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Abstract

Ensuring long-term, or “lifetime” reliability, as dictated by the hard error rate due to wear-out based
failures, is a critical requirement for microprocessor manufacturers. At the same time, the steady increases
in CMOS processor performance have been driven by aggressive device scaling. This continuous scaling
coupled with increasing temperatures on chip are making lifetime reliability targets increasingly difficult
to meet. This dissertation addresses lifetime reliability issues from a microarchitectural perspective. Our
key contributions include (i) the first architecture-level methodology for evaluating lifetime reliability, as a
function of application behavior, (ii) a quantification of the impact of device scaling on lifetime reliability,
taking workload characteristics into consideration, and (iii) performance and cost-effective architectural
solutions targeted at enhancing lifetime reliability.

The first part of this dissertation focuses on the design of tools and models to evaluate processor lifetime
reliability. Using industrial strength models for lifetime reliability modes, we develop a methodology, called
RAMP, to estimate lifetime reliability from an architectural and application perspective. We propose two
implementations of RAMP, RAMP 1.0 and RAMP 2.0, which differ in their utility and accuracy.

This dissertation also extends the RAMP methodology by adding scaling models for different technology
generations to its failure mechanisms. Our quantification of the impact of scaling on a contemporary su-
perscalar processor shows that device scaling has a significant detrimental impact on processor hard failure
rates.

The second part of this dissertation examines a range of microarchitectural techniques for lifetime relia-
bility enhancement. In contrast to previous application-oblivious methods, these techniques allows processor
designers to trade-off cost, performance, and reliability in an application-aware fashion. First, we propose dy-
namic reliability management (DRM) where the processor uses adaptive hardware to dynamically respond
to changing application behavior to maintain its lifetime reliability target. Our results show that DRM
enables the processor to extract significant performance benefit for a spectrum of reliability design costs.

Next, we study two techniques that leverage microarchitectural structural redundancy for lifetime reli-

ability enhancement. Structural redundancy has the potential to be more cost and performance effective
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than traditional processor redundancy. In structural duplication, redundant microarchitectural structures
are added to the processor and designated as spares. Spare structures can be turned on when the original
structure fails, increasing the processor’s lifetime. Graceful processor degradation is a technique that exploits
existing microarchitectural redundancy for reliability. Redundant structures that fail are shut down while
still maintaining functionality, thereby increasing the processor’s lifetime, but at a lower performance. Our
evaluation shows significant reliability benefit from these techniques for a range of cost and performance
budgets.

Overall, this dissertation lays the basic foundation for microarchitectural analysis of lifetime reliability

and provides new tools and techniques to handle this critical emerging technology challenge.
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Chapter 1

Introduction

1.1 Motivation

Ensuring long-term, or “lifetime” reliability, as dictated by the hard error rate due to wear-out based failures,
is a critical requirement for all microprocessor manufacturers. However, relentless technology scaling coupled
with increasing processor power densities are threatening the nearly unlimited lifetime reliability standards
that customers have come to expect. This has led the International Technology Roadmap for Semiconductors
(ITRS) to predict the onset of significant lifetime reliability problems, and at a pace that has not been seen in
the past. It is expected that in the future, product cost and performance requirements will be substantially
affected, and in many cases, superseded by constraints brought on by processor wear-out and dwindling
lifetime reliability [1].

Traditionally, microarchitects have treated the issue of processor lifetime reliability as a manufacturing
problem, best left to be handled by device and process engineers. We observe that the microarchitecture’s
ability to track application behavior can potentially be leveraged to the benefit of reliability qualification,
enabling reduced reliability design costs, increased processor yield, and/or increased performance. The goal
of this dissertation is to design tools and techniques for microarchitectural lifetime reliability awareness and

enhancement.

1.1.1 Classification of Processor Errors

Processor errors can be broadly classified into two categories: soft and hard errors.

Soft errors, also called transient faults or single-event upsets (SEUs), are errors in processor execution
due to electrical noise or external radiation, rather than design or manufacturing related defects. Extensive
research is being performed by the architecture community to make processors resilient to soft errors (for e.g.,
[2, 3]). Although soft errors can cause errors in computation and data corruption, they do not fundamentally
damage the microprocessor and are not viewed as a lifetime reliability concern. As a result, this dissertation

does not address soft error reliability.



Hard errors are caused by defects in the silicon or metalization of the processor package, and are usually
permanent once they manifest. Hard errors, or hard failures can be further divided into extrinsic failures
and intrinsic failures [4].

Extrinsic failures are caused by process and manufacturing defects and occur with a decreasing rate over
time. For example, contaminants on the crystalline silicon surface and surface roughness can cause gate oxide
breakdown [5]. Other examples include short-circuits and open-circuits in the interconnects due to incorrect
metalization during fabrication. Extrinsic failures are mainly a function of the manufacturing process — the
underlying microarchitecture has very little impact on the extrinsic failure rate. After manufacturing, using
a technique called burn-in [6, 7], the processors are tested at elevated operating temperatures and voltages in
order to accelerate the manifestation of extrinsic failures. Since most of the extrinsic failures are weeded out
during burn-in, shipped chips have a very low extrinsic failure rate. Semiconductor manufacturers and chip
companies continue to extensively research methods for improving burn-in efficiency and reducing extrinsic
failure rates [6, 7].

Intrinsic failures are those related to processor wear-out and are caused over time due to operation within the
specified conditions. These failures are intrinsic to, and depend on, the materials used to make the processor
and are related to process parameters, wafer packaging, and processor design. If the manufacturing process
was perfect and no errors were made during design and fabrication, all hard processor failures would be
due to intrinsic failures. Intrinsic failures occur with an increasing rate over time. It is essential that these
failures do not occur during the intended lifetime of the device when it is used under specified operating
conditions [8]. Examples of intrinsic failures include time dependent dielectric breakdown (TDDB) and
negative bias temperature instability (NBTI) in the gate oxides, electromigration and stress migration in
the interconnects, and thermal cycling and cracking.

It should be noted that many extrinsic failures are caused by intrinsic failure mechanisms. However, due
to manufacturing defects, these intrinsic failures manifest themselves very early in the processor’s lifetime.
As discussed, burn-in attempts to filter out all processors which manifest early-life or extrinsic failures. As a
result, processor lifetime reliability is mainly dependent on wear-out failures or intrinsic hard failures. Very
little microarchitectural research has been done on modeling and analyzing intrinsic failures, and these are

the focus of this dissertation.

1.1.2 Main Lifetime Reliability Challenges

Although providing significant benefits in microprocessor performance, advances in technology are acceler-

ating the onset of intrinsic failures, causing a reduction in processor lifetimes. Specifically, the three main



reasons are:

e Processor scaling and increasing power densities. Device miniaturization due to scaling is in-
creasing processor power densities and eating away at process and design margins [9]. Scaling decreases
lifetime reliability by shrinking the thickness of gate and inter-layer dielectrics, increasing current den-
sity in interconnects, and by raising processor temperature which exponentially accelerates wear-out
failures. Scaled down transistors in deep sub-micron CMOS technologies also have significantly higher
leakage power which has an exponential dependence on temperature leading to even higher proces-
sor temperatures. Finally, supply voltage and threshold voltage are not scaling appropriately with

technology because of performance and leakage power concerns creating further reliability problems.

e Increasing transistor count. Increasing functionality, facilitated by increasing transistor densities,
causes the transistor count of processors to grow rapidly. More transistors result in more failures
which results in lower processor lifetimes. Hence, not only is the reliability of individual transistors

decreasing, the number of transistors that can fail is also increasing.

e The advent of on-chip power management techniques like gating and adaptive processing.
In order to cope with escalating power, most modern processor designs employ some form of gating,
usually of the clock. Other forms of dynamic, workload-driven adaptation of processor resources
and bandwidth are also becoming part of on-chip power management [10, 11]. These techniques are
promising from the point of view of reducing average power and temperature; however, they introduce

new effects on chip like thermal cycling which may have a negative impact on reliability.

In this dissertation, we focus on the the impact of processor scaling and increasing power densities.

1.1.3 Microarchitectural Awareness of Lifetime Reliability

This dissertation makes the case that lifetime reliability must be treated as a first-class design constraint at
the microarchitectural design stage. This is true for all market segments ranging from server class processors
where lifetime reliability is an implicit requirement, to commodity processors where screening for higher
reliability impacts the number of processors shipped (yield) and resultant profit.

Extensive research has gone into techniques that can improve energy and thermal efficiency by exploiting
microarchitectural features and adaptation capabilities. A similar approach can be used for lifetime reliability
— the microarchitecture’s unique knowledge of application run-time behavior can be leveraged to increase
processor reliability. Such an approach to reliability is fundamentally different from existing methodologies

where processor reliability is qualified during device design, circuit layout, manufacture, and chip test.
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1.2 Contributions

This dissertation makes three key contributions.

1. RAMP, the first microarchitectural modeling methodology for lifetime reliability that accounts for

application behavior [12, 13].

2. Quantification of the impact of technology scaling on the lifetime reliability of a contemporary super-

scalar processor [14].
3. Performance and cost-effective microarchitectural solutions for lifetime reliability enhancement [12, 15].

We now discuss each of the contributions in more detail.

1.2.1 The RAMP Model

Evaluating the potential benefit of microarchitectural lifetime reliability-awareness requires tools and mod-
els that can be used at early processor design stages. In this dissertation, we introduce RAMP (Reliability
Aware Microprocessor), the first application-aware architecture-level methodology for evaluating processor
lifetime reliability. RAMP uses state-of-the-art analytical models for five important intrinsic failure mecha-
nisms: time dependent dielectric breakdown (TDDB) and negative-bias temperature instability (NBTI) in
the transistors, electromigration (EM) and stress migration (SM) in the interconnects, and thermal cycling
(TC) in the package.

We present two versions of RAMP; RAMP 1.0 is a simpler version that can be implemented both
in real hardware and in a simulator. A key feature of RAMP 1.0 is its ability to be used for run-time
reliability management. RAMP 2.0 is a more complex version which improves on the accuracy of RAMP
1.0. However, its additional complexity makes its use as a run-time tool difficult, restricting its use to design

time evaluations.

1.2.2 TImpact of Scaling on Lifetime Reliability

The second contribution of this dissertation is a quantitative evaluation of the impact of device scaling on the
hard error rates and lifetime reliability of processors. We enhance the RAMP methodology by adding scaling
specific parameters to enable lifetime reliability evaluation at different technology generations. In particular,
our evaluation and analysis attempt to model the scaling effects of taking one chip design, and gradually
scaling that chip down from 180nm to 65nm, without any substantial modifications to the microarchitectural

pipeline.



Our results show that scaling has a significant and increasing impact on processor hard failure rates. The
increase in processor temperature is one of the key reasons for this trend. In our experiments, on average,
the maximum temperature reached by a 65nm processor is 15 degrees Kelvin higher than that reached
by a 180nm processor. On average, the lifetime for a 65nm processor is 79% lower than the lifetime at
180nm, with similar reliability qualification. More importantly, the rate of decrease of lifetime increases as
we scale to smaller technologies. Our results clearly demonstrate that hard failures will present a significant
and increasing challenge in future technology generations. An important practical consequence is that, in
contrast to current practice, leveraging a single design for multiple remaps across a few technology generations

(with only minor design tweaks) will become increasingly difficult.

1.2.3 Architectural Adaptation for Reliability Enhancement

The third contribution of this dissertation is to propose architectural techniques for processor lifetime relia-
bility enhancement.

First, we propose dynamic reliability management (DRM) — a technique where the processor can respond
to changing application behavior to maintain its lifetime reliability target. Currently, processor reliability
design done in an application oblivious fashion, and is instead based on worst-case processor operating
conditions. This results in processors that are over-designed from a reliability perspective imposing an
unnecessary performance and/or cost overhead. In contrast to current worst-case behavior based reliability
qualification methodologies, DRM allows processors to be qualified for reliability at lower (but more likely)
operating points than the worst case. This saves cost, but possibly at a loss of some performance in
the unexpected case. Conversely, DRM allows processors that are over-designed for reliability for some
applications to respond by improving performance for these applications. Our results show that DRM can
be used to improve performance and/or lower cost while achieving reliability targets, providing the designer
with a spectrum of reliability design points. This would be particularly useful in future systems where
reliability cost could be too prohibitive to stay on the required performance curve.

We also explore techniques that exploit processor structural redundancy for lifetime reliability. Redun-
dancy is a commonly used technique for lifetime reliability enhancement. However, most previous work for
lifetime reliability focused on redundancy at the processor granularity (for e.g., [16, 17]). Due to the large
area overheads involved in duplicating entire processors, such redundancy tends to be expensive both from a
cost and performance perspective. By working at a finer granularity, structural redundancy addresses some
of these shortcomings of processor redundancy by incurring less area and performance overheads.

We examine two techniques that exploit structural redundancy: structural duplication (SD) adds redun-



dant microarchitectural structures to the processor. These “spare” structures can be turned on during the
processor’s lifetime when the original structure fails, thereby extending the processor’s lifetime. However, the
spare structures add an area and cost overhead to the processor. Graceful performance degradation (GPD)
is a technique that exploits existing microarchitectural redundancy for reliability. Modern processors have
replicated structures that are used for increasing performance for some high ILP applications. However, the
replicated structures are not required for functional correctness. If a replicated structure fails in the course
of a processor’s lifetime, the processor can extend its lifetime by shutting down the structure, albeit with a
performance loss. Our analysis shows that structural redundancy can be exploited for significant reliability
benefit. In addition, we show that different structural redundancy techniques are beneficial for different
performance and cost overheads. We provide guidelines for intelligent reliability decisions by identifying the

optimal design technique for a given performance or area trade-off.

1.3 Organization

The rest of this dissertation is organized as follows. Chapter 2 describes RAMP. Chapter 3 describes the
scaling models added to the RAMP methodology and quantifies the impact of scaling on a contemporary
superscalar processor, highlighting the detrimental impact of scaling on lifetime reliability. Chapter 4 dis-
cusses the improvements required to increase RAMP’s validity and usability. Chapters 5 and 6 examine
microarchitectural techniques for reliability enhancement. Chapter 5 proposes DRM, a technique by which
adaptive hardware is used to dynamically respond to changing application behavior to maintain the lifetime
reliability target. Chapter 6 examines the benefits of exploiting structural redundancy for lifetime reliabil-
ity through two techniques, structural duplication and graceful processor degradation. Chapter 7 discusses
related work and Chapter 8 describes the conclusions of this dissertation and possible avenues of future

work.



Chapter 2

The RAMP Model

Based on extensive discussions with front-end, back-end, and reliability engineers at IBM, we determined
that the critical intrinsic failure mechanisms for processors are: Electromigration (EM), stress migration
(SM), gate-oxide breakdown or time dependent dielectric breakdown (TDDB), thermal cycling (TC), and
negative bias temperature instability (NBTI) [18, 1, 19]. Based on these discussions, we also identified
the state-of-the-art device-level analytic models for these failure mechanisms [18, 5]. These models assume
steady state operation at specific (generally worst-case) temperature and utilization, and express reliability
in terms of MTTF (mean time to failure or the expected lifetime of the processor). RAMP uses these
models to calculate an “instantaneous” MTTF based on current temperature and utilization. Much like
previous power and temperature models [20, 11], RAMP divides the processor into a few structures ( e.g.,
ALUs, FPUs, register files, branch predictor, caches, load-store queue, instruction window) and applies the
analytic models to each structure as an aggregate. In order to calculate the MTTF of the entire processor,
structure-level instantaneous MTTF's obtained from RAMP must be combined. We propose two versions of
RAMP, RAMP 1.0 and RAMP 2.0, which differ in their utility and accuracy.

As a simulation tool, RAMP should be used in conjunction with a timing simulator to determine workload
behavior, and a power and thermal simulator for power and temperature profiles. A real hardware version
of RAMP would require sensors and counters that provide information on processor operating conditions.

We discuss the individual failure models used in RAMP in Sections 2.1.1 to 2.1.5. Section 2.2 describes
RAMP 1.0, and Section 2.2.2 describes how RAMP incorporates application-driven temporal variations of
temperature and utilization, to calculate the processor MTTF for a given application. Section 2.3 describes
the more accurate RAMP 2.0. Section 2.2.2 describes how RAMP 1.0 and RAMP 2.0 incorporate application-
driven temporal variations of temperature and utilization, to calculate the processor MTTF for a given
application. Section 2.4 compares some results between RAMP 1.0 and RAMP 2.0 and Section 2.5 discusses

the process of reliability qualification and its incorporation in our models.



2.1 Failure Mechanisms Modeled in RAMP

2.1.1 Electromigration (EM)

Electromigration is one of the best studied and well understood failure mechanisms in semiconductor devices
and occurs in interconnects. Extensive research has been performed by the material science and semiconduc-
tor community on modeling and understanding the effects of electromigration [18, 21, 22, 23, 24, 25, 26, 27].

Electromigration occurs in aluminum and copper interconnects due to the mass transport of conductor
metal atoms in the interconnects. Conducting electrons transfer some of their momentum to the metal atoms
of the interconnect — this “electron wind” driving force creates a net flow of metal atoms in the direction of
electron flow. As the atoms migrate, there is depletion of metal atoms in one region and pile up in other
regions. The depletion sites can see increased interconnect resistance or open circuits, and extrusions can
occur at sites of metal atom pile up. Electromigration has an exponential dependence on temperature.

The currently accepted model for MTTF due to electromigration (M TTFg M) is based on Black’s equa-
tion ! and is as follows [18]:

Eapm

MTTFgp (J — Jc”'t)ise kT (21)

where J is the current density in the interconnect, J..;; is the critical current density required for electro-

migration, F,,,, is the activation energy for electromigration, k is Boltzmann’s constant, and T is absolute
temperature in Kelvin. s and E,,,, are constants that depend on the interconnect metal used (1.1 and 0.9
for copper interconnects as modeled in RAMP [18]). J tends to be much higher than J.;; in interconnects
(nearly 2 orders of magnitude [18]). Hence, (J — Jeopit) & J.

J for an interconnect can be related to the switching probability of the line, p, as [26]

Xfxp (2.2)

where C, W, and H are the capacitance, width, and thickness, respectively of the line and f is the clock
frequency.

Equations 2.1 and 2.2 offer a convenient abstraction for computer architects to work with electromigra-
tion. Abstracting out only the architectural variables for a given process, the MTTF due to electromigration

as modeled in RAMP is given by:

1Black’s equation calculates reliability in terms of the median time to failure. In this thesis, we model electromigration with
either exponential or lognormal failure distributions. In both cases, MTTF is directly proportional to the median.
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Currently, RAMP assumes all interconnects in a structure to be similar, and does not differentiate
interconnects on the basis of their C, W, and H (we currently fold these terms into the proportionality
constant). The activity factor (or switching probability or utilization) of a structure, p, is obtained from the

timing simulator.

2.1.2 Stress Migration (SM)

Much like electromigration, stress migration is a phenomenon where the metal atoms in the interconnects
migrate. It is caused by mechanical stress due to differing thermal expansion rates of different materials in
the device. This stress, o, is proportional to the change in temperature, Top — T, where T is the operating
temperature and T is the stress free temperature (metal deposition temperature) of the metal. That is,
when the metal was originally deposited on the device, there is no thermo-mechanical stress. At other
temperatures, there are stresses due to differing expansion rates. The exact mechanisms behind stress
migration are still not completely understood and research is ongoing on the subject [18].

The mean time to failure due to stress migration, MTT Fgys, as modeled in RAMP is given by [18]:

Bagy
MTTFsp o |To — T| " °e*7 (2.4)

where the temperatures are in Kelvin, and s and E,,, are material dependent constants (2.5 and 0.9 for
the copper interconnects modeled [18]). Ty depends on whether vapor deposition or sputtering was used for
depositing the metal - sputtering uses high temperatures to increase the stickiness of the deposited metal;
on the other hand, vapor deposition happens near room temperature [28]. RAMP assumes that sputtering
was used to deposit the interconnect metal and uses a value of 500K for T [18].

The relationship between stress migration and temperature is governed by two opposing properties. The
exponential temperature relationship accelerates wear-out with increases in temperature. However, since
metal deposition temperatures tend to be higher than typical operating temperatures, higher operating
temperatures decrease the value of Ty — T, thus reducing the value of ¢ and increasing the MTTF. However,

this increase in MTTF is typically much smaller than the exponential decrease due to temperature.



2.1.3 Time-Dependent Dielectric Breakdown (TDDB)

Time-dependent dielectric breakdown (TDDB), or gate oxide breakdown, is another well studied failure
mechanism in semiconductor devices. The gate dielectric wears down with time and fails when a conductive
path forms in the dielectric. When a conducting path forms between the gate and the substrate, it is no
longer possible to control current flow between the drain and the source with a gate electric field, effectively
rendering the transistor device useless [29, 5]. The advent of thin and ultra-thin gate oxides, coupled with
non-ideal scaling of supply voltage is accelerating TDDB failure rates. The failure rate is also increasing due
to the fact that the supply voltage is not scaling down appropriately with technology [1].

Various models have been proposed for TDDB degradation relating TDDB degradation to the electric
field, the inverse of the electric field and the gate voltage. The TDDB model we use is based on recent
experimental work done by Wu et al. [5] at IBM. Wu et al. collected experimental data over a wide range
of oxide thicknesses, voltages, and temperatures to create a unified TDDB model for current and future
ultra-thin gate oxides. The model shows that the lifetime due to TDDB for ultra-thin gate oxides is highly
dependent on voltage and has a larger than exponential degradation due to temperature. Based on [5], the

MTTF due to TDDB, MTTFrppp, at a temperature, T, and a voltage, V, is given by:

1 -
MTTFrppp « (V)W*bT)e(ﬁ#“) (2.5)

In order to be compatible with the conventional Arrhenius temperature dependence with an activation energy,
the non-Arrhenius relationship (e(%+%)) can be represented in the form, ef_;", where E, = A + % + CT.
This gives:

MTTFrppg (%)(a—me(“%# (2.6)
where a, b, X, Y, and Z are fitting parameters. Based on data in [5], the values currently used in RAMP
are a = 78, b= —0.081, X = 0.759¢ev, Y = —66.8evK, and Z = —8.3TF — 4ev/K.

2.1.4 Thermal Cycling (TC)

Fatigue failures can occur due to temperature cycling. Permanent damage accumulates every time there is
a cycle in temperature, eventually leading to failure. Normal powering up and powering down also causes
damage. Although all parts of the device experience fatigue due to thermal cycling, the effect is most
pronounced in the package and die interface (for example, solder joints) [18].

The package goes through two types of thermal cycles — The first type are large thermal cycles that

occur at a low frequency (a few times a day). These include powering up and down, or going into low power
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or stand-by mode for mobile processors. The second type are small cycles which occur at a much higher
frequency (a few times a second). These are due to changes in workload behavior and context switching.
The effect of small thermal cycles at high frequencies has not been well studied by the packaging community,
and validated models are not available. As a result, we do not discuss models for the reliability impact of

small thermal cycles. Large thermal cycles are modeled using the Coffin-Manson equation [18]:

Ny = Co(AT) (2.7)

where Ny is the number of thermal cycles to failure, Cy is an empirically determined material-dependent
constant, AT is the temperature range experienced in the thermal cycle, and ¢ is the Coffin-Manson exponent,
an empirically determined constant.

Using Equation 2.7, we can see that the MTTF due to thermal cycling depends on the frequency of
cycling, and on the magnitude of the cycles. Hence, the equation used to determine mean time to failure
due to thermal cycles (MTT Fr¢) is:

1

MTTF: — )9 2.8
TC (T - Ta'mbie’nt) ( )

where the proportionality constant also factors in the frequency of thermal cycling, which we assume stays
constant. T is the average temperature of the structure and T,pient is the ambient temperature. Hence,
T — Tymbient represents the thermal cycle modeled. As mentioned, RAMP only models cycling fatigue in
the package, since that is where the impact of cycling is most pronounced. For the package, the value of the

Coffin-Manson exponent, g, is 2.35 [18].

2.1.5 Negative Bias Temperature Instability (NBTI)

NBTT is an electro-chemical reaction that takes place in PFETs when the gate is biased negative with respect
to the source and drain. This typically occurs when the input to a gate is low while the output is high,
resulting in an accumulation of positive charges in the gate oxide. This accumulation causes the threshold
voltage of the transistor to increase. Higher threshold voltages result in gate overdrive (supply voltage -
threshold voltage) decreasing, which slows down the performance of the gate. This will eventually lead to
processor failure due to timing constraints [19].

NBTTI has a strong positive temperature and field dependence. As a result, the higher temperatures seen
on chip due to scaling exacerbate this problem. Similarly, thinning of the gate oxide due to scaling also

increases NBTI reliability concerns [19].
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The NBTI model we use is based on recent work by Zafar et al. at IBM, and is a physics-based model
verified using new and published NBTI failure data [19]. The model shows that lifetime due to NBTI has a

large dependence on temperature. The MTTF due to NBTI, MTT FnpT;, at a temperature, T, is given by:

)—m(H‘;% ~0)) % e;]% (2.9)

MTTFNBTI X [(ln(

+ 2e T
and A, B,C, D, and (3 are fitting parameters, and k is Boltzmann’s constant. Based on the data in [19], the
values we use are A = 1.6328, B = 0.07377, C = 0.01, D = —0.06852, and 8 = 0.3.

2.1.6 Combining Structure-Level MTTFs

To obtain the total MTTF of the processor, we need to combine the effects of different failure mechanisms,
and across structures. Since different failure mechanisms have different lifetime distributions, combining
them directly is difficult. Also, we need a convenient way to add the failure contributions of individual
structures.

In this dissertation, we propose two versions of RAMP, RAMP 1.0 and RAMP 2.0, which use different
methods to combine individual failure mechanisms. RAMP 1.0 uses a simpler method which allows its use as
a run-time tool both in real hardware and in simulators. RAMP 2.0 uses a more complex method to obtain
processor MTTF. This increases the accuracy of the tool, but makes its implementation in real hardware

difficult, restricting it to simulators.

2.2 RAMP 1.0

RAMP 1.0 uses the industry standard sum-of-failure-rates (SOFR) model to obtain processor MTTF.

2.2.1 Sum-of-Failure-Rates (SOFR) Model

In order to combine MTTFs, the SOFR model requires two simplifying assumptions to be made.

e The processor is a series failure system — in other words, the first instance of any structure failing due

to any failure mechanism causes the entire processor to fail.

e Each individual failure mechanism has a constant failure rate (equivalently, every failure mechanism
has an exponential lifetime distribution). The failure rate (also known as the hazard function), h(t)

at a time ¢, is defined as the conditional probability that a component will fail in the interval (¢ + 6t),
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given that it has survived till time ¢. A constant failure rate implies that the value of h(t) remains

fixed, and does not vary with the component’s age; i.e., h(t) = A.

The above two assumptions of the SOFR model imply [30]: (1) the MTTF of the processor, MTTFp, is
the inverse of the total failure rate of the processor, Ap; and (2) the failure rate of the processor is the sum

of the failure rates of the individual structures due to individual failure mechanisms. Hence,

1 1
MTTFy= — = — (2.10)

J k
)‘1’ i=1 El:l Ail

where \;; is the failure rate of the i*" structure due to the [** failure mechanism.

2.2.2 Computing MTTF Values for Applications

The MTTF models used in RAMP (Equations 2.1, 2.4, 2.6, 2.8, 2.9) provide MTTF estimates for fixed
operating parameters (in particular, fixed temperature (7°), voltage (V'), and frequency (f), and activity
factor (p)). However, when an application runs, these parameters can all vary with time (V and f vary in
processors with DVS). We assume that we can account for the impact of this variation by: (1) calculating
an MTTF value (and consequently failure rate) based on instantaneous T', V, f, and p (measured over
a reasonably small time granularity); and (2) using the inverse of the average over time of these failure
rates to determine the actual MTTF value of every structure for every failure mechanism when running the
application (this averaging over time is similar to the assumption used in the SOFR model which averages
over space). For thermal cycling, we calculate the average temperature over the entire run, which is used
in Equation 2.8 to determine the thermal cycling MTTF value. Sometimes we refer to this average MTTF
value as the MTTF value of the application. To determine the MTTF value for a workload, we can use a

weighted average of the MTTF values of the constituent applications.

2.3 RAMP 2.0

As discussed in the previous section, the SOFR model requires two simplifying assumptions to be made.
Both these assumptions limit RAMP 1.0’s applicability and introduce some inaccuracies. RAMP 1.0 assumes
all processors are series failure systems; i.e., the first failure anywhere on chip will cause the entire processor
to fail. This is not strictly accurate — some duplicated structures on chip can fail without causing the entire
processor to fail. Also, RAMP 1.0 assumes all failure mechanisms have an exponential failure distribution,

which implies the failure mechanisms have a constant failure rate. This is inaccurate — a typical wear-out
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failure mechanism will have a low failure rate at the beginning of the component’s lifetime and the value
will grow as the component ages.

RAMP 2.0 addresses these inaccuracies in the SOFR model. Although there is still debate about the most
accurate failure distribution for each failure mode, lognormal distributions have been shown to be applicable
for a wide range of wear-out mechanisms [31, 32, 33]. Hence, RAMP 2.0 models failure mechanisms with
lognormal distributions. RAMP 2.0 then uses Monte-Carlo simulation methods to calculate total processor
MTTF for series-parallel failure systems. In Section 2.3.1, we describe lognormal distributions, and we

explain our Monte-Carlo simulation methods in Section 2.3.2.

2.3.1 Lognormal Distributions

The lognormal distribution has been found to be a better model for failure degradation processes common
to semiconductor failure mechanisms than the exponential distribution [31, 32, 33]. In most cases, this
can be shown using the multiplicative degradation argument [31], briefly explained below. For a structure
undergoing wear-out due to some failure mechanism, let x1, z2, ...z, be the amount of degradation seen at
successive discrete time intervals. Let us assume that the amount of degradation seen in a time interval
tends to depend on the total amount of degradation already present. This is known as multiplicative
degradation [31]. In other words, the amount of degradation experienced in the nt" time interval, (z, —z,_1),
will be some multiple of the total degradation already present at the end of the (n—1)** time interval, z,_;.

Hence,

Ty — Tpe1 = OnTp—1 = Tp = (1 + ap)Tpn_1 (2.11)

where ., is a small random value. Based on the above, we can express the total amount of degradation at

the end of the n** time interval, z,,, as:

n

zn = [[ [+ 0:)]mo (2.12)

i=1
where x is the degradation at time 0, and is a constant, and «; are small random values. Taking the natural

logarithm of both sides,

n n
Inz, = Zln(l +a;)+Inzy ~ Zai +Inzg (2.13)

i=1 i=1

since In(1 + z) ~ z for small values of z. Since a; are random, equidistant, independent values, the Central
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Limit Theorem [30] implies that In z,, has a normal distribution. Hence, z,, has a lognormal distribution for
any n (or any time t). Since failure occurs when the amount of degradation reaches a critical point, time of
failure will be modeled successfully by a lognormal for this type of process. The multiplicative degradation
model has been shown to be a good fit for chemical reactions, diffusion of ions, and crack growth and
propagation. Most semiconductor failure models are caused by one of these three degradation processes [31].
Hence, the lognormal distribution is a good fit for wear-out mechanisms.

The probability density function for the lognormal distribution is given by [34]:

1 _ (nz—p)?

e 27 (2.14)

fz) =

o\ 2T

w and o are the mean and standard deviation of the underlying norrmal distribution [34]. p is related to the
MTTF of the lognormal distribution, MTTF, as MTTF = et [34]. As suggested in [35], we use 0 = 0.5

which has been found to model wear-out based failure mechanisms well.

2.3.2 Monte Carlo Simulation for Reliability

To obtain the lifetime distribution and MTTF for the processor as a whole, we need to combine the effects
of the individual lognormal distributions across all the mechanisms and structures. Due to the complexity of
the lognormal distribution, and the large cross-product of structures and mechanisms, calculating processor
reliability analytically is exceedingly difficult. ? To address this problem, we use a Monte Carlo simulation
method to calculate total processor reliability. A Monte Carlo method is an algorithm that solves a problem
by generating suitable random numbers and observing the fraction of the numbers that obey some property
or properties. The method is useful for obtaining numerical solutions to problems that are too complicated

to solve analytically [36].

Generating Lognormal Distributions

The Box-Muller transform can be used to generate a lognormal distribution from a uniform distribution [37].
As discussed previously, the mean of the underlying normal distribution, p, is related to the MTTF of the
lognormal distribution, MTTF', by

MTTF = &+ (2.15)

Hence,

0.2

p=In(MTTF) — = (2.16)

2 As explained, if the individual failure distributions were exponential, with the SOFR model, the total processor MTTF can
be easily calculated as the inverse of the sum of the FIT rates individual structures and mechanisms.
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Also, as described earlier, for a wear-out based failure mechanism, o = 0.5.
If randl and rand2 are two independent uniformly distributed random numbers, a normally distributed

random number, rand,ormai, with mean 0 and standard deviation 1, is given by [37]

randpormal = \/ —2In(randl) x sin(2rrand2) (2.17)

Next, the scaled normally distributed random number, randscqied—normai, With mean p and o, can be

obtained from the normally distributed random number by

randscaledfnor'mal =K + rand'no’r'mal X o (218)

The scaled normal random number can be used to generate a random lognormal distribution, randiognormat;

as
randiognormal = e"@Ndscaled—normal (2‘ 19)
Substituting,
0'2 .
randlognormal — eln(MTTF)— G +o(y/—2Iln(randl)sin(2nrand2) (220)

Hence, with Equation 2.20, two random uniform variables, randl and rand2, can be used to generate a

lognormal distribution with parameters MTTF and o.

Modeling Systems with the MIN-MAX Method

Next, we need a method to compute the MTTF of series-parallel failure systems. Unlike a series failure
system where the processor will fail when its first structure fails, a series parallel system can survive structure
failures when a parallel or redundant unit is available. We use a simple MIN-MAX analysis to determine the
lifetime of such systems. Consider a single processor that consists of two structures, A, and B, with lifetimes,
ta, and tg. It should be noted that t4 and tp are not the MTTFs of A and B, but are the lifetimes of the
structures for a single random processor. The average value of t4 and tg across many processors would give
the MTTFs of A and B.

If A and B are in series, failure would occur at MIN(t4,tp) because the first structure to fail will cause
the processor to fail. On the other hand, if A and B are in parallel, failure would occur at MAX (t4,tp)

because both structures have to fail for the processor to fail. If a structure, C, with lifetime, t¢, is added
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in series to A and B in parallel, the new lifetime of the processor would be MIN(MAX (ta,tg),tc). This
simple concept can be extended to any processor represented in a series or series-parallel fashion to obtain
total MTTF.

Now, in any single iteration of the Monte-Carlo experiment, we use Equation 2.20 to generate a random
lifetime for each failure mechanism and structure on chip. A MIN-MAX analysis of these lifetimes based on
the processor’s layout would give the lifetime of the entire processor for that iteration. The MTTF of the
processor can now be calculated by repeating this process over many iterations and averaging the processor
lifetimes obtained. As in any other Monte-Carlo experiment, the accuracy of the analysis increases with the

number of iterations performed.

Generate random lognormal lifetime
for each structure and failure mechanism =<

R N iterations
—{a e e o
6 3 5 10
_ _ Sty
tpl—MIN(6,3,5,10)—3 MTTF(Pl— N 1
_

5t
P MTTFR)= = R
6

tgMINBMAX(39) 10)=5

Figure 2.1: Monte Carlo simulation of MTTF of two systems, P; and P.. The MIN-MAX method to determine
system lifetime is illustrated for sample lifetime values for both systems. The higher the number of iterations, N,
the higher the accuracy of the final MTTFs.

Figure 2.1 illustrates this method. Consider two systems, P; and P,. Both systems have four structures,
A, B, C,and D. As can be seen in Figure 2.1, P, is a series failure system while P, is a series-parallel failure
system. For any single iteration of the Monte-Carlo algorithm, the lifetime of Py, tp, = MIN(ta,tB,tc,tp),

while the lifetime of Py is tp, = MIN(ta, MAX(tg,tc),tp), where ta, tg, tc, and tp are the random

lifetimes of each structure. If NV iterations are performed, the MTTF of system P, is MTTFp, = %,
and the MTTF of system P, is MTTFp, = % In addition, we also have the distribution of failure times

for the N systems. In our experiments, we use a value of N = 107.
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In order to compute application MTTFs, RAMP 2.0 uses time averaging like RAMP 1.0 (described in

Section 2.2.2).

2.4 RAMP 1.0 vs RAMP 2.0

As explained earlier, RAMP 1.0 and RAMP 2.0 differ in their utility and accuracy. The relative simplicity
of Equation 2.10 facilitates the use of RAMP 1.0 both as a simulation tool and in real hardware. As a
simulation tool, RAMP 1.0 should be used in conjunction with a timing simulator to determine workload
behavior, and a power and thermal simulator for power and temperature profiles. In real hardware, RAMP
1.0 would require sensors and counters that provide information on processor operating conditions.

Unlike RAMP 1.0, it is difficult to use RAMP 2.0 in real hardware in its current form, and instead, it can
only be used as a simulation tool. This is due to the difficulty of implementing the Monte-Carlo methods in
real hardware.

Due to its simplicity, the SOFR model used in RAMP 1.0 is commonly used in industry to combine
failure rates. However, assuming exponential distributions for the failure mechanisms reduces the accuracy
of RAMP 1.0. In Sections 3.4.4 and 6.3.7, we quantify this inaccuracy by comparing our experimental results

on RAMP 1.0 and RAMP 2.0.

2.5 The Reliability Qualification Process

Based on the desired reliability for a product, an MTTF value, MTT Fy,4yget, is targeted during the process
of reliability qualification. CMOS devices like microprocessors are commonly designed to have an MTTF in
the range of 30 years [8]. 3

Inherent in attaining this target MTTF value is a cost-performance tradeoff. The cost-performance
tradeoff that is made determines the proportionality constants in the individual failure model equations.
These constants are technology dependent and also depend on factors like design materials used and yield.
High values for the proportionality constants imply more reliable processors, but higher cost.

For a specific set of proportionality constants, RAMP 1.0 and RAMP 2.0 can provide an absolute MTTF
value for a given application. However, since we do not have the function that relates these constants to

cost, we do the following: according to current worst-case based reliability qualification methodologies, the

architectural parameters in the model equations (temperature (T"), voltage (V), frequency (f), and activity

3Processor MTTF's tend to be much higher than the expected consumer use lifetime of the product. These values allow the
product’s consumer service life to fall far out in the tails of the lifetime distribution curve [8].
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factor (p)) are worst-case operating parameters. For a given technology, the target MTTF value and the cost
we are willing to pay for reliability qualification (i.e., the proportionality constants determined by materials,
yield, etc.) determine these worst-case parameters. We therefore use these architecture level parameters as
a proxy for the cost of reliability qualification. We call these proxy parameters as Tyyai, Vouals fqual, and
Dqual respectively. The higher the value of these parameters, the more expensive the reliability qualification.
We then feed these parameters to RAMP 1.0 and RAMP 2.0 to determine the proportionality constants that
will give us the target MTTF value for each failure mechanism for each structure. We use those constants
to determine an absolute MTTF value according to the actual 7', V, f, and p seen by the workload.

In our experiments, to bound the space explored, we only vary Ty, to represent different costs. We
maintain a fixed value for fquq and Vgua depending on the processor being simulated. We fixed pguaqr to be
the highest activity factor obtained across our application suite from our timing simulator. As described, the
above methodology also requires setting a target MTTF value for each structure for each failure mechanism.
We assumed that at qualification, the probability of failure is equal across all failure mechanisms and is
proportional to the area of a structure.

We require the use of Tyyai, Vgual, fqual, and Pguer only when we need to calculate absolute values of
MTTF (as in Section 5.5). In situations where we only compare MTTF ratios and not absolute values, we

do not need to use the qualification proxies.

2.6 Summary

In this chapter, we present a new modeling methodology, called RAMP, for enabling power, performance
and reliability tradeoffs. RAMP deals primarily with the the impact of temperature on wearout driven
(un)reliability. There are, of course, other lifetime reliability degradations that we do not currently consider
in RAMP. One example is the effect of inductive noise on the voltage rails (Ldi/dt) caused by current surges
in various units.

We propose two implementations of RAMP, RAMP 1.0 and RAMP 2.0, which differ in the method used
to combine MTTFs across different structures and failure mechanisms. RAMP 1.0 uses a simpler method
which facilitates its use both in real hardware and as a simulation tool. RAMP 2.0 uses a more complex
Monte-Carlo method to combine MTTFs. This increases its accuracy but makes its use as a dynamic tool

in real hardware difficult.
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Chapter 3

The Impact of Technology Scaling on
Lifetime Reliability

Advances in CMOS semiconductor technology have been steadily improving processor performance. These
advances have been driven by aggressive scaling of device feature sizes. However, CMOS scaling is acceler-
ating the onset of problems due to long-term processor hardware failures or lifetime reliability.

In this chapter, we quantify the impact of technology scaling on the failure mechanisms discussed in
Chapter 2. In particular, our evaluation and analysis attempt to model the scaling effects of taking a 180nm
POWERA-like processor, and gradually scaling that chip from 180nm to 65nm, without any substantial mod-
ifications to the architectural pipeline. To facilitate this analysis, we enhance the RAMP models by adding
scaling specific parameters to enable lifetime reliability evaluation at different technologies. Section 3.1 gives
an overview of scaling theory and practice. The scaling models for the individual failure mechanisms are
described in Section 3.2. OQur scaling analysis is described in Section 3.3, and we discuss the results in

Section 3.4.

3.1 Scaling Theory and Practice

Device scaling results in the reduction of feature sizes and voltage levels of transistors. Application of ideal
scaling theory results in three main benefits in going from one generation to the next [9]: (a) reduction of
gate delay by about 30%, resulting in an increase in operating frequency by about 43%; (b) doubling of
transistor density; and (c) reduction of dynamic power per transistor by about 50% (this assumes constant
electric field scaling, where the supply voltage scales down by 30% in each generation). Combining the
beneficial effects of (b) and (c) implies that for the same die size, under ideal scaling considerations alone,
the net chip dynamic power and power density would remain unchanged with scaling.

However, in practice, processors do not scale ideally. With real scaling in the deep sub-micron range,
processor power density, and consequently temperature, have been increasing at an alarming rate, which

directly affects processor lifetime reliability. The main reasons behind this increase are:

e Supply voltages are not scaling ideally: This prevents the dynamic power per transistor from
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decreasing at the ideal rate. One of the reasons behind the slowing down of supply voltage scaling is
the attempt to retain competitive frequency growth by tuning up the voltage to the maximum levels
allowed in a given technology generation. Also, as the gap between the threshold voltage and the
supply voltage diminishes to less than a volt, basic noise immunity issues (in logic) and cell state
stability issues (in SRAM macros) makes it ever harder to scale down the supply voltage. Hence,
although processor area scales down ideally, power does not, resulting in higher power density and

consequently higher temperatures.

e Total chip leakage power is increasing: Scaling down device threshold voltages (ideally) by about
15% per generation causes sub-threshold leakage current per transistor to increase by 5 times. Since
the total transistor count on the die increases by about 50% per generation, the total chip leakage
power increases about 7.5 times. This increase is further compounded by the exponential dependence

of leakage power on temperature.

3.1.1 Impact of Non-Ideal Scaling

The above non-ideal scaling coupled with the reduced feature sizes affects processor lifetime reliability in
the following ways. First, all of the five failure mechanisms in RAMP are adversely affected by increases in
temperature, with some of the mechanisms exhibiting an exponential or larger dependence on temperature.
Second, the dielectric thickness of devices is fast decreasing to the point where it is approaching a few
angstroms. This, coupled with the fact that there has been a general slowdown in supply voltage scaling is
expected to increase the intrinsic failure rate due to gate oxide breakdown (TDDB). Third, the decreasing
feature size of interconnects accelerates electromigration failure rates.

The detrimental impact of scaling on intrinsic reliability in general, and gate oxide reliability in particular,
has been studied extensively [27, 29, 5]. However, most of these studies have been performed at the device
level, and consider individual failure mechanisms in isolation. Additionally, they are performed at fixed worst
case operating points without any knowledge of the target application suite of the processor. However, since
the power consumed by the processor varies with the executing workload, the actual operating temperature
and interconnect current densities also depend on the workload. Consequently, the failure rate of a component
(or the processor as a whole) depends on the target workload. Thus, an application oblivious analysis of

processor reliability would produce unrepresentative reliability data.

21



3.2 Impact of Scaling on Failure Mechanisms

3.2.1 Electromigration

Ta liner Void
Dielectric
Interconnect h
Via \
Ta liner
- -
w w
Cross—sectional view Side view

Figure 3.1: EM in copper interconnects

The detrimental impact of increasing temperatures on electromigration due to scaling is already modeled
in RAMP. However, scaling also reduces interconnect dimensions which has a negative impact on electromi-
gration.

For years, copper doped aluminum had been the semiconductor industry’s interconnect metal of choice
because of its ease of integration into the manufacturing process, low resistivity, and cheap availability. In the
the industry to consider using only copper for interconnects. Copper has lower resistivity (and hence lower
interconnect delay) than copper-doped aluminum and is much more resilient to electromigration [27]. How-
ever, there are problems with using copper - in particular, copper diffuses readily into silicon causing deep
level defects. This problem is solved by adding a lining layer using tantalum (Ta) which separates the copper
interconnects from the surrounding devices [38]. Copper interconnects have now moved from development
to manufacturing and high-level server processors already use copper interconnects [39]. Some commodity
processors have also started using all copper interconnects and the rest are expected to start using copper
interconnects in the near future. The impact of scaling on electromigration reliability is different for copper
and aluminum interconnects. This is because of the difference in the electromigration mechanism between
copper and aluminum [27, 40]. Since it is expected that copper will be the dominant interconnect metal in
the future, we only model the impact of scaling on copper interconnects.

Copper interconnects are typically fabricated using a damascene processing method. In these structures,
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the top surface of the copper damascene line is covered with a dielectric film, while the bottom surface
and two sidewalls are sealed with a tantalum (Ta) liner [27]. The tantalum liner prevents electromigration
along the surfaces it covers. However, the top surface of the line cannot be covered with tantalum due to
manufacturing constraints. As a result, electromigration in copper is dominant at the top interface layer
between the interconnect and the dielectric [27]. This is illustrated in Figure 3.1.

If the effective thickness of the interface layer is d, and the interconnect width is w, then the electro-
migration flux is constrained to an area dw. If the height of the interconnect is h, then the interconnect
current flows through an area wh. The relative amount of atomic flux flowing through the interface region
is proportional to the interface area to interconnect area ratio, &2 = 2 [27].

Electromigration voids are found to occur most commonly at the interface between the interconnects
and the metal vias [27]. Electromigration failure is considered to have occurred when the void formed grows
larger than the width of the via, w (which is the same as the interconnect width). Hence, mean time to failure
due to electromigration, MTT Fgyy, is proportional to the width of the via, w, and inversely proportional
to the relative amount of flux passing through the interface region, % [27]. Thus, when a scaling factor of &
is applied, electromigration lifetime reduces by x? due to w and h (both w and h scale by k while § remains
constant).

Additionally, the value of J for a structure (in Equation 2.1) is equal to the product of the activity factor
of the structure, p, and the maximum allowed interconnect current density for that technology generation.

This maximum allowed current density changes with scaling.

3.2.2 Stress Migration

The main impact of scaling on stress migration is the dependence on temperature, which is already modeled
in Equation 2.4. Temperature affects stress migration failure rate in two ways: there is an exponential
dependence on temperature which is detrimental to reliability, and there is the |T — To|™™ term from
Equation 2.4 which has a positive effect on reliability. However, the exponential term usually overshadows
the other term, resulting in a decrease in reliability with temperature. Scaling has no other direct impact
on stress migration.

There are indirect scaling effects on stress migration due to the use of new low-k dielectrics which tend
to be porous and brittle [41]. However, since our experiments assume that our scaled processors all use the
same type of interconnect metal and dielectric material, we do not model these effects.

There are some indirect effects due to scaling due to the materials used in the inter-layer dielectrics

(ILD). Scaling requires the increased use of new low-k dielectrics for the ILD layers. These materials tend
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to be porous and brittle and some are known to have reliability problems [41]. The thermal expansion rates
of these new low-k dielectrics also tend to be significantly different from the interconnect thermal expansion
rate [41], creating stress migration problems. In this dissertation, we do not model these effects caused by

different interconnect and dielectric materials.

3.2.3 Time-Dependent Dielectric Breakdown

Scaling has a profound effect on gate oxide reliability. Effects of scaling on TDDB already modeled in RAMP
in Equation 2.6 are the detrimental effect of increasing temperatures and the beneficial effect of decreasing
supply voltage. Gate oxide reliability depends on other scaling parameters as described below.

First, decreasing gate oxide thickness with scaling decreases reliability, due to increasing gate leakage and
tunneling current, Ij.,x. The MTTF due to gate oxide breakdown is directly proportional to the value of
Tieak- Diear increases by one order of magnitude for every 0.22nm reduction in gate oxide thickness [29]. As
a result, if gate oxide thickness reduces by At,, with scaling, then MTT Frppp reduces by 10A0_-t2ag‘, where
the reduction in gate oxide thickness, At,;, is expressed in nanometers.

Second, for current and future range gate oxide thicknesses, MTT Frppp is inversely proportional to
the total gate oxide surface area [5]. Third, decreasing supply voltage increases reliability [42].

Combining the scaling effect of voltage, gate oxide thickness, area, and temperature, if we scale down
from process 1 to process 2, which have supply voltages, V; and V., gate oxide thicknesses, t,,1 and t,z2,
total gate oxide areas, A; and As, at temperatures, 77 and T3, the ratio of mean time to failures, MTTF}

and MTTF, is given by:

(X+TL1+ZT1)

MTTF toml—toz (a=bT2) 4 *r
Rt G| 2 o NV — - - (3.1)
MTTF, V(a—le) Ao (X+ - +2Ty)

1 R —

where X, Y, Z, a and b are empirically determined constants, described in Section 2.1.3.

3.2.4 Thermal Cycling

Like stress migration, the main impact of scaling on thermal cycling modeled in RAMP is the impact of
temperature. Scaling has no other direct impact on thermal cycling. There are indirect scaling effects on
thermal cycling due to the use of new low-k dielectrics which have inferior adhesive properties [41], increasing
susceptibility to thermal cycling failure. However, since our experiments assume that our scaled processors

all use the same type of interconnect metal and dielectric material, we do not model these effects.
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Table 3.1: Summary of impact of scaling on MTTF.

3.2.5 Negative Bias Temperature Instability (NBTI)

NBTI has a strong positive temperature and field dependence. As a result, the higher temperatures seen
on chip due to scaling exacerbate this problem. As can be seen in Equation 2.9, RAMP already models the
effect of temperature on NBTI.

Thinning of the gate oxide due to scaling also increases NBTI reliability concerns [19] due to an increase
in the electric field across the gate. However, we do not currently have accurate models for the impact of
electric field changes on NBTI MTTF. As a result, we do not factor this effect in our scaling analysis. As

discussed in Section 4.2.2, this is am important area of future work.

3.2.6 Summary of Impact of Different Parameters

Table 3.1 summarizes the impact of different scaling related parameters on the intrinsic failure mechanisms.
It shows that temperature has an exponential detrimental impact on EM, SM, and NBTI (despite the
|T — Tp| in SM), a more than exponential impact on TDDB, and a less than exponential impact on TC.
Electromigration is also detrimentally impacted by smaller values of w and h, and TDDB is adversely affected
by reducing t,,. Finally, a positive effect of scaling is observed in TDDB due to lower supply voltages. Note
that lower voltages also help with temperature, but not enough because of increasing power density. Also,

we do not currently model the effect of voltage and feature size (which both dictate electric field) on NBTIL.

3.3 Scaling Experimental Methodology

In this section, we describe the experimental methodology used in our scaling analysis.
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Technology Parameters
Process technology 180 nm
Vaa 1.3V
Processor frequency 1.1 GHz
Processor core size (not including L2 cache) | 81mm? (9mm x 9 mm)
Leakage power density at 383K 0.04 W/mm?
Base Processor Parameters

Fetch/finish rate 8 per cycle
Retirement rate 1 dispatch-group (=5, max) per cycle
Functional units 2 Int, 2 FP, 2 Load-Store (Agen), 1 Branch, 1 LCR
Integer FU latencies 1/7/35 add/multiply/divide (pipelined)
FP FU latencies 4 default, 12 div. (pipelined)
Reorder Buffer size 150
Register file size 120 integer, 96 FP
Memory queue size 32 entries

Base Memory Hierarchy Parameters
L1 (Data) 32KB
L1 (Instr) 32KB
L2 (Unified) 2MB

Table 3.2: Base 180nm POWERA4-like processor used in scaling analysis

3.3.1 Architecture Modeled and Performance Simulation Methodology

The base processor simulated is a 180nm out-of-order 8-way superscalar processor, conceptually similar to a
single core 180nm POWERA4-like processor [43]. Table 3.2 summarizes the base 180nm processor modeled.
Note that some of the microarchitectural parameters like cache sizes, assumed in our base model, are different
from real values in the POWERA4 processor. Also, although we model the performance impact of the L2
cache, we do not model its reliability. This is because the temperature of the L2 cache is much lower than
the processor core [43], resulting in very low L2 intrinsic failure rates. Hence, we concentrate on intrinsic
failures in the core.

The processor is modeled using a trace-driven research simulator called Turandot [44], developed at
IBM T.J. Watson Research Center. The modeled microarchitecture is conceptually similar to a single
core 180nm POWERA4-like processor [43]. As described in [44], Turandot was calibrated against a pre-
RTL, detailed, latch-accurate processor model. Despite the trace-driven nature of Turandot, the extensive

validation methodology provides high confidence in the results.

3.3.2 Power Simulation Methodology

To estimate power dissipation, we use the PowerTimer toolset developed at IBM T.J. Watson Research
Center [45]. This toolset, in its default form, is built around the Turandot cycle-accurate performance

simulator referred to in the previous section. The power models that are built into the Turandot-based
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PowerTimer are based on circuit accurate power estimations from the 180nm POWERA4 processor [43]. The
power analysis has been performed at the macro level using CPAM, a circuit-level power analysis tool [46].
Multiple macros are combined to form microarchitectural structures. PowerTimer combines the circuit
accurate power estimates from over 400 macros into 60 primary microarchitectural structures. PowerTimer
uses microarchitectural activity information obtained from the performance simulator, Turandot, to provide
per-cycle power estimates. For our simulations, we use realistic clock gating assumptions in PowerTimer, in

tune with actual data available from current generation (post-POWERA4) microprocessors.

Leakage Power

Leakage power is calculated based on modeled structure areas. For the base 180nm process modeled, a
leakage power density of 0.04 W/mm? at 383K is used. This value is based on simulation-based estimates
for processors like the POWERA4 | and assumes standard leakage power control techniques like the use of
high-threshold devices in non-critical logic paths and arrays.

We also model the impact of temperature on leakage power using the technique in [47]. At a temperature
T, the leakage power, Peqrage(T), 1S given by:

-Pleakage(T) = -Pleakage(383K) X eﬂ(T_BSB) (32)

where (3 is a curve fitting constant. The value of 3 we use (0.017) is taken from [47].

3.3.3 Temperature Simulation Methodology

We use the HotSpot tool [11] to derive temperature estimates from power. The chip floorplan fed to HotSpot
resembles a single core of a 180nm POWERA4-like processor, of size 81mm? (9mm x 9 mm). The microarchi-
tectural structures modeled using Turandot and PowerTimer are combined into 7 structures. Based on each
structure’s area, HotSpot calculates thermal resistance and capacitance values. These thermal resistances
and capacitances are combined into an RC network. HotSpot dynamically solves this RC network to produce

temperature measurements at the granularity of 1y second (using power information from PowerTimer).

Heat Sink Temperatures

As explained in [11], the RC time constant of the processor heat sink is significantly larger than the RC
time constant of individual structures. Since the RC time constant of the heat sink is so large, there is not
enough time for there to be significant changes in heat sink temperature during simulation runs. Hence, it

is crucial that HotSpot be initialized with accurate heat sink temperatures.
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As a result, all simulations are run twice - the first run is used to obtain average power consumption
values for every structure on chip. These average power values are then used to calculate the initialization
temperature of the heat sink. Once the heat sink is initialized, the second run produces accurate temperature
results.

For the heat sink thermal resistance at 180nm, we use 0.8 W/K [11]. For the sake of comparing technol-
ogy generations, we maintain a constant heat sink temperature for each application with scaling (different
applications have different heat sink temperatures, which remain constant with scaling). In order to simulate
this, we vary the thermal resistance of the heat sink with technology generation in HotSpot. It should be
noted that this could result in potentially conservative failure rate estimates for advanced technologies. In
an actual scaling scenario, maintaining constant heat sink temperature might not be feasible from a heat
sink cost perspective, resulting in higher heat sink temperatures (and resultant higher peak temperatures)

for advanced technology generations.

3.3.4 Reliability Calculation

For our reliability calculations, we use the more accurate RAMP 2.0 model. Based on temperature estimates
obtained from HotSpot and power estimates obtained from PowerTimer, RAMP 2.0 calculates MTTF values,
for every structure on chip due to each failure mechanism. With these structure and failure mechanism
MTTFs, we use RAMP 2.0 to estimate total processor MTTF for different applications at different technology
generations. The average MTTF across all applications for the 180nm base processor is normalized to 1.0.
All other MTTF's are expressed with respect to the average 180nm base processor MTTF. As discussed in
Section 2.5, since we only compare MTTF ratios in our scaling analysis, we do not require the use of Tyyq;
and other qualification proxies.

In order to quantify the difference between using lognormal and exponential distributions for failure
mechanisms, we repeat some of our scaling experiments with RAMP 2.0. These results are described in

Section 3.4.4.

3.3.5 'Workload Description

Our experimental results are based on an evaluation of SPEC2K benchmarks. We report experimental
results based on PowerPC traces of 16 SPEC2K benchmarks (8 SpecInt + 8 SpecFP). The SPEC2K trace
repository used in this study was generated using the Aria trace facility in the MET toolkit [48], and was
generated using the full reference input set. Sampling was used to limit the trace length to 100 million

instructions per program. The sampled traces have been validated with the original full traces for accuracy

28



Type Application | IPC | 180nm Power (W) | Max Temp (K)

Spec2K ammp 1.06 26.08 334.5
Float applu 1.17 26.94 336.4
sixtrack 1.38 27.32 336.0
mgrid 1.71 27.78 338.1
mesa 1.75 29.21 339.3
facerec 1.79 29.60 339.4
wupwise 1.66 30.50 341.2
apsi 1.64 30.65 341.0

SpecFP average 1.52 28.51
Spec2K vpr 1.38 26.93 335.5
Int bzip2 2.31 27.71 336.6
twolf 1.26 28.44 337.5
gzip 1.85 28.69 337.1
perlbmk 2.25 30.59 340.7
gap 1.76 31.24 341.2
gce 1.24 31.73 340.9
crafty 2.25 31.95 342.4

Speclnt average 1.79 29.66

Table 3.3: Average IPC, power consumption, and the maximum temperature of the hottest structure on the
180nm base processor for our scaling workload, ordered by increasing power.

and correct representation [49].

Table 3.3 summarizes the benchmarks studied, including the IPC, average power consumption, and
maximum temperature reached on the 180nm base processor. The power values include leakage power
consumption. As can be seen, for our processor, SpecInt has a higher average IPC and marginally higher

power consumption than SpecFP.

3.3.6 Scaling Methodology

We study the failure rate for our POWERA4-like processor for five technology generations, ranging from
180nm to 65nm. The scaling parameters used are listed in Table 3.4. All scaling is done with respect to
180nm, as the performance and power simulator are calibrated for this technology point. A scaling factor
of 0.7 is assumed from 180nm to 90nm. For 90nm to 65nm, a scaling factor of 0.8 is used, based on the
assumption that a scaling factor of 0.7 will be difficult to maintain in technology generations after 90nm.

Next, we discuss each column in Table 3.4.

Voltage and Frequency Scaling

With an ideal scaling factor of 0.7, [9] states the best-case device frequency scaling per generation would be

about 43%. However, in the most recent era of technology remaps, ideal frequency scaling is constrained,
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Technology Vi Frequency Relative Relative tox
Generation (nm) v GHz Capacitance Area A
180 1.3 1.1 1.0 1.0 25
130 1.1 1.35 0.7 0.5 17
90 1.0 1.65 0.49 0.25 12
65 (0.9V) 0.9 2.0 0.4 0.16 9
65 (1.0V) 1.0 2.0 04 0.16 9
Technology Current Leakage Power Total Power Relative Total
Generation (nm) | Density 24 | Density -Y; (Dyn+Leak) (W) | Power Density
180 9.0 0.040 29.1 1.0
130 6.0 0.10 19.0 1.31
90 4.0 0.25 14.7 2.02
65 (0.9V) 4.0 0.54 14.4 3.09
65 (1.0V) 4.0 0.60 16.9 3.63

Table 3.4: Scaling parameters used for different technology generations in our scaling analysis

primarily due to tighter design rules caused by increased wiring pressures. Also, in doing progressive scaling of
the same microarchitecture over multiple technology generations, it is hard to achieve ideal frequency boosts
without significant investment in re-tuning all the circuit delay paths in the machine. Hence, we assume
conservative 22% frequency scaling per generation. (If we assume 43% scaling, power and temperature
figures will be higher resulting in even higher failure rates.)

With ideal scaling, the supply voltage should scale by a factor of 0.7 every generation. However, since
threshold voltage scaling is limited to a few mV per technology generation, as the supply voltage becomes
smaller, the reduction obtained by scaling slows down, such that the device overdrive (supply voltage minus
threshold voltage) does not drop by more than a factor of 0.7. Additionally, due to the increase in leakage
power with threshold voltage scaling, further scaling limits are imposed on threshold voltage and supply
voltage. The supply voltage values in Table 3.4 are carefully chosen to match up with the scaled frequencies,
while adhering to threshold voltage scaling that would reflect the leakage power density assumptions shown.

Also, we simulate two 65nm processors. One processor assumes that the voltage scales down from 90nm
to 65nm to a value of 0.9 V. However, as the supply voltage approaches the threshold voltage, scaling voltage
appropriately is becoming increasingly difficult. Basic noise immunity issues (in logic) and cell state stability
issues (in SRAM macros) make it difficult to operate reliably at voltages below 1.0 V. As a result, we also
simulate a 65nm processor which runs at 1.0 V, which we believe is more realistic (no voltage scaling takes
place between 90nm and 65nm). The two different technology points are represented as 65nm (0.9V) and

65nm (1.0V) in our results.
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Capacitance Scaling

The capacitance value for each technology generation is proportional to the scaling factor used for that

generation. The 180nm processor is assumed to have a relative capacitance value of 1.0.

Area Scaling

The area of the processor for each technology generation is proportional to the square of the scaling factor

used for that generation. The 180nm processor is assumed to have a relative area of 1.0.

t,z Scaling

The values of t,, used were obtained from the high performance logic parameters in the ITRS roadmap [1].

As can be seen, changes in t,, are proportional to the scaling factor.

Interconnect Current Density

In order to compensate for the decrease in electromigration reliability with scaling, designers have been
reducing interconnect current density every technology generation. We assume a 33% reduction in intercon-
nect current density every technology generation [9]. However, this implies less and less current for devices,
and limits are being reached. It is expected that interconnect current density can not be reduced beyond

the 90nm technology point. Hence the values for 90nm and 65nm are the same.

Power Scaling

The leakage power densities used for each technology point assume aggressive leakage control techniques are
used [50]. The total power consumption (dynamic + leakage power), averaged across all applications, is also
given (based on simulations). Finally, the relative total power density (which is the ratio of the total power
consumption and area), averaged across all applications, is also given. As can be seen from Table 3.4, up to
90nm, scaling reduces the total power consumption of the core. Beyond 90nm, the increase in leakage power
negates the benefits from reduced dynamic power, resulting in a net increase in total power. Also, it can
be seen that the average power density goes up steadily with scaling (because voltage is not scaling down

ideally and leakage power is going up).
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Figure 3.2: Maximum temperature at the hottest structure in Kelvin (shown on the vertical-axis) reached
for each application for the different technology points (horizontal-axis) in our scaling analysis. The heat
sink temperature averaged over all the applications is also shown.

3.4 Scaling Results

3.4.1 Temperature Analysis

We start by presenting results for temperature since they affect reliability so significantly. Figure 3.2 shows
the maximum temperature reached by any structure on chip for each application for each technology gen-
eration. Also shown is the heat sink temperature, averaged over all applications (recall that we adjust the
heat sink thermal resistance such that this temperature remains constant with scaling). As can be seen,
while the heat sink temperature remains nearly constant with scaling, the temperature of the hottest struc-
ture increases. On average, from 180nm to 65nm (1.0V), the temperature of the hottest structure on chip
increased by 15 degrees Kelvin. Application temperatures increase because the power density on chip (as
seen in Table 3.4) is increasing with scaling.

The results also show that there is a significant range in temperatures across applications. There is

high correlation between application power and temperature and some correlation with IPC. The hottest
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applications (wupwise and apsi for SpecFP and crafty for SpecInt) in Figure 3.2 also have the highest power
consumptions (and high IPCs) in Table 3.3. The same holds for the coolest applications in our suite (ammp

for SpecFP and vpr for Speclnt).

3.4.2 Total MTTF Scaling
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Figure 3.3: Normalized processor MTTF for each application for each technology point in our scaling analysis.
The average MTTF across all applications is normalized to 1.0 at 180nm.

Figures 3.3 and 3.4 present the data for this section. Figures 3.3 (a) and (b) show the scaling behavior
of the normalized processor MTTF for each application, for SpecFP and Speclnt respectively. The average
MTTF across all applications at 180nm is normalized to 1.0. Figures 3.4 (a) and (b) show the relative prob-
ability of processor failure due to each each failure mechanism at different technology generations averaged
across SpecFP and SpecInt respectively. At 180nm, the probability of failure due to each failure mechanism

is equal (20%). These results will be discussed in more detail in Section 3.4.3.
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Figure 3.4: Relative probability of processor failure due to each failure mechanism at different technology
generations in our scaling analysis. At 180nm, the probability of failure due to each mechanism is equal

(20%).

Decrease in MTTF

As can be seen, there is a marked fall in the normalized MTTF with technology scaling. On average, the
normalized MTTF of the SpecFP applications dropped by 63% from 180nm to 65nm (1.0V). The decrease
seen in SpecInt was larger at 71%. Also, at each scaled technology point, the average normalized MTTF of
SpecInt applications was lower than SpecFP applications. This is because of the higher power consumptions
seen in the integer applications. There is a significant difference in MTTF from 65nm (0.9V) to 65nm (1.0V).
As discussed in Section 3.3.6, many architectural structures can potentially not operate reliably at voltages
lower than 1.0V. However, as can be seen, maintaining a constant voltage from 90nm to 65nm leads to a
large drop in MTTFs. On the other hand, if the voltage does scale down from 90nm to 65nm, the decrease in
normalized MTTF seen from 180nm to 65nm (0.9V) is brought down to (a still significant) 45% for SpecFP

and 51% for Speclnt.
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Workload Dependence of MTTF

In Figure 3.3, when considering the workload dependence on the normalized MTTF, there are two points of
note.

First, Figure 3.3 shows that there is a large range in MTTF across applications. At 180nm, the range
in MTTF across all applications is 74% of the average MTTF (which is normalized to 1.0 at 180nm). At
65nm (0.9 V), this range increases to 98% of the average MTTF. The largest range is seen at 65nm (1.0V)
where the range is 128% of the average.

Second, we see that MTTF for applications correlates well with application temperature. The hottest
applications (from Figure 3.2) have the lowest MTTFs. This is because, at any given technology point, the
only difference in the MTTF of applications arises from temperature differences and from differences in the
value of J (through the activity factor, p). However, the slope of the MTTF curves is steeper than the slope
of the temperature curve. This is because of the more than linear dependence of MTTF on temperature (as
can be seen in the temperature column in Table 3.1).

Our results indicate that future reliability qualification mechanisms should be targeted at specific appli-
cations or classes of applications. If an application oriented reliability qualification methodology is not used,
the processor would be severely over-designed for most applications. This issue is also discussed in Chap-
ter 5 where an application-aware dynamic reliability management scheme is proposed. Our quantification
unequivocally shows the increasing importance of this and other application-aware reliability approaches, as

processors are designed with increasingly smaller feature sizes.

3.4.3 Individual Failure Mechanisms

Next we examine scaling behavior of individual failure mechanisms, illustrated in Figures 3.5- 3.9. In each
figure, the normalized MTTF due to the specific failure mechanism alone is shown. The average MTTF

across all applications at 180nm is normalized to 1.0 for each failure mechanism.

EM Scaling

Scaling has a significant impact on electromigration MTTF — going from 180nm to 65nm (1.0V), the normal-
ized MTTF decreases by 73% on average for SpecFP and 75% on average for SpecInt. Going from 180nm
to 65nm (0.9V), the decrease is 49% for SpecFP and 51% for SpecInt. As can be seen from Table 3.1, the
decrease is due to temperature as well as a reduction in interconnect dimensions (w and h). The temperature
dependence is underscored by the difference in MTTF between 65nm (0.9V) and 65nm (1.0V) (where the

only distinction is from temperature).
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Figure 3.5: MTTF of EM alone for SpecFP and SpecInt at different technology generations. The average
MTTF across all applications is normalized to 1.0 for each failure mechanism at 180nm.

SM Scaling

For SM, there is a 41% decrease in normalized MTTF values going from 180nm to 65nm (1.0V) and a
29% increase going from 180nm to 65nm (0.9V) for SpecFP on average. The corresponding values for
SpecInt are 44% and 30%. Scaling impacts stress migration through an increase in temperature. The
exponential dependence of stress migration failure rate on temperature (as shown in Table 3.1) can be seen
in Figure 3.6. Like electromigration, the large drop in MTTF between 65nm(0.9V) and 65nm (1.0V) is
entirely due to the exponential impact of temperature. However, this decrease is smaller than the decrease
seen in electromigration due to the |T'— Ty|~™ term in the stress migration equation (Equation 2.4). This

term improves reliability with scaling, but its impact is overshadowed by the exponential relationship.

TDDB Scaling

As can be seen in Table 3.1, TDDB MTTF value depends heavily on the values of V' and t,, used. There

is also a more than exponential dependence on temperature. The negative effect of ¢,, combined with
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Figure 3.6: MTTF of SM alone for SpecFP and Speclnt at different technology generations. The average
MTTF across all applications is normalized to 1.0 for each failure mechanism at 180nm.

temperature results in an overall decrease in TDDB reliability with scaling, despite the positive effect of
voltage scaling. This is compounded by the non-ideal scaling of voltage. As a result, these factors contribute
to the huge decrease in normalized MTTF from 180nm to 65nm (1.0V) — 82% on average for SpecFP and
84% for SpecInt. The decrease from 180nm to 65nm (0.9V) is less severe, but still significant (50% for
SpecFP and 52% for SpecInt).

Unlike the other failure mechanisms, the change in TDDB MTTF values does not completely follow
the change in temperature. This is because of the voltage dependence of TDDB. Hence, although the
temperature increases from 180nm to 130nm, the drop in voltage between these two technology points
increases the MTTF value. The beneficial impact of voltage is highlighted by the large difference between
the MTTF at 65nm (0.9V) and 65nm (1.0V) (the difference is magnified further due to the temperature

difference between the two points).
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Figure 3.7: MTTF of TDDB alone for SpecFP and SpecInt at different technology generations. The average
MTTF across all applications is normalized to 1.0 for each failure mechanism at 180nm.

TC Scaling

There is a 32% decrease in TC normalized MTTF going from 180nm to 65nm (1.0V) and a 23% decrease
going from 180nm to 65nm (0.9V) for SpecFP on average. The corresponding values for SpecInt are 35%
and 24%. Like stress migration, scaling impacts the MTTF due to thermal cycling through an increase
in temperature. However, unlike stress migration which has an exponential dependence on temperature,
thermal cycling varies as the power of g, which is the Coffin-Manson exponent (as seen in Table 3.1). In
our experiments, we used a value of 2.35 for q. Hence, although there is an decrease in MTTF value due to

temperature with scaling, the decrease is less steep than stress migration.

NBTI Scaling

There is a 36% decrease in NBTI normalized MTTF going from 180nm to 65nm (1.0V) and a 26% decrease
going from 180nm to 65nm (0.9V) for SpecFP on average. The corresponding values for SpecInt are 40%

and 27%. Like stress migration and thermal cycling, scaling impacts the NBTI MTTF through an increase
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Figure 3.8: MTTF of TC alone for SpecFP and SpecInt at different technology generations. The average
MTTF across all applications is normalized to 1.0 for each failure mechanism at 180nm.

in temperature. This increase in temperature exponentially decreases NBTI MTTF. However, there are two
other temperature dependent terms in the NBTI MTTF equation which improve MTTF with an increase
in temperature. These terms impact MTTF as the natural logarithm of an exponential which is much less
than exponential in effect. As a result, there is an exponential decrease in NBTI MTTF with scaling.

As discussed in Section 3.2.5, one limitation of our NBTI MTTF results is that we do not currently
model the impact of feature size scaling and supply voltage scaling on NBTI MTTF. In particular, reduction
in gate-oxide thickness will result in higher gate electric fields which will incur a further substantial decrease
in NBTI MTTF.

Our individual failure mechanism scaling results mirror the results seen in Figure 3.4 which shows the
relative probability of processor failure due to each failure mechanism, averaged across all Speclnt and
SpecFP applications. At 180nm, the relative probabilities due to each mechanism are equal (20%). As can
be seen, with scaling, the contribution of EM and TDDB grows substantially, while the relative contribution

of SM, TC, and NBTI decreases. As we can see in Figures 3.5- 3.9, this is due to the compounded effect of
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Figure 3.9: MTTF of NBTI alone for SpecFP and SpecInt different technology generations. The average
MTTF across all applications is normalized to 1.0 for each failure mechanism at 180nm. These results do
not model the impact of voltage or feature size scaling on NBTI MTTF.

temperature and other scaling related parameters on the MTTF of TDDB and EM.

3.4.4 Comparison of RAMP 2.0 and RAMP 1.0 Scaling Results

As explained in Section 2.4, the SOFR model used in RAMP 1.0 is commonly used in industry to combine
failure rates. However, this requires all failure mechanisms to be modeled with exponential failure distri-
butions which leads to some inaccuracies. In order to quantify this inaccuracy, we repeated some of our
scaling experiments using RAMP 1.0, allowing us to compare those results with our results using RAMP
2.0. In both cases, we modeled series-failure systems. At 180nm, the average MTTF across all applications
is normalized to 1.0 for both RAMP 2.0 and RAMP 1.0.

Figure 3.10 shows the average MTTF across all SpecInt and SpecFP applications, using RAMP 2.0,
which uses lognormal failure distributions (labeled as LOG), and RAMP 1.0, which uses exponential failure
distributions (labeled as EXP), at different technology generations. The RAMP 2.0 results (lognormal

results) are shown with dotted lines.
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Figure 3.10: Average MTTF across all SpecInt and SpecFP applications, using RAMP 2.0, which uses
lognormal failure distributions (labeled as LOG), and RAMP 1.0, which uses exponential failure distributions
(labeled as EXP), at different technology generations.

As can be seen, the lognormal and exponential results diverge past 180nm, with the lognormal results
being more conservative than the exponential results. More importantly, the magnitude of the difference
between lognormal and exponential results increases as we scale to smaller technology generations. Specif-
ically, at 65nm (0.9V), the average MTTF as seen with RAMP 1.0 is 16% higher than the average MTTF
with RAMP 2.0 for Speclnt, and 4% higher for SpecFP. At 65nm (1.0V), RAMP 1.0 generates an MTTF
35% higher than RAMP 2.0 for SpecInt applications, and 19% higher for SpecFP applications.

These results clearly highlight the importance of using accurate failure distributions. Although RAMP
1.0 is easier to use due to the simplicity of the SOFR model, its use can lead to inaccurate results. This
is particularly important because RAMP 1.0 provides less conservative results in our scaling analysis. Less

conservative results can lead to unintentional under-designing of processors from a reliability perspective.
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3.5 Summary

Advances in CMOS semiconductor technology, driven by aggressive device scaling, have been steadily improv-
ing processor performance. However, CMOS scaling is resulting in escalated power densities and processor
temperatures, and accelerating the onset of problems due to long-term processor hardware failures or lifetime
reliability.

In this chapter, we take a first step in understanding the implications of scaling in the deep-submicron
era at the architect’s level. Our results point to potentially large and sharp drops in long-term reliability,
especially beyond 90 nm. Of the failure modes that were modeled, time-dependent dielectric breakdown
(TDDB) and electromigration appear to present the steepest challenge. However, the impact of voltage
and feature size scaling on NBTI was not modeled. Our results also illustrate how scaling is increasing the
difference between failure rates assuming worst-case conditions vs. typical operating conditions.

Our results present two broad implications. First, it will become increasingly difficult to leverage a single
microarchitectural design for multiple remaps across a few technology generations. Second, the need for

workload specific, microarchitectural lifetime reliability awareness is illustrated.
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Chapter 4

Future Improvements and Validation
of RAMP

Before we move to our microarchitectural reliability enhancement techniques, it is important to understand
the assumptions and limitations of RAMP. As with any simulator or model, a key requirement for RAMP’s
usability is validation of the assumptions in the model. It should be noted that although some aspects of
RAMP have not been validated, most of our assumptions are grounded in ”current practice”, and were
developed after extensive consultations with research and product groups that concentrate on processor reli-
ability qualification at IBM. Further, the individual failure mechanism models, which are the key underlying
components of RAMP, represent the state-of-the-art. Although a thorough validation of RAMP is beyond
the scope of this thesis, we discuss some of the required steps. In addition, some of the components of RAMP
need to be improved upon, as and when better models are available. In this chapter, we discuss some of the

validation steps and improvements required.

4.1 Validation of RAMP

4.1.1 Calibration with Real Failure Data

As discussed in Section 2.5, the proportionality constants in Equations 2.1, 2.4, 2.6, 2.8, and 2.9 dictate the
absolute MTTF value produced by RAMP. Since there are many steps involved in the reliability qualification
process, determining the numerical values of these proportionality constants is difficult. Instead, we use Tqyai
as a proxy for reliability qualification cost. As mentioned earlier, Tyyq: is required only in situations where
we need to compare absolute values (as in Section 5.5). We do not need to use qualification proxies when
comparing relative values (as in Sections 3.4 and 6.3).

A true validation of RAMP would require corroboration with real field failure data. However, such
data is hard to come by. In addition, even in situations where such data is available, reliable information
about cause of and exact location of failure is rare. If such data is available for a large batch of processors,
three important parameters can potentially be determined: (1) Ratio of failures among different failure

mechanisms; (2) Ratio of failures among different structures; (3) Absolute value of MTTF of the batch of
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processors.
With these parameters, we can determine the value of the proportionality constants in the equations,

allowing us to calculate absolute MTTF values for any architecture and application.

4.1.2 Finer Than Structure Granularity Modeling

As mentioned, RAMP currently models reliability at the granularity of a microarchitectural structure. How-
ever, this abstraction averages over many aspects of reliability. For example, different interconnects in a
structure will have different electromigration properties, and will have different lifetimes — this is not captured
by RAMP currently. Modeling reliability more accurately by working at finer-than-structure granularities
will require more detailed thermal and energy models and layout information. In addition, the simulation
time required will increase considerably. With accurate reliability data, an optimal simulation granularity

that balances accuracy and simulation time can be potentially determined.

4.2 Future Improvements

4.2.1 Time Dependence

RAMP 1.0 does not adequately incorporate time dependence of failure rates of the different failure mecha-
nisms. RAMP 2.0 improves upon RAMP 1.0 by modeling failure mechanisms with lognormal distributions.
Although lognormal distributions have been shown to be a good fit for wear-out mechanisms [31], other more
complex failure distributions might provide an even better fit. Further work by device failure researchers is
required to determine the appropriate failure distribution for each failure mechanism. Using Monte-Carlo or
other similar methods, the failure distribution for each failure mechanism can be combined to obtain total
processor MTTF. Additionally, we currently use time-averaging to account for the time-varying properties

of applications in both RAMP 1.0 and 2.0. This assumption needs to be improved upon or validated.

4.2.2 Electric Field Model for NBTI

As explained in Section 3.2.5, thinning of the gate oxide due to scaling increases NBTI failures due to an
increase in the electric field across the gate. We do not currently have accurate models for the impact of
electric field changes on NBTI MTTF. Given that this is an important emerging failure mechanism, an

electric field model for NBTI is important.
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4.2.3 High Frequency Thermal Cycles

As explained in Section 2.1.4, the package goes through thermal cycling (TC) in two ways — large temperature
variations at low frequencies and smaller variations at high frequencies. Although RAMP models large cycles,
it does not model small cycles due to the lack of validated models for this mechanism. However, recent on-
chip power management modes increase the number and impact of such high frequency thermal cycles, and
this has increased further interest in this failure mode. This is a particularly intriguing failure mode in our
context since it is worsened by conventional power management techniques, and our adaptation algorithms
will have to carefully incorporate the adverse impact on reliability of common power management solutions.

When available, RAMP should model the effect of high frequency thermal cycles.

4.2.4 Other Wear-Out Based Failure Mechanisms

Based on discussions with industry researchers, the failures currently modeled in RAMP were chosen as the
most critical to processor lifetime reliability. However, the modular design of RAMP allows us to seamlessly
add further failure mechanisms. Other critical failure mechanisms like Hot Carrier Injection (HCI) [18]

should be studied and modeled if necessary.

4.2.5 Impact of Sensors

Any runtime temperature measurement scheme requires the use of sensors. There is a tradeoff between the
measurement accuracy of sensors and their power, temperature, and area requirements. These requirements
also restrict the number of sensors that can be used on any given chip. RAMP should account for the effect

of sensor error in temperature and reliability simulations.
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Chapter 5

Dynamic Reliability Management

5.1 Motivation for Microarchitectural Reliability Solutions

The scaling results discussed in Chapter 3 clearly highlight the emerging lifetime reliability problem. In future
reliability constrained systems, microarchitectural reliability solutions will be beneficial, if not necessary.
This is true for all market segments ranging from server class processors where lifetime reliability is an
implicit requirement, to commodity processors where reliability impacts the number of processors shipped
(yield) and resultant profit.

Extensive research has gone into techniques that can improve energy and thermal efficiency by exploiting
microarchitectural features and adaptation capabilities (for e.g., [51, 10, 11, 52, 53, 54, 55, 56]). A similar ap-
proach can be used for lifetime reliability — the microarchitecture’s unique knowledge of application run-time
behavior can be leveraged to increase processor reliability. Such an approach to reliability is fundamentally
different from existing methodologies where processor reliability is qualified during device design, circuit
layout, manufacture, and chip test. Current reliability qualification mechanisms are based on worst-case
temperature and utilization estimates and are oblivious to application behavior. However, different appli-
cations have different effects on the processor’s lifetime due to variations in IPC, resource utilization, and
temperature. In this chapter, we propose Dynamic Reliability Management (DRM), a technique that tracks
and responds to application behavior to maintain the processor’s lifetime reliability target. DRM can be

used in two scenarios:

e Under-designed processors: An adaptive approach can be used to safely under-design processors
from a reliability approach, thereby saving cost. In an approach similar to dynamic thermal manage-
ment (DTM) [11], the processor reliability qualification can be based on expected processor utilization
and temperature, rather than worst case values. This would result in significant design cost reductions
and would provide higher processor yield. In situations where applications exceed the reliability design
limit, the processor can adapt by throttling performance to maintain the system reliability target.

Such an approach would be beneficial to commodity processors where increasing yield and reducing
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cooling costs would have significant impact on profits, even if they incur some performance loss. This
allows DRM to act as an enabling technology for reliability under-designed systems where the cost of

traditional reliability qualification could be too prohibitive to stay on the required performance curve.

e Over-designed processors: As mentioned, current reliability qualification is based on worst case
temperature and utilization; however, most applications will run at lower temperature and utilization
resulting in higher reliability and longer processor lifetimes than required. If the processor cooling
solution can handle it, this excess reliability can be utilized by the processor to increase application
performance. For example, a judicious increase of voltage/frequency and/or microarchitectural re-
sources could increase application performance while still maintaining system target reliability. Such
an approach would be particularly beneficial in high-end server class processors. These processors tend
to have expensive cooling and packaging and are over-designed from a reliability perspective, providing

reliability margins that can potentially be used to increase performance.

In Chapter 6, we examine two additional reliability enhancement techniques, structural duplication and
graceful performance degradation. These techniques are orthogonal in effect to DRM and can further improve

processor reliability.

5.2 Dynamic Reliability Management (DRM)

Figure 5.1 motivates Dynamic Reliability Management (DRM). Three processors 1, 2, and 3, are depicted.
They have reliability design points, Tquatrs Tquals> @0d Tguaiss such that Tguar, > Thuats > Tqualse As
discussed in Section 2.5, this implies that processor 1 is more expensive to qualify for reliability than
processor 2, and processor 3 is the cheapest to qualify. Consider two applications, A and B (depicted on the
y-axis). These two applications will have different MTTFs in the three processors, because the Tgyq used
to calculate the application’s MTTF on each processor is different.

In processor 1, all applications meet the target MTTF, and in fact exceed it (i.e., their MTTF are higher
than they are required to be). In processor 2, application A does not meet the target MTTF , but application
B does. In processor 3, both applications do not meet the target MTTF. Hence, the expensive processor,
1, has been over-designed from a reliability perspective, while the cheaper processors, 2 and 3, have been
under-designed.

Considering 2 and 3 first, although they are cheaper to design than 1, they can fail prematurely if
no architectural intervention occurs, and so, do not represent acceptable design points by current reliability

qualification methodologies. However, with DRM, we can design processors 2 and 3 to meet reliability targets
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Figure 5.1: Dynamic Reliability Management (DRM). For different values of Tjq1, FIT value of the processor
running applications A and B is shown on the y-axis. DRM adapts the performance of the applications to
meet the target FIT value.

by using processor adaptation to reduce processor temperature, utilization, voltage, and/or frequency, at
the cost of throttling performance, but with higher reliability. Now, considering application B in processor 2
and both applications in processor 1, current systems will not exploit reliability over-design space. However,
if the cooling solution can support it, DRM can be used to exploit the reliability margin and extract
excess performance (e.g., by overclocking or increasing microarchitectural resources). Thus, DRM can be
used both to decrease reliability qualification cost and to increase processor performance, while assuring
reliability targets are met.

Like dynamic energy management (DEM) and dynamic thermal management (DTM), DRM requires
adaptation response mechanisms and control algorithms to invoke these responses. We can leverage the
extensive body of work on DEM and DTM (for e.g., [51, 10, 11, 52, 53, 54, 55, 56, 57]) for DRM as well.
However, it is important to note that designing for energy, temperature, and reliability are distinct problems.
Solving one does not automatically solve the other. Like energy, but unlike temperature, reliability is a long-
term phenomenon and can be budgeted over time. Similarly, like temperature, but unlike energy, reliability

is directly affected by power density (a spatially local parameter).
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5.3 DRM Algorithm

The goal of our algorithm is to determine the highest performing architectural configuration (an architectural
configuration consists of a given architecture running at a given frequency) which also maintains the target
reliability (MTTF). Our algorithm utilizes two advantageous properties of reliability control not afforded by
energy or thermal control: (1) Since typical processor MTTF's are in the order of tens of years, a key feature
of reliability control is the extremely large time-frames afforded to the algorithm to determine the correct
operating point. This is not the case for energy or thermal control where operating time frames are much
smaller. (2) MTTF is an average function over the processor’s entire lifetime. As a result, instantaneous
MTTF values can violate the the target MTTF for periods of time as long as this is compensated later in the
processor’s life. Hence, in the process of determining the correct operating point, instantaneous MTTFs can
violate the MTTF target. This is not the case for thermal control algorithms where exceeding the thermal
limit can cause processor failure.

Our algorithm proceeds in two phases — a profiling phase and an operating phase. For each application,
during the profiling phase, the algorithm determines the maximum performance that each hardware configu-
ration can run at while staying within the MTTF target. The configurations are then ordered in decreasing
order of performance. In the operating phase, the configuration with the highest performance that satisfies
the MTTF target is used for the rest of the application’s run.

The profiling phase is invoked at the start of the application. It measures the performance (IPC X
frequency) and MTTF of the application on each architectural configuration. To accurately determine
the MTTF of an architectural configuration, each structure on chip has to achieve its correct steady state
temperature. As described in [58], due to the large time constant of the heat-sink, this implies that the
application has to run on each architectural configuration in the order of minutes. As a result, profiling
all architectural configurations for each application can take hours. However, as discussed, due to the time
frames involved, this profiling time will not have a noticeable effect on final processor reliability. At the
end of the profiling phase, the architectural configurations are ordered in decreasing order of performance
and the configuration with the highest performance that also satisfies the MTTF requirement is chosen.
The operating phase of the algorithm which consists of the rest of the application’s run uses the selected
configuration.

Our DRM algorithm can be applied to single applications or workloads consisting of multiple applica-
tions. The key requirement is that each architectural configuration in the profiling phase should profile a
representative and repetitive period of work. Depending on the usage of the profiled processor, this period

can vary. For example, commercial servers might have varying usage depending on the day of the week. In
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such a scenario, each architectural configuration should ideally be profiled over an entire week. As explained

earlier, such long profiling periods are possible due to the large time frames afforded in reliability control.

5.3.1 DRM Adaptations

We study DRM by profiling a wide range of microarchitectural configurations, and voltage and frequency
settings, and selecting configurations that would give maximum performance, for different values of Tgyq;.

Specifically, the adaptations we explore are:

e Microarchitectural adaptation (Arch). For every application, for a range of Tyua values, we
profile a range of microarchitectural configurations. At the end of the profiling phase, we select the
architectural configuration that gives the best performance while still within the target MTTF value.

The voltage and frequency is the same for all Arch configurations.

¢ Dynamic voltage and frequency scaling (DVS). For every application, for a range of Tg,q; values,
we profile a range of voltages and frequencies, and select the one which gives the best performance
while still within the target MTTF value. We use the most aggressive microarchitectural configuration

supported.

e Microarchitectural adaptation and DVS (ArchDVS). In this case, we explore combinations of

microarchitectural configurations and DVS settings, for each application, for different Tg,,; values.

5.4 DRM Experimental Methodology

5.4.1 Architectures Studied

The base non-adaptive processor studied is summarized in Table 5.1 . The base processor is similar to the
MIPS R10000.We assume a centralized instruction window that integrates the issue queue and reorder buffer
(ROB), but has a separate physical register file. Given that reliability concerns will be amplified in future
technologies (as seen in Section 3.4, we model a 65nm processor, with a supply voltage, Vy4, of 1.0 V and a
base frequency of 4 GHz. The core size, and size of different structures, was estimated from current processor
sizes, scaled appropriately, and does not include the L2 cache. Although we model the performance impact
of the L2 cache, we do not model its reliability. This is because the temperature of the L2 cache will be
much lower than the temperature of the core.

For the DRM voltage and frequency adaptations, we vary the processor frequency from 2.8GHz to 4.4GHz.

We always set the voltage such that it supports the frequency being simulated. The relationship between
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Technology Parameters
Process technology 65 nm
Vi 1.0V
Processor frequency 4.0 GHz
Processor core size (not including L2 cache) | 20.2mm? (4.5mm x 4.5 mm)
Leakage power density at 383K 0.5 W/mm?
Base Processor Parameters
Fetch/retire rate 8 per cycle
Functional units 6 Int, 4 FP, 2 Add. gen.
Integer FU latencies 1/7/12 add/multiply/divide (pipelined)
FP FU latencies 4 default, 12 div. (all but div. pipelined)
Instruction window 128 entries
(reorder buffer) size
Register file size 192 integer and 192 FP
Memory queue size 32 entries
Branch prediction 2KB bimodal agree, 32 entry RAS
Base Memory Hierarchy Parameters

L1 (Data) 64KB, 2-way associative,

64B line, 2 ports, 12 MSHRs
L1 (Instr) 32KB, 2-way associative
L2 (Unified) 1MB, 4-way associative,

64B line, 1 port, 12 MSHRs
Main Memory 16B/cycle, 4-way interleaved

Base Contentionless Memory Latencies

L1 (Data) hit time (on-chip) 2 cycles
L2 hit time (off-chip) 20 cycles
Main memory (off-chip) 102 cycles

Table 5.1: Base non-adaptive processor for DRM experiments

voltage and frequency used was extrapolated from the information available for DVS on Intel’s Pentium-M
(Centrino) processor [59].

For the architectural adaptations used in DRM, we model 18 architectural configurations (consisting
of combinations of the instruction window size, number of ALUs, and number of FPUs), ranging from a
128 entry instruction window, 6 ALU, 4 FPU processor, to a 16 entry instruction window, 2 ALU, 1 FPU
processor. The issue width of the processor is equal to the sum of all active functional units and hence changes
when we change the number of active functional units. Since we adapt the issue width of the processor with
functional unit adaptation, we power down the selection logic corresponding to the functional units that are
powered down. Also, when a functional unit is powered down, the corresponding part of the result bus, the
wake-up ports to the instruction window, and write ports to the register file are also powered down. When
a structure is powered down, since it has no current flow or supply voltage, it can not have any failures due
to electromigration or TDDB. Hence, the failure rate due to electromigration and TDDB of any adaptive

structure on chip is proportional to the powered on area of the structure. The leakage power consumption
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Application Type IPC | Base power (W)
MPGdec (Mpeg video decoder) | Multi- 3.4 39.7
MP3dec (Mp3 audio decoder) media 3.0 37.1
H263enc (H263 video encoder) 2.2 35.5
bzip2 SPEC2k 1.8 24.7
gzip Integer 1.7 25.6
twolf 1.2 22.4
art SPEC2k 0.7 17.3
equake Float 1.6 25.1
ammp 1.2 21.5

Table 5.2: Workload description for DRM experiments

of adaptive structures on chip is also proportional to the powered on area of the structure (Section 3.3.2
describes the leakage power modeling methodology.).

Finally, it should be noted that our base nonadaptive processor uses the most aggressive architectural
configuration available. The architectural adaptations we model can only reduce the complexity of the
processor, relative to base, and not increase it. Also, Arch can not change processor frequency. As a result,
the maximum possible performance of any application with DRM algorithm Arch will be 1.0, where it will
be running at the base configuration at the base frequency. On the other hand, DRM algorithms DVS and
ArchDVS can increase the processor frequency greater than the base value , and can have a performance

greater than 1.0.

5.4.2 Workload Description

Table 5.2 summarizes the nine applications used for our DRM experiments. In order to study the reliability
implications of various application classes, we choose three multimedia applications, 3 SPEC2k integer
applications, and 3 SPEC2k floating point applications. For each of the applications, the IPC and power
consumption of the base non-adaptive processor is given. The base power consumption shown in Table 5.2
also includes leakage power.

As can be seen, a wide range of IPCs and power consumptions are observed. For the DRM study, it
was more important to study applications which show a wide range of behavior, rather than perform a
comprehensive study of the SPEC benchmark suite.

For the SPEC benchmarks, we fast forward 1.5 billion instructions to pass initialization code, and then
we simulate 500 million instructions. The multimedia applications are frame based applications which do
not have an explicit initialization phase. Hence, we simulate the multimedia applications for 500 million

instructions (at least 400 frames) without fast forwarding.
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5.4.3 Simulation Methodology
Simulator

We use the RSIM simulator [60] for performance evaluation. We use the Wattch tool [20] integrated with
RSIM for power measurement. We derive temperature from power using the HotSpot tool [11]. The chip
floorplan fed to HotSpot resembles the MIPS R10000 floorplan (without L2 cache), scaled down to 20.2mm?
(4.5 mm x 4.5 mm). Wattch assumes extensive clock gating for all the components of the processor with
10% of its maximum power charged to a component when it is not accessed in a given cycle. Temperature
and reliability measurements are performed at the granularity of 1u second. Our leakage power modeling

methodology is identical to that described in Section 3.3.2.

Temperature Simulation

The temperature simulation methodology for our DRM experiments is identical to the methodology used in

our scaling experiments (Section 3.3.3).

Reliability Calculation

We use RAMP 1.0 for our DRM reliability measurements. Since RAMP 2.0 requires post-processing for its
Monte-Carlo methods, it can not be used for run-time reliability adaptation techniques like DRM.

After heat-sink temperature initialization, for each application, we fast forward 1.5 billion instructions
to pass initialization code and profiled over the next 500 million instructions. The operating phase of the

DRM algorithm was then evaluated over the same 500 million instructions.

5.5 DRM Results

5.5.1 Designing Processors for Different T,

Figure 5.2 shows the performance for all the applications, when using the combination of microarchitectural
adaptation and DVS (ArchDVS) to control reliability by DRM for a range of T, values. Performance is
represented as an increase or slowdown over the base non-adaptive processor, with a value of 1.0 representing
no gain or loss. As mentioned in Section 2.5, we use Tgyq as a proxy for reliability design cost. Results
are shown for four values of Ty,q — 400K, 370K, 345K, and 325K, which represent four qualification levels,

ranging from most expensive to cheapest.
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Figure 5.2: The performance of ArchDVS for DRM is shown on the y-axis, relative to the base non-adaptive
architecture at 4 GHz. This is shown for all the applications for different T;,q; values.

Tyua = 400K

The hottest temperature reached on chip by any application for our benchmark suite was near 400K. Hence,
this value of Tg,q; represents a lower bound on the qualification temperature that would be chosen using
current methodology for reliability qualification, based on worst-case conditions. As can be seen, all the
applications experience significant performance gains (ranging from a gain of 10% for MP3dec to 19% for
twolf) while still maintaining required processor reliability levels. This is because the operating conditions
on chip while an application runs generally tend to be much lower than the worst case values, so all the
applications can run at higher than base frequency. At the higher frequency, the temperature will occasionally
exceed 400K but the average application MTTF will not fall below the target because lower instantaneous

MTTFs are compensated by higher values at other times.
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The performance gains experienced by the SPEC benchmarks tend to be higher on average than those of
the multimedia benchmarks. This is because the multimedia benchmarks have higher IPCs, and consequently
higher operating temperatures and activity factors, which gives them lower MTTF's on the base processor
than the SPEC benchmarks.

Based on the above results, we can see that qualifying for worst case operating conditions is overly
conservative — instead, we could either design to a lower Tjyq;, which would result in cost savings, or the

base non-adaptive processor can be marketed at a higher frequency (while still meeting the reliability target).

Tyuat = 370K

At a Tyyuq value of 370K, the applications with the lowest MTTFs on the base non-adaptive processor
(MP3dec and MPGdec) have almost no performance gain. All the other applications have a performance
gain ranging from 4% for bzip2 to 13% for twolf. This represents a processor which is qualified for reliability
based on application behavior. Rather than selecting Ty, based on the worst case application operating
temperature of 400K, Ty,q was chosen such that the worst applications (MP3dec and MPGdec) just meet
the reliability target. Such an application oriented approach to reliability qualification represents significant
savings in qualification cost without any loss of performance (DRM never curtails performance in this scenario

for these applications). Again, lower IPC applications see the largest performance gains (twolf and art).

Tyual = 345K

A Tyyar value of 345K represents a processor qualified for the average application, rather than worst case
application. As can be seen, the performance seen by all the applications with DRM was within 10% of
the base value, and in four cases, was within 5%. This potentially represents an excellent cost-performance
tradeoff design point, where DRM can be used to underdesign a processor, without incurring significant
performance penalties. As is expected, high IPC applications experience the largest performance losses,

while low IPC applications enjoy the largest gains.

Tyuat = 325K

A T,a1 value of 325 K represents a processor which has been drastically underdesigned from a reliability
perspective. All applications, with the exception of art and ammp, experience a slowdown. The high
IPC multimedia applications experience the largest slowdown, with MP3dec suffering a loss of 26% in
performance. This scenario potentially represents a case where the cost benefit of designing for a cheaper

Tyuai is overshadowed by the loss in performance seen.
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Implications of Designing for Reliability

From the above results, we see that there is potential for significant cost benefit, without any performance
loss, using DRM. Changing the reliability design point from T},q; of 400K to 370K, saves design cost, without
requiring any of the applications to slow down. This shows that worst case reliability qualification is overly
conservative.

Using DRM, by allowing some performance degradation, we can further lower the value of Tg,q;. In our
results, even at a Tyuq of 345K, the performance loss seen was limited. Hence, a wide spectrum of Tgya
values (in our case, 345K to 400K) are available to designers, for a reasonable performance tradeoff.

Finally, we see that the performance-cost tradeoff depends on the processor’s intended application do-
main. For example, a processor designed for SPEC applications could be designed to a lower Tyq:, than a
processor intended for multimedia applications. In the situation that an application causes the processor to
exceed the reliability target, DRM can be employed to maintain reliability.

Again, as explained in Section 2.5, we can not make quantitative assessments of cost versus performance

because we do not have the exact proportionality constants used in RAMP’s failure models.

5.5.2 Comparing Different DRM Adaptations

Figure 5.3 compares the performance (relative to the base non-adaptive processor) for the three DRM
adaptations, Arch, DVS, and ArchDVS, for a range of T, values. As can be seen, DVS and ArchDVS
significantly outperform Arch, performing an average of 27% better at a Tyyq value of 335K. Also, ArchDVS
chose to perform DVS on the base processor most of the time — hence, there is very little difference between
DVS and ArchDVS.

DVS and ArchDVS, which can both adapt frequency and voltage, perform much better than Arch due

to three main reasons:

1. Small drops in voltage and frequency result in large drops in temperature — this is because of the
near cubic relationship between frequency and power, which translates into a large temperature drop.
In comparison, Arch does not cause such a large drop in processor power, necessitating a larger

performance hit.

2. As can be seen in Equation 2.6, there is a very large voltage dependence on TDDB MTTF. Hence,

small drops in voltage and frequency increase the TDDB MTTF value drastically.

3. As mentioned, in Section 5.4.1, the performance due to Arch can never be greater than 1.0, since it

cannot adapt the processor’s frequency. Hence, in any scenario where processor performance can be
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Figure 5.3: Comparison of different DRM adaptations. The x-axis represents different T¢,,; values and the
y-axis is performance speedup or slowdown.

increased because of an overdesigned Tjyq1, DVS and ArchDVS will perform better than Arch (this is

seen for Ty, values between 360K and 400K in Figure 5.3).

Hence, it is clear that DVS is more beneficial than the microarchitectural adaptations for the space we

explored for DRM.

5.5.3 Comparing DRM and DTM

This section makes the case that DTM algorithms do not subsume reliability concerns and vice versa; i.e.,
both thermal and reliability constraints need to be considered as first-class design entities.

Figure 5.4 compares DRM and DTM using voltage and frequency scaling (DVS) for all the applications.
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Figure 5.4: Comparing design for reliability and temperature. Temperatures on the x-axis represent Tg,q
for DRM and T4, for DTM. The frequency, in GHz, chosen by DVS for DRM (dotted line) and DTM
(solid line) is shown on the y-axis. We evaluated values at 325K, 335K, 345K, 360K, 370K, and 400K.

Each point on the horizontal axis is a temperature value, which represents the qualifying temperature for
DRM (Tquai), and the thermal design point (T7n4s), for DTM. For each of these temperatures, the optimal
frequency chosen by DVS on the base non-adaptive processor for DRM (Curve DVS-Rel in the figure)
and DTM (curve DVS-Temp) is shown on the vertical axis. That is, the DVS-Rel curve ensures highest
performance at the target MTTF and the DVS-Temp curve ensures highest performance without exceeding
Traz-

Unlike Tyq5 which represents the maximum temperature the processor is allowed to reach, Tg,q; does
not impose a temperature restriction on the processor. The temperature can exceed Ty,q; as long as the
target MTTF value is maintained (because MTTF is also a function of voltage, frequency and utilization).

As can be seen, different frequencies are suggested by DRM and DTM. More significantly, at higher values
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of Tquar and Tipaz, using the DTM suggested frequency would violate the system reliability requirement;
while at lower values of Tyuar and Trnas, using the DRM suggested frequency would violate the system
thermal requirement. This occurs because the slope of the DVS-Temp curve in the figure is generally steeper
than the slope of the DVS-Rel curve. The reliability curve is less steep because of the exponential dependence
of reliability on temperature. A small change in frequency creates a temperature change which is amplified
exponentially in the reliability equation. This effect is further compounded by the large dependence of the
TDDB MTTF on DVS voltage, as dictated by Equation 2.6. Finally, we can also see that the crossover point
of the two curves is not fixed, and instead changes depending on the application. Hence, it is clear that the
relationship between design for reliability and design for temperature is not obvious. Neither subsumes the
other, and algorithms that jointly consider reliability and temperature (and energy) are important areas of

future work.

5.6 Summary

In this chapter, we show how processors can be designed with less-than-worst-case temperature qualifications
to conserve cost, without giving up performance. Specifically, we show that DRM provides a spectrum of
cost-performance design points. This allows DRM to act as an enabling technology for reliability under-
designed systems where traditional reliability qualification cost could be too prohibitive to stay on the
required performance curve. Also, among the microarchitectural adaptations we studied, we show that DVS
is the most beneficial for DRM.

Given that our algorithm adapts only once for an application, our DRM results represent a conservative
bound on the performance and reliability benefits of DRM. A fine grained algorithm which adapts more
often can potentially provide larger performance and reliability gains.

Finally, we see that the implications of adaptive control mechanisms for reliability are similar to earlier
published dynamic energy management and thermal management methods. However, our experimental
results clearly show that the tradeoffs involved in our new DRM methodology are significantly (if not

fundamentally) different from those reported in prior adaptive work.

59



Chapter 6

Exploiting Structural Redundancy for
Lifetime Reliability

Redundancy is a commonly used technique for reliability enhancement (for e.g., [16]). However, most
previous work for lifetime reliability focused on redundancy at the processor granularity. Due to the large
area overheads involved in duplicating entire processors, such redundancy does not provide a cost-effective
reliability solution. Structural redundancy addresses some of these shortcomings of processor redundancy
by incurring lower area overheads.

In this chapter, we examine two techniques that utilize structural redundancy for reliability, structural
duplication (SD) and graceful performance degradation (GPD). In Section 6.1, we describe SD and GPD.
Our experimental methodology to evaluate the benefits of structural redundancy is presented in Section 6.2

and our results are presented in Section 6.3.

6.1 Structural Redundancy for Lifetime Reliability

In a reliability-constrained scenario, some performance and/or cost will have to be traded off for reliability.
In this section, we examine methods by which structural redundancy can be used to enhance the processor
so that it may efficiently exploit this performance and cost overhead. These enhancements to the processor

allow run-time reconfiguration resulting in longer processor lifetimes.

6.1.1 Structural Duplication (SD)

In SD, extra structural redundancy is added over and above the required base processor resources during
microarchitectural specification. The extra structures that are added are designated as spares, and are power
gated and not used at the beginning of the processor’s lifetime. During the course of the processor’s life,
if a structure with an available spare fails, the processor reconfigures and uses the spare structure. This
extends the processor’s life beyond the point when it would have normally failed, and instead, processor
failure occurs only when a structure without a spare, or all available spares fail. It is important to note

that spare structures are added over and above the required processor resources for optimal performance.
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Most modern high-performance processors have enough redundancy to exploit all the available parallelism
in common applications, resulting in very little performance benefit from the spares. As a result, the spares
would be power gated to prevent any unnecessary wear-out, and would be powered on only when the original
structure fails.

SD increases processor reliability without any loss of performance, relative to the base processor. However,

due to increased die area, duplication adds a cost overhead to the base microarchitecture.

6.1.2 Graceful Performance Degradation (GPD)

GPD allows existing processor redundancy to be leveraged for lifetime enhancement without the addition
of extra units. As mentioned, most modern high-performance microprocessors already use redundancy to
exploit available parallelism in common applications. However, only a subset of these units is required for
functional correctness. If a structure fails at run-time, a processor with GPD disables the failed structure
and continues to function, thereby extending its lifetime beyond its original point of failure. Processor failure
then occurs only when all redundant structures of any type fail.

Unlike SD, GPD does not add an area overhead to the base processor as no extra units are added.
However, disabling redundant structures that fail lowers the processor’s performance for the latter part of
the processor’s lifetime. Hence, the guaranteed performance of a processor with GPD is its performance
in the fully degraded state. In this dissertation, we report GPD results for both guaranteed and actual

performance.

6.1.3 Structural Duplication + Graceful Performance Degradation

(SD+GPD)

We also examine architectures that use a combination of SD and GPD. Such processors can have spares for
structures that are also allowed to degrade. Hence, after all available spares for a structure are used, the
structure is allowed to degrade. Processor failure occurs only when all available spares fail and all available
existing redundancy is used. This technique incurs both a performance overhead and a cost overhead.
However, the benefits in reliability are larger.

Figure 6.1 illustrates the differences between the three techniques. Consider a base processor with two
structures, A and B. Now, if the lifetimes of structures A and B for a random instance of the base processor
are t4 and tp, the base processor’s lifetime in that instance is MIN(t4,tg), as the first structure to fail
would cause the processor to fail. Next, consider the base processor with SD, where another structure C

is added as a spare to A and B. If the lifetime of C for the same instance of the processor is t¢, then the
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Figure 6.1: Steps to failure for a base processor, base processor with SD, with GPD, and with SD+GPD.
The relationship between the performance (P), area (A), and MTTF of each of the processors is also given.

processor’s lifetime would be MIN((MIN (ta,tg)+tc), MAX(ta,tp)). Since the spare C is turned on only
after A or B fails, C’s lifetime is added to A or B. The processor fails only when either the spare or the
remaining original structure fails.

Next, consider the base processor with GPD. The processor continues to function even if one of A or B
were to fail. Hence, the lifetime of the processor with GPD is M AX (ta,tp), since both structures have to
fail for processor failure.

Finally, consider a processor with SD+GPD. A spare C is added for A and B. In addition, the pro-
cessor requires all units to fail before total failure. In this case, the lifetime of the processor would be
MAX((MIN(ta,tg) +tc), MAX(ta,tg)). The spare C is used as soon as one of the original structures

fails. The processor then fails only when both the spare and the remaining original structure fail.

6.1.4 Design Issues

A key requirement for SD, GPD, and SD+GPD is the ability of the processor to detect and disable structures

that have failed during normal processor operation. Detecting errors is a critical issue for hard and soft error
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tolerance, and there is significant ongoing work on detection techniques. However, much work still has to
be done on the subject — currently, efficient detection techniques with high coverage for processor logic do
not exist, and a detailed discussion of such functionality is beyond the scope of this paper. However, we
expect detection and coverage issues to impact SD and GPD similarly, allowing a relative comparison of the
techniques.

Also, both SD and GPD require additional hardware for detection and disabling/enabling of failed units.
This extra hardware and resultant wiring will adversely affect processor power and performance (due to the
larger communication distance between critical units). Accounting for these effects requires a detailed design

for these techniques which is beyond the scope of this dissertation.

6.2 Structural Redundancy Experimental Methodology

6.2.1 Base Processor and Performance Simulation

Our base processor and performance simulation methodology is identical to that used in our scaling experi-
ments (Section 3.3). The base processor we use for our simulations is a 65nm, out-of-order, 8-way superscalar
processor, conceptually similar to a single core POWERA4-like processor [43]. The 65 nm processor parame-
ters were derived by scaling down parameters from the 180nm POWERA4 processor. Table 6.1 in Section 3.3

summarizes the base processor modeled.

6.2.2 Power, Temperature, and Reliability Models

Our power and temperature simulation methodology is identical to that used in our scaling experiments (Sec-
tion 3.3). For processor power dissipation, we use the PowerTimer toolset [45]. For temperature simulation,
we use the HotSpot tool [11]. We also use the leakage power methodology described in Section 3.3.2.

We use RAMP 2.0 for our reliability measurements. For a simulated application, based on temperature
estimates from HotSpot and power estimates from PowerTimer sampled at a granularity of 1 psecond,
RAMP 2.0 calculates an MTTF estimate for each structure and failure mechanism on the processor. The
Monte-Carlo simulation method is then used to determine the MTTF of the processor. Given that we only
compare relative increases and decreases in reliability, we do not need to use Tj,q; and other qualification
proxies.

In order to quantify the difference between using lognormal and exponential distributions for failure

mechanisms, we repeat some of our experiments with RAMP 1.0. These results are described in Section 6.3.7.
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Technology Parameters
Process technology 65 nm
Vid 10V
Processor frequency 2.0 GHz
Processor size (not including L2) | 11.52 mm? (3.6 mm x 3.2 mm)
Leakage power density at 383K | 0.60 W/mm?
Base Processor Parameters
Fetch/finish rate 8 per cycle
Retirement rate 1 dispatch-group (=5, max) per cycle
Functional units 2 Int, 2 FP, 2 Load-Store
1 Branch, 1 LCR
Integer FU latencies 1/7/35 add/multiply/divide (pipelined)
FP FU latencies 4 default, 12 div. (pipelined)
Reorder Buffer size 150
Register file size 120 integer, 96 FP
Memory queue size 32 entries
Base Memory Hierarchy Parameters
L1 (Data) 32KB
L1 (Instr) 32KB
L2 (Unified) 2MB

Table 6.1: Base 656 nm POWERA4-like processor used for structural redundancy experiments

6.2.3 Die Cost Model

In order to evaluate the cost impact of area increases imposed by structural duplication, we use the Hennessy-

Patterson die cost model [61]. The cost, C, of a die of area, A is:

1 DA
Co—, « (14 24 (6.1)
™ 2
( wAa.fe'r' _ Wruéa;:er) (6

where 74 fer is the wafer radius, D is the defects per unit area during manufacture of the wafer, and o is a
parameter that corresponds inversely to the number of masking levels. We assume a 300mm wafer process,
D = 0.6 per square centimeter, and o = 4.0 [61]. In our experiments, we normalize our base processor cost

to 1.0 (for a base area of 11.52mm?).

6.2.4 'Workload Description

Our experimental results are based on an evaluation of 16 SPEC2000 benchmarks (8 SpecInt + 8 SpecFP)
listed in Table 6.2. The SPEC2000 trace repository used in this study was generated using the Aria trace
facility in the MET toolkit [48], and was generated using the full reference input set. Sampling was used to
limit the trace length to 100 million instructions per program. The sampled traces have been validated with

the original full traces for accuracy and correct representation [49].
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Type Application || Max. Temp. (K)
Spec2000 ammp 341.27
Float sixtrack 342.76
applu 343.82
mgrid 345.63
mesa 345.87
facerec 346.52
apsi 348.49
wupwise 348.56
SpecFP average 345.36
Spec2000 vpr 341.40
Int twolf 343.22
bzip2 342.52
gzip 343.49
perlbmk 347.13
gce 348.22
gap 348.93
crafty 349.55
Speclnt average 345.52

Table 6.2: Workload used for structural redundancy experiments. The maximum temperature seen with
each application is also given.

6.2.5 Processor Configurations Evaluated

The base 65nm POWERA4-like processor evaluated has a total area of 11.52mm?2. Figure 6.2 shows the
floorplan for the processor. The chip is divided into 7 distinct structures: floating point unit (FPU), fixed
point unit (FXU), instruction decode unit (IDU), instruction scheduling unit (ISU), load store unit (LSU),
instruction fetch unit (IFU), and branch prediction unit (BXU). Again, it is important to note that we do

not calculate the reliability of the L2 cache.

SD Configurations

To limit our configuration space, we do not allow all the structures on chip to be replicated individually for
SD. Instead, we clubbed the processor’s structures into 5 logical groups that can be replicated for spares —
FPU, FXU, BXU+IFU, LSU, IDU+ISU. Table 6.3 summarizes these groups and the area overhead imposed
on the processor by replicating each group. With these 5 groups, based on whether a group is replicated
or not in the processor, we create 32 (2°) SD configurations. If more than one group is replicated, the area
overhead for that processor is the sum of the areas of the replicated groups.

For the base processor without SD, the average failure rate across all applications for each structure
is initialized to a value proportional to the structure’s area. The failure rate of a duplicate structure is

initialized to be equal to the original structure.
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Figure 6.2: Chip layout for the 656 nm POWERA4-like processor used in our structural redundancy experi-
ments.

| Group | Units | Area mm? | Original Configuration | Degraded Configuration |
1 FPU 0.96 2 float units + 96 float regs 1 float unit + 48 float regs
2 FXU 0.96 2 int units 4+ 120 int regs 1 int unit 4 60 int regs
3 BXU+IFU 2.56 16K BHT + 32KB ICache 8K BHT + 16KB ICache
4 LSU 4.0 2 load queues + 32KB DCache | 1 load queue + 16KB DCache
5 IDU+ISU 3.04 N/A N/A

Table 6.3: Groups replicated in SD and allowed to degrade in GPD. The IDU+ISU is not allowed to degrade.
The areas of each group for SD and the structures in the original and degraded group for GPD are also
given.

GPD Configurations

Like SD, we limit our configuration space in GPD by not allowing every structure to degrade individually.
Instead, the structures are grouped into 4 logical groups that can degrade — FPU, FXU, BXU+IFU, LSU.
Unlike structural duplication, we do not allow the IDU+ISU to degrade, as there is no simple me