
COMBINING INTRA-FRAME WITH INTER-FRAME HARDWARE ADAPTATIONS
TO SAVE ENERGY

BY

RUCHIRA SASANKA

B.Sc., University of Moratuwa, Sri Lanka, 1998

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Scienc

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2002

Urbana, Illinois

Abstract

We consider the use of dynamic voltage/frequency scaling (DVS) and architectural adaptation for saving

energy for realtime multimedia applications. Previous work has considered this problem by invoking archi-

tectural and voltage/frequency adaptations at the granularity of a full frame of multimedia applications. The

proposed inter-frame adaptation algorithm exploited computation slack in each frame by using the lowest

energy configuration that still meets the application deadline.

We make two sets of contributions: (1) We explore architectural adaptation within a frame, or intra-frame

adaptations, using both old algorithms proposed in the context of non-real-time applications and new algo-

rithms. While inter-frame architectural adaptations can slow the computation, the intra-frame algorithms

attempt to save energy without affecting performance. (2) We show how intra-frame and inter-frame archi-

tectural adaptations can be combined, and compare pure inter-frame, pure intra-frame, and the combined

approaches.

We find that intra-frame architectural adaptation is effective for realtime multimedia applications. How-

ever, the combined inter-frame and intra-frame architectural adaptation approach saves more energy than

either technique alone for systems both without and with support for inter-frame controlled DVS. Without

DVS, inter-frame architectural adaptation provides most of the benefits, but with less slack intra-frame is

more beneficial. With DVS, intra-frame architectural adaptation provides most of the benefits. However,

it is not best for all applications, and, furthermore, the overhead for implementing inter-frame architectural

adaptation in a system with inter-frame DVS support is small. Therefore, for systems both without and with

DVS, our results indicate that the combined architectural adaptation algorithm is a good design choice.

iii

To my Father, Mother and Wife

iv

Acknowledgements

This work is made possible by the contribution of many people, including my project partner Christopher

J. Hughes who helped me obtain the results and my adviser Sarita V. Adve who guided me through the

whole process. Thanks to all the past members of the RSIM group who developed the RSIM simulator and

customized the applications which were used in this study.

v

Table of Contents

1 Introduction ��� 1

2 Background on the Inter-Frame Algorithm ��� 3

3 Intra-Frame Algorithms ��� 5
3.1 Intra-Frame Algorithm for Instruction Window Size Adaptation Control 5

3.1.1 Algorithm by Folegnani et al. 6
3.1.2 Algorithm by Ponomarev et al. 6
3.1.3 A New Algorithm for Increasing Instruction Window Size 7
3.1.4 Discussion and Choice of Algorithm . 9
3.1.5 Parameters for the Algorithms . 9

3.2 Intra-Frame Algorithm for Functional Units and Issue Width Adaptation Control 10
3.2.1 State-of-the-art . 11
3.2.2 New Algorithms and Combinations For Adapting Number of Active Units 12
3.2.3 Parameters for the Algorithms . 13

4 Integrating Inter-Frame and Intra-Frame Adaptation Control Algorithms ������������������� 14

5 Experimental Methodology ��� 16
5.1 Architectures . 16
5.2 Workload Description . 18
5.3 Performance and Energy Evaluation . 18

6 Results ��� 20
6.1 Intra-Frame Adaptation of Instruction Window Size . 20
6.2 Intra-Frame Adaptation for Number of Active Functional Units and Issue Width 21
6.3 Comparing Inter-Frame, Intra-Frame, and Integrated Inter+Intra Frame Algorithms 23

6.3.1 Overall Results . 24
6.3.2 Detailed Analysis . 25
6.3.3 Summary and Discussion . 28

7 Conclusions ��� 29

References ��� 30

vi

1 Introduction

Multimedia applications have become an important workload for a variety of systems, and general-purpose

processors are being increasingly employed for these systems [3, 6, 8, 18, 19]. A large number of these

systems are powered by batteries, making energy a first class resource constraint. To save energy, re-

searchers have proposed the use of hardware adaptation, including dynamic voltage and frequency scaling

(or DVS) [12, 7, 13, 20, 27, 25, 26, 23] and architectural adaptation (e.g., through speculation control [21],

changing the instruction window size [10], changing the number of functional units and/or issue width [22,

2], switching issue strategy between in-order and out-of-order [11], changing operand widths [4], and shut-

ting off parts of the cache [1]). There is, however, little work integrating DVS and architectural adapta-

tion ([14, 16]), and little work on architectural adaptation that targets the special characteristics of multime-

dia applications, such as the real-time nature of many such applications ([16]).

To our knowledge, the most comprehensive work so far that integrates both DVS and architectural adap-

tation and targets multimedia applications is by Hughes et al. [16]. Two key questions must be addressed

when designing adaptive hardware – when to adapt and what to adapt. The work by Hughes et al. uses the

following observations to address these questions. Many multimedia applications are real-time and need

to process discrete units of data, typically called a frame, within a deadline. If the processor completes a

frame’s computation early, it remains idle until the end of the deadline. This idle time, or slack, implies that

the processor can be slowed to reduce energy without affecting user-perceived performance. Further, previ-

ous work showed significant variability in the execution time of different frames of some of the applications,

motivating different amounts of slowdown for different frames [15].

Based on the above observations, Hughes et al. developed an adaptation control algorithm that addresses

the questions of when to adapt and what to adapt as follows. For the first question, they chose to invoke

adaptations at the start of each frame, to exploit the inter-frame execution time variability and slack. For

the question of what to adapt, before the start of the next frame, the algorithm predicts the lowest energy

hardware configuration (voltage/frequency and architecture) that can meet the deadline for the frame, and

uses that configuration to execute the frame. A limitation of the algorithm by Hughes et al. is that it runs

the entire frame with the same hardware configuration and does not exploit any execution variability within

a frame.

This paper builds on the work by Hughes et al. to additionally exploit execution variability within a

frame, or intra-frame variability. As we will see later, it is hard to exploit execution time slack purely at the

intra-frame level since it is hard to predict the performance impact of adaptations at this lower granularity.

1

We therefore use intra-frame adaptations in a way that will not affect execution time. To continue to exploit

slack, we propose a combination of the inter-frame and intra-frame approaches in a complementary fashion.

Specifically, we make two sets of contributions. First, we study intra-frame architectural adaptation algo-

rithms for multimedia applications, both with and without DVS. The basic intra-frame approach – adapting

to save energy without significant reduction in performance – is similar to that previously proposed for work

on non-real-time applications. Therefore, much of that work is applicable here as well [21, 10, 22, 2, 11,

4, 1]. The focus of our work is on the intra-frame adaptation control algorithms and their interaction with

inter-frame architectural adaptation and DVS. We therefore choose to focus on two example architectural

adaptations for this work – varying instruction window size and varying the number of active functional

units (and the associated issue width of the processor). We study the best existing (intra-frame level) algo-

rithms for these adaptations for multimedia applications and develop a new algorithm for each adaptation.

We find that, for our system and suite of multimedia applications, all algorithms show significant energy

savings without much reduction in execution time, both with and without DVS. The new algorithms are

slightly better than the older ones.

For our second set of contributions, we develop an integrated approach that combines architectural

adaptation at both intra-frame and inter-frame granularity and inter-frame DVS. We do not consider DVS at

the intra-frame level due to its high overhead and impact on performance. We report results with and without

DVS for (1) the new integrated algorithm, (2) purely inter-frame architectural adaptation (as in [16]), and (3)

purely intra-frame architectural adaptation. We find that for our system and multimedia application suite,

the new integrated algorithm performs the best in all cases. Without DVS, most of the benefits, however, are

provided by inter-frame architectural adaptation due to its ability to exploit slack. With less slack (i.e., with

tighter deadlines) intra-frame adaptation is more beneficial. With DVS, most of the benefits are provided

by intra-frame adaptation because DVS removes most of the slack. However, inter-frame architectural

adaptation is better for some applications, and worth implementing because of its low additional overhead.

Therefore, for systems both without and with DVS, our results show that a combination of inter-frame and

intra-frame architectural adaptation is a good design choice.

2

2 Background on the Inter-Frame Algorithm

The inter-frame adaptation control algorithm developed by Hughes et al. invokes adaptations at the granu-

larity of a frame. At the beginning of each frame, the algorithm predicts the hardware configuration (i.e.,

the architecture and voltage/frequency) that will minimize energy consumption for that frame without miss-

ing the deadline. Two versions of the algorithm are proposed, depending on whether the system supports

voltage/frequency scaling in discrete or (almost) continuous steps. Since this distinction is not important for

this paper, we chose to study the more general continuous DVS system here. Our work is equally applica-

ble to a discrete DVS system. The key aspects of the inter-frame algorithm based on continuous DVS are

summarized in Figure 1 (taken from [16]) and described in more detail below.

of the same type using a predictor.
3. Predict instructions for the next frame1. For each architectural configuration and frame type:

(i) Measure IPC and power, PA A
(at one common base voltage/frequency for all architectures)

PA .
IPCA

3
Identify the architectural configuration with the smallest

2. For each frame type,

This has the smallest EPI for most values of Ithreshold.

4. Use the architecture chosen in
step 2. Choose the frequency to be

Predicted Instructions
Deadline x IPCA

.

Profiling Phase Adaptation Phase

Profiling
complete

Application
starts

Figure 1 The algorithm proposed by Hughes et al. for choosing hardware configurations for a
system with continuous DVS.

The inter-frame algorithm consists of two phases: a profiling phase at the start of the application followed

by an adaptation phase. The profiling phase uses a fixed frequency/voltage throughout and profiles one frame

of each type
�

for each possible architecture configuration. When profiling a frame for architecture
�

, the

algorithm collects the average instructions per cycle (�������) and average power (�	�) for the frame.

The results in [15] show that for a given application frame type and a given voltage/frequency, the

average IPC and average power for an architecture are roughly constant for all frames of that type. Further,

this IPC is roughly independent of the frequency/voltage. Thus, the values of �����
� and ��� from the profile

phase can be used to predict the IPC and average power of all other frames and hardware configurations.

Using these results, Hughes et al. derive that for most cases in a continuous DVS system, a frame with

a certain number of instructions � will execute within the deadline � and with approximately the lowest

energy if it uses (1) an architecture
�

with the least value of

��

��
�� ��� and (2) a frequency of
�������
���� . Two

exceptions to the above occur when the frequency calculated is the lowest or the highest frequency supported

by the system. (We refer the reader to [16] to see how these exceptions are handled.)

�
Some applications have multiple frame types (e.g., I, P, and B frames for MPEG-2 codecs). In such cases, the algorithm profiles

and adapts for each frame type separately.

3

Based on the above, after profiling is complete, the algorithm computes

�
 � � for each architecture

configuration and frame type. It chooses the architecture with the smallest such value to execute all frames

of that type. Determining the execution frequency for a frame requires knowing the number of instructions

in the frame. This is determined in the adaptation phase which follows next.

During the adaptation phase, before the start of the next frame, the algorithm first predicts the number of

instructions in that frame using a simple history-based predictor [16]. Then the algorithm uses the expression

given above to determine the frequency for execution. Since frame IPCs are only roughly constant, for a

better approximation, instead of the profiled ��� � � , the algorithm uses the actual IPC of the previous frame

of the same type and adds a small leeway,

4

3 Intra-Frame Algorithms

The inter-frame algorithm described in Section 2 takes advantage of the fact that the application can be

slowed down, as long as it meets its real time guarantees. Prediction and measurement of the performance

impact of adaptations at the inter-frame level is relatively straightforward. For adaptations at the intra-frame

level, however, such prediction and measurement is difficult. Therefore, at this granularity we choose to

examine adaptation algorithms that, ideally, do not affect execution time.

The motivation for intra-frame adaptations is that not all resources contribute to performance all the time.

Thus, we can power down, or run at a “reduced level,” under-utilized resources with little or no performance

impact, but with significant energy savings. When we detect that a powered down resource is needed again,

we must power it back up to avoid reducing performance. This type of adaptation is particularly well-

suited for applications with resource requirements that change throughout the processing of a frame. Since

resource requirements can change quickly, we are restricted to adaptations with little switching time (e.g.,

powering up a functional unit takes a few cycles).

In this paper, we examine two architectural adaptations: (1) changing the active instruction window

size (Section 3.1), and (2) changing the number of active functional units, which also changes the issue

width (Section 3.2). Although one might consider adapting voltage/frequency at the intra-frame level, the

switching time is too large (on the order of microseconds), so we do not study this.

3.1 Intra-Frame Algorithm for Instruction Window Size Adaptation Control

Instruction window size adaptation assumes a design where the instruction window is broken into several

(generally) equal segments, and where an arbitrary contiguous set of segments can be powered down at

any cycle. We refer the reader to [10] for a detailed design of such an instruction window. The focus

of this paper is on the control algorithm that determines the size of the active window at each cycle (and

its interaction with the inter-frame algorithm). Recently, two such algorithms have been proposed [10, 9].

Both algorithms take a common approach of using the current state of the instruction window as a starting

point, and then deciding whether to increase the size of the instruction window by one segment, reduce it by

one segment, or leave the size unchanged. The decisions regarding decreasing and increasing the size are

made independently, and are summarized in the top and bottom half of Table 1, respectively. The table also

includes our new algorithm for increasing the window size. In principle, any of the algorithms for increasing

the size can work with any of the algorithms for decreasing the size. The following discusses the different

algorithms in detail.

5

Criterion for change Advantages Disadvantages

Decreasing the instruction window size

Number of issues from
the
youngest segment is low
(Folegnani et al. [10])

Can power down segments that do not con-
tribute to IPC. Low overhead (1 bit per win-
dow entry).

Will keep the youngest segment powered up when
non-critical instructions are issued from it.

Occupancy of the win-
dow is low (Ponomarev
et al. [9])

Low overhead This method is subsumed by the above method.
Shuts down only when fetch mechanism fails to
fill the window.

Increasing the instruction window size

Periodic (Folegnani et
al. [10])

Simple and low overhead Can degrade energy since increase may be unnec-
essary. Can degrade IPC since increase may be too
late.

Window is full (Pono-
marev et al. [9])

Simple and low overhead Can power up unnecessarily even if instructions
are not issued from youngest segment

Reduced window size
causes processor stalls

Increases only when IPC will benefit from
increase.

Higher overhead – tag for each window entry.

Table 1 Strategies for adaptation of the size of the instruction window.

3.1.1 Algorithm by Folegnani et al.

The state-of-the-art algorithm, by Folegnani et al., decreases the size of the instruction window if the number

of committed instructions that issued from the youngest segment during a fixed period is smaller than a

threshold [10]. This has the advantage of powering down segments of the window that clearly do not

contribute to the overall IPC, and has relatively low overhead (primarily 1 bit per instruction window entry).

A disadvantage is that the youngest segment stays powered up even if the instructions that are issued are not

on the critical path of the program; i.e., do not contribute to IPC.

The algorithm for increasing the size of the instruction window uses a simple, periodic strategy – the

window is increased by a segment every fixed number of cycles. This algorithm is somewhat ad hoc since

no attempt is made to determine if the extra instructions that will fit into a larger window will be useful (i.e.,

increase IPC). This could potentially waste energy. Conversely, for some cases, this scheme may be too

conservative and lead to a high IPC degradation, since it may not react early enough to increased demands

of an application.

3.1.2 Algorithm by Ponomarev et al.

The algorithm by Ponomarev et al. decreases the instruction window size if the youngest segment is unoc-

cupied and increases it if the window fills up [9]. The strategy for decreasing is subsumed by the previous

algorithm by Folegnani et al. Much like the previous algorithm, the strategy for increasing the window size

6

does not consider the utility of the instructions that will fill it.

3.1.3 A New Algorithm for Increasing Instruction Window Size

We propose a new algorithm, summarized in Figure 2, for increasing the size of the instruction window,

based on an estimate of the resulting benefit in IPC. To obtain this estimate, we estimate the number of re-

tirement stalls (henceforth referred to simply as stalls) that could have been avoided with a larger instruction

window. An instruction � stalls if it reaches the head of the instruction window before completion. A larger

instruction window can potentially avoid such a stall by providing more instructions ahead of � to overlap

with � ’s latency. The key to our algorithm, therefore, is a technique to estimate this extra overlap that an

instruction would have if the instruction window were fully powered up. Several aspects of the detailed

design required making a tradeoff between improved accuracy or reduced hardware and energy overhead.

We describe the design we chose next; other variations that improve accuracy or reduce overhead further are

possible.

The algorithm keeps track of the average IPC over a fixed interval (400 cycles in our experiments).

When an instruction is fetched into the youngest segment of the instruction window, it checks to see if its

operands are already available. If so, a larger instruction window could potentially have allowed for more

overlap for that instruction, as illustrated in Figure 3. We optimistically estimate that the additional potential

overlap could have been
���������
	���
��������
	��������������
����	 �!��"��
�� cycles,

#
and update a tag for this instruction, called

IWtag, with this value. This update for IWtag is optimistic (but low overhead) because it assumes that even

for the case of the larger instruction window, this instruction’s operands would be available on fetch and

the instruction would enter the youngest window segment. This estimate also ignores structural hazards on

functional units.

A larger window could also benefit instructions that do not have their operands available on entry, if

the large window enabled the producers of the pending operands to generate their results earlier. The ear-

lier operand generation would provide the consumer a larger number of instructions to overlap its latency.

The increased overlap would be the same as the increased overlap for the producer of the last operand, if

the producer itself did not stall. If the producer stalls, then the overlap available for the consumer is re-

duced by the producer’s stall cycles (i.e., by the cycles that the producer will use up for overlapping its own

latency). Thus, when an instruction completes, we pass its IWtag to all instructions for which this instruc-

tion produced the last operand; if this instruction stalled before completion, then we reduce its IWtag by

$
This value can be calculated in an approximate way, and is calculated only once every 400 cycles or when the instruction

window is resized in our experiments.

7

for each instruction i retired

if(i.tag > 0)

if(i stalled for k cycles)

Stall-Counter += min(k, i.tag)

if(Stall-Counter > Stall-Thresh)

increase the window size by 1 segment

Stall-Counter = 0

On entry into the instruction window

for each instruction i inserted

if(the operands of i are ready)

i.tag = Current-Tag-Value;

Completion Stage

for each instruction i completed

for each instruction j which consumed the result of i

if(i produced the last arriving operand of j)

if(i did not stall the processor)

if(j.tag < i.tag)

j.tag = i.tag

else if(i stalled the processor for c cycles)

if(j.tag < i.tag - c)

j.tag = i.tag - c

Retirement Stage

Current-Tag-Value = Number-Of-Inactive-Segments /
Current-Average-IPC

Stall-Counter = 0

At the end of each interval

Figure 2 A new algorithm for increasing the instruction window size.

m
instructions

instructions
n

instruction I

m+n
instructions

instruction I

Figure 3 The exection ovelap lost due to the reduced window size. The left part shows an instruction
window with n entries powered up and m entries powered down. Instruction � arrives at the top of the
powered up portion of the window and finds all its operands available. Thus, � is overlapped with �

instructions. If the instruction window were fully powered up (the right part) and � arrived at the top, it
could have an additional m instructions for overlap.

������� �
	���
���������
��������
�������! before passing it to the consumers. Again, this is possibly an over-estimate of

the possible overlap for the consumer because the producers of the other operands of the consumer may not

be able to provide that much overlap with a larger instruction window.

The value of IWtag so far gives the additional overlap that an instruction could get with a larger instruc-

tion window. To determine how many stalls could be reduced from the additional overlap, we check the

IWtag of each instruction that stalls the processor. If non-zero, we estimate that ������� ��	��"
����#����

�$�%�#�����$���!
stalls could be avoided. We accumulate the avoidable stall cycles in a counter. When the counter exceeds

a threshold, we increase the instruction window size by one segment and reset the counter. The counter is

also reset periodically.

Our new algorithm potentially alleviates the disadvantage of the previous algorithms for increasing the

8

instruction window size because (1) it increases the instruction window size only when it estimates that the

IPC will benefit, making it less wasteful of energy, and (2) it increases the window size as soon as it is

possible for the IPC to benefit, limiting any IPC degradation from the adaptive hardware. In comparison,

the previous algorithms are more ad hoc.

The disadvantage of the algorithm is in the higher hardware overhead. The primary overhead is in the

bits for holding IWtag; however, we found that a small tag size (4 bits for our case) suffices.

3.1.4 Discussion and Choice of Algorithm

As mentioned earlier, it is possible to combine any of the algorithms that increase the instruction window

size with those that decrease it. In this paper, we report results for the combination studied by Folegnani

et al. as representing the state-of-the-art, and call this PeriodicIW. We also report results for the new algo-

rithm combined with the algorithm by Folegnani et al. for decreasing the window size (since this subsumes

the other algorithm for decreasing the window size), and call this CriticalIW. When combining the two

algorithms, one of them must be given priority since both may simultaneously indicate that the instruction

window size should change – and in opposite directions. We give priority to reducing the instruction window

in the following manner. During a single period, we prevent an increase in the size of the window until we

are certain that the algorithm for decreasing the size will not decide to decrease it for this period.

We also studied the algorithm by Ponomarev et al. for increasing the window size, but found that it

always keeps significantly more of the instruction window powered up than the algorithm by Folegnani et

al. on our system and application suite. We therefore do not report results for this algorithm.

It is also possible to design an algorithm for decreasing the instruction window size based on the new

technique to increase the instruction window size. In particular, we could choose to reduce the size if the

“avoidable stalls” counter for the new algorithm was below a certain threshold. The intuition is that the

above condition indicates an increased window size would not improve IPC by much; therefore, it may be

the case that an instruction window size reduced by one segment would also not degrade IPC by much. We

experimented with this algorithm, but found that it did not perform as well as using the one by Folegnani et

al. for decreasing the window size. A smarter algorithm would need to directly determine when instructions

issued from the youngest segment of the instruction window are not critical instructions.

3.1.5 Parameters for the Algorithms

A key issue for intra-frame adaptation algorithms is that they use a number of different parameters which

affect both energy savings and IPC degradation. A design space search must be performed to find the best

9

overall parameters for an algorithm. In many cases (all algorithms that we examined), the time required for

an exhaustive search is prohibitive. For each algorithm, we evaluated several sets of parameters and found

that energy savings are not as sensitive to the parameters as the IPC degradation (likely due to the energy

savings being relatively small in most cases). Therefore, in our experiments we use parameters that were

near the knee of the energy savings curve with the limitation that IPC degradation not be too large. For all

the applications and systems, IPC degradation is less than 8%, and the average degradations for any single

system are below 5%. We now discuss the parameters used for the two instruction window size adaptation

algorithms for which we report results.

PeriodicIW considers reducing the instruction window size every 200 cycles (the period), and reduces the

size by one segment if no instructions were issued from the youngest segment in the last period (i.e., this is

the minimum value of the threshold). Larger threshold values give similar energy savings, but significantly

increase IPC degradations. PeriodicIW increases the instruction window size by one segment every five

periods (starting from the last time it either increased or decreased the size).

For comparison, Folegnani et al. chose 1000 cycles as the period for decreasing the instruction window

size and also chose 5 periods for increasing the window size. We chose a smaller period because we found

that the adaptation overhead was small, and choosing a smaller period allowed faster response to changing

requirements of the application.

CriticalIW also considers reducing the instruction window size every 200 cycles. It reduces the instruc-

tion window size by a segment if the processor issued less than 40 instructions from the youngest segment in

the last period. This threshold is much more aggressive than the one used for PeriodicIW because CriticalIW

can more rapidly increase the instruction window size when needed. CriticalIW increases the instruction

window size only when the number of stall cycles avoidable by the largest instruction window reaches 20

in a period (and at least 40 instructions have been issued from the youngest segment). CriticalIW uses 4 bit

IWtag values.

3.2 Intra-Frame Algorithm for Functional Units and Issue Width Adaptation Control

Recently, several algorithms have been proposed to change the number of active (powered up) functional

units and the consequent instruction issue width [22, 2], as summarized in Table 2. As in the case of instruc-

tion window adaptation, the algorithms for decreasing (top half of Table 2) and increasing (bottom half of

Table 2) the number of functional units and issue width can be independent. We discuss the state-of-the-art

below (Section 3.2.1) and then discuss new algorithms and combinations we tried (Section 3.2.2).

10

Criterion for change Advantages Disadvantages

Decreasing the number of active units

Low utilization (Maro et
al. [22])

Simple to implement Does not power down if a unit is only utilized by
non-critical instructions.

Low issue IPC (Bahar
and Manne [2])

Simple to implement Does not power down if a unit is only utilized by
non-critical instructions. Many thresholds.

Increasing the number of active units

High utilization (Maro et
al. [22])

Simple to implement High utilization of remaining units does not neces-
sarily mean more units will be used. May increase
for non-critical instructions.

High structural hazards
for unit [22]

Can increase quickly when the hazard count
is high

May increase for non-critical instructions

High issue IPC (Bahar
and Manne [2])

Simple to implement High issue IPC does not necessarily mean more
units will be used. May increase for non-critical
instructions.

Reduced number of units
causes processor stalls

Increases only when IPC will benefit from
increase

High overhead – tag for each instruction window
entry

Table 2 Strategies for adaptation of the number of active functional units (and issue width).

3.2.1 State-of-the-art

Maro et al. proposed several algorithms for controlling the number of powered up functional units in a

clustered architecture with two clusters, similar to the Alpha 21264 [22]. Their algorithms choose whether

to have one or two clusters powered up, but they could be extended to provide finer control over the number

of active functional units. The best algorithm proposed used functional unit utilization to determine whether

to increase or decrease the number of active units. An advantage of this algorithm is that it is very simple

to implement. The algorithm has three disadvantages: it does not power down a unit even if the instructions

using it are not on the critical path, it may power up a unit that will not be used, and it may power up a unit

even if the instructions that will use it are not on the critical path.

Maro et al. consider two other strategies for decreasing the number of active functional units: power

down on low committed IPC, and power down when there are too many instructions waiting on data depen-

dences in the instruction window. They found that neither of these performs as well as the utilization-based

algorithm, so we do not explore them further.

Maro et al. also discuss, but do not evaluate, one other strategy for increasing the number of active

functional units (also for a clustered architecture). The processor would track the number of structural haz-

ards for each instruction (this would require a counter for each instruction window entry). At a given point

in time, if enough hazards have been encountered by instructions in the instruction window, the algorithm

powers up a cluster. This could be extended for finer control over the number of active functional units.

Bahar and Manne also studied a clustered architecture with two clusters, and developed an algorithm

11

to power down nothing, a full cluster, or half the ALUs and all of the FPUs in one cluster [2]. This could

be extended to provide finer control. Their algorithm for powering up and powering down is based on the

number of instructions issued per cycle (issue IPC) to each type of functional unit (ALU or FPU) [2]. After

a certain period, the issue IPC is compared to both an upper and a lower threshold (the thresholds used

depend on the current number of active units). If the upper threshold is exceeded, the number of active units

is increased by one. If the issue IPC is below the lower threshold, the number of active units is decreased

by one. Issue IPC, as a criterion for controlling functional unit adaptation, is very similar to utilization,

having the same advantages and disadvantages. However, using issue IPC has one additional disadvantage:

since the thresholds depend on the current number of units, a set of thresholds is required for each possible

number of active units (a total of 8 thresholds in [2]. Choosing the right combination of thresholds to give

this scheme the best showing would have required an inordinately large number of simulations. We therefore

choose the utilization-based scheme (which is close to the above) as the state-of-the-art, and call it UtilFU.

3.2.2 New Algorithms and Combinations For Adapting Number of Active Units

A new algorithm for increasing the number of active functional units could be based on an estimate of the

resulting benefit in IPC. Such an algorithm would be analogous to the new algorithm for increasing the size

of the instruction window based estimated IPC benefit. We explored this option and found that the larger

overhead for this algorithm, compared to the others, made this algorithm perform worse than most others.

We propose, and report results for, an algorithm that combines a utilization-based scheme for decreasing

the number of active functional units with a scheme that tracks structural hazards to decide when to increase

the number of active units. We call this scheme HazardFU. The algorithm for increasing the number of

active units is very similar to one of those proposed by Maro et al. An extension of that algorithm for a

non-clustered architecture would track the number of structural hazards from each type of unit encountered

by instructions currently in the instruction window. We simplify this by using counters to track the number

of structural hazards caused by each unit type over a time interval. If the counter exceeds a threshold before

the end of a period, we increase the number of active units by one. The counter is reset at the end of the

period.

In this paper, we also report results for an algorithm using utilization-based schemes for both increasing

and decreasing the number of active units, as studied by Maro et al. (we call this UtilFU), as representing

the state-of-the-art.

12

3.2.3 Parameters for the Algorithms

Parameters for the two functional unit adaptation algorithms for which we report results were chosen in the

same manner as for the instruction window size algorithms (Section 3.1.5).

For both UtilFU and HazardFU, when all FP units are powered down, if an FP instruction is fetched,

both algorithms immediately power up an FP unit. Note that instructions get issued to functional units in a

prioritized manner; therefore, “the last unit” of each type will only be used when all other units are busy.

This affects the unit utilizations.

UtilFU follows the LP1 scheme proposed in [22] for deciding when to increase the number of active

functional units. If the last active unit of a given type has a utilization of at least 86% for the last period,

UtilFU increases the number of active units of that type by one. UtilFU reduces the number of active units

by one if the last unit is not used more than 4 cycles within the last period. However, UtilFU uses a different

criteria for powering down the last FP unit when only one is active, as proposed in [22]. It powers down the

last FP unit when that unit is not used for three cycles in a row. While [22] proposes using a small period –

16 cycles – we found that for our applications and system, this performed significantly worse than a larger

period, regardless of thresholds. Therefore, we use a 200 cycle period.

HazardFU increases the number of active functional units for a given type by one if, during the last

period, instructions faced at least 80 structural hazards from that type of unit. HazardFU reduces the number

of active units by one when a unit of that type is not used more than 4 cycles within the last period (the same

criteria UtilFU uses). HazardFU powers down the last available FP unit if it is not used at all within the last

period. We use a 200 cycle period for HazardFU as well.

13

4 Integrating Inter-Frame and Intra-Frame Adaptation Control Algorithms

We combine the inter-frame and intra-frame adaptation control algorithms in a simple way, resulting in two

parallel but integrated control loops in the system. Overall, the inter-frame algorithm enables exploiting

per-frame slack while the intra-frame algorithm enables exploiting the execution variability within a frame.

� The inter-frame part of the integrated algorithm performs the profiling and adaptation phases as be-

fore, but with the following change. When profiling a specific candidate architecture for the inter-

frame algorithm, we also invoke the intra-frame algorithms on this candidate architecture. Ideally,

the inter-frame algorithm will now see lower average power numbers for each candidate architecture,

with possibly little change in IPC, as compared to the case without the intra-frame adaptations. The

profiling phase gives the IPC and power values for each candidate architecture with intra-frame adap-

tation turned on. As before, the inter-frame algorithm now picks the lowest energy architecture as the

one with the lowest

��
�� � .

During the adaptation phase, again, the intra-frame algorithm is invoked on all frames. The inter-

frame algorithm picks the voltage/frequency for executing the next frame as before, as a function of

the deadline, the predicted instruction count for the frame, and the measured IPC of the last frame

of the same type. The inter-frame algorithm will automatically compensate for any IPC degradation

caused by the intra-frame algorithm. The inter-frame algorithm thus avoids possible missed deadlines

caused by the intra-frame algorithm, but sees reduced benefits from the intra-frame algorithm.

� The intra-frame algorithm is always applied, including during both the profiling and adaptation phases

of the inter-frame algorithm. The inter-frame algorithm picks the maximum configuration for each

resource for the intra-frame algorithm. The intra-frame algorithm is only allowed to exercise adap-

tations that will power down components with respect to the configuration chosen by the inter-frame

algorithm. That is, the intra-frame algorithm cannot increase the aggressiveness of any resource be-

yond what the inter-frame algorithm chose (since the goal is to not change IPC in either direction).

Thus, if the inter-frame algorithm chooses aggressive configurations (i.e., they can exploit high ILP),

then the intra-frame algorithm has substantial potential for exercising adaptations. However, if the

inter-frame algorithm picks configurations that are significantly less aggressive (i.e., already “pow-

ered down” in many places), then the intra-frame algorithm does not have much potential to further

adapt.

14

The inter-frame and intra-frame algorithms play different roles. In particular, the inter-frame algorithm

has a large adaptation granularity, which makes it better able to predict execution behavior. The inter-frame

algorithm (1) relies largely on profile information mostly collected at the beginning of the execution or at

major changes in the application or system behavior, (2) considers a global hardware configuration at a time,

(3) considers adaptations that will increase execution time to reduce slack, and (4) is well-suited for high-

overhead adaptations (e.g., changing clock frequency or cache size) but not for adaptations that can only be

enabled for parts of the frame execution (e.g., shutting off all floating point units).

In contrast, the intra-frame algorithms operate at a much finer granularity and it is difficult to foresee the

impact of adaptations at this granularity. Therefore, the intra-frame algorithms are (1) fully dynamic relying

on continuous monitoring of the system, (2) consist of several local control algorithms for adaptations of

individual hardware structures that are continuously monitored and adapted, (3) only invoke adaptations that

will not affect performance, and (4) are well-suited for adaptations that can only be enabled for parts of the

frame execution but not for high-overhead adaptations. These differences are summarized in Table 3.

Properties Inter-frame adaptation Intra-frame adaptation

Basis of adaptation Profiles mostly collected at start of application Information from continuous monitoring
Hardware features Global configuration Individual (or small groups of) hardware
controlled features
Impact on execution time May increase No impact (ideally)
Adaptations for which it Adaptations with high overhead Adaptations that cannot be invoked for the
is best entire frame

Table 3 Comparison between inter-frame and intra-frame adaptation algorithms.

15

5 Experimental Methodology

5.1 Architectures

Base Processor Parameters Base Memory Hierarchy Parameters
Processor Speed 1GHz L1 (Data) 64KB, 2-way associative,
Fetch/Retire Rate 8 per cycle 64B line, 2 ports, 12 MSHRs
Functional Units 6 Int, 4 FP, 2 Add. gen. L1 (Instr) 32KB, 2-way associative
Integer FU Latencies 1/7/12 add/multiply/divide (pipelined) L2 (Unified) 1MB, 4-way associative,
FP FU Latencies 4 default, 12 div. (all but div. pipelined) 64B line, 1 port, 12 MSHRs
Instruction window 128 entries Main Memory 16B/cycle, 4-way interleaved
(reorder buffer) size Base Contentionless Memory Latencies
Memory queue size 32 entries L1 (Data) hit time (on-chip) 2 cycles
Branch Prediction 2KB bimodal agree, 32 entry RAS L2 hit time (off-chip) 20 cycles

Main Memory (off-chip) 102 cycles

Table 4 Base (default) system parameters.

The base processor studied is similar to the MIPS R10000 and is summarized in Table 4. We assume

a centralized instruction window with a separate physical register file. We also study a version of the base

processor with support for continuous dynamic voltage/frequency scaling (DVS). The voltages used for

each frequency are the same as in [16]. They were derived from the information available for Intel’s XScale

(StrongArm-2) processor [17]. We allow the frequency to range from 100MHz to 1GHz.

We also study processors capable of adapting their instruction window size and/or the number of active

functional units and issue width. The instruction window is broken into segments of 8 entries each, and at

least two segments must always be active. The only restriction on the number of functional units active is

that at least one integer ALU must always be active. The issue width of the processor is equal to the sum of

all active functional units and hence changes when we change the number of active functional units.

We use the intra-frame adaptation control algorithms as described in Section 3. The algorithm param-

eters used for each experiment are given in Section 6. We model the energy overhead from the extra bits

required in the instruction window for instruction window size adaptation. We also model a delay of 5 cycles

to power up an inactive functional unit or instruction window segment (we observed that the results are not

sensitive to this parameter).

We use the inter-frame adaptation control algorithm proposed in [16]. We increase the IPC leeway from

1% to 4% in order to make all of the applications have fewer than 5% missed deadlines on the base processor

with DVS. This algorithm is used to control DVS in all cases, even when no inter-frame architectural adap-

tation is performed. As in [16], we ignore time and energy overheads for invoking inter-frame adaptation

since it is invoked so rarely (once every frame). A more detailed justification for this assumption appears

16

in [16].

For inter-frame adaptation with DVS, we profiled all possible combinations of the following configura-

tions (54 total): instruction window size ��� 16,32,48,64,96,128 � , number of ALUs ��� 6,4,2 � , and number

of FPUs ��� 4,2,1 � . Of these configurations, only eleven were chosen by the pure inter-frame algorithm in

the adaptation phase across all applications. When running the inter-frame algorithm alone and the inte-

grated inter- and intra-frame algorithm, to keep simulation time for the profiling phase down, we limited

the configurations available to the inter-frame part of the algorithm to be the above eleven. A real system

may also choose to limit the configurations it uses for profiling. Nevertheless, we will also run with all

configurations for the final version; we do not expect the results to change. �
For inter-frame adaptation without DVS, we allowed the adaptation control algorithm to choose from the

following 11 hardware configurations, in the form of (instruction window size, number of ALUs, number

of FPUs): (128,6,4), (96,4,2), (96,4,1), (64,4,2), (64,4,1), (48,4,1), (48,2,1), (32,4,1), (32,2,1), and (16,2,1).

These configurations were picked to represent a spectrum of the available space and keep simulation time

down. Since our results showed that in this case, the inter-frame and the integrated algorithm always did

better than the intra-frame algorithm, pursuing a fuller set of configurations would only make this result

stronger. Nevertheless, again, we will run experiments with the full set of configurations for the final paper.

One difference in the effect of instruction window adaptation as invoked in the inter-frame compared to

the intra-frame algorithms is that the former is also able to change the number of active physical registers

with instruction window size. A smaller instruction window requires fewer physical registers. Therefore,

with the inter-frame algorithm, the number of active physical registers, of each type, is equal to the number

of logical registers (64 for each type) plus the number of entries in the instruction window. We do not allow

intra-frame adaptation to control the register file size because it is not clear how to do so with our processor

model (reducing the size requires “garbage collecting” register contents during the course of the execution

of a frame). This would be possible on other processor models (e.g., one with a combined physical register

file and reorder buffer). This is not a problem with the inter-frame algorithm because the adaptations are

invoked before the start of a frame; i.e., before any state is accumulated in the registers.

17

App. Type Frame Period Input Size Deadline IPC
Time Frames

GSMdec Speech 20ms 20s 1000 50 � s 4.0
GSMenc codec 20s 1000 140 � s 4.8
G728dec Speech 625 � s 0.63s 1000 60 � s 2.4
G728enc codec 0.63s 1000 70 � s 2.2
H263dec Video 40ms 4s 100 2.9ms 3.5
H263enc codec 4s 100 40ms 2.5
MPGdec Video 33.3ms 3.33s 100 6.3ms 3.8
MPGenc codec 3.33s 100 66.6ms 2.7
MP3dec Audio 26.1ms 13.05s 500 1.4ms 3.1

Table 5 Workload description.

5.2 Workload Description

Table 5 summarizes the nine applications and inputs used in this paper. These were also used in [15, 16]

and are described in more detail in [15] (for some applications, we use fewer frames). The deadlines were

chosen using the criteria for the tighter deadlines from [16]. For all but the video encoders, the deadline is

three times the maximum processing time for a frame on the base processor. For the video encoders, we use

longer deadlines since even the base processor is not able to meet this deadline in some cases – for H263enc,

we use the full frame period and for MPGenc, we use twice the original frame period.

5.3 Performance and Energy Evaluation

We use the RSIM simulator [24] for performance evaluation. All applications were compiled with the

SPARC SC4.2 compiler with the following options: –xO4 –xtarget=ultra1/170 –xarch=v8plus.

We use the Wattch tool [5] integrated with RSIM for energy measurement. We assume clock gating for

all the components of the processor with 10% of its maximum power charged to a component when it is

not accessed in a given cycle. To fairly represent the state-of-the-art, we also gate the wake-up logic for

empty entries and ready entries in the instruction window as proposed in [10]. The gating is done by all

processors (adaptive and non-adaptive). We also assume that the resources that are powered down by our

adaptive algorithms do not consume any power.

Since we adapt the issue width of the processor with functional unit adaptation, we power down the

selection logic corresponding to the functional units that are powered down. Also, when a functional unit is

�
It may seem that profiling 54 configurations may be inordinate overhead for a real system. However, it is feasible since only

one frame of each type need be profiled for each configuration, the total number of frames in a typical multimedia application is
much larger than the number we need to profile (e.g., 30 frames a second for video), and the profiling can be done as part of the
application’s execution.

18

powered down, the corresponding part of the result bus, the wake-up ports to the instruction window, and

write ports to the register file are also powered down.

19

6 Results

Sections 6.1 and 6.2 evaluate the intra-frame algorithms for adapting the instruction window size and func-

tional units in isolation. Section 6.3 compares the pure intra-frame, pure inter-frame, and integrated inter-

frame and intra-frame algorithms.

6.1 Intra-Frame Adaptation of Instruction Window Size

For instruction window size adaptation we evaluate three processors: one without adaptation support (Base),

Base enhanced with an adaptive instruction window size controlled by PeriodicIW, and Base enhanced with

an adaptive instruction window size controlled by CriticalIW. Figures 4(a) and 4(b) show the total processor

energy normalized to Base for each application, without and with DVS, respectively. Each bar also shows

the part of the energy dissipated by the instruction window.

IW

�������
��������
�

Base
PeriodicIW
CriticalIW

������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������

��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
�10010099

		
		
		
		
		
		
		
	

��
��
��
��
��
��
��

��
��
��
��
��
��
��

100
93 91

��
��
��
��
��
��
��
�

������
������
������
������
������
������
������
���

��
��
��
��
��
��
��
�10098 96

������
������
������
������
������
������
������

��
��
��
��
��
��
��

������
������
������
������
������
������
������

��
��
��
��
��
��
��

100
92 89

������
������
������
������
������
������
������

��
��
��
��
��
��
��

��
��
��
��
��
��
�

��
��
��
��
��
��
�

100

90
86

������
������
������
������
������
������
���

��
��
��
��
��
��
�

������
������
������
������
������
������
���

��
��
��
��
��
��
�

100

84 83

��
��
��
��
��
��
��

��
��
��
��
��
��
��

������
������
������
������
������
������
������

100

88 87

!�!!�!
!�!!�!
!�!!�!
!�!!�!
!�!!�!
!�!!�!
!�!

""
""
""
""
""
""
"

#�##�#
#�##�#
#�##�#
#�##�#
#�##�#
#�##�#
#�##�#

$$
$$
$$
$$
$$
$$
$$

100

82 80

%�%%�%
%�%%�%
%�%%�%
%�%%�%
%�%%�%
%�%%�%
%�%%�%
%�%

&&
&&
&&
&&
&&
&&
&&
&

'�''�'
'�''�'
'�''�'
'�''�'
'�''�'
'�''�'
'�''�'
'�''�'

((
((
((
((
((
((
((
((

100
95 94100%

75%

50%

25%

GSMdec GSMenc G728dec G728enc H263dec H263enc MPGdec MPGenc MP3dec

%
 B

as
e

E
ne

rg
y

(a)

IW

)�))�)*
*+�++�+,
,

Base
PeriodicIW
CriticalIW

-�--�-
-�--�-
-�--�-
-�--�-
-�--�-
-�--�-
-�--�-
-�--�-
-�-

.�..�.
.�..�.
.�..�.
.�..�.
.�..�.
.�..�.
.�..�.
.�..�.

//
//
//
//
//
//
//
//

00
00
00
00
00
00
00
0010010099

11
11
11
11
11
11
11
1

22
22
22
22
22
22
22
2

33
33
33
33
33
33
33
3

44
44
44
44
44
44
44
4

10097 95

55
55
55
55
55
55
55
55

66
66
66
66
66
66
66
6

7�77�7
7�77�7
7�77�7
7�77�7
7�77�7
7�77�7
7�77�7
7�77�7
7�7

88
88
88
88
88
88
88
88
810099100

9�99�9
9�99�9
9�99�9
9�99�9
9�99�9
9�99�9
9�99�9
9�9

::
::
::
::
::
::
::
:

;�;;�;
;�;;�;
;�;;�;
;�;;�;
;�;;�;
;�;;�;
;�;;�;
;�;

<<
<<
<<
<<
<<
<<
<<
<

10097
93

=�==�=
=�==�=
=�==�=
=�==�=
=�==�=
=�==�=
=�==�=

>>
>>
>>
>>
>>
>>
>>

??
??
??
??
??
??
??
?

@@
@@
@@
@@
@@
@@
@@
@

100
91

87

A�AA�A
A�AA�A
A�AA�A
A�AA�A
A�AA�A
A�AA�A
A�AA�A

BB
BB
BB
BB
BB
BB
BB

C�CC�C
C�CC�C
C�CC�C
C�CC�C
C�CC�C
C�CC�C
C�CC�C

DD
DD
DD
DD
DD
DD
DD

100

89 88

EE
EE
EE
EE
EE
EE
EE

FF
FF
FF
FF
FF
FF
FF

G�GG�G
G�GG�G
G�GG�G
G�GG�G
G�GG�G
G�GG�G
G�GG�G

HH
HH
HH
HH
HH
HH
HH

100

90 91

I�II�I
I�II�I
I�II�I
I�II�I
I�II�I
I�II�I
I�II�I
I�I

JJ
JJ
JJ
JJ
JJ
JJ
JJ

K�KK�K
K�KK�K
K�KK�K
K�KK�K
K�KK�K
K�KK�K
K�K

LL
LL
LL
LL
LL
LL
L

100

87 86

M�MM�M
M�MM�M
M�MM�M
M�MM�M
M�MM�M
M�MM�M
M�MM�M
M�M

NN
NN
NN
NN
NN
NN
NN
N

O�OO�O
O�OO�O
O�OO�O
O�OO�O
O�OO�O
O�OO�O
O�OO�O
O�O

PP
PP
PP
PP
PP
PP
PP
P10097 97100%

75%

50%

25%

GSMdec GSMenc G728dec G728enc H263dec H263enc MPGdec MPGenc MP3dec

%
 B

as
e

E
ne

rg
y

(b)

Figure 4 Energy consumption (normalized to Base) with instruction window size adaptation. (a)
Without DVS. (b) With DVS. Each set of three bars represents Base, PeriodicIW, and CriticalIW

respectively. The dark part in each bar shows the amount of energy spent in the instruction window.

Overall, we find that both instruction window adaptation algorithms are effective for multimedia applica-

tions, saving a significant amount of energy for some applications. As expected, the savings come primarily

from the energy dissipated by the instruction window. CriticalIW saves more energy than PeriodicIW, but

the difference is small.

20

Without DVS, PeriodicIW saves an average of 9% of Base’s energy (maximum of 18%), while Criti-

calIW saves an average of 11% (maximum of 20%). With DVS, PeriodicIW saves 6% on average (maximum

of 13%) over Base, and CriticalIW saves 7% on average (maximum of 14%). The processor with DVS in-

creases the frequency to compensate for IPC degradations in order to meet the deadline, eroding some of

the energy savings from adaptation.

Comparing CriticalIW and PeriodicIW, both without and with DVS, for all applications, CriticalIW

saves as much or more energy than PeriodicIW. However, the difference is small (1% on average, 4%

maximum). The mean IPC degradation for PeriodicIW and CriticalIW, without and with DVS is also similar

– 3% and 4% respectively.

Table 6 shows the average size of the instruction window chosen by each algorithm. CriticalIW is

able to reduce the size of the instruction window by as much or more than PeriodicIW for all applications.

This difference is due to the more aggressive powering down of CriticalIW. Also, the periodic powering

up strategy of PeriodicIW may hamper its ability to reduce the instruction window for as long as possible.

Consequently, CriticalIW saves slightly more energy than PeriodicIW.

Application No DVS DVS
PeriodicIW CriticalIW PeriodicIW CriticalIW

GSMdec 123 117 123 117
GSMenc 89 82 89 82
G728dec 113 99 110 98
G728enc 94 86 92 84
H263dec 76 55 76 54
H263enc 50 50 50 50
MPGdec 67 60 67 61
MPGenc 48 41 48 41
MP3dec 99 92 98 91

Table 6 Mean instruction window size selected by PeriodicIW and CriticalIW

6.2 Intra-Frame Adaptation for Number of Active Functional Units and Issue Width

For functional unit and issue width adaptation we evaluate three processors: Base, Base enhanced with

adaptive functional units controlled by UtilFU, and Base enhanced with adaptive functional units controlled

by HazardFU. Figure 5(a) and Figure 5(b) show the total processor energy for each application, normalized

to Base, without and with DVS respectively. Each bar also shows the part of the energy dissipated due to

the instruction window, ALUs, and FPUs. Energy savings for this type of adaptation come from many parts

of the processor, as explained in Sections 3 and 5, because adapting the issue width allows powering down

of parts of a number of structures.

21

���
����
�

Base
UtilFU
HazardFU

ALU
IW

FPU

��
��
��
��
��
��
�

��
��
��
��
��
��

��
��
��
��
��
��
�

��
��
��
��
��
��
�

100

79 79

��
��
��
��
��
��
�

		
		
		
		
		
		
	

��
��
��
��
��
��
�

100

82 83

��
��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

100

86
78

��
��
��
��
��
��
��

��
��
��
��
��
��
�

������
������
������
������
������
������
���

��
��
��
��
��
��
�

100

85
79

������
������
������
������
������
������
���

��
��
��
��
��
��
�

��
��
��
��
��
��
�

��
��
��
��
��
��
�

100

82 81

��
��
��
��
��
��
�

��
��
��
��
��
��
�

��
��
��
��
��
��
�

��
��
��
��
��
��
�

100

81 79

��
��
��
��
��
��
��

��
��
��
��
��
��
�

��
��
��
��
��
��
��

100

84 84

!!
!!
!!
!!
!!
!!
!

""
""
""
""
""
""

##
##
##
##
##
##

$$
$$
$$
$$
$$
$$

100

79 78

%%
%%
%%
%%
%%
%%
%%

&&
&&
&&
&&
&&
&&
&

'�''�'
'�''�'
'�''�'
'�''�'
'�''�'
'�''�'
'�'

(�((�(
(�((�(
(�((�(
(�((�(
(�((�(
(�((�(
(�(

100

85 83

100%

75%

50%

25%

GSMdec GSMenc G728dec G728enc H263dec H263enc MPGdec MPGenc MP3dec

%
 B

as
e

E
ne

rg
y

(a)

))
)
**
*++,
,

Base
UtilFU
HazardFU

ALU
IW

FPU

--
--
--
--
--
--
-

..
..
..
..
..
..

//
//
//
//
//
//
/

00
00
00
00
00
00
0

100

80 80

11
11
11
11
11
11
1

22
22
22
22
22
22
2

33
33
33
33
33
33
3

44
44
44
44
44
44
4

100

84 84

55
55
55
55
55
55
55

66
66
66
66
66
66
66

77
77
77
77
77
77
7

88
88
88
88
88
88
8

100

88
80

99
99
99
99
99
99
99

::
::
::
::
::
::
:

;�;;�;
;�;;�;
;�;;�;
;�;;�;
;�;;�;
;�;;�;
;�;;�;

<<
<<
<<
<<
<<
<<
<<

100

86
81

=�==�=
=�==�=
=�==�=
=�==�=
=�==�=
=�==�=
=�==�=

>>
>>
>>
>>
>>
>>
>

??
??
??
??
??
??
??

@@
@@
@@
@@
@@
@@
@@

100

82 81

AA
AA
AA
AA
AA
AA
AA

BB
BB
BB
BB
BB
BB
B

CC
CC
CC
CC
CC
CC
CC

DD
DD
DD
DD
DD
DD
DD

100

82 82

EE
EE
EE
EE
EE
EE
E

FF
FF
FF
FF
FF
FF
F

GG
GG
GG
GG
GG
GG
G

HH
HH
HH
HH
HH
HH
H

100

84 84

II
II
II
II
II
II
II
I

JJ
JJ
JJ
JJ
JJ
JJ
JJ

KK
KK
KK
KK
KK
KK
KK

LL
LL
LL
LL
LL
LL
LL

100
93

85

MM
MM
MM
MM
MM
MM
MM

NN
NN
NN
NN
NN
NN
N

O�OO�O
O�OO�O
O�OO�O
O�OO�O
O�OO�O
O�OO�O
O�OO�O

P�PP�P
P�PP�P
P�PP�P
P�PP�P
P�PP�P
P�PP�P
P�PP�P

100

86 85
100%

75%

50%

25%

GSMdec GSMenc G728dec G728enc H263dec H263enc MPGdec MPGenc MP3dec

%
 B

as
e

E
ne

rg
y

(b)

Figure 5 Energy consumption (normalized to Base) with functional unit and issue width
adaptation. (a) Without DVS. (b) With DVS.

The results show that both algorithms are very effective for multimedia applications. There is negli-

gible difference between the two algorithms in most cases. Exceptions are G728enc and G728dec, where

HazardFU is superior.

More specifically, without DVS, UtilFU saves an average of 18% of the energy over Base, while Haz-

ardFU saves 20%. With DVS, UtilFU saves 15% on average over Base, and HazardFU saves 18%. For

most cases, the difference between the two algorithms is negligible – on average, HazardFU saves 3% over

UtilFU without DVS and 3% with DVS. For two applications (G728dec and G728enc), however, the differ-

ence is more significant. In these cases, HazardFU is superior and shows a maximum benefit of 9% over

UtilFU (for G728dec without DVS). The IPC degradation for the two algorithms with or without DVS is

2% to 3% averaged across all applications.

Table 7 shows the average number of active functional units chosen by each algorithm. The number of

active ALUs and FPUs are very similar for UtilFU and HazardFU for all applications except G728dec and

G728enc, for which both the mean number of active ALUs and FPUs is smaller for HazardFU. These are

the two applications for which HazardFU saves significantly more energy than UtilFU. HazardFU is able

to keep more powered down because UtilFU activates an extra unit when the last unit is highly utilized, but

the processor does not issue instructions to it (or there would be structural hazards and HazardFU would

also power it up).

22

Application No DVS DVS
UtilFU HazrdFU UtilFU HazardFU

ALU FPU ALU FPU ALU FPU ALU FPU
GSMdec 4.5 0.0 4.5 0.0 4.5 0.0 4.5 0.0
GSMenc 4.9 0.0 5.0 0.0 4.9 0.0 5.0 0.0
G728dec 3.9 2.4 3.0 1.5 4.1 2.4 3.2 1.4
G728enc 3.5 2.7 2.5 2.0 3.4 2.7 2.5 2.0
H263dec 5.1 0.0 4.8 0.0 5.1 0.0 4.8 0.0
H263enc 4.4 0.6 4.1 0.5 4.4 0.6 4.1 0.5
MPGdec 5.4 0.0 5.3 0.0 5.4 0.0 5.3 0.0
MPGenc 3.5 0.2 3.8 0.1 3.5 0.2 3.8 0.1
MP3dec 4.3 1.7 4.0 1.2 4.3 1.7 4.0 1.2

Table 7 Number of functional units selected by UtilFU and HazardFU

6.3 Comparing Inter-Frame, Intra-Frame, and Integrated Inter+Intra Frame Algorithms

This section compares the inter-frame, intra-frame, and integrated inter+intra frame approaches for archi-

tectural adaptation, with and without DVS. For the experiments with intra-frame adaptation, we adapted

both instruction window size and the number of active functional units (and issue width). Based on the

results in Sections 6.1 and 6.2, we used the CriticalIW and the HazardFU algorithms respectively for these

adaptations.

We report results for four processors: (1) Base, which is the base processor with no support for archi-

tectural adaptation; (2) Inter, which is Base enhanced with inter-frame adaptation as described in Sections 2

and 5; (3) Intra, which is Base enhanced with intra-frame adaptation as described above; and (4) Inter+Intra,

which is Base enhanced with the integrated inter-frame and intra-frame algorithm described in Section 4,

using the above individual inter-frame and intra-frame algorithms as its components. For each case, we

evaluate both with and without DVS.

Figure 6(a) and Figure 6(b) show the total energy normalized to Base for all four processors, without

and with DVS respectively. Each bar also shows the part of the total energy consumed by the instruction

window, ALU, FPU, and the register file. Table 8 shows the mean relative savings in energy between

different processor pairs. Each application missed less than 5% of its deadlines on all systems.

Savings from Relative to No DVS DVS
Inter Base 44% 18%
Intra Base 29% 24%

Inter+Intra Base 46% 27%
Intra Inter -26% 8%

Inter+Intra Inter 5% 11%
Inter+Intra Intra 24% 4%

Table 8 Mean relative energy savings for different processor pairs.

23

ALU
IW

FPU
Reg File

���
����
�

��
�
��
�

Base
Inter
Intra
Inter+Intra

������
������
������
������
������

��
��
��
��
��

		
		
		
		
		
		

��
��
��
��
�

��
��
��
��
�

100

62

78

58

��
��
��
��
��

��
��
��
��
��
��
�

��
��
��
��
��
��
�

��
��
��
��
�

��
��
��
��
�

100

61

75

57

��
��
��
��
�

��
��
��
��
�

������
������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
���

��
��
��
��
�

100

57

74

57

��
��
��
��
��

��
��
��
��
�

��
��
��
��
��
�

��
��
��
��
��
�

��
��
��
��

��
��
��
��

100

54

68

53

��
��
��
��
��

!!
!!
!!
!!
!!
!

""
""
""
""
""
"

#�##�#
#�##�#
#�##�#
#�##�#

$$
$$
$$
$$

100

55

69

52

%�%%�%
%�%%�%
%�%%�%
%�%%�%

&&
&&
&&
&&

''
''
''
''
''
'

((
((
((
((
((
(

))
))
))
))

**
**
**
**

100

53

65

50

++
++
++
++
+

,,
,,
,,
,,
,

--
--
--
--
--
-

..
..
..
..
..
.

//
//
//
//

00
00
00
00

100

56

73

52

11
11
11
11

22
22
22
22

33
33
33
33
33

44
44
44
44
44

55
55
55
55

66
66
66
66

100

50

62

47

7�77�7
7�77�7
7�77�7
7�77�7
7�77�7

8�88�8
8�88�8
8�88�8
8�88�8
8�88�8

9�99�9
9�99�9
9�99�9
9�99�9
9�99�9
9�99�9
9�9

::
::
::
::
::
::
:

;;
;;
;;
;;
;

<<
<<
<<
<<
<

100

62

77

60

100%

75%

50%

25%

GSMdec GSMenc G728dec G728enc H263dec H263enc MPGdec MPGenc MP3dec

%
 B

as
e

E
ne

rg
y

(a)

ALU
IW

FPU
Reg File

==>
>??
?
@@

AAB
B

Base
Inter
Intra
Inter+Intra

C�CC�C
C�CC�C
C�CC�C
C�CC�C
C�CC�C
C�CC�C
C�CC�C
C�C

DD
DD
DD
DD
DD
DD
DD

EE
EE
EE
EE
EE
EE

FF
FF
FF
FF
FF
FF

GG
GG
GG
GG
GG
GG

HH
HH
HH
HH
HH
HH

100

89
80 80

II
II
II
II
II
II
II

JJ
JJ
JJ
JJ
JJ
JJ
JJ

KK
KK
KK
KK
KK
KK

LL
LL
LL
LL
LL
LL

MM
MM
MM
MM
MM
MM
M

NN
NN
NN
NN
NN
NN
N

100

90

80 81

OO
OO
OO
OO
OO
OO
OO

PP
PP
PP
PP
PP
PP
P

Q�QQ�Q
Q�QQ�Q
Q�QQ�Q
Q�QQ�Q
Q�QQ�Q
Q�QQ�Q

R�RR�R
R�RR�R
R�RR�R
R�RR�R
R�RR�R
R�RR�R

S�SS�S
S�SS�S
S�SS�S
S�SS�S
S�SS�S
S�SS�S
S�S

TT
TT
TT
TT
TT
TT
T

100

83 80 78

UU
UU
UU
UU
UU
UU
U

VV
VV
VV
VV
VV
VV
V

WW
WW
WW
WW
WW
WW

XX
XX
XX
XX
XX
XX

YY
YY
YY
YY
YY
YY

ZZ
ZZ
ZZ
ZZ
ZZ
ZZ

100

81
74 72

[[
[[
[[
[[
[[
[

\\
\\
\\
\\
\\
\

]]
]]
]]
]]
]]
]]

^^
^^
^^
^^
^^
^^

_�__�_
_�__�_
_�__�_
_�__�_
_�__�_
�

``
``
``
``
``
`

100

68 71

61

a�aa�a
a�aa�a
a�aa�a
a�aa�a
a�aa�a
a�aa�a
a�aa�a

bb
bb
bb
bb
bb
bb
bb

cc
cc
cc
cc
cc
cc

dd
dd
dd
dd
dd
dd

ee
ee
ee
ee
ee
ee

ff
ff
ff
ff
ff
ff

100

87

71 72

gg
gg
gg
gg
gg
gg

hh
hh
hh
hh
hh
hh

ii
ii
ii
ii
ii
ii

jj
jj
jj
jj
jj
jj

kk
kk
kk
kk
kk
k

ll
ll
ll
ll
ll
l

100

74 76

66

mm
mm
mm
mm
mm
mm
m

nn
nn
nn
nn
nn
nn
n

oo
oo
oo
oo
oo
oo

pp
pp
pp
pp
pp
pp

qq
qq
qq
qq
qq
q

rr
rr
rr
rr
rr
r

100

81

71 68

s�ss�s
s�ss�s
s�ss�s
s�ss�s
s�ss�s
s�ss�s
s�ss�s

t�tt�t
t�tt�t
t�tt�t
t�tt�t
t�tt�t
t�tt�t
t�tt�t

u�uu�u
u�uu�u
u�uu�u
u�uu�u
u�uu�u
u�uu�u
u�uu�u

vv
vv
vv
vv
vv
vv
vv

ww
ww
ww
ww
ww
ww
ww

xx
xx
xx
xx
xx
xx
xx

100

87
82 82

100%

75%

50%

25%

GSMdec GSMenc G728dec G728enc H263dec H263enc MPGdec MPGenc MP3dec

%
 B

as
e

E
ne

rg
y

(b)

Figure 6 Energy consumption (normalized to Base) of processors capable of both inter-frame and
intra-frame adaptation. (a) Without DVS. (b) With DVS.

6.3.1 Overall Results

Overall, Table 8 shows the following key results:

� Intra vs. Base: A purely intra-frame adaptation algorithm combining both instruction window and

functional unit adaptation shows significant energy savings over Base, both without DVS (average of

26%) and with DVS (average of 24%). Compared to the results from Sections 6.1 and 6.2, we find

that the benefits from the two adaptations are almost additive. (Inter-frame adaptation also shows high

savings, but these were already known from previous work [16].)

� Intra vs. Inter: Without DVS, Inter shows significant energy savings over Intra for all applications

(average of 21%). With DVS, however, the results are less clear cut. Overall, Intra shows modestly

superior savings on average (8%), with a large maximum savings of 18% for H263enc. However, for

two applications, Inter performs slightly better than Intra (by 3% for H263dec and 2% for MPGdec).

� Integrated Inter+Intra vs. pure Inter and pure Intra: In all cases, the integrated algorithm provides

almost the same or better energy savings than the individual inter-frame or intra-frame approach.

Without DVS, the additional benefit over Inter (the best individual approach) is relatively modest

(average of 5%, maximum of 7%). With DVS, the average benefit over Inter is 11%, with a maximum

of 17%. The average benefit over Intra is 4%, with a maximum of 14%.

24

6.3.2 Detailed Analysis

We next analyze the reasons for the relative performance of Inter, Intra, and Inter+Intra in more detail.

Table 9 shows the mean number of active functional units and the instruction window size selected by Inter,

Intra, and Inter+Intra. Figure 7(a) and Figure 7(b) show the computation slack remaining for Base, Inter,

Intra, and Inter+Intra without and with DVS respectively.

Without DVS
Application Inter-frame Intra-frame Inter+Intra

IW ALU FPU IW ALU FPU IW ALU FPU
GSMdec 16 2.0 1.0 117 4.4 0.0 32 2.0 0.0
GSMenc 32 2.0 1.0 83 4.7 0.0 32 2.0 0.0
G728dec 16 2.0 1.0 99 2.8 1.4 16 1.7 1.0
G728enc 16 2.0 1.0 83 2.3 1.8 16 1.5 1.0
H263dec 16 2.0 1.0 56 4.4 0.0 16 2.0 0.0
H263enc 16 2.0 1.0 50 3.6 0.4 16 1.8 0.2
MPGdec 16 2.0 1.0 62 4.9 0.0 16 2.0 0.0
MPGenc 16 2.0 1.0 43 3.5 0.1 16 1.9 0.1
MP3dec 16 2.0 1.0 92 3.7 1.1 16 1.6 0.7

With DVS
Application Inter-frame Intra-frame Inter+Intra

IW ALU FPU IW ALU FPU IW ALU FPU
GSMdec 128 6.0 1.0 117 4.4 0.0 121 4.5 0.1
GSMenc 128 6.0 1.0 83 4.7 0.0 86 4.7 0.0
G728dec 100 4.4 1.8 100 3.1 1.3 85 2.6 1.2
G728enc 84 3.5 3.0 81 2.2 1.8 65 2.0 1.7
H263dec 48 6.0 1.0 56 4.4 0.0 40 4.2 0.0
H263enc 128 4.0 2.0 51 3.6 0.5 51 3.6 0.3
MPGdec 64 6.0 1.0 63 4.9 0.0 42 4.7 0.0
MPGenc 64 6.0 1.0 43 3.5 0.1 39 3.4 0.1
MP3dec 128 4.0 2.0 92 3.7 1.1 93 3.7 1.1

Table 9 Mean instruction window size, active ALUs, and active FPUs selected by Inter, Intra, and
Inter+Intra.

Analysis without DVS

Without DVS, Inter saves more energy than Intra because Inter has the ability to exploit slack and

sacrifice performance to save energy. Since the slack is relatively large for all applications, Inter selects the

simpler (less aggressive) architecture configurations for all applications, as seen in Table 9. Intra, on the

other hand, attempts to maintain performance despite the existence of so much slack. One could potentially

design intra-frame algorithms capable of trading off performance for energy savings, but that is beyond the

scope of this paper.

Inter+Intra is the same as or slightly better than Inter by itself in all cases, because it is able to shut

down resources that Inter cannot, as seen in Table 9. These include the last FP unit and the second to last

ALU (all configurations available for inter-frame adaptation had at least 2 ALUs). The absolute gains are

25

������������
������������

������������

Base
Inter
Intra
Inter+Intra

������
������
���

��
��
�

		
		
		
		
		
	

��
��
��
�

��
��
��
�

75

31

73

41

��
��
��

��
��
��
��
��
�

��
��
��
��
��
�

��
��
��

��
��
��

72

40

70

40

��
��
��
��
��
��

��
��
��
��
��
��

������
������
������
������
������
������
���

������
������
������
������
������
������
���

������
������
������
������
������
������

��
��
��
��
��
��

84
75

82
75

������
������
������
������
������
���

������
������
������
������
������
���

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
�

��
��
��
��
��
�

82

71
80

71

��
��
��
��
��
��

!!
!!
!!
!!
!!
!!
!

""
""
""
""
""
""
"

#�##�#
#�##�#
#�##�#
#�##�#
#�##�#
#�##�#

$$
$$
$$
$$
$$
$$

87
79

86
79

%�%%�%
%�%%�%
%�%%�%
%�%

&&
&&
&&
&

''
''
''
''
''

((
((
((
((
((

))
))
))
)

**
**
**
*

65

43

62

42

++
++
++
++
+

,,
,,
,,
,,
,

--
--
--
--
--
--

..
..
..
..
..
..

//
//
//
//
/

00
00
00
00
0

78

58

76

58

11
11
1

22
22
2

33
33
33
3

44
44
44
4

5�55�5
5�55�5
5�5

6�66�6
6�66�6
6�6

47

28

43

27

77
77
77
77

88
88
88
88

99
99
99
99
99
9

::
::
::
::
::
:

;;
;;
;;
;;

<<
<<
<<
<<

76

50

73

49

100%

75%

50%

25%

GSMdec GSMenc G728dec G728enc H263dec H263enc MPGdec MPGenc MP3dec

%
 S

la
ck

(a)

=�==�=
=�=
>�>>�>
>�>?�??�?@�@@�@

A�AA�A
A�A
B�BB�B
B�B

Base
Inter
Intra
Inter+Intra

C�CC�CD
D
EEF
F
GGH
H

8 8 8 8 II
I

JJ K
KK

LL
L
MM
M
NN
N

9 9 9 9 OO
O
PP
P
Q�QQ�Q
Q�QQ�Q

R�RR�R
R�RR�R
S�SS�S
S�S
TT
T

25
19 22

18

U�UU�U
U�U
V�VV�V W
WW

XX
X
YY
Y
ZZ
Z

9 9 9 9

[[
[[

\\
\
]]
]]

^^
^^

_�__�_
_�__�_

``
``15 15 15 15

a�aa�ab
b
cc
c
dd
d
eef
f

10 11 10 11 gg
hh i
i
jj k
k
ll

11 12 11 12

mm
mm

nn
n
oo
oo

pp
pp

q�qq�q
q�qq�q

r�rr�r
r�rr�r12 14 14 14

sst
t
uuv
v
wwx
x

12 12 12 12

100%

75%

50%

25%

GSMdec GSMenc G728dec G728enc H263dec H263enc MPGdec MPGenc MP3dec

%
 S

la
ck

(b)

Figure 7 Remaining execution slack (as a percentage of the deadline) for processors capable of both
inter-frame and intra-frame adaptation. (a) Without DVS. (b) With DVS.

modest, however, because the simple architectures picked by Inter offer limited opportunities for further

adaptation by Intra. These gains might be further reduced if Inter were given a larger set of configurations

to choose from. (Recall that we limited the configurations to save simulation time.)

Clearly, these results are sensitive to the slack available. When the slack is significantly smaller (i.e.,

the application deadlines are even tighter), the inter-frame algorithm chooses more aggressive architectures

(as with DVS), and intra-frame algorithm saves more energy than the inter-frame algorithm as shown in

Figure 8(a). The slack present for those cases is given in Figure 8(b). For these results, deadlines were

chosen so that the frame with the longest execution with intra-frame adaptation will just meet the deadline.

In all cases Inter+Intra is the best though most of the energy savings come from Intra.

Analysis with DVS

The ability of the processor to exploit slack through DVS reduces Inter’s advantage of exploiting slack

over Intra. Further, as illustrated by Table 9, with DVS, in many cases, Inter tends to pick fairly aggressive

architectures. That is, much of the slack is exploited through reduced frequency/voltage even with Inter, as

explained in more detail in [16].
y

In these cases, since Intra can exploit intra-frame variability, it is able

to power down more resources than Inter for parts of the execution, without losing much performance. As

z
The aggressive architectures give high enough IPCs that it is most energy efficient to choose them and exploit most of the slack

through reduced frequency and voltage with DVS.

26

ALU
IW

FPU
Reg File

���
����
�

��
�
��
�

Base
Inter
Intra
Inter+Intra

������
������
������
������
������
������

��
��
��
��
��
��

		
		
		
		
		
		

��
��
��
��
��
��
�

��
��
��
��
��
��
�

100

80 78 76

��
��
��
��
��
��
�

��
��
��
��
��
��
�

��
��
��
��
��
��
�

��
��
��
��
��
�

��
��
��
��
��
�

100

84
75 73

��
��
��
��
��
��
��

��
��
��
��
��
��
��

������
������
������
������
������
������
���

������
������
������
������
������
������
���

������
������
������
������
������
���

��
��
��
��
��
�

100

89

77
68

��
��
��
��
��
��
�

��
��
��
��
��
��
�

��
��
��
��
��
�

��
��
��
��
��
�

��
��
��
��
��

��
��
��
��
��

100

86

69
63

��
��
��
��
��
��
�

!!
!!
!!
!!
!!
!

""
""
""
""
""
"

#�##�#
#�##�#
#�##�#
#�##�#
#�##�#
#�#

$$
$$
$$
$$
$$
$

100

75
69

64

%�%%�%
%�%%�%
%�%%�%
%�%%�%
%�%%�%
%�%%�%

&&
&&
&&
&&
&&
&

''
''
''
''
''
'

((
((
((
((
((
(

))
))
))
))
)

**
**
**
**
*

100

72
64

58

++
++
++
++
++
+

,,
,,
,,
,,
,,
,

--
--
--
--
--
-

..
..
..
..
..
.

//
//
//
//
//
/

00
00
00
00
00
0

100

68
73

61

11
11
11
11
11
1

22
22
22
22
22
2

33
33
33
33
33

44
44
44
44
44

55
55
55
55
55

66
66
66
66
66

100

67
62

55

7�77�7
7�77�7
7�77�7
7�77�7
7�77�7
7�77�7
7�77�7
7�7

8�88�8
8�88�8
8�88�8
8�88�8
8�88�8
8�88�8
8�88�8

9�99�9
9�99�9
9�99�9
9�99�9
9�99�9
9�99�9

::
::
::
::
::
::

;;
;;
;;
;;
;;
;;
;

<<
<<
<<
<<
<<
<<
<

100
93

78 75

100%

75%

50%

25%

GSMdec GSMenc G728dec G728enc H263dec H263enc MPGdec MPGenc MP3dec

%
 B

as
e

E
ne

rg
y

(a)

=�==�=
=�=
>�>>�>
>�>?�??�?
?�?
@�@@�@

A�AA�AB�BB�B

Base
Inter
Intra
Inter+Intra

C�CC�C
C�C
DD E
E
FF GG
G
HH
H15

8 10 7 IIJJ K
KK

LL
L MM
NN

14
10 8 6 OO

OO
OO
OO
OO

PP
PP
PP
PP
P

Q�QQ�Q
Q�QQ�Q
Q�QQ�Q
Q�QQ�Q
Q�QQ�Q

R�RR�R
R�RR�R
R�RR�R
R�RR�R
R�RR�R

S�SS�S
S�SS�S
S�SS�S
S�SS�S
S�S

TT
TT
TT
TT
T58 58 57 56

U�UU�U
U�UU�U
U�UU�U
U�UU�U
U�U

V�VV�V
V�VV�V
V�VV�V
V�VV�V

WW
WW
WW
WW
W

XX
XX
XX
XX
X

YY
YY
YY
YY
Y

ZZ
ZZ
ZZ
ZZ
Z53 52 51 51

[[
[[

\\
\]]
]

^^
^
_�__�_
�
``
`17 14 13 12 a�aa�a

a�a

bb
b
cc
c
dd
d
ee
e
ff
f23 20 17
12

gg
gg
gg

hh
hh
h

ii
ii
i

jj
jj
j

kk
kk
k

ll
ll
l

36
30 31

27

mm
mm
mm
m

nn
nn
nn

oo
oo
o

pp
pp
p

q�qq�q
q�qq�q

r�rr�r
r�rr�r

37 34 32

18

sst
t
uuv
v
wx

12 9 6 5

100%

75%

50%

25%

GSMdec GSMenc G728dec G728enc H263dec H263enc MPGdec MPGenc MP3dec

%
 S

la
ck

(b)

Figure 8 Energy and Execution Slack without DVS but with very tight deadlines. (a) Energy
consumption (normalized to Base) of processors capable of both inter-frame and intra-frame adaptation. (b)
Remaining execution slack (as a percentage of the deadline) for processors capable of both inter-frame and

intra-frame adaptation.

a result, with DVS, Intra does better than Inter for seven of the nine applications, giving fairly significant

gains for some of them.

For the other two applications (H263dec and MPGdec), Intra cannot save as much as Inter for two

reasons. First, for both applications, Intra cannot shut down part of the register file like Inter can (Section 5).

Second, for H263dec, Inter finds it beneficial to pick a simpler architecture to exploit slack. Intra is unable

to reduce the instruction window size as much as Inter because that would adversely affect performance.

Inter+Intra has the benefits of both types of adaptation, and so saves almost the same or more energy

than both Inter and Intra. For applications for which Inter is more effective than Intra, (e.g., H263dec and

MPGdec), Inter+Intra is also able to trade off performance for energy savings and choose a less aggres-

sive architecture. Furthermore, if parts of the frames for such applications require an even less aggressive

architecture than that chosen by the inter-frame algorithm, Inter+Intra can save even more energy than In-

ter. This happens for both H263dec and MPGdec (Inter+Intra saves more than 10% relative to Inter for

both). For applications for which Intra is more effective than Inter, Inter+Intra is also able to power down

resources when they provide little performance. Furthermore, if the application requires an instruction win-

dow size smaller than the maximum for high energy efficiency (i.e., the inter-frame algorithm chooses less

than maximum), there are two possible additional benefits for Inter+Intra. First, it will also be able to shut

27

down part of the register file, which Intra cannot do. This provides savings relative to Intra for MPGenc.

Second, for parts of the frame which require a large instruction window for high performance, but for which

a smaller instruction window has better energy efficiency, Inter+Intra will use a smaller instruction window

(since the size is bounded by the inter-frame algorithm). This provides savings relative to Intra for G728enc.

6.3.3 Summary and Discussion

Overall, our proposed combination of inter-frame and intra-frame architecture adaptation works best across

all configurations studied. Without DVS, for our applications and systems, our results clearly show that

inter-frame architecture adaptation is beneficial and provides most of the benefits when there is significant

amount of execution slack is present. However, when there is lower slack in the system, the intra-frame

architecture adaptation becomes more beneficial. Given that the amount of slack available in a system is

most likely a dynamic quantity (dependent on the total load on the system) and not predictable at design

time, it could be beneficial to implement intra-frame architecture adaptation (integrated with inter-frame

architecture adaptation) in a system without DVS as well.

For systems with DVS, our results clearly show that intra-frame architecture adaptation is beneficial

for several applications, and provides most of the benefits. There are some applications, however, where

inter-frame architecture adaptation works better. These are the applications where the inter-frame algorithm

would pick relatively simpler architectures and are thoroughly discussed in [16]. We note that for a system

that already implements inter-frame DVS and intra-frame architecture adaptation, adding inter-frame archi-

tecture adaptation does not introduce much additional hardware complexity (assuming that the intra-frame

control algorithm, including the profiling phase, is implemented in software [16]). This again makes the

case for supporting integrated inter-frame and intra-frame adaptation.

28

7 Conclusions

Hardware adaptation has been shown to be an effective technique for saving energy for real-time multimedia

applications. We examine both dynamic voltage/frequency scaling (DVS) and architectural adaptation. Pre-

viously, these have been combined for real-time multimedia applications with a control algorithm operating

at the granularity of a frame (inter-frame). That algorithm took advantage of computation slack to slow the

processor down in order to save energy. We consider architectural adaptation at a finer granularity (intra-

frame), where the control algorithms attempt to save energy by powering down under-utilized resources

while maintaining performance.

In our first set of contributions, we evaluate previous adaptation control algorithms proposed in a non-

real time context for intra-frame architectural adaptation for real-time multimedia applications. We consider

adapting the size of the instruction window and the number of active functional units (and associated in-

struction issue width). We also propose new algorithms and ways of combining different algorithms for

these adaptations. We find that intra-frame architectural adaptation is effective for real-time multimedia ap-

plications with and without DVS. The algorithms we propose do marginally better than the best previously

proposed algorithms.

In our second set of contributions, we compare inter-frame, intra-frame, and a new combination of

inter- and intra-frame architectural adaptation algorithms, both with and without inter-frame DVS. The new

combination of intra- and inter-frame levels of adaptation exploits both the variability in resource utilization

within a frame and computation slack at the frame granularity.

Our proposed combination of inter-frame and intra-frame architectural adaptation works best across

all configurations studied. However, without DVS, inter-frame architectural adaptation provides most of

the energy savings when there is a significant amount of slack. With less slack, intra-frame architectural

adaptation provides more savings, making a stronger case for implementing the combined approach in a

system without DVS. With DVS, intra-frame architectural adaptation provides most of the energy savings,

but for some applications, inter-frame architectural adaptation is better. The overhead for adding inter-frame

architectural adaptation to a system with inter-frame DVS and intra-frame architectural adaptation is small,

making it beneficial to implement the combined inter-frame and intra-frame approach for the applications

that can exploit it. Therefore, regardless of whether a system supports DVS or not, our results provide

considerable justification for implementing a combined inter-frame and intra-frame architectural adaptation

algorithm.

29

References

[1] D. H. Albonesi. Selective Cache Ways: On-Demand Cache Resource Allocation. In Proc. of the 32nd
Annual Intl. Symp. on Microarchitecture, 1999.

[2] R. I. Bahar and S. Manne. Power and Energy Reduction Via Pipeline Balancing. In Proc. of the 28th
Annual Intl. Symp. on Comp. Architecture, 2001.

[3] G. Blalock. Microprocessors Outperform DSPs 2:1. Microprocessor Report, December 1996.

[4] D. Brooks and M. Martonosi. Dynamically Exploiting Narrow Width Operands to Improve Processor
Power and Performance. In Proc. of the 5th Intl. Symp. on High-Perf. Comp. Architecture, 1999.

[5] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A Framework for Architectural-Level Power Anal-
ysis and Optimizations. In Proc. of the 27th Annual Intl. Symp. on Comp. Architecture, 2000.

[6] T. M. Conte et al. Challenges to Combining General-Purpose and Multimedia Processors. IEEE
Computer, December 1997.

[7] D.Grunwald, P.Levis, K.I.Farkas, C. III, and M.Neufeld. Policies for dynamic clock scheduling. In
Proc. of the 4th Symposium on Operating Systems Design and Implementation, 2000.

[8] K. Diefendorff and P. K. Dubey. How Multimedia Workloads Will Change Processor Design. IEEE
Computer, September 1997.

[9] G. K. Dmitry Ponomarev and K. Ghose. Reducing Power Requirements of Instruction Scheduling
Through Dynamic Allocation of Multiple Datapath Resources. In Proc. of the 34th Annual Intl. Symp.
on Microarchitecture, 2001.

[10] D. Folegnani and A. González. Energy-Efficient Issue Logic. In Proc. of the 28th Annual Intl. Symp.
on Comp. Architecture, 2001.

[11] S. Ghiasi, J. Casmira, and D. Grunwald. Using IPC Variation in Workloads with Externally Specified
Rates to Reduce Power Consumption. In Proc. of the Workshop on Complexity-Effective Design, 2000.

[12] K. Govil, E. Chan, and H. Wasserman. Comparing Algorithms for Dynamic Speed-Setting of a Low-
Power CPU. In Proc. of the 1st Intl. Conf. on Mobile Computing and Networking, 1995.

[13] T. R. Halfhill. Transmeta Breaks x86 Low-Power Barrier. Microprocessor Report, February 2000.

[14] M. Huang, J. Renau, S.-M. Yoo, and J. Torrellas. A Framework for Dynamic Energy Efficiency and
Temperature Management. In Proc. of the 33rd Annual Intl. Symp. on Microarchitecture, 2000.

[15] C. J. Hughes et al. Variability in the Execution of Multimedia Applications and Implications for
Architecture. In Proc. of the 28th Annual Intl. Symp. on Comp. Architecture, 2001.

[16] C. J. Hughes, J. Srinivasan, and S. V. Adve. Saving Energy with Architectural and Frequency Adap-
tations for Multimedia Applications. In Proc. of the 34th Annual Intl. Symp. on Microarchitecture,
2001.

[17] Intel XScale Microarchitecture. http://developer.intel.com/design/intelxscale/benchmarks.htm.

[18] C. E. Kozyrakis and D. Patterson. A New Direction for Computer Architecture Research. IEEE
Computer, November 1998.

30

[19] R. B. Lee and M. D. Smith. Media Processing: A New Design Target. IEEE Micro, August 1996.

[20] Y.-H. Lee and C. Krishna. Voltage-Clock Scaling for Low Power Energy Consumption in Real-Time
Embedded Systems. In Proc. of the 6th Intl. Conference on Real-Time Computing Systems and Appli-
cations, 1999.

[21] S. Manne, A. Klauser, and D. Grunwald. Pipeline Gating: Speculation Control for Energy Reduction.
In Proc. of the 25th Annual Intl. Symp. on Comp. Architecture, 1998.

[22] R. Maro, Y. Bai, and R. Bahar. Dynamically Reconfiguring Processor Resources to Reduce Power
Consumption in High-Performance Processors. In Proc. of the Workshop on Power-Aware Computer
Systems, 2000.

[23] M.Weiser, B.Welch, A.Demers, and S.Shenker. Scheduling for rediced CPU energy. In Proc. of the
1st Symposium on Operating Systems Design and Implementation, 1994.

[24] V. S. Pai, P. Ranganathan, and S. V. Adve. RSIM Reference Manual version 1.0. Technical Report
9705, Department of Electrical and Computer Engineering, Rice University, August 1997.

[25] P. Pillai and K. G. Shin. Real-Time Dynamic Voltage Scaling for Low-Power Embedded Operating
Systems. In Proc. of the 18th ACM Symp. on Operating Systems Principles, 2001.

[26] J. Pouwelse, K. Langendoen, and H. Sips. Energy Priority Scheduling for Variable Voltage Processors.
In Intl. Symp. on Low-Power Electronics and Design, 2001.

[27] T.Pering, T.Burd, and R.Brodersen. Voltage Scheduling in the lpARM Microprocessor System. In
Proc. of the Intl. Symposium on Low Power Electronics and Design, 2000, 2000.

31

