
To appear in Proceedings of the 28th International Symposium on Computer Architecture, June 2001

Variability in the Execution of Multimedia Applications

and Implications for Architecture �

Christopher J. Hughes, Praful Kauly, Sarita V. Adve, Rohit Jain, Chanik Parkz, and Jayanth Srinivasan

Dept. of Computer Science yTransmeta Corporation zDept. of Computer

University of Illinois pkaul@transmeta.com Science and Engineering

at Urbana-Champaign Seoul National University

rsim@cs.uiuc.edu park@iris.snu.ac.kr

Abstract

Multimedia applications are an increasingly important

workload for general-purpose processors. This paper an-

alyzes frame-level execution time variability for several

multimedia applications on general-purpose architectures.

There are two reasons for such an analysis. First, it has

been conjectured that complex features of such architec-

tures (e.g., out-of-order issue) result in unpredictable exe-

cution times, making them unsuitable for meeting real-time

requirements of multimedia applications. Our analysis tests

this conjecture. Second, such an analysis can be used to ef-

fectively employ recently proposed adaptive architectures.

We find that while execution time varies from frame to

frame for many multimedia applications, the variability is

mostly caused by the application algorithm and the media

input. Aggressive architectural features induce little addi-

tional variability (and unpredictability) in execution time,

in contrast to conventional wisdom.

The presence of frame-level execution time variability

motivates frame-level architectural adaptation (e.g., to save

energy). Additionally, our results show that execution time

generally varies slowly, implying it is possible to dynami-

cally predict the behavior of future frames on a variety of

hardware configurations for effective adaptation.

1. Introduction

Multimedia applications are expected to form a large part

of the workload on a growing number of systems, includ-

�This work is supported in part by the National Science Foundation

under Grant No. CCR-0096126 and funds from the University of Illinois

at Urbana-Champaign. Sarita V. Adve is also supported by an Alfred P.

Sloan Research Fellowship. Chanik Park is supported by the BK21 SNU-

UIUC program.

ing future handheld computers, wireless telephones, laptop

computers, and desktop systems [6, 7, 16, 17]. General-

purpose processors (vs. specialized DSP processors or

ASICs) are expected to be increasingly employed for such

workloads [2, 6, 7]. This paper analyzes the variability in

the execution time of several multimedia applications at the

frame granularity on general-purpose architectures. Two

broad sets of implications motivate such an analysis.

First, several articles have conjectured that current com-

plex general-purpose architectural features such as out-of-

order issue, branch prediction, and caches induce signifi-

cant unpredictability in execution time, making them unde-

sirable for multimedia applications [2, 6, 7, 8, 16]. Typ-

ical multimedia applications periodically process a set of

data, commonly called a frame, and each frame must be

completed in a certain amount of time. This real-time na-

ture makes it important to be able to predict the execution

time for multimedia applications. If execution time is un-

predictable, then it is difficult to know how much processing

power to schedule to guarantee a desired frame rate, or, con-

versely, what frame rate is sustainable with a given amount

of processing power.

Although there is a widespread perception that current

general-purpose architectures induce excessive execution

time unpredictability [2, 6, 7, 8, 16], there is little quanti-

tative data to support it. Furthermore, unpredictability itself

is difficult to quantify. We use execution time variability at

the frame granularity to quantify predictability and test the

above perception.

The second motivation for our work concerns the use

of adaptive architectures for multimedia applications. Re-

searchers have recently begun to propose adaptive archi-

tectures that can dynamically reduce power and/or en-

ergy [1, 4, 10, 20]. Such techniques are especially relevant

to a large class of systems running multimedia applications,

where battery-life is a precious commodity. The applica-

1

bility of adaptive architectures to multimedia applications

depends on the amount of variability in these applications

and the ability to predict such variability.

This paper performs a detailed quantitative analysis of

execution time variability at the frame granularity for a

number of multimedia applications. The results have sig-

nificant implications for both predictability and adaptivity

for general-purpose architectures. Specifically, we use an

application suite of nine encoders and decoders for speech,

video, and audio (music) media types (Section 2), and make

the following contributions.

We find that several applications in our suite exhibit sig-

nificant variability in execution time across different frames

(Section 3). Most of this variability, however, arises from

the input-dependent nature of the algorithms used, com-

bined with the behavior of the inputs. Compared to this

input-induced variability, the variability due to complex ar-

chitectural features is negligible in almost all cases. This

finding challenges the conventional wisdom that features of

current general-purpose architectures induce significant un-

predictability (Section 4).

The presence of frame-level execution time variability

also suggests a potential for architectural adaptation [1, 4,

10, 20] at a frame granularity (Section 4). Our results also

show that execution time varies slowly in most cases; there-

fore, it is possible to dynamically predict the behavior of

future frames for a variety of hardware configurations for

effective adaptation.

2. Methodology

2.1. Workload Description

Our workload consists of nine encoders and decoders

(codecs) encompassing three media types – speech, video,

and audio (music) – and is summarized in Table 1. We ob-

tained codes for these applications from various public do-

main sources. The applications were chosen for their impor-

tance in real systems and (we believe) to be representative

enough to make the inferences in this study.

We evaluated all our applications with four inputs, sum-

marized in Table 2. For lack of space, we only report results

from a single input for each application. We chose the input

that gave the highest (normalized) standard deviation in per

frame execution time on our base system. We call these in-

puts the default inputs, and list them in the second column

of Table 1. Results with the other inputs are similar, both

quantitatively and qualitatively.

Our analysis uses a frame (described in Table 1) as the

basic unit of work for each application. The G728, H263,

and MPG codecs statically distinguish multiple frame types.

G728 uses an adaptive algorithm, where certain parame-

ters are updated every four frames. The processing of each

frame in a single four-frame cycle is different due to the

calculation of these parameters. Thus, we treat these as dif-

ferent types of frames (numbered one through four). The

H263 and MPG codecs use almost the same video compres-

sion scheme. A key difference is that MPG uses three dif-

ferent types of frames – I frames do not exploit inter-frame

redundancy, P frames exploit inter-frame redundancy using

a previous frame, and B frames exploit such redundancy us-

ing a previous and a later frame. Our H263 codecs do not

use B frames. They use a single I frame at the beginning of

the video and P frames for the rest. We do not include the I

frame in our analysis.

It takes excessively long to simulate a frame with the

MPG codecs using the frame sizes specified by the MPEG-

2 standard (about 4 to 16 hours per frame for MPGenc on

the system discussed in Section 2.2). We scaled down the

frame size to 176x144 pixels so that we could simulate a

reasonable number of frames to assess execution time vari-

ability. We ensured that the scaling did not affect the cache

behavior by performing a working set analysis and running

representative experiments with larger frame sizes and dif-

ferent cache sizes, as discussed further in Section 2.2. The

chosen frame size conforms to the H.263 standard, so we

used the same size for the H263 codecs for consistency.

Also for consistency, we used the same set of four inputs

for both MPG and H263 codecs. These inputs contain a

great deal of motion to stress the applications. H263 was

designed for low bit-rate applications such as video confer-

encing (which typically have less motion); therefore, our

results from these inputs represent an upper bound on the

expected variability for H263.

2.2. Architectures Studied and Experimental
Methodology

The base architecture studied consists of an out-of-order

processor similar to the MIPS R10000, and is summarized

in Table 3. Since the applications studied have small in-

struction footprints, the instruction cache is assumed to be

perfect and is not modeled. Several variations on the base

architecture are also studied, and are described in the corre-

sponding sections.

To ensure that the scaled inputs of the MPG codecs (Sec-

tion 2.1) did not affect the cache behavior, we performed

a working set analysis. We found that for the standard

MPEG-2 frame size of 352x240 pixels, the first and sec-

ond level working sets fit in the base L1 and L2 caches,

respectively. Thus, the cache behavior of our scaled inputs

is expected to be similar to this standard frame size. For the

standard frame size of 704x480 pixels, we found that the

first level working set still fits in the base L1 cache, but the

second level working set does not fit in the base L2 cache.

To account for the latter, we determined the performance

2

Application Default Description Frame Size,

Input (see Frame/Sample

Table 2) Rate

Speech Codecs

GSMenc orignova Low bit-rate speech coding based on the European GSM 06.10 provisional 20ms (160

GSMdec homemsg standard. Uses RPE/LTP (residual pulse excitation/long term prediction) samples),

coding at 13Kb/s. Compresses frames of 160 16-bit samples into 264 bits. 8KHz

G728enc lpcqutfe High bit-rate speech coding based on the G.728 standard. Uses low-delay 625�s,

G728dec homemsg CELP (code excited linear prediction) coding at 16Kb/s. Compresses (5 samples),

frames of five 16-bit samples into 10 bits. 8KHz

Video Codecs

H263enc buggy Low bit-rate video coding based on the H.263 standard. Primarily uses 40ms,

H263dec tens inter-frame coding (P frames). Widely used for bit-rates less than 64Kb/s 25frames/s

MPGenc buggy High bit-rate video coding based on the MPEG-2 video coding standard. Uses 33.3ms,

MPGdec flwr intra-frame (I) and inter-frame (P, B) coding. Typical bit rate is 1.5-6Mb/s. 30 frames/s

Audio (Music) Codecs

MP3dec filter Audio decoding based on the MPEG Audio Layer-3 standard. Synthesizes an 26.1ms (1151

audio signal out of coded spectral components. Typical bit rate is 16-256Kb/s. samples), 44.1KHz

Table 1. Workload description.

Input Description Size in Length in

frames seconds

Speech GSM/G728 Both

clinton Speech by Clinton 922/29504 18.44

homemsg An answering message 1000/32000 20

lpcqutfe Sentence read by a boy 362/11572 7.23

orignova Sentences read by 1073/34328 21.45

8 adults concatenated

Video Both H263/MPG

buggy Buggy race 450 18/15

cact Pan over still-life 450 18/15

flwr Drive-by of houses 450 18/15

tens Table tennis match 450 18/15

Audio

beethoven Classical piece 2500 65.25

cat stevens Soft rock song 2500 65.25

sting Pop song 2500 65.25

filter Rock song 2500 65.25

Table 2. Inputs used for the workload.

with the scaled inputs using a 32KB two-way associative

L1 data cache and a 128KB four-way associative L2 data

cache, which was at the knee of the working set curve. We

found the difference in results from our base configuration

to be negligible.

We use the RSIM simulator [23] for most of our exper-

imental evaluation. RSIM is a user-level execution-driven

simulator that models the processor and memory in detail,

including contention for all resources. Operating system

and I/O functionality is emulated, not simulated, so their

effects are not reflected in our statistics.

For validation, we performed some experiments on a real

machine. We used a Sun Microsystems Ultra 5 machine

with an UltraSPARC 2i processor running at 400MHz and

with 128MB of DRAM. The machine ran Solaris 7 and had

no load other than background daemons and the operating

system. We used perfmon, a tool that allows user-level code

Base Processor Parameters

Processor Speed 1GHz

Fetch/retire Rate 4 per cycle

Functional Units 2 Int, 2 FP, 2 Address generation

Integer FU Latencies 1/7/12 add/multiply/divide (pipelined)

FP FU Latencies 4 default, 12 div. (all but div. pipelined)

Instruction window 64 entries

(reorder buffer) size

Memory queue size 32 entries

Branch Prediction 2KB bimodal agree, 32 entry RAS

Base Memory Hierarchy Parameters

L1 D-cache 64KB, 2-way associative,

64B line, 2 ports, 12 MSHRs

L2 D-cache 1MB, 4-way associative,

64B line, 1 port, 12 MSHRs

Main Memory 16B/cycle, 4-way interleaved

Base Contentionless Memory Latencies

L1 hit time (on-chip) 2 cycles

L2 hit time (off-chip) 20 cycles

Main Memory (off-chip) 102 cycles

Table 3. Base (default) system parameters.

to access the hardware performance counters.

All applications were compiled with the SPARC

SC4.2 compiler with the following options: –xO4 –

xtarget=ultra1/170 –xarch=v8plus. The SPARC v9 ISA

includes the visual instruction set (VIS) multimedia exten-

sions. The compiler does not generate these instructions, so

our base results are without these instructions. Section 3.7

describes results with VIS instructions inserted by hand.

We use a number of evaluation metrics in this study

such as the range and standard deviation of execution times.

These are described in the first section that uses them.

3. Results

This section analyzes the extent and the nature of the

variability in the execution time of different frames in an

3

application. Section 3.1 determines the extent of the vari-

ability. Section 3.2 quantifies the part of the variability in-

duced by the architecture. Section 3.3 ascertains the con-

tribution of different types of instructions to the variabil-

ity. Section 3.4 examines (local) variability in neighboring

frames. Section 3.5 compares our results from simulations

with results from the real machine. Section 3.6 provides the

reasons for the above findings in terms of high-level appli-

cation behavior. Section 3.7 describes the impact of VIS

instructions.

3.1. Extent of Variability in Execution Time

We first discuss the extent of the execution time variabil-

ity for different frames in an application. Figure 1 shows the

execution time in cycles for each frame (referred to as the

execution time profile) for all applications run on the base

out-of-order architecture. For the applications with multi-

ple frame types, G728 and MPG codecs, each frame type

is displayed with a different marker. To quantify the ex-

ecution time variability, Figure 2 presents the range1 and

standard deviations, both as a percentage of the mean, of

execution time for each frame. For G728 and MPG codecs,

the figure also shows these statistics for the individual frame

types. For applications with an excessively large number of

frames, profiles such as in Figure 1 show frames uniformly

sampled from the entire run. However, all figures with ag-

gregate statistics, such as Figure 2, reflect all frames.

All applications with the exception of GSMenc and

GSMdec show significant execution time variability – range

from 37% to 195% and standard deviation from 9% to 74%.

G728 and MPG differ from the other applications in that

they statically distinguish different types of frames. Exam-

ining the individual frame types in isolation, we find that

G728enc shows little variability in execution time within

each frame type while G728dec shows significant variabil-

ity for one frame type (range of 49% and standard deviation

of 16%). MPGenc and MPGdec show a significant range

of execution time (15% to 43%) with the standard deviation

being significant only for some of the encoder frames.

Overall, of the nine applications in our suite, five show

significant variability (standard deviation of 9% or more and

range more than 25%) in one or more of their component

frame types. Seven of the nine applications show significant

variability when all frame types are viewed as an aggregate.

3.2. Quantifying Variability Due to Architecture

Execution time variability can arise due to the architec-

ture or a combination of the algorithm and input. We quan-

tify the impact of the architecture in two different ways. The

1 (Maximum exe
ution time �Minimum exe
ution time)

Mean exe
ution time

� 100

first method quantifies it in terms of the variability in IPC

while the second method performs a comparison with sim-

pler architectures. Both perspectives offer useful insights.

IPC vs. Instruction Count Variability.

The execution time for each frame is given by the ex-

pression Instru
tion
ount �

1

IPC

�

1

Frequen
y

. Thus,

for a given clock frequency, the variability in execution time

can be decomposed into the variability in dynamic instruc-

tion count and that in IPC. For a given instruction-set archi-

tecture, the instruction count depends solely on the appli-

cation’s algorithm and the input. The IPC depends on the

algorithm, input, and the architecture. Thus, a high instruc-

tion count variability implies a high variability due to the

algorithm and input while a low IPC variability implies low

variability due to the architecture.

Figure 3 quantifies the variability of both instruction

count and IPC by presenting their range and standard de-

viations (both as a percentage of the mean). It shows that

for the applications and frame types that exhibit execution

time variability, instruction count variability is larger than

IPC variability. Thus, most of the variability in these appli-

cations arises from the algorithm and input. Overall, IPC

variability is small for all applications and is negligible for

most (standard deviation is 5% or less, range is less than

20% for all but two cases). Thus, the IPC for individual

frame types remains roughly constant through the applica-

tion run. The IPC profiles [15] (not shown here) are much

flatter than the execution time (or instruction count) pro-

files, and the instruction count profiles [15] (also not shown)

mostly follow the execution time profiles of Figure 1.

Comparison with Simpler Architectures.

We compare the execution time and IPC variability of

our base architecture with that of simpler architectures. The

difference in variability then is largely due to the complex

architectural features in the base architecture. The simplest

practical architecture chosen represents a DSP-like archi-

tecture. DSP architectures are the traditional alternative to

general-purpose architectures for multimedia applications,

and are also conjectured to have better execution time pre-

dictability [2, 6, 16]. Specifically, we replace four complex

features of our base architecture with simpler ones to cre-

ate the simplest architecture modeled: multiple-issue is re-

placed with single issue, dynamic branch prediction with a

predict not-taken static branch prediction, caches with an

infinite amount of single cycle access SRAM, and out-of-

order with in-order issue. Further, in order to gauge which

architectural features induce the most execution time vari-

ability, we study the range of architectures between the

above and base architectures.

Figure 4 shows the standard deviation of execution time

and IPC (as a percentage of the mean) for the above range of

architectures. We also plot a hypothetical architecture with

a perfectly predictable IPC of 1. We only show the applica-

4

GSMenc GSMdec G728enc

|

0

|

200

|

400

|

600

|

800

|

1000

|
|

|
|

|
|

 E
xe

cu
tio

n
C

yc
le

s

0.0*100

2.0*104

4.0*104

6.0*104

8.0*104

1.0*105

������

������
�����������
������������������������
�����������
���������������������������

����������
�����������������
��
�����
������
������������������������������

�����������������
���������������
������������������������
����������������
���
�����
������
�����������
���������������
�����������������
��������������������
�����������
��������
�������������������������������������

���

��������������
�����������������
��������������
�����������������������
��������������������
���

���

����������
�������
���

�������������������������������
�����������������
���

������������
�������������������
����������������
���������������
���

���

������������
�����������
�����������
������
����������
���
�����������������
���������������������������������

�����������������
��
�
�������������
����������������������
���������������
����������
��������������������������

����������������
���

�����������
�������
��������
�������
�����
�����������������
���������

|

0

|

200

|

400

|

600

|

800

|

1000

|
|

|
|

|
|

 E
xe

cu
tio

n
C

yc
le

s

0.0*100

5.0*103

1.0*104

1.5*104

2.0*104

2.5*104
�
���������������������
��������
���������������������
�����
�
�
�
��������
�������������������
������������
������
������������
�����������������������������

�����������������
�����������������������
�����������������
���������
������������
������������������
������������������������������

��
����������������
�������������
���

�������������
������
�������������
���������
���������
�������
�����������������
�����������
�
��������
��������������
�������
������������������
������
����������
��������
���������������������������

���������������������
��������������
������
��������������
����
������������������������
����������
������������
���������
�����
��������
��
�
�����������
����������
�����������������������������

�����������������������
�����������������
��������
�������������������������������

���������������
������
�����
�������������������
���������
�����������������
���������
��������������������������������

������������������
�����
�������������

|

0

|

2000

|

4000

|

6000

|

8000

|

10000

|

12000

|
|

|
|

|
|

|
|

|
|

 E
xe

cu
tio

n
C

yc
le

s

0.0*100

5.0*103

1.0*104

1.5*104

2.0*104

2.5*104

3.0*104

3.5*104

4.0*104

4.5*104

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

G728dec H263enc H263dec

|

0

|

5000

|

10000

|

15000

|

20000

|

25000

|

30000

|
|

|
|

|
|

|
|

|

 E
xe

cu
tio

n
C

yc
le

s

0.0*100

5.0*103

1.0*104

1.5*104

2.0*104

2.5*104

3.0*104

3.5*104

4.0*104

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

|

0

|

50

|

100

|

150

|

200

|

250

|

300

|

350

|

400

|

450

|
|

|
|

|
|

 E
xe

cu
tio

n
C

yc
le

s

0.0*100

5.0*106

1.0*107

1.5*107

2.0*107

2.5*107

��
�

��
�

�
�

�

�

�
�

�

�����
�
�

�
��

������

�

���

��
�
�

�

����
�

�

�

�
�
�
�

�

��
�
�
����
�
��
�����

�

�
���
���
�

�

�
�

����
��
��
�

�
���
����
���

��
������
����

��
���
���

�

�
�

��

�
�
���
�

��
�
�
�
���
�
��

��
�

���
��
��
���

�
�
�
�
�
������
�������
�
�
��
�

������
��
��
���
��

������

�

�

��

�

�
�
��
�������
��
����
��

�
����

���

��
����
��
����
���
��
�

�������
��

�
��������
�
�����
��
����
�
�
�
�

�

�
���
���
��

���
���
��
�

���
�
��

�
�

�

���
��
�

�

�
�

�
����
�
�
����
�

�
�

�

�
�
�
�
�

��
�
�

�
�

�
�

�

�
�
��
��
�

�

�

�

�
�

�

��
�

�
��
�
�

���
��
�
��
�
�
��

�
�
�
��
��

���

��
��
��

�

�
�
�
��
��

��

��
��
������
��
�
��
�

�

�
���
��

�
�
�
��
�

�

���
��
�
�
�
�
�

�

�

�

|

0

|

50

|

100

|

150

|

200

|

250

|

300

|

350

|

400

|

450

|
|

|
|

|
|

|

 E
xe

cu
tio

n
C

yc
le

s

0.0*100

2.0*105

4.0*105

6.0*105

8.0*105

1.0*106

1.2*106

��

���
����
����
�
�

��

��
�
�

�
�
����

�

�
�

��
�
���
�
�����
��
��
�

�

�
����
�

�
��

��
�

�
�
���

��
�
���
�
��

��

���
����

�

�
�
��
��
�����

�

�
�
�
��
�
��
���

�

�
�
�
����
�
��

�
���
�
�����

�

�

�

�
�
��

���

����
�

�
�
�

�

��
��
��
���

�

���
����

��
�

�

��

�

��
�

��
��
�

�

�
��
�
�

���
�
��

�

�

�
��
���
�

�
�
����
�
��

�

��

�
�
�

�

�
�

�

�
�
�
��

�

�
�
�

���

�

�

���

�

��

�
�
�
�

��
�

��

�

�
�

�

��

�

�
�

�

��
�
��

�

��

�

�

�
�

��

�

�
�

�

�
�

�
�

�

�

�

�

�
�

�

�

�

�

��

�

��

��
�

�

�

�

�

�
�

�

��

�

�

�

�

�

�

�

�

�
�

�

��

�

�

�

�

��

�

��

�

�

�

��

�

�

��
�
�

�

�

��
�

�
�

�

�
�

�

�
�

�

�

�
�

�

��

�

�

�

�
�

�
��

�

�
�

�
��

�

�
���
����

�
�

�

�

�
�
�

��

�
��
�
�
��

�

�

�

�

��

�
�

�

��
�

�
�

�

���

��

�
���

�

�
��
�
�

��
�

��
���
�
��
�

�

�

�

��
�

�

�

MPGenc MPGdec MP3dec

|

0
|

50
|

100
|

150
|

200
|

250
|

300
|

350
|

400
|

450

|
|

|
|

|
|

|
|

 E
xe

cu
tio

n
C

yc
le

s

0.0*100

1.0*107

2.0*107

3.0*107

4.0*107

5.0*107

6.0*107

7.0*107

�

�

	
	

�

		

�

		

�

		

�

	
	

�

		

�

	
	

�

	
	

�

		

�

		

�

		

�

		

�

	
	

�

	
	

�

		

�

	
	

�

		

�

		

�

		

�

		

�

		

�

		

�

		

�

		

�

		

�

		

�

	
	

�

		

�

		

�

		

�

		

�

		

�

		

�

		

�

		

�

		

�

		

�

		

�

		

�

		

�

		

�

		

�

		

�

		

�

		

�

		

�

		

�

	
	

�

		

�

		

�

		

�

		

�

		

�

		

�

		

�

	
	

�

		

�

		

�

		

�

	
	

�

		

�

		

�

	
	

�

	
	

�

		

�

	
	

�

	

	

�

		

�

		

�

		

�

		

�

		

�

		

�

	
	

�

	
	

�

	
	

�

	
	

�

		

�

		

�

	
	

�

		

�

	
	

�

	
	

�

	
	

�

		

�

	
	

�

		

�

		

�

		

�

		

�

		

�

		

�

		

�

	
	

�

		

�

		

�

		

�

		

�

		

�

		

�

	
	

�

		

�

		

�

		

�

		

�

		

�

		

�

	
	

�

		

�

	
	

�

	
	

�

		

�

		

�

		

�

		

�

	
	

�

	
	

�

	
	

�

	
	

�

	

	

�

		
�

	

	

�

	
	

�

		

�

		

�

		

�

		

�

		

�

		

�

	
	

�

	
	

�

		

�

		

�

	
	

�

	
	

�

		

�

	
	

�

		

�

		

�

		

�

		

�

		

�

		

�

	
	

�

		

�

	
	

�

	
	

�

		

�

		

�

	

|

0
|

50
|

100
|

150
|

200
|

250
|

300
|

350
|

400
|

450

|
|

|
|

|
|

|
|

 E
xe

cu
tio

n
C

yc
le

s

0.0*100

5.0*105

1.0*106

1.5*106

2.0*106

2.5*106

3.0*106

3.5*106

�

	

	

�

	
	

�

	

	

�

		

�

	
	

�

		

�

		

�

		

�

		

�

		

�

	

	

�

	
	

�

		

�

	
	

�

	

	

�

	
	

�

		

�

	
	

�

		

�

	
	

�

	
	

�

	

	

�

		

�

	
	

�

	
	

�

		

�

		

�

	

	

�

		

�

		

�

	
	

�

	
	

�

	
	

�

	
	

�

		

�

	
	

�

	
	

�

	
	

�

	

	

�

	
	

�

	

	

�

		

�

	
	

�

		

�

		

�

		

�

		

�

		

�

		

�

		

�

	

	

�

	
	

�

		

�

		

�

		

�

		

�

		

�

	

	

�

	

	

�

	

	

�

		

�

		

�

	
	

�

	
	

�

		

�

	
	

�

		

�

		

�

	

	

�

	

	

�

		

�

		

�

		

�

		

�

		

�

	

	

�

		

�

	
	

�

		

�

	
	

�

	
	

�

	
	

�

	

	

�

	

	

�

	

	

�

		

�

		

�

		

�

	
	

�

	

	

�

	

	

�

	
	

�

		

�

		

�

	
	

�

	

	

�

		

�

		

�

		

�

		

�

		

�

		

�

	
	

�

		

�

	

	

�

		

�

	

	

�

		

�

	
	

�

	
	

�

		

�

	

	

�

	
	

�

	

	

�

	
	

�

		

�

	

	

�

	

	

�

	

	

�

		

�

	
	

�

		

�

	
	

�

	
	

�

		

�

	
	

�

	
	

�

		

�

		

�

		

�

	

	

�

		

�

	
	

�

	
	

�

	

	

�

	

	

�

		

�

	

	

�

	

	

�

		

�

		

�

	

	

�

	
	

�

	
	

�

	
	

�

	
	

�

	
	

�

		

�

		

�

	

|

0
|

500
|

1000
|

1500
|

2000
|

2500

|
|

|
|

|
|

 E
xe

cu
tio

n
C

yc
le

s

0.0*100

2.0*105

4.0*105

6.0*105

8.0*105

1.0*106

���

�

��
�
��
���
����
�
��
�
�
��������
�
����
��
�
���
�������
��������
�
����
�����
�������
������
�
�����
�
������
�
������
���
���������
����
�
��
����������

�

�
�
�
�
�

��
��
�
�

��

�
���
��
�
��

�

��
��
���

�
����
�
�
����

�

���

�

�

�
��

�
�
�

�

��
���
��

���
���

��
��
�

�

�
��

�
�

�
�
��
�
�

�

��
�
�
��

�

���
���

��

���

�

�
�

�

�

�

�

�
�
�

��

�

��
�����

�
�
�

�
�

�

���

�
�
�
�
�
�

�

�

�
�

�

��

�

�

�
�

�

�

�
�

�

�

�

�

�
�

�

�
��
�

�

�

��
�

�

�
��

�

�

�

�

�

�

�

�

�

�

�
�

����
��
�
�
�
�

�

�

���

�

�

�

�

�

�

�

�

�

��

�

�
�

�
�����
�

�

��

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

���

�

�

�

��
��
���

�

�
�

�
�

�

�

��

�

�

�

�

�
�

�

�

�

�
�
�

�
�
�

�

�

�

��
�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�
�
���

�

�

�

���
�

�

�

�

�

�

�

�

�
�

�

��
�

�

�

�

�

��
���

�

��

�

�

�

�
�

�

�

�

�

�

�

�

�

�
�

�
�
�

�

��
�

�

�

�

���
�

�

�

�

�

��

�

��

��

�

�

�

�
�
�
�
������

��
��
�

�

�

�
�

�

�
��
�

���
�

�

��

�

�
�
�
�
�

��
�

��

�
���
�

�

�

�
�
�

�

�

�

�
�

�

�

�
�

�

�

�
��
���

�

�

���

�

�

�

�

�
��

�

���
�
�
�

�
���
����
�
�
�

�

�

�

��

�

�

�
�
�

�

�

�

�

�

�
�

�

�

�

���
���

�

�
��

�

���
�
�

�
�

�

�
�
�

�

�
�

�

�
�

�

�
�

����
�
��
��

�

�

�

�

�

�

�

�

�
�
�
�

���

�
�
��������

�

�

�

�
�
�

�
�
�
�
�

�

�

�

�

�
�

�

�
��

�

��

�
�

�

���
�

�
�
�
���

�

�

�
��

��

�

�
�

�

�

�

�

�
�

��
�
�
��

�
����
�
�
�
�

�

�
�
�
�

�

��
�
�
�

�

��
�������
��
�

�
�
�

�

�
�
�
�

�
�

�

�

�

�

�

�
�
�
�

�

�

�

��
�
��

�

�

�
�

�
�

�

�

�
�

�

�

�

�

�

�

�

�

�

��

Figure 1. Execution time profiles for inputs that cause the most variability. The horizontal axis shows
the frame numbers.

||0
|20

|40

|60

|80

|100

|120

|140

|160

|180

|200

 R
an

ge
(%

)
E

xe
cu

tio
n

C
yc

le
s

GSM
enc

8

GSM
dec

4

G728
enc

165

G728
dec

195

H263
enc

37

H263
dec

98

MPG
enc

132

MPG
dec

57

MP3
dec

61

||0

|5

|10

|15

|20

|25

|30

|35

|40

|45

|50

 R
an

ge
(%

)
E

xe
cu

tio
n

C
yc

le
s

G728enc

11
A

7
B 12

C

4
D

G728dec

12
A

11
B

49
C

3
D

||0

|5

|10

|15

|20

|25

|30

|35

|40

|45

 R
an

ge
(%

)
E

xe
cu

tio
n

C
yc

le
s

MPGenc

26
I

43
P

32
B

MPGdec

15
I

32
P

30
B

||0

|10

|20

|30

|40

|50

|60

|70

|80

 S
td

D
ev

(%
)

E
xe

cu
tio

n
C

yc
le

s

GSM
enc

2

GSM
dec

1

G728
enc

61

G728
dec

74

H263
enc

9

H263
dec

29

MPG
enc

29

MPG
dec

15

MP3
dec

13

||0

|2

|4

|6

|8

|10

|12

|14

|16

|18

 S
td

D
ev

(%
)

E
xe

cu
tio

n
C

yc
le

s

G728enc

1
A

1
B 2

C

0
D

G728dec

1
A

1
B

16
C

0
D

||0

|2

|4

|6

|8

|10

|12

 S
td

D
ev

(%
)

E
xe

cu
tio

n
C

yc
le

s

MPGenc

6
I

11
P

8
B

MPGdec

4
I

4
P

4
B

Figure 2. Execution time variability measured as range and standard deviation relative to the mean.
The graphs on the right are for the individual frame types of G728 and MPG as indicated by the lighter

shading. A, B, C, and D are for types 1, 2, 3, and 4 to avoid confusion.

5

||0

|20

|40

|60

|80

|100
 R

an
ge

(%
)

GSM
enc

4 5

GSM
dec

1 3

G728
enc-1

2
10

G728
enc-2

1 6

G728
enc-3

3
9

G728
enc-4

1 4

G728
dec-1

1
11

G728
dec-2

1
10

G728
dec-3

48

16

G728
dec-4

0 3

H263
enc

38

16

H263
dec

93

8

MPG
enc-I

21

6

MPG
enc-P

60

17

MPG
enc-B

46

21

MPG
dec-I

14
1

MPG
dec-P

29

4

MPG
dec-B

28

3

MP3
dec

52

29

DIC
IPC

||0

|5

|10

|15

|20

|25

|30

 S
td

D
ev

(%
)

GSM
enc

1 1

GSM
dec

0 1

G728
enc-1

0 1

G728
enc-2

0 1

G728
enc-3

0 1

G728
enc-4

0 0

G728
dec-1

0 1

G728
dec-2

0 1

G728
dec-3

19

3

G728
dec-4

0 0

H263
enc

11

4

H263
dec

27

2

MPG
enc-I

5

1

MPG
enc-P

15

5

MPG
enc-B

13

5

MPG
dec-I

3
0

MPG
dec-P

4

0

MPG
dec-B

3
0

MP3
dec

9

5

DIC
IPC

Figure 3. Dynamic instruction count (DIC) and IPC variability measured as range and standard devi­

ation relative to the mean. For G728 and MPG, different frame types are shown separately.

tions and frame types for which there is significant variabil-

ity in the base architecture.2 The figure shows that, when

significant, the standard deviations are remarkably close for

the entire range of architectures for a given application. The

largest change occurs for MP3dec (for reasons discussed in

Section 3.6), but even there, the change is relatively small.

This provides further evidence that aggressive architectural

features do not significantly add to execution time variabil-

ity for our application suite.

Since very little architecturally induced variability is

present, it is difficult to conclude which features contribute

most to it. The data for MP3dec in Figure 4 leads us to spec-

ulate that multiple-issue and out-of-order execution induce

the most variability. An important note is that, contrary to

the common perception, caches have negligible effect on

execution time and IPC variability on these applications (for

reasons discussed in subsequent sections).

3.3. Contribution of Different Instruction Compo­
nents to Variability

This section explores the contribution of different in-

struction types to the execution time variability. Such in-

formation would be useful in ascertaining the cause of any

variability (or lack thereof) and ascertaining how to adapt

architectures to meet the varying requirements of the appli-

cations. We divide the instructions and execution time into

different components for each frame. Figure 5 shows the

percentage of ALU (integer and floating point), branch, and

memory instructions in each frame. Figure 6 shows the per-

2MPGenc and H263enc are run for frames 250 to 350 to save simu-

lation time – these frames capture a part of the movie that shows high

execution time variability.

centage of execution time spent busy or stalled for the above

instructions. Busy and stall times are calculated similar to

previous work [22]. For each cycle, the ratio of instructions

retired to the maximum retire rate is recorded as busy time.

The remaining fraction of the cycle is charged as stall time

to the first instruction in the instruction window unable to

retire. Here, we present the graphs for only one application

and frame type for each media type (speech, video, and au-

dio). Where applicable, we chose the application and frame

type that has the most variability.

First, we find that the distribution of the different instruc-

tion and execution time components stays roughly constant

throughout the entire application. Thus, in applications that

show execution time variability, the nature of the compu-

tation does not change (at the frame granularity). This ex-

plains the roughly constant IPC through most of the data.

Second, we note that little time is spent in memory stalls.

Less than 10% of execution time is spent in memory stalls

for all frame types of all applications. Most of the time

the processor is busy or is stalled due to ALU instructions

(as in [28]). This is because the codecs studied here per-

form significant computation per data item (as indicated by

the composition of instruction count), and small caches are

sufficient to hold the important working sets of these com-

putations. As discussed in Section 2.2, we also performed

some experiments on MPGenc and MPGdec with caches

too small to hold the second level working set. The fraction

of time spent in memory stalls increases by a small amount

for all frames (�4% for MPGenc and �3% for MPGdec).

Also, although not shown here, the successful branch

prediction rate and the L1 cache hit rate have little variabil-

ity (standard deviations�5% and <1%, respectively, for all

frame types for all applications).

6

||0

|5

|10

|15

|20

|25

|30

 S
td

D
ev

(%
)

E
xe

cu
tio

n
C

yc
le

s

G728dec-3

19
17 17 17 17 17

H263enc

10 10 9 9 10 11

H263dec

27 27 27 28 28 29

MPGenc-P

16 17 17 17 17 17

MPGenc-B

12 13 13 13 13 13

MP3dec

9 10 11 11 11
13

PERF
DSP
+MI
+BP
+CA
+OOO

||0.0

|1.0

|2.0

|3.0

|4.0

|5.0

 S
td

D
ev

(%
)

IP
C

G728dec-3

0

2 2 2 2 2

H263enc

0

1

2 2 2

1

H263dec

0 0

1 1 1

2

MPGenc-P

0

1 1 1 1 1

MPGenc-B

0 0 0 0 0 0

MP3dec

0

1

3 3 3

5
PERF
DSP
+MI
+BP
+CA
+OOO

Figure 4. Comparison of base architecture with simpler architectures – standard deviation of execu­
tion time and IPC (relative to the mean). The architectures are: (PERF) Perfect (IPC=1), (DSP) DSP­like

architecture (single­issue, static branch prediction with predict not­taken, DSP­like SRAM, and in­
order issue), (+MI) previous with multiple issue, (+BP) previous with dynamic branch prediction,
(+CA) previous with caches, (+OOO) previous with out­of­order issue.

G728dec Type 3 H263dec MP3dec

|

0

|

200

|

400

|

600

|

800

|

1000

|

1200

|0

|20

|40

|60

|80

|100

 N
or

m
al

iz
ed

 In
st

ru
ct

io
n

C
ou

nt

Mem
Branch

ALU

|

0

|

50

|

100

|

150

|

200

|

250

|

300

|

350

|

400

|

450

|

500

|

550

|0

|20

|40

|60

|80

|100

 N
or

m
al

iz
ed

 In
st

ru
ct

io
n

C
ou

nt

Mem
Branch

ALU

|

0

|

500

|

1000

|

1500

|

2000

|

2500

|

3000

|0

|20

|40

|60

|80

|100

 N
or

m
al

iz
ed

 In
st

ru
ct

io
n

C
ou

nt

Mem
Branch

ALU

Figure 5. Components of dynamic instruction count.

G728dec Type 3 H263dec MP3dec

|

0

|

200

|

400

|

600

|

800

|

1000

|

1200

|0

|20

|40

|60

|80

|100

 N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

Mem
Branch

ALU
Busy

|

0

|

50

|

100

|

150

|

200

|

250

|

300

|

350

|

400

|

450

|

500

|

550

|0

|20

|40

|60

|80

|100

 N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

Mem
Branch

ALU
Busy

|

0

|

500

|

1000

|

1500

|

2000

|

2500

|

3000

|0

|20

|40

|60

|80

|100

 N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

Mem
Branch

ALU
Busy

Figure 6. Components of execution time.

7

3.4. Local or Short­Term Variability

So far, we have focused on variability across the entire

run of an application. This section analyzes short-term vari-

ability in the form of change in execution time in neighbor-

ing frames. Such an analysis can aid in designing dynamic

execution time predictors for purposes such as scheduling

or system adaptation (as discussed in Section 4). We plot-

ted the change in execution time of a frame compared to the

immediately preceding frame (as a percentage of the latter).

For all but one frame type (G728dec Type 3), 90% of the

frames saw execution times within 10% of the immediately

preceding frame. The average change across all applica-

tions was 2%. Similar results hold for the dynamic instruc-

tion count. Thus, although execution time and instruction

count show high variability in some applications, they vary

slowly for all but one frame type.

3.5. Validation with a Real Machine

To verify our key results, we also performed some ex-

periments using a real machine described in Section 2.

We collected both per frame execution time and per frame

IPC for each frame type for all applications. We compare

these results to those for our in-order processor simulations

(since the machine measured is in-order). The normalized

standard deviations of execution time and IPC on the real

machine are within 3% and 1%, respectively, of the re-

sults from simulation for all but GSMenc, G728enc, and

G728dec. For the above applications, the differences are

within 6% for both statistics. These applications have few

instructions per frame. Therefore, file I/O may have a larger

impact on the per frame execution time, resulting in higher

variability. Nevertheless, the maximum standard deviation

for IPC was 7%, even for these applications. The detailed

results are in [15].

3.6. Relating Results to Application Behavior

This section uses high-level application behavior to ex-

plain the reasons for our findings so far. These findings are:

1. There is significant (per frame) execution time vari-

ability due to a combination of the algorithm and input

for several applications.

2. The architecture induces very little variability and the

IPC stays roughly constant at the frame granularity.

3. The composition of instructions and execution time

stays roughly constant at the frame granularity.

4. The applications spend little time in memory stalls.

5. Execution time and instruction count change slowly

from one frame to another in most cases.

The applications studied use optimizations that exploit

the limitations of human perception. With media data, hu-

mans can often accept approximations without a perceptible

change in quality. The applications exploit this characteris-

tic to reduce the amount of work performed or to increase

the compression rate. The use of these optimizations is by

necessity input-dependent; therefore, any application using

them would exhibit execution time variability with an ap-

propriate input. This explains why several applications in

our suite exhibited large execution time variability where a

large part was due to the algorithm and input (finding 1).

The reason why the IPC and the composition of the in-

structions and execution time stay roughly constant at the

frame granularity (findings 2 and 3) is as follows. The

aforementioned approximations typically involve avoiding

execution of a dominant piece of code for parts of the frame

in favor of a simple approximation. Thus, often the varia-

tion occurs simply due to the number of times a dominant

piece of code is invoked. Since the nature of the dominant

computation does not change, the IPC remains constant. In

some cases, the variation occurs because a different, but sig-

nificant, piece of code was executed depending on the input.

However, we see that the nature of computation is usually

similar, and this input-induced change in IPC (and compo-

sition of execution time) is not much.

The following demonstrates the above reasoning for

findings 1 through 3 more concretely for a representative

application of each media type. Details on other applica-

tions are in [15]. G728dec frame type 3 code includes a

conditional recomputation of a set of coefficients depend-

ing on whether the inputs for the frame meet a certain set of

criteria, resulting in high input-induced variability. Further,

since only the amount of computation changes and not its

nature, the instruction and execution time composition and

IPC remain stable throughout.

H263enc execution time is dominated by a technique

known as motion estimation. Each frame is divided into

blocks of 16x16 pixels. The encoder exploits temporal re-

dundancy by attempting to find a match for each block in

a previous frame. If a match is found, then a reference

to the matching block is encoded. Otherwise, the block

is run through a (relatively simple) transform computation

that produces a small number of coefficients to represent

the block. The amount of work in this phase is therefore

input-dependent, and depends on the amount of motion in

the video. For parts of the movie with a lot of motion, the

motion estimator must do a lot of work and the execution

time is high. If the amount of motion in a video varies,

then the execution time will vary as well, again establishing

the input-dependent nature of the execution time variability.

Further, the amount of computation required changes, but

8

the nature of the dominant computation does not change;

therefore, the IPC and composition of instructions and exe-

cution time remains roughly the same throughout.

MP3dec performs an optimization for audio samples

that are very close to zero. It treats such samples as zeroes,

avoiding executing a number of operations with the sample.

This greatly reduces the number of computations performed

on quiet frames. The default input is a song which starts off

with a couple of instruments playing, has others come in af-

ter a delay, and finally has the remaining ones begin to play

after another delay. This explains the execution time pro-

file in Figure 1, as the steps in execution time correspond

to the three phases of this portion of the song. The com-

putation avoided for near-zero samples is less efficient than

the rest of the computation, and avoiding it makes the ini-

tial part of the run see slightly higher busy time and IPC.

Again, the variability is largely input-driven. Further, since

the majority of the frames are not quiet, they show stable

IPC behavior (and execution time composition).

The reason that the applications spend little time in mem-

ory stalls (finding 4) is that they perform significant com-

putation and many loads per data item. Therefore, small

caches are sufficient to hold the important working sets of

these computations. Thus, the L1 cache hit rates are very

high for all applications (>99%).

The reason that execution time and instruction count

change slowly from one frame to another (finding 5) is that

the properties of the inputs that affect these quantities tend

to change smoothly rather than suddenly. For example, one

such property of video inputs is the difference between con-

secutive frames. If the difference changes smoothly, so will

the execution time and instruction count.

3.7. Impact of VIS Instructions

We hand-instrumented all applications except the G728

codecs with VIS instructions. The G728 codecs use

floating-point, which is not supported by VIS. We were

not able to determine if a fixed-point implementation of

the G728 codecs is feasible. The GSM codecs see little

benefit from VIS due to its limited (64-bit) datapath and

the relatively high overhead in setting up SIMD multipli-

cations with 32-bit products. Thus, only the video codecs

and MP3dec see a significant benefit from using VIS and

are discussed in more detail below.

In all cases, we applied VIS instructions to the domi-

nant computations. For the video codecs, these are the DCT

and IDCT, and also motion estimation for the encoders. For

MP3dec, these are the inverse MDCT and an audio synthe-

sizer. The IMDCT includes the optimization for near-zeroes

discussed in Section 3.6. This optimization adds a control

dependence and had to be removed to use VIS.

We find that execution time variability changes little in

most cases with VIS, although some applications do cross

our threshold of high variability (9% standard deviation)

both ways. Specifically, the standard deviation of MPGenc

I frames increases to 9% (from 6%), H263enc decreases to

8% (from 9%), and MP3dec decreases to 7% (from 13%).

The change for MP3dec is mostly from the removal of

the input-dependent optimization as discussed above. For

MPGenc I frames and H263enc, the acceleration of the for-

merly dominant computation changed the variability. De-

pending upon whether the accelerated computation origi-

nally caused a little (MPGenc I frames) or a lot (H263enc)

of variability, the application’s variability increased or de-

creased, respectively. The effect also depends on an appli-

cation’s other critical computations. For example, H263enc

has an input-dependent computation with slightly different

characteristics than motion estimation. When the latter is

less dominant, the effects of the former are more signifi-

cant, slightly decreasing variability. Therefore, the applica-

tion of VIS instructions can increase or decrease execution

time variability, depending on the nature of the accelerated

computation and the other important computations.

Our key result that the architecture induces little vari-

ability and IPC stays roughly constant across frames con-

tinues to hold with VIS. In all but one case, H263enc, the

instruction count variability is significantly larger than the

IPC variability. For H263enc, IPC variability is still small

(7%) but is slightly larger than instruction count variability

(5%).

Our other results on the low variability in the composi-

tion of instructions, the low time spent on memory stalls,

and low local variability remain unchanged with VIS. The

result on memory stalls bears further explanation. Since

VIS instructions reduce computation and may require addi-

tional memory instructions to align the data, they could in-

crease the fraction of time spent on memory stalls in some

cases (seen in H263dec, MPGdec, and MP3dec). On the

other hand, VIS instructions can also reduce this fraction

by reducing the number of loads (seen in H263enc and

MPGenc). In all cases, the changes are small and the over-

all fraction of time spent on memory stalls remains small

(�11% for all frame types for all applications).

Overall, we find that even after applying VIS instruc-

tions, our primary findings (as enumerated in Section 3.6)

continue to hold true.

4. Implications

Our results have two broad implications discussed below.

4.1. Predictability of General­Purpose Processors

Execution time predictability is an important attribute for

architectures used for real-time applications. It has been

9

conjectured that current general-purpose processors are sig-

nificantly lacking in this regard, relative to other alterna-

tives [2, 6, 7, 8, 16].

Our results indicate that the high frame-level variabil-

ity in execution time could indeed make it difficult to pre-

dict execution time on current general-purpose processors

for several of our applications. The surprising result, how-

ever, is that most of this variability is due to the input and

algorithm; the architecture introduces little additional vari-

ability. Therefore, predicting the execution time (in absence

of knowledge of the input) would be difficult for any ar-

chitecture. This includes a perfect hypothetical architec-

ture with a fully predictable IPC of 1, whose execution time

variability is found to be similar to that of more realistic ar-

chitectures. This input-dependent nature is a result of input-

specific approximations made in the application algorithms,

and is likely to be a common feature of many media appli-

cations.

Hard real-time system designers typically handle input-

dependent variability by making worst-case assumptions for

execution time (e.g., [13, 26]). Our results on the normal-

ized range of execution time and instruction counts show

that this assumption would be quite conservative even for

the perfect 1 IPC architecture. Many multimedia applica-

tions do not have absolutely hard real-time requirements.

In practice, application designers and systems often use

measurement to predict expected execution times (e.g., [5]).

Further, as discussed in [3], many applications already make

approximations and/or specify statistical error rates (e.g.,

wireless systems need to account for channel induced bit

error rates). These soft real-time systems can afford to miss

their frame processing deadlines once in a while. For such

systems, it suffices to make statistical predictions that en-

sure that the real-time requirements would be met most of

the time [3, 5]. The small architecture induced variability

as seen in our results could easily be incorporated in such

statistical predictions.

Thus, our results challenge the conventional wisdom that

current general-purpose processors are unsuitable for real-

time multimedia workloads due to their unpredictability.

4.2. Adaptive Architectures

Researchers have proposed architectural adaptivity in

several forms to optimize metrics such as performance,

power, and energy. Examples include speculation con-

trol [20], shutting off parts of the cache [1], and chang-

ing instruction window size [4], number of active func-

tional units [21], and issue strategy from in-order to out-of-

order [10]. Additionally, recent processors employ dynamic

voltage and frequency scaling [12, 18, 24, 25, 27]. Adap-

tation can be particularly beneficial for multimedia applica-

tions since they require only that execution complete within

a specified (often soft) deadline, and often allow trading off

output quality with resource usage.

Two key questions that need to be addressed to employ

adaptivity are (1) when to trigger an adaptation and (2) what

adaptation to trigger (i.e., which of the possible hardware

configurations to use next). Our variability analysis pro-

vides insights to address these questions.

When to adapt? The frame-level execution time variabil-

ity exhibited by several of our applications implies benefits

from triggering adaptation at the frame granularity. A full

frame is a relatively long time; therefore, adaptations at the

frame-granularity can tolerate relatively large overheads in

switching between alternate configurations.3

What to adapt? To determine which hardware configu-

ration to run for the next frame, the key ability needed

is to predict the behavior of the application for the next

frame. For example, an adaptive system that optimizes per-

formance and energy must effectively predict the execu-

tion time and energy for each possible hardware configu-

ration for the next frame. It can then select the lowest en-

ergy hardware configuration that can execute the next frame

within the software-specified deadline. The following re-

sults from our variability analysis can be used to design ef-

ficient execution time predictors. We consider systems that

employ both architectural adaptations such as those men-

tioned above and dynamic voltage/frequency scaling.

� IPC stays almost constant for each frame type at a

given frequency.

� Since little time is spent in memory stalls, IPC is al-

most independent of processor clock frequency.

� For a given frame type, instruction count varies slowly

from frame to frame.

The execution time for a frame for a particular hard-

ware configuration (i.e., a particular architecture and volt-

age/frequency) depends on the IPC and the instruction

count. Since IPC is roughly constant across different frames

of the same type, it can be determined by measurement of a

frame of that type at the beginning of the application. Since

IPC is roughly independent of frequency, these measure-

ments need be done for each architecture at only one of the

possible frequencies. Since instruction count varies slowly,

we can develop predictors that use the measured instruction

counts for already executed frames to predict the count for

the next frame. Since instruction count is independent of

the hardware, measurements on any hardware suffice. A

simple predictor uses the instructions of the current frame

as the prediction. Using the IPC of the first frame and this

simple predictor, execution time on our base hardware con-

figuration is predicted with a mean error of 4% across all

3It is possible that intra-frame adaptivity is also useful, but an explo-

ration of intra-frame variability is outside the scope of this paper.

10

applications and frame types (maximum is MP3dec with a

mean error of 10%).

We have not performed energy or power simulations.

However, since the nature of the execution is the same

across all frames, it is likely that power dissipation will be

similar across all frames. Thus, power for a frame could

potentially be estimated by initial profiling, and frame en-

ergy could be estimated as the product of the power and

predicted execution time. Using the analytic relationship

between power and frequency, it would also be sufficient to

profile all architectures at only one frequency. An evalu-

ation of such an energy predictor requires detailed energy

simulations, which we leave to future work.

The above prediction mechanisms can be combined to

create an efficient algorithm to determine what to adapt for

an architecture that optimizes performance and energy. Af-

ter profiling for IPC and power in an initial phase, there is

enough information for the algorithm to (1) order all hard-

ware in increasing order of energy per instruction and (2)

calculate the maximum instructions each hardware config-

uration can execute within the deadline. For the rest of the

run, before executing a frame, the algorithm predicts the

number of instructions in the frame and picks the configu-

ration with the lowest energy per instruction that can also

execute the predicted instructions within the deadline.

5. Related Work

We are aware of only one previous quantitative study re-

lated to the issue of unpredictability induced by aggressive

features of general-purpose architectures. This study mea-

sured the performance of simple multimedia kernels (FIR

and IIR filters and FFT) in the context of designing soft-

ware radios on a Pentium PC [3]. It found very low execu-

tion time variability. It argued that this level of variability

can be handled by communications systems which already

have to deal with channel-induced errors in the incoming bit

stream and can afford to use some buffering to smooth out

the variability. Our conclusions are similar, but our study is

much more comprehensive as it involves several full appli-

cations that do show significant execution time variability.

We analyze this variability to show that most of it is input

and algorithm induced and not architecture-induced. Fur-

ther, we also discuss the application of our results to adap-

tive architectures for applications that do show variability.

Others have reported significant variability in the exe-

cution time for different frames of certain multimedia ap-

plications (e.g., [5]), but do not analyze the source of this

variability or its relationship to the architecture.

There is a large body of work on statically predict-

ing worst case execution time to determine compute re-

quirements for real-time applications. Recent work has

incorporated increasingly complex architectural features

(e.g., [13, 19, 26]) as well as explored the use of measure-

ment for such estimation [26]. The worst-case estimate is

used to determine CPU requirements for the application.

Using worst-case estimates, however, is inefficient if the ap-

plication frequently executes a frame that is not worst-case.

Our study shows that there is significant variability in exe-

cution time for many multimedia applications, and the range

of execution times for many applications is quite large.

There is also a large body of work on dynamically esti-

mating execution time of future frames of multimedia appli-

cations, both for CPU reservation (e.g., [5]) and for power

and energy management (e.g., [9, 11, 12, 18, 24, 25, 27]).

Govil et al. do a particularly thorough analysis of several

predictors in the context of systems that dynamically scale

voltage and frequency [11]. However, none of these stud-

ies examines predicting execution time for processors able

to adapt their microarchitecture, or analyzes the reasons for

the execution time variability.

To our knowledge, Huang et al. develop the only frame-

work for choosing between multiple energy saving (and

thermal management) techniques related to adaptive archi-

tectures and frequency scaling [14]. That work is driven

by general applications and not focused on multimedia. It

requires software to provide the maximum slowdown al-

lowed; however, this is not fixed for multimedia applica-

tions with different amounts of work for each frame. Hard-

ware to affect adaptation is invoked every few milliseconds

and adjusts the hardware configuration based on measure-

ments of IPC. Our results suggest triggering adaptations for

multimedia applications at the frame granularity. At this

granularity, our results indicate that the number of instruc-

tions, rather than the IPC, should be used to control adapta-

tion, and in most cases it is sufficient to measure IPC once

for each architectural configuration.

6. Conclusions

This paper analyzes execution time variability at the

frame granularity for several multimedia applications run-

ning on a modern general-purpose processor. The results

have two broad implications. First, they question the com-

mon perception that aggressive architectural techniques in-

duce too much execution time unpredictability for use on

multimedia workloads. Second, they suggest the use of

adaptive architectures and a technique to use adaptation

more effectively for multimedia applications.

More specifically, the paper shows that per frame execu-

tion time varies significantly for some multimedia applica-

tions. This variability, however, is mostly due to the input-

dependent nature of the applications and is largely indepen-

dent of the underlying architecture. In practice, statistical

predictions already used by soft real-time system design-

ers should be sufficient to account for the small increase in

11

variability from aggressive architectural features.

The presence of frame-level execution time variability

for some of our applications motivates the use of adaptive

architectures at a frame granularity. The findings of largely

constant frame-level IPC, low memory stall time, and slow

change in instruction count together suggest a technique

to dynamically predict frame execution time and energy

for a variety of hardware configurations. Adaptive hard-

ware could use such predictions to choose the most energy-

efficient configuration for each frame.

There are several directions for extending this work.

First, the adaptation framework suggested by our analy-

sis needs to be evaluated. Second, the interactions be-

tween such a framework and system software (e.g., the CPU

scheduler) need to be explored. Third, it would be inter-

esting to examine variability and adaptivity at a granular-

ity finer than a frame. Finally, this study does not consider

unpredictability due to the OS and I/O. Real-time systems

reduce such unpredictability with several techniques (e.g.,

reservation based scheduling algorithms), but it is impor-

tant to explore this issue in the future.

References

[1] D. H. Albonesi. Selective Cache Ways: On-Demand Cache

Resource Allocation. In Proc. of the 32nd Annual Intl. Symp.

on Microarchitecture, 1999.
[2] G. Blalock. Microprocessors Outperform DSPs 2:1. Micro-

processor Report, December 1996.
[3] V. Bose. Design and Implementation of Software Radios

Using a General Purpose Processor. PhD thesis, Mas-

sachusetts Institute of Technology, 1999.
[4] A. Buyuktosunoglu et al. An Adaptive Issue Queue for Re-

duced Power at High Performance. In Proc. of the Workshop

on Power-Aware Computer Systems, 2000.
[5] H.-H. Chu and K. Nahrstedt. CPU Service Classes for Mul-

timedia Applications. In Proceedings of IEEE Multimedia

Computing and Systems, 1999.
[6] T. M. Conte et al. Challenges to Combining General-

Purpose and Multimedia Processors. IEEE Computer, De-

cember 1997.
[7] K. Diefendorff and P. K. Dubey. How Multimedia Work-

loads Will Change Processor Design. IEEE Computer,

September 1997.
[8] J. Eyre and J. Bier. DSP Processors Hit the Mainstream.

IEEE Computer, pages 51–59, August 1998.
[9] J. Flinn and M. Satyanarayanan. Energy-Aware Adaptation

for Mobile Applications. In Proc. of the 18th ACM Symp. on

Operating Systems Principles, 1999.
[10] S. Ghiasi, J. Casmira, and D. Grunwald. Using IPC Vari-

ation in Workloads with Externally Specified Rates to Re-

duce Power Consumption. In Proc. of the Workshop on

Complexity-Effective Design, 2000.
[11] K. Govil, E. Chan, and H. Wasserman. Comparing Algo-

rithms for Dynamic Speed-Setting of a Low-Power CPU. In

Proc. of the 1st Intl. Conf. on Mobile Computing and Net-

working, 1995.

[12] T. R. Halfhill. Transmeta Breaks x86 Low-Power Barrier.

Microprocessor Report, February 2000.

[13] C. A. Healy et al. Bounding Pipeline and Instruction Cache

Performance. IEEE Trans. on Computers, January 1999.

[14] M. Huang, J. Renau, S.-M. Yoo, and J. Torrellas. A Frame-

work for Dynamic Energy Efficiency and Temperature Man-

agement. In Proc. of the 33rd Annual Intl. Symp. on Mi-

croarchitecture, 2000.

[15] P. Kaul. Variability in the Execution of Mul-

timedia Applications and Implications for Ar-

chitecture. Master’s thesis, University of Illi-

nois at Urbana-Champaign, December 2000.

URL: http://www.cs.uiuc.edu/rsim/Pubs/pkaulmsthesis.pdf.

[16] C. E. Kozyrakis and D. Patterson. A New Direction for

Computer Architecture Research. IEEE Computer, Novem-

ber 1998.

[17] R. B. Lee and M. D. Smith. Media Processing: A New De-

sign Target. IEEE Micro, August 1996.

[18] Y.-H. Lee and C. Krishna. Voltage-Clock Scaling for Low

Power Energy Consumption in Real-Time Embedded Sys-

tems. In Proc. of the 6th Intl. Conference on Real-Time

Computing Systems and Applications, 1999.

[19] T. Lundqvist and P. Stenstrom. Timing Anomalies in Dy-

namically Scheduled Microprocessors. In Proc. of the 20th

IEEE Real-Time Systems Symposium, 1999.

[20] S. Manne, A. Klauser, and D. Grunwald. Pipeline Gating:

Speculation Control for Energy Reduction. In Proc. of the

25th Annual Intl. Symp. on Comp. Architecture, 1998.

[21] R. Maro, Y. Bai, and R. Bahar. Dynamically Reconfigur-

ing Processor Resources to Reduce Power Consumption in

High-Performance Processors. In Proc. of the Workshop on

Power-Aware Computer Systems, 2000.

[22] V. S. Pai, P. Ranganathan, H. Abdel-Shafi, and S. Adve.

The Impact of Exploiting Instruction-Level Parallelism on

Shared-Memory Multiprocessors. IEEE Transactions on

Computers, special issue on caches, February 1999.

[23] V. S. Pai, P. Ranganathan, and S. V. Adve. RSIM Reference

Manual version 1.0. Technical Report 9705, Department of

Electrical and Computer Engineering, Rice University, Au-

gust 1997.

[24] T. Pering and R. Brodersen. Energy Efficient Voltage

Scheduling for Real-Time Operating Systems. In 4th IEEE

Real-Time Technology and Application Symposium, 1998.

[25] T. Pering, T. Burd, and R. Brodersen. The Simulation and

Evaluation of Dynamic Voltage Scaling Algorithms. In

Proc. of Intl. Symp. on Low Power Electronics Design, 1998.

[26] S. M. Petters and G. Farber. Making Worst Case Execution

Time Analysis for Hard Real-Time Tasks on State of the Art

Processors Feasible. In Proc. of the 6th Intl. Conference on

Real-Time Computing Systems and Applications, 1999.

[27] J. Pouwelse, K. Langendoen, and H. Sips. Dynamic Voltage

Scaling on a Low-Power Microprocessor. Technical report,

Delft University of Technology, 2000.

[28] P. Ranganathan, S. Adve, and N. P. Jouppi. Performance of

Image and Video Processing with General-Purpose Proces-

sors and Media ISA Extensions. In Proc. of the 26th Annual

Intl. Symp. on Comp. Architecture, 1999.

12

