
A Customized MVA Model for ILP Multiprocessors�

Daniel J. Soriny, Mary K. Vernony, Vijay S. Paiz, Sarita V. Advez, and David A. Woody

yComputer Sciences Dept zDept of Electrical & Computer Engineering

University of Wisconsin - Madison Rice University

fsorin, vernon, davidg@cs.wisc.edu fvijaypai, saritag@rice.edu

University of Wisconsin-Madison Computer Sciences Technical Report #1369.

Rice University Electrical and Computer Engineering Technical Report #9803.

Abstract

This paper provides the customized MVA equations for an analytical model for evaluating architectural alternatives for

shared-memory multiprocessors with processors that aggressively exploit instruction-level parallelism (ILP). Compared to

simulation, the analytical model is many orders of magnitude faster to solve, yielding highly accurate system performance

estimates in seconds.

1 Introduction

In [8], we presented an analytical model for evaluating specific types of architectural trade-offs for shared-memory systems

with ILP processors. As shown in that paper, the analytical model validates extremely well against detailed simulation and

produces results in a few seconds.

The principal aspects of the model are:

� The ILP processor and its associated two-level cache system are viewed as a black box that generates requests to the

memory system and intermittently blocks after a dynamically changing number of requests.

� We iterate between two submodels; one represents the blocking behavior due to load misses that cannot be retired until

the data returns from memory, and the other submodel represents the blocking behavior due to the hardware constraint

on the total number of outstanding memory requests.

� In each submodel, the memory system is viewed as a system of queues (e.g., the memory bus, DRAM modules

and associated directories, and network interfaces) and delay centers (e.g., switches in the interconnection network).

We create a set of intuitive customized mean value analysis (CMVA) equations to obtain estimates of throughput

(instructions per cycle) in each submodel. The CMVA technique has proven to be accurate in validation experiments

for a number of simpler architectural models [9].

The purpose of this technical report is to provide the details of the customized MVA equations which were omitted in [8]

due to space constraints. Section 2 of this report provides the model input parameters. Section 3 provides an overview of

the analytical model, and Section 4 presents the customized MVA equations. Further discussion of the model, including

validation and applications, can be found in [8].

�This research is supported in part by DARPA/ITO under Contract N66001-97-C-8533 and by the National Science Foundation under Grants

HRD-9896132, MIP-9625558, CDA-9623632, CCR-9410457, CCR-9502500, CDA-9502791, and CDA-9617383. Sarita V. Adve is also supported in

part by an IBM University Partnership award and by the Texas Advanced Technology Program under Grant No. 003604-025. Vijay S. Pai is supported by a

Fannie and John Hertz Foundation Fellowship.

1



parameter description

N number of nodes

m memory modules per node

M

hw

number of MSHRs

S

NI

out;r

NI send occupancy for request

S

NI

out;d

NI send occupancy for data

S

NI

in;r

NI receive occupancy for request

S

NI

in;d

NI receive occupancy for data

S

bus;r

bus occupancy for request

S

bus;d

bus occupancy for data

S

mem

memory/directory (DRAM) access

S

tag

L2 tag check

S

switch

per-header network switch occupancy

Table 1. System Architecture Parameters

Parameter Description

� Average time between read, write, or upgrade requests to memory, not counting the time when

the processor is completely stalled or is spin-waiting on a synchronization event

CV

�

Coefficient of Variation of �

f

synch�write

Fraction of write requests that are generated by atomic read-modify-write instructions or that

coalesce with at least one later read

f

M

Fraction of processor stalls that find M MSHRs with outstanding read requests

P

read

; P

write

; P

upgrade

Probability that a memory request is a read, write, or upgrade

P

wb

Probability that a read or write request causes a writeback of a cache block

P

Ljx

Probability directory is local for a type x transaction; x=read, write, upgrade, writeback

P

M jx;y

Probability home memory can supply the data for a type x; y request;

x=read, write; y=local home, remote home

P

3hopjx&not�memory

Probability that a request of type x to a remote home is forwarded to a cache at a third node;

x=read,write

H Average number of network switches traversed by a packet

X Average number of invalidates caused by a write or upgrade to a clean line

Table 2. Application Parameters

2 System Architecture and Model Parameters

2.1 System Architecture

The architecture modeled is a cache-coherent, release consistent shared-memory multiprocessor system where the pro-

cessing nodes are connected by a mesh interconnection network [8].

2.2 Model Parameters

Model parameters can be classified as either describing the system or describing the application. Table 1 defines the

system parameters, while Table 2 summarizes the application parameters. From the parameters in Table 2, we can compute

the probabilities of the protocol transactions in Table 3.

The first four parameters in Table 2 characterize the ability of the processor to overlap multiple memory requests while

running a given compiled application (or set of applications). These parameters, referred to as ILP parameters, are discussed

in more detail below. The other parameters in the table are standard parameters for models of architectures based on directory

coherence protocols [1]. Note that the parameters are defined for homogeneous applications; that is, each processor has the

same value for each parameter in the table, and memory requests are assumed to be equally distributed across the relevant

memory modules (local or remote) due to interleaving and effective data layout. There is a natural extension of these

2



parameters for non-homogeneous applications, but for simplicity in the model exposition we use the given parameters.

The parameter � is the average time between requests generated by the processor to the (main) memory subsystem, not

including the time that the processor is stalled or is spin-waiting on a synchronization event such as a lock release, flag, or

barrier completion. We also measure the coefficient of variation of � , CV
�

. � is well-defined for simple processors that block

on each load and store, whereas the notion that a complex modern processor is stalled has several possible definitions. For

the robust parameter � that is needed for the model, the processor is defined to be stalled when it is completely stalled; that is,

the functional units are completely idle, no further instructions can be retired or issued until data returns from memory, and

all outstanding cache requests are waiting for data from main memory. The fraction of time a processor is completely stalled

is one of the performance metrics estimated by the analytic model. The parameter � does not include this time.

The f
synch�write

parameter is the fraction of write requests that are synchronous; that is, they are generated by read-

modify-write requests or they coalesce with at least one later read miss. Read misses that coalesce with earlier read requests

are completely invisible to the model because they do not generate any memory system traffic, and they do not cause any

new blocking behavior. Thus, a parameter for the frequency of read-read coalescing is not needed. Likewise for writes that

coalesce with previous misses.

The set of parameters f
M

;M � 1, are the fractions of processor stall events that have M MSHRs occupied with read

misses. These fractions are defined and measured for a system with a number of MSHRs larger than the maximum value that

will be evaluated with the model. We will refer to such a system as an “infinite MSHR” system. Note that if a read miss

occurs for a line that has a prior write miss outstanding, then the miss is counted as a read miss when measuring M . Also

note that misspeculated reads are counted in M . The f
M

parameters are unique to a system with non-blocking loads.

We have verified that the application input parameters are relatively insensitive to changes in the memory system archi-

tectural parameters that can be varied in the model (e.g., the number of MSHRs, the speed of the bus and interconnection

network switches, main memory configuration, etc.). However, the application parameters are sensitive to various parameters

of the processor and cache architecture. For example, � , CV
�

, f
M

, and f
synch�write

are sensitive to the instruction window

size.

3 The Analytic Model

The principal output measure computed by the model is the system throughput, measured in instructions retired per cycle

(IPC). This throughput is computed as a function of the input parameters that characterize the workload and the memory

architecture. The customized MVA equations defined in this report assume that the directory lookup is coupled with memory

access, so a single service time applies to the parallel memory and directory lookup.

3.1 Model Overview

We use the term synchronous for read requests (and for read-modify-write requests) because the data must return before a

load (or read-modify-write) instruction is retired from the instruction window. Other requests (writes, upgrades, writebacks,

invalidates, and acknowledgments) are asynchronous. Table 3 defines all of the memory system transactions.

A key question in developing the analytic model is how to compute throughput as a function of the dynamically changing

number of outstanding memory requests that can be issued before the processor must stall waiting for data to return from

memory. We address this issue by iterating between the following two submodels for each value of M , 1 �M <M

hw

:

� the synchronous blocking submodel (SB) that computes the fraction of time the processor is stalled due to load or

read-modify-write instructions that cannot be retired until the data returns from memory,

� the MSHR blocking submodel (MB) that computes the additional fraction of time the processor is stalled purely due to

the MSHRs being full.

ForM =M

hw

, we compute throughput from a modified version of the MSHR-blocking submodel alone, as explained below.

Once these throughputs are computed, we compute the weighted sum of the throughputs, weighted by the frequency of each

throughput value that would be observed for the number of MSHRs in the system. This frequency can in turn be computed

from the model input parameters, f
M

. The remainder of this section gives the most pertinent details of the two submodels

as well as how slowdown due to synchronization delays is computed; the full set of equations for the submodels is given in

Section 4.

3



Reads Upgrades

local home remote home local remote

memory remote memory cache cache at

cache at home non-home

transaction name LC LHCC RC RHLCC RHRCC LUPG RUPG

Writes Writebacks

local home remote home local remote

memory remote memory cache cache at

cache at home non-home

transaction name LCINV LHCCwr RCINV RHLCCwr RHRCCwr LWB RWB

Table 3. Protocol Transactions

3.2 The Two Submodels

Each of the two submodels (SB and MB) contains similar sets of customized MVA equations to compute the response time

for a transaction in the memory subsystem (see section 4). The only differences between the submodels are in the equations

for the overall residence time, R, and the processor residence time, R
pe

. We discuss these differences in this section and then

discuss the CMVA equations that are common to both submodels in Section 4.

R consists of the residence times at the processor, network, network interface (NI), bus (both local and remote), and

memory. It also includes a term, Z, which represents the latencies at resources with negligible contention (e.g., cache

tag check). The difference in the equations for R, besides the difference in R

pe

, is that R
SB

is the sum of the residence

times of the synchronous transactions, whereas R
MB

is the sum of the residence times of the asynchronous transactions plus

the residence times of the reads that are synchronous in the MB submodel (this will be discussed below). These equations are:

R

SB

= R

pe

SB

+R

synch

NET

+R

synch

NI

+R

synch

bus

+R

synch

mem

+ Z

synch

R

MB

= R

pe

MB

+R

asynch

NET

+R

asynch

NI

+R

asynch

bus

+R

asynch

mem

+ Z

asynch

+P

synch�read�MB

(R

synch

NET

+R

synch

NI

+R

synch

bus

+R

synch

mem

+ Z

synch

)

In the SB submodel, the number of customers per processor is equal to the maximum number of read requests that can

be issued before the processor blocks (i.e., one of the observed values of M ). The processor (and its associated cache

subsystem) is a FCFS queue that initially has mean service time equal to � . Note that this queue is only idle when M

memory read requests are outstanding; otherwise it is generating memory requests at rate 1=� . If the request is a write miss,

the customer is routed immediately back to the processor while simultaneously forking an asynchronous memory write or

upgrade transaction, using a technique similar to that proposed by Heidelberger and Trivedi [5]. Thus, theRsynch

x

andZsynch

terms are only non-zero for read requests (see Section 4).

In the MB submodel, the number of customers per processor is equal to the number of MSHRs, M
hw

. MSHRs can be

occupied by read, write, or upgrade requests; however, for architectures with non-blocking stores and in-order retirement of

loads and for M <M

hw

, the blocking time when MSHRs contain M read requests is accounted for in the SB submodel. The

additional blocking time that needs to be computed by the MB model is for the case that the MSHRs contain M
hw

requests

of which less than M are read requests. That is, we can measure M read requests for the “infinite MSHR” system, but the

system with M
hw

MSHRs could block with fewer than M reads in the MSHRs because some registers are filled with other

requests. All writes and upgrades, plus some read requests, must be synchronous in the MB submodel to account for this

additional blocking behavior.

4



The following four equations account for the read requests that should be synchronous in the MB submodel1. The

first equation estimates P
j

, the probability that only j of the M reads that were measured in the “infinite MSHR” sys-

tem, 1 � j < M , are in the first M
hw

MSHRs. The second equation estimates the utilization of the processor in the SB

submodel, and this utilization is used in the third equation to compute U 0

pe

, which is an estimate of the probability that a

customer leaving the processor in the SB submodel is leaving behind a non-empty processor queue. The third equation has

a term, U
SB

, which is the probability that a processor in the SB submodel is not stalled, and it will be explained below. By

multiplying P
j

by U 0

pe

and summing over j, we obtain the probability that a read should be considered synchronous in the

MB submodel, as shown in the last equation.

P

j

= Prob[j reads in MSHRs j at least 1 read in MSHRs] =

0

@

M

hw

� 1

j � 1

1

A

(P

write

+ P

upgrade

)

(M

hw

�j)

P

(j�1)

read

U

pe

=

M�

R

SB

U

0

pe

=

U

pe

M�1

M

U

pe

M�1

M

+1�U

SB

P

synch�read�MB

= Prob[read is synchronous in MB submodel] =
P

M

hw

�1

j=1

P

j

U

0

pe

The read misses that are not synchronous in the MB submodel are immediately routed back to the processor (since the

processor cannot stall on these read misses in this submodel) while simultaneously forking a read transaction to the memory

system, again using a technique similar to that in [5].

As mentioned above, the other difference in the equations between the two submodels concernsR
pe

. This difference arises

from how we represent the processor stall time that is estimated by one submodel in the other submodel. That is, the mean

time that each customer occupies the processor in the MB submodel is equal to �
MB

, where �
MB

is � adjusted to reflect the

fraction of time that the processor is stalled due to load or read-modify-write instructions that cannot be retired (computed

from the SB model). That is, �
MB

=

�

U

SB

. Once the measures are computed from the MB model, the SB model is solved

again using �
SB

=

�

U

MB

, where U
MB

is the fraction of time that the processor is not stalled in the MB submodel.

U

SB

=

M

R

SB

�

U

MB

U

MB

=

M

R

MB

�

U

SB

The alternating solution of each submodel is repeated until the estimated throughputs converge. This approach might be

named the “method of surrogate service time inflation,” analogous to the method of surrogate delays [4, 6].

The equations for R
pe

MB

and R

pe

SB

are shown below. The processor residence time consists of the customer’s service

time and the amount of time that the customer waits for the M � 1 other customers that might be either waiting or in service

at the same processor. The first term,
R

pe

R

�

�

R

, is the estimated fraction who are waiting, and �

R

is the estimated fraction in

service.

R

pe

MB

= �

MB

[1 + (M � 1)(

R

pe

MB

R

MB

�

�

MB

R

MB

)] + (M � 1)(

�

MB

R

MB

)�

MB

residual

R

pe

SB

= �

SB

[1 + (M � 1)(

R

pe

SB

R

SB

�

�

SB

R

SB

)] + (M � 1)(

�

SB

R

SB

)�

SB

residual

�

SB

residual

and �

MB

residual

represent the residual life of the customer being served at the processor when an arriving

customer arrives. As explained in [8], the standard equation for residual life under the assumption of Poisson arrivals is not

accurate since arrivals at the processor are not at random points in time;2 therefore, we use an interpolation suggested by

Derek Eager [3].

For the case that M = M

hw

, all processor stalls can be attributed to full MSHRs. In this case, we solve a modified MB

model in which there are M
hw

customers per processor and these customers represent the behavior of all read, write and

1The reads in the MB submodel have only a small effect on estimated throughput (less than 4% reduction in throughput for all applications validated in

[8], except FFTopt which has a 10% reduction), and they are not discussed in [8].
2The estimated mean residual life for random arrivals equals the second moment of service time divided by 2� [7].

5



upgrade memory system transactions. For any of these memory requests, the customer leaves the processor and visits the

appropriate memory system resources.

Once throughput is computed from the weighted average of the value at each M , synchronization effects are accounted

for as described in [8].

4 The Customized MVA Equations

As explained above, the SB and MB submodels use a set of customized MVA (CMVA) equations to compute the mean

delay for each type of transaction at the local and remote memory buses, local and remote directories (and associated mem-

ory modules), and network interfaces. Fixed delays are assumed at resources that have negligible contention (e.g., cache

tag checks, coherence packet generation), and for the approximate delay at each network switch (observed across several

applications).

The equations listed in this section, along with the equations for R and R
pe

that were presented in the previous section,

completely define both submodels. The equations in this section are the same for both submodels, and they can easily be

modified to model different memory system architectures, as was done in [8].

To make the equations more readable, we have adopted subscripts and superscripts to denote the possible variations in

the term to which they are attached. The resource is always the first subscript on a term, whether it is residence time (R),

waiting time (W ), utilization (U ), or service time (S). For example, R
NI

is the residence time at the network interface. For

the NI, there can be an additional keyword (q) appended to the NI to indicate that this term can vary depending on whether

the action is at the output queue (q = out) or the input queue (q = in) of the NI. For many terms, there is a subscript of loc

or rem to indicate whether the action is at the local node or a remote node. The variable y denotes the transaction type (see

Table 3). The variable x denotes the type of message (request or data) that is on the bus or at the NI. Lastly, a superscript

variable z denotes either synchronous or asynchronous.

For example, Uz

NIq

loc;y;x

is the utilization of queue q (out or in) at the local NI by a transaction of type y. The x and z

denote whether the packet is a request packet or a data packet and whether the transaction is synchronous or asynchronous. It

is important to note that a synchronous transaction can have an asynchronous part (e.g., an acknowledgment message to the

home node that occurs in a 3-hop cache to cache read request). For example, R
asynch

NIin

rem;RHLCC;x

refers to the response time

at the input queue of the remote NI for the asynchronous request or data message from the synchronous transaction RHLCC.

Latencies at Resources with Negligible Contention

Z

synch

= (P

LC

+ P

RC

)(S

tag

) + (P

LHCC

+ P

RHLCC

+ P

RHRCC

)(S

tag

+ S

coherence

)

Z

asynch

= (P

LCINV

+ P

RCINV

+ P

LUPG

+ P

RUPG

+ P

LWB

+ P

RWB

)(S

tag

)

+(P

LHCCwr

+ P

RHLCCwr

+ P

RHRCCwr

)(S

tag

+ S

coherence

)

Network

Note that S
switch

is the measured average per-switch delay in the network, measured across several applications in a given

class of applications. S
switch

could also be estimated by a more detailed MVA model of the interconnection network.

S

NET

= HS

switch

R

synch

NET

=

P

y

R

synch

NET;y

6



R

asynch

NET

=

P

y

R

asynch

NET;y

R

synch

NET;y

=

�

P

y

2S

NET

y=RC,LHCC,RHLCC

P

y

3S

NET

y=RHRCC

R

asynch

NET;y

=

8

>

>

<

>

>

:

P

y

S

NET

y=RWB

P

y

2S

NET

y=RCINV,LHCCwr,RHLCCwr,LUPG

P

y

3S

NET

y=RHRCCwr

P

y

4S

NET

y=RUPG

Network Interface

Below are the visit count equations for the NI. For example, V
synch

NIout

loc;y;r

is the visit count at the output queue of the local

NI of request messages associated with the synchronous part of a transaction of type y.

V

synch

NIout

loc;y;r

=
1 y=RC,LHCC,RHLCC,RHRCC

V

synch

NIin

loc;y;d

=
1 y=RC,LHCC,RHLCC,RHRCC

V

asynch

NIout

loc;y;r

=

�

1 y=RCINV,RUPG,LHCCwr,RHLCCwr,RHRCCwr

X y=LCINV,LUPG

V

asynch

NIout

loc;y;d

=
1 y=RWB

V

asynch

NIin

loc;y;r

=

8

<

:

X y=LCINV,LUPG

1 y=RUPG

1 y=LHCCwr

V

asynch

NIin

loc;y;d

=
1 y=RCINV,LHCC,LHCCwr,RHLCCwr,RHRCCwr

V

synch

NIout

rem;y;r

=

(

1

N�1

) y=RHRCC

V

synch

NIout

rem;y;d

=

(

1

N�1

) y=RC,LHCC,RHLCC,RHRCC

V

synch

NIin

rem;y;r

=

(

1

N�1

) y=RC,LHCC,RHLCC,RHRCC

V

synch

NIin

rem;y;d

=

(

1

N�1

) y=RHRCC

V

asynch

NIout

rem;y;r

=

8

>

>

>

>

<

>

>

>

>

:

(

X

N�1

) y=LCINV,LUPG

(

2X

N�1

) y=RCINV

(

2X+1

N�1

) y=RUPG

(

1

N�1

) y=LHCCwr,RHLCCwr

(

2

N�1

) y=RHRCCwr

V

asynch

NIout

rem;y;d

=

(

1

N�1

) y=RCINV,LHCC,RHLCC,RHRCC,LHCCwr,RHLCCwr,RHRCCwr

V

asynch

NIin

rem;y;r

=

8

>

>

>

>

<

>

>

>

>

:

(

X

N�1

) y=LCINV,LUPG

(

2X+1

N�1

) y=RCINV,RUPG

(

1

N�1

) y=LHCCwr

(

2

N�1

) y=RHLCCwr

(

3

N�1

) y=RHRCCwr

V

asynch

NIin

rem;y;d

=

(

1

N�1

) y=RWB,RHLCC,RHRCC

7



The residence time at the NI is composed of the response times at the output queue and the input queue.

R

synch

NI

= R

synch

NIout

+R

synch

NIin

R

asynch

NI

= R

asynch

NIout

+R

asynch

NIin

The residence time at the output (input) queue is the sum over all transaction types y of the residence times at the local

and remote output (input) queues. For each transaction, we include both types of messages (i.e., request and data) that are

generated by the synchronous part of the transaction.

R

z

NIout

=

P

y

(R

z

NIout

loc;y;r

+R

z

NIout

loc;y;d

) + (N � 1)

P

y

(R

z

NIout

rem;y;r

+R

z

NIout

rem;y;d

)

R

z

NIin

=

P

y

(R

z

NIin

loc;y;r

+R

z

NIin

loc;y;d

) + (N � 1)

P

y

(R

z

NIin

rem;y;r

+R

z

NIin

rem;y;d

)

The next set of equations describe the residence times of the different types of messages at the input and output queues

of the NI. For example, R
synch

NIout

loc;y;x

is the residence time at the output queue of the local NI of a message of type x that

is associated with the synchronous part of a transaction of type y. This time equals the probability of transaction y times

the visit count at this queue times the sum of the per-visit waiting time and the service time that this type x message will

experience.

R

synch

NIout

loc;y;x

=
P

y

V

synch

NIout

loc;y;x

(W

NIout

loc

+ S

NIout;x

) y=RC,LHCC,RHLCC,RHRCC

R

synch

NIin

loc;y;x

=
P

y

V

synch

NIin

loc;y;x

(W

NIin

loc

+ S

NIin;x

) y=RC,LHCC,RHLCC,RHRCC

R

asynch

NIout

loc;y;x

=

P

y

V

asynch

NIout

loc;y;x

(W

NIout

loc

+ S

NIout;x

) y=RWB,RCINV,RUPG,LCINV,LUPG,

LHCCwr,RHLCCwr,RHRCCwr

R

asynch

NIin

loc;y;x

=

P

y

V

asynch

NIin

loc;y;x

(W

NIin

loc

+ S

NIin;x

) y=RCINV,RUPG,LHCC,LCINV,LUPG,

LHCCwr,RHLCCwr,RHRCCwr

R

synch

NIout

rem;y;x

=
P

y

V

synch

NIout

rem;y;x

(W

NIout

rem

+ S

NIout;x

) y=RC,LHCC,RHLCC,RHRCC

R

synch

NIin

rem;y;x

=
P

y

V

synch

NIin

rem;y;x

(W

NIin

rem

+ S

NIin;x

) y=RC,LHCC,RHLCC,RHRCC

R

asynch

NIout

rem;y;x

=

P

y

V

asynch

NIout

rem;y;x

(W

NIout

rem

+ S

NIout;x

) y=LHCC,RHLCC,RHRCC,LHCCwr,RHLCCwr,

RHRCCwr,LCINV,LUPG,RCINV,RUPG

R

asynch

NIin

rem;y;x

=

P

y

V

asynch

NIin

rem;y;x

(W

NIin

rem

+ S

NIin;x

) y=RWB,RHLCC,RHRCC,LHCCwr,RHLCCwr,

RHRCCwr,LCINV,LUPG,RCINV,RUPG

The following equations describe the utilization of the queues of the NI. The notation is similar to that for the residence

times of the NI.

U

NIq

loc;x

=

P

y

U

synch

NIq

loc;y;x

+

P

y

U

asynch

NIq

loc;y;x

U

NIq

rem;x

=

P

y

U

synch

NIq

rem;y;x

+

P

y

U

asynch

NIq

rem;y;x

The utilization of resource q of the local (remote) NI by messages of type x during a transaction of type y is equal to the

throughput of type y transactions (
P

y

R

) multiplied by the average number of type x messages per type y transaction that visit

this resource (V z

NIq

loc=rem;y;x

), multiplied by the service time of these messages. The z distinguishes between synchronous

and asynchronous transactions.

U

z

NIq

loc;y;x

= (

P

y

R

)V

z

NIq

loc;y;x

S

NIq;x

8



U

z

NIq

rem;y;x

=
(

P

y

R

)V

z

NIq

rem;y;x

S

NIq;x

The next equations are used to calculate the waiting time of a customer who arrives at one of the NI’s queues. W
NIq

loc

is the waiting time at queue q of the local NI. It is the sum of the waiting time due to locally generated messages (W loc

NIq

loc

)

and remotely generated messages (W rem

NIq

loc

). The subscript is the resource where the waiting occurs, and the superscript is

for the messages that cause the waiting. For W
NIq

rem

, the waiting time at queue q of the remote NI is due to “others” (other

processors - the processor that generated the arriving request and all other processors except the one that is local to the given

remote NI) and “remote” (the processor at the given remote NI).

W

NIq

loc

= W

loc

NIq

loc

+W

rem

NIq

loc

W

NIq

rem

=W

others

NIq

rem

+W

rem

NIq

rem

W

loc

NIq

loc

is the waiting time at queue q of the local NI due to locally generated messages. It is composed of the waiting

times at this queue due to locally generated messages from the synchronous part and the asynchronous part of all transactions.

W

loc

NIq

loc

=

P

y

(W

loc;y

S

NIq

loc

+W

loc;y

A

NIq

loc

)

W

rem

NIq

loc

=

P

y

(W

rem;y

S

NIq

loc

+W

rem;y

A

NIq

loc

)

W

others

NIq

rem

=

P

y

(W

others;y

S

NIq

rem

+W

others;y

A

NIq

rem

)

W

rem

NIq

rem

=

P

y

(W

rem;y

S

NIq

rem

+W

rem;y

A

NIq

rem

)

The next equation is used to calculate the waiting time at queue q of the local NI due to the synchronous part of the

transactions of type y generated by the local processor. Breaking the equation down, we note that (
R

S

NIq

loc;y;x

R

�U

S

NIq

loc;y;x

)

is the average number of customers in the queue minus the number of customers being served (i.e., the utilization, a number

between zero and one). We have to wait for all of these customers to complete, so this queue length is multiplied by the

service time. For the customer in service, we wait for its residual life in service, which is equal to half the service time for

a deterministic service time. Without the summation and factor of (M � 1), we have the traffic due to only one customer’s

messages of type x. Therefore, we sum over the message types, and we multiply by a factor of (M � 1) because an arriving

customer waits for the traffic of the (M�1) other customers of the processor local to the NI. The other waiting time equations

are similar to the one described.

W

loc;y

S

NIq

loc

=

P

x

(M � 1)[(

R

S

NIq

loc;y;x

R

� U

S

NIq

loc;y;x

)S

NIq;x

+ (U

S

NIq

loc;y;x

)(

S

NIq;x

2

)]

The next equation has a factor ofM , instead ofM�1, since a given local customer can wait for the asynchronous requests

generated by all M customers of the local processor (i.e., including the arriving customer). Note that 1

R

P

y

is the rate at which

an asynchronous transaction y is forked. Multiplying this throughput by the residence time at a queue gives the mean queue

length for an asynchronous transaction. Thus, the form of these customized equations is very similar for synchronous and

asynchronous transactions.

W

loc;y

A

NIq

loc

=

P

x

M [(

R

A

NIq

loc;y;x

R

� U

A

NIq

loc;y;x

)S

NIq;x

+ (U

A

NIq

loc;y;x

)(

S

NIq;x

2

)]

W

rem;y

z

NIq

loc

=

P

x

(N � 1)M [(

R

z

NIq

rem;y;x

R

� U

z

NIq

rem;y;x

)S

NIq;x

+ (U

z

NIq

rem;y;x

)(

S

NIq;x

2

)]

W

others;y

S

NIq

rem

=

P

x

[(M � 1) +M(N � 2)][(

R

S

NIq

rem;y;x

R

� U

S

NIq

rem;y;x

)S

NIq;x

+ (U

S

NIq

rem;y;x

)(

S

NIq;x

2

)]

W

others;y

A

NIq

rem

=

P

x

[M +M(N � 2)][(

R

A

NIq

rem;y;x

R

� U

A

NIq

rem;y;x

)S

NIq;x

+ (U

A

NIq

rem;y;x

)(

S

NIq;x

2

)]

W

rem;y

z

NIq

rem

=

P

x

M [(

R

z

NIq

loc;y;x

R

� U

z

NIq

loc;y;x

)S

NIq;x

+ (U

z

NIq

loc;y;x

)(

S

NIq;x

2

)]

9



Bus

The notation and equations for the bus and the other memory subsystem resources are very similar to those of the NI.

These equations are given without further explanation.

S

synch

bus

loc;y;r

=
S

bus;r

y=LC,RC,LHCC,RHLCC,RHRCC

S

synch

bus

loc;y;d

=
S

bus;d

y=LC,RC,LHCC,RHLCC,RHRCC

S

asynch

bus

loc;y;r

=
S

bus;r

y=LHCC,RHLCC,RHRCC,LUPG,LCINV,RUPG,RCINV,LHCCwr,RHLCCwr,RHRCCwr

S

asynch

bus

loc;y;d

=
S

bus;d

y=LHCC,RHLCC,RHRCC,LCINV,RCINV,LWB,RWB,LHCCwr,RHLCCwr,RHRCCwr

S

synch

bus

rem;y;r

=
S

bus;r

y=RC,LHCC,RHLCC,RHRCC

S

synch

bus

rem;y;d

=
S

bus;d

y=RC,LHCC,RHLCC,RHRCC

S

asynch

bus

rem;y;r

=
S

bus;r

y=RHLCC,RHRCC,LCINV,LUPG,RCINV,RUPG,LHCCwr,RHLCCwr,RHRCCwr

S

asynch

bus

rem;y;d

=
S

bus;d

y=RHLCC,RHRCC,RWB,RCINV,LHCCwr,RHLCCwr,RHRCCwr

V

synch

bus

loc;y;r

=

�

1 y=LC,RC,RHLCC,RHRCC

2 y=LHCC

V

synch

bus

loc;y;d

=
1 y=LC,RC,LHCC,RHLCC,RHRCC

V

asynch

bus

loc;y;r

=

8

>

>

>

>

<

>

>

>

>

:

1 y=RCINV,RHLCCwr,RHRCCwr

2 y=RUPG

3 y=LHCCwr

2X + 2 y=LUPG

2X + 1 y=LCINV

V

asynch

bus

loc;y;d

=

�

1 y=LCINV,RCINV,LWB,RWB,LHCC,LHCCwr,RHLCCwr,RHRCCwr

V

synch

bus

rem;y;r

=

8

<

:

(

1

N�1

) y=RC,LHCC

(

2

N�1

) y=RHLCC

(

3

N�1

) y=RHRCC

V

synch

bus

rem;y;d

=

(

1

N�1

) y=RC,LHCC,RHLCC,RHRCC

V

asynch

bus

rem;y;r

=

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

(

2

N�1

) y=LHCCwr

(

4

N�1

) y=RHLCCwr

(

5

N�1

) y=RHRCCwr

(

4X+1

N�1

) y=RCINV

(

4X+2

N�1

) y=RUPG

(

2X

N�1

) y=LCINV,LUPG

V

asynch

bus

rem;y;d

=

�

(

1

N�1

) y=RWB,RCINV,LHCC,LHCCwr,RHLCCwr,RHRCCwr

(

2

N�1

) y=RHLCC,RHRCC

R

synch

bus

=

P

y

(R

synch

bus

loc;y;r

+R

synch

bus

loc;y;d

) + (N � 1)

P

y

(R

synch

bus

rem;y;r

+R

synch

bus

rem;y;d

)

R

asynch

bus

=

P

y

(R

asynch

bus

loc;y;r

+R

asynch

bus

loc;y;d

) + (N � 1)

P

y

(R

asynch

bus

rem;y;r

+R

asynch

bus

rem;y;d

)

10



R

synch

bus

loc;y;x

=

P

y

V

synch

bus

loc;y;x

(W

bus

loc

+ S

synch

bus

loc;y;x

) y=LC,RC,LHCC,RHLCC,RHRCC

R

asynch

bus

loc;y;x

=

P

y

V

asynch

bus

loc;y;x

(W

bus

loc

+ S

asynch

bus

loc;y;x

) y=LUPG,LCINV,LWB,RWB,RCINV,RUPG,LHCC,

RHLCC,RHRCC,LHCCwr,RHLCCwr,RHRCCwr

R

synch

bus

rem;y;x

=
P

y

V

synch

bus

rem;y;x

(W

bus

rem

+ S

synch

bus

rem;y;x

) y=RC,LHCC,RHLCC,RHRCC

R

asynch

bus

rem;y;x

=
P

y

V

asynch

bus

rem;y;x

(W

bus

rem

+ S

asynch

bus

rem;y;x

) y=RWB

U

bus

loc;x

=

P

y

U

synch

bus

loc;y;x

+

P

y

U

asynch

bus

loc;y;x

U

bus

rem;x

=

P

y

U

synch

bus

rem;y;x

+

P

y

U

asynch

bus

rem;y;x

U

z

bus

loc;y;x

= (

P

y

R

)V

z

bus

loc;y;x

S

z

bus

loc;y;x

U

z

bus

rem;y;x

= (

P

y

R

)V

z

bus

rem;y;x

S

z

bus

rem;y;x

W

bus

loc

=

P

y

(W

loc;y

S

bus

loc

+W

loc;y

A

bus

loc

+W

rem;y

S

bus

loc

+W

rem;y

A

bus+loc

)

W

bus

rem

=

P

y

(W

others;y

S

bus

rem

+W

others;y

A

bus

rem

+W

rem;y

S

bus

rem

+W

rem;y

A

bus+rem

)

W

loc;y

S

bus

loc

=

P

x

(M � 1)[(

R

S

bus

loc;y;x

R

� U

S

bus

loc;y;x

)S

S

bus

loc;y;x

+ (U

S

bus

loc;y;x

)(

S

S

bus

loc;y;x

2

)]

W

loc;y

A

bus

loc

=

P

x

M [(

R

A

bus

loc;y;x

R

� U

A

bus

loc;y;x

)S

A

bus

loc;y;x

+ (U

A

bus

loc;y;x

)(

S

A

bus

loc;y;x

2

)]

W

rem;y

z

bus

loc

=

P

x

(N � 1)M [(

R

z

bus

rem;y;x

R

� U

z

bus

rem;y;x

)S

z

bus

rem;y;x

+ (U

z

bus

rem;y;x

)(

S

z

bus

rem;y;x

2

)]

W

others;y

S

bus

rem

=

P

x

[(M � 1) +M(N � 2)][(

R

S

bus

rem;y;x

R

� U

S

bus

rem;y;x

)S

S

bus

rem;y;x

+ (U

S

bus

rem;y;x

)(

S

S

bus

rem;y;x

2

)]

W

others;y

A

bus

rem

=

P

x

[M +M(N � 2)][(

R

A

bus

rem;y;x

R

� U

A

bus

rem;y;x

)S

A

bus

rem;y;x

+ (U

A

bus

rem;y;x

)(

S

A

bus

rem;y;x

2

)]

W

rem;y

z

bus

rem

=

P

x

M [(

R

z

bus

loc;y;x

R

� U

z

bus

loc;y;x

)S

z

bus

loc;y;x

+ (U

z

bus

loc;y;x

)(

S

z

bus

loc;y;x

2

)]

Memory

If a decoupled directory is desired, the following equations can also be used for the directory, with the appropriate changes

to the visit counts.

S

synch

mem

loc;y

=
S

DRAM

y=LC

S

asynch

mem

loc;y

=
S

DRAM

y=LCINV,LWB,LHCC

S

synch

mem

rem;y

=
S

DRAM

y=RC

S

asynch

mem

rem;y

=
S

DRAM

y=RWB,RCINV,RHLCC,RHRCC

V

synch

mem

loc;y

=

1

m

y=LC,LHCC

11



V

asynch

mem

loc;y

=

1

m

y=LCINV,LUPG,LWB,LHCC,LHCCwr

V

synch

mem

rem;y

=

1

(N�1)m

y=RC,RHLCC,RHRCC

V

asynch

mem

rem;y

=

1

(N�1)m

y=RCINV,RUPG,RWB,RHLCC,RHRCC,RHLCCwr,RHRCCwr

R

synch

mem

= mR

synch

mem

loc

+ (N � 1)mR

synch

mem

rem

R

asynch

mem

= mR

asynch

mem

loc

+ (N � 1)mR

asynch

mem

rem

R

synch

mem

loc

=

P

y

R

synch

mem

loc;y

y=LC

R

asynch

mem

loc

=

P

y

R

asynch

mem

loc;y

y=LCINV,LWB,LHCC

R

synch

mem

rem

=

P

y

R

synch

mem

rem;y

y=RC

R

asynch

mem

rem

=

P

y

R

asynch

mem

rem;y

y=RCINV,RWB,RHLCC,RHRCC

R

z

mem

loc;y

=

P

y

V

z

mem

loc;y

(W

mem

loc

+ S

z

mem

loc;y

) y=LC,LCINV,LWB,LHCC

R

z

mem

rem;y

=

P

y

V

z

mem

rem;y

(W

mem

loc

+ S

z

mem

loc;y

) y=RC,RCINV,RWB,RHLCC,RHRCC

U

z

mem

loc;y

=

P

y

R

(V

z

mem

loc;y

S

z

mem

loc;y

)

U

z

mem

rem;y

=

P

y

R

(V

z

mem

rem;y

S

z

mem

rem;y

)

W

mem

loc

= W

loc

mem

loc

+W

rem

mem

loc

W

mem

rem

=W

others

mem

rem

+W

rem

mem

rem

W

loc

mem

loc

=

P

y

(W

loc;y

S

mem

loc

+W

loc;y

A

mem

loc

)

W

rem

mem

loc

=

P

y

(W

rem;y

S

mem

loc

+W

rem;y

A

mem

loc

)

W

others

mem

rem

=

P

y

(W

others;y

S

mem

rem

+W

others;y

A

mem

rem

)

W

rem

mem

rem

=

P

y

(W

rem;y

S

mem

rem

+W

rem;y

A

mem

rem

)

W

loc;y

S

mem

loc

= (M � 1)[(

R

mem

loc;y

S

R

� U

mem

loc;y

S

)S

mem

loc;y

S

+ (U

mem

loc;y

S

)(

S

mem

loc;y

S

2

)]

W

loc;y

A

mem

loc

= M [(

R

mem

loc;y

A

R

� U

mem

loc;y

A

)S

mem

loc;y

A

+ (U

mem

loc;y

A

)(

S

mem

loc;y

A

2

)]

W

rem;y

z

mem

loc

= (N � 1)M [(

R

mem

rem;y

z

R

� U

mem

rem;y

z

)S

mem

rem;y

z

+ (U

mem

rem;y

z

)(

S

mem

rem;y

z

2

)]

W

others;y

S

mem

rem

= [(M � 1) +M(N � 2)][(

R

mem

rem;y

S

R

� U

mem

rem;y

S

)S

mem

rem;y

S

+ (U

mem

rem;y

S

)(

S

mem

rem;y

S

2

)]

W

others;y

A

mem

rem

= [M +M(N � 2)][(

R

mem

rem;y

A

R

� U

mem

rem;y

A

)S

mem

rem;y

A

+ (U

mem

rem;y

A

)(

S

mem

rem;y

A

2

)]

W

rem;y

z

mem

rem

=M [(

R

mem

loc;y

z

R

� U

mem

loc;y

z

)S

mem

loc;y

z

+ (U

mem

loc;y

z

)(

S

mem

loc;y

z

2

)]

12



References

[1] S. Adve, V. Adve, M. Hill, and M. Vernon. Comparison of Hardware and Software Cache Coherence Schemes. In Proc. 18th Int’l

Symp. on Computer Architecture, pages 298–308, June 1991.

[2] V. Adve and M. Vernon. The Influence of Random Delays on Parallel Task Execution Times. In Proc. ACM SIGMETRICS, pages

61–73, May 1993.

[3] D. Eager. Private communication, Nov. 1997.

[4] P. Heidelberger and K. Trivedi. Analytic Queueing Models for Programs with Internal Concurrency. IEEE Trans. on Computers,

C-32(1):73–82, Jan. 1982.

[5] P. Heidelberger and K. Trivedi. Queueing Network Models for Parallel Processing with Asynchronous Tasks. IEEE Trans. on

Computers, C-31(11):1099–1109, Nov. 1982.

[6] P. Jacobson and E. Lazowska. Analyzing Queueing Networks with Simultaneous Resource Possession. Communications of the ACM,

25(2):142–151, Feb. 1982.

[7] E. Lazowska, J. Zahorjan, G. Graham, and K. Sevcik. Quantitative System Performance, Computer System Analysis Using Queueing

Network Models. Prentice-Hall, Englewood Cliffs, NJ, May 1984.

[8] D. Sorin, V. Pai, S. Adve, M. Vernon, and D. Wood. Analytic Evaluation of Shared-Memory Parallel Systems with ILP Processors. In

Proc. 25th Int’l Symp. on Computer Architecture, June 1998.

[9] M. Vernon, E. Lazowska, and J. Zahorjan. An Accurate and Efficient Performance Analysis Technique for Multiprocessor Snooping

Cache-Consistency Protocols. In Proc. 15th Int’l Symp. on Computer Architecture, pages 192–202, 1988.

13


