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Abstract

The paper, Programming for Di�erent Memory Consistency Models [GAG

+

92], de�nes the PLpc

memory model. This companion note formalizes the system requirements for PLpc along with a proof

that shows these requirements are su�cient for supporting this model. In addition, we prove the

correctness of the conditions presented in the original paper [GAG

+

92] for porting PLpc programs to

the various hardware-centric models. The reader should be familiar with the material in the original

paper on PLpc [GAG

+

92] before reading this supplement.

1 Introduction

This is a supplementary note to the paper that de�nes the PLpc memory model [GAG

+

92]. Section 2

provides a brief overview of the PLpc model along with the key de�nitions; a few de�nitions are changed

slightly compared to the original versions to either address subtle correctness issues or to increase clar-

ity. Section 3 speci�es the su�cient system requirements for supporting PLpc; this speci�cation is based

upon a general framework we have proposed for specifying system conditions for di�erent memory mod-

els [GAG

+

93]. Section 4 briey describes the conditions presented in the PLpc paper [GAG

+

92] for porting

PLpc programs to hardware-centric models. Appendices A, B, and C provide extended forms for some of

the conditions discussed in the paper. Finally, Appendix D provides the correctness proof for the system

requirements to support PLpc and Appendix E proves the correctness of the porting conditions.

�
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2 The PLpc Model

This section presents a brief overview of the relevant de�nitions for the PLpc model as they appear in the

original paper on PLpc [GAG

+

92]. We refer the reader to the original paper for the motivation, intuition,

and full description of the PLpc model. Some of the de�nitions and conditions presented below are slightly

di�erent as compared to those in the original paper [GAG

+

92]. (Some changes are made for clarity, while

others are for correctness or are restrictions on the original conditions because we were unable to do the

proofs for the more aggressive conditions.)

We begin by providing some terminology used in the PLpc framework [GAG

+

92]. For every execution

of a program, the program text de�nes a partial order, called program order (

po

�!), on the memory accesses

of each process in the execution [SS88]. A system is sequentially consistent (SC) if the result of every

execution on it can be obtained by some total order (

to

�!) of the memory accesses of the execution such

that

to

�! obeys

po

�! [Lam79]. An SC execution refers to an execution of a program on an SC system. Two

accesses are considered conicting if they are to the same location and at least one of them is a write [SS88].

De�nitions 2.1 and 2.2 below de�ne an ordering chain and the notion of competing and non-competing

accesses.

De�nition 2.1: Ordering Chain

For two conicting accesses u and v of an SC execution with a total order

to

�!, an ordering chain

exists from access u to access v if u

po

�! v or u

po

�! w

1

to

�! r

1

po

�! w

2

to

�! r

2

po

�! w

3

: : :

to

�! r

n

po

�! v where n � 1, w

i

is a write access, r

j

is a read access, and w

i

and r

j

are to the same location

if i = j. If all accesses in the above chain are to the same location, then u may be the same as w

1

,

and v may be the same as r

n

as long as there is at least one

po

�! arc in the chain.

De�nition 2.2: Competing and Non-competing Accesses

Two conicting accesses of an SC execution of a program form a competing pair if there is no

ordering chain between them. An access is a competing access if there is at least one SC execution

in which this access belongs to a competing pair. Otherwise, it is non-competing.

The next de�nition describes a synchronization loop construct. This is the simple de�nition; the more

general de�nition appears in Appendix A.

De�nition 2.3: Synchronization Loop Construct

A synchronization loop construct is a sequence of instructions in a program that satis�es the fol-

lowing. (i) The construct executes a read or a read-modify-write to a speci�c location. Depending

on whether the value returned is one of certain speci�ed values, the construct either terminates

or repeats the above. (ii) If the construct executes a read-modify-write, then the writes of all but

the last read-modify-write store values that are returned by the corresponding reads. (iii) The

construct terminates in every SC execution.

As in the original de�nition, we assume that the unsuccessful reads of a synchronization loop construct

do not contribute to the result of the program [GAG

+

92]. Thus, we assume that if all accesses of a

synchronization loop construct are replaced with only the last read or read-modify-write that exited the

loop, we still get a SC execution with the same result as before. Therefore, in analyzing SC executions, we

treat a synchronization loop construct as a single access which is the last read or read-modify-write that

terminates the loop construct.

The de�nition of the synchronization loop construct (De�nition 2.3) can be further constrained to

simplify the system speci�cation for PLpc. The additional constraint is as follows. Consider any read R

of a synchronization loop construct in execution E1. If the instruction instance corresponding to R occurs

in any other execution E2, then the values that can terminate the instance of the synchronization loop

construct corresponding to R are the same in E1 and E2.

1

Imposing the above additional constraint results

in a simpli�cation of the reach relation discussed in Appendix B. Appendix B speci�es the reach relation

with and without the above additional constraint. Furthermore, the above constraint can be applied to the

more general de�nition for a synchronization loop construct provided in Appendix A.

1

The intuitive notions of an execution and that of an instruction instance of one execution occurring in another execution

are formalized in Section 3.1 and Appendix B respectively.
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non−loop loop

shared

competing non−competing

Figure 1: Categorization of read and write accesses to shared data.

Given the above de�nitions, loop and non-loop accesses are de�ned as follows.

2 3 4

Unless mentioned

otherwise, terms such as last, after, and between used below refer to the ordering by the execution order.

In addition, we assume that the initial value of each memory location is modeled by a hypothetical write

to that location that writes the initial value at the beginning of the execution; we assume this write occurs

before (in the execution order) all other conicting operations to the given memory location.

De�nition 2.4: Loop and Non-loop Reads

A competing read (R) is a loop read if in any SC execution

(i) it is the �nal read of a synchronization loop construct that terminates the construct,

(ii) it competes with at most one write,

(iii) whenever it competes with a write (W), the write is necessary to make the synchronization loop

construct terminate; i.e., the read returns the value of that write and the immediately preceding

write would not make the loop construct terminate, and

(iv) let W' be the last conicting write (if any) before W whose value could terminate the loop

construct; if there exists any competing write W" to the same location between W' and W (by

de�nition, W" fails to terminate the loop construct), then there is an ordering chain from W" to

R that ends with a

po

�!.

A competing read that is not a loop read is a non-loop read.

De�nition 2.5: Loop and Non-loop Writes

A competing write W is a loop write if in any SC execution:

(i) it competes only with loop reads, and

(ii) for any non-loop read R that conicts with W and is after W, there is an ordering chain from

W to R that ends with a

po

�!.

A competing write that is not a loop write is a non-loop write.

Figure 1 shows the categorization of read and write accesses to shared data in PLpc. We use the

abstraction of a label associated with every access to identify the category of the access. In PLpc, the

valid labels are non-competing, loop, and non-loop. We use the subscript

L

to distinguish the label from the

intrinsic category of the access. We assume the labels can be conveyed either through special instructions or

through the address of the memory operation (or both). The following de�nition (De�nition 2.6) formalizes

when a program is properly labeled according to PLpc.

5

De�nition 2.7 de�nes the PLpc memory model.

De�nition 2.6: Properly Labeled Programs (PLpc Programs)

A program is properly labeled (PLpc) if (i) all accesses labeled non-competing

L

are non-competing

and (ii) all accesses labeled loop

L

are either loop accesses or non-competing.

2

The third clause (iii) in the de�nitionof loop read (De�nition2.4) is phrased di�erently in the original de�nition [GAG

+

92].

It turns out that this makes a subtle semantic di�erence and we have changed the wording to correct this. In addition, clause

(iv) is missing in the original de�nition; we need this extra condition to prove the correctness of the optimizations we intended

for PLpc systems and the ports to hardware-centric models. Similarly, clause (ii) is missing in the original de�nition of loop

writes (De�nition 2.5).

3

The following is a more aggressive de�nition for clause (iv) of De�nition 2.4 (it uses the

co

�! relation de�ned in Section 3.1):

let W' be the last conicting write (if any) before W whose value could terminate the loop construct; if there exists a

po

�! [

co

�! path from any competing write W" between W' and W to R that begins with

co

�!, ends with

po

�!, and consists of

write-to-read

co

�!'s only, then there should be an ordering chain from W" to R that ends with a

po

�!.

4

The following is a more aggressive de�nition for clause (ii) of De�nition 2.5: for any non-loop read R that conicts with

W and for which there is a

po

�! [

co

�! path from W to R that begins with

co

�!, ends with

po

�!, and consists of write-to-read

co

�!'s only, then there should be an ordering chain from W to R that ends with a

po

�!.

5

There is a minor omission in the second clause of De�nition 2.6 in the original paper [GAG

+

92]; the original de�nition

did not say that non-competing accesses may be labeled loop

L

even though the description in the text mentioned this.

3



De�nition 2.7: The PLpc Memory Model

A system obeys the PLpc memory model if all executions of any PLpc program on the system are

SC executions.

3 Su�cient System Requirements for PLpc

This section provides a set of su�cient system conditions that satisfy the PLpc model. These conditions

are presented using a general formalism and framework that we have proposed for specifying system re-

quirements for memory models [GAG

+

93]. The �rst part of the section provides a brief background on the

speci�cation framework. We then proceed to present the speci�c conditions that satisfy PLpc. The proof

of correctness for the system conditions for PLpc is given in Appendix D.

3.1 Background on Speci�cation of System Requirements

This section provides a brief overview of the framework we use for specifying the system requirements.

Only the relevant terminology and de�nitions are provided below; we refer the reader to the paper that

proposes this framework [GAG

+

93] for a more detailed treatment (much of what follows is paraphrased

from that paper). The speci�cation methodology described below naturally exposes the architecture and

compiler optimizations allowed by a memory model, thus leading to a relatively simple translation of the

conditions into correct and e�cient implementations.

The speci�cation assumes the following system abstraction. The system consists of n processors,

P

1

; : : : ; P

n

. A shared read operation R by P

i

is comprised of a single atomic sub-operation, R(i). A shared

write operation W by P

i

is comprised of (n+1) atomic sub-operations: the initial write sub-operation

W

init

(i) and n sub-operations W(1), : : : , W(n) (all sub-operations of W access the same location and

write the same value). De�nition 3.1 below de�nes the notion of an execution and Conditions 3.1 and

3.2 specify restrictions that should be obeyed by any execution. (Appendix C provides a more aggressive

version of Condition 3.1 that applies to the system speci�cation for PLpc.)

De�nition 3.1: Execution

An execution of a program consists of the following three components and should obey Conditions

3.1 and 3.2 speci�ed below.

(i) A (possibly in�nite) set I of instruction instances where each instruction instance is associated

with the processor that issued it, registers or memory locations it accessed, and values it read or

wrote corresponding to the accessed registers and memory locations.

(ii) A set S of shared-memory read and write sub-operations that contains exactly the following

components. For every instruction instance i in I that reads a shared-memory location, the set S

contains the memory sub-operation for the reads of i with the same addresses and values as in i.

For every instruction instance i in I that writes a shared-memory location, the set S contains the

W

init

sub-operation for the writes of i with the same addresses and values as in i, and possibly

other sub-operations of these writes in the memory copies of di�erent processors.

(iii) A partial order, called the program order (denoted

po

�!), on the instruction instances in I,

where the partial order is total for the instruction instances issued by the same processor.

Condition 3.1: Uniprocessor Correctness Condition

For any processor P

i

, the instruction instances of P

i

in the set I (including the associated locations

and values) belonging to an execution, and its corresponding program order

po

�!, should be the same

as the instruction instances and program order of a conceptual execution of the code of processor

P

i

on a correct uniprocessor, given that the shared-memory reads of P

i

(i.e., the R(i)'s) on the

uniprocessor are made to return the same values as those speci�ed in the set I.

4



Condition 3.2: Value Condition

Consider the set S of shared-memory read and write sub-operations. If set S is part of an execution,

then there must exist a total order called the execution order (denoted

xo

�!) on the memory sub-

operations of S such that (a) only a �nite number of sub-operations are ordered by

xo

�! before any

given sub-operation, and (b) any read sub-operation R(i) by P

i

returns a value that satis�es the

following conditions. If there is a write operation W by P

i

to the same location as R(i) such that

W

init

(i)

xo

�! R(i) and R(i)

xo

�! W(i), then R(i) returns the value of the last such W

init

(i) in

xo

�!.

Otherwise, R(i) returns the value of W'(i) (from any processor) such that W'(i) is the last write

sub-operation to the same location that is ordered before R(i) by

xo

�!.

The speci�c requirements for a memory model are presented as restrictions on the execution order

(de�ned in Condition 3.2). The following three conditions impose these restrictions.

Condition 3.3: Initiation Condition (for memory sub-operations)

Given two operations by P

i

to the same location, the following must be true. If R

po

�!W, then R(i)

xo

�! W

init

(i). If W

po

�! R, then W

init

(i)

xo

�! R(i). If W1

po

�! W2, then W1

init

(i)

xo

�! W2

init

(i).

Condition 3.4:

sxo

�! Condition

Let X and Y be memory operations. If X

sxo

�! Y, then X(i) must appear before Y(j) in the execution

order for some i,j pairs (the i,j pairs used are speci�c to each model). The

sxo

�! relation is individually

speci�ed for each memory model.

Condition 3.5: Termination Condition (for memory sub-operations)

Suppose a write sub-operation W

init

(i) (belonging to operation W) by P

i

appears in the execution.

The termination condition requires that the other n corresponding sub-operations, W(1) : : :W(n),

appear in the execution as well. A memory model may restrict this condition to a subset of all

write sub-operations.

The system conditions for PLpc presented in the next section specify the components that comprise

the

sxo

�! condition (Condition 3.4). We will use the following terminology in specifying the conditions. A

condition like \X(i)

xo

�! Y(j) for all i,j" implicitly refers to pairs of values for i and j for which both X(i)

and Y(j) are de�ned. In addition, we implicitly assume that X(i) and Y(j) appear in the execution for all

such pairs. Two sub-operations conict if their corresponding operations conict with one another. The

conict order (

co

�!) is de�ned between two conicting operations X and Y (X

co

�! Y) if X(i)

xo

�! Y(i)

holds for some i. Given X

co

�! Y, if X and Y are on di�erent processors, then X and Y are ordered by the

interprocessor conict order (

co

0

�!) as well (i.e., X

co

0

�! Y). RMW denotes a read-modify-write operation

and AR and AW denote its individual read and write operations.

Given the above conditions on the execution order, a valid execution order is one that satis�es Con-

ditions 3.3, 3.4, and 3.5 for a given memory model. An execution is a valid execution for a given model

i� there is at least one valid execution order that can be constructed for it. Finally, a system correctly

implements a memory model i� every execution allowed by the system is a valid execution. (The above

correspond to De�nitions 2, 3, and 4 in the speci�cation framework paper [GAG

+

93].)

3.2 System Requirements for PLpc

This section presents the system requirements for PLpc based on the speci�cation framework [GAG

+

93]

discussed in the previous section. Figure 2 presents the su�cient system requirements for PLpc. We use the

following notation. Rc and Wc denote competing read and write memory operations, respectively, to shared

writable locations. Rnl and Wnl are non-loop operations. R and W refer to any read or write operations

(including, e.g., Rnl and Wnl) to shared writable locations. The relations used in the speci�cation are as

follows (the signi�cance of these relations is discussed in [GAG

+

93]). The

spo

�! and

sco

�! relations capture

the speci�c

po

�! and

co

�! arcs that are used to de�ne the

sxo

�! relation. In turn, the

sxo

�! relation captures

certain

po

�! [

co

�! orders that are used in the

sxo

�! condition to constrain the execution order. Note that

the

sxo

�! relation and condition impose orders among conicting accesses only. This is in compliance with

the philosophy of imposing as few constraints as possible in order to expose more optimizations [GAG

+

93].
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de�ne

spo

�!,

spo

0

�!:

X

spo

0

�! Y if X and Y are the �rst and last operations in one of

Rc

po

�! Rnl

Rc

po

�! Wc

Wnl

po

�! Rnl, to di�erent locations

Wnl

po

�! Wc

X

spo

�! Y if X and Y are the �rst and last operations in one of

Rc

po

�! RW

RW

po

�! Wc

de�ne

sco

�!: X

sco

�! Y if X and Y are the �rst and last operations in one of

Wc

co

0

�! Rc

Rnl

co

0

�! Wnl

Wnl

co

0

�! Wnl

Rnl

co

0

�! Wnl

co

0

�! Rc

de�ne

sxo

�!: X

sxo

�! Y if X and Y conict and X,Y are the �rst and last operations in one of

uniprocessor dependence: RW

po

�! W

coherence: Wnl

co

0

�! Wnl

multiprocessor dependence chain: one of

Wc

co

0

�! Rc

spo

�! RW

RW

spo

�! fWc

sco

�! Rc

spo

0

�! g* fWc

sco

�! Rc

spo

�! g RW

RWnl

spo

0

�! fA

sco

�! B

spo

0

�! g+ RWnl

Wnl

sco

�! Rc

spo

0

�! fA

sco

�! B

spo

0

�! g+ Rnl

atomic read-modify-write (AR,AW):

if W conicts with AR,AW, then either (W

sxo

�! AR and W

sxo

�! AW) or (AW

sxo

�! W)

reach: R

rch

�! fW

co

0

�! R

rch

�! g+ W

Conditions on

xo

�!:

Initiation condition holds.

sxo

�! condition: if X

sxo

�! Y, then X(i)

xo

�! Y(i) for all i.

Termination condition holds for all competing sub-operations.

Figure 2: Su�cient conditions for PLpc.

The �gure enumerates the three constraints (i.e., initiation,

sxo

�!, and termination conditions) imposed on

the execution order (

xo

�!).

We now briey describe the various components of the

sxo

�! relation. The uniprocessor dependence

condition captures the order among operations on the same processor and to the same location. The

coherence condition represents the order among non-loop writes; its e�ect on the execution order (through

the

sxo

�! condition) is to require non-loop write sub-operations for each location to execute in the same

order with respect to every processor. The multiprocessor dependence chain condition captures the

po

�!

[

co

�! orders among certain operations. The �rst two chains roughly correspond to the ordering chain in

PLpc (De�nition 2.1). The last two chains capture the order among non-loop operations. The \fA

sco

�! B

spo

�! g+" notation represents one or more occurrences of the given pattern within the chain (this is similar to

regular expression notation; we also use \*" to denote zero or more occurrences). The atomic read-modify-

write condition simply captures the atomicity of such operations with respect to other writes to the same

location. Finally, the reach condition captures the order among operations arising from uniprocessor data

and control dependences and certain multiprocessor dependences. We further discuss the reach condition

and the reach relation (

rch

�!) below.

The main purpose for the reach condition is to disallow anomalous executions that arise if we allow

\speculative" write sub-operations to take e�ect with respect to other processors. For example, consider

6



P1

if (A == 1) {
      B = 1;
}

P2

if (B == 1) {
      A = 1;
}

Figure 3: Example to illustrate the reach condition.

the program segment shown in Figure 3. If we assume all operations are labeled non-competing by default,

the program shown is a PLpc program. Even though it seems that there may a possibility for the reads to

compete with the writes, it turns out that the writes to locations A and B do not occur in any SC execution.

The non-SC execution can occur, however, if we allow the two writes to execute speculatively by predicting

that both if statements will execute their then clauses. Without the reach condition, none of the other

constraints in Figure 2 disallow this anomalous execution. However, to satisfy the PLpc model (which

requires all executions of the program to be sequentially consistent), we need to disallow any execution

in which either of the two write operations occurs. In most previous work, the conditions to disallow

such executions are informal: \intraprocessor dependencies are preserved" [AH90] or \uniprocessor control

and data dependences are respected" [GLL

+

90]. Even though some proofs of correctness (e.g., proof of

correctness for PL programs executing on the RCsc model [GLL

+

90]) formalized certain aspects of this

condition, the full condition was never presented in precise terms. The work by Adve and Hill in the

context of the DRF1 model [AH92] speci�es the condition more explicitly. In this paper, we have further

formalized this condition and present a more aggressive form as part of specifying the su�cient conditions

for PLpc.

The full description of the reach relation (

rch

�!) is presented in Appendix B. Below, we provide the

intuition behind this relation. A read operation reaches a write operation (R

rch

�! W) that follows it in

program order if the read determines whether the write will execute, the address accessed by the write,

or the value written by it. In addition, R

rch

�! W if the read controls the execution or address of another

memory operation that is before W in program order and is related to W by certain program order arcs (e.g.,

spo

�!) that are used in the

sxo

�! relation. Referring back to the example program in Figure 3, the

rch

�! relation

holds between the read and write operation on each processor because the read controls whether the write

operation occurs through conditional execution. In this example, the reach relation in conjunction with

the reach condition in Figure 2 disallow the execution in which the writes to locations A and B occur.

The proof of correctness that shows the above system conditions satisfy the PLpc memory model is

provided in Appendix D. To better understand the implications of the above conditions on architecture

and compiler optimizations, we refer the reader to the general discussion on implementations presented in

the speci�cation framework paper [GAG

+

93].

4 Porting PLpc Programs to Hardware-Centric Models

This section briey presents the conditions that were described in the original PLpc paper [GAG

+

92] for

correctly porting PLpc programs onto various hardware-centric models. Table 1 summarizes the mappings

of accesses in a PLpc program to accesses recognized by the various hardware-centric models. The proof

of correctness for the porting conditions is provided in Appendix E.

As discussed in the original PLpc paper [GAG

+

92], the TSO, PSO, PC, and RCpc models do not

provide a direct mechanism for imposing the program order between a non-loop write followed by a non-

loop read (i.e., Wnl

po

�! Rnl). Thus, we impose the required order by employing read-modify-write (RMW)

operations. Typically, an access that needs to be mapped to a RMW is already part of such an operation and

this requirement is naturally satis�ed. However, in some cases, the access has to actually be transformed

into a RMW operation. The alternative is to augment the above models with direct mechanisms for

obtaining the appropriate order [GAG

+

92]. For TSO and PSO, we need a fence mechanism [GLL

+

90] that

delays future reads for previous writes. Then, the alternative mapping for TSO and PSO is to place such a

fence between any pair of Wnl

po

�! Rnl (for PSO, Wc still needs to be preceded by a STBAR as before). For

7



Table 1: Mapping of PLpc accesses to hardware-centric models.

Hardware-Centric Model Mapping of PLpc Labels

TSO for every Wnl

po

�! Rnl, at least one access is mapped to a RMW

PC every Rnl is mapped to a RMW

PSO same as TSO, plus every Wc is preceded by a STBAR

WO every Rc and Wc is mapped to a synchronization access

RCsc every Rc is mapped to an acquire and every Wc is mapped to a release

RCpc same as PC plus RCsc (Rnl mapped to RMW with R an acquire and W an nsync)

PC, we also require the extra ability to specify certain writes to appear atomic. The alternative mapping

for PC is to place a fence between any pair of Wnl

po

�! Rnl and to specify every Wnl as an atomic write.

The mapping for RCpc can be made more aggressive. RCpc requires the fence to delay future non-loop

reads for previous non-loop writes. The alternative for RCpc is to place this weaker fence between any pair

of Wnl

po

�! Rnl and to specify every Wnl as an atomic write (as before, all Rc and Wc are speci�ed as

acquires and releases, respectively).

Among the above models, RCpc provides the most e�cient platform for PLpc programs. Nevertheless,

the su�cient conditions for PLpc in Figure 2 allow for a more aggressive implementation than any of the

above hardware-centric systems.
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Appendix A: Extended De�nition for Synchronization Loop Con-

struct

Below, we give the more general de�nition than De�nition 2.3 for a synchronization loop construct. The

conditions below are almost identical to the general conditions provided in (the appendix of) the original

paper on PLpc [GAG

+

92], with the main exception that clauses (vi) and (vii) were not present earlier.

De�nition A.1: Loop Construct

A loop construct is a sequence of instructions in a program that would be repeatedly executed until

a speci�c read in the sequence (the exit read) reads a speci�c location (the exit location) and returns

one of certain values (the exit read values). If the exit read is part of a read-modify-write, then the

write of the read-modify-write is called the exit write and the value it writes is called the exit write

value.

De�nition A.2: Synchronization Loop Construct

A loop construct in a program is a synchronization loop construct i� it always terminates in every

SC execution of the program and the following conditions hold. Consider a modi�cation of the

program so that it executes beginning at the loop construct. Add another process to the program

that randomly changes the data memory. Consider every SC execution with every possible initial

state of the data memory and processor registers. At the beginning of every such SC execution,

the exit read, exit location, and exit read values should only be a function of the initial state of

memory and registers and of the program text. The exit write value can additionally be a function

of the value that the exit read returns. Then, for every such SC execution,

(i) except for the �nal exit write, loop instructions should not change the value of any shared

memory location,

(ii) the values of registers or private memory changed by any loop instruction cannot be accessed

by any instruction not in the loop construct,

(iii) a loop instruction cannot modify the exit read, exit location, exit read values, or the exit write

values corresponding to a particular exit read value,

(iv) the loop terminates only when the exit read returns one of the exit read values from the exit

location and the exit write stores the exit write value corresponding to the exit read value returned,

(v) if exit read values persist in the exit location, then the loop eventually exits,

(vi) the �rst instruction instance program ordered after the loop is the same in every other SC

execution that begins with the same initial state of data memory and processor registers, and

(vii) the only shared-memory operations in the iteration that terminates the loop should be the

exit read and exit write (if the exit read is part of a read-modify-write).

When analyzing an SC execution, the accesses of a synchronization loop construct can be replaced by the

�nal successful exit read and exit write (if any). The unsuccessful accesses can be labeled non-competing.

The above de�nition is fairly general and allows for implementations such as locks using a test&test&set

technique to be considered a synchronization loop construct.

Appendix B: Reach Relation

This appendix de�nes the reach relation (

rch

�!). To de�ne the reach relation, we need to consider the set of

instruction instances, I, of the execution. To formalize the reach relation, we �rst present an abstraction

for the program instruction statements. We classify instructions into three types: computation, memory,

and control. Computation instructions read a set of registers (register read set) and map the read values

into new values that are written to another (possibly same) set of registers (register write set). Memory

instructions are used to read and write memory locations (both private and shared). A memory read

instruction reads the address to be read from a register, reads the speci�ed memory location, and writes

the return value into a register. A memory write instruction reads the address and value to be written from

registers and writes the value into the speci�ed memory location. A memory read-modify-write instruction

is both a memory read and a memory write instruction that reads and writes the same location. Therefore,

for the read instruction, the register read set comprises of the address register and the register write set is

the destination register. For the write instruction, the register read set comprises of the address and value

10



registers and there is no register write set. Finally, control instructions (e.g., branch instructions) change the

control ow by appropriately adjusting the program counter. The register read set for a control instruction

is a set of registers whose values determine the change in the control ow. If an instance of a control

instruction results in the program counter only being incremented, then we say the instruction instance

preserves program control ow; if the program counter changes in any other way, we say the instruction

instance results in changing the program control ow. Note that the above description of instructions is

merely an abstraction and can be adapted to most architectures and languages.

We now de�ne the notion of local data dependence (

dd

�!) and control dependence (

cd

�!) that will be

used to develop the

rch

�! relation. For two instruction instances A and B in an execution, A

dd

�! B if B

reads a value that A writes into its register write set or a private memory location of its processor. (The

interaction due to shared-memory data dependence is handled later.) Our notion of control dependence is

borrowed from Ferrante et al. [FOW87]. Control dependence is de�ned in terms of a control ow graph and

dominators [ASU86]. Let Prog be the program under consideration, and let E be an execution of program

Prog. Consider the control ow graph of any process in program Prog, with the �nal node in the graph

denoted by EXIT. Let C' and D' be two instructions in the control ow graph. C' is post-dominated by

D' if D' occurs on every path in the control ow graph from C' to EXIT. Let A and B be two instruction

instances of processor P in execution E and let A' and B' be the instructions corresponding to A and B

in the program text. Instruction instance B is control dependent on instruction instance A if the following

conditions hold: (i) A

po

�! B in execution E, and (ii) A' is not post-dominated by B', and (iii) there is

a path between A' and B' in the control ow graph of processor P such that all the nodes on this path

(excluding A',B') are post-dominated by B'. Note that if A

cd

�! B, then A' is a control instruction.

To allow for possibly non-terminating executions, we need to augment the control ow graph and the

resulting

cd

�! relation with additional arcs. Informally, consider a loop in the program that does not

terminate in some SC execution. Then for any instruction instance i that is program ordered after an

instance of the loop, we require

cd

�!+ to order i after instances of the control instructions of the loop that

change the program ow for this loop and cause in�nite execution. More formally, let C' be any control

instruction that could be executed in�nite times in some SC execution E. Suppose an in�nite number of

successive instances of C' change the control ow of the program in E. Add an auxiliary edge from every such

instruction C' to the EXIT node. This ensures that any such control instruction C' is not post-dominated

by any of the instructions that follow it in the control ow graph, and so instances of C' are ordered before

all instances of all subsequent instructions by

cd

�!+. The modi�cation described above is not necessary

if all SC executions of the program will terminate, or if there are no memory operations that are ordered

after possibly non-terminating loops in the control ow graph.

We next use

cd

�! and

dd

�! to de�ne two relations, the uniprocessor reach dependence (

Udep

�!) and the

multiprocessor reach dependence (

Mdep

�! ) below, and then de�ne the

rch

�! relation in terms of these two new

relations. A discussion of the di�erent relations and the de�nition of the

rpo

�! relation used in the de�nition

of

Mdep

�! follow after the formal de�nitions. (De�nition B.2 below assumes the additional constraint for

synchronization loop constructs described in Section 2. Without that constraint,

Mdep

�! holds under the

following additional case as well: X

po

�! Y in E, Y generates an exit read of a synchronization loop

construct and X

Udep

�!+ Z, where Z is a branch instruction in the loop.)

De�nition B.1: Uniprocessor Reach Dependence

Let X and Y be instruction instances in an execution E of program Prog. X

Udep

�! Y in E i� X

po

�! Y, and either

(a) X

cd

�! Y in E, or

(b) X

dd

�! Y in E, or

(c) X and Y occur in another possible SC execution E' of the program Prog, X

cd

�!+ Z

dd

�! Y in

E', and Z does not occur in E.
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De�nition B.2: Multiprocessor Reach Dependence

Let X and Y be instruction instances in an execution E of program Prog. Let Y be an instruction

instance that accesses shared-memory. X

Mdep

�! Y in E i� any of the following are true.

(a) X

po

�! Y in E and X and Y occur in another possible SC execution E' of Prog, where X

Udep

�!+

Z

rpo

�! Y in E', Z is an instance of a shared-memory instruction, for any A

dd

�! B constituting the

Udep

�!+ path from X to Z in E', B also occurs in E, and either Z does not occur in E, or Z occurs

in E but is to a di�erent address in E and E', or Z is a write to the same address in E and E' but

writes a di�erent value in E and E'.

(b) X

po

�! Y in E and X

Udep

�! Z

rpo

�! Y in E.

(c) X

po

�! Y in E and X

Mdep

�! Z

rpo

�! Y in E.

(d) X

po

�! Y or X is the same as Y. Further, X generates a competing read R within a synchronization

loop construct and Y generates an operation O (di�erent from R) such that R

rpo

�!+ Y.

De�nition B.3: Reach' Relation

Given an execution E and instruction instances X and Y in E (where X may or may not be the same

as Y), X

rch

0

�! Y in E i� X and Y are instances of memory instructions, X generates a shared-memory

read, Y generates a shared-memory write, and X f

Udep

�! j

Mdep

�! g+ Y in E. For two di�erent memory

operations, X' and Y', from instruction instances X and Y respectively, X'

rch

0

�! Y' i� X' is a read,

Y' is a write, X'

po

�! Y' and X

rch

0

�! Y.

De�nition B.4: Reach Relation

Given an execution E and instruction instances X and Y in E, X

rch

�! Y in E i� X

rch

0

�! Y and

X generates a memory read that reads the value of another processor's write. (The

rch

�! relation

among memory operations is de�ned in an analogous manner to

rch

0

�!.)

The reach relation is a transitive closure of the uniprocessor reach dependence (

Udep

�!) and the multi-

processor reach dependence (

Mdep

�! ) relations. The uniprocessor component corresponds to uniprocessor

data and control dependence, while the multiprocessor component corresponds to dependences that are

present due to the memory consistency model. The components that make up

Udep

�! and

Mdep

�! are de�ned

for a given execution E. Both relations also require considering other sequentially consistent executions

of the program, and determining if an instruction in one execution occurs in the other execution.

6

For

an instruction instance from one execution to occur in another, we do not require that locations accessed

or the values read and written by the corresponding instruction instances in the two executions be the

same; we are only concerned with whether the speci�c instances appear in the execution. In the absence of

constructs such as loops and recursion, it is straightforward to determine if an instance that appears in one

execution also appears in another. In the presence of constructs such as loops and recursion, care has to

be taken to match consistent pairs of instruction instances. Instruction instances between two executions

are matched consistently if the set of instances that are considered to appear in both executions have the

same program order relation between them in both executions, and are the maximal such sets. (A set S

with property P is a maximal set satisfying property P if there is no other set that is a superset of S and

also satis�es property P.)

De�nition B.5 de�nes the

rpo

�! relation which is used as part of the de�nition for

Mdep

�! .

De�nition B.5:

rpo

�! Relation

Let X and Y be instances of shared-memory instructions in an execution E, and let X' and Y' be

the memory operations corresponding to X and Y respectively in E. X

rpo

�! Y in E i� either

(a) X'

spo

�! Y' in E, or

(b) X'

po

�! Y' in E and X'

po

�! Y' is in the uniprocessor dependence part of the

sxo

�! condition, or

(c) X'=W

po

�! Y'=R in E and the initiation condition requires that W

init

(i)

xo

�! R(i) in E.

We have shown that the

rch

�! relation as formalized above provides a su�cient condition for satisfying

the PLpc model as part of the speci�cation presented in Figure 2. However, we do not know that it is

6

It may be simpler to be conservative and consider all possible executions of the program and not just SC executions for

E' in the de�nitions of

Udep

�! and

Mdep

�! .
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necessary and believe that certain aspects such as requiring W

po

�! R as part of

rpo

�! in part (c) of de�nition

B.2 may be overly conservative. Therefore, it may be possible to relax the

rch

�! relation in the future without

violating the PLpc model.

Appendix C: Aggressive Form of Uniprocessor Correctness Con-

dition

This appendix discusses a relaxation of the uniprocessor correctness condition (Condition 3.1) given in

Section 3.1. the notion of a correct uniprocessor used in Condition 3.1 assumes the following: given an

execution, E, of a correct uniprocessor, if an instruction instance, i, is in E, then the number of instruction

instances in E that are ordered before i by program order is �nite. This can potentially restrict imple-

mentations by prohibiting the aggressive execution of operations that may be ordered after potentially

non-terminating loops by program order. In this appendix, we present a more aggressive condition that

allows certain operations to execute before a preceding loop may terminate. De�nition C.1 below formal-

izes the notion of a preceding loop; De�nition C.2 formalizes the condition that determines whether an

operation can execute before its preceding loop terminates.

De�nition C.1: Loop

A loop in a control ow graph refers to a cycle in the control ow graph. A loop L does not terminate

in an execution i� the number of instances of instructions from loop L in the execution is in�nite.

Condition C.2: In�nite Execution Condition

Consider an execution E of program Prog that contains instruction instance j of instruction j', and

j' is a write instruction.

(a) If j' follows loop L that does not terminate in some SC execution, then the number of instances

of instructions in E that are from loop L and that are ordered by program order before j is �nite.

(b) The number of instruction instances that are ordered before j by

rch

0

�! in E is �nite.

With the above condition, a processor can execute a read operation before it is known whether the

previous loops in program order will terminate. For a write operation, the processor is allowed to execute

it before a previous loop as long as the loop is known to terminate in every SC execution and as long

as no memory operations from the loop are ordered before the write by

rch

0

�!. Most programs are written

so that either they will terminate in all SC executions, or there are no shared-memory operations that

follow a potentially non-terminating loop. In addition, the information about whether a loop will always

terminate in an SC execution is often known to the programmer and can be easily obtained. Thus, the

above relaxation of the uniprocessor correctness condition is applicable to a large class of programs.
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Appendix D: Proof of Correctness of System Requirements for

PLpc

This appendix proves that the system requirements presented in Figure 2 are su�cient for obeying the

PLpc memory model. The proof is based on a general framework for proving the correctness of generic

programmer-centric models developed by Adve in her thesis [Adv93]. Adve and Hill describe programmer-

centric models such as PLpc as SCNF (sequential consistency normal form) models [Adv93, AH93], and so

we refer to the general framework (from [Adv93]) as the SCNF framework. The SCNF framework [Adv93]

characterizes an SCNF model in terms of a property called the valid paths of the model, gives a generic set

of system requirements for an SCNF model primarily based on these valid paths, and proves the correctness

of these system requirements. Section D.1 reviews concepts of the SCNF framework necessary to prove

the correctness of PLpc system conditions. In Section D.2, we use the SCNF framework to derive a set of

su�cient valid paths for the PLpc model. Section D.3 uses the SCNF framework to show that given the

derived valid paths, the system requirements presented in Figure 2 are indeed su�cient for satisfying the

PLpc model.

D.1: Review of the SCNF Framework [Adv93]

This section briey and somewhat informally reviews concepts of the SCNF framework [Adv93] that are

required to understand the proof of this appendix. We refer the reader to Chapter 7 of Adve's thesis [Adv93]

for a more thorough understanding of these concepts.

The key notions in the SCNF framework are those of critical paths and valid paths, where critical

paths characterize a program and valid paths characterize a system and memory model. The following

�rst gives three basic de�nitions (from [Adv93]) that are then used to informally motivate the notions of

critical and valid paths. The informal discussion is followed by more formal de�nitions of critical paths,

valid paths, a characterization of a generic SCNF memory model in terms of valid paths, and a generic

system speci�cation for a generic SCNF memory model.

7

De�nition D.1:

The program/conict graph for an execution E is a directed graph where the vertices are the

(dynamic) operations of the execution and the edges represent the program order and conict order

relations on the operations.

De�nition D.2:

A path in the program/conict graph from operation X to operation Y is called a race path i� X

co

�! Y and there is no path from X to Y in the program/conict graph that contains at least one

program order edge.

De�nition D.3:

An ordering path is a path in the program/conict graph that is between two conicting operations,

and either it has at least one program order edge or it is a race path between two writes.

We say an ordering path from operation X to operation Y is executed safely if X(i)

xo

�! Y(i) for

all i. Sequential consistency is trivially guaranteed if all ordering paths of an execution are executed

safely [Adv93]. The SCNF framework shows how to guarantee sequential consistency by safely executing

only a subset of the ordering paths, thereby resulting in system optimizations. Informally, for a given

program, the subset of ordering paths that need to be executed safely to guarantee sequential consistency

are called the critical paths for the program. A memory model is characterized in terms of the ordering

paths that it guarantees to execute safely; these are called the valid paths of the model. Thus, the valid

paths characterize the system, whereas the critical paths characterize the program. An SCNF memory

7

A minor, subtle di�erence between the framework used in Section 3.1 (from [GAG

+

93]) and the SCNF framework [Adv93]

is that the former requires the existence of an execution order for an execution while the latter associates a single execution

order with an execution. Thus, an execution in [GAG

+

93] can have many execution orders and correspondingly many

program/conict graphs, whereas each such execution order corresponds to a di�erent execution in [Adv93]. This appendix

assumes the latter convention.
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model guarantees sequential consistency to a program if all critical paths in all sequentially consistent

executions of the program are valid paths for the model.

More formally, the notion of critical paths uses the following concepts from [Adv93]. Some de�nitions

are slightly customized to only consist of parts relevant to the PLpc model.

De�nition D.4:

An operation in an execution is unessential if it is from a synchronization loop construct and is not

from the �nal read or read-modify-write that terminates the loop construct in the execution. All

operations in an execution that are not unessential are essential.

De�nition D.5:

The essential reads from a synchronization loop construct are self-ordered reads. Synchronization

loop constructs are also called self-ordered loops.

De�nition D.6:

Two conicting operations, O1 and O2, in a sequentially consistent execution are called consecutive

conicting operations i� there is no write W ordered between O1 and O2 by the execution order

where W conicts with O1 and O2.

De�nition D.7 below describes the notion of critical sets and critical paths [Adv93]. (Refer to [Adv93]

for the motivation of the di�erent parts of the following de�nition and for a simpler, but slightly more

restrictive form of the de�nition.) Unless mentioned otherwise, terms such as last, after, and between refer

to the ordering by the execution order. Further, part (2) of De�nition D.7 requires considering the initial

values of a location. To model the e�ect of initial values, assume that there is a hypothetical write to each

memory location that writes the initial value of the location at the beginning of the execution order. Such

hypothetical writes are not considered unless explicitly mentioned.

De�nition D.7:

A critical set for a sequentially consistent execution, Es, is a set of ordering paths of the execution

that obey the following properties. Let X and Y be any two consecutive conicting operations such

that there is an ordering path or race path from X to Y in Es. Ignore all unessential operations in

Es.

(1) If Y is not a self-ordered read and if there is an ordering path from X to Y, then one such path

is in the critical set.

(2) Suppose Y is a self-ordered read. Let W be the last write (including the hypothetical initial

write) before X such that W conicts with Y, W writes an exit value of Y, and the following is true.

If W1 (conicting with X) is between W and X and writes an exit value of Y, then Y is a read from

a read-modify-write, the �rst conicting write (W2) after W1 writes a non-exit value of Y, W2 is

from a synchronization loop whose exit read is competing, and the write of Y's read-modify-write

writes a non-exit value for W2's loop. If W exists and if there is an ordering path from any write

after W to Y that ends in a program order arc, then one such path is in the critical set.

For every sequentially consistent execution, we consider one speci�c critical set, and refer to the

paths in that set as the critical paths.

De�nition D.8 below de�nes a generic SCNF memory model in terms of its valid paths [Adv93].

De�nition D.8: A Generic SCNF Memory Model

An SCNF memory model speci�es a characteristic set of ordering paths called the valid paths of the

model. A program is a valid program for an SCNF memory model i� for all sequentially consistent

executions of the program, a critical set of ordering paths for the execution are valid paths of

the model. A system obeys an SCNF memory model i� it appears sequentially consistent to all

programs that are valid programs for the model.

The PLpc model does not directly map into the de�nition of SCNF models because it does not explicitly

specify a set of valid paths. Instead, the model speci�es the the set of valid programs directly (i.e., PLpc

programs). However, we can use the SCNF framework for our purpose by deriving a set of su�cient valid

paths that ensure that the critical set of ordering paths for PLpc programs are covered.

The system requirements for satisfying a generic SCNF model are described below [Adv93]. Adve has

proven that given a set of valid paths that characterize an SCNF model, a system obeys the model if it
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satis�es Condition D.1 [Adv93]. Condition D.1 uses the notions of a control path and control relation.

De�nition D.9 de�nes the notion of a control path. The control relation in the SCNF framework [Adv93]

is speci�ed in terms of a set of properties it should obey. Adve has developed a more general version of

the reach relation presented in Appendix B for generic SCNF models that obeys the requirements of the

control relation [Adv93]. Therefore, the reach relation of Appendix B can be shown to trivially obey the

requirements of the control relation for the su�cient valid paths we derive for the PLpc model (Section

D.2) (for PLpc, the

rch

0

�! relation can be conservatively substituted for

ctl

�! used below). For this reason,

we do not repeat the reach or control relations from [Adv93] here.

De�nition D.9:

A control/semi-causal-conict graph of an execution is a graph where the vertices are the (dynamic)

memory operations of the execution, and the edges are due to the transitive closure of the control

(denoted

ctl

�! ) relation of the execution, or of the type Write

co

�! Read.

A control path for an execution is a path between two conicting operations in the control/semi-

causal-conict graph of the execution such that no read on the path returns the value of its own

processor's write in the execution.

Condition D.1: System Speci�cation of a Generic SCNF Model

Consider a program Prog. Let Es represent a sequentially consistent execution of program Prog.

The system should satisfy the following requirements.

Valid Path:

If there is a valid path of the model from X to Y and if either X and Y are from the

same processor, or if X is a write, or if X is a read that does not return the value of its

own processor's write, then X(i)

xo

�! Y(i) for all i.

Control:

(1) Critical set requirement: If there is a control path from R to W, then R(i)

xo

�!W(i)

for all i.

(2) Finite speculation:

(a) The number of memory operations that are ordered before any write

operation by

ctl

�! + in E is �nite.

(b) Let j be an instance of any instruction j' in E that writes shared-memory

or writes to an output interface in E. If j' follows (in E) an instance L of

a loop that does not terminate in some Es, then the number of instances

of instructions that are from the loop instance L and that are ordered by

program order before j in E is �nite.

(3) Write termination:

(a) Let operation X and write W be in E and in some Es. Let X and W be

essential in Es. If there is a race path between X and W in Es, then W's

sub-operation in the memory copy of X's processor must be in E.

(b) Let R and W be in E and in some Es. Let R and W be essential in Es.

If R is an exit read in E from a self-ordered loop that does not terminate

in E, W writes the exit value read by R in Es, and no ordering path from

W to R is valid in Es, then W's sub-operation in the memory copy of R's

processor must be in E.

(4) Loop Coherence: If W1

co

�! W2 and one of W1 or W2 is from a synchronization

loop construct, then W1(i)

xo

�! W2(i) for all i.

To prove that the su�cient system conditions for PLpc in Figure 2 obey the PLpc model, we need to

determine a set of critical paths for PLpc programs, and then show that with these critical paths as the

valid paths, the system conditions of Figure 2 obey the generic system conditions speci�ed in Condition

D.1.

8

The SCNF framework [Adv93] uses a slightly di�erent system abstraction for specifying system con-

ditions than the abstraction (from [GAG

+

93]) used in Figure 2. Informally, the main di�erence in the

8

In Condition D.1(3), only those loops that are exploited as self-ordered are considered in the generic system condition;

i.e., the critical path to exit reads of the considered loops obey part (2) of the de�nition of a critical set.
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de�ne

spo

�!,

spo

0

�!:

X

spo

0

�! Y if X and Y are the �rst and last operations in one of

Rc

po

�! Rnl

Rc

po

�! Wc

Wnl

po

�! Rnl, to di�erent locations

Wnl

po

�! Wc

X

spo

�! Y if X and Y are the �rst and last operations in one of

Rc

po

�! RW

RW

po

�! Wc

de�ne

sco

�!: X

sco

�! Y if X and Y are the �rst and last operations in one of

Wc

co

0

�! Rc where Rc returns the value of another processor's write

Rnl

co

0

�! Wnl

Wnl

co

0

�! Wnl

Rnl

co

0

�! Wnl

co

0

�! Rc

de�ne

sxo

�!: X

sxo

�! Y if X and Y conict and X,Y are the �rst and last operations in one of

uniprocessor dependence: RW

po

�! RW

coherence: Wnl

co

0

�! Wnl

multiprocessor dependence chain: one of

Wc

co

0

�! Rc

spo

�! RW

RW

spo

�! fWc

sco

�! Rc

spo

0

�! g* fWc

sco

�! Rc

spo

�! g RW

RWnl

spo

0

�! fA

sco

�! B

spo

0

�! g+ RWnl

Wnl

sco

�! Rc

spo

0

�! fA

sco

�! B

spo

0

�! g+ Rnl

atomic read-modify-write (AR,AW):

if W conicts with AR,AW, then either (W

sxo

�! AR and W

sxo

�! AW) or (AW

sxo

�! W)

reach: R

rch

�! fW

co

0

�! R

rch

�! g+ W

Conditions on

xo

�!:

Initiation condition holds.

sxo

�! condition: if X

sxo

�! Y and either X,Y are from the same processor, or X is a write,

or X is a read that returns the value of another processor's write, then X(i)

xo

�! Y(i) for all i.

Termination condition holds for all competing sub-operations.

Figure 4: Su�cient conditions for PLpc with Collier's abstraction.

abstractions is that the former assumes that if R(i) returns the value of W(i), then W(i)

xo

�! R(i). This

is not necessarily true for the speci�cation in Figure 2 if R and W are from the same processor. The

abstraction used in the SCNF framework [Adv93] is based directly on Collier's work and will be referred

to as Collier's abstraction, whereas the abstraction used in Figure 2 extends Collier's work and is therefore

referred to as the extended abstraction.

To allow us to directly use the SCNF framework, Figure 4 presents a speci�cation of the su�cient

conditions for PLpc using Collier's abstraction. This speci�cation di�ers from the speci�cation in Figure 4

in the �rst part of the

sco

�! relation, the uniprocessor dependence part of the

sxo

�! relation, and the

sxo

�!

condition. It can be shown that the conditions in Figure 4 are strictly weaker (i.e., more aggressive) than

the conditions in Figure 2 (see Appendix H in [Adv93]). Therefore, to prove that the conditions in Figure 2

are su�cient for obeying the PLpc model, it is su�cient to show that the conditions in Figure 4 obey

Condition D.1 given the valid paths we derive for PLpc. Therefore, in the remaining sections, we will

assume Collier's abstraction and refer to the conditions in Figure 4.

The next section enumerates the critical paths for PLpc programs and uses this to derive the su�cient

set of valid paths for the PLpc model. Section D.3 shows that given the derived valid paths, the system

requirements presented in Figure 2 obey Condition D.1 and are therefore su�cient for satisfying the PLpc

model.
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D.2: Derivation of Valid paths for PLpc

This section derives a set of su�cient valid paths for the PLpc model. Theorem 1 below states the su�cient

valid paths and the remainder of the section is dedicated to proving this theorem. De�nition D.10 de�nes

the relations used in the theorem for specifying the valid paths.

De�nition D.10:

X

vco1

�! Y i� X and Y are from di�erent processors and are respectively the �rst and last operations

in one of

Rnl

co

�! Wnl

Wc

co

�! Rc, the last conicting write before Rc is from a di�erent processor than Rc

Wnl

co

�! Wnl

Rnl

co

�! Wnl

vco1

�! Rc.

X

vco2

�! Y i� X and Y are from di�erent processors and are respectively the �rst and last operations

in

Wc

co

�! Rc, the last conicting write before Rc is from a di�erent processor than Rc.

Theorem 1: Valid paths of PLpc

The following types of ordering paths (De�nition D.3) su�ce as a set of valid paths for PLpc.

(1) Xnl (

po

�! [

vco1

�! )+ Ynl

(2) X

po

�! (A (

po

�! [

vco2

�! )* B)

po

�! Y

(3) Wc

vco2

�! Rc

po

�! Y

(4) X (

po

�! [

vco1

�! )+ Y, X is a write from a read-modify-write whose read is non-loop, Y is a read

from a read-modify-write whose write is non-loop

(5) X

po

�! Y

Further, in all of the paths, no two consecutive edges are both of the same type.

To prove the above theorem correct, we need to prove that for any sequentially consistent execution of

a PLpc program, a critical set of paths of the execution are covered by the valid paths shown in Theorem

1. Let Prog be a PLpc program and let Es denote a sequentially consistent execution of Prog. Ignore all

unessential operations in Es. We use Lemmas 1, 2, and 3 given below in the proof of the theorem. Below,

a path of type 1, 2, 3, 4, or 5 refers to the paths speci�ed in Theorem 1. Also, we say that an operation

is of a particular category (where the category may be competing, non-competing, loop, or non-loop) if

the operation is labeled as that category (a competing operation is an operation either labeled as loop or

non-loop). We say that an operation is intrinsically of a particular category if the operation obeys the

de�nition for that category (i.e., the label is not conservative). The notion of competing used below is from

De�nition 2.2 in Section 2. R, R1, R2, etc. denote reads and W, W1, W2, etc. denote writes. Recall that

we assume Collier's abstraction and so if R returns the value of W, then W(i)

xo

�! R(i) for all i. Finally,

since we only consider sequentially consistent executions below, the execution order can be assumed to be

on operations rather than on sub-operations.

Lemma 1: Let X

co

�! Y. Suppose there is a race path from X to Y, or X and Y are consecutive conicting

operations that compete in Es. Then X

vco1

�! Y.

Proof:

First note that X cannot be an intrinsic loop read because it competes with Y but does not

return the value of Y. Thus, X must be intrinsically a non-loop read or a write.

Y cannot be an intrinsic loop write because it competes with an operation which is not an

intrinsic loop read. Thus, if X is a read, then X

vco1

�! Y and the lemma follows.

Therefore, assume that X is a write. If Y is also a write, then neither X nor Y can be

intrinsic loop writes because a loop write does not compete with other writes. Thus, both are

non-loops and the lemma follows.

The only remaining case is where X is a write and Y is a read. Since there is either a race

path from X to Y in Es or X and Y are consecutive conicting operations that compete, it

follows that Y cannot return the value of its own processor's write in Es. Therefore, X

vco1

�! Y

and the lemma follows.
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De�nition D.11:

De�ne the relation rel on the memory operations of an execution as follows. X

rel

�! Y i� X

po

�! Y,

or if X is a write and Y is a read that returns the value written by X. We also view rel as a graph

where the vertices are the operations of the execution and the edges are either

po

�! edges or W

co

�! R edges where R returns the value written by W. Thus, a path in rel refers to a path in the

above graph.

Lemma 2: If there is a path in rel from X to Y in Es with at least one

po

�! arc, then there is a path in (

po

�! [

vco2

�! )+ from X to Y in Es with at least one

po

�! arc.

Proof:

Consider the paths in rel from X to Y that have the maximum number of edges and such

that no two consecutive edges are

po

�! . If there is no rel path from X to Y of the type required

by the lemma, then on all the rel paths considered above, there must be a W

co

�! R arc on

the path such that at least one of W or R is non-competing. From the above considered paths,

consider one path that has the fewest number of W

co

�! R edges where at least one of W or R

is non-competing. Let W1

co

�! R1 be one of the arcs on the considered path where at least one

of W1 or R1 is non-competing. Let O be the set of all operations after W1 that have a rel path

to R1 with at least one

po

�! arc. Note that W1 or any operation program ordered after W1

cannot be in O since then the chosen path is not the longest possible. Consider a modi�cation

of the execution order of Es where the operations in O and R1 are moved to just after W1,

retaining their original relative order. Consider the resulting order until R1. This resulting

order is still consistent with program order, and the last conicting write before any read is still

the same as with the original execution order. Thus, the resulting order until R1 is the pre�x

of the execution order of some sequentially consistent execution where all operations until R1

are labeled as in Es and are also essential. We show next that W1 and R1 must compete in this

execution. This is a contradiction since at least one of W1 or R1 is labeled as non-competing.

Suppose W1 and R1 do not compete in the above execution. Then there must be an ordering

chain fromW1 to R1. There cannot be an ordering chain that begins with a

po

�! arc. Therefore,

the ordering chain must be of the type where all operations on the path are to the same location.

However, since W1 is the last conicting write before R1 in Es, it follows that there must be

an ordering chain of the type W1

co

�! R2

po

�! R1, where W1 and R2 are competing and R2

returns the value of W2. Therefore, the arc W1

co

�! R1 on the chosen rel path can be replaced

with W1

co

�! R2 to get a path with fewer

co

�! arcs with non-competing operations than the

chosen path, a contradiction.

Lemma 3: If there is a path in rel from X to Y in Es that begins and ends in a

po

�! arc, then there is a

path of type (2) from X to Y in Es that begins and ends with a

po

�! arc.

Proof:

The proof is identical to that of lemma 2 except that the considered rel paths should begin

and end with

po

�! arcs.

We next use the above lemmas to prove Theorem 1. For this, we need to show that for every pair of

consecutive conicting operations, X, Y where X

co

�! Y, if a critical path is required for X and Y, then one

candidate for the critical path is of type 1-5. If X and Y are from the same processor, then clearly there is

a path of type 5 from X to Y. Therefore, assume that X and Y are from di�erent processors. Also assume

that a critical path is required for X and Y. The following four cases are possible.

Case 1: Both X and Y are non-loops.

Proof:

There must be an ordering path from X to Y where the

co

�! arcs are race paths and no two

adjacent arcs are both

po

�! . Then the

co

�! arcs are

vco1

�! arcs by lemma 1. Consider the shortest
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path such that the

co

�! arcs are

vco1

�! and no two adjacent arcs are both

po

�! . This path is of

type 1 and can be considered as the critical path.

Case 2: At least one of X or Y is non-competing.

Proof:

If there is a path of type 2 from X to Y, then this case is proved. So assume that there is

no path of type 2 from X to Y. Then by lemma 3, there cannot be a rel path from X to Y that

begins and ends in a

po

�! arc. Let X' be the �rst operation after X by

po

�! . Let O be the set

of operations that are after X and have a rel path to Y in Es. X' cannot be in O. Consider a

modi�cation of the execution order of Es where the operations in O and Y are moved to just

after X, retaining their relative order. Consider the resulting order until Y. This resulting order

is still consistent with program order, and the last conicting write before any read is still the

same as with the original execution order. It follows that the resulting order until Y is the pre�x

of an execution order of some sequentially consistent execution where the operations until Y are

labeled as in Es and are essential. Since X and Y cannot compete in this new execution, there

must be an ordering chain from X to Y in the new execution. The only ordering chain possible

is of the type X

co

�! R1

po

�! Y. There should be a chain of the type X

co

�! R2

po

�! Y where X

and R2 compete. Further, R2 cannot return the value of its own processor's write since X and

Y are consecutive conicting operations in Es. Therefore X

vco2

�! R2 in Es. The above chain,

therefore, is a path of type 3. This is also present in Es and can be chosen as the critical path

for X and Y.

Case 3: Both X and Y are competing, at least one of X or Y is not an intrinsic non-loop operation, and Y

is not an exit read from a synchronization loop construct.

Proof:

If there is an ordering path of type 2 from X to Y, then this case is proved. If there is no

ordering path of type 2 from X to Y, then (by lemma 3) there cannot be a rel path from X

to Y that begins and ends in a

po

�! arc. Let X' be the �rst operation after X by

po

�! . Let

O be the set of operations that are after X and have a rel path to Y in Es. X' cannot be in

O. Consider a modi�cation of the execution order of Es where the operations in O and Y are

moved to just after X, retaining their relative order. Consider the resulting order until Y. This

resulting order is still consistent with program order, and the last conicting write before any

read is still the same as with the original execution order. It follows that the resulting order

until Y is the pre�x of an execution order of some sequentially consistent execution where the

operations until Y are labeled as in Es and are essential. There are two sub-cases depending on

whether X and Y compete in this new execution.

Sub-case 3a: X and Y do not compete in the new execution.

There must be an ordering chain from X to Y in the new execution. The only

ordering chain possible is of the type X

co

�! R1

po

�! Y. There should be a chain of the

type X

co

�! R2

po

�! Y where X and R2 compete. Further, R2 cannot return the value

of its own processor's write since X and Y are consecutive conicting operations in

Es. Therefore X

vco2

�! R2 in Es. The above chain, therefore, is a path of type 3. This

path is also present in Es, and can be chosen as the critical path for X and Y.

Sub-case 3b: X and Y compete in the new execution.

Since X and Y are consecutive conicting operations in Es and in the new execu-

tion, by lemma 1, it follows that X

vco1

�! Y in Es and the new execution. In this case,

both X and Y are not non-loops. Therefore, the only way that X

vco1

�! Y is if X is a

competing write and Y is a competing read. Since Y is not from a synchronization

loop construct, it follows that Y must be an intrinsic non-loop read and must be

labeled non-loop. But then X cannot be an intrinsic loop write and must also be

labeled non-loop, a contradiction.
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Case 4: Both X and Y are competing, at least one of X or Y is not an intrinsic non-loop operation, and Y

is an exit read of a synchronization loop construct.

Proof:

Let Wc be the �rst conicting write in Es (including initial hypothetical writes) from which

there can be a critical path to Y corresponding to X and Y. Then the write Ws just before Wc

writes an exit value for Y. There must be a Ws because otherwise a critical path is not required.

Let Wu be any conicting write in Es between Wc and X (including Wc and X). Let Y' be the

�rst operation before Y by

po

�! .

Sub-case 4a: There does not exist a rel path from any Wu to Y'.

Let O be the set of operations that are after Wc and have a rel path to Y' in Es.

Consider a modi�cation of the execution order of Es where the operations in O and

Y' are moved to just before Wc, retaining their relative order. Next, if Wc is part of

a read-modify-write, move the corresponding read to just before Wc. Consider the

resulting order until before Wc. This resulting order is still consistent with program

order, and the last conicting write before any read is still the same as with the

original execution order. (Note that O cannot consist of any write conicting with

Wc.) Call the above order the current order. The following sub-cases are possible.

Sub-case 4a1: Both Wc and Y are non-loop operations.

There must be an ordering path from Wc to Y that ends in a

po

�! arc in

Es (otherwise, a critical path is not required). Therefore, there must be an

ordering path from Wc to Y that ends in a

po

�! arc and where the

co

�! arcs

are race paths and no two adjacent arcs are both

po

�! . Then the

co

�! arcs

are

vco1

�! arcs by lemma 1. Consider the shortest path such that it ends in a

po

�! arc, the

co

�! arcs are

vco1

�! , and no two adjacent arcs are both

po

�! . This

path is of type 1 and can be chosen as critical.

Sub-case 4a2: At least one of Wc or Y is a loop operation and Y is not part of a

read-modify-write.

Modify the current order so that Y is just before Wc. Make Y return the

value of the last conicting write before it (i.e., the value of Ws). The result-

ing order until and including Wc is the pre�x of an execution order of some

sequentially consistent execution where the operations until and including

Wc are labeled similar to Es, and are essential in Es. In the new execution,

Y competes with Wc, and Wc does not make Y's loop terminate. Therefore,

Y must be a non-loop read. Therefore, Wc must be a non-loop write. Thus

both Wc and Y are non-loops, a contradiction.

Sub-case 4a3: At least one of Wc or Y is a loop operation and Wc is not part of

a read-modify-write.

Modify the current order so that Y and the write of Y's read-modify-write

(if any) are just before Wc. Make Y return the value of the last conicting

write before it (i.e., the value of Ws). The resulting order until and includ-

ing Wc is the pre�x of an execution order of some sequentially consistent

execution where the operations until and including Wc are labeled similar

to Es, and are essential in Es. In the new execution, Y competes with Wc,

and Wc does not make Y's loop terminate. Therefore, Y must be a non-loop

read. Therefore, Wc must be a non-loop write. Thus both Wc and Y are

non-loops, a contradiction.

Sub-case 4a4: At least one of Wc or Y is a loop operation, both Y and Wc are

parts of read-modify-writes, Wc is from a synchronization loop construct, and the

write of Y's read-modify-write does not write an exit read value for Wc's loop.

Y must be an intrinsic competing operation. If Wc does not write an

exit value for Y, then it follows that Wc is not the �rst write from which a
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critical path to Y is allowed (by de�nition of a critical set). Therefore Wc

must write an exit value for Y. Modify the current order so that Y is just after

Wc. Make Y return the value of Wc. The resulting order until and including

Y is the pre�x of an execution order of some sequentially consistent execution

where the operations until and including Y are labeled similar to Es, and are

essential in Es. Y competes with Wc in the new execution. Further, Wc and

Ws both write exit values of Y. Therefore, Y is a non-loop read and so Wc

is a non-loop write also, a contradiction.

Sub-case 4a5: At least one of Wc or Y is a loop operation, both Y and Wc are parts

of read-modify-writes, and either Wc is not from a synchronization loop construct or

the write of Y's read-modify-write writes an exit read value for Wc's loop.

Modify the current order so that Y and the write of Y's read-modify-write

are just before Wc and the read of Wc's read-modify-write. Make Y return

the value of the last conicting write before it (i.e., the value of Ws). Make

the read of Wc's read-modify-write return the value of Y's read-modify-write.

The resulting order until and including Wc is the pre�x of an execution

order of some sequentially consistent execution where the operations until

and including Wc are labeled similar to Es, and are essential in Es. The read

of Wc's read-modify-write competes with the write of Y's read-modify-write

in the new execution. The above write and Ws both write exit values of the

read of Wc's read-modify-write. Therefore, the read of Wc's read-modify-

write must be non-loop. Therefore, the write of Y's read-modify-write must

be non-loop. There must be an ordering path from Wc to Y that ends in a

po

�! arc in Es. Therefore, there must be an ordering path fromWc to Y that

ends in a

po

�! arc and where the

co

�! arcs are race paths and no two adjacent

arcs are both

po

�! . Then the

co

�! arcs are

vco1

�! arcs by lemma 1. Consider

the shortest path such that it ends in a

po

�! arc, the

co

�! arcs are

vco1

�! , and

no two adjacent arcs are both

po

�! . This path is of type 4 and can be chosen

as the critical path.

Sub-case 4b: There exists a rel path from some Wu to Y'.

Consider the last such Wu. If there is a path of type 2 from Wu to Y, then this

case is proved. Therefore, assume there is no path of type 2 fromWu to Y. Let Wu' be

the �rst operation after Wu by program order in Es. There cannot be a rel path from

Wu' to Y' in Es because this implies a path of type 2 from Wu to Y in Es (by lemma

3). Therefore, every rel path from Wu to Y' must begin with a

co

�! . Therefore, Wu

is a competing operation (by lemma 2).

Let O be the set of operations that are after Wu and have a rel path to Y' in

Es. Consider a modi�cation of the execution order of Es where the operations in O

and Y' are moved to just after Wu, retaining their relative order. The resulting order

until Y' is still consistent with program order, and the last conicting write before

any read is still the same as with the original execution order. Thus, it represents the

pre�x of the execution order of an SC execution where all operations until Y' and Y

are labeled similar to Es and all operations until Y' are essential. Now extend the

resulting order to represent an SC execution where Y is also essential and Y returns

the value of the �rst write after Wu that writes its exit value. There are two sub-cases.

Sub-case 4b1: Wu and Y are both non-loop.

There is an ordering path from Wu to Y that ends in a

po

�! arc in Es.

Therefore, there must be an ordering path from Wu to Y that ends in a

po

�! arc and where the

co

�! arcs are race paths and no two adjacent arcs

are both

po

�! . Then the

co

�! arcs are

vco1

�! arcs by lemma 1. Consider the

shortest path such that it ends in a

po

�! arc, the

co

�! arcs are

vco1

�! , and no

two adjacent arcs are both

po

�! . This path is of type 1 and can be chosen

as the critical path.
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Sub-case 4b2: At least one of Y or Wu is intrinsic loop.

There is a rel path from Wu to Y' in the new execution as well. So one

ordering chain fromWu to Y must end in a

po

�! arc. This chain cannot begin

with a

po

�! arc. So it must be of the type Wu

co

�! R

po

�! Y where Wu and R

are competing and Wu is the last conicting write before R. This is a path of

type 3. It is also present in Es and quali�es as a critical path corresponding

to X and Y in Es.

Thus, for all cases, there is always a critical path of the type speci�ed in Theorem 1 and so Theorem 1 is

correct.

D.3: Proof of Correctness for the System Conditions for PLpc

We now show that the conditions in Figure 2 are su�cient for obeying the PLpc model. As discussed in

Section D.1, the conditions in Figure 4 are strictly weaker (i.e., more aggressive) than those in Figure 2.

Therefore, it is su�cient to show that the conditions in Figure 4 obey Condition D.1 for the derived valid

paths for PLpc.

By inspection, it follows that the speci�cation in Figure 4 upholds the su�cient valid paths derived for

PLpc. Thus, the valid path clause of Condition D.1 is satis�ed.

Condition D.1(1) is satis�ed as follows. Condition D.1(1) depends on the control relation. As dis-

cussed in Section D.1, the reach relation (

rch

0

�!) of Appendix B obeys the properties of the control relation.

Therefore, the reach part of the

sxo

�! relation in �gure 4 ensures that Condition D.1(1) is satis�ed.

Condition D.1(2) is satis�ed because the speci�cation in Figure 4 obeys the aggressive form of the

uniprocessor correctness condition in Appendix C; the in�nite execution condition in Appendix C is exactly

the same as the �nite speculation condition.

Condition D.1(3) is satis�ed because of the following. This condition requires the existence of all sub-

operations of writes that can be involved in race paths and writes whose value is read by exit reads of

self-ordered loops. From the derivation in the previous section, such writes are competing writes. The

termination condition in Figure 4 ensures that all sub-operations of these writes are in the execution.

Finally, the speci�cation in Figure 4 obeys the Condition D.1(4) trivially due to the atomic read-modify-

write part of the

sxo

�! relation in Figure 4.
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Appendix E: Proof of Correctness of Conditions for Porting PLpc

This appendix provides the correctness proofs that show PLpc programs that are ported to various

hardware-centric models as prescribed in Section 4 satisfy the PLpc model (i.e., executions of such programs

will be sequentially consistent). We use the system requirements speci�ed in Section 3 as the requirements

to be satis�ed by a PLpc system. To determine whether these are satis�ed, we need speci�cations for the

hardware-centric models as well. We chose to use the speci�cations developed in [GAG

+

93] because they

are expressed using the same speci�cation framework used in Section 3.

9

The uniform framework across the

speci�cations simpli�es the task of proving the hardware-centric implementations satisfy the PLpc system

requirements.

Figures 5-10 show the speci�cations for TSO, PSO, WO, RCsc, PC, and RCpc.

10

Figure 11 shows the

speci�cation of PC augmented with a fence and ability to specify certain writes as atomic. This provides an

example of how the models may be augmented as was suggested in Section 4 to avoid the need for mapping

Rnl's to RMW's. Below, we show that if programs are ported as speci�ed in Section 4, the constraints

imposed by each of these models strictly satis�es the su�cient constraints for PLpc.

5.1 Porting to TSO

We start by comparing the speci�cation for TSO (Figure 5) with that of PLpc (Figure 2). Our goal is to

show that the conditions for TSO strictly satisfy those of PLpc. Consider the constraints on

xo

�! �rst. Both

speci�cations obey the value condition. For the termination condition, the TSO speci�cation is stricter

since all sub-operations are speci�ed as opposed to only competing sub-operations. Finally, the manner in

which the

sxo

�! relation constrains

xo

�! is the same.

We now consider the various components in the

sxo

�! relation. The uniprocessor dependence and atomic

read-modify-write conditions are identical. The coherence condition of TSO strictly satis�es that of PLpc.

The reach condition of PLpc is also strictly satis�ed by the second component in the multiprocessor de-

pendence chain of TSO.

Now consider the multiprocessor dependence chains under

sxo

�!; we identify the chains speci�ed under

this category as 1st chain, 2nd chain, and so on. These chains are composed of the

spo

�! and

sco

�! relations.

The

sco

�! relation of TSO is a superset of the PLpc

sco

�! relation. Same is true for the

spo

�! relation except

TSO is missingWnl

po

�!Rnl. Given the above, the �rst chain of PLpc is strictly satis�ed by the combination

of the 1st chain in TSO and TSO's coherence and uniprocessor dependence conditions. Below, we consider

the 2nd, 3rd, and 4th chains of PLpc given the various mapping options (from Section 4).

First consider the mapping where the Wnl in every Wnl

po

�! Rnl is a RMW. In this case, the

spo

�! from

Wnl to Rnl is de�ned in TSO (by third case under

spo

�!) and the 2nd and 3rd chains of TSO strictly satisfy

the 2nd, 3rd, and 4th chains in PLpc.

Now consider the mapping where the Rnl in every Wnl

po

�! Rnl is a RMW. Therefore, we have Wnl

po

�! RMW. In TSO, W

po

�! W constitutes an

spo

�!. Let AR be the read and AW be the write in RMW.

Therefore, Wnl

spo

�! AW. Consider the case when Wnl

po

�! Rnl is in the beginning or middle of the 2nd,

3rd, or 4th chains in PLpc. The Wnl

po

�! Rnl can participate in the chain only if the next access is a Wnl'

such that Rnl

co

0

�!Wnl'. Since Rnl is part of a RMW, the atomic read-modify-write condition requires AW

co

�! Wnl' if Rnl

co

�! Wnl'. In addition, AW

co

�! Wnl' constitutes an

sco

�! in TSO. Therefore, the chain is

upheld through Wnl

spo

�! AW

sco

�! Wnl'. Now consider the case when Wnl

po

�! Rnl is at the end of the

2nd, 3rd, or 4th chains in PLpc. Therefore, the chain begins with a W to the same location as Rnl. We

know W

sxo

�! AW in TSO if the chain is in the form of the 2nd, 3rd, or 4th chains in PLpc. Again, because

9

Proofs that these speci�cations are equivalent to the original speci�cations of the hardware-centric models is presented

in [GAG

+

93].

10

The reach relation for WO, RCsc, and RCpc and the in�nite execution condition for PC, TSO, PSO, WO, RCsc, and

RCpc are speci�ed in [GAG

+

93] and di�er from the corresponding relation (Appendix B) and condition (Appendix C) for

PLpc. The reach relation for the hardware-centricmodels trivially obeys the reach relation for PLpc with the given mappings.

Similarly, the in�nite execution condition is stricter for the hardware-centric models and therefore obeys the condition for

PLpc.
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of the atomic read-modify-write condition, this translates to W

sxo

�! AR. Therefore, the

sxo

�! relation is

maintained in TSO for this case as well.

It is relatively simple to argue that the case when some Wnl's are transformed to RMW's and some

Rnl's are transformed to RMW's for every Wnl

po

�! Rnl satis�es the PLpc requirements also.

Now consider the alternative mapping where TSO is augmented with a fence that delays reads for

previous writes. The fence make Wnl

spo

�! Rnl to hold under TSO and the argument that this satis�es

PLpc is similar to the case above where the Wnl in every Wnl

po

�! Rnl is mapped to a RMW.

5.2 Porting to PSO

The di�erence between the PSO and TSO proofs is that W

po

�!Wc does not constitute an

spo

�! under PSO

(see Figure 6). However, our mapping requires that every Wc be preceded with a STBAR. Then, by the

second case under

spo

�! in PSO, we have W

spo

�! Wc. Given this, the proof of TSO can be used for PSO.

5.3 Porting to WO

Given that every Rc and Wc is mapped into a synchronization operation (Rs or Ws) for WO, it is rela-

tively simple to show that the conditions in PLpc are strictly satis�ed by WO (Figure 7). Note that the

reach condition component of

sxo

�! under PLpc is strictly satis�ed by the 2nd chain under multiprocessor

dependence chain of WO (since

rch

�! in WO is included in its

spo

�! de�nition).

5.4 Porting to RCsc

Figure 8 shows the conditions for RCsc. Similar to WO, given that every Rc is mapped into an acquire

(Rc acq) and every Wc is mapped into a release (Wc rel), it is relatively simple to show that the conditions

in PLpc are strictly satis�ed by RCsc.

5.5 Porting to PC

The speci�cation for PC is given in Figure 9. There are two main issues to consider for satisfying the

PLpc conditions. Similar to TSO, PC does not have an

spo

�! de�ned for Wnl

po

�! Rnl. In addition, PC's

sco

�! does not include Rnl

co

0

�! Wnl

co

0

�! Rc as a component. Finally, there is no chain in the multiprocessor

dependence chains for PC that starts with a W

sco

�! R.

The mapping for PC requires every Rnl to be a RMW. Let AR be the read and AW be the write in

RMW. We �rst discuss how this mapping alleviates the lack of Rnl

co

�! Wnl

co

�! Rc in the

sco

�! de�nition

of PC. Consider X

po

�! R1

co

�! W

co

�! R2, where R1 is Rnl which is part of a RMW. Given R1

co

�! W

and the atomic read-modify-write condition, we know AW

co

�! W and therefore, AW

co

�! R2. Also, for

any X, X

po

�! AW de�nes an

spo

�!. Therefore, X

po

�! R1

co

�! W

co

�! R2 implies X

spo

�! AW

co

�! R2, which

can replace X

po

�! R1

co

�! W

co

�! R2 in the chain.

The argument for lack of

spo

�! between Wnl

po

�! Rnl is similar to the argument presented for TSO where

every Rnl is mapped to a RMW.

Finally, we argue below that the lack of a multiprocessor chain in PC, that starts with a W

sco

�! R, is

not an issue. In PLpc, this chain ends with an Rnl, which we know is mapped to a RMW for PC. Assume

a chain of the form W1

sco

�! R1 : : : R2, where R2 is the Rnl (which is a RMW). The second multiprocessor

dependence chain in PC implies R1

sxo

�! AW (of the RMW). Therefore, we know W1(i)

xo

�! AW(i) for all i.

By the atomic read-modify-write condition, we know W1(i)

xo

�! AR(i) for all i also. Therefore, the order

which would be maintained by the 4th multiprocessor dependence chain in PLpc is strictly maintained in

PC.
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We now consider the augmented PC model discussed in Section 4 with a fence to delay future reads

for previous writes and an atomic read-modify-write. The speci�cation of this augmented PC is shown in

Figure 11. The mapping conditions require a fence between every Wnl

po

�! Rnl pair and require all Wnl's

to be mapped to W atomic. Given this, it is relatively simple to see that the conditions in Figure 11 strictly

satisfy the PLpc conditions.

5.6 Porting to RCpc

The proof for RCpc is quite similar to that of PC given that every Rc is mapped to an acquire and every

Wc is mapped into a release.
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de�ne

spo

�!: X

spo

�! Y if X,Y are the �rst and last operations in one of

R

po

�! RW

W

po

�! W

AW (in RMW)

po

�! R

W

po

�! RMW

po

�! R

de�ne

sco

�!: X

sco

�! Y if X,Y are the �rst and last operations in one of

X

co

�! Y

R

co

�! W

co

�! R

de�ne

sxo

�!: X

sxo

�! Y if X and Y conict and X,Y are the �rst and last operations in one of

uniprocessor dependence: RW

po

�! W

coherence: W

co

�! W

multiprocessor dependence chain: one of

W

co

�! R

spo

�! R

RW

spo

�! fA

sco

�! B

spo

�! g+ RW

W

sco

�! R

spo

�! fA

sco

�! B

spo

�! g+ R

atomic read-modify-write (AR,AW): if W conicts with AR,AW, then either W

sxo

�! AR or AW

sxo

�! W

Conditions on

xo

�!:

Initiation condition holds.

sxo

�! condition: if X

sxo

�! Y, then X(i)

xo

�! Y(i) for all i.

Termination condition holds for all sub-operations.

Figure 5: Speci�cation of TSO.

de�ne

spo

�!: X

spo

�! Y if X,Y are the �rst and last operations in one of

R

po

�! RW

W

po

�! STBAR

po

�! W
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�! RW

W
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po
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de�ne

sco

�!: X
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�! Y if X,Y are the �rst and last operations in one of

X
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�! Y

R
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�! W

co

�! R

de�ne

sxo

�!: X

sxo

�! Y if X and Y conict and X,Y are the �rst and last operations in one of

uniprocessor dependence: RW

po

�! W

coherence: W

co

�! W

multiprocessor dependence chain: one of

W

co

�! R

spo

�! R

RW

spo

�! fA

sco

�! B

spo

�! g+ RW

W

sco

�! R

spo

�! fA

sco

�! B

spo

�! g+ R

atomic read-modify-write (AR,AW): if W conicts with AR,AW, then either W

sxo

�! AR or AW

sxo

�! W

Conditions on

xo

�!:

Initiation condition holds.

sxo

�! condition: if X

sxo

�! Y, then X(i)

xo

�! Y(i) for all i.

Termination condition holds for all sub-operations.

Figure 6: Speci�cation of PSO.
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de�ne
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X
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�! Y if X,Y are the �rst and last operations in one of
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po
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RW
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�! Y if X

spo

00

�! A f

rch

�! j

spo

00

�! g* Y

X

spo

�! Y if X f

rch

�! j

spo

0

�! g+ Y
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�! Y if X,Y are the �rst and last operations in one of

X

co

�! Y

R1

co

�! W

co

�! R2 where R1,R2 are on the same processor

X

sco

0

�! Y if X,Y are the �rst and last operations in R1

co

�! W

co

�! R2 where R1,R2 are on di�erent processors

de�ne

sxo

�!: X

sxo

�! Y if X and Y conict and X,Y are the �rst and last operations in one of

uniprocessor dependence: RW

po

�! W

coherence: W

co

�! W

multiprocessor dependence chain: one of

W

co

�! R

spo

�! R

RW

spo

�! f(A

sco

�! B

spo

�! ) j (A

sco

0

�! B

spo

0

�! )g+ RW

W

sco

�! R

spo

0

�! f(A

sco

�! B

spo

�! ) j (A

sco

0

�! B

spo

0

�! )g+ R
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sxo
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Figure 7: Speci�cation of WO.
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Termination condition holds for all competing sub-operations.

Figure 8: Speci�cation of RCsc.
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Termination condition holds for all sub-operations.

Figure 9: Speci�cation of PC.
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Figure 10: Speci�cation of RCpc.
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Figure 11: Speci�cation of PC augmented with a special fence and atomic writes.
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