. Chapter 6 presents our
experimental evaluation on 13 server and compiler bugs. Chapter 7 describes the future

work we plan to pursue. Finally, Chapter 8 describes the conclusion of our work.
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Chapter 2

Related Work

There have been many previous approaches for doing automated software bug diagnosis or
fault localization. These approaches can be broadly classified into following categories. We
will describe and contrast with some specific work in more detail in later chapters.

Delta debugging [13, 19] is a general technique for fault localization which compares a
successful and a failing run to find root causes. The original technique computed the cause-
effect chains (causal paths of the failure) by comparing the program states of failing and
successful run at each step and determining a minimal subset of program state which needs to
be copied to failing run for the failure symptom to go away. The original technique is semi-
automated and does not scale to larger programs due to inaccurate mapping of program
states. Recent work on program execution indexing and memory indexing [29, 20| has
greatly improved delta debugging’s diagnostic accuracy. Program execution indexing makes
it easier to match dynamic program statements and similarly, memory indexing simplifies the
comparison of matching memory locations in two runs. However, these techniques computes
causal paths in stead of root causes and previous work [22, 23] shows 45% of the computed
causal paths miss root cause. Previous work [22, 23] also states that if a different input is used
for a failing run, it can give inaccurate causal paths. Also, when copying state from a correct
run to a faulty run, it may be necessary to copy more than the faulty state, thus resulting
in false positives. It is also not clear how this approach will scale for larger programs and
larger program traces. Triage [12] also used differences in control flow between a successful

and a failing run and combined it other techniques to further improve its accuracy.

11



Statistical techniques [30, 17] are another way to perform fault localization which
generally requires a few failing and successful runs. In this technique, correlations between
some particular software properties and failure symptom are found by using a set of correct
and failed executions. Liblit et.al. [11] developed efficient techniques to use these kind of
correlations with much lower overhead. They used sampling to spread the overhead of
their instrumentation code across various executions. Tarantula and others [17] exploit
differences in control flow between successful and failing runs and measure the correlation
between execution of statements and failure symptom. They rank the statements based on
a suspicious criteria which gives the likelihood of the corresponding statement being faulty.
Jones and Harold [18] experimented with the tarantula approach for Siemens benchmark
suite to rank the root causes according to different suspiciousness criteria and found the
Ochiai ranking criteria to be the best. Artzi et.al. [31, 32] improved Tarantula approach in
two ways for fault localization of PHP applications. First, they automatically generate test
cases using a form of concolic testing. Second, they extend the base approach with output
mapping and condition modelling. Baudry [33] et al. propose a new technique to select test
cases which can maximize diagnostic accuracy for statistical techniques. Renieris et.al. [34]
uses a faulty run and large number of successful runs for performing fault localization. It
selects the correct run that most resembles the faulty run according to a distance metric
criteria and compares the program spectra between these two runs. In particular, they use set
spectra with union/intersection model and distance spectra with nearest neighbor model.
These statistical techniques are likely to work well when there is control flow difference
between successful and failing runs and may not work well in other cases reporting many
false positives.

Invariants-based diagnosis frameworks use invariants as a primary technique to detect
anomalous program behavior and localize faults. DIDUCE [15] was one of the first work
to use invariants for diagnosis. It used a variant of range invariant to find root causes.

They refine the invariants as the application runs and report any violations during the same
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program run. They also rank the statements based on some ranking metric and present them
to the users for finding root causes of failures. Later, Harold [35] used range invariants for
fault localization of Siemens benchmark programs. Dimitrov et.al. [16] also used three type
of invariants for fault localization and augmented it with few other techniques to increase
its accuracy as explained later.

Dynamic slicing has also been used for bug diagnosis; Gupta et.al. [36, 37| first used
dynamic backward slicing for fault localization and later they also combined both forward
and backward slicing in failure inducing chop and multiple points slicing [38, 39] to further
increase the precision of diagnosis. Triage [12] combined differences in control flow between
successful and failing run with dynamic backward slicing for automated diagnosis. Dimitrov
et.al. [16] combined invariants based diagnosis with dynamic forward slicing. They also use
an additional heuristic by suppressing the execution of candidate root causes and observing
the output of the program to further reduce false positives. However, they require custom
hardware support for implementing their technique.

Value replacement or execution perturbation technique [40, 41, 42] was first used by
Gupta et.al. for fault localization. They replaced the value of program statements with
few values observed during successful runs and then decide which statements might be root
cause depending upon the program outcome. Later they extended their technique [43] to
find out all root causes when multiple faults are present. They also used some optimizations
and parallelization to improve the efficiency of their technique. For larger programs, there
will be a very large number of possible combinations of program statements and their all
possible alternate values to explore.

Formal methods have also been used for automated bug diagnosis. The ezplain tool [44]
by Groce et.al. uses Bounded Model checking tool CBMC and SAT solver to find a coun-
terexample. It then uses a PBS solver to find a successful run that is as similar as possible
to the counter example. The differences between the two runs are computed and presented

to the user after applying a causal slicing step. BugAssist [24] formulates the program as
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a boolean trace formula in conjunctive normal form such that every satisfiable assignment
of the formula corresponds to one particular execution of the program. It then extends the
formula by adding constraints on input values and program post conditions. It uses a par-
tial MAX-SAT solver to determine the smallest set of clauses which can not be satisfied and
reports the corresponding program statement as possible root causes. For some larger trace,
they also use trace reduction techniques like dynamic slicing. However, we do not believe

that these techniques alone will scale to larger programs.
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Chapter 3

Empirical Study of Server Bugs

The first step for doing automatic software bug diagnosis is reproducing the same failure.
One challenge for automated diagnosis tools is that they generally require mechanisms to roll
back and replay program inputs repeatedly for reproducing the failure in order to evaluate
different root causes. Unfortunately, using checkpointing for such roll back limits the prac-
tical usefulness of such tools. First, checkpointing that is lightweight enough to be used for
software diagnosis or debugging requires operating system support [7], which means that such
tools cannot work on commodity operating systems that lack such support. Multi-threaded
processes also complicate the checkpointing procedure. In addition, diagnosis cannot be
done if the fault happens before the checkpoint is taken. It would be very useful if diagnosis
tools could simply restart the target program and replay a small subset of the inputs to
reproduce and diagnose the failures. Exploring this question requires an understanding of
real-world bug behavior.

There also exist techniques like Delta Debugging [21] to generate a minimal set of test
inputs from some failing test case. In general, such tools are too slow to be deployed in a
production environment. Again, the knowledge of what types of inputs and how many inputs
are commonly needed to produce failures can help us to build automated tools which use
heuristics to efficiently select a minimal test case. However, in order to be widely deployable
in production run environments, bug diagnosis tools must be able to quickly isolate the
inputs that trigger a fault, reduce the inputs to just those that trigger the fault, and be able
to reproduce the fault with reasonable reliability.

We performed an extensive empirical study of characteristics of several server software
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bugs which have important implications upon automated diagnosis tools. In particular, we
wanted to study the characteristics of bugs which can simplify difficult tasks of automated
debugging tools like reproducing failures and generating minimal test cases. This chapter

presents the details of our empirical study of software bugs for six server applications.

3.1 Goals of The Study

The main goal of this study is to answer and analyze the following questions, focusing on

server software:

1. How many inputs are needed to trigger the symptoms of a software bug?

2. How long does it take for the symptom to occur after the first faulty input is used by

the application?

3. What kinds of symptoms appear as a manifestation of bugs? Are these symptoms

sufficient for creating automatic bug diagnosis tools?

4. What fraction of failures are deterministic with respect to the inputs?

The answers to these questions will have implications for designing automated diagnosis
tools for server applications. Server applications have several qualities that make them ideal
for such a study. They are widely used and mission critical for many businesses. They
process a large amount of input data over extended periods of time, making it important
to understand how many server inputs are needed to trigger failures, and how reliably they
do so. They are also extremely concurrent, making it important to understand whether
bug behavior (both normal errors and concurrent programming errors) is deterministic with
respect to the inputs. While these qualities make them challenging, a silver lining is that
their inputs are well-structured due to the nature of the protocols they use to communicate

with clients.
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Application Description #LOC | Years in #total bugs #bugs
Production | after sampling | Selected

Squid 3.0.x caching web proxy 93K 5 170 40
Apache 2.0.x web server 283K 5.7 65 52
OpenSSH sshd 3.6-3.x, 4.x | secure shell server 27K 5.25 61 54

SVN 1.0.0 - 1.6.0 version control server 587K 5 16 12
MySQL 4.x database server 1,028K 5.7 90 55
Tomcat 5 servlet container and web server | 274K 5 70 53

Total 2,292K 472 266

Table 3.1: Set of Server Applications and Software Bugs.
3.2 Methodology

In this section, we describe our methodology for selecting the applications and the bugs
we study; we also discuss the limitations of our study. A summary of the applications and

software bugs is in Table 3.1.

3.2.1 Application Selection

Our study focuses on widely used, large server applications. We aimed our study at open-
source applications that provide both a publicly-accessible bug database and access to the
server’s source code. When possible, we opted to study servers implementing stateful proto-
cols (i.e., protocols requiring the server to maintain application-specific protocol state during
an application-defined session) as these servers are the most likely to require more inputs for
failure reproduction. Finally, we needed applications with a sufficient number of production
bugs to study.

We considered many widely used Linux servers e.g., those implementing the IMAP,
SMTP, FTP, DNS, LDAP, and NIS protocols, and selected six server applications. We
found that only a few maintain significant state, and we deliberately included the stateful
servers in our study. Three out of six servers in our study (Squid, MySQL, Tomcat), or the
applications run on top of Tomcat, maintain significant state that affects reported server
bugs. All six servers use TCP as the transport-level protocol for client communication.

Apache web server: The Apache web server communicates with clients via the stateless
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HTTP protocol [45] and via HTTP over SSL for authenticated and encrypted communica-
tion. While HTTP is stateless, Apache does maintain some information on the threads and
processes it uses to handle requests. Apache can also maintain in-memory and on-disk state
for caching recently served web pages.

Squid HTTP proxy server: The Squid web proxy server also communicates with
clients via HTTP and HTTP over SSL. Like Apache, Squid can cache recently accessed web
pages in memory and on disk. Squid’s rate throttling features [46] must also maintain some
global state.

MySQL database server: MySQL uses a custom protocol for client communica-
tion [47]. For each session, the server must maintain state about the authentication status
and credentials of the client, temporary tables, prepared statements, and various parame-
ters like query cache size and SQL modes. MySQL also supports clustering and replication,
which can maintain a lot of global state.

Tomcat Servlet Container: Tomcat uses the HTTP protocol (optionally over SSL)
for client communication. It maintains internal state about which web applications are
loaded and provides facilities with which web applications can maintain session state across
individual HTTP requests [48]. Tomcat bug reports are often generated by developers of
applications running on Tomcat. Such applications can maintain arbitrary amounts of state,
e.g., for e-commerce. This state will affect the behavior and reproducibility of failures due
to Tomcat bugs. Tomcat also supports clustering and session replication, which maintains
a lot of global state.

OpenSSH secure shell server: The OpenSSH server communicates via the stateful
SSH protocol [49]. This protocol provides sessions which maintain one or more virtual chan-
nels over which programs on the client can communicate with programs on the server [49].
For each client connection, the server must maintain a small amount of state information
about each SSH session as well as the state of each virtual channel maintained by the session.

Subversion version control server: SVN can use HT'TP or a custom, stateful SVN
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protocol [50] tunneled through SSH. For this study, we restricted ourselves to the stand-alone
server using the SVN protocol. The SVN server maintains a small amount of per-session

state [50].

3.2.2 Bug Selection

We selected bugs to analyze for each server as follows.

First, for each application, we selected a recent major version of the software that had
been in development and production use for at least a year. We expect these versions to
have a more diverse bug sample. In a few cases, a single version of the software did not
provide a sufficiently sized sample, so we used multiple versions of the software.

Second, we then selected the set of repaired bugs by using filters provided by the pro-
gram’s Bugrzilla database. For all programs except MySQL, we searched for bug reports
with a status field of either RESOLVED, VERIFIED, or CLOSED, a resolution field of
FIXED, and whose severity was anything other than TRIVIAL or ENHANCEMENT. Since
the filters for MySQL are non-standard, we had to adapt our selection criteria to search
for bug reports marked FIXED or PATCH APPROVED/QUEUED and with any severity
other than FEATURE REQUEST. Fixed bugs will have the most complete and accurate
information, but may be biased towards easier-to-fix bugs (see section 3.2.3).

Third, we randomly selected a subset of bugs from the bug list generated in the previous
step for each server using a seeded rand() function. We skipped this step for sshd and
SVN since they had fewer bugs. The detailed information about the number of random bugs
selected after this step is shown in the fifth column of Table 3.1.

Finally, we removed the bugs in development versions of code from the randomly selected
bug list. Since our main goal was in-production bug diagnosis, we only focused on bugs in
the externally released versions of code. Squid had many development bugs, so we had to
select a much larger random sample compared to other servers. Then, we manually removed

trivial bugs like build errors, documentation errors, and feature requests. After this final
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manual filtering, we were left with 266 bugs from 472 bugs in the earlier step. The last
column of Table 3.1 shows the details for each server.

After creating the list of bugs, we analyzed each bug report and its test cases, available
patches, and any other external information associated with it. We classified each bug’s
characteristics by first examining the information in the bug report and then by inspecting
the patches and other external information if more information was needed to make a deci-
sion. We also used available patches to confirm our analysis of the bug reports. Based on the
analysis, we classified each bug based upon the observable failure symptoms the bug caused,
the reproducibility of the observable symptoms, and the maximal number of inputs needed
to trigger the observable symptoms. For some bugs, we could not classify the bug for some
characteristics due to limited information in the bug report. We report, for each character-
istic, the number of such ”unclassifiable” bugs by placing them in a separate classification

as described in Section 3.4.

3.2.3 Limitations

Our methodology’s limitations should be considered when using or interpreting our results.
Like other empirical studies, our results are limited by the kinds of applications and software
bugs we used.

Our study examines a subset of server applications. Our results may not apply to other
types of software or to network servers with different architectures e.g., peer-to-peer software.
Also, all the servers except one are written in C and/or C++ (Tomcat is written in Java);
results may differ for similar servers written in other programming languages.

There is also some potential bug selection bias in our study. First, some samples omit
bugs that cause security flaws because their projects e.g., Apache [51] and sshd [52], do not
record such bugs in their public bug databases. Second, our study omits unfixed bugs from
the samples as their bug reports may contain inaccurate information. Since it is possible

that unfixed bugs have different properties, it has the potential to introduce bias. Third, the
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bug samples in our study exclude unreported bugs. We believe this is acceptable because
unreported bugs (in a mature server) are likely to be much less frequent than reported bugs.
Nevertheless, it is possible that bugs whose failures are difficult to reproduce (which may
include non-deterministic bugs and multi-input bugs) are less likely to be reported. Our
results are, therefore, only representative of reported bugs. On the positive side, our study
does not exhibit the bug feature and commit feature biases as described by Bird et. al. [53]
as we sampled all fixed bugs in the bug database instead of sampling the subset of fixed
bugs which are linked with the source code bug fixes or other bug fix information.

Finally, our study relies upon the accuracy and completeness of the bug reports and
the materials connected to them. Also, as we have analyzed a large number of bug reports

manually, there may be some human error in the results.

3.3 Definitions and Terminology

Here we define several terms as they are used in the context of our work. First, an input
request to a server is a logical input from the client to the server (we identify logical inputs at
the application level as reported in the bug reports); examples include a login/authentication
request for establishing a session in SSH/MySQL, any command from an SSH or SVN client,
an HTTP request, or a MySQL query. Each request may internally involve more than one
communication between the client and server and may span several network packets.

We chose logical inputs because bug reports describe test cases as a set of application-
level inputs. Translating inputs from bug reports into low-level network protocol messages
would have made the study too tedious and error-prone.

Messages coming from sources other than the client e.g., the file system, back-end
databases, DNS queries, are not considered to be input requests. These inputs are responses
to requests that the server made on behalf of a client i.e., client input is driving these other

inputs. Since there is a causal relationship between client inputs and these other inputs,
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Application | Memory Other Crash | Assertion Hang Incorrect Output | Unclear
Error Crash violation
Squid 6 (15.00%) 5 (12.50%) 11 (27.50%) 0 (0.00%) 18 (45.00%) 0 (0.00%)
Apache 6 (11.54%) 2 (3.85%) 1 (1.92%) 2 (3.85%) 38 (73.08%) 3 (5.77%)
sshd 0 (0.00%) 5 (9.26%) 0 (0.00%) 3 (5.56%) 44 (81.48%) 2 (3.70%)
SVN 1 (8.33%) 2 (16.67%) 1 (8.33%) 1 (8.33%) 7 (58.33%) 0(0.00%)
MySQL 7 (12.73%) 8 (14.55%) 0 (0.00%) 3 (5.45%) 35 (63.64%) 2(3.64%)
Tomcat 10 (18.87%) 0 (0.00%) 12 (22.64%) 3 (5.66%) 25 (47.17%) 3 (5.66%)
[ Total [ 30 (11.28%) [ 22 (8.27%) | 25 (9.40%) | 12 (4.51%) | 167 (62.78%) | 10(3.76%) |

Table 3.2: Classification of Bug Symptoms.

replaying the client inputs will cause the server to perform the same requests.

We also exclude inputs that do not trigger the fault per se but are used, instead, to
recreate a persistent environment in which the failure can be reproduced. Examples of such
inputs are SVN checkout and SQL table creation commands (unless they are part of the
faulty input set). In production systems, the environment is almost always present before
the fault is triggered; these inputs are only in the bug report so that a similar environment
can be manufactured at the developer’s site for off-line diagnosis.

We define symptoms of bugs as any incorrect program behavior which is externally visible
or detectable. For example, an incorrect output, segmentation fault, program crash, program
hang, or assertion violation is a symptom. We use the term incorrect output to describe a
symptom in which the server completes an operation but the external output of the program
differs from the correct behavior. In our analysis, we say that an incorrect output symptom
is detected when incorrect output is externally visible to the user or client. Though detecting
incorrect outputs can be challenging, the internal data corruption that causes them can be
detected through manually or automatically inserted assertions [26, 54, 55]. Detecting bugs
is not a subject of this study; we simply treat incorrect outputs as a symptom.

A failure due to a software bug is observed to be deterministic if the fault triggers
the same symptom each time the application is run with the same set of input requests
in the same order, on a fixed architecture/OS platform and a fixed server configuration.
Otherwise, the failure due to a bug is non-deterministic. The architecture, OS platform and

server configuration are the user-controllable parts of the environment. This definition is
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reasonable because our goal is reproducibility at the end-user’s site, where these parts of the
environment and software configuration are fixed. A failure due to a bug is timing dependent,
if the timing of the input requests in addition to their order determines whether a symptom
is triggered and if so, which symptom. This is a special case of a non-deterministic software
bug that is input timing dependent. As an example of our terminology, one of the failures in
Squid (an assertion violation) occurred when a client sent an input request to the server and
then disconnected from the server before the response for the request was written back. This
is a timing-dependent bug as the symptom’s occurrence depends upon when the disconnect
request is sent to the server. The timing of the inputs matters and is under the client’s
control. In contrast, for a concurrency bug like a data race, the occurrence of the symptom
depends upon timing issues that are beyond the client’s control (e.g., thread scheduling); we
classify such failures as non-deterministic, not as timing dependent .

Note that our study is conservative with respect to the definition of non-determinism.
We classify a bug as non-deterministic if, according to the bug report, the symptom(s)
could not be reproduced consistently for any reason (e.g., the same inputs may not be
available or parts of the environment might have changed). It is possible that such bugs
are deterministic, but we conservatively assume that they are not. Also, our definition
of determinism is overly restrictive. We believe that many of the deterministic bugs in
our study are actually deterministic across different environments and configurations as, in
many cases, failures are reproduced by developers on different systems from the one where
the bugs are first detected. But because bug reports often lack sufficient information about
the bug’s behavior across different environments, we chose to define deterministic to mean

reproducibility in a fixed environment.
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3.4 Classification of Software Bugs

We now present the results of our analysis of the selected server application bugs. We
classify the software bugs based on three characteristics: observed symptoms (Section 3.4.1),
reproducibility (Section 3.4.2) and the number of inputs needed to trigger the symptom
(Section 3.4.3). Finally, we analyze the characteristics of a few important subclasses of bugs

in (Section 3.4.4).

3.4.1 Bug Symptoms

We analyzed the bug reports in detail to determine the symptoms observed for each bug
when the failure triggering input requests are sent to the server. For a small number of
bugs, two symptoms were possible depending upon which inputs were used to trigger it; for
these bugs, we chose to analyze the symptom that was given in the original bug report. The
observed symptoms are memory error (segmentation fault, NULL pointer exception, and
memory leak), program crash, assertion violation, program hang, and incorrect output. A
program crash in this context is an abnormal server termination that is either not caused
by a segmentation fault, NULL pointer exception, or memory leak or for which no cause
is given in the bug report. We made this distinction because segmentation faults, Java
NULL pointer exceptions, and memory leaks all have a memory error as the root cause
while other termination errors may have other root causes. Assertion violation symptoms
include explicit C/C++ checks and Java exceptions other than NULL pointer exceptions.
Table 3.2 shows the results. Each column shows the number of bugs that result in the
corresponding symptom for each application. The last column shows the number of cases in

which the bug report did not clearly identify the symptom; there were only 10 such cases
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Application | Deterministic | Timing-dependent | Non-deterministic | Unclear from bug report
Squid 28 (70.00%) 3 (7.50%) 7 (17.50%) 2 (5.00%)
Apache 41 (78.85%) 0 (0.00%) 4 (7.69%) 7 (13.46%)
sshd 49 (90.74%) 1 (1.85%) 2 (3.70%) 2 (3.70%)
SVN 11 (91.67%) 0 (0.00%) 1 (8.33%) 0 (0.00%)
MySQL 46 (83.64%) 2 (3.64%) 4 (7.27%) 3 (5.45%)
Tomcat 43 (81.13%) 3 (5.66%) 4 (7.55%) 3 (5.66%)
[ Total | 218 (81.95%) [ 9 (3.38%) | 22 (8.27%) | 17 (6.39%)

Table 3.3: Symptom Reproducibility Characteristics.

out of 266 bugs. The number in parentheses shows the fraction of the cases resulting in the
symptom as a percentage of the total number of bugs.

The results in Table 3.2 indicate that most of the bugs (nearly 63%) result in incorrect
output. Incorrect outputs can be caused by memory errors (e.g., buffer overflows, dangling
pointers), integer overflow errors, off-by-one errors in loops, logical errors, etc. The results
also show that Squid and Tomcat have many more assertion violations (28% and 23%,
respectively), but a lower percentage of incorrect output errors compared to the other servers.
We suspect this is because Squid has many more assertions in its code than the other servers
and because Tomcat uses Java exceptions.

Implications:

These results lead to two important conclusions:

1. New techniques are needed to efficiently detect the data corruption that causes incor-
rect output errors at run-time so that future diagnosis tools will be able to detect and

diagnose the majority of software errors.

2. The results from Squid and Tomcat suggest that adding assertions or automatically

generated program invariants may help detect incorrect output errors.

3.4.2 Bug Reproducibility

We did a similar analysis to determine the reproducibility of failures due to server bugs; Ta-

ble 3.3 summarizes our results. We classified bugs as either deterministic, timing dependent,
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Application | # O-input | # l-input # 2-input # 3-input # >3-input | Unclear Max #inputs
Squid 8 (20.00%) 20 (50.00%) 1 (2.50%) 2 (5.00%) 2 (5.00%) 7 (17.50%) 3

Apache 3 (5.77%) 38 (73.08%) 1 (1.92%) 0 (0.00%) 2 (3.85%) 8 (15.38%) 2

sshd 4 (7.41%) 28 (51.85%) 14 (25.93%) | 2 (3.70%) 2 (3.70%) 4 (7.41%) 12

SVN 0 (0.00%) 0 (0.00%) 9 (75.00%) 3 (25.00%) 0 (0.00%) 0 (0.00%) 3

MySQL 2 (3.64%) 0 (0.00%) 0 (0.00%) 40 (72.73%) | 8 (14.55%) 5 (9.09%) 9

Tomcat 6 (11.32%) 34 (64.15%) 2 (3.77%) 1 (1.89%) 4 (7.55%) 6 (11.32%) 3

[ Total | 23 (8.65%) | 120 (45.11%) | 27 (10.15%) | 48 (18.05%) [ 18 (6.77%) [ 30 (11.28%) | 12 (max)

Table 3.4: Maximal Number of Inputs Needed to Trigger a Symptom.

or non-deterministic. This property is useful, as it will determine whether diagnosis tools
can reliably reproduce the failure symptoms. In some bug reports, the failure could not be
reproduced or was very difficult to reproduce (as it occurred infrequently). We conservatively
classified such bugs as non-deterministic. Some bug reports contained no information at all
about reproducing the failure; these are counted separately in the last column of Table 3.3.
The numbers in parentheses in Table 3.3 are the corresponding fractions as a percentage of
the total number of bugs.

The results are encouraging. More than 82% of the bugs demonstrate deterministic
behavior; these results agree with Chandra and Chen’s results that nearly 80% of bugs are
actually environment-independent [56]. A few bugs (nearly 3%) exhibit timing dependence.
Only 8% of the bugs exhibit other non-deterministic behavior.

It should be noted that, in practice, automatic diagnosis tools will normally replay a
subset of inputs. While deterministic bugs trigger the same symptom each time when run
with the same input sequence, they may also depend upon global state such as memory
layout. If using a subset of inputs creates a different global state, then the bug may not
trigger the symptom again even though the same root cause is triggered. Section 3.7 discusses
this issue in more detail.

Implications:

The above results indicate that:

1. Because most bugs are deterministic, bug diagnosis tools should be able to reproduce

them by replaying inputs.

26



2. A small percentage of bugs are either timing dependent or non-deterministic. Bug
diagnosis tools will need to incorporate new techniques (such as time-stamping inputs
or controlling thread scheduling) in order to reproduce failures due to these bugs via

input replaying.

3.4.3 Number of Failure Triggering Inputs

We now analyze and classify the software bugs based on the number of inputs needed to
trigger the failure symptom. As mentioned in Section 3.2, we count each logical input as one
input request. We determined the maximal set of inputs needed to trigger the symptom by
examining each bug report and the other related external web resources linked to it. When
more than one set of inputs could trigger a symptom, we used the largest set to compute
the maximal number of inputs. We did not count changes to server configuration files or
command line options as inputs. Table 3.4 shows the results of this analysis. The second,
third, fourth, fifth, and sixth columns in Table 3.4 show the number of cases in which 0, 1,
2, 3, and more than 3 inputs are needed to trigger the corresponding symptom. The zero
input column includes cases such as when the server experiences a failure after start-up but
before it processes client input requests. There were a few bugs for which it was clear from
the bug report that more than one input was needed to trigger the failure, but the exact
number of inputs could not be determined as they were difficult to reproduce. We have
counted them as requiring more than 3 inputs and included them in the sixth column. The
seventh column, as in the previous section, shows the number of bugs for which the bug
report contained too little information to determine whether one or more inputs are needed
to reproduce the symptom. The last column shows the maximum number of inputs needed
to trigger a failure due to any of the bugs we studied for that application. We used only
the bugs for which we know the exact number of inputs to trigger a failure to compute the
maximum number of inputs. As before, the numbers in parentheses in the table are the

corresponding fractions as a percentage of the total number of bugs.
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Appl | # <1l-input | #>1-input | Unclear Max #inputs
Squid | 28 (70.00%) | 5 (12.50%) 7 (17.50%) |3
Apache | 41 (78.85%) | 3 (5.77%) 8 (15.38%) | 2
sshd 46 (85.19%) | 4 (7.41%) 4 (7.41%) 11
SVN 9 (75.00%) 3 (25.00%) 0 (0.00%) 2
MySQL| 42 (76.36%) | 8 (14.55%) 5 (9.09%) 5
Tomcat| 40 (75.47%) | 7 (13.21%) 6 (11.32%) |3

[ Total [ 206 (77.44%) | 30 (11.28%) [ 30 (11.28%) | 11 (max)

Table 3.5: Maximal Number of Inputs Needed to Trigger a Symptom Excluding Session
Setup Inputs.

Our results show that most failures can be triggered using a very small number of inputs.
Some symptoms can be triggered with zero inputs. Squid had a few such cases (nearly
20%). For example, when run with a certain combination of options or with a particular
configuration, Squid failed after starting execution but before processing any client inputs.
The majority of failures in Squid, Apache, and Tomcat can be triggered with just a single
input request, in the case of sshd and SVN, using just two input requests, for MySQL, using
three input requests. All of the 2 input request failures in sshd and SVN require one input for
authentication and session establishment and another final input to trigger the symptom. All
of the 3 input request failures in MySQL require two inputs for authentication and database
selection, providing a session and execution context in which the final input could trigger
the symptom. Table 3.5 lists the number of failures that can be triggered with no more than
one input request excluding session establishment inputs. If we exclude the session setup
inputs, then nearly 77% of the bugs in all applications need just a single input request to
trigger the symptom; in all such cases, we have observed that it is always the last input in
the corresponding session/connection which triggers the symptom. Among the remaining
cases, nearly 11% of the bugs needed more than one input to trigger the symptom, and the
remaining 11% of bugs do not have any clear information about the number of inputs in
their bug reports.

Furthermore, considering all the bugs for which we could determine the exact number
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of inputs, all of the failures for Apache, Squid, SVN and Tomcat can be reproduced using
at most 2, 3, 2, and 3 input requests (excluding session establishment inputs), respectively;
only two failures in sshd and one in MySQL required more than 3 non-login input requests.
In fact, very few bug failures (12 bugs across all server bugs excluding the unclear cases)
needed more than three non-login input requests to reproduce the symptom.

Another result (not listed in the tables) is that, for most of the bug reports we studied, the
symptom occurs immediately after the last faulty input is processed. In fact, the only excep-
tions were hangs and time-outs; for these, the time between the last faulty input and when the
symptom can be observed is time-dependent but usually small. This suggests that the error
propagation chain for these bugs is usually short and that a symptom can usually be detected
immediately after the server processes the faulty inputs. These results agree with previous

work [57] that found that error propagation chains in the Linux kernel are short in practice.

Implications:

These results have several implications for automatic bug diagnosis tools:

1. Virtually all failures can be triggered by replaying a small number of inputs.

2. Most of the failures can be simply reproduced by first connecting to the server, creating
a session if necessary (through authentication and/or a database select request), and

replaying a single input.

3. For most of the bugs, the last input request from the session/connection which triggers

the fault can be used to reproduce the symptom.

4. Except for bugs which cause a hang or time-out, the failure symptom for a set of faulty

inputs will occur immediately after the last faulty input is processed.
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3.4.4 Analysis

Interestingly, when we consider only the subset of non-deterministic or multi-input bugs,
many characteristics are very different from the overall bug characteristics. For example,
among the 22 non-deterministic bugs, a majority of them (45%) are multi-input bugs and
only 40% were single input bugs (remaining cases were unclear). Also, only 23% of the 22
non-deterministic bugs result in incorrect output, most of the failures result in catastrophic
failures like crash, segmentation fault, assertion violation and hangs. This implies that
majority of non-deterministic bugs need multiple inputs to trigger a failure and many fewer
of them result in incorrect outputs as compared to the overall bugs. Of the 30 multi-input
bugs, only 40% are deterministic, 27% are timing-dependent, and 33% are non-deterministic.
This implies that many fewer multi-input bugs show deterministic behavior compared to the

overall bugs.

3.5 Multiple Input Bug Analysis

Bugs that require multiple inputs to trigger a symptom are harder to reproduce and diagnose
because the faulty inputs may be interspersed with non-faulty inputs, and the combination
of inputs to explore can be large. We did a more detailed study of multi-input bugs to see
if there are patterns that can be exploited to reduce the input stream to just the faulty
inputs. Specifically, we wanted to see whether the set of inputs for triggering a multi-input
failure were likely to be clustered together within an input stream or occur within a short
time duration, which can help automatic tools to detect the symptom-triggering inputs more
easily. Otherwise, automatic tools will need to use more complex algorithms to track down
the faulty inputs.

There were 30 multi-input bugs (5 from Squid, 3 from Apache, 4 from sshd, 3 from SVN,
8 from MySQL, and 7 from Tomcat). For servers like Apache, Squid and Tomcat, any bug

in Table 3.4 with more than one input is considered a multi-input bug. For sshd, SVN, and
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MySQL, we considered a multi-input bug to be any bug requiring more than two, two and
three inputs, respectively, to trigger the symptom. Our rationale is that all of these two
and three-input bugs require one and two inputs, respectively, for establishing a session e.g.,
authentication and/or database selection, and a final, single input for triggering the failure.
These bugs are, in essence, single-input bugs with additional session establishment inputs
that occur in a known location within the input stream and can be easily buffered for each
session.

We classified each bug into one of three categories: CLUSTERED, LIKELY CLUS-
TERED and ARBITRARY. A bug is classified as CLUSTERED if the input requests must
occur within some bound; this bound is often short. For this category, the faulty inputs
are always going to be clustered within the input stream within a short period of time (less
than a few minutes). We classify a bug as LIKELY CLUSTERED when we know that the
faulty input requests are likely to occur within a short duration for most real-world inputs,
but there is no bound. For these cases, there are reasonable cases in which the inputs may
not be clustered. Inputs are classified as ARBITRARY if there is nothing to indicate that
they must be or usually will be clustered within an input stream in real-world usage. This
does not mean that the inputs will not be clustered; it simply means that there is no reason
to expect that they are likely to be clustered for a single given input stream.

Tables 3.6 and 3.7 shows our detailed analysis results. The second column shows the
bug’s ID from the bug database, the third column reports the number of inputs needed to
trigger the symptom, and the fourth column succinctly describes the steps needed to trigger
the symptom. The fifth column explains why we classified the bug as we did, and the last
column shows the classification we assigned to the bug.

We classified 8 of the 30 bugs as CLUSTERED and 9 bugs as LIKELY CLUSTERED.
We deemed 13 of the bugs as ARBITRARY. The faulty inputs for the first two categories
can be isolated relatively easily. Even for ARBITRARY cases, it should be noted that server

applications normally run on multiple installations. To perform a successful diagnosis, we do
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Appl BugID | #Ip | Steps to trigger the bug Conclusion CLASS

Squid 1862 3 Send a POST request with an incomplete | All the events will happen within | CLUSTERED
body, kill the origin server, and send the | the time a complete request is pro-
remaining body of the request. cessed, hence will most likely occur

within a short time duration.

Squid 2276 >1 Send many NTLM authenticator requests. The requests can be far apart. ARBITRARY

Squid 500 3 Start downloading a file. Then start down- | As the requests happen concur- | CLUSTERED
loading the same file concurrently. Abort | rently, they will occur within the
downloading the first file. duration of first download.

Squid 2096 2 Send a first request to a web page. Then, | Both the inputs will occur within | CLUSTERED
send a Second request to same webpage at | a very short duration, before the
nearly the same time. completion of first request.

Squid 1984 >1 Send a lot of requests for a long time. No | The requests can be far apart | ARBITRARY
mention of any particular inputs causing the | spread over a long period of time.
crash.

Apache 17274 2 First, try to authenticate with LDAP server | Incorrect and correct logins will | LIKELY
with wrong login-password. Then try to au- | most likely happen within a short | CLUS-
thenticate again with same login. duration. TERED

Apache | 33748 >1 Need a random number of inputs to cause | The requests can be spread over a | ARBITRARY
the crash. long period of time.

Apache 34618 >1 Send requests which open a connection to | When many requests are needed, | ARBITRARY
LDAP server. First two requests work, but | they may not occur within a short
the third may crash server. Sometimes more | duration.
such connections are needed for crash.

sshd 1156 3 First, login to a shell. Run any command, | Last two commands can happen | LIKELY
e.g. sleep 1; Then, Ctrl4-c while the com- | within a short duration for short | CLUS-
mand is running. running commands. TERED

sshd 1264 12 Execute 11 commands through a library | All the commands will be sent con- | LIKELY
function cmd() which internally opens a new | secutively and will most likely oc- | CLUS-
channel and closes it after executing the | cur within a short duration. TERED
command.

sshd 1432 3 Three successive failed login attempt. All the three requests can occur | LIKELY

consecutively (e.g. when someone | CLUS-
doesn’t remember the password). TERED

sshd 948 5 The bug is triggered by a denied ssh con- | Five blocked connections can hap- | ARBITRARY
nection blocked by tcp_wrappers. The bug | pen over a long period of time.
occurs after 5th blocked connection.

SVN 1626 3 First, login to server. Run any svn com- | Last two commands will occur | CLUSTERED
mand, e.g. svn commit; Then, Ctrl4+c while | within a short duration, before the
the command is running. svn command completes.

SVN 2288 3 First, login to server. Then, run svn | As in many cases, users commits | LIKELY
lock test.txt; followed by svn commit | after small changes, the last two | CLUS-
test.txt;, when there is no write access on | commands will be within a short | TERED
root. duration in such cases.

SVN 2700 3 First, login to server. Then, run svn | As in many cases, users commits | LIKELY
lock test.txt; followed by svn commit | after small changes, the last two | CLUS-
test.txt;. commands will be within a short | TERED

duration in such cases.

MySQL | 1890 >1 Execute a series of INSERT queries in main | According to the report, error oc- | LIKELY
thread, Execute some SELECT, UPDATE | curs always after some queries exe- | CLUS-
and DELETE queries on the same table in | cute concurrently, likely to be close | TERED
background thread. together.

MySQL | 5034 5 prepare stmtl from "select 1 into The execute stmt can occur far | ARBITRARY
Q@arglb"; execute stmtl; execute apart.
stmt1;.

MySQL | 8510 4 set sql_mode = ONLY_FULL_GROUP_BY; then | In cases, when sql-mode is not | ARBITRARY
select round(sum(a)), count(*) from set in the config file, it can be
foo group by aj;. set long before running group by

based queries.

MySQL | 27164 5 Create InnoDB table; Immediately create | In most cases, insert queries will be | LIKELY
MyISAM table containing a POINT col- | immediate after table creation. CLUS-
umn; Insert into the table with the POINT TERED

column.

Table 3.6: Analysis of Multiple-Input Software Bugs.
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Appl BugID | #Ip | Steps to trigger the bug Conclusion CLASS
MySQL | 4271 5 prepare stmtl from <explain complex The execute stmt can occur far | ARBITRARY
select>; execute stmtl; execute apart.
stmtl;.
MySQL | 3415 6 In first thread LOAD DATA INFILE ’file’ | As both requests are processed | CLUSTERED
into mytable;, in second thread INSERT | concurrently, they should occur
INTO mytable2 VALUES(2). within a short duration.
MySQL | 15302 4 load data from master; execute any As the requests are executed | CLUSTERED
command . consecutively, they should occur
within a short duration.
MySQL | 186 9 In Master create temporary table t(a | reset master can occur after a | ARBITRARY
int); reset master;, in SLAVE stop | long time of create.
slave;reset slave;start slave;.
Tomecat | 37150 >1 When there is more than 1 simultaneous | As the requests are processed | LIKELY
connection, run a long request like big dir | concurrently with other connec- | CLUS-
listing. tions, they should occur within | TERED
a short duration.
Tomecat | 27104 >1 Few inputs with clustering and session | The inputs can occur indepen- | ARBITRARY
replication needed to trigger exception. dently.
Tomcat | 37896 >1 When requests are being processed, kill | All the inputs will occur within | CLUSTERED
one of the replication servers, all the web | socket timeout period, after
servers will fill up the max threads. which the threads will be un-
blocked.
Tomcat | 26171 3 Start session through webpage, restart | The two requests can occur far | ARBITRARY
webapp, reload webpage in that session. apart.
Tomecat | 42497 2 Request a static file, get a 200 response | The two requests can occur far | ARBITRARY
with ETag. Request the same file again, | apart.
getting a 304 response without ETag.
Tomcat | 40844 2 Authenticate two users simultaneously | The two requests will occur | CLUSTERED
with HTTP DIGEST. within a short duration.
Tomcat | 45453 >1 Send requests to make JDBCRealm cache | First set of requests can occur | ARBITRARY

PreparedStatement and preparedRoles.
Run two requests allowing two threads to
call getRoles simultaneously.

far apart.

Table 3.7: Analysis of Multiple-Input Software Bugs (Cont.).

not need to reproduce the failure at every possible installation; it is sufficient to reproduce

it on a single installation. Thus, it is enough for the automated tools to work if the faulty

inputs will cluster in at least one instance.

For designing bug diagnosis tools that replay input, the important factor is the time

between the first faulty input and the symptom; this delay determines the minimum amount

of information a replay tool must record in order to be able to catch all of the faulty inputs.

Since we have determined that most faulty inputs are clustered together within an input

stream, we know that the time between the first faulty input and the last faulty input is

small, and since the symptom will occur shortly after the last faulty input (as described in

Section 3.4.3), we can conclude that the time period between the first faulty input and the

symptom is also small.
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Implications:

There are two important implications of our results:

1. Most multi-input bugs (except for those in which the symptom is a hang or time-out)
will trigger the symptom shortly after the first input. This means that a replay tool

only needs to record a small suffix of the input stream to reproduce the failure.

2. The locality of multiple faulty inputs within an input stream makes it easier to create

a reduced test case.

3.6 Study of Concurrency Bugs

Surprisingly, we found only three concurrency bugs out of 160 bugs in the 3 multi-threaded
servers (Apache, MySQL and Tomcat) we studied in Section 3.4. This strongly indicates that
there are relatively few concurrency bugs in servers relative to the total number of reported
bugs (similar observations can be drawn from the data in [58]). One possible reason is that
servers generally process each request relatively independently, producing fewer inter-thread
interactions than other multi-threaded programs with more intricate sharing behavior.

Nevertheless, concurrency bugs do occur and may have different characteristics from
other bugs as they usually involve multiple threads and may be difficult to reproduce. We
therefore manually selected and analyzed a set of concurrency bugs to determine if they
show behavior similar to that of the bugs in Section 3.4. We now present the results of
our analysis of these bugs. As before, we classified the concurrency bugs based on three
characteristics: observed symptoms, reproducibility, and the number of inputs needed to
trigger the symptom.

We selected 30 concurrency bugs from Apache, MySQL and Tomcat by searching the
bug databases based on a set of keywords like 'race(s),” ’atomic,” ’concurrency,” ’deadlock,’

"lock(s),” and 'mutex(s)’ in a manner similar to Lu et al. [58]. The other servers have few
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Appl SegFault Crash Assert | Hang Incorrect | SegFault/ | SegFault/ | Crash/ Crash/
Vio. Output Incorrect Assert Incorrect | Hang
Output Violation Output
Apache | 1 (11.11%) | 0 (0%) | 0 (0%) | 4 (44%) | 1 (11.11%) | 1 (11.11%) | 1 (11.11%) | 1 (11.11%) | 0 (0.00%)
MySQL | 1 (9.09%) | 0 (0%) | 0 (0%) | 4 (36%) | 5 (45.45%) | 0 (0.00%) | 0 (0.00%) | 0 (0.00%) | 1 (9.09%)
Tomcat | 1 (10.00%) | 1 (10%) | 6 (60%) | 1 (10%) | 0 (0.00%) | I (10.00%) | 0 (0.00%) | 0 (0.00%) | 0 (0.00%)
Total 3 (10.00%) | 1 (3%) | 6 (20%) | 9 (30%) | 6 (20.00%) | 2 (6.61%) | 1 (3.33%) | 1 (3.33%) | 1 (3.33%)
Table 3.8: Classification of Bug Symptoms of Concurrency Bugs.
Appl. | Deterministic | Timing-dependent Non-deterministic
Apache | 0 (0.00%) 0 (0.00%) 9 (100.00%)
MySQL | 2 (18.18%) 2 (18.18%) 7 (63.64%)
Tomcat | 0 (0.00%) 0 (0.00%) 10 (100.00%)
Total | 2 (6.67%) 2 (6.67%) 26 (86.67%)

Table 3.9: Symptom Reproducibility Characteristics of Concurrency Bugs.

concurrency bugs. Out of these 30, 23 were data race bugs and 5 were deadlock bugs (it was
not clearly reported for two of the bugs).

Table 3.8 shows the results of classification based on symptoms. Each column shows
the number of bugs for the corresponding symptom or combination of symptoms. We in-
clude combinations of symptoms because some of these concurrency bugs were reported to
produce different, yet specific, symptoms in different executions for the same input (e.g., a
segmentation fault in some executions and an incorrect output in others). There are some
interesting differences between concurrency and non-concurrency bugs. First, as expected,
a much higher fraction of bugs produce hangs; most of them are due to deadlocks. Second,
five (17%) of the concurrency bugs produced different, yet specific, symptoms in different
executions, as noted above. Third, there are much fewer incorrect outputs with concurrency
bugs (20% overall, but 45% in MySQL). It appears that a higher fraction of concurrency bugs
produce catastrophic symptoms like crashes or hangs, which can cause service interruption.
This observation is similar to that reported by Lu et. al. [58].

Table 3.9 shows our results from classifying bugs as deterministic, timing-dependent, or
non-deterministic. Most of the bugs (87% overall, and 100% in Apache and Tomcat) show

non-deterministic behavior. This underscores the difficulty of reproducing the symptoms of
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Application | # 0-2 input | # 3-8 input | # >8-input | Unclear Max #inputs
Apache 0 (0.00%) 0 (0.00%) 6 (66.67%) 3(33.33%) |20

MySQL 0 (0.00%) 3 (27.27%) 5 (45.45%) 3(27.27%) | 16

Tomcat 0 (0.00%) 0 (0.00%) 6 (60.00%) 4 (40.00%) | 15000

Total 0 (0.00%) 3 (10.00%) 17 (56.67%) | 10 (33.33%) | 15000 (max)

Table 3.10: Maximal Number of Inputs Needed to Trigger a Symptom for Concurrency
Bugs.
concurrency bugs.

Table 3.10 shows the results of classifying bugs based on the number of inputs required
to reproduce the bug (note that the columns differ from Table 3.4). For some cases, it was
not clear from the bug reports exactly how many inputs were needed (for example, bug
reports mention that they need to run some test cases in stress mode with multiple threads
repeatedly for a few minutes to trigger a symptom). We have conservatively classified these
cases as requiring more than eight inputs. The fifth and sixth columns are identical in
purpose to those of Table 3.4. We used only the bugs for which we know the exact number
of inputs to trigger them to compute the maximum number of inputs. As before, the
numbers in brackets in the table are the corresponding fractions as a percentage of the total
number of bugs. There are several differences with our earlier results for non-concurrency
bugs. First, all the studied concurrency bugs need multiple non-login inputs (>2) to trigger
a symptom (as a comparison, very few non-concurrency bugs needed multiple non-login
inputs for reproduction). Some cases need significantly more inputs, but none of the bugs in
Apache and MySQL (for which bug report mentions exact number of fault-triggering inputs)
needed more than 20 inputs. Second, many bugs needed executions with multiple threads
and multiple client connections for some time to reliably trigger the symptoms. (For most
of the bugs, though, the bug reports mention that the symptoms can possibly be triggered

using 2 or 3 threads and client connections.)
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3.6.1 Implications

These results have several implications for automatic bug diagnosis tools for concurrency

bugs.

1. As most of the concurrency bugs are non-deterministic and produce different symp-
toms, bug diagnosis tools will need to develop new techniques to reliably reproduce

the symptoms.

2. A somewhat larger suffix of inputs will be needed to trigger the symptoms compared

to non-concurrency bugs.

3. For most of the concurrency bugs, we will also need to use inputs from multiple different
client connections. This can significantly complicate the process of reproducing the

symptom and minimizing test cases.

Finally, note that our methodology successfully identified both non-deterministic behav-
ior and also the need for multiple inputs in these 30 bugs. The same methodology found a
very low occurrence of both these behaviors among overall reported bugs, as described in
the previous section. This is an important validation of those (perhaps surprising) results

for overall reported server bugs in Section 3.4.

3.7 Implications for Designing Automated Bug
Diagnosis Tools

Bug diagnosis often involves one or more of the following steps: recording inputs that may
lead up to a fault, reducing a small triggering input from the recorded inputs when a fault
does occur, and using the inputs to somehow determine the cause of the bug.

New bug diagnosis tools may be able to exploit the bug characteristics we have found to

improve their efficiency. We provide potential ways of using our results below.
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3.7.1 Recording Server Input

Tools that automatically create reduced test cases for bugs need an recorded input that
triggers the bug. However, recording all of the inputs to a server program is infeasible.
Servers process vast amounts of inputs over long periods of time; a way to prioritize which
inputs to save and which inputs to discard are needed.

Our results indicate that most bugs can be triggered with a single input, that some
protocols require an authentication step before playing that single input, and that the inputs
needed for reproducing a multiple-input bug are often clustered close together within the
input stream. Additionally, we observed (like previous work [57]) that the symptom is often
triggered immediately after the faulty inputs have been processed. Also, as discussed in
Section 3.5, we found that the time duration from first faulty input to symptom is usually
short for most bugs.

The implication is that an automatic bug diagnosis tool should be able to catch most
bugs without recording the entire input stream. Rather, it should suffice to record a prefix
of the per-session input (to replay session establishment and authentication, if necessary)
and a suffix of the input (which will most likely contain all of the inputs needed to trigger
the symptom).

However, Bug reports often try to reproduce a failure using a subset of the inputs con-
taining all the failure-triggering inputs instead of the complete input stream. One concern
is that the ability for a set of inputs to trigger a symptom may depend upon global state
in the server that was affected by processing earlier inputs. For example, one set of inputs
may cause the server to allocate memory in such a way that a buffer overflow triggers a
segmentation fault while a subset of those inputs generate an incorrect output symptom due
to a different heap layout. While a simple test case exists, how do we know that it can be
reduced from a larger test case? In other words, can a suffix of inputs which contains all

the failure-triggering inputs reliably trigger the same symptom that was triggered by the
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original input stream? We hypothesize that most deterministic bugs will generate identical
symptoms even when earlier non-faulty inputs are removed from the input stream. Such
bugs have a small number of failure triggering inputs and appear to have small error prop-
agation chains. Moreover, Servers generally process each request relatively independently.
Given this, we believe failure behavior of these server bugs is less likely to be affected by
differences in global state.

We did a preliminary experiment to see if the global state of the server often affects
whether a set of faulty inputs triggers a symptom. We selected four real bugs from four server
applications: a stack buffer overflow bug due to an integer overflow (sshd), a NULL pointer
dereference bug (Apache), and two heap buffer overflow bugs (Squid and NullHTTPD). For
each bug, we created an input stream of 99 good inputs and appended to it the faulty input.
We then proceeded to feed the input stream into the server, recorded whether the same
symptom as reported in the bug report occurred, removed 10 good inputs from the input
stream, and re-ran the experiment. We repeated this process until we had reduced the input
stream to just 10 faulty inputs.

For all of the bugs we tested, the same symptom occurred after the faulty input was
received regardless of the number of good inputs that preceded it. This suggests that the
ability to reproduce a bug by replaying a suffix of the inputs to the server does not greatly

depend upon global server state.

3.7.2 Automated Test Case Reduction

Our results may also help develop heuristics for guiding automatic test case reduction. For
example, the ddmin minimizing delta debugging algorithm by Zeller and Hildebrandt [21]
considers all test inputs as equally likely to trigger a symptom. However, our results indicate
that most server bugs are single-input bugs, or require a small number of inputs that are
clustered close together. As stated in Section 3.5, for most of the bugs, we find the time

duration from first faulty input to symptom is usually short. Therefore, it may be possible
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to improve the efficiency of test case reduction algorithms by first systematically testing each
small suffix of the recorded input stream to see if any of those inputs trigger the symptom
before applying a more general algorithm like ddmin. For most of the bugs, this procedure
is likely to be faster than ddmin. Also, some of the tools can possibly take benefit of the
fact that very few inputs (usually < 3) are needed to trigger the symptom by first searching

small subsets before trying more complex algorithms.

3.7.3 Automated Bug Diagnosis Tools

The results of our study may also help improve tools such as Triage [12] that use checkpoint-
ing and replay to automatically diagnose bugs during production runs. Triage periodically
checkpoints a program during normal execution [12]. When it detects an error, Triage in-
struments the code with additional detectors that help determine the bug’s root cause and
re-executes the program from the last checkpoint [12].

Our results have several implications for tools like Triage. First, a system like Triage can
reduce the input stream to a much smaller set of inputs (as described previously), speeding
up the bug diagnosis process by not replaying irrelevant inputs. Second, our results indicate
that symptoms can be triggered by restarting the server and replaying a small number of
inputs i.e., without checkpointing server state. This alleviates the need for checkpointing,
However, techniques like checkpointing may not be practical due to various reasons. First,
complexity of taking checkpoints (which needs specialized support from application and/or
operating system [12, 7]) is a major issue. Second, multi-threaded process also complicates
the checkpointing procedure further. Second, they can impose additional overhead on normal
program executions. In addition, diagnosis cannot be done if the fault happens before the
checkpoint is taken. Using a restart-replay mechanism will enable us to build a much simpler

and much powerful automatic bug diagnosis tool.
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3.8 Related Work

Several previous bug characteristic studies have examined the bug reports of both open-
source and proprietary software. Gray [59] studied the maintenance reports of customer
systems to study trends in system outages; his results show that software is the dominant
factor in system outages. Lee and Iyer [60] studied the root causes and error propagation be-
havior of bugs in the Tandem GUARDIAN90 system and concluded that consistency checks
detected slightly more than half of the bugs in software and prevented error propagation
for 31% of the bugs [60]. Sullivan and Chillarege [61] studied the root causes and triggers
for bugs and determined that most bugs were caused by memory errors. More recent work
by Li et. al. [62] aimed to update the results of Sullivan and Chillarege by studying the
Mozilla web browser and the Apache web server; they found that memory errors were not
the dominate cause of errors in these applications. Furthermore, they found that incorrect
program behavior was the most common bug symptom [62]; our study confirms this result.
Lu et. al. [58] studied many characteristics of concurrency bugs in open-source software;
they found, among other things, that most concurrency bugs can be reliably triggered by
controlling the schedule of four or fewer memory accesses. Chandra and Chen [56] studied
the bug reports of several versions of Apache, GNOME, and MySQL to determine whether
application-agnostic recovery techniques could recover from the majority of bugs detected in
production runs. Our study confirms their finding that most bugs are deterministic [56]. As
far as we know, no other bug study has examined the number of inputs needed to reproduce
bugs or aimed to answer questions about the feasibility of creating automatic diagnosis tools

that replay inputs.

3.9 Conclusions

In this chapter, we reported the results of an empirical study of bugs found in open-source

servers. Our results show that most server bugs are deterministic and that failures due
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to most bugs (77%) can be reproduced by replaying a single input request (after session
establishment if needed). Even for the remaining multi-input bugs, the set of inputs needed
for reproducing failures is usually small and are often clustered together within the input
stream. For most of the bugs, the time duration between first faulty input and the symptom
is small. Our results also showed that many bugs produce incorrect outputs, indicating that
better detectors are needed to flag errors in production runs. Most of the concurrency bugs,
though, need multiple inputs to reproduce a symptom and are non-deterministic. Finally,
we discuss how the results can be used by automated tools for doing in-production bug
diagnosis. One of the key implications of the study is that most of the failures may be

reproduced without checkpointing server state.
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Chapter 4

Invariant-based Automated Diagnosis
of Software Bugs

Finding the root cause is the most important and difficult step for any automated debug-
ging process. Earlier approaches for automated bug diagnosis have some drawbacks - some
approaches do not scale to large applications, some require custom hardware support, some
may miss root causes, others give too many false positives. We try to address these draw-
backs in our framework for automated bug diagnosis. Our work on fault localization extends
previous work that uses invariant-based diagnosis to narrow down the root causes of bugs.
Likely program invariants are program properties that are observed to hold in some set of
successful executions but, unlike sound invariants, may not necessarily hold for all possible
executions [26, 15]. Invariant-based approaches first extract likely invariants in some manner,
and then run the program on an input that triggers the bug. Any invariants that are violated
in this failing execution are assumed to be potential root causes. In this way, we use likely
program invariants to provide us with a set of possible candidate root causes. By training
likely program invariants on “good inputs,” violations of these invariants in a failing run
can identify deviations between good and bad runs (i.e., possible bug locations and their
consequences). The tradeoff, however, is that they can also be violated on valid behaviors
not captured in the training runs (”false positives”) and, if the invariants are too broad, can
miss bug locations (”false negatives”). Despite these tradeoffs, likely program invariants are
powerful because they can capture properties of the actual source code, including properties
that violate programmer intent (whereas programmer-written invariants, such as assertions
in the code, will only express programmer intent); and, by observing patterns of behavior of

program variables, (e.g., "the variable month lies between 1 and 127), they can capture deep
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algorithmic properties, which are captured in limited ways, if at all, by static analysis [63].

Previous work on invariant-based approaches has three major short-comings. First, they
all use general test inputs for training, and because the coverage from test inputs is often
low [64], root causes can be missed as a result. Second, using general test inputs also makes
the likely invariants too broad (e.g., value ranges of variables may be too large) and not
tailored to the specific failure, which can also make them miss root causes. Third, the
previous approaches have not developed sufficiently practical techniques to filter out false
positives, i.e., to narrow down the candidate locations of root causes. Some do not do
much filtering [15], leaving a large number of possible candidates. Another recent work uses
custom hardware support for forward slicing to filter out invariants that do not influence the
observed failure symptom [16].

We propose a sophisticated approach combining likely program invariants with novel
filtering techniques to narrow down a possible set of (“candidate root causes”). Our goal is
to make this set as small as possible. We improve over previous work in two key ways. First,
we generate likely invariants in a novel way by using a small set of automatically constructed
good inputs that are as close to the given failing input as possible for training. We use an
automated algorithm based on delta debugging (ddmin) [21] to construct similar inputs. By
using inputs that are close to the failing input, rather than arbitrary inputs obtained ahead of
time, the invariants that do fail are more likely to highlight the differences between the failing
run and similar passing runs, i.e., to identify the root cause. Moreover, by using a small set
of such inputs, our invariants are much tighter than would be obtained via random inputs,
or via inputs used during general program testing. This has the benefit that the invariants
at the root cause are more likely to be violated (fewer false negatives). It has the drawback
that many other spurious invariants may be violated as well (more false positives). We
consider this tradeoff worthwhile because we consider it extremely important not to miss the
root cause, and because we believe we can use sophisticated filtering techniques to eliminate

the false positives. Like our work, DIDUCE constructs invariants tailored to the failing run
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— in fact, within the same run itself — but they do not do much filtering [15], to eliminate
false positives, leaving a large number of possible candidate root causes.

Second, because tighter invariants can yield more spurious invariant failures, i.e., false
positives, we employ several techniques to filter out these false positives. We use dynamic
backward slicing to filter out invariants that do not influence the observed failure symptom;
unlike previous work [16], we do this entirely in software, and we account for control depen-
dence and not just data dependence. Additionally, we have developed two novel heuristics to
further narrow down the root causes of failure. The heuristics are based on two observations.
First, if an invariant on one instruction fails, then another instruction dependent on the first
one may also be likely to have an invariant failure, but the underlying cause is the first, not
the second. We remove the second from the candidate root causes and call this dependence
filtering step. Importantly, this heuristic leverages the data-flow and control dependence
analysis used in the slicing algorithm directly. Second, if multiple similar inputs produce
the same failure symptom, they are likely to have the same root cause, and therefore, we
can focus on invariants that fail for all such inputs. Again, this heuristic directly leverages
(indeed, simply reapplies) the previous steps, but for additional failing inputs.

For each failure, our tool will perform the diagnosis automatically and present back to the
programmer the set of program statements with failed invariants after each filtering step as
candidate root causes. It will also present the local sub-expression rooted at each candidate
root cause since the root cause may be anywhere in that expression. The programmer can
investigate the candidate root causes after the final filtering step and their sub-expressions
first. If the programmer can’t find the root cause among them, the tool will present the
programmer with the candidate root causes at the previous filtering step and so on.

In this chapter, we first describe the overall approach of our complete software bug
diagnosis framework in Section 4.1 and then describe the basic invariants-based diagnosis
to identify first set of candidate root cause(s) in detail in Section 4.2. The procedure to

construct inputs to generate invariants is explained in Section 4.3 in more detail. In the
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next chapter 5, we describe the various filtering techniques we use to reduce the false-positive

invariants.

4.1 Overall Invariants-based Approach for Software
Bug Diagnosis

Some previous automated bug diagnosis techniques use program invariants [15, 11]. Others,
such as Delta Debugging [13, 19], compare a failed execution of the program with a successful
execution to identify the root causes of a failure. One drawback of Delta Debugging is that
comparing individual dynamic statements or values between a failed and a successful run can
be inefficient and unscalable. Instead, we can use program invariants to make an efficient

comparison of the program runs. Thus, our approach essentially combines the two prior

approaches.
Optional Failure-inducing
Program Grammar (Bad) input
Good Inputs
Instrumented
Program
Bad
Inputs
Failed Invariants
False+ve
Filters

Figure 4.1: Diagnosis Tool Architecture
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Our approach needs the source code of the program, configuration files, a failing input
and a deterministic detector (described in more detail in Section 6.1.2) to accurately identify
the root causes. Figure 4.1 gives a broad overview of our approach. The process begins with
a program and a failing input, plus an optional grammar specifying the possible tokens in
valid program inputs and all possible replacement tokens for each input token, and finally
generates a set of failed invariants, which identify locations of the possible root causes. The
final step (not shown) maps each location back to a set of source statements. We now

describe the approach in more detail.

Definition 1. Program invariants are program behaviors that are guaranteed to hold for all

possible inputs.

Definition 2. Program behaviors that are observed to hold for some, but perhaps not all,

program inputs are known as likely invariants [26].

Likely invariants can be extracted by monitoring the execution of the program for some
desired set of program inputs; we refer to these as the training runs. If we instrument a
program to test likely invariants and then execute it with the failing input, any invariants that
fail are a strong indicator of differences from successful runs. Thus, we can use locations
of failed invariants as an initial set of candidate root causes of the bug. Note that true
invariants are never violated and so do not help to identify candidate root causes.

The key problem we must address in this work is that this initial set of candidate root

causes is often very large, e.g., with hundreds of locations.

Definition 3. We define all the candiate root cause locations which are not true root causes

as false positives.

Hence, all the candiate root cause locations except the true locations of the root cause

will be false positives. The challenge is to filter down the set of candidates into as small a

"We therefore often omit the qualifier “likely” in the rest of this document; all unqualified uses of “in-
variant” implicitly mean “likely invariant”.
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set of locations as possible. We use a series of dynamic analysis steps based on dynamic
program slicing and dependence filtering to filter out nearly all the false positives.

We use the example in Figure 4.2 to illustrate the steps of our approach. This is a sim-
plified version of some code in the MySQL database server which contains a buffer overflow
bug. The buffer overflow occurs when a Select query contains a specific date between 0000-
Jan-01 and 0000-Feb-28. The buffer overflow occurs at line 31 when the type_names array is
indexed with weekday for the aforementioned dates. The root cause of this bug is at line 10
in function calc_daynr. It uses an unsigned variable year to perform computation. When
the value of year is 0, the decrement statement at line 10 results in a very large number
and, consequently, the value of temp at line 13 also becomes a very large number. Finally,
at line 14, the function returns a negative number; this value is used to calculate the day of
the week in function calc_weekday, which, in turn, returns a negative value. Hence, when
the return value is used as an index in line 31, it causes a buffer overflow and a program

crash.

4.1.1 Generating Similar Inputs

The first step in our approach is to generate similar passing and failing inputs from the
original failure-inducing input. As explained in Subsection 4.2.2, this step is important
for the overall success of our approach. We employ three different types of algorithms to
generate similar inputs. The main idea is to systematically remove or modify the parts of the
original input using algorithms based on delta debugging (ddmin) [21]. If an optional input
grammar specifying the tokens in valid program inputs is given then modification can be
done more efficiently at the token level as described in detail in Section 4.3. In this way, we
generate many similar good inputs which avoid the original failure. In a similar way, we can
generate many similar failing inputs. Our ability generate such similar failing inputs enabled
filtering techniques like multiple failing-input filtering as discussed in Subsection 4.1.5. We

next describe the overall approach to localize faults using such similar good and bad inputs.
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1 long calc_daynr(uint year,uint month, uint day)
2 {

3 long delsum;

4 int temp;

5

6 if (year = 0 && month = 0 && day = 0)

7 return (0); /« Skip errors x/

8 delsum= (long)(365Lxyear+31x(month—1)+day );
9 if (month <= 2)

10 year ——;

11 else

12 delsum—= (long) (month*x4+23)/10;

13 temp=(int) ((year/100+1)%3)/4;

14 return (delsum+(int) year/4—temp );

15 }

16

17 int calc_weekday (long daynr, bool first_week_day)
18 {

19 return ((int)((daynr+5L+(first_week_day ? 1L : OL)) % 7));
20 }

21

22 bool make_date_time (TIMEFORMAT xformat , M.TIME xt,
23 timestamp_type type, String sstr)
24 {

25 str—>length (0);

26 if (l-time—neg)

27 str—>append ("=’ );

28 ...

29 weekday= calc_weekday (calc_daynr (t—>year ,t—>month,
30 t—>day) ,0);
31 str —append (loc —>d_names—>type_names | weekday] ,

32 strlen (loc—d_names—>type_names [weekday|) ,

33 system_charset_info );

34 ...

35 )

Figure 4.2: Source Code Example
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4.1.2 Likely Program Invariants

We use program invariants to find a set of candidate program instructions that are possible
root causes of a failure. Given an input that triggers the bug, we obtain a set of good inputs
that do not trigger the bug from the failure inducing input using the previous step and
we then run the program with these good inputs to find a set of program invariants. The
invariants we use for our work are range invariants (described in Section 4.2.1). We limit our
invariants to load, store or function return values, for reasons explained in Section 4.2. For
example, we monitor the return value of functions such as calc_daynr and calc_weekday,
as well as the loads of the three fields of t in the arguments to calc_daynr. For all good
inputs, the return values of the two functions will be positive; this will be captured as likely
invariants. When the program is run on the failure-inducing input, these two invariants
(along with some other invariants) will fail as the return values of these functions will be
negative. This will give us a number of candidate locations which can be root causes.
Overall, this step generated 95 failed invariants for this particular bug in MySQL. While
this is far too large to report to programmers, it is still an impressively low number (especially
considering that we are using one of the simplest possible types of invariants, ordinary
ranges). This is strong evidence that the overall approach based on invariants constructed

from nearby good inputs is promising.

4.1.3 Dynamic Program Slicing

Most failed invariants are not root causes of the bug. For example, some failed invariants
are on instructions that do not compute any values that affect (directly or transitively) the
instruction at which the symptom occurs. We can eliminate any such instruction from the
set of possible root causes.

Dynamic backwards slicing [65] is a technique that can precisely determine which in-

structions affected a particular value in a single execution of a program. We start from the
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statement which causes the symptom (in this example, the invalid array element access) and
find the statements in the execution that could have affected that statement, either via data
flow or control flow. This set of statements is exactly the dynamic backward slice. We then
remove all the failed invariants which are not part of this slice from the set of possible root
causes.

In the part of the code shown in Figure 4.2, there are actually no failed invariants for
the failing execution (though there are fairly many in other parts of the program). However,
imagine that statements 25 and 26 had generated failed invariants. They would have been
false positives since they are not the root cause of the failure. However, these statements are
not part of the dynamic backward slice because they do not affect the value at the symptom,
and so they would have been filtered out from the candidate set. Note that both function
returns are part of the dynamic backward slice and would be included in the candidate set.

For this bug, this step removes about 62% of the failed invariants, reducing the candidate

count from 95 to 36.

4.1.4 Dependence Filtering

Another source of false positives is error propagation. If a faulty instruction that is the
bug’s root cause triggers an invariant failure, then any instruction using the faulty value
computed by that instruction may also trigger an invariant failure. Such subsequent invariant
failures are not indicative of a root cause; they merely occur because the erroneous value is
propagating through subsequent computation.

Using this observation, we have devised a heuristic called dependence filtering to further
reduce the set of candidate root causes. This heuristic uses the data flow graph and control
dependence graph formed during the previous dynamic slicing step to eliminate any instruc-
tion with a failed invariant that depends on another instruction with a failed invariant, with
no intervening passing invariants. This policy is explained in Section 5.2.1.

For the example bug, when we build the dynamic dependence graph starting from the fail-
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ing array indexing statement, the failed invariants of calc_daynr and calc_weekday will lie
on one path to the symptom. Since the result of calc_daynr is directly used by calc_weekday
with no intervening instructions that have invariants, the error at calc_weekday is likely to
be propagated from calc_daynr, and we exclude the return value of calc weekday as a
candidate.

This step removes about 55% of the 36 remaining candidate root causes, leaving only

about 16 candidates.

4.1.5 Filtering Using Multiple Failing Inputs

Note that once the invariants have been computed, the remaining steps above (finding failing
invariants; dynamic backward slicing; dependence filtering) all happen using a single failing
input. However, we can use generated inputs from the first step which are similar to the
original input and also cause the program to fail with exactly the same symptom to further
reduce the candidate set. Since these new bad inputs result in the same failure, it is very
likely that the root cause will be the same. We can therefore repeat the last three steps
above for each such failing input. The root cause should be included in the final candidates
generated for all these inputs. We can then take the intersection of these sets to find the
final set of candidates. For this bug, this step reduced the final set of candidates by 25%
from 16 to 12.

The tool will first present the set of candidate locations from the final step to the de-
veloper for analysis. If developer cannot find the root cause among them, then tool will
present the other candiate root causes in the order depending upon the number of other
failing inputs in which they appear. If the root cause cannot still be identified, then the tool
will present root causes from previous steps in this order - dependence filtering, slicing and
likely invariants.

Overall, our diagnosis has narrowed down the possible location of the bug to 16 locations

i a program of over 1 million total lines of code for this bug, since root cause of this bug
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cannot be found in final step, but can be found among the candidate locations of dependence
filtering step. Moreover, for each of these locations, we have fairly detailed information about
the ranges of program values seen in the successful executions, and the corresponding actual
values from the failing runs, which fall outside those ranges. This is an extremely effective

result because it should vastly simplify the task of the programmer in debugging the error.

4.1.6 Feedback to the Programmer

Each candidate invariant in the final or non-final set represents an instruction that may
indicate the location of a root cause of the failure. Recall, however, that we only track
invariants on load, store and return instructions. This means that the actual location of a
bug may be anywhere in the maximal sub-expression rooted at a load, store or return that
does not itself contain any load, store or return (We call this a pure, local sub-expression).
Therefore, the tool additionally computes the maximal pure, local sub-expression rooted at
each candidate root cause and presents it back to the programmer.

For the example bug, the invariant on the return value of calc_daynr indicates the
location of the root cause, but the true location is somewhere in the body of that function.
(Note that the entire function body is pure and local, after register promotion of local stack
variables.) Therefore, the tool would present to the programmer the subset of the body of
the function that is used to compute the return value in the failing run, i.e., lines 6, 8, 9,
10, 13 and 14. Of course, the negative return value in the failing run is a huge clue that
temp at line 14 must be a large value. temp is computed from year, and year is computed
by decrementing the incoming parameter value. This can only produce a large value by

overflowing. Thus, the decrement of year is the true root cause.
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4.1.7 Program Analysis and Instrumentation Infrastructure

Our system uses the the LLVM Compiler Infrastructure [66] to analyze and transform pro-
grams. LLVM supports a number of languages, including C and C++. Its intermediate
representation (the LLVM IR) represents a program as a set of functions; each function
is a set of basic blocks with an explicit, statically known control-flow graph. Scalar vari-
ables are kept in Single Static Assignment (SSA) form [67], making definition-use chains
explicit. Other variables (e.g., C arrays and structs) are kept in non-SSA form; scalar fields

of structures and arrays elements are accessed using RISC-like load and store instructions.

4.2 Constructing Candidate Root Causes

This section discusses how we use invariants to construct a candidate set of possible root
causes of a given failure. We assume that the program includes a set of deterministic detec-
tors for some classes of bugs which may exhibit non-deterministic behavior. For example,
memory safety errors can manifest in non-deterministic ways, but we can use detectors like
SAFECode [55], Valgrind [68] or SoftBound [69] to ensure that they provide the same symp-
tom every time they are triggered. These detectors are only used offline after a failure is
detected; the detectors are not used, and therefore add no overhead, in production runs
of the program. For incorrect output errors, we assume that programmer-inserted or au-
tomatically generated program assertions can be used for detection (programmer-inserted
assertions are often available at development time). Also, these detectors can be used on-
line during development time, since overhead is not an issue during development time for
programs compiled with assertions included. For many applications, comparison with a dif-
ferent version of the application, other equivalent software or known output may work as a
detector for incorrect output errors. An input grammar, only specifying the possible tokens
in valid program inputs and all possible replacement tokens for each input token, is optional.

If such a grammar is available, it can simplify and enable better input generation using our
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algorithms based on the ddmin [21] approach. We use these algorithms to construct inputs
for generating invariants, as described in Section 4.3.

The input to our diagnosis is a source program, required configuration files, the “failing
input” that triggered the failure, and the failure symptom detected by some deterministic
detector (we may also need “expected output” for detection of incorrect output bugs in some
applications).

When a program fails on a particular input but succeeds for an input that is very similar
(i.e., close) to the failing input, there are likely to be relatively few differences in behavior
between those two executions; the key insight behind the work on Delta Debugging is that
these differences can help narrow down the root cause(s) of the failure. Our goal is to perform
this narrowing automatically by using invariants for the comparisons to identify candidate
root causes, followed by various filtering techniques to reduce false-positives. If we can
construct a set of such similar good inputs, then we can automatically extract behavior
patterns that are common to these inputs. If the execution with the failing input violates
any of these behavior patterns, that violation is a powerful indicator of the possible root
cause(s) of the failure. Currently, we measure similarity between inputs by using edit distance
between two inputs. Two inputs are said to be more similar or closer, if the edit distance is

lesser compared to others.

4.2.1 Likely Range Invariants

In this work, we use a simple form of program invariants — likely range invariants. A likely
range invariant, or range invariant for short, is a range of values computed by some program
instruction in the monitored runs. For example, if an instruction load int* %p is always
observed to return a value in the range between -5 and 10 (denoted [-5,+10]) in some set
of training executions, then that range represents a range invariant for that instruction. A
range invariant can be tested in future runs by instrumenting the program to compare the

value computed by the instruction to see whether or not it falls within the range.
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Range invariants are attractive because they capture concisely the observed values of
program variables and instructions. They are also very efficient to generate and monitor
with linear-time overhead as they only require recording (or monitoring) program values
independent of other values. Although we expect that other kinds of data and control
invariants are likely to be useful in identifying candidate root causes, we leave it to future
work to explore such choices.

Since programs can have a large numbers of instructions, we limit our monitoring of
invariants to load, store, and function return instructions. For example, an assignment
statement, x = A[i] + b * B[j]; may have an error anywhere in the expression but we
only monitor the loads of A[i], b, B[j] and the store to x. This means we cannot narrow
down the location of an error to anything smaller than an entire subexpression terminating
in a load or store, but we expect this granularity to be ample for programmers to pinpoint
the root causes of a failure. It may not be obvious why we monitor loads as well as stores
when loads almost always return values from previous stores. We do so because it allows
us to detect errors like incorrect memory address computation (for example, errors in array
index expressions, such as A[i] or B[j] above). We have not yet experimentally evaluated
which values or instructions are better in identifying the root cause(s) in practice.

We extract range invariants from training runs using a set of good inputs. We generate
invariants only for those parts of the code that are executed by at least one of the good
inputs. We then instrument the program to test those invariants and re-execute the in-
strumented program using the failing input. If a particular range invariant is violated, i.e.,
the relevant instruction produced a value outside the observed range, we assume that the
relevant instruction may contain the bug, i.e., we consider it to be a candidate root cause of

the failure.
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4.2.2 Motivation for Using Similar Good Inputs

The technique used to extract likely invariants can affect the accuracy and the number of
candidate root causes. When a large number of arbitrary program inputs are used to extract
range invariants (e.g., all inputs used during software testing), many of the ranges obtained
are likely to be wide. Also, coverage from using a random set of training inputs or general
test inputs is often low [64]. As a result, many program statements are not executed at all
resulting in insufficient training. This makes it less likely that such a range invariant will
be violated during a particular failing run, which means that the root cause of a failure may
not be included in the initial set of candidate root causes. This was the approach taken by
previous systems [15, 16]. Pytlik et.al. [27] used invariants generated from test inputs for
fault localization of Siemens benchmark suite without much success.

Instead, we need “good” inputs that (a) result in execution whose control flow and inter-
mediate program values are as close to that of the failing run as possible and, (b) are few in
number, and use those to extract range invariants. Using close good inputs has two benefits.
First, it ensures that the execution behavior of the training runs will be as close to the
failing run as possible, and so tends to isolate the differences (even if differences are minor)
better that might be the causes of the failure. Moreover, it allows us to use a very small set
of training inputs (e.g., only 10 as opposed to thousands, as used in prior work [26]). For
example, consider a bug in MySQL that is triggered by an uncommon Date field in a Query:

SELECT DATE_FORMAT(”0000-01-017,"%W %d %M %Y’) as a;
Constructing invariants using a general set of inputs would include queries for INSERT,
DELETE, SELECT, JOIN, etc., most of which are likely to have very different behaviors
from the failing input. One would need a large number of such inputs to be representative of
program behavior. As mentioned earlier, when a large number of arbitrary program inputs
are used to extract range invariants, many of the ranges obtained are likely to be wide and

likely to miss the root cause. Using a set of inputs with very similar execution behavior
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including program control flow and intermediate values (e.g., variations of previous query
with different Date fields) that do not trigger the error requires a much smaller set of inputs
to represent the behavior we are seeking.

Using only a few such good inputs makes the invariants narrower (e.g., smaller ranges
for range invariants), which is both good and bad. It is good because it makes it more likely
that the different behavior will result in a failed invariant. It is bad because it may possibly
cause a large number of invariants to fail. Since we aim to identify the root cause(s) of a
failure, it is important not to miss the root cause in the first step itself and so the benefit far
outweighs the disadvantage. The key goal of this work, therefore, is to compensate for any
possible disadvantage, i.e., to filter out the false positives, reducing the final set of reported
candidates as much as possible without eliminating the true root causes. Filtering techniques
we employ are described in detail in Chapter 5.

As explained earlier, success of our approach depends upon generating good inputs with
similar execution behavior like program control flow and intermediate values as that of the
failing input and training invariants using those inputs. Hence, the first step of our overall
process is to construct a set of “good” inputs that exhibit as similar execution behavior as
possible to that of the failing input used for diagnosis. In this work, we create inputs with
similar execution behavior by constructing a set of “good” inputs that are as close to the

failing input as possible. We define “good” inputs and “close” good inputs as follows.

Definition 4. We define “good” inputs as those inputs which avoids the original failure

symptom of the failing input.?

Definition 5. We define an input as “close” good input, if the difference between the input

and failing input in terms of edit distance is as small as possible.

If the inputs are very close, their execution behavior is likely to be similar. So, the overall

2We expect that the approach would work even if such inputs trigger other unknown failures because our
main requirement is to isolate differences that avoid triggering the failure being diagnosed. We have not
encountered this situation so far.
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goal of this step is to create a certain number of good inputs that are as “close” to the failing
input as possible. We systematically modify parts of a small failing input to construct such

similar “good” inputs.

4.3 Constructing Program Inputs Similar to the
Failing Input

We have designed three input generation algorithms that construct good inputs (they can
also be used to generate additional failure-triggering, or bad inputs by modifying the criteria
they use for selecting which inputs to return). These algorithms use different approaches
to generate inputs - one uses a deletion based grammar-independent approach described as
inp-gen-delete in Algorithm 1, and the other uses a replacement based grammar-dependent
approach described as inp-gen-replace in Algorithm 2. Both inp-gen-delete and inp-gen-
replace take an input (e.g., the input that triggers the bug) and the number of desired good
inputs and return a set of good (or failure-inducing) inputs. We designed a third approach

to generate good and bad inputs for compiler bugs by using C-Reduce [28] tool.

4.3.1 Deletion Based Grammar-Independent Approach

The deletion approach initially uses ddmin [21] to generate a few good inputs. ddmin is a
systematic procedure for generating minimal inputs by systematically searching subsets of
the input and their complements for various sizes of subsets. As a side effect, it can also
produce good and bad inputs while testing various subsets for failure symptoms. Since, in
many cases, ddmin produces too few good inputs, we use good-inp-gen (a variation of the
original ddmin algorithm) to produce more good inputs. Good-inp-gen takes as input the
most similar input produced by ddmin (similarity based on edit-distance). This function

starts by removing single characters and then removes exponentially more characters from
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Algorithm 1 Delete-based Input Generation

1:
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34:
35:

// Generates num Good Input starting from a failing input using deletion-based approach
function INP-GEN-DELETE(input, num)

GoodInput < a good input from ddmin algorithm

return good-inp-gen (GoodInput, num)
end function

// Generates num Good Input starting from a good input
function GOOD-INP-GEN(input, num)
Inititialize queue GoodInpQ with input
// Repeat till Queue of good inputs is empty or we get num good inputs
while GoodInpQ # () A size of GoodInpQ < num do
nextGoodInp « removeFront (GoodInpQ)
add nextGoodInp to GoodInputList
find-good-inp (nextGoodInp, length (nextGoodInp))
end while
sort GoodInputList based on edit-distance
return first num elements of InputList

: end function

: // Generates Good Inputs by starting from n subsets of inp
: // and then recursively increasing subset sizes till n
: function FIND-GOOD-INP(inp, n)

Split inp into n subsets of equal size
for each subset s do
if s is good input then
enqueue(GoodInputQ), s)
end if
if complement of s is good input then
enqueue(GoodInput@, complement of s)
end if
end for
if n/2 > 1 then
find-good-inp (inp, n/2)
end if

end function
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the input as it tries to find more good inputs. Like ddmin, this also tries both a substring
and its complement to increase the likelihood of quickly finding good inputs. To determine
whether the inputs are good or bad, we currently use a known correct version of the applica-
tion. Once it has generated a sufficient number of good inputs, good-inp-gen sorts the inputs
in the order based on its edit-distance from the original failure-inducing input and returns a
pre-defined number of elements from the front of the list. These inputs should be the closest
inputs to the original input as they are the closest in length (note that good-inp-gen only

generates inputs smaller than the original input).

4.3.2 Replacement Based Grammar-Dependent Approach

Both ddmin and good-inp-gen do not require knowledge of the input grammar, so they are
easy to deploy. However, by utilizing the input grammar, we can create a more powerful input
generator. An example of such a generator is inp-gen-replace which needs an input grammar
specifying the possible tokens in valid program inputs and all possible replacement tokens for
each input token. This generator uses the input grammar to identify tokens for each termi-
nal in the input. It then systematically generates many variations for each token depending
upon the type of the token (note that, in Algorithm 2, there is a mk < type > Variations()
function to generate inputs for each type of token). For example, mkStrVariations() system-
atically divides strings into 2° parts for various values of ¢ and then replaces each character
with some other characters, which runs in time proportional to the size of the string. Sim-
ilarly, mkIntVariations() systematically creates different integer values which differs by 2°
from original value for various values of 7. For grammar symbol tokens which are not of
any special type, we replace them with their matching tokens depending upon the grammar
specification. For example, a token for an aggregate function in MySQL like MAX can be
replaced by matching tokens like MIN, AVG, STD, SUM, and COUNT etc. Tokens of similar
string functions like LOWER, UPPER, REVERSE, RTRIM, and TRIM can be replaced by
one another. Matching date functions like DAYNAME, DAYOFMONTH, DAYOFWEEK,
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Algorithm 2 Replacement-based Input Generation

1: // Generates num Good Input starting from a failing input using replacement
2: function INP-GEN-REPLACE(input, num)
GoodInput «— a good input from ddmin algorithm or the original input
return inp-replace-input-gen (GoodInput, num)
end function

. // Generates num Good Input starting from a good input
. // Creates variations for each token depending upon type
. // Finally creates inputs by combining variations

10: function INP-REPLACE-INPUT-GEN (input, num)

11: GoodInputs « ()

© X e sw

12: for each token t in the input do

13: if t is string then

14: // Create variants by recursively replacing subsets
15: newlnputs « mkStrVariations (input, t)

16: else if t is integer then

17: // Create variants by replacing with different integers
18: newlnputs « mkIntVariations (input, t)

19: else if t is float then

20: // Create variants by replacing with different floats
21: newlnputs <« mkFloatVariations (input, t)

22:

23: else if t is grammar symbol then

24: // Create variants by replacing with matching tokens
25: newlnputs <« mkSymVariations (input, t)

26: end if

27:

28: newGood « subset of newInputs that are good inputs
29: GoodInputs <+ GoodInputs U newGood

30: end for

31:

32: sort GoodInputs based on edit-distance

33: return first num inputs in GoodInputs

34: end function
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DAYOFYEAR, LAST_DAY, MONTHNAME, and QUARTER can be rreplaced by one an-
other. Similarly, logical operators can be replaced by other similar operators. After variants
of each input token are created, we generate inputs by combining the different replacement
values for each token. Currently, we generate inputs each of which contain variations of only
one token, as exponential blow-up is possible if we consider variations of many tokens in
each inputs.

While building an input generator that utilizes an input grammar (specifying tokens and
their replacements) may seem onerous, we believe that it can be made practical. First, it
should be possible to build “input generator generator” tools (in the same vein as tools
like Lex, Yacc and Bison) to make the creation of input generators semi-automated. Such
a tool would take, as input, a grammar and a set of functions to generate new strings by
replacing individual tokens; the output would be a program that generates inputs for that
grammar. Second, many programs use standardized input grammars (e.g., all web servers use
the HTTP/FTP protocol grammar; many databases use the SQL grammar; compilers use
grammar for C/C++ etc.). Once an input generator has been created for a specific grammar,
it can be reused by many applications using that grammar. Programs with complex inputs,
like MySQL, or compilers have explicit tokenizers which drive their parsers, and it may
not be very difficult to modify and use this for our input construction algorithm. Finally,
creating an input generator is a one-time effort. For large applications that are used over
many years, the short-term effort to create an input generator should yield long-term savings
in bug diagnosis time and effort.

We built input generators for a subset of the inputs for MySQL and squid using the
previous algorithms. For this we modified the applications so that after the input tokeniza-
tion, the tokens are directly fed into our input generators rather than being processed by
the application. We maintain a list for each group of matching tokens. Depending upon
the token type, we create an array of variants for each input token. After all the tokens are

processed, we combine the variants to constructs different inputs. We then use a different,

63



but correct version of the application for checking the output of the buggy version to classify

the inputs into three following different categories and order them based on edit-distance:

1. Bad: The variants which produces the original symptom of the test case.

2. Good: The variants which does not produce the original symptom or errors other than

those in the original test case.

3. Unknown: The variants which does not produce the original symptom, but give other
different kind of errors. We check this using different error codes returned by the

server.

These algorithms are likely to produce many good inputs since the number of good inputs
are likely to much more than failure-inducing inputs (Both algorithms filter out invalid inputs
by examining the output of the execution). One reason why these algorithms work well is also
the number of good inputs are usually much more than failing inputs, hence a systematic
search of variations of inputs can easily unearth similar good inputs. We can also use a
variation of these algorithms to construct some failure-inducing bad inputs as well (which
can be used to reduce the number of candidate root causes in a filtering step, as described
in Section 5.2.2). We also observe that multiple input generators can be used in a single

debugging session to provide a variety of inputs.

4.3.3 Input Construction for Compiler Bugs

Compilers are a very complicated and important piece of software usually consisting of hun-
dreds of thousands of lines of code. They consist of various modules like tokernizer, parser,
intermediate code generator, code optimization passes, back-end code generator and static
analyzer etc. which closely interacts with one another. Errors in compilers can introduce

latent bugs into the applications compiled by them which may not be clearly evident to the
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developers and may cause security/reliability issues. Hence, it is critical to fix the compiler
bugs as quickly as possible.

Compiler bugs tend to have different characteristics as compared to bugs from other appli-
cations. Unlike server inputs, which tends to execute isolated parts of the source code, com-
piler inputs generally execute code from many different modules. Compilers involve many
subtle interaction between different passes. Compilers also tend to involve more pointer-
intensive code as well as many sophisticated algorithms. Compiler inputs also use a much
more complex grammar. Hence, compiler bugs tend to be more complex and difficult to fix
as compared to other applications. Compiler bugs like “wrong output code bugs” are even
much more complex to diagnose. First, it is difficult to generate reduced test cases for such
bugs. Second, it is not clear what should serve as the starting point for fault localization.
Since, it is extremely hard to isolate wrong parts of the output, we may have to start from
the complete output for dynamic backward slicing rendering it ineffective. As compiler bugs
are harder, reducing the time fix these bugs is also more beneficial.

On the positive side, compilers also have a very well-define grammar. We could have
directly applied the previous two algorithms to generate good and bad inputs for compiler
bugs. However, unlike SQL or HTTP inputs, grammar for compiler inputs is much more
complex. It would require a lot more effort to automate the input generation for compiler
bugs. It was also not clear, if the previous two algorithms would directly work for compiler
bugs or we would require more domain-specific techniques to be effective for compiler bugs.
All these concerns led us to leverage an existing tool to automatically generate good and
bad inputs for compiler bugs.

Hence for generating inputs for C/C++ compiler bugs, instead of implementing these
algorithms from scratch we used an existing input-reduction tool, C-Reduce [28], for gen-
erating good and bad inputs. C-reduce tool is also based on ddmin, but is a much more
powerful tool.

C-Reduce tool is an instance of generalized delta debugging algorithms. Generalized
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delta debugging [28] is a powerful framework consisting of a search algorithm, transfor-
mation operator, validity checking function and fitness function to reduce test cases. For
transformation function to create variants, ddmin uses text-based substring removal strat-
egy whereas hierarchical delta debugging removes AST-based subtree. In contrast, C-Reduce
employs a much richer set of transformations which operate on many scattered parts of pro-
gram at each step. For searching through the variants, C-Reduce employs a non-greedy
strategy and allows transformations, which may currently increase size but ultimately leads
to reduced sizes, to avoid getting stuck at a local minima. C-Reduce also avoids generating
input programs with undefined or unspecified behavior by using validity checking function,
which uses compiler warnings and tools like Valgrind, clang static analyzer, KCC [70] and
Frama-C [71] to detect any undefined or unspecified behavior. Finally, C-Reduce uses a test
script to determine whether a variant of a test case is successful (i.e. whether the variant
triggers the same symptom as the original test case without any unspecified or undefined
behavior) or unsuccessful.

At a high level, C-Reduce repeatedly invokes a collection of pluggable transformations
till it reaches a global fixed point. A pluggable C-Reduce transformation is an iterator that
points to the next transformation opportunity and walks through a test case performing
source-to-source modifications [28]. C-reduce repeatedly applies these set of transformations
till they run out of opportunities to reduce the test case any further. C-reduce implements
five types of transformations.

In the first category of transformation, C-Reduce successively removes 1 or more con-
tiguous lines of program code from the test case. The number of lines to remove starts with
the number of lines in the original test case and halved at each step till it reaches 1 line.

Second transformation includes “peephole” optimizations which modify a contiguous
block of tokens like changing identifiers and constants, removing blocks of code, removing
operator and operands etc.

Third type of transformation makes localized modifications, but on non-contiguous blocks
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of tokens like removing matching parentheses/ curly braces without changing any of the code
inside and replacing ternary operators (like 7:) with code from one of its branches.

Fourth transformation invokes external pretty-printing commands like GNU indent to
reformat the code in test case to make it more readable.

As a fifth transformation, C-Reduce applies 30 source-to-source compiler-like transfor-

mations [28] to create reduced failure-inducing programs including:
e Scalar replacement of aggregates.
e Removing a level of indirection from pointer-typed variables.
e Factoring a function call out of a complex program expression.
e Combining multiple type definitions into a single compound definition.
e Making a function-scoped variable a global one.
e Renaming function, parameter or variable with shorter and better names.
e Function inlining of small functions.
e Applying copy propagation optimization.
e Converting unions into structs.

It should be noted that we have not changed anything inside the core of the C-Reduce
tool. We only modified the test script used to determine if the variant is successful or
unsuccessful. For this work, we tried to diagnose bugs of clang compiler [72] which is a
C language family frontend for LLVM compiler infrastructure [73]. The test script uses
gcc and the buggy version of clang to make this decision. We modified it to keep track of
the successful and unsuccessful variants of the test case as the C-Reduce applies different
transformations to create variants. Similar to the previous approaches, we classify the variant

into three categories:
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1. Bad: The variants which produces the original symptom of the test case.

2. Good: The variants which does not produce the original symptom or errors other than

those in the original test case.

3. Unknown: The variants which does not produce the original symptom, but give other

different kind of errors.

Finally, we order the variants based on the edit-distance from the minimal test-case and
select the first few of the good inputs for generating invariants and first few of the bad inputs

for multiple failing-inputs filtering during the fault localization process.

4.3.4 Related Work for Input Construction

There have been some earlier approaches like Fuzzing techniques [74] and input minimization
tool like DDmin [21] which can generate variants of a given input. While doing input
minimization, DDmin tool also generates some “good” and “bad” inputs during its search
process. Some of our approaches are based on variations of DDmin approach.

Artzi et.al. [31, 32| developed a technique to automatically generate test cases using a
form of concolic testing which they used for fault localization of PHP applications based on
statistical techniques. They also explored the impact of size and selection of test cases on
accuracy of fault localization for statistical techniques. We generate inputs by modifying
input according to an input grammar. This strategy is less general, but more scalable for
larger programs. Their work combined new test case generation techniques with known
statistical fault localization. However, their technique can still be adapted for generating
similar inputs for invariant generation, if their approach can scale to larger applications and
longer executions and if our approach does not work for those applications.

Fuzzing techniques [74, 75] have previously been used to randomly modify inputs to

create new inputs for blackbox testing. Other extensions of fuzz testing [76, 77| have
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used grammar to generate well-formed inputs. Probabilistic weights can also be assigned to
individual production rules to better direct random test generation. Grammars also include
rules for corner cases like large inputs and zero values to generate better tests for corner
cases. They can also encode applications specific knowledge to guide test generation process
better. In contrast, we only use the set of input tokens and their possible replacements to
generate inputs which makes our approach more practical and general.

Recent advances in symbolic execution and dynamic test generation techniques [78, 79
have given rise to a new form of testing called whitebox fuzzing technique [80] for discovering
new software bugs. In this approach, named SAGE, the program is symbolically executed
and input constraints are generated corresponding to each conditional statement. These
input constraints are then systematically negated and solved using constraints solvers to
generate new test inputs which exercise different paths. This process is repeated using a
search criteria for coverage maximization to discover new bugs quickly. SAGE also imple-
ments many optimizations which enable it to scale to longer execution traces with hundreds
of millions of instructions. All these fuzzing techniques have been developed for better and
faster test generation and bug detection. However, it is possible to suitably modify these
techniques to create similar good and bad inputs. We would like to evaluate and combine
some of these approaches with our developed approaches in future.

Zhang et.al.[81] have used predicate switching for fault localization. They try to forcibly
switch predicates at runtime and check which predicate switch can alter the control flow so
that the program successfully completes execution. They use this information to identify
the root causes. They use Predicate switching to generate similar successful executions as
compared to the failing execution without actually generating good inputs. Such similar
successful executions can possibly be used for our invariant generation process. We leave it

to future work to determine if this approach is feasible and compare it our current approach.
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4.4 Summary of Basic Diagnosis Framework

In this chapter, we described the overall approach of our complete software bug diagnosis
framework. We then described the details of our basic invariants-based diagnosis framework
which identifies the first set of candidate root cause(s). Finally, we described algorithms to
construct inputs which are similar to the original failure-inducing input. These inputs are

used to generate invariants and also used later in multiple failing-input filtering step.
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Chapter 5

Framework to Reduce the Set of
Candidate Root Causes

After the basic invariants-based diagnosis system generates the invariants using the auto-
matically constructed inputs and then determines the set of failed invariant to provide us
with a set of candidate root causes, we use a sequence of techniques to reduce that set to
a much smaller set. First, we use dynamic backward slicing of the failure symptom to re-
move any candidate root causes which does not affect the symptom in any way. We then
apply two new heuristics, one using data-flow and control dependence and another one using
multiple-failure inducing inputs to further reduce the candidate set of root causes. In this

chapter, we describe these three filtering techniques in more detail.

5.1 Dynamic Backwards Slicing

We can first discard invariants on values that do not affect the behavior of the faulting
instruction. We use dynamic backwards slicing starting from the failure symptom to find
these values. Dynamic backwards slicing traces a program’s execution and then finds the
precise set of instructions that directly or indirectly influence the result of a given value in
that execution [65]. For each execution of the program that triggers the failure symptom, we
compute the dynamic backward slice of the symptom. Only failing invariants for instructions
on this slice are retained. Our dynamic slicing system handles both data-flow and control-
flow dependences when computing the dynamic backwards slice. The decision to support
control-dependence allows our tool to find failed invariants on values that control whether

critical pieces of code relevant to the bug are executed or not.

71



Most dynamic backwards slicing systems have two phases [65]: in the first phase, they
instrument the code to record, in a trace file at run-time, sufficient information to find the
backwards slice of any value. In the second phase, an analysis uses the execution trace to
create a program dependence graph that can be used to find which computations affected
the result of a value within that specific program execution. Since an execution trace is
used, dynamic backwards slicing is precise; it will not include values that did not influence
the computation in question [65].

We have implemented a dynamic backwards slicing compiler pass called Giri. Giri is very
similar to Zhang and Gupta’s No Preprocessing with Caching (NPwC) algorithm [65] in that
it does not precompute a complete program dependence graph from the trace; instead, it
consults the trace only on demand to compute the dynamic backwards slice of a variable
and caches the result in memory for subsequent queries.

Giri takes advantage of the LLVM IR to reduce the size of the trace file. LLVM IR
represents a program as a set of functions; each function is a set of basic blocks with an
explicit, statically known control-flow graph [66]. Scalar variables are kept in Single Static
Assignment (SSA) form [67], making the definition-use chains explicit [66]. Other variables
(e.g., C arrays and structs) are kept in non-SSA form; scalar struct fields and array elements
are accessed using RISC-like load and store instructions [66].

Giri instruments code so that it records three different pieces of information during the
first phase: (a) basic block exits; (b) memory accesses and their addresses; and (c) function
calls and returns. Using these values and the LLVM program representation (which holds
all scalar temporaries in Static Single Assignment (SSA) form), Giri can easily construct the
precise dynamic backward slice in the second phase.

In the first phase, Giri’s instrumentation works as follows. First, Giri adds an instruction
to each basic block that creates a record in the trace when the basic block has finished
execution. These trace records are used in the second phase to determine which branches

were taken dynamically during the program’s execution. Note that recording the execution
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of each basic block (as opposed to recording the execution of each individual instruction)
suffices since all of the instructions in a basic block must have executed before the last
instruction in the basic block.

Second, Giri instruments the program to record the memory locations accessed by all
loads, stores, and select C library functions. During the second phase, when it encounters
a load instruction while finding the backwards slice, Giri can use the trace to find the store
that created the value that the load read from memory. Giri can then continue backtracking
from the store to find instructions influencing the loaded value. Note that consulting the
trace is not required for finding the sources of values used by most LLVM instructions. Since
most instructions operate on SSA scalar values, the input operands to those instructions can
be determined from the explicit SSA graph in the LLVM IR representation of the program.

Finally, Giri instruments a program to record the execution of function calls and function
returns. Having this information in the trace allows Giri to match up formal and actual
arguments and caller /callee return values during the second phase for both direct and indirect
function calls.

In the second phase, using these values, plus the LLVM program SSA representation
(which holds all scalar temporaries in Static Single Assignment form), Giri can easily con-
struct the precise dynamic backward slice. For SSA values in each instruction, it is straight-
forward to find the sources which will affect the instruction. For load values, we can use
the memory trace to find the corresponding stores whose values are accessed by the load
instruction. For the Phi instructions, the basic block trace is used to find the value which is
the source for that instance of the dynamic instruction. Similarly, for the function call return
values and formal arguments, function call-return trace is used. Giri also calculates dynamic
control dependences as follows: when Giri first adds instructions from a dynamic execution
of a basic block to the backwards slice, it uses static control-dependence analysis [67] to
determine which instruction may force the execution of that basic block. Giri will then use

the basic-block trace to accurately find the most recent execution of any instruction in that
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set which determines whether this dynamic instance of the basic block is executed and add
it to the backwards slice.

By using the LLVM IR to reduce the trace size, our tool’s traces are relatively small
(43 to 144 MB in our experiments), making the use of more sophisticated optimizations
unnecessary. 1o speed up the second phase, we perform one important optimization on the
trace file. Giri performs a forward scan through the trace, recording the memory regions
that have been modified by store instructions. If a load instruction is encountered that
accesses a memory location not defined by a store (e.g., a non-modified global variable), it is
given a special marking. This marking is used during backwards searches of the trace file to
prevent tracing back to the beginning of the trace for loads without a defining store. Other

optimizations are possible but are not implemented presently.

5.2 Filtering False Positives

In practice, dynamic backward slicing reduces the number of candidate root causes by a large
amount (60% or more) but still leaves a fairly large number to be analyzed. We propose
two new techniques to filter out false positives from the remaining set. One of these takes
advantage of the dynamic tracing information, which allows us to filter invariants using
the dynamic dependence graph (DDG), which is the union of dynamic data flow graph
and control dependence graph. The second one takes advantage of our input construction
capability to identify candidates that appear to explain the symptom for multiple failing

inputs that are only slightly different from the original one.

5.2.1 Dependent Chains of Failures

We observe that the result of an anomalous computation (i.e., one that violates an invariant)
can cause dependent instructions to produce anomalous values. For example, if the variable

x fails a range invariant because it is negative when it was expected to be non-negative,
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then the result of a subsequent computation using x (such as 2*x) that was expected to be
non-negative will be negative, too, potentially failing its range invariant. The real culprit,
however, is the first failure; the second failure is just a false positive and not an independent
buggy location.

We can filter out such false positives by identifying dependent chains of failing invariants
using the DDG. The DDG is a graph G(N, E), where the set of nodes N is the set of
instructions executed in a given run of a program, and F is the set of edges n; — n; such that
n; is an instruction that generates a value that is an operand of n; or n; is control dependent
on n;. Graph G must be acyclic since it represents data flow and control dependence within
a dynamic sequence of instructions. Conceptually, this graph can be constructed easily from
the dynamic trace together with the program, since together they identify the complete set
of CPU operations, loads and stores, and the dependencies between them.

We can use a standard depth-first-search traversal on this graph to look for cases where
a failed invariant is dependent on a previous failed invariant. However, not all instructions
have invariants computed for them. We therefore look for direct paths between two failed
invariants without any intervening failed invariants, ny — ng ~> ... ~ ng_1 — ng, k > 1,
where (a) n; and ng both have invariants that failed; and either (b) & = 1, or (b') all
instructions n;, 2 < ¢ < k — 1, do not have any passing invariants at all. In other words,
there are no intervening invariants between n; and n; at all. We then simply drop n; from
the set of candidate root causes under the argument that it “went bad” simply because ny
went bad, as discussed above, i.e., it was not an independent bug location. Of course, n;
may itself get dropped if it is, in turn, dependent on some previous instruction that had a
failed invariant. Observe that the key case we are excluding with this rule is when there
is a passing invariant between n; and ng. Intuitively, we are “trusting” the invariants to
distinguish correct values from erroneous ones. If an instruction has a passing invariant,
we assume that it did not produce an erroneous value, and therefore a later dependent

instruction that has a failed invariant may be an independent source of an error. Of course,
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in practice, likely invariants are not strong enough to ensure such reasoning is sound. By
retaining the later dependent instruction in this case, we are biasing the design towards
retaining candidate root causes unless we have high confidence that they are not a true
root cause. In practice, computing the DDG explicitly turns out to be unnecessary. Recall
that the dynamic backward slicing algorithm, Giri, traverses the union of the DDG and
the control dependence graph of the execution. We piggyback directly on Giri to identify
dependence chains. Giri essentially uses depth-first search (DFS) on the union of the two
graphs to construct the backward slice. Every time Giri visits an instruction I, we check if 1
had an invariant and, if so, whether that invariant failed or passed. If I failed an invariant,
we traverse [I’s parents in the depth-first-search tree (which corresponds to the chain of
users) until we arrive at an ancestor instruction, A;, that has a passing invariant. We mark
all intervening instructions between A; and I for later filtering. We also stop this ancestor
traversal if we arrive at a failed invariant and mark it for later filtering. This ensures that
we never need to process any instruction (i.e., mark it and recursively traverse its parents)
more than once during the ancestor traversals, though we may arrive at it as many times as
there are incoming operands (i.e., incoming edges in the DDG). This ensures that the total
time for this dependence filtering pass is linear in the number of edges in the DDG.

At the end of this algorithm, we filter out all remaining candidate instructions that were
marked for filtering. In practice, this pass is also very effective at eliminating false positives.
It is unfortunately possible, however, that this pass may occasionally eliminate a true root
cause itself. In particular, it is possible that I, depends on I;, both have failed invariants,
but I; was actually a false positive while I, was a true root cause.

However, we expect this behavior to be uncommon with sufficient training. This scenario
primarily occurs when the true root cause gets its values from an instruction which is a false-
positive. In our experiments, we have found that only a tiny fraction of instructions with
failed invariants remain after dynamic backward slicing. In other words, the probability that

two dependent instructions have failed invariants without any intervening passing invariant
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and the second failure (root cause) is not a consequence of the first is very low. Sufficient

training should make such cases an unlikely occurance.

5.2.2 Using Additional Failure-inducing Inputs

Although we found that the number of remaining candidate root causes after dependence
filtering tends to be fairly low (e.g., in the range of 7-18, reduced from hundreds originally),
we can do better without new mechanisms. We observe that, using essentially the same
methodology that we used for nearby good inputs, we can construct additional failure-
inducing inputs that are close to the original one and produce the same failure symptom as
the original one. For each such input, since the failure symptom is the same and the inputs
are very similar to the original one by construction, the true root cause of the failure is very
likely to be the same.

This insight leads to the following simple strategy. Construct a set of additional failure-
inducing inputs close to the original one that produce the same failure symptom. Repeat the
previous analysis for each such new input: (1) identify all failing invariants when executing
with that input; (2) filter out invariants not on the dynamic backward slice of the failure
symptom; and (3) filter out invariants using the dependence filtering step above. This
process gives a set of candidate invariants for this failing input. Compute the intersection of
these sets from all the failing inputs. That intersection yields the set of invariants that are
candidate root causes for all failing inputs. The resulting set represents the final output of

our analysis.

5.3 Generating Results for the Programmer

Each candidate invariant in the final set represents an LLVM instruction that may indicate
the location of a root cause. Recall, however, that we only track invariants on load, store

and return instructions. The actual locations of a root cause may be anywhere in the
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subexpression rooted at a load, store or return from which wrong values flow through several
statements before reaching the failed invariants. This means that we must identify the entire
subexpression rooted at a load, store or return for the programmer.

We identify the operations involved in the subexpression using a simple backward traver-
sal of the Dynamic Dependence Graph starting from the candidate root cause till we reach
other load, store, return, and function arguments. Since, our current implementation do not
monitor invariants on function arguments, the true root cause may actually be somewhere
earlier along the data-flow and control dependence chain though we did not encounter any
such case in our experiments. We could also place invariants on these subexpression values
to remove parts of the subexpression that are not the root cause, but we do not have this
implemented at present. Once all LLVM instructions within the subexpression are identified,

our analysis maps them back to source statements using debug information.!

5.4 Summary of Filtering Techniques

In this chapter, we described the various filtering steps we use in our software bug diagnosis
framework. We first described the details of how we implemented dynamic backward slicing.
We then described the intuition for using dependence filtering and the implementation details

of this filtering step. Finally, we described the multiple failing-input filtering step.

!Many compilers have inaccurate debug information when aggressive optimization is enabled. For such
compilers, accuracy can be improved by disabling optimizations.
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Chapter 6

Experimental Results of Our Fault
Localization Framework

In this chapter, we describe in the detail how we apply our invariants-based approach to
diagnose server and compiler bugs. Fault localization of server bugs may seem complicated
as the servers normally run for a very long period of time, process a very large amount of
data during that time period and mostly do the processing concurrently. However, as our
empirical study in Chapter 3 found out, there are many characteristics of server bugs which
also facilitate fault localization by reducing the impact of large amount of processed data
and long running time of servers on fault localization. As our study implies, most server
bugs could be reproduced with 3 or fewer inputs. Moreover, we usually need only a small
suffix of inputs to reproduce failures after restart. So we can just restart the application and
replay a small suffix of the inputs to reproduce the failure and perform fault localization.
Compiler bugs tend to have different characteristics as compared to other bugs and they
are also usually more complex to diagnose. Hence, we also use five compiler bugs to further
evaluate the effectiveness of our approach. We now describe the methodology of our fault

localization experiments and the experimental results.

6.1 Experimental Methodology for Diagnosis of
Server Bugs

In this section, we describe the experimental methodology we used to evaluate the effective-

ness of our approach for server bugs.
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6.1.1 Applications

In our experiments, we used three widely used large server programs: Squid HTTP proxy
server, MySQL database server, and Apache HTTP web server. MySQL, which has about
a million lines of code, is by far the largest application used to evaluate automatic diag-
nosis algorithms in the literature to date, except in the Triage work [12]. All three servers
communicate with clients using well-defined protocols with well-defined grammars that are

amenable to our input construction algorithm.

6.1.2 Software Bugs and Failure Detectors

We selected 8 real software bugs for these three server programs. We were limited in two
ways. First, we needed bugs that we could reproduce using information in the bug reports
for versions of the software that we could compile with LLVM on a current Linux system.
Second, our current implementation cannot effectively handle most concurrency bugs as we
currently need a deterministic detector. Our implementation also cannot handle missing
code bugs (usually uninitialized variable bugs) because the root cause may not be effectively
identified by range invariants on program values. We expect they will need control flow
invariants, which are outside the scope of this work. Hence, out of 12 such bugs, we omitted
four that are presently outside the scope of our tool.

Table 6.1 describes the bugs we used in detail. The first column provides a name for
each bug for identification, using which we refer to the bugs later. The second column shows
the name of the application which contains the bug. The third column provides the number
of lines of code (in units of 1000 lines). The fourth column shows the unique number of
source lines of code that are executed for the failure-inducing input which reproduces the
failure due to this bug. We first use program trace to determine the LLVM instructions
which are executed during the failing run and then use LLVM debug metadata information

to map them to their corresponding program source lines. For some LLVM instructions,
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debug metadata may be missing due to optimizations. We count one source line for each
such instruction. We present the number of executed source lines as it will indicate the
effectiveness of our approach. But, the complexity of fault localization for a programmer
will however depend upon the size or lines of code of each application. The next column in
the table shows the failure symptom of the bug: three bugs were memory safety errors; the
rest were incorrect output bugs. The last column provides a brief description of each bug.

The selected bugs have different root causes. For example, some bugs occur due to
integer overflow or loss of precision. One buffer overflow bug occurred due to the use of
an unsigned value for some computation which causes an integer overflow which after some
computations leads to a use of negative index for an array access. Another buffer overflow
bug occurred when a buffer length was incorrectly computed for some specific inputs. In
another bug, using an incorrect MySQL object type for a MySQL item causes a segmentation
fault. Another bug occurred because the wrong algorithm was used to convert a microsecond
field in string format into an integer. In another case, incorrect truncation in a long series
of computation leads to loss of precision and wrong result.

The root causes for many bugs are far from the symptom. This is especially true for
incorrect output bugs where the symptom occurs after 10 to 100s of intervening function
calls. These bugs can be much harder to debug. However, our approach is agnostic to the
distance of root cause from symptom unlike other related work like triage [12]. Hence, our
approach is likely to be equally effective irrespective of distance of root cause from symptom.

We do not use automated detectors for our experiments. For each memory safety error,
we manually inserted program assertions at the program point where a tool like SAFECode
would have detected a memory safety error. For each incorrect output error, we manually
inserted an assertion at the program point that communicates the incorrect output to the
client. In both cases, the assertions serve both as detectors and as starting points for dynamic
backwards slicing. It is possible to automatically add these types of assertions at the program

points which communicates to external world. For incorrect output errors, comparison with
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Bug name Application LOC LOC execu- | Symptom | Bug Description
ted in bug

Squid-len Squid 2.3 70K | 6927 buffer over- | Incorrect computation of buffer length
flow leads to buffer overflow

SQL-int-overflow MySQL 5.1.30 1019K | 9822 buffer over- | Use of unsigned var causes integer over-
flow flow which finally leads to buffer overflow

SQL-convert MySQL 5.1.30 1019K | 9982 Incorrect Wrong algorithm to convert microsecond
output field to integer results in incorrect value

SQL-aggregate MySQL 5.1.23a | 1054K | 11308 buffer over- | Use of a negative number along with an
flow aggregate function results in seg fault

SQL-precision MySQL 5.0.18 949K | 7874 Incorrect Loss of precision in a sequence of compu-
output tation results in wrong value

SQL-mul-overflow | MySQL 5.0.18 949K | 7835 Incorrect Overflow during decimal multiplication
output results in garbage output

SQL-dataloss MySQL 5.0.15 937K | 9835 Incorrect Loss of data when inserting big values in
output a table

Apache-overflow Apache 2.2 225K | 6052 buffer over- | For particular value of output size over-
flow flow occurs

Table 6.1: Server Software Bugs Used in the Experiments.

a different version of the application, other equivalent software or known output may work
as a detector for many applications. We can also use programmer-inserted assertions for

detection (these are often available at development time).

6.1.3 Good and Bad Input Construction
Our proposed overall diagnosis approach begins with these steps:

1. Compute a minimal or small failure-inducing input from the original failing input,
that fails with exactly the same symptom. These are often available from bug reports

during development time.
2. Construct a small set of good inputs that are close to the minimal failing input.

3. Construct a small set of additional failure-inducing inputs that are close to the minimal

failing input, and fail with exactly the same symptom.

For step 1, we already had fairly small failure-inducing inputs available from the bug
reports for six of the eight bugs. For the remaining two bugs, we slightly reduced the inputs
by hand by simplifying the input, but this reduction is not critical to our results. For steps 2

and 3, we constructed 8 good and 8 bad inputs for each MySQL and Squid server bug using
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the grammar-dependent and grammar-independent input construction algorithms described
in Section 4.3. In case one of the algorithms did not generate enough number of inputs,
we used more inputs from the other algorithm to gather 8 good and bad inputs in total for
each bug. This is extremely small number of inputs compared with previous work that has
relied on likely invariants, and works only because we construct the inputs to be as close to
the failing input as possible. For Apache server bug, we could not automatically generate
inputs since they required very particular input values and we have not yet implemented it
to specially handle such cases.

However, before we developed algorithm to automatically generate inputs, we had de-
veloped a systematic procedure to create good and bad inputs. We used this procedure to
generate inputs for Apache bug. Additionally, for comparision with automatically generated
inputs, we also used this to generate inputs for the other 7 MySQL and Squid bugs. The
steps 2 and 3, use exactly the same procedure in our systematic procedure, but simply retain
only good inputs and failure-inducing inputs respectively. We had developed the system-
atic procedure on paper (which was also similar to automatic generation) and applied it
manually. We describe this systematic procedure next.

Each of these two steps in the systematic procedure works through small, local changes
on the (conceptual) parse tree of the input, as defined by the input grammar.! We use four
primitive operations on the nodes of the tree: (a) replacing all or part of the token for a
terminal with a different, legal token; (b) deleting all or part of the token for a terminal;
(c) adding new terminals, with appropriate parent nodes (non-terminals); and (d) replacing
the subtree rooted at a non-terminal with a pre-selected default production for that non-
terminal.

The systematic procedure we follow in step 2 is described in Algorithm 3. Function np-
gen-manual takes the original failing input and constructs a specified number of good inputs.

To construct the first good input, find-one-good-inp function tries the four operations in the

"We do not handle the case where the failure-inducing input is syntactically invalid.
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Algorithm 3 Manual Systematic Input Generation

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

23:
24:

25:
26:

27:
28:

Four primitive operations on the nodes of the parse tree:

(a) Replacing all or part of the token for a terminal with a different token

(b) Deleting all or part of the token for a terminal

(¢) Adding new terminals, with appropriate parent nodes (non-terminals)

(d) Replacing subtree rooted at a non-terminal with a pre-selected default production
for it.

function INP-GEN-MANUAL(faulty-input, num)

GoodInput = find-one-good-inp(faulty-input)

return GoodInput U good-inp-gen (GoodInput, num - 1)
end function

function FIND-ONE-GOOD-INP(input)
for each operation x in this ordered set (a, b, ¢, d) do
Apply operation (x) on all terminals and non-terminals of input.
if 1 good input is found then
return first good input found
end if
end for
end function

function GOOD-INP-GEN(input, num)

Apply operations (a), (b) on all terminals of input and add generated good inputs
to GoodInpQ.

return GoodInpQ when (GoodInpQ == num).

Apply all possible operation (¢) on input and add generated good inputs to Good-
InpQ.

return GoodInpQ when (GoodInpQ == num).

Apply operation (d) on all non-terminals of input and add generated good inputs to
GoodInpQ.

return GoodInpQ when (GoodInpQ == num).
end function
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order listed, until one good input is generated. We must run the program with each possible
choice to evaluate if it is a good input or not. Once we have one good input, good-inp-gen
function generates additional good inputs by trying both (a) and (b) first, and then (c) and
then (d) on the first good input, until we have as many as we need. We use only 8 good
inputs for each bug.

For constructing additional failure-inducing inputs from the minimal failure-inducing
input in step 3, we use the same procedure, except that we accept a choice if it causes the

program to fail with exactly the same symptom in the same location.

6.2 Experimental Results of Diagnosis of Server Bugs

In this section, we evaluate the effectiveness of our approach. In particular, we investigate
(a) whether our approach can find the true root causes of bugs; and (b) how many false
positives it generates. For the purpose of this evaluation, we use the following definition of
root cause: for each bug, we use the correct patch in the bug reports to identify the minimal
statements which should be changed or deleted to remove the failure symptom (The only
cases where new lines of code are added are to replace some existing lines, since we do not
include missing-code bugs in our experiments.) We say all these statements are part of the
root cause, and we say our approach is successful if it can identify all these statements. This
is a conservative definition since there can be many other places which could be changed to
fix the same bug. But, even if we find one or more of such statements we count them as
false-positive.

We used LLVM compiler [66] to compile the programs, to extract, check violations of
invariants and to compute dynamic backward slices. We used “-g” option to compile the
applications to obtain debug metadata information for source line mapping. We conducted

the experiments on Linux 2.6 on a machine with a dual-core Intel ® Core ™ 2 Duo CPU

running at 3 GHz with 4 MB cache and 8 GB of RAM.
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The time for doing the complete diagnosis depends on the trace size and program size. For
these bugs, the total diagnosis time varied a lot depending upon the application - from around
8 minutes upto 4 hours. For two bugs, we believe it took an excessively long time because
our slicing implementation is not optimized. We expect to see many fold improvements in
the execution time after a few optimizations.

The detailed experimental results using automated input generation are presented in
Table 6.2. The first column in the table lists the bug numbers from Table 6.1. The second
column shows the the total number of invariants that are generated and inserted by our
system. The third column shows the total number of failed invariants by the original failure-
triggering input which form the initial set of candidate root causes. For memory bugs or
assertion violations where failure occurs soon after root cause, there may not be any invariant
present between the root cause and failure symptom to catch divergent behavior. Failure
location can give a strong clue about root cause for such cases. Hence, for such kinds of bugs,
we also count the program statement at the failure location as a candidate root cause and
include it in this column. The fourth column shows the number of failed invariants that are
on the dynamic backward slice. The fifth column shows the number after the dependence
filtering step and the sixth column shows the number after all the filtering steps including
multiple failing-inputs filtering. The final column shows the maximum number of source
lines corresponding to all the expression trees which the developer may need to analyze to
fix the bug depending upon which latest step contains the root cause. The last column shows
whether the candidates after the final multiple inputs filtering step includes the root cause
or not.

Note that a single candidate sub-expression at the LLVM level may span multiple lines of
source code. This means that the number of source statements is, in general, larger than the
final candidate locations. We believe, however, that the difficulty of the programmer’s final
task is best measured by the number of candidate locations they have to understand, and not

simply the total number of lines of source code. In particular, the number of source lines is

86



Bug Name | #Invs | Failed | Slice| Depe- | Multiple| Src-expr- | Root Cause
Invs ndence| faulty tree in final
filter | inputs step?
Squid-len 3358 | 357 30 9 9 49 Yes
SQL-int-overflow 5917 | 95 36 16 12 48 No
SQL-convert 5942 | 93 27 9 6 64 Yes
SQL-aggregate 6847 | 156 44 14 8 28 Yes
SQL-precision 4566 | 130 34 18 17 89 Yes
SQL-mul-overflow 4652 | 83 13 7 5 26 Yes
SQL-dataloss 5836 | 153 35 17 11 152 Yes

Table 6.2: Number of Reported Root Causes Using Automatically Generated Inputs
for Server Bugs

highly dependent on the idioms used by the programmer rather than the fundamental nature
of the candidate computations: a relatively simple sub-expression may span two or more lines
of code or a complex computation may be expressed in a single compact statement. For this
reason, we measure the effectiveness of our analysis primarily by the number of candidate

locations and secondarily by the number of source statements they represent.

6.2.1 Number of Candidate Root Causes

Overall, the analysis tool is able to narrow it down to only 5 to 17 candidate root cause
expressions for all 7 bugs in two programs. From the results, it is clear that dynamic
backward slicing is effective in reducing the number of candidate root causes, consistently
removing more than 75% of the candidate set. In two cases, it reduces them by factors of 6
(SQL-mul-overflow bug) and 10 (Squid-len bug).

The dependence filtering step is also very effective in reducing the candidate root causes.
On an average, it removes nearly 60% of the remaining candidate root causes, in one case
(Squid-len bug) removing 70% of them.

The last filtering step, using multiple faulty inputs, has less consistent benefits in reducing
false-positives. In some cases (Squid-len and SQL-precision) it has only a small or no effect

at all. In other cases, the benefit is quite substantial (SQL-int-overflow, SQL-convert, SQL-
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aggregate, and SQL-dataloss) bugs, especially considering that it comes after a series of other

highly effective filters.

6.2.2 Efficacy at Finding True Root Causes

When using all of the filtering techniques, our tool could narrow down the root causes among
the final filtering step for 6 of the 7 bugs as shown in Table 6.2. Our approach could not
narrow-down the root cause for SQL-int-overflow bug among the program expressions in
the final filtering step. Failure in SQL-int-overflow bug occurs when a specific date value
(between 0000-Jan-01 and 0000-Feb-28) is used in a DATE_FORMAT query as mentioned in
Section 4.2.1. In such cases, an integer overflow occurs due to the use of an unsigned variable
which finally leads to a use of negative index in array access. However, the root cause is
still included in the candidate set after the dependence filtering step for this bug. Hence,
developers need to analyze 16 candidate program expressions expressions to find the exact
root cause. We found that diagnosis for this bug is very sensitive to input. When trained with
the set of automatically generated inputs, few invariants whose values flow to an invariant
(identifying root cause) are not properly trained. Hence, for one of the failing inputs, one of
these invariants fails and the root cause gets filtered out due to data-flow filtering for this
failing input. That is why even though original failing input captures the root cause till the
dependence filtering step, it gets filtered out after the multiple failing-input filtering. When
we tried a different set of program inputs, then the final step was able to identify the root
cause, essentially because the training runs produced a better set of invariants. Interestingly,
for this bug, in an early version of our system that had insufficient training, dependence
filtering removed the root cause because it was directly dependent on a false positive. But
this did not happen and none of the bugs missed the root cause before the last “multiple
faulty inputs” filtering step, since we improved the automated input generation procedure.

There are at least two strategies to deal with such cases, which are essentially “false nega-

tives.” According to our current design, the programmer can investigate the final suggestions
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first, and when all are eliminated, ask the tool for other suggestions. The tool could present
the penultimate set of 16 locations (4 additional locations compared to initial 12 locations)
in this case, and the user would investigate four more locations to find the bug. Second, the
tool could be made more effective with a better input generation algorithm which can iden-
tify the root cause for all cases. Also, if we can verify whether or not a candidate location
is truly a root cause, perhaps using automatic patching [43] or some other techniques, then
we can iteratively try other training inputs to try to find the correct root cause. (Of course,
such a verification phase would help us eliminate most false positives as well!)

Note that our approach is more likely to identify root causes of bugs, including SQL-
int-overflow bug, than invariants extracted using general inputs. For example, using our
input construction algorithm, we are able to find the root cause for SQL-convert bug, where
a large input field (a wsername) with many special characters (as in a ftp request like

Stp =/ /usernam \\\\\NNN\NAANNVNAANNNNNANNNNNNNNNNNNNNNNNNN: pass@fip.cs.wisc.edu)
causes segmentation fault. Each special character needs three times the buffer size compared
to normal characters, however the code incorrectly allocates lesser bugger size leading to a
buffer overflow. If we use a general set of training inputs, the invariant ranges on the buffer
length would be wider and bug-independent, making them less effective. More specifically, if
any HTTP training input contained a larger username field than the failure-inducing input,
the analysis would miss the root cause. However, our invariants with a better and focused
training set could find the root cause through invariants on buffer length.

It is also important to note that our approach missed the most ideal invariant failure
which could have accurately pinpointed the root cause in SQL-dataloss bug. This happens
because the value on which invariant fails is not used in any computation, hence it gets
filtered out. However fortunately, a different, but related invariant fails whose program

expression statements include the actual root cause.
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Bug Name | #Invs | Failed | Slice| Depe- | Multiple| Src-expr- | Root Cause
Invs ndence| faulty tree in final
filter | inputs step?
Squid-len 3340 | 350 29 8 7 42 Yes
SQL-int-overflow 5924 | 95 34 15 10 18 Yes
SQL-convert 5930 | 91 24 8 5 59 No
SQL-aggregate 6841 | 152 42 13 6 17 Yes
SQL-precision 4542 | 141 32 17 15 55 Yes
SQL-mul-overflow 4531 | 78 10 5 4 21 Yes
SQL-dataloss 5985 | 97 28 12 9 48 Yes
Apache-overflow 2233 | 89 37 11 10 29 Yes

Table 6.3: Number of Reported Root Causes Using Inputs Generated by Manually
Using Systematic Procedure for Server Bugs

6.2.3 Comparison with Systematic Manually Generated Inputs

The detailed experimental results using manually generated inputs from our systematic pro-
cedure are presented in Table 6.3. The results using manually generated inputs are similar,
though little better than using automatically generated inputs. Overall, the analysis tool is
able to narrow down to only 4 to 15 candidate root cause expressions for all 8 bugs in three
programs using manually generated inputs. For these inputs also, dynamic backward slicing
is very effective in reducing the number of candidate root causes, consistently removing more
than 60% of the false positives. The dependence filtering step also effectively removes nearly
60% of the false positive candidate root causes. The last filtering step, using multiple faulty
inputs, has less consistent benefits. In some cases (Squid-len and SQL-precision bugs) it
has only a small effect. In other cases, the benefit is quite substantial (SQL-int-overflow,
SQL-convert, and SQL-aggregate bugs), especially considering that it comes after a series of
other highly effective filters.

Like SQL-int-overflow bug for automatically generated inputs, our approach could not
identify the root cause for SQL-convert bug (in which a wrong algorithm to convert mi-
crosecond field to integer results in an incorrect value) after the final filtering step using the

manually generated inputs. However, the root cause is still included in the candidate set
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after the dependence filtering step. We found that diagnosis for this bug is also very sensitive
to input like SQL-convert bug. For this bug also, when we tried a different set of inputs, then
the final step was able to identify the root cause. Interestingly, we missed the root cause
for SQL-int-overflow bug using automatically generated inputs, but successfully identified
the root cause when diagnosed with manually generated inputs. Similarly, we missed the
root cause for SQL-convert bug using manually generated inputs, but successfully identified
the root cause when diagnosed with automatically generated inputs. This reinforces our
motivation that the inputs used for our invariants-based approach are critical to the success
of this approach. Our approach is more likely to identify the root cause of bugs, including

SQL-int-overflow and SQL-convert bugs, than invariants extracted using general inputs.

6.2.4 Comparison with Tarantula and Ochiai

The Tarantula [17] and Ochiai [18] statistical approaches, while simplistic in nature, are
powerful methods that allow for reproduction in a reasonable amount of time and serve
as a good baseline for software bug diagnosis software. These two approaches function by
performing an analysis of executed program statements for a given set of inputs. Specifically,

they record for each input
1. whether or not the faulty behavior was induced and
2. the statements which were executed.

This results in a vector for each program statement whose elements are 1 if the statement
executed for a given input and 0 if it did not. These vectors are compared against a suc-
cess/failure vector whose elements are 1 if the program exhibited the failure and 0 if it did
not. A similarity coefficient is computed using each approaches’ namesake formula, where
each a;; is a counter for the number of elements in the source line vector with value ¢ whose
corresponding element in the success/failure vector has value j. For example, aq; for a state-

ment indicates the number of failing runs in which this statement gets executed at least
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Bug Name Tarantula Ochiai | Our Approach
Squid-len [6-5260] | [2- 525) 19
SQL-int-overflow (34 - 34] (34 - 34] 48
SQL-convert [55-9400] | [55 - 9409] 64
SQL-aggregate [776 - 9847] | [694 - 9762] 28
SQL-precision [1-19] [1-16] 89
SQL-mul-overflow | [5680 - 6878] | [5678 - 6876] 26
SQL-dataloss [R-6060] | [8 - 6060] 152
Apache-overflow [28 - 5372] [1 - 5357] 29

Table 6.4: Tarantula/Ochiai Results

once. Similarly, a;y indicates the number of successful runs in which this statement gets

executed at least once.

ail

tarantula = — a11+a01
11 aio
ai1+tao1 a10+aoo
.. a1
ochial =

V(@ + aor) * (an + a10)

Program statements are then ranked in decreasing order by this similarity score. The ba-
sic principle serves to identify which program statements are highly correlated with program
failures. We include Ochiai in our comparison because this similarity metric has been found
to give better empirical results [18]. We have implemented these approaches using the LLVM
compiler system, leveraging the trace files generated by Giri mentioned in Section 5.1. Trace
files in Giri keeps a record for each executed basic block. For each statement, we can use the
records for its basic block in trace file to determine whether the statement got executed at
least once and then it is straightforward to compute a,; values since we know the outcome
of each run.

Table 6.4 details our findings. Listed for each of our bugs is the range of source lines a
programmer would have to inspect to find the root cause. This was computed by determining
the similarity metric for each source line, ranking them, and then counting all statements

that had a higher ranking than the corresponding source line. In most cases, the Tarantula
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or Ochiai formulas will calculate many source lines as having the same similarity score. We
do not order the statements with same score in any way similar to the way in which we
don’t order our final set of candidate root causes. In the absence of any other technique,
the developer will examine them in any random order. Thus, we rather only give a range,
where the best case occurs if the root cause is listed at the top of the list of ties, and the
worst case when it is listed at the bottom in any random order.

We see that the statistical correlation method of bug diagnosis’ effectiveness varies dra-
matically depending on the type of bugs analyzed. In particular, when analyzing bugs that
involve program control-flow divergence (such as SQL-int-overflow and SQL-precision bugs),
we see that the Tarantula and Ochiai approaches perform notably well, but in cases where
the same root cause is executed under both successful and failure-inducing inputs (such as
SQL-convert, SQL-aggregate, and SQL-mul-overflow bugs), we see results that are much
less impressive, as one would expect. In such cases, statistical techniques fail to distinguish
between true root cause and other statements since most of them are tied with the true
root cause with same similarity score. This highlights an important shortcoming of the
correlation-based approaches: they fail to accurately account for cases where there is an
absence of control flow divergence that leads to failure-inducing behavior. In our sampling
of all bugs, the statistical methods only performed well on 2 bugs—our approach provides

much more consistent behavior, regardless of the particular type of bug in question.

6.3 Experimental Methodology for Diagnosis of
Clang Compiler Bugs

We selected five bugs from clang bug reports of certain clang versions with hundreds of
thousands of lines of code. We started with some versions of clang and searched for bug
reports (except enhancement bugs) in those versions which had proper patches available and

proper test inputs available. We did not consider bugs which were wrong code bugs for these
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experiments. For wrong code bugs, not only root cause(s) are more complicated, but also
it is not clear what should serve as the starting point for our analysis and dynamic slicing,
since it is not straightforward to isolate wrong parts of the generated code. Hence, dynamic
slicing may become ineffective, if we start slicing from the complete output. Thus we may
need more techniques and filtering for such complex class of bugs. Similar to server bugs,
we also did not consider missing code bugs (like uninitialized variable bugs) as the root
cause may not be effectively identified by range invariants on program values. We leave it to
future work to address such classes of bugs. We also excluded bugs which did not have inputs
suitable for driving our C-Reduce based automated input generation process or for which
C-Reduce failed to produce good inputs. We selected five such clang bugs. The details of
the selected bugs have been shown in 6.5. Four of the selected bugs have assertion violation
as their symptom and one bug exhibits memory error. For these bugs, the statement which
causes assertion violation or which causes the memory error serves as the starting point for
our diagnosis.

For these set of bugs, we start with the inputs from bug reports. We ran the C-Reduce
tool using the inputs from bug reports to generate a set of inputs and then selected upto 8

good and bad inputs from C-Reduce tool for these experiments.

6.4 Experimental Results of Clang Bugs

In this section we present results for fault-localization of clang bugs. The detailed experi-
mental results using automated input generation are presented in Table 6.6. Similar to server
bugs result, the first column in the table lists the bug names from Table 6.5. The second
column shows the total number of invariants that are generated and inserted by our system.
The third column shows the total number of failed invariants by the original failure-triggering
input. The fourth column shows the number of failed invariants that are on the dynamic

backward slice. The fifth column shows the number after the dependence filtering step and
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Bug Name Application LOC LOC execu- | Symptom | Bug Description
ted in bug

Clang-lifetime | Clang-2.9-trunk 650K | 35329 memory er- | Accessing temporary outside their life-
ror time

Clang-convert Clang-2.9-trunk 650K | 46507 assert vio- | Incorrectly handling conversion from
lation pointers to boolean

Clang-scope Clang-2.9-trunk 650K | 31174 assert vio- | Mishandles few cases by falsely assuming
lation global scope specifier is present

Clang-redefine | Clang-2.9-trunk 650K | 48019 assert vio- | Incorrect handling when one function is
lation redefined

Clang-cast Clang-2.9-trunk 650K | 34597 assert vio- | Incorrectly handles certain types (no-op)
lation of casts

Table 6.5: Clang Compiler Bugs Used in the Experiments.

Bug Name | #Invs | Failed | Slice| Depend-| Multiple| Src-expr- | Root Cause in
Invs ence faulty tree final step?
filter inputs

Clang-lifetime 15294 | 246 35 17 17 128 Yes
Clang-convert 20566 | 283 49 26 24 178 Yes
Clang-scope 13452 | 213 43 19 18 118 Yes
Clang-redefine | 20961 | 243 46 30 28 169 Yes
Clang-cast 14941 | - - - - - No

Table 6.6: Number of Reported Root Causes Using Automatically Generated Inputs
for Clang Bugs

the sixth column shows the number after the filtering using multiple failure-inducing inputs.
The final column shows the maximum number of source lines corresponding to all the ex-
pression trees which the developer may need to analyze to fix the bug. The last column
shows whether the candidates after the final multiple inputs filtering step includes the root
cause or not.

Overall, the analysis tool is able to narrow it down to only 17 to 28 candidate root cause
expressions for 4 out of 5 bugs in clang. From the results, it is clear that dynamic backward
slicing is effective in reducing the number of candidate root causes, consistently removing
nearly 80% of the candidate set of root causes. The dependence filtering step is also very
effective in reducing the remaining false positives like server bugs. On an average, it removes
nearly 50% of the remaining candidate root causes. The last filtering step, using multiple
faulty inputs was not very effective for clang bugs.

Our approach failed to find the root cause for one of the bugs (Clang-cast). Figures 6.1
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VisitCastExpr (CastExpr *ce) {

else if (ce—>getCastKind () = CKNoOp) {

skipProcessUses = true;
}
}
Visit (Stmt xs) {
skipProcessUses = false;
Visit (s);

if (!skipProcessUses)
ProcessUses (s);

Figure 6.1: Part of the Buggy Code of the Clang-cast Bug

VisitCastExpr (CastExpr xce) {

else if (ce—>getCastKind () = CKNoOp ||
ce—>getCastKind () = CK_LValueBitCast) {

skipProcessUses = true;
¥
}
Visit (Stmt *s) {
skipProcessUses = false;
Visit (s);

if (!skipProcessUses)
ProcessUses (s);

Figure 6.2: Correct Version of the Code to Fix the Clang-cast Bug
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and 6.2 show a simplified part of the buggy code and the correct version of the code which
fixes the failure symptom of Clang-cast bug. For some unusual types of casts in the input
program, the buggy part of the code does not correctly handle them and after a series of steps
it results in an assertion violation. The root cause of this failure is the missing condition
in else-if statement of VisitCastExpr function at line 4 in Figure 6.1. Visit(s) at line 12
calls the VisitCastExpr function. But, due to the missing condition in the else-if statement,
the buggy code fails to set skipProcessUses flag to true. Then, inside the Visit function,
it incorrectly calls ProcessUses function since skipProcessUses flag is now false. Inside the
ProcessUses function, it sets a variable named lastDR to zero and then an assertion on
lastDR fails. Our approach could not identify the root cause because the invariants failed to
capture the anomalous behavior in the buggy part of the code. This is possibly happening
due to the fact that we are using a limited type of invariants on only integer and floating
point type values or our generated inputs were not good enough for training. Other type of
invariants like control-flow invariants may be able to capture the control flow divergence and
help in accurately identifying the root cause. We would like to determine what additional

techniques may be needed for fault localization of such bugs and implement them in future.

6.5 Limitations

In summary, the analysis tool is able to identify only 5 to 17 candidate root cause expressions
for all 8 bugs in three server programs, one of which is millions of lines long. For clang
compiler bugs, tool could isolate root causes to only 17-28 program expressions for 4 out of
5 bugs. These results indicate that bug-specific likely invariants and dynamic backwards
slicing, combined with our novel filtering techniques - dependence filtering, and multiple
faulty inputs filtering, can be extremely effective in helping programmers diagnose the root
causes of failures.

Nevertheless, our current implementation also has some limitations. First, it cannot
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effectively handle missing code bugs like missing initialization. We expect such bugs can be
handled by a different variety of invariants, namely, control flow invariants. We have also
not yet evaluated concurrency bugs. It is not clear how effectively our framework can handle
concurrency bugs, if such a bug can be reliably reproduced.

Second, various stages of the approach also depend on robust input generation, as seen
for bugs which were diagnosed with one set of inputs but with another set, the root causes
were dropped by the “multiple faulty inputs” filter. Hence, input generation is very critical
to the success of our approach.

Third, we do not yet generate invariants for function arguments, which can make some of
our expression trees unnecessarily large, if we go beyond function arguments while building
expression trees. Hence, We do not go back beyond function arguments while computing
expression trees to avoid making them too large. It is therefore possible to miss the root
cause in the source-level expression trees, even if the root cause is included in the final set
of candidate locations. We did not encounter any such case in our experiments, but adding
invariants for function arguments should solve this issue, which we plan to do in future.

Finally, our technique also could not identify root cause for one clang compiler bug. We
may need new techniques like more types of invariants or invariants on other types of values

to address such cases.

6.6 Related Work

Delta debugging [13, 19] compares a successful and a failing run for fault localization, but
does not scale to larger programs due to inaccurate mapping of program states. Recent
work on program execution indexing and memory indexing [29, 20] has greatly improved
delta debugging’s diagnostic accuracy. However, these techniques computes causal paths in
stead of root causes and previous work [22, 23| shows 45% of the computed causal paths

miss root cause. Previous work [22, 23] also states that if a different input is used for a
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failing run, it can give inaccurate causal paths. Also, when copying state from a correct
run to a faulty run, it may be necessary to copy more than the faulty state, thus resulting
in false positives. It is also not clear how this approach will scale for larger programs and
larger program traces. However, we follow a different approach, and it may be possible to
use these techniques for checking which of our candidate root causes are actually responsible
for the failure.

The first work to use invariants for bug diagnosis was DIDUCE [15]; It used a variant
of range invariant to find root causes. But, we increase the likelihood of identifying the
rootcause by training with similar good inputs. In addition, we support a number of filter-
ing techniques. In contrast, DIDUCE does not use any filtering techniques and may result
in more false-positives. Statistical techniques like Tarantula and others [17, 18] use differ-
ences in control flow between successful and failing runs and rank the statement based on a
suspiciousness criteria. Liblit et.al. [11] developed more efficient methods to use statistical
techniques with much lower overhead. However, these techniques can result in too many
false positives in the sense that developer may have to analyze too many irrelevant program
statements before finding the actual root cause. Pytlik et.al. [27] used invariants for fault
localization of Siemens benchmark suite without much success possibly due to the fact that
they used general test inputs to generate invariants.

Dynamic slicing has also been used for bug diagnosis; failure inducing chop [38] used
both forward and backward slicing. Triage [12] combines differences in control flow between
successful and failing runs with dynamic backward slicing for automated diagnosis. We
improve upon these techniques by combining dynamic slicing with invariants similar to the
work by Dimitrov et.al. [16]. We improve upon Dimitrov et.al. [16] in that our techniques to
reduce false positives are not ad hoc, our system does not require special hardware support,
and our system utilizes control dependence which, while it can increase false positives, is
needed for diagnosing certain bugs [37].

BugAssist’s [24] approach of using MAX-SAT solvers for fault localization is more sys-
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tematic than ours. This approach formulates the program as a boolean trace formula in
conjunctive normal form such that every satisfiable assignment of the formula corresponds
to one particular execution of the program. It then extends the formula by adding con-
straints on input values and program post conditions. It uses a partial MAX-SAT solver to
determine the smallest set of clauses which cannot be satisfied and reports the corresponding
program statement as possible root causes. Execution perturbations [43, 81] have also been
used to find root causes for programs. Angellic debugging [82] approach is similar in spirit to
value replacement or execution perturbations approaches which searches different values for
program expressions which can fix failing test without breaking any passing tests. However,
in stead of running the application with different values for a statement, Java PathFinder
model checker is used to check if different values for a program statement can fix the failing
tests while not breaking any passing runs. But, all these techniques have only been applied
to small programs. We do not believe that these techniques alone will scale to larger pro-
grams as they are computationally very expensive. However, our approach is orthogonal to
these approaches and can be combined with them to improve diagnosis.

Yuan et.al. have developed a tool called SherLog [83] which can analyze source code using
information provided by run-time logs to help diagnosis of production run failures. They
also developed a tool called ErrLog [84] which adds logging statements into the source code
to help in failure diagnosis. Though we use very different techniques for diagnosis, failure
information from such tools can possibly help our approach in performing better diagnosis.

This paragraph describes related work on input generation and selection techniques for
fault localization. Baudry [33] et al. propose a new technique to select test cases which can
maximize diagnostic accuracy for statistical techniques. This technique is specific to statis-
tical technique-based approaches and won’t be applicable to our invariants-based system.
Artzi et.al. [31, 32] also developed a technique to automatically generate test cases using a
form of concolic testing which they used for fault localization of PHP applications based on

statistical techniques. They also explored the impact of size and selection of test cases on
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accuracy of fault localization for statistical techniques. Their work combined new test case
generation techniques with known statistical fault localization. Our emphasis is the oppo-
site: our focus is more on effective fault localization techniques than on input generation.
We generate inputs by modifying input according to an input grammar. This strategy is less
general, but more scalable for larger programs. We also proposed using similar inputs for
generating invariants which can increase diagnosis accuracy by localizing faults which may
be missed by using general test inputs. However, their technique can still be adapted for
generating similar inputs for invariant generation, if our approach does not work for some
applications.

Finally, our work, to the best of our knowledge, performs diagnosis on much larger
applications than any previous automated diagnosis techniques other than Triage [12].

A recent study [25] has shown that existing fault localization approaches, in practice,
do not help programmers much. Currently, there is no practical and usable technique that
can pinpoint the root cause of failures in large programs realistically and efficiently without
generating a large number of false positives. We expect our approach would improve the

state of the art in fault localization and make it more suitable for developers.

6.7 Conclusions

In this chapter, we evaluated our proposed new approach for automated bug diagnosis which
combines invariant-based diagnosis, delta debugging, and dynamic backward slicing to com-
pute an accurate set of possible root causes. We evaluated and compared our approach using
two types of generated inputs - automatically constructed similar inputs using our developed
algorithms and manually generated inputs using a systematic procedure. Using automati-
cally generated inputs, the overall procedure is able to narrow down the root causes of bugs
in large, real-world server applications to only 5-17 locations and for clang compiler bugs

to only 17-28 locations, even in programs with hundreds of thousands of lines of code. Our
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approach also performs better than the popular Tarantula [17] and Ochiai [18] statistical

approaches in localizing faults.
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Chapter 7
Future Work

In this chapter, we discuss a set of possible directions to pursue for future work.

First, though our approach is now able to handle many classes of bugs, we are yet to
evaluate on more difficult classes of bugs like “clang compiler wrong output code bugs” and
concurrency bugs etc. For example, “compiler wrong output code bugs” not only have more
complicated root cause(s), but also may make some of our filtering techniques like dynamic
backward slicing completely ineffective. It is not clear what should serve as the starting point
for dynamic slicing, since it is not straightforward to isolate wrong parts of the generated
code for wrong code bugs. If we start slicing from the complete output, dynamic slicing may
become ineffective. Hence, we plan to evaluate and develop additional techniques for such
classes of bugs for which our proposed approach may be ineffective.

Second, we plan to develop on a few more systematic techniques to reduce false positives
further for various classes of bugs. These stand-alone approaches will not scale to large
program sizes, but they may be able to handle large programs in combination with our
earlier approaches. In one possible approach, we plan to investigate new program analysis
techniques to further reduce false positives. For example, we would like to investigate the use
of SMT solvers to remove more false positive candidate root causes. Similar approaches [24]
have used solvers like SAT and MAX-SAT solvers for fault localization. This approach
formulates the program as a boolean trace formula in conjunctive normal form such that
every satisfiable assignment of the formula corresponds to one particular execution of the
program. It then extends the formula by adding constraints on input values and program

post conditions. It uses a partial MAX-SAT solver to determine the smallest set of clauses
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which cannot be satisfied and reports the corresponding program statement as possible root
causes. But, these stand-alone approaches will not work for larger programs. We plan to
combine this technique with our approach. In particular, we would like to ask a question
to SMT solver like, “Given a failure-inducing input and an execution path till a particular
dynamic statement instance, is there a different value for that statement such that the failure
symptom will not occur again?”. Based on the answer, we can categorize the candidates into
three sets - program statements for which changing their value can avoid failure, statements
for which no value can avoid failure, and statements for which solver can’t find an answer
within a certain time duration. It is computationally expensive for a solver to answer such
questions. But, this may be a feasible approach since our framework already provides a
small set of candidate root causes. Successful runs have a lot of information which can be
helpful to the solvers to answer such questions. Also, we can limit the control flow divergence
from the the original control flow to increase its scalability. However, it is not clear how
the solvers can exploit such information to increase its efficiency and scalability and further
research is needed to find an answer.

Third, in another possible approach, we plan to use value-replacement techniques [42, 43]
to remove false positives. The basic idea behind these techniques is to replace the value of
program statements with different values and let the program run. Then a decision is made
regarding which statements might be root cause depending upon the program outcome. The
program has to be rerun for each possible combination of program statements and their all
possible alternate values. For larger programs, this technique can’t be used alone as there
might be a very large number of such possible combinations. However, it may be feasible
to use value replacement techniques if we can combine with our diagnosis framework. Our
diagnosis framework provides two important advantages which can enable its use. Our
framework already provides a very small set of program expressions after the filtering steps,
which are candidate root causes. After combining our invariants-based approach with three

filtering techniques, we have less than hundred program expressions which are candidate
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root causes instead of hundreds of thousands of program expressions. We also have a set of
possible alternate values for each program statement from the successful runs and invariant
ranges. Thus, we have to search a much smaller set of possible combination of program
statement and its alternate values. We can also make a more exhaustive and informed
search of possible values for each statement. This approach may work better for larger
programs than applying value-replacement as a stand-alone approach.

Next, we have only used one kind of invariants in our framework which will not be able to
localize faults for all classes of bugs. For example, diagnosis of bugs like missing initialization
or more complex bugs like compiler wrong code bugs may need new invariants like def-use
invariants or multi-variable invariants. We would like to develop and explore a broader class
of invariants (e.g., loop-based invariants, address-based invariants, multi-variable relational
invariants and def-use invariants) which can capture a wider variety of bugs. In addition, we
are only tracking integer and floating-point type of values, we will miss the bugs which does
not involve any of these type of values. So, we would like to generate invariants involving
other type of values (including address values) to widen the scope of our tool.

We also generate invariants on load, store and function return values. Since, we trace back
till load, store and function arguments while generating program expressions of candidate
root causes, we can miss the root causes if the wrong value from root cause flows through
function arguments. If we monitor invariants on function arguments as well, then we can
safely end at function arguments while building expression trees of candidate root causes
without missing the root cause. Also, since we do not generate invariants on intermediate
values, we have to report a much larger set of program expressions, in place of a small set of
program statements. We would like alleviate these drawbacks by using invariants on more
program points and variables. Another way to handle the second issue and improve the
effectiveness of our approach is to recursively add invariants on all the statements in the
candidate program expressions and repeat the diagnosis procedure. This way, we may be

able to reduce the size of program statements the developer needs to examine.
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Our automatic input generation step is also not yet very robust. We plan to develop it
further so that it can handle more variety of bugs and applications. We also plan to evalu-
ate the effectiveness of different approaches for input generation like grammar-independent,
grammar-dependent, replacement and deletion based algorithms. Also, the C-Reduce [28]
tool is designed to generate minimal inputs, not specifically designed to generate inputs for
better diagnosis. It is possible to make modifications to this input generation process to
generate inputs more suitable our fault localization approach.

We also evaluated our approach with only thirteen software bugs. Hence, we would like
to evaluate our techniques with more bugs of similar and other varieties as well as other
applications. We also plan to evaluate our approached on unfixed bugs to reduce any kind of
bias in our experiments. We would also like outside users to use and evaluate our approach.

Finally, Production run failures are especially difficult to diagnose for various reasons. As
others have noted [12, 85|, performing off-site analysis of production run failures at develop-
ment sites has several limitations: 1) it is difficult to reproduce failures at the development
site due to differences in the environment, 2) customers have privacy concerns over what in-
formation can be released for off-site diagnosis, and 3) the same bug may generate a different
failure at multiple production sites; it is cumbersome for the development team to investi-
gate every failure that occurs without any automated feedback regarding the root cause of
the failure. Hence, performing as much diagnosis as possible at the production site will be
beneficial. We would like to work on extending our approach in future so that it can diagnose
failures during production run as well. For this, we may also need to develop deterministic
detector for failures (especially for wrong output bugs since our current approaches may not

work for production run failures).
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Chapter 8

Conclusions

In this proposal, we reported the results of our empirical study of server software bugs. Our
results show that most server bugs are deterministic and that failures due to most bugs
(77%) can be reproduced by replaying a single input request (after session establishment if
needed). Even for the remaining multi-input bugs, the set of inputs needed for reproducing
failures is usually small and are often clustered together within the input stream. Our results
also showed that many bugs produce incorrect outputs, indicating that better detectors are
needed to detect errors during production runs. Most of the concurrency bugs, though, need
multiple inputs to reproduce a symptom and are non-deterministic. One of the key impli-
cations of the study is that most of the failures may be reproduced without checkpointing
server state.

We also proposed a new approach for automated bug diagnosis that combines invariant-
based diagnosis, delta debugging, and dynamic backward slicing to compute an accurate set
of possible root causes. We proposed use of automatically constructed good inputs which
are similar to the failure-inducing input to develop better invariants that are more likely
to find root causes. We also developed algorithms to automatically generate such similar
inputs. We also proposed two new heuristics that significantly reduce the false positives. The
overall procedure is able to narrow down the root causes of bugs in large, real-world server
applications to only 5-15 locations and bugs in clang compiler to 17-28 program locations,
even in programs with hundreds of thousands of lines of code.

In future, we plan to work on additional program analysis techniques to reduce the

candidate set of root causes further. We also plan to explore other types of invariants at
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more program points so that we can increase the diagnostic capability of the tool and can
diagnose more variety of bugs. We also plan to make input construction process more robust.

Our developed diagnosis framework and proposed approach will greatly help software
programmers, reduce software development costs, increase programmer productivity and

software reliability.
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