
ALP: Efficient Support for All Levels of
Parallelism for Complex Media Applications

RUCHIRA SASANKA, MAN-LAP LI, and SARITA V. ADVE

University of Illinois at Urbana-Champaign

and

YEN-KUANG CHEN and ERIC DEBES

Intel Corporation

The real-time execution of contemporary complex media applications requires energy-efficient pro-

cessing capabilities beyond those of current superscalar processors. We observe that the complexity

of contemporary media applications requires support for multiple forms of parallelism, including

ILP, TLP, and various forms of DLP, such as subword SIMD, short vectors, and streams. Based

on our observations, we propose an architecture, called ALP, that efficiently integrates all of these

forms of parallelism with evolutionary changes to the programming model and hardware. The novel

part of ALP is a DLP technique called SIMD vectors and streams (SVectors/SStreams), which is

integrated within a conventional superscalar-based CMP/SMT architecture with subword SIMD.

This technique lies between subword SIMD and vectors, providing significant benefits over the

former at a lower cost than the latter. Our evaluations show that each form of parallelism sup-

ported by ALP is important. Specifically, SVectors/SStreams are effective, compared to a system

with the other enhancements in ALP. They give speedups of 1.1 to 3.4X and energy-delay product

improvements of 1.1 to 5.1X for applications with DLP.

Categories and Subject Descriptors: C.1.2 [Processor Architectures]: Multiple Data Stream Ar-

chitectures (Multiprocessors)

General Terms: Design, Performance

Additional Key Words and Phrases: Parallelism, media applications, DLP, TLP, SIMD, vector,

multimedia, data-level parallelism

This work is supported in part by a gift from Intel Corp., an equipment donation from AMD, and the

National Science Foundation under Grant No.CCR-0209198 and EIA-0224453. Ruchira Sasanka

was supported by an Intel graduate fellowship.

Authors’ addresses: Ruchira Sasanka, Man-Lap Li, and Sarita V. Adve, University of Illinois at

Urbana-Champaign, Urbana, Illinois 61801; email: ruchira.sasanka@intel.com; manlapli@uiuc.

edu; sadve@uiuc.edu; Yen-Kuang Chen and Eric Debes, Intel Corporation, Santa Clara, California

95052; email: yen-kuang.chen@intel.com; eric.debes@intel.com.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2007 ACM 1544-3566/2007/03-ART3 $5.00 DOI 10.1145/1216544.1216546 http://doi.acm.org/

10.1145/1216544.1216546

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 1, Article 3, Publication date: March 2007.

2 • R. Sasanka et al.

ACM Reference Format:
Sasanka, R., Li, M.-L., Adve, S. V., Chen, Y.-K., and Debes, E. 2007. ALP: Efficient support for

all levels of parallelism for complex media applications. ACM Trans. Architec. Code Optim. 4,

1, Article 3 (March 2007), 30 pages. DOI = 10.1145/1216544.1216546 http://doi.acm.org/10.1145/

1216544.1216546.

1. INTRODUCTION

Real-time complex media applications such as high-quality and high-resolution
video encoding/conferencing/editing, face/image/speech recognition, and im-
age synthesis like ray tracing are becoming increasingly common on general-
purpose systems such as desktop, laptop, and handheld computers. General-
purpose processors (GPPs) are becoming more popular for these applications
because of the growing realization that programmability is important for this
application domain as well, as a result of a wide range of multimedia standards
and proprietary solutions [Diefendorff and Dubey 1997]. However, real-time ex-
ecution of such complex media applications needs a considerable amount of pro-
cessing power that often surpasses the capabilities of current superscalar pro-
cessors. Further, high-performance processors are often constrained by power
and energy consumption, especially in the mobile systems where media appli-
cations have become popular.

This paper seeks to develop general-purpose processors that can meet the
performance demands of future media applications in an energy-efficient way,
while also continuing to work well on other common workloads for desktop, lap-
top, and handheld systems. In particular, we do not consider dedicated solutions
such as digital signal processors (DSPs), application specific integrated circuits
(ASICs), or media processors for this work.

Fortunately, most media applications have a lot of parallelism that can be
exploited for energy-efficient high-performance designs. The conventional wis-
dom has been that this parallelism is in the form of large amounts of data-level
parallelism (DLP). Therefore, many recent architectures have targeted such
DLP in various ways, e.g., Imagine [Ahn et al. 2004], SCALE [Krashinsky et al.
2004], VIRAM [Kozyrakis 2002], and CODE [Kozyrakis and Patterson 2003].
Most evaluations of these architectures, however, are based on small kernels,
e.g., speech codecs, such as adpcm, color conversion, such as rgb2cmyk, and fil-
ters, such as fir. Further, dedicated solutions for large amounts of DLP require
a considerable area overhead, without any benefit to applications that do not
have such DLP. For example, the Tarantula vector unit has the same area as
its scalar core [Espasa et al. 2002], but likely will be underutilized for many
applications that run on GPPs.

This paper differs from the above works in one or both of the following im-
portant ways. First, to motivate and evaluate our work, we use more complex
applications from our recently released ALPBench benchmark suite [Li et al.
2005]. These applications are face recognition, speech recognition, ray tracing,
and video encoding and decoding. They cover a wide spectrum of media process-
ing, including image, speech, graphics, and video processing. Second, because
of our focus on GPPs, we impose the following constraints and assumptions on

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 1, Article 3, Publication date: March 2007.

ALP: Efficient Support for All Levels of Parallelism • 3

our work: (1) GPPs already exploit some DLP through subword SIMD instruc-
tions, such as MMX/SSE (subsequently referred to as SIMD), (2) GPPs already
exploit instruction- and thread-level parallelism (ILP and TLP), respectively,
through superscalar cores and through chip multiprocessing (CMP) and si-
multaneous multithreading (SMT), and (3) radical changes and overhead in
the hardware and programming model are not acceptable for well-established
GPPs. Motivated by the properties of our applications and the above constraints
and assumptions, we propose a complete architecture called ALP.

Specifically, we make the following five observations through our study of
complex applications.

� All levels of parallelism. As reported by others, we also find DLP in the kernels
of our applications. However, as also discussed in Li et al. [2005], many large
portions of our applications lack DLP and only exhibit ILP and TLP (e.g.,
Huffman coding in MPEG encode and ray tracing).

� Small-grain DLP. Many applications have small-grain DLP (short vectors)
because of the use of packed (SIMD) data and new intelligent algorithms used
to reduce computation. Packed data reduces the number of elements (words)
to be processed. New intelligent algorithms introduce data-dependent con-
trol, again reducing the granularity of DLP. For example, older MPEG en-
coders performed a full-motion search comparing each macroblock from a
reference frame to all macroblocks within a surrounding region in a pre-
vious frame, exposing a large amount of DLP. Recent advanced algorithms
significantly reduce the number of macroblock comparisons by predicting the
“best” macroblocks to compare. This prediction is based on the results of prior
searches, introducing data-dependent control between macroblock computa-
tions and reducing the granularity of DLP.

� Dense representation and regular access patterns within vectors. Our applica-
tions use dense data structures, such as arrays, which are traversed sequen-
tially or with constant strides, in most cases.

� Reductions. DLP computations are often followed by reductions, which are
less amenable to conventional DLP techniques (e.g., vectorization), but be-
come significant with the reduced granularity of DLP. For example, when
processing blocks (macroblocks) in MPEG using 16B packed words, reduc-
tions occur every 8 (16) words of DLP computation.

� High memory to computation ratio. DLP loops are often short with little com-
putation per memory access.

� Multiple forms of DLP. Our applications exhibit DLP in the form of SIMD,
short vectors, long streams, vectors, and streams of SIMD.

To effectively support all levels of parallelism (CALP) exhibited by our ap-
plications in the context of current GPP trends, ALP is based on a GPP with
CMP, SMT, and SIMD. The most novel part of ALP is a technique called SIMD
vectors (SVectors) and SIMD streams (SStreams) that support larger amounts
of DLP than possible with SIMD. SVectors/SStreams use an evolutionary pro-
gramming model and can be implemented with modest additional hardware
support that is tightly integrated within a modern superscalar pipeline.

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 1, Article 3, Publication date: March 2007.

4 • R. Sasanka et al.

The programming model for SVectors lies between SIMD and conventional
vectors. SVectors exploit the regular data access patterns that are the hallmark
of DLP by providing support for conventional vector memory instructions. They
differ from conventional vectors in that computation on vector data is performed
by existing SIMD instructions. Each architectural SVector register is associated
with an internal hardware register that indicates the “current” element of the
SVector. A SIMD instruction specifying an SVector register as an operand ac-
cesses and autoincrements the current element of that register. Thus, a loop
containing a SIMD instruction accessing SVector register V0 marches through
V0, much like a vector instruction. SStreams are similar to SVectors except
that they may have unbounded length.

Our choice of supporting vector/stream data, but not vector/stream computa-
tion, exploits a significant part of the benefits of vectors/streams for our applica-
tions, but without need for dedicated vector/stream compute units. Specifically,
ALP largely exploits existing storage and data paths in conventional super-
scalar systems and does not need any new special-purpose structures. ALP re-
configures part of the L1 data cache to provide a vector register file when needed
(e.g., using reconfigurable cache techniques [Albonesi 1999; Ranganathan et al.
2000]). Data paths between this reconfigured register file and SIMD units al-
ready exist, since they are needed to forward data from cache loads into the
computation units. These attributes are important given our target is GPPs
that have traditionally resisted application-specific special-purpose support.

Our evaluations show that our design decisions in ALP are effective. Rel-
ative to a single-thread superscalar without SIMD, for our application suite,
ALP achieves aggregate speedups from 5 to 56X, energy reduction from
1.7 to 17.2X, and energy-delay product (EDP) reduction of 8.4 to 970.4X.
These results include benefits from a four-way CMP, two-way SMT, SIMD,
and SVectors/SStreams. Our detailed results show significant benefits from
each of these mechanisms. Specifically, for applications with DLP, adding
SVector/SStream support to a system with all the other enhancements in ALP
achieves speedups of 1.1 to 3.4X, energy savings of 1.1 to 1.5X, and an EDP
improvement of 1.1 to 5.1X (harmonic mean of 1.7X). These benefits are partic-
ularly significant given that the system compared already supports ILP, SIMD,
and TLP; SVectors/SStreams require a relatively small amount of hardware;
the evaluations consider complete applications.

More broadly, our results show that conventional GPPs can be augmented
to support complex media applications more efficiently using evolutionary ar-
chitectural enhancements and simple extensions to the existing programming
model.

2. THE ALP PROGRAMMING MODEL

ALP supports conventional threads for TLP. ILP is not exposed to the program-
mer since ALP uses an out-of-order superscalar core as in current GPPs. The
SIMD programming model roughly emulates Intel’s MMX/SSE2 with multiple
8, 16, 32, or 64 bit subwords within a 128-bit word and with 8 SIMD logical reg-
isters. Most common opcodes are supported, e.g., packed addition, subtraction,

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 1, Article 3, Publication date: March 2007.

ALP: Efficient Support for All Levels of Parallelism • 5

Fig. 1. An SVR consists of records, a record consists of packed words, and a packed word consists

of subwords.

multiplication, absolute difference, average, logical, and pack/unpack opera-
tions. SIMD operations use the FP register file and FP units. We next describe
the novel SVectors and SStreams programming model.

2.1 SIMD Vectors (SVectors)

SVectors are built on three key enhancements to SIMD support:

2.1.1 SIMD Vector Registers (SVRs). These registers hold a sequence of
records, where each record itself is a sequence of (possibly strided) packed words
and each one may contain multiple (contiguous) subwords (see Figure 1). Unlike
a conventional vector, the records of an SVR can be individually accessed with an
index, called the current record pointer (CRP). An SVR is allocated on demand
and can have a variable length up to a given maximum.

2.1.2 SVector Allocate (VALLOC) and SVector Load (VLD) Instructions.
VALLOC and VLD allocate an SVR. VLD, in addition, loads a (possibly strided)
sequence of packed words into the SVR from memory. A slight variation of VAL-
LOC, called VALLOCst, allocates an SVR, whose records are flushed to memory
as they are written. All of these instructions reset the CRP of the SVR. These
are the only special SVector instructions in the ALP ISA.

2.1.3 SIMD Instructions Capable of Accessing SVRs. All computation on
SVRs is performed using SIMD instructions, which can directly access an indi-
vidual record of an SVR. Such an instruction specifies an SVR as an operand,
which implicitly accesses the record of the SVR pointed to by its CRP and also
increments the CRP. Thus, a dynamic sequence of SIMD instructions specifying
a given SVR will access successive records of the SVR.

The ALP ISA supports 8 logical SVRs, V0–V7, with a record size of 128 bits
and subword sizes of 8, 16, 32, and 64 bits. Associated with each logical SVR
is an internal SVR descriptor register. This descriptor register stores pertinent
information about the SVR, including the CRP. A VLD, VALLOC, or VALLOCst
instruction must be used to explicitly allocate an SVR before any SIMD instruc-
tion can access it. These vector instructions specify the length of the SVector.
The VLD and VALLOCst instructions also specify the organization of the SVec-
tor in memory, including the base memory address of the SVector, the stride
between two packed words in the SVector, and the size a packed word (hence
number of packed words per 128 b record). All of this information is stored in
the associated SVR descriptor.

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 1, Article 3, Publication date: March 2007.

6 • R. Sasanka et al.

Fig. 2. (a) C code and (b) SVector assembly enhanced C code, for vector computation V 2 = k ∗
(V 0 + V 1) − 16. k is stored in simd reg1.

As an example, Figure 2 gives code for a vector computation V 2 = k ∗
(V 0 + V 1) − 16, where V0, V1, and V2 are SVRs, and k is a constant stored in
simd reg1. Part (a) of the figure gives C code for the computation and part
(b) gives C code with embedded SVector assembly. The first two assembly
instructions, (1) and (2), load the two source SVectors from memory. For this ex-
ample, the size of a packed word is a float and the stride between packed words
is zero. The number of 16 B (128 b) records and the load address are specified in
general-purpose registers whereas the stride between packed words is specified
in an implicit stride register. The next instruction, VALLOCst, allocates a new
SVR for writing V2. The first three assembly instructions implicitly reset the
CRP of V0, V1, and V2, respectively. Next, a loop called a SIMD loop is used
to traverse the records of the SVectors. This loop contains SIMD instructions
that directly read/write the SVRs, accessing the record currently pointed by the
corresponding CRP and incrementing this CRP. Each occurrence of instruction
(4), therefore, reads from the next record of V0 and V1 and each occurrence of
instruction (6) writes to the next record of V2 (and also stores that record to
memory, since V2 is allocated with a VALLOCst).

ALP also provides an instruction, ClearCRP, to reset the CRP of the specified
SVR, and an instruction, MoveRec, to read a specific SVR record into a SIMD
register. ClearCRP is used if an SVR needs to be read again after it has already
been traversed once with SIMD instructions, e.g., to reuse a quantization table
in MPEG. MoveRec is used to provide random read access into records, e.g.,
MoveRec V0, #4, simd reg4 moves record V0[CRP+4] to simd reg4.

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 1, Article 3, Publication date: March 2007.

ALP: Efficient Support for All Levels of Parallelism • 7

ALP requires that an SVector/SStream be traversed sequentially. If a record
needs to be skipped, it must be read and discarded to increment the CRP. Al-
ternatively, it is possible to provide an instruction to increment the CRP by
a given number of records; however, our applications do not exhibit such a
requirement.

ALP does not support scatter/gather operations on SVectors since our appli-
cations do not exhibit memory access patterns that would benefit from such
operations.

ALP imposes three implementation-driven ISA restrictions. The first two
arise because ALP implements SVRs by reconfiguring part of the L1 data
cache to allocate SVR space on demand (Section 3). First, the maximum SVec-
tor length allowed in ALP is related to the L1 size and the number of SVRs
supported. An SVector length of 32 records (512 B) sufficed for our applications
and fit comfortably in our L1 cache (except for FaceRec that uses SStreams).
Second, because SVRs are allocated on demand, clearly, an SVR cannot be read
unless it is explicitly allocated using a VLD, VALLOC, or VALLOCst. Third, the
out-of-order ALP implementation uses conventional renaming to avoid stalls
as a result of WAR and WAW hazards even for SVectors. A problem with this is
that the renaming occurs at the granularity of the full SVR, at the vector load
and allocate instructions. However, the SIMD writes occur at the granularity
of individual records. We, therefore, impose a programming restriction that re-
quires a VALLOC instruction before a vector record is overwritten by a SIMD
instruction. This instruction indicates to the hardware that a new renamed
copy of the vector must be allocated for subsequent SIMD writes of this logical
vector. In our applications, writing to SVRs is infrequent, so this restriction has
little impact.

2.2 SIMD Stream (SStreams)

An SStream is essentially a long SVector that (1) exceeds the maximum length
of an SVR, and (2) must be accessed strictly sequentially. Conventional vec-
tor processors would require strip-mining for loops containing such long vec-
tors. Instead, we support two special stream load (SLD) and stream allocate
(SALLOC) instructions. These instructions are similar to VLD and VALLOCst,
respectively, in that they both allocate the specified SVR. Transparent to the
programmer, however, the underlying hardware allocates an SVR size that is
smaller than the stream size, and manages it like a FIFO queue—when the
program reads a record from the head, it is discarded and a new record is au-
tomatically appended to the tail (Section 3.3). An exception incurred by the
load of such a record is handled at the instruction that will consume the record
(Section 3.3).

Like SVectors, computation on SStreams occurs with SIMD instructions. For
instance, to perform the computation in Figure 2 on two streams and produce a
resulting stream, we need only change VLD to SLD and VALLOCst to SALLOC.
Unlike SVectors, ClearCRP and MoveRec are not supported for streams, since
streams are accessed sequentially (to simplify hardware management of the
SVR space).

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 1, Article 3, Publication date: March 2007.

8 • R. Sasanka et al.

Note that it is possible to replace SStreams with SVectors by strip mining
long loops. However, SVectors may not be as effective as SStreams for hiding
memory latency (Section 6). This is because SVector loads have to be explicitly
scheduled for maximal latency hiding whereas hardware automatically sched-
ules record loads well in advance for SStreams.

2.3 SVectors/SStreams versus SIMD

This section qualitatively describes the performance and energy benefits of
SVectors and SStreams over a pure SIMD ISA (e.g., MMX or SSE2). Differences
from conventional vectors are discussed in Section 7. Not surprisingly, some of
these benefits are similar to those from conventional vectors [Asanovic 1998;
Corbal et al. 1999; Hennessy and Patterson 2002]. Section 7 elaborates on the
differences between SVectors and conventional vectors.

2.3.1 Performance Benefits

1. Reduced load/store and overhead instructions: SVectors/SStreams reduce
instruction count in two ways. First, VLD/SLD and VALLOCst/SALLOC
reduce instruction count by replacing multiple loads and stores with one
instruction and eliminating the corresponding address arithmetic overhead
instructions.

Second, SVRs reduce loads/stores and associated overhead instructions
because of increased register locality. The SVRs increase the register
space available that can be directly accessed by compute instructions, re-
ducing loads/stores resulting from register spills. For instance, MPGenc
and MPGdec repeatedly use quantization/coefficient tables—each table in
DCT/IDCT has 32 records. A pure SIMD system repeatedly spills and loads
entries of these tables from and into the small number of SIMD registers.
With SVRs, these tables are loaded only once and then directly accessed by
the SIMD compute instructions for as long as they are needed.

A simple expansion of the SIMD register file is not as effective because (1) it
would need a larger instruction width to encode the larger register space and
(2) a single large register file is energy inefficient and this price would be paid
for all SIMD instructions. SVectors mitigate problem (1) by exploiting the
regular nature of vector data to access them through an implicit index (the
CRP)—this requires encoding only the SVR in the instruction since the CRP
is implicit. They mitigate problem (2) by splitting the register space into the
smaller (and so more energy efficient) SIMD register file and the larger (less
energy efficient) SVR. The more efficient SIMD file stores temporary values
from intermediate computation, making the most effective use of that space.
The less efficient, larger SVR file primarily stores the large amounts of SVec-
tor data directly loaded from memory, reducing pollution of the SIMD file.

2. Increased exposed parallelism and decreased contention from reduced
instruction count: The reduction of memory/overhead instruction count in
frequently used loops allows more loop iterations to fit in the processor’s
instruction window. This allows hardware to extract more parallelism
and hide latencies of compute instructions. In short loops, instruction

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 1, Article 3, Publication date: March 2007.

ALP: Efficient Support for All Levels of Parallelism • 9

count reduction can be as high as 50%, allowing twice as many compute
instructions in flight (e.g., in our face recognition application). Further,
the reduction of memory/overhead instructions also reduces contention to
critical resources like register files and issue ports.

3. Load latency tolerance: SVectors/SStreams allow more aggressive use of
pipelined loads, without limits of register pressure. On an SVector/SStream
load, the constituent loads of individual records are pipelined with each
other and with the iterations of the corresponding SIMD computation loop.
Further, SVector/SStream loads that can be predicted in advance can also
be hoisted well before the corresponding SIMD computation loops.

The above benefit from SVector/SStream loads is similar to that from us-
ing (hardware or software) prefetching, but is more effective than the latter
for the following reasons. First, SVector/SStream loads eliminate many load
instructions; prefetching does not have this benefit and software prefetching
requires additional instructions for the prefetches and address calculation.
Second, SVector/SStream loads only bring the data required, whereas
prefetchers bring entire cache lines, potentially polluting the cache. Third,
prefetching needs to be carefully scheduled; otherwise, it can evict useful
data. Prefetches into separate buffers have been recommended to avoid this
problem, but such buffers must be exposed to the cache coherence protocol.
Finally, for short vectors such as 16 × 16 or 8 × 8 blocks seen in MPEG, there
may not be enough time for a hardware prefetcher to effectively learn the
pattern [Holliman and Chen 2003]. Section 6 discusses experimental results
that show that ALP’s benefits exceed well beyond those for prefetching.

4. L1 cache space and bandwidth savings because of packed data: SVRs
contain packed and aligned data. In contrast, a cache line loaded to L1
using a SIMD load may contain useless data.

5. Eliminating record alignment in L1: In many cases, 16-byte SIMD records
are not aligned at 16-byte boundaries in memory. SIMD instruction sets like
SSE provide special unaligned load instructions to load SIMD data starting
at unaligned addresses. Such instructions have higher latency than normal
loads. This latency has to be paid each time data is loaded from L1. With
SVectors/SStreams, the extra latency for alignment has to be paid only at
the time of loading an SVector from L2. Accesses to SVRs do not require any
alignment. Further, since this alignment is done in L2 as part of a vector
load that is performed in parallel with the computation, it is often possible
to remove this additional latency from the critical path.

2.3.2 Energy Benefits. SVectors/SStreams provide energy benefits over
pure SIMD in the following ways. First, the performance benefits above reduce
execution time without a commensurate increase in power, thereby reducing
energy. Second, an SVR access is more energy efficient than a usual cache ac-
cess that it replaces. This is because a load/store requires accessing the TLB
and all tag and data arrays in a bank. SVR accesses do not perform TLB and tag
accesses at all and access only the cache way where the SVR resides. Finally, it
is possible to use the performance benefits of SVectors/SStreams to save even

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 1, Article 3, Publication date: March 2007.

10 • R. Sasanka et al.

Fig. 3. Integer, FP/SIMD, and L1 partitions/banks. (a) Overview. The integer and FP/SIMD exe-

cution units and register files consist of two partitions (upper and lower int or FP/SIMD execution

partitions). The L1 cache consists of four banks. Each execution partition connects to all the four

L1 banks—two 16-B buses connect the upper partitions and another two connect the lower ones.

This enables each of the two SMT threads to perform up to two memory operations per cycle. The

shaded regions in the cache banks show SVRs. (b) Integer execution partitions (32 b wide). Integer

units in the upper (lower) partition can only read/write the upper (lower) partition of the register

file, except for the shaded units which can access both partitions. (c) FP/SIMD execution partitions
(128 b wide). Similar to int, only the shaded units can access both register file partitions.

more energy by running at a lower frequency and voltage, but we do not exploit
this benefit here.

3. ALP IMPLEMENTATION

3.1 Support for ILP, TLP, and SIMD

ALP’s support for ILP, TLP, and SIMD is conventional. As in Section 2, the
SIMD implementation is roughly based on that of Intel’s MMX/SSE2. Based
on a previous study on the best combination of ILP and TLP for multimedia
applications [Sasanka et al. 2004] and current GPP trends, ALP implements a
CMP with four 4-wide out-of-order cores with two SMT threads per core. Each
core has a private L1 instruction cache and a private writethrough L1 data
cache. All cores logically share a unified writeback L2 cache. The L1 caches are
kept coherent with a writethrough invalidate protocol.

To ensure that the baseline core is energy efficient, almost all processor re-
sources are partitioned and caches are banked. Figure 3 illustrates the parti-
tioning/banking for some resources. When both SMT threads run, each thread
has exclusive access to one-half the partitions for most resources (e.g., reorder
buffer/retirement logic, load/store queue). Notable exceptions are the caches,
TLBs, and a few execution units (Figure 3)—these are physically partitioned,
but logically shared among both threads as in a typical SMT design.

The L2 cache is logically shared among all four cores. It is physically divided
into four banks (each with four subbanks) connected with a crossbar. Each
processor has one L2 bank closest to it called its home bank. There is a dedicated
connection between a processor’s L1 and its home L2 bank.

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 1, Article 3, Publication date: March 2007.

ALP: Efficient Support for All Levels of Parallelism • 11

Table I. Base Architecture Parametersa

Value Per # of

Parameter Partition Partitions

Phy int reg file (32 b) 64 regs, 5R/4W 2

Phy FP/SIMD reg file (128 b) 32 regs, 4R/4W 2

Int issue queue 2

of entries 24

of R/W ports 3R/4W

of Tag R/W ports 6R/3W

Max issue width 3

FP/SIMD issue queue 2

of entries 24

of R/W ports 3R/4W

of tag R/W ports 5R/3W

Max issue width 3

Load/store queue 2

of entries 16

of R/W ports 2R/2W

Max issue width 2

Branch predictor (gselect) 2KB 2

SVector descriptors 12 2

Integer ALUs (32 b) See Fig. 3 2

FP SIMD units (128 b) See Fig. 3 2

Int SIMD units (128 b) See Fig. 3 2

Reorder buffer 32 ent, 2R/2W 4

Retire width 2

Rename width 4 per thread 2

Max. fetch/decode width 6 (max 4 per thread)

Parameter Value Per Bank # Banks

L1 I-cache 8 K, 4-Way, 32-B line, 1 port 2

L1 D-cache 8 K, 2-Way, 32-B line, 1 port 4

(writethrough)

L2 cache 256 K, 16-Way, 64-B line, 1 port 4

(writeback, unified)

Bandwidth and Contentionless Latencies @ 500 MHz

Parameter Value (cycles @ 500 MHz)

ALU/int SIMD latency 8 (div-32 b), 2 (mult-32 b), 1 (other)

FP/FP SIMD latency 12 (div), 4 (other)

L1 I-cache hit latency 1

L1 D-cache/SVR hit latency 1

L2 cache latency 10 (hit), 42 (miss)

Memory bandwidth 16 GB/s

aNote that several parameter values are per partition or bank. Section 6.1 reports

some sensitivity results.

Table I provides the specific parameters used in our experiments. These
choices were made to provide reasonable size/ports and reduced energy/cycle
time for each structure. The processor frequency is a relatively low 500-MHz
(in 90-nm technology) since ALP is targeted toward energy efficiency. We can
also interpret this frequency as a low-frequency setting for a higher-frequency
processor with dynamic voltage/frequency scaling. We expect our qualitative

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 1, Article 3, Publication date: March 2007.

12 • R. Sasanka et al.

Fig. 4. SVRs and SVector descriptor registers. Shaded cache lines contain SVRs, whereas un-

shaded ones comprise normal cache data. Start line, CRP, and last available record are relative to

the start of the cache.

results to hold with a wide range of parameter choices representative of
modern superscalar GPPs. Section 6.1 reports some sensitivity results (limited
for space reasons).

3.2 Support for SIMD Vectors

3.2.1 Modifications to the Caches. SVRs are allocated in the L1 data cache
(Figures 3 and 4). Thread 0 allocates even-numbered SVectors in bank 0 and
odd-numbered SVectors in bank 2 of the L1. Thread 1 allocates odd and even
SVectors in banks 1 and 3, respectively. This allows each thread to access one
record from each of two SVectors in a cycle. Although each cache bank has
multiple ways, we currently allocate SVRs only in way 0.

Reconfiguring lines of a cache bank into an SVR is quite simple [Albonesi
1999; Ranganathan et al. 2000]. One additional bit (SVR bit) per cache line is
needed to indicate that it is part of an SVR. Since the L1 cache is writethrough,
reconfiguration of a cache line into part of an SVR simply requires the above bit
to be set; no cache scrubbing is required. Further, when an SVR is allocated, it is
not necessary to set the SVR bits of all the allocated cache lines simultaneously.
Instead, the SVR bit for an allocated cache line is set as it is loaded from the
L2. An additional decoder to decode the SVR location is also not necessary,
since caches already have such a decoder to decode the cache line address. A
multiplexer (or an additional input to an existing one) is necessary to drive the
input of the cache line decoder since now there is one additional input (the CRP
of a SIMD instruction). The SVector records traveling from an SVR to execution
units use the existing forwarding paths used by usual SIMD loads. Thus, the
L1 cache requires only minor modifications to support SVRs.

We note that since results of intermediate computations are stored in SIMD
registers, SIMD instructions typically do not access SVectors for all three

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 1, Article 3, Publication date: March 2007.

ALP: Efficient Support for All Levels of Parallelism • 13

operands. This reduces the L1 cache bandwidth required to support multiple
SIMD instructions per cycle. The two L1 buses per partition already provided
(Figure 3) are sufficient to feed two SIMD instructions accessing two SVectors
each in a cycle. It should be noted that the use of SIMD registers for temporaries
makes it practically possible to allocate SVRs in the L1 cache. A traditional vec-
tor ISA requiring all vector instructions to use the vector register file will make
it difficult to allocate the vector registers in the L1 cache because of the higher
number of register ports required.

The L2 cache requires more support than the L1. SVector loads are sent to
the requesting processor’s home L2 cache bank. This bank then sends requests
for the packed words constituting the SVector to other banks as needed (recall
that an SVector load may specify a stride between packed words). Each bank
inserts such requests in its wait queue and services the requests in order (in
parallel with the other banks). When the data is available, the bank sends it
to the home bank (across the crossbar). It should be possible for individual
banks to access words starting at any byte location (i.e., to perform unaligned
loads). This capability is generally found in caches to access individual words
for writing, on architectures that support unaligned accesses. The home bank
assembles two 16-B records into a 32-B L1 cache line and sends these to the
SVR in the L1. Each L2 bank contains separate buffers for packing records to
cache lines. Note that entire L2 cache lines are not transmitted to L1 and only
the records required are assembled and sent, thereby saving bandwidth and
energy. The connection between the L1 and L2 can support one 32-B cache line
(two 16-B records) per cycle.

3.2.2 Modifications to the Rest of the Core. We model an out-of-order
pipeline with eight stages: fetch, decode, rename, issue, operand–read, execute,
writeback, and retirement. Fetch and execute do not need any modification;
decode needs small modifications to decode a handful of new instructions;
and operand–read and retire stages need straightforward enhancements to
read from/write to SVRs. The following discusses the modifications to rename,
issue/scheduling, and retirement, and the handling of speculation and precise
exceptions.

3.2.2.1 Rename Stage. The rename stage of an SVector load or allocate
instruction allocates an SVR and an SVector descriptor corresponding to the
destination logical SVR. The logical SVector to physical descriptor mapping is
stored in a rename table. The SVector descriptor register (see Figure 4) contains
two fields (not programmer visible) in addition to the CRP and those initialized
from the SVector instruction discussed in Section 2: (1) Start line specifies
the cache index address of the first record of the SVR, and (2) last available
record specifies the absolute record number of the last record that has been
produced (loaded/written) so far. The last available record and CRP fields store
the absolute record number relative to the start of the cache bank.

The allocation process for an SVR is analogous to that for a scalar register,
requiring maintaining a free list of available space. However, an SVR requires
allocation of a sequence of cache lines. One simple way to achieve this is to log-
ically divide a cache bank into N equal-sized segments, where N is determined

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 1, Article 3, Publication date: March 2007.

14 • R. Sasanka et al.

by the number of physical registers that can be allocated in that bank. This
fixes the number of SVRs and the start line of each SVR in a cache bank. Now
a free bit can be maintained for each such logical segment to indicate whether
it is free or allocated.

When a SIMD instruction with an SVector operand is renamed, the CRP
field from the corresponding SVector descriptor is read to provide the location
of the operand. The CRP is then incremented for the next SIMD instruction to
the same SVector. Thus, the CRP is accessed and updated only in the in-order
part of the pipeline, avoiding any RAW, WAW, or WAR hazards on it. Similarly,
the ClearCRP instruction also performs its CRP update in the rename stage.

3.2.2.2 Issue and Scheduling. Only minor changes are necessary for the
issue and scheduling logic. For a SIMD instruction that reads an SVR record,
the availability of the record is marked in a ready bit as done for a normal
register source operand. An SVR record is known to be available if the CRP of
the SVector descriptor is less than or equal to the last available record of the
same descriptor.

If the required record is not yet available, the SIMD instruction awaits its
availability in the issue queue just like other instructions waiting for their
operands. When the required record arrives in the SVR, the cache sends a
message to the rename stage to update the last available record field for that
SVR. At the same time, the cache index plus bank number is passed as an
8-bit tag along a wakeup tag port of the issue queue (along the same tag ports
used for passing an 8-bit register identifier when a normal load completes) and
compared against the same information carried in the decoded instruction. On
the tag match, the waiting SIMD instruction sets its operand ready bit and is
ready for issue if both its operands are ready. If an instruction reads from two
vectors mapped to the same L1 bank, the instruction has to be stalled in the
read-operand stage until both operands are read. However, this condition can
be often avoided in the code itself by using vectors that map to different banks
(i.e., odd and even vectors map to different banks).

For memory disambiguation and conflict resolution, the load/store queue
receives VLD instructions and SIMD instructions that write to an SVector allo-
cated with VALLOCst. Such an instruction may access several possibly strided
packed words—we conservatively assume that it accesses the entire memory
range from the address of the first to the last packed word for resolving conflicts.
Support for detecting conflicts among accesses with different address ranges
already exists, e.g., conflicts between regular SIMD loads/stores spanning 16
consecutive bytes and other FP/integer loads spanning fewer bytes.

3.2.2.3 Retirement. For SVector load and allocate instructions, the retire-
ment stage frees SVRs similar to the freeing of renamed registers for ordinary
instructions, i.e., the physical register that used to map to the destination log-
ical register of the retired instruction is freed. In addition, the SVR bits of the
corresponding L1 cache lines are reset. Since the start lines and the maximum
number of cache lines for SVRs are predetermined, simple circuitry can be used
to reset all SVR bits of an SVR in a cycle. An SVR is also freed when the thread

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 1, Article 3, Publication date: March 2007.

ALP: Efficient Support for All Levels of Parallelism • 15

that created it is killed. ALP also provides a special instruction to explicitly
free all SVRs, which can be used when the subsequent code does not use SVec-
tors. As for ordinary stores, storing records of a vector to memory also occurs
at retirement.

3.2.2.4 Speculation. To rollback modifications to SVR-related resources by
mispredicted instructions, ALP uses the conventional combination of renaming
and checkpointing. Specifically, on a branch, ALP checkpoints the rename map
table for SVectors and the CRP values (analogous to checkpointing integer/FP
rename tables).

3.2.2.5 Precise Exceptions. Precise exceptions are largely handled through
register renaming and in-order retirement, as with current GPPs, with three
additions. First, on an exception, the (currently allocated) SVRs need to be
saved. Second, exceptions within VLD can be handled as in CODE by allow-
ing the VLD to be restarted with partial completion [Kozyrakis and Patterson
2003]. Third, as discussed for retirement, for SIMD instructions that write to
memory, the memory update is done only at retirement, after examining for
exceptions. In case a memory write because of such an instruction needs to
modify multiple packed words and there is a TLB miss/page fault on one of
them, again, partial completion, as in Kozyrakis and Patterson [2003], can be
used.

3.3 Support for SIMD Streams

SStreams are implemented similar to SVectors, with the following additional
support. For an SStream, an SVR is managed as a FIFO circular buffer with
a head and a tail (LastAvailRec). An SStream load (SLD) initially brings data
to fill an entire SVR (up to 40 records in the current implementation). When a
SIMD instruction reading from (or writing to) the head of an SStream retires,
the retirement logic checks if the record involved is at the end of an L1 cache
line. In that case, the cache line is evicted from the SVR and a load request is
sent to the L2 to bring in the next records that need to be appended to the tail
(or a store request is sent to write the records at the head). Since new records
are appended to the tail before they are referenced (at the head), the processor
can usually read records without stalling.

Since an SVR cannot hold an entire SStream, an SStream load (SLD) is al-
lowed to retire before the entire SStream is loaded. If the load of a subsequent
record later incurs an exception, the record number is stored in a special ex-
ception field in the corresponding SVector descriptor. The exception is taken at
the next instruction that refers to the record.

4. APPLICATIONS AND PARALLELISM

We used five complex media applications available in the ALPBench bench-
mark suite [Li et al. 2005]: MSSG MPEG-2 encoder and decoder [MPEG
Software Simulation Group 1994] (MPGenc and MPGdec), Tachyon ray
tracer [Stone 2003] (RayTrace), Sphinx-3 speech recognizer [Reddy et al. 2001]
(SpeechRec), and CSU face recognizer [Beveridge and Draper 2003] (FaceRec).

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 1, Article 3, Publication date: March 2007.

16 • R. Sasanka et al.

Table II. DLP Characteristics of Applicationsa

MPGenc MPGdec SpeechRec FaceRec

Sub-word size 1 B, 2 B 1 B, 2 B 4 B (float) 8 B (double)

% SIMD instr. 24 24 17 66

Computation/memory 1.70 1.84 1.43 1.00

DLP granularity 1,8,16 1,4,8 10 9750

(in 128-b words) (stream)

% Reductions 36 10 28 50

Source lines in C code 8412 10480 15351 11601

aThe last row gives the number of lines of C code (without comments).

The applications are modified by hand to extract TLP and DLP. TLP is exploited
using POSIX threads. The threads usually share read-only data, requiring little
additional synchronization. For DLP, the applications include ALP’s SIMD in-
structions. In addition, we extended this SIMD support with SVector/SStream
instructions. MMX style hand-coding is prevalent practice for these applica-
tions and the maximum number of static assembly instructions inserted (for
MPGenc) is about 400. All applications exploit TLP and ILP. All applications ex-
cept for RayTrace exploit SIMD and SVectors; only FaceRec exploits SStreams.
Detailed descriptions and characterizations of the applications appear in Li
et al. [2005].

Table II summarizes the DLP characteristics of our applications, except for
Ray Trace, which has only TLP and ILP.

The first row summarizes the subword sizes used by each application. MP-
Genc and MPGdec use smaller integer subwords, whereas SpeechRec and Fac-
eRec use larger FP subwords.

The % SIMD instr. row gives the percentage of total dynamic instructions
that are SIMD in the version of the code with ALP SIMD. The relatively small
percentage shows the importance of supporting ILP and TLP for these complex
applications.

The computation/memory row of Table II gives the ratio of SIMD compu-
tation to memory operations (and instructions) in the version of the code with
ALP SIMD. All our applications show low computation to memory ratios. This
indicates that efficient support for memory operations could lead to significant
performance and energy improvements for these applications.

The DLP granularity row shows the DLP granularity in 128-b SIMD words
(i.e., the iteration count of SIMD loops). All our applications except FaceRec
exhibit small-grain DLP (i.e., small vector lengths), while FaceRec exhibits
very large-grain DLP (i.e., streams). It may (or may not) be possible to increase
the vector lengths with much effort using substantially different algorithms.
However, such changes were not obvious to us and, we believe, are beyond the
scope of this work. (Some obvious changes substantially increase the amount of
work to be done and significantly reduce performance, e.g., using a full-search
instead of an intelligent search in MPGenc, using matrix multiplication-based
DCT/IDCT in MPGenc/MPGdec instead of an optimized Chen–Wang butterfly
algorithm [Wang 1984].)

The % reductions row shows the dynamic number of DLP operations that
are part of a reduction, as a percentage of the total dynamic DLP compute

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 1, Article 3, Publication date: March 2007.

ALP: Efficient Support for All Levels of Parallelism • 17

operations in the version of the code with ALP SIMD. This relatively high per-
centage combined with the small DLP granularity underscores the importance
of supporting efficient reductions for these applications. Some implementations
are not efficient in supporting reductions when the DLP granularity is small
(e.g., multilaned vector units). This property indicates that such implementa-
tions may be a poor match for these applications.

5. SIMULATION METHODOLOGY

We simulate the following systems, based on Section 3:

� 1T: The base system with only one thread and no SIMD or SVectors/SStreams
(Figure 3 and Table I).

� 1T+S: 1T system with SIMD instructions.
� 1T+SV: 1T+S system with SVectors/SStreams.
� 4T, 4T+S, 4T+SV:. Analogous to the above three systems, respectively, but

with four cores in each system (four way CMP) and each core running one
thread.

� 4x2T, 4x2T+S, 4x2T+SV. Analogous to 4T, 4T+S, 4T+SV respectively, but
each core is a two-thread SMT.

We refer to the 1T system as the base and to the others as enhanced. ALP
is 4x2T+SV. Note that we keep the total L2 cache size the same in 1T and 4T
systems to ensure that the CMP benefits do not come simply from a larger cache
size.

To model the above systems, we use an execution-driven cycle-level sim-
ulator derived from RSIM [Hughes et al. 2002]. The simulator models the
processor and the L1 and L2 cache pipelines in detail, including wrong-path
instructions, contention at all resources, and contention and communication
overhead of multiple cache banks. The simulator only emulates operating sys-
tem calls.

Pthread-based C code is translated into binary using the Sun cc 4.2 compiler
with options -xO4 -xunroll=4 -xarch=v8plusa. DLP code resides in a separate
assembly file, organized as blocks of instructions and simulated using hooks
placed in the binary. When the simulator reaches such a hook, it switches to
the proper block of DLP instructions in the assembly file.

We integrate Wattch [Brooks et al. 2000] for dynamic power and HotLeakage
[Zhang et al. 2003] with temperature models from Skadron et al. [2002] for
static power. We assume aggressive clock gating. Most components have 10%
ungated circuitry [Brooks et al. 2000]. To favor the base system, we model only
2% ungated power for caches and functional units. Since the base system takes
longer to execute a given application, having more ungated circuitry would
make it consume more power. Since the exact amount of clock gating is highly
implementation-dependent, we made the choices to favor the base system. We
model energy for supporting SVectors/SStreams (e.g., for SVRs, vector rename-
map tables/descriptors, extra bits in caches).

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 1, Article 3, Publication date: March 2007.

18 • R. Sasanka et al.

Fig. 5. Speedup of enhanced systems over the base 1T system for each complete application (Ex-

ecutionTimeBase/ExecutionTimeEnhanced).

Fig. 6. Energy consumption and distribution of enhanced systems as a percentage of the energy

consumption of the base system.

6. RESULTS

6.1 Overall Results

Figures 5 and 6 and Table III present our high-level results. For each applica-
tion, they, respectively, provide the execution time speedup achieved over the
base system (single-thread superscalar), the energy consumed normalized to
the base, and the improvement in energy-delay product (EDP) over the base
for each system. Each energy bar also shows the distribution of energy among
different components. Table V (see later) summarizes the above data by report-
ing the harmonic means of the speedup, energy improvement, and EDP im-
provement for key pairs of systems. For the DLP enhancements (+S and +SV),
the means are computed across the applications that use those enhancements

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 1, Article 3, Publication date: March 2007.

ALP: Efficient Support for All Levels of Parallelism • 19

Table III. Energy Delay Product (EDP) Improvement Over the Base (1T) System

(EDPbase/EDPenhanced)a

1T 1T 4T 4T 4x2T 4x2T

App +S +SV 4T +S +SV 4x2T +S +SV

MPGenc 58.8 110.4 5.8 328.8 612.1 12.6 550.5 970.4

MPGdec 12.8 14.9 5.9 59.1 68.1 10.6 87.3 97.8

RayTrace N/A N/A 5.5 N/A N/A 8.6 N/A N/A

SpeechRec 3.3 5.6 4.7 14.7 20.5 6.4 20.9 29.4

FaceRec 2.6 12.7 6.4 15.3 57.5 6.7 15.5 79.2

aHigher values are better.

Table IV. Instructions-per-Cycle (Operations-per-Cycle) Achieved by All Systems

App 1T 1T+S 1T+SV 4T 4T+S 4T+SV

MPGenc 1.8 (1.8) 2.5 (8.5) 2.3 (10.3) 6.3 (6.3) 9 (30.9) 8.3 (37.5)

MPGdec 2.1 (2.1) 2.3 (6.4) 2.4 (6.6) 7.4 (7.4) 6.9 (19.5) 7.2 (20.1)

RayTrace 1.9 (1.9) N/A N/A 7.1 (7.1) N/A N/A

SpeechRec 1.6 (1.6) 1.5 (2.2) 1.8 (2.9) 5.3 (5.3) 4.5 (6.8) 5.1 (8)

FaceRec 1.3 (1.3) 1.3 (2.2) 2.2 (3.4) 5.2 (5.2) 5.3 (8.7) 8.1 (12.8)

4x2T 4x2T+S 4x2T+SV

MPGenc 10.7 (10.7) 12.8 (44.4) 11.4 (51.5)

MPGdec 11.3 (11.3) 9.2 (25.9) 9.4 (26.2)

RayTrace 9.8 (9.8) N/A N/A

SpeechRec 6.6 (6.6) 5.7 (8.6) 6.6 (10.3)

FaceRec 5.3 (5.3) 5.3 (8.7) 10.7 (16.9)

Table V. Mean Speedup, Energy Improvement, and EDP Improvementa

Benefits of SIMD SVectors/SStreams

Systems 1T+S/ 4T+S/ 4x2T+S/ 1T+SV/ 4T+SV/ 4x2T+SV/

compared 1T 4T 4x2T 1T+S 4T+S 4x2T+S

Speedup 2.63 2.52 2.41 1.48 1.43 1.46

Energy 2.41 2.29 2.25 1.3 1.21 1.21

EDP 5.06 4.69 4.52 1.83 1.67 1.69

Benefits of CMP SMT ALP

Systems 4T/ 4T+S/ 4T+SV/ 4x2T/ 4x2T+S/ 4x2T+SV/ 4x2T+SV/

compared 1T 1T+S 1T+SV 4T 4T+S 4T+SV 1T

Speedup 2.88 3.38 3.24 1.05 1.23 1.32 9.24

Energy 1.26 1.5 1.38 0.91 1.1 1.11 2.81

EDP 4.52 5.08 4.48 1.18 1.35 1.45 22.69

aAll means are harmonic means of the ratio of the less enhanced to the more enhanced system. The means for

the DLP enhancements (SIMD and SVectors/SStreams) are over the DLP applications (i.e., all except RayTrace).

(i.e., all except RayTrace); for the others, the means are computed across all
applications. For reference, Table IV gives the instructions and operations per
cycle (IPC and OPC) for each application and system.

Our data validates our claims that complex media applications demand sup-
port for a wide spectrum of parallelism and ALP effectively provides such sup-
port. Specifically, all the techniques in ALP are important and effective.

Across all our applications, compared with the base 1T system, ALP, with all
the enhancements (i.e., 4x2T+SV), shows a speedup of 5 to 56X (harmonic mean
9.2X), energy improvement of 1.7 to 17.2X (harmonic mean 2.8X), and EDP

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 1, Article 3, Publication date: March 2007.

20 • R. Sasanka et al.

improvement of 8.4 to 970X (harmonic mean 22.7X). All comparisons are made
at the same voltage/frequency for all systems—ALP’s energy savings could be
further improved by using dynamic voltage scaling at the cost of some reduction
in its performance speedups.

Table V clearly shows each technique in ALP contributes significantly to
the above benefits, especially when considering the relative complexity/area
overhead of the technique. Specifically, comparing the effect of an enhancement
over a system with all the other enhancements, we see that the mean improve-
ment in EDP from adding SIMD instructions to 4x2T is 4.5X, from adding
SVector/SStreams to 4x2T+S is 1.7X, from adding four-way CMP to 1T+SV
is 4.5X, and from adding SMT to 4T+SV is 1.4X. The means for the DLP
enhancements (SIMD and SVector/SStream) are over the DLP applications
(i.e., except for RayTrace).

We also performed experiments with the 4x2T+SV system restricted to two-
wide fetch/decode/retirement (but same issue width and functional units). Com-
pared to this system, the four-wide system reduced execution time from 5 to
22% (mean 12%), validating the need for the ILP support in ALP.

We also increased the L1/SVR hit time from 1 to 4 cycles. The speedup of SVec-
tors/SStreams over SIMD remained within 6%, except that FaceRec saw a 15–
20% increase (because of the use of SStreams that successfully hide the higher
latency). Similarly, we also experimented with higher processor frequency (i.e.,
longer memory latencies) and generally found increased benefits for SVec-
tors/SStreams over SIMD (since SVRs reduce the impact of the higher latency).

Since it is possible to emulate SStreams using SVectors by strip mining long
loops, we also performed experiments using SVectors, instead of SStreams, for
FaceRec, the only application that uses SStreams. However, SVectors are not
as effective as SStreams for hiding memory latency. This is because SVector
loads have to be explicitly scheduled for maximal latency hiding whereas hard-
ware automatically schedules record loads well in advance for SStreams. As a
result, we found that there is a 17% performance degradation with SVectors
with respect to SStreams for FaceRec. This benefit from SStreams may appear
modest, but comes at a small additional hardware cost.

Finally, as an indication of application-level real-time performance, for
each second, ALP supports MPEG2 encoding of 73 DVD resolution frames,
MPEG2 decoding of 374 DVD frames, ray tracing of 5 512 × 512 frames
(a scene of a room with 20 objects), recognizing 30 words using a 130-word
vocabulary/dictionary (SpeechRec), and recognizing 1451 130 × 150 images in
a 173-image database (FaceRec). Although the above application performance
may seem more than currently required in some cases, it is expected that
these applications will be run with larger inputs in the future, requiring
higher performance (except perhaps for MPEG decode, which shows ample
performance even for future larger inputs).

6.2 Analysis of SIMD Vectors/Streams

Section 2.3 qualitatively described the benefits of SVectors/SStreams over
SIMD. We next relate our quantitative data to those benefits. We only consider
the DLP applications here (i.e., all except RayTrace).

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 1, Article 3, Publication date: March 2007.

ALP: Efficient Support for All Levels of Parallelism • 21

Table VI. Number of Instructions (operations) Retired for 1T+S and 1T+SV

Systems as a Percentage of Instructions (Operations) Retired by 1Ta

MPGenc MPGdec RayTrace SpeechRec FaceRec

1T+S 17 (59) 28 (80) N/A 51 (77) 58 (95)

1T+SV 11 (52) 27 (75) N/A 45 (70) 34 (53)

aThe numbers for other +S (+SV) systems are the same as for 1T+S (1T+SV).

Fig. 7. Execution time distribution for 1T+S and 1T+SV.

To aid our analysis, Table VI gives the total instructions and operations re-
tired for the 1T+S and 1T+SV systems as a percentage of the base 1T system.
(The numbers for the other +S (+SV) systems are the same as for the 1T+S
(1T+SV) systems.) Further, Figure 7 shows the different components of execu-
tion time in these systems, normalized to the total time of 1T+S. For an out-of-
order processor, it is generally difficult to attribute execution time to different
components. Following prior work, we use a retirement-centric approach [Pai
et al. 1996; Rosenblum et al. 1995]. Let r be the maximum number of instruc-
tions that can be retired in a cycle. For a cycle that retires a instructions, we
attribute a/r fraction of that cycle as busy, attributing 1/r cycle of busy time to
each retiring instruction. We charge the remaining 1 − a/r cycle as stalled, and
charge this time to the instruction at the top of the reorder buffer (i.e., the first
instruction that could not retire). This technique may appear simplistic, but it
provides insight into the reasons for the benefits seen.

We categorize instructions as: Vector memory (VecMem) (only for 1T+SV),
SIMD memory (SimdMem), SIMD ALU (SimdALU), and all others. In
Figure 7, the lower part of the bars shows the busy time divided into the above
categories, while the upper part shows the stall components. The busy time for
a category is directly proportional to the number of instructions retired in that
category. We also note that the “other” category includes overhead instructions
for address generation for SimdMem instructions and SIMD loop branches;
therefore, the time spent in the DLP part of the application exceeds that shown
by the Simd category of instructions. The figure shows that the benefits of

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 1, Article 3, Publication date: March 2007.

22 • R. Sasanka et al.

SVectors/SStreams arise from the following:

� Reduction in busy time occurs due to the reduction in instruction count
from SimdMem and related overhead (Other) instructions (Table VI and ben-
efit 1 in Section 2.3).

Eliminating SIMD loads should eliminate a significant fraction of the total
SIMD and associated overhead instructions for our applications because of
the low SIMD computation to memory ratio (Table II). This effect can be
clearly seen in MPGenc and FaceRec.

In SpeechRec, as a fraction of total instructions, the SIMD instructions
are small. Nevertheless, the benefit of reducing SimdMem/overhead instruc-
tions (and associated stalls) is large enough that it allows skipping of a
precomputation phase.1 This results in a further reduction of the “other”
instructions.

For MPGdec, SVectors could not remove many of the SIMD loads, because it
uses an optimized IDCT algorithm with random memory access patterns [Li
et al. 2005]). Consequently, SVectors see a limited benefit from the reduc-
tion of instruction count. This, in turn, lowers the execution time benefit for
SVectors.

In general, we do not expect the SimdALU instruction count to change,
since +SV performs the same computations. However, there is a slight in-
crease in SpeechRec because skipping the precomputation phase results in
more SIMD computations.

� Reduction in SimdMem stalls is given by the difference between Simd-
Mem stalls in +S and VecMem stalls (plus SimdMem stalls, if any) in +SV.
The benefit occurs, because of the reduction in SimdMem instructions and in-
creased load latency tolerance (benefits 1 and 3 in Section 2.3). However, the
magnitude of this benefit is quite small for all applications. This is because
(1) most memory accesses either hit in the L1 cache or the L2 cache and the
out-of-order processor can tolerate these latencies, and (2) the L2 misses that
do occur see a relatively low miss penalty, since we model a low-frequency
processor.

� Reduction in SimdALU stalls is significant specially in FaceRec because
(1) a larger number of independent SimdALU instructions fit in the instruc-
tion window because of the elimination of intervening SimdMem and over-
head instructions (benefit 2 of Section 2.3) and (2) better load latency toler-
ance results in the ALU instructions obtaining their operands sooner (bene-
fit 3 in Section 2.3). FaceRec, in particular, has two dependent four-cycle FP
SimdALU instructions within a SIMD loop iteration, which feed into an FP
reduction running through the loop iterations. This incurs a relatively large
stall time in 1T+S. In 1T+SV, more of the (mostly independent) iterations
fit in the reorder buffer (since about 50% of the instructions per iteration are
eliminated), thus, more parallelism can be exploited. SpeechRec sees a slight
decrease in SimdALU stall time as a result of the same reasons.

1The original version of SpeechRec has a precomputation phase to reduce the amount of work done

in later phases. This precomputation is omitted for +SV as a result of lack of any benefit.

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 1, Article 3, Publication date: March 2007.

ALP: Efficient Support for All Levels of Parallelism • 23

MPGdec and MPGenc do not have much of a SimdALU stall time to start
with because they use integer instructions and also have independent in-
structions within iterations.

To confirm that not all of the benefits in SimdALU stall time came from
load latency tolerance in FaceRec and SpeechRec, we also ran both 1T+S and
1T+SV versions of all applications with a perfect cache where all memory
accesses take one cycle. We continued to see benefits in SimdALU stalls (for
FaceRec and SpeechRec) and total execution time from +SV (e.g., for FaceRec,
1T+SV showed a speedup of 1.8X over 1T+S with a perfect cache). These
experiments also show that techniques, such as prefetching, cannot capture
all the benefits of SVectors/SStreams.

It is possible to obtain more exposed parallelism for SIMD (+S) systems us-
ing larger resources. Although we already simulate an aggressive processor,
we also conducted experiments where we doubled the sizes of the physical
SIMD register file, FP/SIMD issue queue, and the reorder buffer. Of all our
applications, FaceRec showed the largest speedup with increased resources—
1.67X for the SIMD version. However, SVectors/SStreams (+SV) continued
to show significant benefits over SIMD, even with larger resources (1.63X
over SIMD for FaceRec) resulting from other sources, such as the reduction
of SIMD load instructions and overhead. Thus, SVectors/SStreams can be
viewed as a way to achieve the benefits of much larger resources and more,
without the higher power consumption and slower processor clock speeds
associated with larger resources.

It may be possible to further improve SIMD performance by providing more
SIMD logical registers. However, all the loop bodies in our applications, except
the large tables, can comfortably fit in the logical SIMD registers provided.
Fitting the larger tables would require a much larger register file (e.g., 32
additional SIMD registers for DCT/IDCT coefficient tables). We also note
that our out-of-order core already performs dynamic unrolling effectively to
use the much larger physical register file, and ALP SIMD already achieves
much better performance compared with SSE2 [Li et al. 2005].

� Reduction in other stalls results directly from the reduction in overhead
instructions described above (most significantly in MPGenc and SpeechRec).

� Energy benefits because of SVectors/SStreams come largely from the re-
duction of instruction count. Comparing corresponding +S and +SV systems
in Figure 6, we can see energy reduction in almost every component.

7. RELATED WORK

7.1 Vector Architectures

There is a vast amount of literature on conventional vector architectures
and their recent uniprocessor and multiprocessor variations, e.g., VIRAM
[Kozyrakis 2002], CODE [Kozyrakis and Patterson 2003], MOM [Corbal et al.
1999], SMT Vectors [Espasa and Valero 1997], NEC SX [Kitagawa et al. 2002],
Cray X1 [Cray Inc. 2005], and Hitachi SR [Tamaki et al. 1999]. Some of
these systems also focus on integrating a vector unit with a general-purpose

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 1, Article 3, Publication date: March 2007.

24 • R. Sasanka et al.

processor, e.g., vector unit with a superscalar core by Quintana et al.
[1999], simple vector microprocessors by Lee and Stoodley [1999], out-of-
order vectors [Espasa et al. 1997], T0 [Asanovic 1998], and Tarantula
[Espasa et al. 2002]. Such systems require investment in a relatively large
special-purpose dedicated vector unit (e.g., the Tarantula vector unit is the
same size as the four-thread scalar core [Espasa et al. 2002]). In return, they
provide excellent performance and energy efficiency for medium- to large-grain
regular DLP, e.g., through multilaned implementations.

However, our applications often exhibit small-grain DLP interspersed with
control and reductions, and have parts that do not exhibit any DLP at all (Sec-
tions 1 and 4). Therefore we chose to explore a lighter weight DLP mechanism,
SVectors/SStreams, that could be tightly integrated into expected GPP designs
that already have superscalar cores, CMP, SMT, and SIMD. Our results show
that the resulting architecture, ALP, is effective in exploiting the different levels
of parallelism in complex media applications, and SVectors/SStreams, in par-
ticular, show significant benefits over ALP’s enhancements. Further, ALP does
so primarily using existing data paths and storage with only modest modifica-
tions to a conventional superscalar core. Thus, we believe that this paper has
demonstrated a valuable design point between pure SIMD and conventional
vectors.

Nevertheless, conventional vectors would have the advantage of reduced dy-
namic compute instructions (ALP uses SIMD compute instructions, which en-
code only 2 to 16 operations each). To quantify the performance loss resulting
from not implementing a separate full-scale vector unit, we compared SVectors
with an architecture similar to Tarantula [Espasa et al. 2002] (the most recent
proposal for integrating a vector unit with a general-purpose superscalar pro-
cessor). The detailed comparison is given in Li [2005]. For a fair comparison, we
enhanced our Tarantulalike implementation to process multiple packed words
in each lane. We call this out-of-order vector architecture VoS (Vector of SIMD).
Like Tarantula, VoS is a separate multilaned vector unit and accesses vectors
from the L2 cache. We used the same number of computation units and memory
bandwidth for both VoS and SVectors. We performed more aggressive unrolling
with VoS (than with SVectors) to prefetch vectors before they are used. We ran
these experiments at 4 GHz for both SVectors and VoS.

We found SVectors and VoS to be comparable for MPGdec and SpeechRec
(SVectors was slightly better for SpeechRec). For MPGenc and FaceRec, VoS
provided 1.2 and 3.5X speedups over SVectors, respectively. For MPGenc, most
of the benefit comes directly from the reduction in instruction count (SIMD
compute and associated overhead instructions). FaceRec, in addition, also sees
increased memory level parallelism from VoS vectors. For the SStream version
of FaceRec, we used only two source streams. At 4 GHz, these were unable to
hide the entire L2 miss latency of 256 cycles. (Recall that once a stream fills an
SVR, a request for the next record is sent out only after the head of the SVR
is consumed. Thus, the number of outstanding stream loads is limited by the
instruction window size of the processor.) VoS, on the other hand, sees more
memory level parallelism—because of fewer instructions, increased unrolling,
and dynamic vector register renaming, it is able to issue multiple vector load

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 1, Article 3, Publication date: March 2007.

ALP: Efficient Support for All Levels of Parallelism • 25

instructions. Although it is possible to use multiple SStreams to increase mem-
ory level parallelism, it would involve nontrivial code transformations, since
SStreams still depend on the limited number of SIMD registers for compu-
tation. For reference, the performance benefit obtained by SVectors/SStreams
over SIMD for these experiments was 1.28X for MPGenc, 1.05X for MPGdec,
1.55X for SpeechRec, and 4.27X for FaceRec.

7.2 Other Architectures

The Imagine architecture [Ahn et al. 2004] and its multiprocessor version, Mer-
rimac [Dally et al. 2003], are also motivated by support for large amounts of
DLP, specifically streams. ALP’s focus on small-grain DLP and the constraint of
integration within a GPP results in significant design differences. Specifically,
(1) for computation, Imagine provides ALU clusters that work in lockstep while
ALP uses independent SIMD units to exploit ILP and TLP along with fine-grain
DLP; (2) Imagine is designed as a coprocessor that depends on a scalar host for
irregular scalar computation, while ALP’s DLP support is tightly integrated
into the superscalar core; and (3) unlike ALP, Imagine needs a substantially
new programming model to manipulate streams. ALP and Imagine share sim-
ilarities in the handling of data—ALP’s combination of the SIMD register file
and SVRs is analogous to Imagine’s storage hierarchy with a local register file
for intermediate computation and a stream register file for stream data. For
MPEG2 encoding, Imagine reports 138 360 × 288 fps at 200 MHz, but without
B frames, half-pixel motion estimation, and Huffman VLC [Ahn et al. 2004].
At the same frequency, ALP achieves comparable performance with B frames,
half-pixel motion estimation, and Huffman VLC.

A few architectures like SCALE [Krashinsky et al. 2004], Pseudo Vector Ma-
chine (PVM) [Lee 2000], conditional streams [Kapasi et al. 2003] of Imagine,
and Titan [Jouppi 1989] cater to fine-grain DLP. SCALE combines TLP and
vectors in a concept called vector-thread architectures, which uses a control
processor along with a vector of virtual processors. It can exploit DLP inter-
spersed with control; however, it uses a new programming model while ALP
extends the established GPP programming model. Thus far, SCALE has been
evaluated primarily for kernels; a comparison with ALP on complex applica-
tions is, therefore, difficult.

PVM provides support for vector/streamlike processing of loops that are dif-
ficult to vectorize. Two source vectors are associated with two registers. A com-
pute instruction accessing such a register implicitly accesses the next element
of the associated vector. The PVM implementation does not support a cache hi-
erarchy and all vector data accessed by compute instructions is transferred from
memory space. This shares similarity with SVectors/SStreams, but has some
key differences. Our SVectors use vector load instructions to bring data into the
SVR in a pipelined way and enable preloading of data. Any data that is spilled
from the SVRs is held in the L2 cache for some time. In contrast, PVM supports
a fast scratchpad memory space, somewhat analogous to our SVR. However,
there are no vector load instructions to bring data into this space; data can be
moved to scratchpad only through functional units using explicit instructions.

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 1, Article 3, Publication date: March 2007.

26 • R. Sasanka et al.

Conditional streams provide limited fine-grain DLP support for Imagine—
they allow different operations on different records on a stream. However, con-
ditional streams change the order of the resulting records.

Titan uses a different approach to cater to DLP interspersed with control. It
uses successive scalar FP registers to store a vector allowing individual vector
elements to be accessed. All compute instructions are vector instructions and
scalar operations have a length of 1. It is difficult to map such a design on to
current renamed/out-of-order cores.

At a high level, SVectors exploit two dimensional DLP, as done by traditional
SIMD array processors [Hwang 1993], MOM [Corbal et al. 1999; Sanchez et al.
2005], and CSI [Cheresiz et al. 2005]. This is because SVectors are, in turn, com-
posed of small vectors (SIMD). However, unlike ALP, MOM uses vector/matrix
instructions for computation and uses a large matrix register file. Similarly, un-
like ALP, CSI uses a memory-to-memory stream architecture with a separate
pipeline for streams.

Several architectures like Smart Memories [Mai et al. 2000], TRIPS [Sankar-
alingam et al. 2003], and RAW [Taylor et al. 2004] support all forms
of parallelism. Instead of supporting a DLP-based programming model,
like vectors/streams in the ISA, these architectures support efficient map-
ping/scheduling of multiple instructions that work on independent data and
schedule communication among them. For example, TRIPS’ main support
for DLP consists of rescheduling loop iterations for computation without re-
quiring prefetching and other repeated front-end overhead (called revital-
ization). RAW allows direct accessing of operands from the network, elimi-
nating some explicit loads. SmartMemories can morph memories into many
structures; ALP uses a more restricted type of morphing cache for SVRs.
Unlike ALP, both Smart Memories and TRIPS require switching to a dif-
ferent mode to support DLP (resulting in mode changes between different
parts of an application). Unlike ALP, both RAW and Smart Memories ex-
pose underlying hardware details and communication to the programming
model.

Also related to our work are various mechanisms to enhance memory sys-
tem performance. The most closely related is the stream memory controller
(SMC) [McKee et al. 1996], which focuses on compile-time detection of streams
and execution-time reordering of resulting memory accesses to maximize mem-
ory bandwidth. On the processor side, SMC provides separate hardware FIFO
stream buffers controlled with memory-mapped registers. The processor refer-
ences the next element of a stream buffer using such a memory-mapped register.
While the main focus of this work (reordering memory accesses) is orthogonal to
ours, the ability to access stream data has similarity with SStreams (and SVec-
tors). The main difference is that our design integrates vectors and streams
much more tightly within a modern out-of-order processor pipeline. Thus, we
do not have special hardware stream buffers accessed through memory-mapped
registers, which incur additional loads and stores. Instead, our SVRs are im-
plemented within the (reconfigurable) cache, allowing compute (SIMD) instruc-
tions to directly access them using existing data paths, without additional loads
and stores.

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 1, Article 3, Publication date: March 2007.

ALP: Efficient Support for All Levels of Parallelism • 27

Other related work on memory system enhancements includes Impulse
[Zhang et al. 2001] and the related parallel vector access unit [Mathew et al.
2000], which augment the memory controller to map noncontiguous memory
to contiguous locations. Processor in memory architectures, like DIVA [Draper
et al. 2002], increase memory bandwidth and decrease memory latency. Some
DSP processors, as well as TRIPS, support software managed caches or scratch-
pad memories, which usually need explicit loads/stores to be accessed. To reduce
loads/stores, they support memory-to-memory addressing modes and DMA.
SVRs achieve similar benefits without loads/stores.

To support regular computation, DSP processors include indexed address-
ing modes with autoincrementing, loop repetition, and/or rotating regis-
ters. NonDSP processors, such as Motorola 68K, provided autoincrementing
modes. ALP achieves similar benefits with the unified mechanism of SVectors/
SStreams. For instance, SVectors provide nonspeculative block-prefetch capa-
bility, which is more efficient than loading individual array elements using
autoincrementing.

Itanium [Intel Corporation 2001], Cydra 5 [Rau et al. 1989], and Hitachi
SR-8000 [Tamaki et al. 1999] use rotating registers to hold data elements that
are accessed sequentially. Rotating registers are used to provide different reg-
isters for different instances (in different loop iterations) of the same variable.
In out-of-order processors, renaming provides the same functionality, albeit at
a higher hardware cost. Rotating registers, which are usually a part of the
general-purpose register file, are loaded with scalar load instructions. In con-
trast, SVectors use vector loads to bring a sequence of data records into the
data arrays of reconfigured L1 cache. Further, rotating registers can hold vari-
ables that are accessed only within a given iteration. Therefore, unlike SVRs,
such registers cannot store more permanent state (e.g., a table that is used
many times or a variable used across iterations). SVectors do not have such
limitations, i.e., SVectors can be loaded in advance and used repeatedly.

There is a large amount of work on special-purpose processors for media ap-
plications, including DSP processors, media processors, and ASICs. In contrast
to these, ALP aims to use relatively evolutionary changes to GPPs to enable
continued high performance for conventional applications. A comprehensive
description of all special-purpose processors is outside the scope of this paper.

Finally, our previous work characterizes the parallelism and performance of
the applications used in this paper [Li et al. 2005]. However, that work evalu-
ates only SIMD support for exploiting the DLP of our applications. This paper
presents our novel DLP support, SVectors and SStreams, in the context of a
complete architecture that targets multiple levels of parallelism for our target
applications.

8. CONCLUSIONS

We seek to provide energy-efficient performance for contemporary media appli-
cations in a GPP. We observe that these applications require efficient support
for different types of parallelism, including ILP, TLP, and multiple forms of
DLP. Given existing support for SIMD instructions in GPPs, the additional

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 1, Article 3, Publication date: March 2007.

28 • R. Sasanka et al.

DLP in these applications is either fine-grained or stream-based, and exhibits
a relatively high ratio of memory to compute operations. Based on these ob-
servations and current GPP trends, we propose a complete architecture called
ALP. ALP uses a CMP with superscalar cores with SIMD and SMT, enhanced
with a novel mechanism of SIMD vectors and streams (SVectors/SStreams).
SVectors/SStreams exploit many advantages of conventional vectors, without
the cost of a dedicated vector unit.

Using several complex media applications, we show that all the techniques
used in ALP are, indeed, important and effective and no single type of paral-
lelism alone suffices. Specifically, SVectors/SStreams give speedups of 1.1 to
3.4X and EDP improvements of 1.1 to 5.1X for the applications that have DLP,
over and above all of the other enhancements in ALP. The results of this paper
are applicable to the applications with properties described in Section 1 and
can be extended to other applications with similar properties.

REFERENCES

AHN, J. H., DALLY, W. J., KHAILANY, B., KAPASI, U. J., AND DAS, A. 2004. Evaluating the imagine

stream architecture. In Proc. of the 31st Annual Intl. Symp. on Comp. Architecture.

ALBONESI, D. H. 1999. Selective cache ways: On-demand cache resource allocation. In Proc. of the
32nd Annual Intl. Symp. on Microarchitecture.

ASANOVIC, K. 1998. Vector Microprocessors. Ph.D. thesis, Univ. of California at Berkeley.

BEVERIDGE, R. AND DRAPER, B. 2003. Evaluation of face recognition algorithms. http://www.cs.

colostate.edu/evalfacerec/.

BROOKS, D., TIWARI, V., AND MARTONOSI, M. 2000. Wattch: A framework for architectural-level

power analysis and optimizations. In Proc. of the 27th Annual Intl. Symp. on Comp. Architecture.

CHERESIZ, D., JUURLINK, B. H. H., VASSILIADIS, S., AND WIJSHOFF, H. A. G. 2005. The CSI multimedia

architecture. IEEE Trans. VLSI Syst. 13, 1.

CORBAL, J., ESPASA, R., AND VALERO, M. 1999. MOM: A matrix SIMD instruction set architecture

for multimedia applications. In Proc. of the 14th Intl. Conf. on Supercomputing.

CRAY INC. 2005. Cray X1 System Overview. http://www.cray.com/products/x1e/.

DALLY, W. J., HANRAHAN, P., EREZ, M., ET AL. 2003. Merrimac: Supercomputing with streams. In

Proc. of 2003 ACM/IEEE conference on Supercomputing.

DIEFENDORFF, K. AND DUBEY, P. K. 1997. How multimedia workloads will change processor design.

IEEE Computer.

DRAPER, J., CHAME, J., HALL, M., ET AL. 2002. The architecture of the diva processing-in-memory

chip. In Proc. of the 17th Intl. Conf. on Supercomputing.

ESPASA, R. AND VALERO, M. 1997. Simultaneous multithreaded vector architecture. In Proc. of the
3rd Intl. Symp. on High-Perf. Comp. Architecture.

ESPASA, R., VALERO, M., AND SMITH, J. E. 1997. Out-of-order vector architectures. In Proc. of the
25th Annual Intl. Symp. on Comp. Architecture.

ESPASA, R., ARDANAZ, F., EMER, J., ET AL. 2002. Tarantula: A vector extension to the alpha archi-

tecture. In Proc. of the 29th Annual Intl. Symp. on Comp. Architecture.

HENNESSY, J. L. AND PATTERSON, D. A. 2002. Computer Architecture: A Quantitative Approach.

Morgan Kaufmann, San Mateo, CA.

HOLLIMAN, M. AND CHEN, Y.-K. 2003. MPEG decoding workload characterization. In Proc. of Work-
shop on Computer Architecture Evaluation using Commercial Workloads.

HUGHES, C. J., PAI, V. S., RANGANATHAN, P., AND ADVE, S. V. 2002. RSIM: Simulating shared-memory

multiprocessors with ILP processors. IEEE Computer.

HWANG, K. 1993. Advanced Computer Architecture: Parallelism, Scalability, Programmability.

McGraw-Hill, New York.

Intel Corporation 2001. Intel Itanium Architecture Software Developer’s Manual. Intel Corpora-

tion, Santa Clara, CA.

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 1, Article 3, Publication date: March 2007.

ALP: Efficient Support for All Levels of Parallelism • 29

JOUPPI, N. P. 1989. A unified vector/scalar floating-point architecture. In Proc. of the 8th Intl.
Conf. on Architectural Support for Programming Languages and Operating Systems.

KAPASI, U. J., DALLY, W. J., RIXNER, S., ET AL. 2003. Efficient conditional operations for data-parallel

architectures. In Proc. of the 36th Annual Intl. Symp. on Microarchitecture.

KITAGAWA, K., TAGAYA, S., HAGIHARA, Y., AND KANOH, Y. 2002. A hardware overview of SX-6 and

SX-7 supercomputer. http://www.nec.co.jp/techrep/en/r and d/r03/r03-no1/rd02.pdf.

KOZYRAKIS, C. 2002. Scalable vector media processors for embedded systems. Ph.D. thesis, Univ.

of California at Berkeley.

KOZYRAKIS, C. AND PATTERSON, D. 2003. Overcoming the limitations of conventional vector proces-

sors. In Proc. of the 30th Annual Intl. Symp. on Comp. Architecture.

KRASHINSKY, R., BATTEN, C., HAMPTON, M., ET AL. 2004. The vector-thread architecture. In Proc. of
the 31st Annual Intl. Symp. on Comp. Architecture.

LEE, C. G. AND STOODLEY, M. G. 1999. Simple vector microprocessors for multimedia applications.

In Proc. of the 31st Annual Intl. Symp. on Microarchitecture.

LEE, L. H. 2000. Pseudo-vector machine for embedded applications. Ph.D. thesis, University of

Michigan.

LI, M.-L. 2005. Data-level and thread-level parallelism in emerging multimedia applications.

M.S. thesis, Univ. of Illinois, Urbana-Champaign.

LI, M.-L., SASANKA, R., ADVE, S. V., CHEN, Y.-K., AND DEBES, E. 2005. The ALPBench benchmark

suite for multimedia applications. In IEEE Intl. Symp. on Workload Characterization.

MAI, K., PAASKE, T., JAYASENA, N., HO, R., ET AL. 2000. Smart memories: A modular reconfigurable

architecture. In Proc. of the 27th Annual Intl. Symp. on Comp. Architecture.

MATHEW, B. K., MCKEE, S. A., CARTER, J. B., AND DAVIS, A. 2000. Design of a parallel vector access

unit for sdram memories. In Proc. of the 6th Intl. Symp. on High-Perf. Comp. Architecture. 39–48.

MCKEE, S. A., ALUWIHARE, A., CLARK, B. H., KLENKE, R. H., LANDON, T. C., OLIVER, C. W., SALINAS, M. H.,

SZYMKOWIAK, A. E., WRIGHT, K. L., WULF, W. A., AND AYLOR, J. H. 1996. Design and evaluation

of dynamic access ordering hardware. In Proceedings of the 10th International Conference on
Supercomputing. ACM Press, New York. 125–132.

MPEG SOFTWARE SIMULATION GROUP. 1994. MSSG MPEG2 encoder and decoder. http://www.

mpeg.org/MPEG/MSSG/.

PAI, V. S., RANGANATHAN, P., ADVE, S. V., AND HARTON, T. 1996. An evaluation of memory consis-

tency models for shared-memory systems with ILP processors. In Proc. of the 7th Intl. Conf. on
Architectural Support for Programming Languages and Operating Systems. 12–23.

QUINTANA, F., CORBAL, J., ESPASA, R., AND VALERO, M. 1999. Adding a vector unit to a superscalar

processor. In Proc. of the 14th Intl. Conf. on Supercomputing.

RANGANATHAN, P., ADVE, S., AND JOUPPI, N. P. 2000. Reconfigurable caches and their application to

media processing. In Proc. of the 27th Annual Intl. Symp. on Comp. Architecture.

RAU, B. R., YEN, D. W. L., YEN, W., AND TOWIE, R. A. 1989. The Cydra 5 departmental supercom-

puter: Design philosophies, decisions, and trade-offs. In IEEE Computer.

REDDY, R. ET AL. 2001. CMU SPHINX. http://www.speech.cs.cmu.edu/sphinx/.

ROSENBLUM, M., BUGNION, E., AND HERROD, S. A. 1995. The impact of architectural trends on

operating system performance. In Proc. of 20th ACM Symp. on Operanting Systems Principles.

SANCHEZ, F., ALVAREZ, M., SALAM, E., RAMIREZ, A., AND VALERO, M. 2005. On the scalability of 1-

and 2-dimensional SIMD extensions for multimedia applications. In Proc. of IEEE Intl. Symp.
on Performance Analysis of Systems and Software.

SANKARALINGAM, K., NAGARAJAN, R., LIU, H., ET AL. 2003. Exploiting ILP, TLP, and DLP with the

polymorphous TRIPS architecture. In Proc. of the 30th Annual Intl. Symp. on Comp. Architecture.

SASANKA, R., ADVE, S. V., CHEN, Y.-K., AND DEBES, E. 2004. The energy efficiency of CMP vs. SMT

for multimedia workloads. In Proc. of the 20th Intl. Conf. on Supercomputing.

SKADRON, K., ABDELZAHER, T., AND STAN, M. R. 2002. Control-theoretic techniques and thermal-RC

modeling for accurate and localized dynamic thermal management. In Proc. of the 8th Intl. Symp.
on High-Perf. Comp. Architecture.

STONE, J. E. 2003. Taychon raytracer. http://jedi.ks.uiuc.edu/~johns/raytracer/.

TAMAKI, Y. SUKEGAWA, N., ITO, M., ET AL. 1999. Node architecture and performance evaluation

of the Hitachi super technical server SR8000. In Proc. of the 11th Intl. Conf. on Parallel and
Distributed Systems.

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 1, Article 3, Publication date: March 2007.

30 • R. Sasanka et al.

TAYLOR, M., LEE, W., MILLER, J., WENTZLAFF, D., ET AL. 2004. Evaluation of the RAW microprocessor:

An exposed-wire-delay architecture for ILP and streams. In Proc. of the 31st Annual Intl. Symp.
on Comp. Architecture.

WANG, Z. 1984. Fast algorithms for the discrete cosine transform and for the discrete fourier

transform. In IEEE Transactions in Acoustics, Speech, and Signal Processing. Vol. ASSP-32.

ZHANG, L., FANG, Z., PARKER, M., MATHEW, B. K., ET AL. 2001. The impulse memory controller. In

IEEE Transcations on Computers.

ZHANG, Y., PARIKH, D., SANKARANARAYANAN, K., ET AL. 2003. HotLeakage: A temperature-aware

model of subthreshold and gate leakage for architects. Tech. Rep. CS-2003-05, Univ. of Virginia.

Received July 2005; revised August 2006; accepted August 2006

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 1, Article 3, Publication date: March 2007.

