
Predictive Dynamic Thermal Management for Multimedia Appl ications
�

Jayanth Srinivasan and Sarita V. Adve
Department of Computer Science

University of Illinois at Urbana-Champaign�
srinivsn,sadve�@cs.uiuc.edu

Abstract
Dynamic Thermal Management (DTM) techniques have been

proposed to save on thermal packaging and cooling costs for general-
purpose processors. However, when invoked, these techniques re-
sult in a significant performance degradation. This paper con-
cerns performance-effective DTM for multimedia applications. We
make two contributions: (1) Current DTM algorithms arereac-
tive in nature. We propose apredictive DTM algorithm targeted
at multimedia applications, which allows the efficient use of re-
sponse mechanisms that have high invocation overhead. We find
that for our applications, our predictive algorithm performs sig-
nificantly better than existing reactive DTM algorithms. (2) We
evaluate the effectiveness of different DTM response mechanisms.
Specifically, we demonstrate the importance of tailoring DTM re-
sponse mechanisms to the thermal ”hot-spots” on the chip andthe
current thermal limit, and show that a predictive combination of
architecture adaptation and dynamic voltage scaling (DVS)per-
forms the best across a broad range of applications and thermal
limits.

Categories and Subject Descriptors
C.1.1 [Processor Architectures]: Single Data Stream Archi-

tectures

General Terms
Algorithms, Management, Performance

Keywords
Thermal management, Adaptive architectures, Low power

1. Introduction
It is anticipated that in the future, peak power dissipationand

consequent thermal considerations will often be the dominant limit
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to processor performance and a significant component of cost. Ex-
pensive packaging, heat sinks, and other cooling solutionsare re-
quired to maintain acceptable processor temperatures. Gunther et
al. estimate that above 60W, thermal packaging increases the total
cost per chip by more than $1/W [7]. At the same time, the SIA
road map estimates peak power consumption of 150W and higher
in future processors [1], implying prohibitively expensive thermal
solutions. Current thermal solutions are designed for peakpro-
cessor power to ensure safe operation at all times. However,the
peak processor power and resulting peak temperature are rarely
observed, and tend to be much higher than the typical power and
temperature. This disparity is likely to increase as further tech-
niques are applied to extract instruction-level parallelism (ILP).
Researchers have therefore proposed the use ofdynamic thermal
management(DTM) [3, 9, 15]. DTM allows the thermal solution
to be designed for a temperature less than the peak. In the (hope-
fully) rare case when the chip approaches the thermal limit,DTM
invokes a hardware response to bring down the temperature, typ-
ically by reducing system performance. Possible response mech-
anisms include a variety of architectural adaptations (e.g., fetch
toggling or throttling) and dynamic voltage scaling (DVS).

This work concerns dynamic thermal management for proces-
sors, employing both architectural adaptation and DVS. Unlike
previous work which focused on SPEC benchmarks, we consider
the domain of multimedia applications. These applicationsare ex-
pected to form a large part of the workload on a growing num-
ber of systems employing general-purpose processors [14].This
paper exploits certain properties of these applications topropose
a new DTM control algorithm that provides much better perfor-
mance than previous algorithms.

All of the previous work in DTM for processors isreactive
– the processor typically runs at full performance; only when the
temperature gets too close to the thermal limit, a response to curtail
performance (and thereby reduce temperature) is initiated. Such
schemes suffer from at least two problems. First, they have lim-
ited time to respond to a thermal emergency; therefore, theymust
use mechanisms that have a low invocation time overhead or risk
unnecessary performance loss. This precludes the efficientuse of
mechanisms such as DVS and register file resizing, which poten-
tially have large thermal benefits but high invocation time over-
heads. Second, engaging the appropriate reactive responseat the
appropriate time requires significant prior tuning of the system.
To overcome the second problem, Skadron et al. [15] proposed
the use of control-theoretic techniques. This approach appears
promising; however, it is as yet unclear how to tune controllers
for use with the complex, potentially multiple, microarchitectural
responses that are possible in the systems we consider (see Sec-



tion 3). Current state-of-the-art control-theoretic DTM schemes
do not use high overhead response mechanisms.

This paper proposes a new DTM control algorithm for multi-
media applications that takes apredictiveapproach. Multimedia
applications process discrete units of data called frames.Previous
work has shown that frames of the same type involve more or less
the same type (but not the same amount) of work [10]. We ex-
trapolate this result to observe that each frame (or a predetermined
number of consecutive frames) reaches the same peak tempera-
ture, which can be determined by profiling. This profile infor-
mation can be used to predict the highest performance, thermally
safe hardware configuration for the rest of the frames of thattype.
Since adaptation is invoked at most once per frame, high overhead
adaptation mechanisms are possible. Additionally, our predictive
algorithm is simpler in that it does not require any application-
specific and response-specific tuning of reactive controllers.

We evaluate our algorithm on nine multimedia benchmarks, us-
ing the recent thermal model developed by Skadron et al. [15], for
a range of thermal limits. For response mechanisms, we evaluate
DVS and three architecture adaptations. To represent the state-of-
the-art, we study proportional fetch-toggling (instruction fetch is
disabled every N cycles). A drawback of fetch-toggling is that it
affects the entire chip – while this reduces temperature across the
chip, it also significantly affects performance. It is, however, well-
known that power density across the chip is not uniform, resulting
in localized high temperatures or thermal hot spots. We there-
fore also studied two adaptations that have a more localizedim-
pact – instruction window resizing and switching off activefunc-
tional units (resulting in limiting the issue width and deactivating
appropriate register file ports). These adaptations have not been
considered before for thermal management.

Our findings are as follows. First, for our system and appli-
cations, the new predictive DTM algorithms perform significantly
better than the reactive algorithms. The main reason is their abil-
ity to efficiently use thermally effective adaptations thathave high
invocation overhead like DVS and register file resizing.

Our second set of findings concern the effectiveness of differ-
ent response mechanisms. Specifically, our results highlight the
importance of selecting response mechanisms based on the ther-
mal hot spots on chip and the thermal limit. For architectural
responses, we found that for both the reactive and predictive al-
gorithms, fetch-toggling was inferior to instruction window re-
sizing and functional unit adaptation. Although all architectural
responses ensured thermal safety, fetch-toggling showed asig-
nificantly higher performance degradation. This is becausefor
our system and applications, the register file is always the hottest
structure on chip. Compared to the other two mechanisms, fetch-
toggling is overkill for controlling register file power. Similarly,
comparing architectural adaptation to DVS (applicable only to the
predictive algorithm), we found that in most cases, architecture
adaptation provided the bulk of the benefit because it most directly
addressed the thermal hot spot. Nevertheless, there are some cases
where DVS is more effective and we identify these cases. Overall,
a combination of DVS and architectural adaptation with a predic-
tive algorithm proved the most effective DTM scheme.

Our predictive thermal algorithm uses observations similar to
our previous work on a predictive energy management algorithm.
Section 6 summarizes the differences between energy and thermal
management and the relationship between the two algorithms.

2. Reactive DTM algorithms
As mentioned, all the previous work in dynamic thermal man-

agement for processors isreactive. While the system is running,

if the temperature on chip gets too close to the thermal limit, a re-
sponse mechanism is initiated. This response leads to a reduction
in temperature, typically accompanied by a degradation in perfor-
mance. Once the processor resumes safe thermal operation, the
reaction mechanisms are shut off. There are two key featuresin
the design of reactive DTM algorithms: when to invoke reactive
response mechanisms and what response mechanism to use.

2.1 Previous reactive schemes and limitations
Huang et al. [9] proposed DEETM, a framework capable of dy-

namically choosing multiple responses for energy and temperature
management. For thermal control, DEETM checks the tempera-
ture every few milliseconds; if the temperature is close to an emer-
gency level, hardware adaptations are invoked in a predetrmined
order. The specific responses studied are DVS, entering light sleep
mode, and some mechanisms targeted at the memory hierarchy.

Brooks et al. [3] propose invoking a response when the proces-
sor power consumption crosses a predetermined threshold. They
studied a constant threshold of 24W for all applications andfive
response mechanisms – clock frequency scaling, voltage andfre-
quency scaling (DVS), fetch-toggling, throttling (the number of
instructions fetched every cycle is reduced), and speculation con-
trol (instruction fetch is disabled when the number of unresolved
branches crosses a threshold). They found clock frequency scaling
and DVS to be inefficient because of their invocation time over-
head. Among the other responses, fetch-toggling was found to
perform the best for most benchmarks and speculation control for
others.

Skadron et al. [15] use formal control theory to control DTM,
using fetch-toggling as their response mechanism. The previous
approaches used fixed trigger temperatures (or power) and fixed
strength responses for all applications and situations, resulting in
conservative decisions and unnecessarily poor performance for some
applications. In contrast, the use of formal control theoryallows
the trigger temperature and the fetch-toggling rate to varybased
on the current and prior thermal stress level.

All the above DTM schemes suffer from the following three
problems. First, they have a limited time to respond to a ther-
mal emergency, and so cannot use responses with a high invoca-
tion time overhead efficiently (e.g., DVS and register file resiz-
ing). Second, engaging the appropriate response at the appropriate
time requires significant response-specific and application-specific
tuning of the DTM algorithm. Although Skadron et al. [15] use
control-theoretic techniques to overcome this problem, itis as yet
unclear how systems with complex, potentially multiple response
mechanisms can be efficiently tuned. Third, the specific response
mechanisms proposed for the processor core restrict the perfor-
mance of the entire processor even though localized heatingoccurs
at a faster rate than chip-wide heating. Invoking adaptations that
more directly affect the thermal hot-spot can potentially provide
the same thermal benefit with a less severe performance penalty.
Huang et al. [9] have proposed techniques local to the memory
hierarchy; however, in our simulations, the caches were nothot
spots. As a result, we chose to focus on the processor core.

2.2 Reactive algorithms studied here
We compare our proposed predictive DTM algorithm with two

reactive algorithms. Both algorithms track the system temperature
at fixed intervals and invoke a response when the temperatureof
any on-chip structure comes within a certain bound of the thermal
limit. This temperature at which DTM is invoked is referred to as
the trigger temperature. To give the best showing to the reactive
algorithms, we determine the trigger temperature separately for



each application and algorithm through a manual tuning process,
described at the end of this section. Once the temperature falls
below the trigger temperature, normal operation resumes. The two
algorithms differ in the responses invoked, as described below.

R-Toggle: We use R-Toggle to represent the state-of-the-art.
This is the best manually tuned (non-control theoretic) reactive al-
gorithm studied by Skadron et al. [15]. It uses fetch-toggling as its
response mechanism. Once the trigger temperature is crossed, the
toggling rate is varied linearly from no toggling (normal fetch) to
full toggling (no fetch) depending on the proximity to the thermal
limit.

We do not model the control-theoretic algorithms studied by
Skadron et al. because (1) their performance impact was verysmall [15],
(2) we do not yet understand how to develop control-theoretic al-
gorithms tuned for multiple responses for multiple applications as
in the R-IwFu scheme described below, and wanted to use similar
tuning techniques for the two algorithms to ensure a fair compari-
son, and (3) for most of the applications studied here, we seethat
temperature stays fairly constant; therefore, manually tuned algo-
rithms are likely to perform similar to control-theoretic algorithms.

R-IwFu: As mentioned earlier, we found that the register file
was the hottest structure for all our applications. Although fetch-
toggling reduces the number of instructions in the processor pipeline
resulting in a lower rate of register file accesses, it also signifi-
cantly affects other parts of the processor resulting in performance
losses. Instead, we consider response mechanisms that exploit the
knowledge that the register file is the hottest structure. Specifi-
cally, we consider deactivating functional units, which results in
a reduced number of active register file ports and reduces register
file power regardless of the activity. We also consider resizing the
instruction window. In the reactive scheme, this adaptation has an
indirect effect on the register file just like toggling - however, the
impact on IPC is less severe than toggling. The reason we chose
this response was to contrast the reactive algorithms with our pro-
posed predictive algorithms where instruction window adaptation
has a direct impact on the register file power (see Section 3.2).

The R-IwFu algorithm reported here combines both the above
responses. When the processor temperature exceeds the trigger
temperature, the instruction window size and the number of func-
tional units are reduced by a fixed amount at each temperature
sample. Once the temperature goes below the trigger, the instruc-
tion window and functional units are fully activated again.

Manual tuning: Different response mechanisms used on dif-
ferent applications require different trigger temperatures to ensure
safe operation. In choosing this temperature, we must ensure that
it is neither too low (which could unnecessarily hurt performance)
nor too high (which could be unsafe). For the fairest comparison,
the trigger temperature used for each combination of the reactive
algorithms and applications was individually determined to ensure
the best possible performance that was also thermally safe.

3. Predictive DTM algorithms

3.1 Properties of multimedia applications
Before discussing the predictive algorithm, we discuss theap-

plication characteristics exploited by the algorithm. Recall that
multimedia applications typically process discrete unitsof data
called a frame. Further, some of the applications studied stat-
ically distinguish multiple frame types, e.g., I, P, and B frames
for MPEG. Our algorithm uses two prior results for such applica-
tions [10, 12]: (1) For a given application, architecture, and fre-
quency, average IPC and average power dissipation of a frameare
almost constant among all frames of the same type. This is be-
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Figure 1. The predictive thermal algorithm.

cause while the amount of work per frame may vary, the nature of
the work is roughly the same for all frames of a given type.(2)IPC
of a frame is almost independent of clock frequency, since little
time is spent in memory stalls.

From the above observations, since the IPC and power dissipa-
tion of a frame are constant, and the nature of the dominant com-
putation is constant, we extrapolate that the temperature profiles
and the maximum temperature attained during different frames of
the same type will be similar. We later validate this assumption
(Table 4).

3.2 Predictive control algorithm
The goal of our predictive thermal algorithm is to determine

the highest performing, thermally safe architectural configuration.
This is a significant point of difference from our previous predic-
tive energy management algorithm [12] (Section 6 describesall the
differences in detail). The energy algorithm exploits the character-
istic that there is a fixed deadline for the execution of a multimedia
application frame. It therefore seeks to save energy byslowingthe
frame execution as much as possible, without violating the dead-
line. In a multiprogrammed environment, however, it is advisable
to finish an application frame before its deadline, to allow other ap-
plications to be scheduled in a timely way. Hence, our predictive
thermal algorithm seeks to execute applications asfastas possible
while ensuring thermal limits are not violated.

The algorithm, summarized in Figure 1, starts with the appli-
cation being profiled at a frequency,�����. For each architectural
configuration, A, the algorithm measures����(the IPC of A),
and maximum temperature reached (	
��
�������) by any struc-
ture on chip for an appropriate number of frames of each type.To
ensure that proper thermal behavior is observed, it may be neces-
sary to profile multiple frames of an application for each architec-
ture and frame type. The number of frames that need to be profiled
will depend on the thermal RC time constant of the structureson
chip and the size of each application frame. Section 4 gives the
number of profile frames for the applications and system we study.
To ensure there is no thermal emergency, profiling is performed
at the lowest supported frequency and voltage (if the systemap-
proaches thermal emergency during profiling, then the architecture
is discarded, and is no longer considered a potential candidate by
the algorithm). Note that the algorithm tracks the temperature of
each thermally important structure individually; we use the granu-
larity of logical functional blocks for this purpose (Section 4.3.2).

Next, the algorithm determines the maximum frequency,�
��
�
at which each profiled architecture is still thermally safe (deter-
mined separately for each frame type). For the thermal modelwe



use (Section 4.3.2),�
��
�can be calculated using ,

	��
��
	
��
�������

�

��
��
��
��
�
����������� (1)

where	
��
������� is the maximum temperature reached by any
structure on chip during profiling,

�
��
�is the voltage required
to support�
��
�,

����� is the profiling voltage supporting the
profiling frequency,�����, and	��
��is the chip’s current thermal
limit (which is the difference in temperature between the maxi-
mum allowed chip temperature and the current heat sink tempera-
ture). Section 4.3.2 shows how the above relationship can bede-
rived for the thermal model we use. The exact form of the rela-
tionship could be different for other thermal models (e.g.,when
leakage effects are accounted for).

If �
��
�is not supported in the system, the closest supported
frequency lower than�
��
�is used. If the system only supports
frequencies higher than�
��
�for an architecture A, then the ar-
chitecture A cannot be used safely for the given thermal limit and
is no longer considered as a candidate by the algorithm.

Now, the performance of a given hardware configuration is pro-
portional to the product of its frequency and IPC. Since our multi-
media applications spend little time in memory stalls, IPC remains
almost constant across frequencies [10] obviating the needto scale
IPC with frequency. Hence, the maximum thermally safe perfor-
mance of an architecture is proportional to�
��
������. The
algorithm therefore chooses the architecture, A, with the highest
�
��
������product. This architecture running at�
��
�
is predicted to be the fastest thermally safe hardware configura-
tion and is used in the rest of the run (for the corresponding frame
type).

Although we expect our predictions to be accurate, there is al-
ways the possibility that the hardware configuration chosenis in-
appropriate, either because the frame profiled was not representa-
tive or because the application behavior changed. Too conservative
a choice would imply a performance loss, which could be detected
in some cases and profiling could be triggered again. Too aggres-
sive a choice would lead to a thermal crisis. Mechanisms to han-
dle a thermal crisis are required in any real system with DTM.De-
pending on when the crisis is triggered, appropriate reactive ”crisis
responses” can be invoked. This response could range from a rel-
atively gentle response to a drastic processor shut-down toavoid
imminent chip-burn. After the thermal crisis has been handled, the
predictive algorithm can re-profile the application and select a new
hardware configuration.

In a multiprogrammed system, the hardware configuration se-
lected by the above algorithm could potentially be influenced by
the application scheduled in the previous time slice. We discuss
this issue in Section 6.

3.3 Predictive algorithm response mechanisms
The predictive algorithm can exploit both architectural adapta-

tion and DVS. To isolate the benefits of each, we evaluate three
versions:P-Arch only performs architectural adaptation and does
not support DVS; i.e., only one fixed frequency is available to the
predictive algorithm.P-DVSadapts the voltage and frequency, but
not the architecture; i.e., only one fixed architectural configuration
is available to the algorithm.P-ArchDVS is the most flexible and
can perform both architectural adaptation and DVS.

Like the reactive algorithm, the architectural adaptations avail-
able to the predictive algorithms (P-Arch and P-ArchDVS) are in-
struction window resizing and functional unit adaptation.We also
studied toggling, but it was very inefficient compared to theother
mechanisms and so we do not report those results here.

One important difference in the effect of instruction window
adaptation as invoked in the predictive algorithm comparedto the
reactive algorithm is that the former is also able to change the num-
ber of active physical registers with instruction window size. A
smaller instruction window requires fewer physical registers for
renaming. Therefore, with the predictive algorithm, the number
of active physical registers, of each type (floating point and inte-
ger), is equal to the number of logical registers plus the number
of entries in the instruction window. The reactive algorithm does
not change the register file size because it is not clear how todo
so with our processor model (reducing the size requires “garbage
collecting” register contents during the course of the execution of
a frame). Dropsho et al. [6] suggest the need for a software handler
to control register file resizing. Even if it could be done entirely
in hardware, the latency involved will be at least of the order of
a few 100 cycles, if not more, and could be too large for reactive
algorithms. These are not problems with the predictive algorithm
because the adaptations are invoked before the start of a frame; i.e.,
before any state is accumulated in the registers. This distinction is
of particular importance in our experiments because the register
file was found to be the hottest structure on chip.

3.4 Overheads and software support
We briefly discuss the software and hardware costs associated

with the predictive algorithm. The major software overheadlies in
profiling. We expect it to be acceptable for several reasons.First,
many real-time multimedia scheduling algorithms already do pro-
filing for admission control to determine CPU time (e.g., [4]). This
is typically done for hundreds of frames, and can subsume thepro-
filing for our algorithm. Second, the total number of frames that
need to be profiled by the predictive algorithm is the productof
the number of architectural configurations available, the number
of frame types, and the number of frames that need to be profiled
at a time to guarantee thermal stability (given in Table 2). This is
insignificant relative to the total frames executed during the appli-
cation run. Third, the profiling is on-line, so potentially the user
could still get an output for certain low computation workloads
like speech codecs.

The rest of the software overhead comes from using the profil-
ing information to determine the best architecture and frequency
to run. This is relatively simple and incurs negligible overhead.

Additionally, the predictive algorithm also requires informa-
tion on the beginning and the end of frames as well as the frame
type (for applications that support multiple types). Again, real-
time applications typically already provide the former information
to the operating system for scheduling purposes. This couldbe
extended to include information on the frame type as well.

The only runtime hardware overheads involved are for invoking
architectural adaptation and DVS. Functional unit adaptation and
instruction window adaptation can be performed in the orderof
a few cycles. For DVS, current commercial processors capable
of voltage scaling incur overheads ranging from 10s to 100s of
�seconds [8, 13]. These overheads are also negligible since they
are invoked at most once per scheduling slice.

Finally, the algorithm assumes hardware sensors for tempera-
ture measurement, but this is an issue for all DTM algorithms.

4. Methodology
4.1 Architectures

The base non-adaptive processor studied is similar to the MIPS
R10000 and is summarized in Table 1. We assume a central-
ized instruction window that integrates the issue queue andreorder
buffer (ROB) but has a separate physical register file. We also



Base Processor Parameters
Processor speed 2.2GHz
Fetch/retire rate 8 per cycle
Functional units 6 Int, 4 FP, 2 Add. gen.
Integer FU latencies 1/7/12 add/multiply/divide (pipelined)
FP FU latencies 4 default, 12 div. (all but div. pipelined)
Instruction window 128 entries
(reorder buffer) size
Register file size 192 integer and 192 FP
Memory queue size 32 entries
Branch prediction 2KB bimodal agree, 32 entry RAS

Base Memory Hierarchy Parameters
L1 (Data) 64KB, 2-way associative,

64B line, 2 ports, 12 MSHRs
L1 (Instr) 32KB, 2-way associative
L2 (Unified) 1MB, 4-way associative,

64B line, 1 port, 12 MSHRs
Main Memory 16B/cycle, 4-way interleaved

Base Contentionless Memory Latencies
L1 (Data) hit time (on-chip) 2 cycles
L2 hit time (off-chip) 20 cycles
Main memory (off-chip) 102 cycles

Table 1. Base non-adaptive processor.

study a version of the base processor with support for dynamic
voltage/frequency scaling (DVS). The voltages used for each fre-
quency were extrapolated from the information available for In-
tel’s XScale (StrongArm-2) processor [13]. We allowed the fre-
quency to range from 100MHz (at 0.7V) to 2.2GHz (at 1.75V) but
our system only utilized frequencies between 1GHz and 2.2 GHz.
We do not model time overheads for invoking DVS since as dis-
cussed in Section 3.4, these are expected to be negligible.

We study processors capable of fetch toggling, and adapting
their instruction window size and/or the number of active func-
tional units and issue width. The instruction window is broken
into segments of 8 entries each, and at least two segments must
always be active. As mentioned earlier, for the predictive algo-
rithm, we resize the register file based on the instruction window
size. For functional units, we require that at least one integer ALU
must always be active. The issue width of the processor is equal to
the sum of all active functional units and hence changes whenwe
change the number of active functional units. Since we adaptthe
issue width of the processor with functional unit adaptation, we
power down the selection logic corresponding to the functional
units that are powered down. Also, when a functional unit is pow-
ered down, the corresponding part of the result bus, the wake-up
ports to the instruction window, and write ports to the register file
are also powered down. We model a delay of 5 cycles to power up
an inactive functional unit or instruction window segment.When
a functional unit or instruction window segment is to be powered
down, the system must wait for the units to complete their current
tasks before shutting them down. As a result, we do not charge
an extra delay for powering down the functional units and instruc-
tion window. As with DVS, we do not model the overhead for
register file resizing in the predictive algorithm since it is invoked
infrequently.

For predictive adaptation with DVS, we profiled all possible
combinations of the following configurations (54 total): instruc-
tion window size��16,32,48,64,96,128�, number of ALUs��
6,4,2�, and number of FPUs��4,2,1�. There was a consider-

able variety in the configurations chosen by the predictive algo-
rithms for different applications. This usage data is provided in
Section 7.

The reactive algorithms sample the system temperature every
1�sec (Section 4). As a result, reactive adaptations are also in-
voked at this granularity. For R-Toggle, we allow the toggling rate
to vary over a range of 20 levels, ranging from no toggle (fetch
every cycle) to full toggle (no fetch). In R-IwFu, the instruction

App. Type No. Frames Cycles per No. Frames
Profiled Frame Executed

GSMenc 10 8.065+E4 100
GSMdec Speech 10 2.002+E4 100
G728enc codec 10 9.498+E3 100
G728dec 10 7.415+E3 100
H263enc Video 1 1.544+E7 1
H263dec codec 1 3.431+E5 5
MPGenc 1 3.405+E7 1
MPGdec 1 1.313+E6 1
MP3dec Audio 1 6.421+E5 10

Table 2. Workload description. For MPG, only B frames are
evaluated.

window size is varied in steps of 16 entries. The number of ALUs
and FPUs is varied in steps of a single functional unit.

Finally, our base architecture is intentionally aggressive in or-
der to expose a wide adaptation space for our algorithms. As will
be seen in Section 5.4, the entire adaptation space is exploited by
our applications. Section 5.5 addresses some implicationsof using
alternate base architectures.

4.2 Workload description
Table 2 summarizes the nine applications and inputs used in

this paper. For each application, it gives: (1) the average number
of execution cycles per frame, (2) the number of frames profiled
for each architectural configuration and frametype (the total time
profiled should be much larger than the thermal RC constant for
thermal stability), (3) number of frames executed after profiling
for evaluating the performance degradation of the DTM schemes.
We use many more frames for our analysis in Table 4 which reports
statistics on the standard deviation of IPC and maximum temper-
ature on the base non-adaptive architecture. Specifically,we use
100 frames for the video codecs and more than 1000 frames for all
the other applications.

4.3 Performance and temperature evaluation
4.3.1 Simulator

We use the RSIM simulator [11] for performance evaluation.
We use the Wattch tool [2] integrated with RSIM for power mea-
surement. We derive temperature from power using the thermal
model discussed in the next subsection. The Wattch options used
assume clock gating for all the components of the processor with
10% of its maximum power charged to a component when it is
not accessed in a given cycle. We assume that the resources that
are powered down by our adaptive algorithms do not consume any
power. The power model used here does not model leakage power
(leakage power was found to be small for the technology parame-
ters assumed here, but will grow in the future).
4.3.2 Temperature model

We use the thermal model developed by Skadron et al. [15].
This model tracks the temperature of individual structureson chip
using exponential rate equations, based on each structure’s ther-
mal resistance and capacitance. This allows modeling the local
temperature of different parts of the chip. Temperature is modeled
at the granularity of a logical functional block, treating each block
as a uniform heat source. To obtain a relationship for the change in
temperature�	, consider a block with thermal resistance���and
thermal capacitance

�
��, changing in temperature from	��� to

	��	over a time interval�
, while dissipating an average power�
in the interval. Both	���and	��	are defined relative to the

heat sink temperature. This same convention of defining tempera-
tures relative to the heat sink is used in the rest of the paper.

Now, based on the exponential rise equation,

	��	������������	���
� �
�������� (2)



For�
��������and approximating to the first order, the
exponential becomes

��� ��������


. Based on this, the change in

temperature�	�	��	�	���, is given by

�	�
��
�
�� �

	����

������ (3)

Our algorithm also requires modeling the effect of voltage and
frequency scaling on temperature. We substitute the well known
proportionality ,

�����, in the above equation. Simplifying, we
get: 	����

���� (4)

where	��and
��are the system temperature and voltage at fre-

quency��. Thus, the relationship between the temperatures,	��
and	��, at two different frequencies,��and��, is given by

	��
	��

�

�����
��
��� (5)

where
��and

��are the system voltages at��and��. The above
relationship is used in our predictive algorithm in Section3.

The thermal resistances and capacitances used in this paperare
listed in Table 3. These are based on the data used by Skadron
et al. in [15]. Due to a lack of publicly available information,
they based the capacitances and resistances on estimates obtained
from the MIPS R10000 die photo. By using different thermal re-
sistance values, we can tweak the temperature ranges encountered
by structures on chip to match current processor values. However,
for consistency and a baseline for comparison, we chose to use the
values listed in [15].

We adapted Wattch to track per-structure temperatures based
on the equations derived above. The power consumption of the
structures is sampled from Wattch every�second which is a small
�
, compared to the RC time constant of

�		�
��(Table 3).
As can be seen in Table 3, the time constant associated with

structures on chip is significantly lower than the typical heat sink
time constant (10s of seconds [15]). As a result, the temperature
simulator assumes that the dynamic aspects of the heat sink for
short time intervals can be ignored, resulting in a constantheat
sink temperature.

Our thermal model ignores heat diffusion effects between dif-
ferent blocks by assuming that the tangential resistances between
different functional blocks is much larger than each block’s indi-
vidual normal thermal resistance – in other words, in our model,
the temperature of a block will not be directly influenced by any
other block. Recently, Skadron et al. [16] developed a thermal
model to account for thermal diffusion effects. However, this model
was used only to model the effects of diffusion on steady state tem-
peratures, and not for dynamic temperature simulation. Thether-
mal model also neglects errors in sensor placement and readings,
and the effect of leakage power on temperature. It should be noted
that these issues arise in all DTM research. Section 6 discusses the
impact of these approximations on our results.

4.4 Thermal limits
We define the thermal limit at any time as the difference be-

tween the maximum allowed temperature of the chip and the tem-
perature of the heat sink at that time. The thermal control algo-
rithms discussed in this paper all strive to maintain the processor
temperature within this thermal limit. If the processor crosses the
thermal limit, it enters thermal crisis. Note that the thermal limit
depends on the quality of the heat sink and the ambient temper-
ature. Since it is desirable to design processors to work with a
variety of heat sinks and ambient temperatures, we model multi-
ple thermal limits ranging from�

��
to
��
��

above the heat sink

temperature. This particular range was chosen based on the maxi-
mum temperatures reached during our simulations by the baseline
non-adaptive processor. If we had used different thermal resis-
tance values, our range would be different.

Structure Area (
�) R (K/W) C (J/K)
LSQ 5.0e-7 2 5.0e-5
Inst. Window 9.0e-7 1.11 9.0e-5
Regfile 2.5e-7 4 2.5e-5
Bpred 3.5e-7 2.86 3.5e-5
D-Cache 1.0e-6 1 1.0e-4
ALU 1.0e-6 1 1.0e-4

Table 3. Per-structure data. RC time constant of all structures
is �������.

4.5 Metrics
As in previous DTM work [3, 15, 9], we use performance as

the main metric of comparison. Our algorithms seek to minimize
the performance impact while maintaining safe thermal levels.

Additionally, the thermal control algorithm should striveto avoid
or at least minimize the cycles spent in crisis (in the lattercase,
other aggressive techniques might be required to ensure chip safety).
As a result, a crucial metric when evaluating thermal control algo-
rithms is cycles spent in crisis. In order to limit the designspace
evaluated,we manually tuned the trigger temperature of different
mechanisms to ensure that no algorithm spent any cycles in crisis
(see Section 2.2).

5. Results
5.1 Application temperature profiles

For each application, Figure 2 shows the maximum tempera-
ture on chip and the IPC over time, collected at the granularity of
1�
��for the base non-adaptive architecture without any thermal
control mechanisms. The horizontal axis is the time in�secs. The
vertical axis is the maximum temperature above the heat sinktem-
perature for the upper curve and IPC for the lower curve. These
profiles cover the parts of the execution that showed the mostvari-
ability in temperature. Table 4 lists the range, mean, and stan-
dard deviation in temperature of the two hottest structureson chip
for each application. In our simulations, the hottest structure on
chip was always the register file, and the second hottest structure
was always the ALU. Table 4 also includes the corresponding IPC
statistics.

As can be seen, with the exception of the video encoders, the
overall variation in temperature with time is very low for all the ap-
plications. Even in the case of the video encoders, distincttemper-
ature phases sustained over long periods of time are visible. The
work performed by the video encoders takes more time and tends
to be more varied than the work done by the other applications.
This leads to phase behavior seen in their temperature profiles.

As is evident from the profiles, local variations seen in the IPC
are smoothed out in the temperature curve. This is because ofthe
relatively large thermal time constant for the structures on chip
(100�
��). However, as can be seen, a significant change in IPC
over a sustained period of time results in a corresponding change in
temperature. Table 4 highlights this observation. The onlyappli-
cations with a standard deviation in temperature greater than 1.5%
are the video encoders. However, all the applications experience
significant standard deviation in IPC (from 18% to 27%).

5.2 Reactive algorithms
Table 5 compares the performance of the two reactive schemes

discussed in Section 2. For each application, the ratio of execution
times of R-Toggle to R-IwFu is shown for different thermal lim-
its. The higher the ratio, the better R-IwFu performs compared to
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Figure 2. Maximum temperature (upper curve) and IPC profiles (lower curve) at a 1����granularity for the base non-adaptive processor. The
y-axis is both maximum temperature above the heat sink temperature and IPC. The x-axis shows the time in��������.

App. Hottest structure (
��

over heatsink) 2nd hottest structure (
��

over heatsink) IPC
Range Mean Std. Dev. (%) Range Mean Std. Dev. (%) Range Mean Std. Dev. (%)

GSMenc 17.29-17.62 17.44 0.40 04.93-05.02 04.97 0.40 1.61-6.16 4.72 21.74
GSMdec 15.06-15.24 15.17 0.21 14.29-14.35 14.32 0.22 1.69-5 3.92 24.82
G728enc 08.27-08.40 08.35 0.27 03.05-03.10 03.08 0.27 1.24-3.63 2.20 27.01
G728dec 08.47-08.55 08.51 0.18 03.00-03.03 03.02 0.17 1.52-3.51 2.42 18.18
H263enc 09.79-13.77 10.52 4.41 03.32-03.99 03.44 1.91 1.18-4.68 2.63 20.97
H263dec 12.76-13.42 13.14 1.24 03.58-03.79 03.70 1.28 1.29-5.46 3.46 21.97
MPGenc 09.44-19.13 14.53 14.22 03.27-05.40 04.37 10.47 1.26-6.12 3.40 26.75
MPGdec 14.13-14.86 14.33 0.91 04.07-04.28 04.19 0.75 1.53-5.49 3.92 25.25
MP3dec 10.01-10.57 10.39 1.31 03.50-03.62 03.57 0.68 2.32-5.01 3.13 18.73

Table 4. Statistics for temperature and IPC variability at a 1����granularity for the base non-adaptive processor.

App. Thermal limit. (
��

above the heat sink temperature)
4 5 6 7 8 9 10 11 12 13 14

GSMenc 4.34 4.06 2.76 2.21 1.78 1.57 1.34 1.27 1.19 1.13 1.08
GSMdec 3.25 3.30 2.04 1.60 1.26 1.04 1.03 1.03 1.03 1.02 1.01
G728enc 4.61 2.83 1.73 1.27 1.07 1.00 1.00 1.00 1.00 1.00 1.00
G728dec 4.75 2.85 1.79 1.29 1.07 1.00 1.00 1.00 1.00 1.00 1.00
H263enc 6.00 3.93 2.29 1.72 1.41 1.23 1.05 1.01 1.01 1.01 1.00
H263dec 5.41 3.75 2.39 1.82 1.45 1.23 1.04 1.01 1.01 1.00 1.00
MPGenc 2.01 2.05 1.79 1.71 1.50 1.59 1.36 1.34 1.17 1.12 1.10
MPGdec 5.50 3.90 2.67 2.10 1.70 1.48 1.27 1.18 1.11 1.06 1.02
MP3dec 4.69 2.91 1.92 1.45 1.17 1.04 1.03 1.00 1.00 1.00 1.00

Average 4.51 3.29 2.15 1.69 1.38 1.24 1.12 1.09 1.06 1.04 1.02

Table 5. Reactive schemes - Ratio of execution time of R-Toggle to R-IwFu.



R-Toggle. As can be seen, R-IwFu performs similar to or better
than R-Toggle for all the points in the table. For a thermal limit
of ����above the heat sink temperature, R-IwFu performs at
least 1.7 times better than R-Toggle, and performs 6 times aswell
in one case. The performance difference decreases as we move
towards less stringent thermal limits since the reactive responses
are invoked less frequently.

As mentioned, the hottest structure on chip is the register file.
Functional unit adaptation directly affects register file power by
reducing the number of active ports in the register file. On the
other hand, although toggling reduces the number of instructions
in the pipeline at any given time, it does not target the register
file thermal power directly (except by reducing the average activ-
ity factor). Hence, to achieve the same thermal benefit, R-Toggle
creates a larger IPC drop in the application than functionalunit
adaptation. Although instruction window adaptation is a global
mechanism, it provides more register file thermal benefit than tog-
gling. Finally, since toggling disables fetch, it will always result
in a performance degradation when invoked. On the other hand,
if the processor resources are not being completely utilized, func-
tional unit or instruction window adaptation can possibly result in
thermal benefit with minimal performance loss. This is discussed
further in Section 5.5.

The performance improvement of R-IwFu over R-Toggle mo-
tivates hot spot aware adaptations for temperature control. Rather
than using globally restrictive schemes which are not motivated
by specific hot spots (like R-Toggle), an adaptation targeted at the
structure with the largest thermal stress would likely result in bet-
ter performance. It should be noted that the register file might
not always be the hottest structure on chip. In such cases, local
adaptations specific to the new hottest structure would haveto be
invoked.

5.3 Predictive algorithms
Figure 3 shows the performance of the three predictive schemes

discussed in Section 3, P-DVS, P-Arch, and P-ArchDVS, for dif-
ferent thermal limits. It also shows the same data for the best
performing reactive scheme, R-IwFu. The horizontal axis inthe
graphs corresponds to the thermal limit, and the vertical axis repre-
sents the performance in terms of the slowdown over the base non-
adaptive architecture. Note that this is not % slowdown, butthe
ratio of execution times of the DTM algorithms over the base non-
adaptive architecture. As the thermal constraints become stricter
(from right to left on the horizontal axis), the slowdown increases
(from bottom to top on the vertical axis). Table 6 provides a pair-
wise comparison of R-IwFu vs. P-ArchDVS, P-DVS vs. P-Arch,
and P-Arch vs. P-ArchDVS for a strict, moderate, and relaxed
thermal limit.

As can be seen, the predictive schemes perform significantly
better than the reactive schemes for all the applications including
the video encoders which showed some temperature variability.
On average, for a strict thermal limit of�

��
above the heat sink

temperature, the best performing predictive scheme, P-ArchDVS
is more than twice as fast as the best performing reactive scheme,
R-IwFu. This is primarily because the predictive schemes can use
high time overhead adaptations like register file resizing and DVS.
These adaptations result in significant power and temperature sav-
ings, with a relatively lower penalty on performance. Also,since
very little variability is seen in the temperature profiles of most
applications, the hardware configuration chosen by the predictive
algorithm tends to be close to optimal for the entire execution.

Among the predictive schemes, P-ArchDVS always performs
the best. This is rather intuitive - all the hardware configurations
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Figure 4. Sample configuration space for algorithm.

available to P-Arch and P-DVS are subsets of the configurations
available to P-ArchDVS. Comparing architectural adaptation and
DVS, the bulk of the benefit comes from architectural adaptation.
Specifically, the addition of DVS to P-Arch only gives an 8% ben-
efit at�

��
, and 1% at���and

��
��

. Similarly, comparing P-
Arch and P-DVS, we see that P-DVS is 23% slower than P-Arch at
�
��

. The performance difference between the different schemes
reduces as the thermal limit is relaxed (from left to right onthe
horizontal axis in Figure 3). Section 5.5 qualitatively analyzes the
reasons for the above trends.
5.4 Configurations chosen

To help us understand the extent to which the adaptive hard-
ware features provided to the predictive algorithms are exploited,
we look at the hardware configurations chosen by the different pre-
dictive algorithms for each application and thermal limit.Table 7
lists the architectural configurations chosen by P-Arch, and Table 8
lists the frequencies chosen by P-DVS. To conserve space, Table 7
merges the 54 configurations available to P-Arch into groups. In
general, lower numbered configurations are more aggressivethan
higher numbered ones. Similarly, Table 8 lists frequency ranges
(the lowest frequeny chosen was 1168MHz).

As can be seen in Table 7, no single architectural configuration
is best for all applications and thermal limits. A given processor
may be designed for multiple applications and thermal limits (the
thermal limit can vary depending on the heat sink used or the am-
bient temperature). Table 7 indicates that such a processorwould
utilize a considerable range of architectural configurations, clearly
motivating architectural adaptation for thermal control.Similarly,
Table 8 indicates the large frequency range utilized, motivating
DVS for thermal control.

For lack of space, we do not show the configurations chosen
by P-ArchDVS. Overall, P-ArchDVS chose more aggressive ar-
chitectures than P-Arch with higher frequencies than P-DVS.
5.5 Qualitative analysis

This section presents a qualitative analysis of the above results
(in a style similar to that for the energy algorithm in [12]).
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Figure 3. Predictive algorithms for all applications. The y-axis is the slowdown caused by the DTM algorithm over the base non-adaptive
architecture. The x-axis shows the thermal limit in

��
above the heat sink temperature. MPGenc is on a different scale.

App. R-IwFu vs. P-ArchDVS P-DVS vs. P-Arch P-Arch vs. P-ArchDVS
4
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��

4
��

8
��
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��

GSMenc 2.40 1.53 1.12 0.89 1.08 1.05 1.31 1.02 1.00
GSMdec 2.37 1.14 1.00 0.82 0.97 1.00 1.29 1.05 1.00
G728enc 1.46 1.04 1.00 1.19 1.02 1.00 1.00 1.00 1.00
G728dec 1.55 1.07 1.03 1.26 1.04 1.03 1.00 1.00 1.00
H263enc 1.92 1.17 1.00 1.38 1.06 1.00 1.00 1.00 1.00
H263dec 2.27 1.22 1.00 1.38 1.14 1.02 1.09 1.00 1.00
MPGenc 3.62 2.10 1.00 1.65 1.35 1.10 1.00 1.00 1.00
MPGdec 2.42 1.39 1.00 1.47 1.15 0.96 1.00 1.00 1.05
MP3dec 1.72 1.12 1.03 1.04 1.01 1.00 1.05 1.00 1.00

Average 2.19 1.31 1.02 1.23 1.09 1.02 1.08 1.01 1.01

Table 6. Comparison of different schemes- Execution time ratios forof R-IwFu—P-ArchDVS, P-DVS—P-Arch, and P-Arch—P-ArchDVSfor
a strict, moderate and relaxed thermal limit.

Thermal P-Arch configurations chosen
limit (

��
) 1-9 10-19 20-29 30-39 40-49 50-54

14 GSMe,GSMd,G728e,G728d,MP3d,H263e,MPGe,MPGd H263d
10 GSMd,G782e,G728d,MP3d,MPGd GSMe,H263e,H263d,MPGe
6 G782e,MPGd GSMd,G728d,MP3d,H263e,H263d GSMe MPGe
4 GSMe,G782e,G728d GSMd MP3d,MPGd H263e,H263d H263e MPGe

Table 7. Hardware configurations chosen by P-Arch. Lower numbered configs. are generally more aggressive than higher ones.

Thermal P-DVS frequencies chosen (MHz)
limit (

��
) 2200 1900-2200 1600-1900 1300-1600 0-1300

14 G728e,G728d,MP3d,H263e,H263d,MPGd GSMe,GSMd,MPGe
10 G728e,G728d MP3d,H263e,H263d,MPGd GSMe,GSMd,MPGe
6 G728e,G728d MP3d,H263d,MPGd GSMe,GSMd,H263e,MPGe
4 G728e,G728d MP3d,H263e,H263d,MPGe GSMe,GSMd,MPGe

Table 8. Frequencies chosen by P-DVS. No frequency below 1000MHz waschosen.



Representing the configuration space.To aid our analysis, we
consider the configuration space available to the differentschemes,
and reason about which configuration would be chosen. Figure4(a)
represents the configuration space, showing the tradeoff between
the maximum temperature (y-axis) and execution time (x-axis) for
each configuration, for a hypothetical application.1 Each curve in
the figure represents an available architecture; differentpoints on
the curve represent the architecture running at different frequen-
cies (the reason for the shape of the curves is given below). All
points in the figure are available to P-ArchDVS (assuming volt-
age/frequency scaling over a continuous range). P-Arch, however,
operates with a fixed frequency and so can only choose configu-
rations with different architectures at this fixed frequency, marked
by P, Q, R, S, and T in the figure. P-DVS, on the other hand,
is restricted to the one curve that corresponds to the chosenbase
architecture, P, in our case. In the figure, configurations that are
closer to the origin are generally more desirable since theyreach
low temperatures and have high performance. For a given ther-
mal limit (maximum temperature), we would like to choose the
left-most configuration available that is below this temperature.

We start by focusing on P-ArchDVS since it has the most con-
figurations available to it. We first explain why P-ArchDVS sees
the large benefits from architecture adaptation and then explain
why it generally sees only little benefit from DVS in our experi-
ments. We then discuss why P-Arch does better than P-DVS and
why our predictive algorithms work better than our reactivealgo-
rithms for our experiments.
Benefits from architecture adaptation for P-ArchDVS: To un-
derstand P-ArchDVS, we first derive a mathematical expression
for the shape of the curves in Figure 4(a). For an architecture A
at frequency f, execution time is proportional to

�
������. From

equation 1 and since voltage is approximately linearly related to
frequency for a large range, the maximum temperature for archi-

tecture A at frequency f is	
��
����	
��
��������
��
������.

Since the profiling frequency,�����, is a constant,	
��
����
�
��	
�������
����� �

�
���
�������
��, defining the shape of each curve.

The value
�
��	
�������
����� is a constant for architecture A and

we refer to it as thethermal constant(higher thermal constants
imply higher temperatures for a given execution time). Thus, in
the range where voltage�frequency, it follows that each curve
in Figure 4 follows a cubic relationship and will not intersect with
any other curve. Further, for any thermal limit,	��
��, the max-
imum performance will be obtained by the architecture with the
lowest thermal constant, say

�
��	���, running at the frequency

������
������

�
��	
�������

�
�
. Denote this frequency as��������.

We can now deduce three cases where architecture adaptation
will provide significant benefits to P-ArchDVS. First, if thearchi-
tecture with the lowest thermal constant (

�
��	���) is different for

different applications, then architecture adaptation will be benefi-
cial across applications.

Second, since the frequency range supported by a typical sys-
tem is limited, it is possible that for architecture

�
��	���, the cor-

responding�������� for the required thermal limit is higher than
the highest frequency supported by the system. Thus, this system
cannot see the full performance potential of architecture

�
��	���

at that thermal limit, and there could be another safe architecture
�
The shapes and relationships of the different curves are similar to the real

applications; however, some effects are exaggerated for easier understand-
ing.

with higher performance at a supported frequency. In Figure4(a),
architecture R is

�
��	���, but architecture Q has the best perfor-

mance for thermal limit	�within the supported frequency range,
again motivating architecture adaptation.

Finally, it is possible that�������� for the required thermal
limit is lower than the lowest frequency supported by the system.
In this case,

�
��	���cannot be used safely for the specified tem-

perature limit and an alternate architecture must be used, again
motivating architecture adaptation. Figure 4(a) illustrates this sit-
uation at temperature	�– architecture R does not reach	�at any
supported frequency, but architecture	(which has a higher ther-
mal constant) does.

In our experiments, we only see the first and second source of
benefits from architectural adaptation with P-ArchDVS. Thethird
situation was not seen, but could occur with even lower thermal
limits or with systems with a more limited range of supportedfre-
quencies.
Benefits from DVS for P-ArchDVS: Without DVS P-ArchDVS
defaults to P-Arch and is forced to pick configurations at a fixed
frequency. In Figure 4(a), points P, Q, R, S, and T are the choices
available. Note, however, that architecture S will never bechosen
since R and T have both higher performance and lower tempera-
ture than S. Below, we refer to a curve joining the points thatare
considered by P-Arch (in our example, a curve joining P, Q, R,and
T) as the P-Arch curve. Part (b) of Figure 4 illustrates this curve
(dashed line) for a hypothetical application, along with the (solid)
DVS curves similar to part (a). P-Arch will always choose theleft-
most architecture on its curve that is below the specified thermal
limit. DVS will provide a benefit to P-ArchDVS for thermal lim-
its where a DVS curve has a point to the left of the architecture
chosen on the P-Arch curve. There are three key cases.

First, at the thermal limits where the slope of the P-Arch curve
is less steep than the DVS curves (which are cubic), DVS will pro-
vide configurations with better performance. In figure 4(b),this
occurs at thermal limits of	�and lower. At thermal limits above
	�, the P-Arch curve (joining points P, Q, and R) is steeper thanall
the DVS curves. We find that for most of our applications and ther-
mal limits, the P-Arch curve falls at a steeper rate than the DVS
curves. Due to the aggressiveness of our base non-adaptive archi-
tecture and the effectiveness of our adaptation mechanisms, archi-
tectural adaptation results in a large thermal benefit for a small per-
formance loss, resulting in better benefits than DVS. However, at
stricter thermal limits, the effectiveness of architectural adaptation
reduces because the available system resources become morecrit-
ical. Hence, the rate of fall of P-Arch configurations can become
less than cubic and DVS becomes more effective than architecture
adaptation (thermal limit lower than	�). For our applications, this
effect is significant only for GSMenc and GSMdec at the strictest
thermal limits.

A second case where DVS may do better is because of the dis-
crete nature of the P-Arch curve. Even though the curve joining
P, Q, and R is to the left of the DVS curves in Figure 4(b), not
all points on the curve are available configurations. Thus, for a
thermal limit of	�, DVS would enable us to pick configuration U
while P-Arch would have to pick configuration R. However, again,
because of the steeper slope of the P-Arch curve and because we
have a large number of architecture configurations available, gen-
erally, the performance difference between U and R can be ex-
pected to be small.

Finally, DVS provides benefits for all temperatures below the
lowest maximum temperature supported by all of the architecture
configurations available to P-Arch. For example, in Figure 4(b),



below temperature	�, P-Arch has no safe choice. However, we
did not see this in our experiments because we only considered
temperature ranges where all algorithms had some safe choices.

In summary, DVS can potentially provide large benefits to P-
ArchDVS at thermal limits where further reducing the architec-
tural resources for the safe architectures will severely impact IPC,
or if there is no safe architecture configuration supported for those
limits. These situations generally occur at relatively lowthermal
limits. For most of the applications we tested, this limit was not
reached. We do see the trend, however, that as the thermal limit
is reduced, the addition of DVS provides increasing benefitsfor
P-ArchDVS.
P-Arch vs. P-DVS. The above discussion also clarifies why P-
Arch performs significantly better than P-DVS in our experiments.
The configuration space available to P-DVS is limited to a single
curve in the graph, and depends on the base architecture. We eval-
uated P-DVS on the most aggressive architecture available.In fig-
ure 4(b), this corresponds to the DVS curve passing through point
P. The above reasoning based on the relative steepness of theDVS
and P-Arch curves is relevant here as well, and shows again why
P-Arch is better, especially at high thermal limits.

Note that if we had chosen an architecture with a lower thermal
constant as our base (i.e., a curve lower than the current base), then
P-DVS would show better performance relative to P-Arch (since
the slope of the P-Arch curve becomes less steep at the architec-
tures with lower thermal constants). However, since the ordering
of architectures based on the thermal constant is differentfor dif-
ferent applications, it is unclear which architecture to choose based
on this reasoning. Furthermore, our current base architecture af-
fords performance points not seen in other architectures, and is the
architecture of choice for many situations (see Table 7), justifying
its use as the base.
Reactive vs. predictive algorithms.The behavior of the reactive
vs. predictive algorithms can also be explained using Figure 4(b).
In the figure, the curve passing through different configurations
available to R-IwFu would pass through point P and stay above
the P-Arch and P-DVS curves. Similarly, the reactive toggling
curve would be higher than the R-IwFu curve.

6. Discussion and future work
Predictive+reactive algorithm: Although our predictive algo-

rithm performs well, there is still room for improvement. Based on
the peak temperature reached during profiling, the predictive algo-
rithm chooses a hardware configuration that would be safe forthe
entire application run. For applications that see some variability
in temperature (e.g., the video encoders), this configuration may
be sub-optimal when the temperature is significantly lower than
the peak. As seen in our applications, even with high variability,
the temperature stays constant for a relatively long period. This is
because of the relatively large thermal time constants of the struc-
tures on chip – significant changes in IPC over a sustained period
in time are required to create noticeable changes in temperature.
This motivates a coarse-grained reactive algorithm piggy-backed
on our predictive algorithm. We leave this to future work.

Non-multimedia workloads: Although our evaluation has fo-
cused on multimedia applications, we feel that this work could
apply to other general-purpose workloads (e.g., SPEC) as well.
For reasons discussed above, we can expect that even with gen-
eral workloads, the temperature will stay roughly constantfor rel-
atively long phases. Although these workloads do not have the
periodic, frame-based behavior of multimedia applications, much
recent work on runtime optimization is motivated by repetitive
(though not periodic) execution phases in these applications. It

is likely that constant-temperature phases will be correlated with
such phases, and prior work can be leveraged to detect them. In
that case, again, a predictive+reactive thermal management algo-
rithm such as described above may be possible. This is also a
fertile ground for future work.

Multiprogrammed workloads: In a multiprogrammed envi-
ronment, our predictive algorithm will work on a per-application
basis. If multiple multimedia applications are running, each appli-
cation will be profiled individually and controlled separately based
on its specific IPC and temperature profiles. Since operatingsys-
tem time slices are of the order of milliseconds which is much
greater than the thermal time constant, we expect that an appli-
cation will not be affected by the thermal properties of other ap-
plications running concurrently on the system. Due to the large
time slice, the application will reach a stable temperaturewhich
depends only on its properties and not on the starting temperature.
However, it is possible that other applications running on the pro-
cessor could gradually cause the heat sink temperature to change.
This will change the thermal margin allowed to the predictive al-
gorithm. In such a situation, the predictive algorithm should select
another configuration for the new thermal limit at the beginning of
the time slice – this does not require any reprofiling, but only deter-
mining a new architecture/frequency combination for the new ther-
mal limit. Finally, our predictive algorithms do not require all the
concurrent applications to be multimedia applications. The predic-
tive algorithm will control the multimedia applications while other
applications will be controlled by the processor’s defaultthermal
control mechanisms.

Thermal vs. energy control: As mentioned earlier, although
there are similarities between processor energy reductionand pro-
cessor thermal control, there exist distinct differences in the two
goals. We discuss these differences below. Since our previous
predictive energy algorithm [12] is closely related to the predictive
thermal algorithm, we focus on a comparison between the two.

We first briefly describe the previous energy algorithm [12].
The algorithm adapts at the frame granularity; adaptationscan be
invoked at frame boundaries. For a given application and frame
type, the algorithm profiles the average power, P, and IPC of all
the candidate architectures. Using an instruction count predictor
to predict the instruction count of future frames, and ranking the
architectures in increasing order of energy-per-instruction (which
can determined from P and IPC), the algorithm selects the most
energy efficient architecture that will also meet the frame deadline.

We next discuss the differences between energy and thermal
control in general, and between the specific predictive algorithms
in particular. First, energy and thermal control operate atdiffer-
ent temporal and spatial granularities. Energy control attempts to
lower the sum total of energy consumed over the entire applica-
tion run, while thermal control must ensure that at no time isthe
thermal limit exceeded. Therefore, our previous energy algorithm
is sensitive to the amount of work done in a particular frame and
potentially applies a different adaptation for different frames. Our
thermal algorithm on the other hand picks the same configuration
for all frames, since it only cares about the peak temperature which
does not change. Similarly, the spatial granularity at which the two
algorithms operate differs. The energy algorithm tracks the power
consumption of the entire chip as a whole, while the temperature
algorithm concentrates on the power consumption of specificlo-
calized structures on chip. A direct result of this is that architec-
tural adaptation is better than DVS for thermal control, butDVS
was found to be better for the predictive energy algorithm.

The second set of differences occur because the energy algo-



rithm seeks to minimize energy while meeting a performance dead-
line. This deadline is determined by the OS based on system load.
Thus, there is a minimum performance target. On the other hand,
with thermal control, there is no minimal target – the only con-
straint on the system is that it should not burn. In a system where
energy is not a constraint, the goal of the thermal algorithmis to
avoid chip-burn with the maximum possible performance, so it can
allow as many applications to run as possible. This is the scenario
we evaluate in this paper. In contrast, the energy algorithmhas the
option of slowing down as long as the deadline is met.

Thermal model errors: As mentioned in Section 4.3.2, our
thermal model ignores effects due to heat diffusion, errorsin sen-
sor placement and readings, leakage power, and non-ideal heat
sinks. However, other than sensor error (which is an issue for all
DTM schemes), these approximations do not affect the premise or
the operation of our predictive algorithm, as long as a relationship
between temperature and frequency can be determined (i.e.,a re-
lationship to replace equation 1). The approximations willlikely
affect the absolute values of our quantitative evaluations, but are
unlikely to affect the qualitative insights we have derived.

For example, consider diffusion effects. If structures with the
highest power densities are surrounded by cooler structures, then
it is possible that our evaluation will misidentify the hottest struc-
tures. However, this is a function of the chip floorplan on which
designers do not always have full control. Additionally, wehave
confirmed that the register file and functional units are thermal hot
spots in at least some commercial processors [5, 7]. Thus, our
evaluations have identified reasonable hot spots, even if the abso-
lute temperatures may have some error, and the qualitative results
likely hold. It is of course possible that for some applications and
floor plans, the register file and functional units are not thehottest
structures on chip. In that case, different localized response mech-
anisms targeted at different potential chip hot spots need to be ex-
plored. We also note that the performance advantage of the predic-
tive (vs. reactive) algorithms (as shown in Figure 3) is quite sig-
nificant, largely due to the availability of additional high-overhead
response mechanisms. It is unlikely that this large benefit is com-
pletely misrepresented by our temperature model approximations.
Nevertheless, more accurate thermal modeling is a crucial area for
further research.

7. Conclusions
To save on packaging, heat sink, and cooling solution costs for

general-purpose processors, dynamic thermal management tech-
niques (DTM) have been proposed. However, these techniques
result in a performance degradation when invoked. This paper
proposes new DTM algorithms for processors, targeted towards
the increasingly important workload of multimedia applications.
In contrast to current DTM schemes which are all reactive in na-
ture, we proposepredictiveDTM algorithms that exploit certain
properties of multimedia applications. We find that our predictive
algorithms perform significantly better than existing reactive DTM
algorithms, performing at least twice as well as reactive algorithms
for the strictest thermal limit and up to 3.6 times as well in some
cases. This is because the predictive algorithms can efficiently
use high time overhead adaptations like register file resizing and
DVS which result in significant thermal benefit for a limited loss
in performance. Also, our analysis found that there is very little
variation in the temperature profiles of several of our multimedia
applications. This implies that the hardware configurations chosen
by our predictive algorithms will generally remain close tooptimal
for the entire application execution run.

We also evaluate the effectiveness of different DTM response

mechanisms. For architectural adaptation, for both reactive and
predictive algorithms, we found that instruction window and func-
tional unit adaptation performed better than fetch-toggling. The
register file was the hot spot in our system. Local adaptations like
functional unit adaptation and predictive instruction window re-
sizing which directly target register file power resulted inmuch
smaller performance degradation than chip-wide techniques like
fetch-toggling (which reduce chip activity). For similar reasons,
architecture adaptation performed better than DVS for manycases
although the combination of the two gave the best results. Overall,
our results show the importance of tailoring the DTM responses to
the thermal hot spots and thermal limits of the system.

DTM is still a nascent field and there are many promising av-
enues of future work. Section 6 details some of this work.
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