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Abstract| Current microprocessors incorporate tech-

niques to aggressively exploit instruction-level parallelism

(ILP). This paper evaluates the impact of such processors

on the performance of shared-memorymultiprocessors, both

without and with the latency-hiding optimization of soft-

ware prefetching.

Our results show that while ILP techniques substantially

reduce CPU time in multiprocessors, they are less e�ec-

tive in removing memory stall time. Consequently, despite

the inherent latency tolerance features of ILP processors,

we �nd memory system performance to be a larger bot-

tleneck and parallel e�ciencies to be generally poorer in

ILP-based multiprocessors than in previous-generation mul-

tiprocessors. The main reasons for these de�ciencies are

insu�cient opportunities in the applications to overlap mul-

tiple load misses and increased contention for resources in

the system. We also �nd that software prefetching does not

change thememory bound nature of most of our applications

on our ILP multiprocessor, mainly due to a large number of

late prefetches and resource contention.

Our results suggest the need for additional latency hiding

or reducing techniques for ILP systems, such as software

clustering of load misses and producer-initiated communi-

cation.
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I. Introduction

Shared-memory multiprocessors built from commodity

microprocessors are being increasingly used to provide high

performance for a variety of scienti�c and commercial ap-

plications. Current commodity microprocessors improve

performance by using aggressive techniques to exploit high

levels of instruction-level parallelism (ILP). These tech-

niques include multiple instruction issue, out-of-order (dy-

namic) scheduling, non-blocking loads, and speculative ex-

ecution. We refer to these techniques collectively as ILP

techniques and to processors that exploit these techniques

as ILP processors.

Most previous studies of shared-memory multiproces-
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This paper combines results from two previous conference pa-

pers [11], [12], using a common set of system parameters, a more

aggressive MESI (versus MSI) cache-coherence protocol, a more ag-

gressive compiler (the better of SPARC SC 4.2 and gcc 2.7.2 for

each application, rather than gcc 2.5.8), and full simulation of pri-

vate memory references.

sors, however, have assumed a simple processor with single-

issue, in-order scheduling, blocking loads, and no specu-

lation. A few multiprocessor architecture studies model

state-of-the-art ILP processors [2], [7], [8], [9], but do not

analyze the impact of ILP techniques.

To fully exploit recent advances in uniprocessor technol-

ogy for shared-memory multiprocessors, a detailed analysis

of how ILP techniques a�ect the performance of such sys-

tems and how they interact with previous optimizations for

such systems is required. This paper evaluates the impact

of exploiting ILP on the performance of shared-memory

multiprocessors, both without and with the latency-hiding

optimization of software prefetching.

For our evaluations, we study �ve applications using de-

tailed simulation, described in Section II.

Section III analyzes the impact of ILP techniques on

the performance of shared-memory multiprocessors with-

out the use of software prefetching. All our applications

see performance improvements from the use of current ILP

techniques, but the improvements vary widely. In partic-

ular, ILP techniques successfully and consistently reduce

the CPU component of execution time, but their impact

on the memory stall time is lower and more application-

dependent. Consequently, despite the inherent latency tol-

erance features integrated within ILP processors, we �nd

memory system performance to be a larger bottleneck and

parallel e�ciencies to be generally poorer in ILP-based

multiprocessors than in previous-generation multiproces-

sors. These de�ciencies are caused by insu�cient oppor-

tunities in the application to overlap multiple load misses

and increased contention for system resources from more

frequent memory accesses.

Software-controlled non-binding prefetching has been

shown to be an e�ective technique for hiding memory

latency in simple processor-based shared memory sys-

tems [6]. Section IV analyzes the interaction between soft-

ware prefetching and ILP techniques in shared-memory

multiprocessors. We �nd that, compared to previous-

generation systems, increased late prefetches and increased

contention for resources cause software prefetching to be

less e�ective in reducing memory stall time in ILP-based

systems. Thus, even after adding software prefetching,

most of our applications remain largely memory bound on

the ILP-based system.

Overall, our results suggest that, compared to previous-
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generation shared-memory systems, ILP-based systems

have a greater need for additional techniques to tolerate

or reduce memory latency. Speci�c techniques motivated

by our results include clustering of load misses in the appli-

cations to increase opportunities for load misses to overlap

with each other, and techniques such as producer-initiated

communication that reduce latency to make prefetching

more e�ective (Section V).

II. Methodology

A. Simulated Architectures

To determine the impact of ILP techniques on multipro-

cessor performance, we compare two systems { ILP and

Simple { equivalent in every respect except the processor

used. The ILP system uses state-of-the-art ILP processors

while the Simple system uses simple processors (Section II-

A.1). We compare the ILP and Simple systems not to sug-

gest any architectural tradeo�s, but rather, to understand

how aggressive ILP techniques impact multiprocessor per-

formance. Therefore, the two systems have identical clock

rates, and include identical aggressive memory and network

con�gurations suitable for the ILP system (Section II-A.2).

Figure 1 summarizes all the system parameters.

A.1 Processor models

The ILP system uses state-of-the-art processors that in-

clude multiple issue, out-of-order (dynamic) scheduling,

non-blocking loads, and speculative execution. The Simple

system uses previous-generation simple processors with sin-

gle issue, in-order (static) scheduling, and blocking loads,

and represents commonly studied shared-memory systems.

Since we did not have access to a compiler that schedules

instructions for our in-order simple processor, we assume

single-cycle functional unit latencies (as also assumed by

most previous simple-processor based shared-memory stud-

ies). Both processor models include support for software-

controlled non-binding prefetching to the L1 cache.

A.2 Memory Hierarchy and Multiprocessor Con�guration

We simulate a hardware cache-coherent, non-uniform

memory access (CC-NUMA) shared-memory multiproces-

sor using an invalidation-based, four-state MESI directory

coherence protocol [4]. We model release consistency be-

cause previous studies have shown that it achieves the best

performance [9].

The processing nodes are connected using a two-

dimensional mesh network. Each node includes a proces-

sor, two levels of caches, a portion of the global shared-

memory and directory, and a network interface. A split-

transaction bus connects the network interface, directory

controller, and the rest of the system node. Both caches

use a write-allocate, write-back policy. The cache sizes

are chosen commensurate with the input sizes of our ap-

plications, following the methodology described by Woo et

al. [14]. The primary working sets for our applications �t

in the L1 cache, while the secondary working sets do not �t

in the L2 cache. Both caches are non-blocking and use miss

Processor parameters

Clock rate 300 MHz

Fetch/decode/retire rate 4 per cycle

Instruction window (re-

order bu�er) size

64

Memory queue size 32

Outstanding branches 8

Functional units 2 ALUs, 2 FPUs, 2 address genera-

tion units; all 1 cycle latency

Memory hierarchy and network parameters

L1 cache 16 KB, direct-mapped, 2 ports, 8

MSHRs, 64-byte line

L2 cache 64 KB, 4-way associative, 1 port, 8

MSHRs, 64-byte line, pipelined

Memory 4-way interleaved, 60 ns access time,

16 bytes/cycle

Bus 100 MHz, 128 bits, split transaction

Network 2D mesh, 150MHz, 64 bits, per hop


it delay of 2 network cycles

Nodes in multiprocessor 8

Resulting contentionless latencies (in processor cycles)

L1 hit 1 cycle

L2 hit 10 cycles

Local memory 45 cycles

Remote memory 140-220 cycles

Cache-to-cache transfer 170-270 cycles

Fig. 1. System parameters.

status holding registers (MSHRs) [3] to store information

on outstanding misses and to coalesce multiple requests to

the same cache line. All multiprocessor results reported in

this paper use a con�guration with 8 nodes.

B. Simulation Environment

We use RSIM, the Rice Simulator for ILP Multipro-

cessors, to model the systems studied [10]. RSIM is

an execution-driven simulator that models the processor

pipelines, memory system, and interconnection network

in detail, including contention at all resources. It takes

SPARC application executables as input. To speed up our

simulations, we assume that all instructions hit in the in-

struction cache. This assumption is reasonable since all our

applications have very small instruction footprints.

C. Performance Metrics

In addition to comparing execution times, we also report

the individual components of execution time { CPU, data

memory stall, and synchronization stall times { to charac-

terize the performance bottlenecks in our systems. With

ILP processors, it is unclear how to assign stall time to spe-

ci�c instructions since each instruction's execution may be

overlapped with both preceding and following instructions.

We use the following convention, similar to previous work

(e.g., [5]), to account for stall cycles. At every cycle, we

calculate the ratio of the instructions retired from the in-

struction window in that cycle to the maximum retire rate

of the processor and attribute this fraction of the cycle to

the busy time. The remaining fraction of the cycle is at-

tributed as stall time to the �rst instruction that could not

be retired that cycle. We group the busy time and func-

tional unit (non-memory) stall time together as CPU time.

Henceforth, we use the term memory stall time to denote

the data memory stall component of execution time.

In the �rst part of the study, the key metric used to
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Application Input Size

LU, LUopt 256x256 matrix, block 8

FFT, FFTopt 65536 points

Mp3d 50000 particles

Water 512 molecules

Radix 1024 radix, 512K keys, max 512K

Fig. 2. Applications and input sizes.

evaluate the impact of ILP is the ratio of the execution

time with the Simple system relative to that achieved by

the ILP system, which we call the ILP speedup. For detailed

analysis, we analogously de�ne an ILP speedup for each

component of execution time.

D. Applications

Figure 2 lists the applications and the input sets used in

this study. Radix, LU, and FFT are from the SPLASH-

2 suite [14], and Water and Mp3d are from the SPLASH

suite [13]. These �ve applications and their input sizes were

chosen to ensure reasonable simulation times. (Since RSIM

models aggressive ILP processors in detail, it is about 10

times slower than simple-processor-based shared-memory

simulators.) LUopt and FFTopt are versions of LU and

FFT that include ILP-speci�c optimizations that can po-

tentially be implemented in a compiler. Speci�cally, we use

function inlining and loop interchange to move load misses

closer to each other so that they can be overlapped in the

ILP processor. The impact of these optimizations is dis-

cussed in Sections III and V. Both versions of LU are also

modi�ed slightly to use 
ags instead of barriers for better

load balance.

Since a SPARC compiler for our ILP system does not ex-

ist, we compiled our applications with the commercial Sun

SC 4.2 or the gcc 2.7.2 compiler (based on better simulated

ILP system performance) with full optimization turned on.

The compilers' de�ciencies in addressing the speci�c in-

struction grouping rules of our ILP system are partly hid-

den by the out-of-order scheduling in the ILP processor.

2

III. Impact of ILP Techniques on Performance

This section analyzes the impact of ILP techniques on

multiprocessor performance by comparing the Simple and

ILP systems, without software prefetching.

A. Overall Results

Figures 3 and 4 illustrate our key overall results. For

each application, Figure 3 shows the total execution time

and its three components for the Simple and ILP systems

(normalized to the total time on the Simple system). Ad-

ditionally, at the bottom, the �gure also shows the ILP

speedup for each application. Figure 4 shows the parallel

e�ciency

3

of the ILP and Simple systems expressed as a

percentage. These �gures show three key trends:

� ILP techniques improve the execution time of all our ap-

plications. However, the ILP speedup shows a wide vari-

2

To the best of our knowledge, the key compiler optimization iden-

ti�ed in this paper (clustering of load misses) is not implemented in

any current superscalar compiler.

3

The parallel e�ciency for an application on a system with N pro-

cessors is de�ned as

Execution time on uniprocessor

Execution time on multiprocessor

�

1

N

.

ation (from 1.29 in Mp3d to 3.54 in LUopt). The average

ILP speedup for the original applications (i.e., not includ-

ing LUopt and FFTopt) is only 2.05.

� The memory stall component is generally a larger part

of the overall execution time in the ILP system than in the

Simple system.

� Parallel e�ciency for the ILP system is less than that for

the Simple system for all applications.

We next investigate the reasons for the above trends.

B. Factors Contributing to ILP Speedup

Figure 3 indicates that the most important components

of execution time are CPU time and memory stalls. Thus,

ILP speedup will be shaped primarily by CPU ILP speedup

and memory ILP speedup. Figure 5 summarizes these

speedups (along with the total ILP speedup). The �gure

shows that the low and variable ILP speedup for our ap-

plications can be attributed largely to insu�cient and vari-

able memory ILP speedup; the CPU ILP speedup is similar

and signi�cant among all applications (ranging from 2.94

to 3.80). More detailed data shows that for most of our

applications, memory stall time is dominated by stalls due

to loads that miss in the L1 cache. We therefore focus on

the impact of ILP on (L1) load misses below.

The load miss ILP speedup is the ratio of the stall time

due to load misses in the Simple and ILP systems, and

is determined by three factors, described below. The �rst

factor increases the speedup, the second decreases it, while

the third may either increase or decrease it.

� Load miss overlap. Since the Simple system has block-

ing loads, the entire load miss latency is exposed as stall

time. In ILP, load misses can be overlapped with other use-

ful work, reducing stall time and increasing the ILP load

miss speedup. The number of instructions behind which a

load miss can overlap is, however, limited by the instruc-

tion window size; further, load misses have longer latencies

than other instructions in the instruction window. There-

fore, load miss latency can normally be completely hidden

only behind other load misses. Thus, for signi�cant load

miss ILP speedup, applications should have multiple load

misses clustered together within the instruction window to

enable these load misses to overlap with each other.

� Contention. Compared to the Simple system, the ILP

system can see longer latencies from increased contention

due to the higher frequency of misses, thereby negatively

a�ecting load miss ILP speedup.

� Change in the number of misses. The ILP sys-

tem may see fewer or more misses than the Simple sys-

tem because of speculation or reordering of memory ac-

cesses, thereby positively or negatively a�ecting load miss

ILP speedup.

All of our applications except LU see a similar number

of cache misses in both the Simple and ILP case. LU sees

2.5X fewer misses in ILP because of a reordering of ac-

cesses that otherwise con
ict. When the number of misses

does not change, the ILP system sees (> 1) load miss ILP

speedup if the load miss overlap exploited by ILP outweighs

any additional latency from contention. We illustrate the
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Fig. 3. Impact of ILP on multiprocessor performance.
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Fig. 5. ILP speedup for total execution time, CPU time, andmemory

stall time in the multiprocessor system.

e�ects of loadmiss overlap and contention using the two ap-

plications that best characterize them: LUopt and Radix.

Figure 6(a) provides the average load miss latencies for

LUopt and Radix in the Simple and ILP systems, normal-

ized to the Simple system latency. The latency shown is

the total miss latency, measured from address generation

to data arrival, including the overlapped part (in ILP) and

the exposed part that contributes to stall time. The dif-

ference in the bar lengths of Simple and ILP indicates the

additional latency added due to contention in ILP. Both

of these applications see a signi�cant latency increase from

resource contention in ILP. However, LUopt can overlap

all its additional latency, as well as a large portion of the

base (Simple) latency, thus leading to a high memory ILP

speedup. On the other hand, Radix cannot overlap its ad-

ditional latency; thus, it sees a load miss slowdown in the

ILP con�guration.

We use the data in Figures 6(b) and (c) to further inves-

tigate the causes for the load miss overlap and contention-

related latencies in these applications.

Causes for load miss overlap. Figure 6(b) shows

the ILP system's L1 MSHR occupancy due to load misses

for LUopt and Radix. Each curve shows the fraction of

total time for which at least N MSHRs are occupied by

load misses, for each possible N (on the X axis). This �g-

ure shows that LUopt achieves signi�cant overlap of load

misses, with up to 8 load miss requests outstanding simul-

taneously at various times. In contrast, Radix almost never

has more than 1 outstanding load miss at any time. This

di�erence arises because load misses are clustered together

in the instruction window in LUopt, but typically separated

by too many instructions in Radix.

Causes for contention. Figure 6(c) extends the data

of Figure 6(b) by displaying the total MSHR occupancy for

both load and store misses. The �gure indicates that Radix

has a large amount of store miss overlap. This overlap does

not contribute to an increase in memory ILP speedup since

store latencies are already hidden in both the Simple and

ILP systems due to release consistency. The store miss

overlap, however, increases contention in the memory hi-

erarchy, resulting in the ILP memory slowdown in Radix.

In LUopt, the contention-related latency comes primarily

from loadmisses, but its e�ect is mitigated since overlapped

load misses contribute to reducing memory stall time.

C. Memory stall component and parallel e�ciency

Using the above analysis, we can see why the ILP system

generally sees a larger relative memory stall time compo-

nent (Figure 3) and a generally poorer parallel e�ciency

(Figure 4) than the Simple system.

Since memory ILP speedup is generally less than CPU

ILP speedup, the memory component becomes a greater

fraction of total execution time in the ILP system than in

the Simple system. To understand the reduced parallel e�-

ciency, Figure 7 provides the ILP speedups for the unipro-

cessor con�guration for reference. The uniprocessor also

generally sees lower memory ILP speedups than CPU ILP

speedups. However, the impact of the lower memory ILP

speedup is higher in the multiprocessor because the longer

latencies of remote misses and increased contention result

in a larger relative memory component in the execution

time (relative to the uniprocessor). Additionally, the di-

chotomy between local and remote miss latencies in a mul-

tiprocessor often tends to decrease memory ILP speedup

(relative to the uniprocessor), because load misses must be

overlapped not only with other load misses but with load

misses with similar latencies

4

. Thus, overall, the multipro-

cessor system is less able to exploit ILP features than the

corresponding uniprocessor system for most applications.

4

FFT and FFTopt see better memory ILP speedups in the mul-

tiprocessor than in the uniprocessor because they overlap multiple

load misses with similar multiprocessor (remote) latencies. The sec-

tion of the code that exhibits overlap has a greater impact in the

multiprocessor because of the longer remote latencies incurred in this

section.
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Fig. 7. ILP speedup for total execution time, CPU time, andmemory

stall time in the uniprocessor system.

Consequently, the ILP multiprocessor generally sees lower

parallel e�ciency than the Simple multiprocessor.

IV. Interaction of ILP Techniques with

Software Prefetching

The previous section shows that the ILP system sees a

greater bottleneck from memory latency than the Simple

system. Software-controlled non-binding prefetching has

been shown to e�ectively hide memory latency in shared-

memory multiprocessors with simple processors. This sec-

tion evaluates how software prefetching interacts with ILP

techniques in shared-memorymultiprocessors. We followed

the software prefetch algorithm developed by Mowry et

al.[6] to insert prefetches in our applications by hand,

with one exception. The algorithm in [6] assumes that

locality is not maintained across synchronization, and so

does not schedule prefetches across synchronization ac-

cesses. We removed this restriction when bene�cial. For a

consistent comparison, the experiments reported are with

prefetches scheduled identically for both Simple and ILP;

the prefetches are scheduled at least 200 dynamic instruc-

tions before their corresponding demand accesses. The im-

pact of this scheduling decision is discussed below, includ-

ing the impact of varying this prefetch distance.

A. Overall Results

Figure 8 graphically presents the key results from our

experiments (FFT and FFTopt have similar performance,

so only FFTopt appears in the �gure). The �gure shows

the execution time (and its components) for each appli-

cation on Simple and ILP, both without and with soft-

ware prefetching ( +PF indicates the addition of software

prefetching). Execution times are normalized to the time

for the application on Simplewithout prefetching. Figure 9

summarizes some key data.

Software prefetching achieves signi�cant reductions in

execution time on ILP (13% to 43%) for three cases (LU,

Mp3d, and Water). These reductions are similar to or

greater than those in Simple for these applications. How-

ever, software prefetching is less e�ective at reducing mem-

ory stalls on ILP than on Simple (average reduction of 32%

in ILP, ranging from 7% to 72%, vs. average 59% and range

of 21% to 88% in Simple). The net e�ect is that even af-

ter prefetching is applied to ILP, the average memory stall

time is 39% on ILPwith a range of 11% to 65% (vs. average

of 16% and range of 1% to 29% for Simple). For most ap-

plications, the ILP system remains largely memory-bound

even with software prefetching.

B. Factors Contributing to the E�ectiveness of Software

Prefetching

We next identify three factors that make software

prefetching less successful in reducing memory stall time

in ILP than in Simple, two factors that allow ILP addi-

tional bene�ts in memory stall reduction not available in

Simple, and one factor that can either help or hurt ILP. We

focus on issues that are speci�c to ILP systems; previous

work has discussed non-ILP speci�c issues [6]. Figure 10

summarizes the e�ects that were exhibited by the applica-

tions we studied. Of the negative e�ects, the �rst two are

the most important for our applications.

Increased late prefetches. The last column of Fig-

ure 9 shows that the number of prefetches that are too

late to completely hide the miss latency increases in all

our applications when moving from Simple to ILP. One

reason for this increase is that multiple-issue and out-of-

order scheduling speed up computation in ILP, decreasing

the computation time with which each prefetch is over-

lapped. Simple also stalls on any load misses that are not

prefetched or that incur a late prefetch, thereby allowing

other outstanding prefetched data to arrive at the cache.

ILP does not provide similar leeway.

Increased resource contention. As shown in Sec-

tion III, ILP processors stress system resources more than

Simple. Prefetches further increase demand for resources,

resulting in more contention and greater memory latencies.

The resources most stressed in our con�guration were cache

ports, MSHRs, ALUs, and address generation units.

Negative interaction with clustered misses. Opti-

mizations to cluster load misses for the ILP system, as in

LUopt, can potentially reduce the e�ectiveness of software

prefetching. For example, the addition of prefetching re-
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Fig. 8. Interaction between software prefetching and ILP.

duces the execution time of LU by 13% on the ILP system;

in contrast, LUopt improves by only 3%. (On the Simple

system, both LU and LUopt improve by about 10% with

prefetching.) LUopt with prefetching is slightly better than

LU with prefetching on ILP (by 3%). The clustering opti-

mization used in LUopt reduces the computation between

successive misses, contributing to a high number of late

prefetches and increased contention with prefetching.

Overlapped accesses. In ILP, accesses that are di�-

cult to prefetch may be overlapped because of non-blocking

loads and out-of-order scheduling. Prefetched lines in LU

and LUopt often su�er from L1 cache con
icts, resulting

in these lines being replaced to the L2 cache before being

used by the demand accesses. This L2 cache latency results

in stall time in Simple, but can be overlapped by the pro-

cessor in ILP. Since prefetching in ILP only needs to target

those accesses that are not already overlapped by ILP, it

can appear more e�ective in ILP than in Simple.

Fewer early prefetches. Early prefetches are those

where the prefetched lines are either invalidated or re-

placed before their corresponding demand accesses. Early

prefetches can hinder demand accesses by invalidating or

replacing needed data from the same or other caches with-

out providing any bene�ts in latency reduction. In many

of our applications, the number of early prefetches drops

in ILP, improving the e�ectiveness of prefetching for these

applications. This reduction occurs because the ILP sys-

tem allows less time between a prefetch and its subsequent

demand access, decreasing the likelihood of an intervening

invalidation or replacement.

Speculative prefetches. In ILP, prefetch instructions

can be speculatively issued past a mispredicted branch.

Speculative prefetches can potentially hurt performance by

bringing unnecessary lines into the cache, or by bringing

needed lines into the cache too early. Speculative prefetches

can also help performance by initiating a prefetch for a

needed line early enough to hide its latency. In our appli-

cations, most prefetches issued past mispredicted branches

were to lines also accessed on the correct path.

App. % reduc-

tion in

execution

time

% reduc-

tion in

memory

stall time

% re-

maining

memory

stall time

%

prefetches

that are

late

Sim- ILP Sim- ILP Sim- ILP Sim- ILP

ple ple ple ple

LU 10 13 57 49 12 21 4 40

LUopt 11 3 49 14 14 24 12 35

FFTopt 15 3 60 7 12 32 13 29

Mp3d 43 43 78 59 29 62 1 12

Radix -12 -1 21 9 23 65 0 2

Water 11 20 88 72 1 11 0 8

Average 14 14 59 32 16 39 5 17

Fig. 9. Detailed data on e�ectiveness of software prefetching. For the

average, from LU and LUopt, only LUopt is considered since it

provides better performance than LU with prefetching and ILP.
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Fig. 10. Factors a�ecting the performance of prefetching for ILP.

C. Impact of Software Prefetching on Execution Time

Despite its reduced e�ectiveness in addressing memory

stall time, software prefetching achieves signi�cant execu-

tion time reductions with ILP in three cases (LU, Mp3d,

and Water) for two main reasons. First, memory stall time

contributes a larger portion of total execution time in ILP.

Thus, even a reduction of a small fraction of memory stall

time can imply a reduction in overall execution time sim-

ilar to or greater than that seen in Simple. Second, ILP

systems see less instruction overhead from prefetching com-

pared to Simple systems, because ILP techniques allow the

overlap of these instructions with other computation.
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D. Alleviating Late Prefetches and Contention

Our results show that late prefetches and resource con-

tention are the two key limitations to the e�ectiveness of

prefetching on ILP. We tried several straightforward mod-

i�cations to the prefetching algorithm and the system to

address these limitations [12]. Speci�cally, we doubled and

quadrupled the prefetch distance (i.e., the distance between

a prefetch and the corresponding demand access), and in-

creased the number of MSHRs. However, these modi�-

cations traded o� bene�ts among late prefetches, early

prefetches, and contention, without improving the com-

bination of these factors enough to improve overall per-

formance. We also tried varying the prefetch distance for

each access according to the expected latency of that access

(versus a commondistance for all accesses), and prefetching

only to the L2 cache. These modi�cations achieved their

purpose, but did not provide a signi�cant performance ben-

e�t for our applications [12].

V. Discussion

Our results show that shared-memory systems are lim-

ited in their e�ectiveness in exploiting ILP processors due

to limited bene�ts of ILP techniques for the memory sys-

tem. The analysis of Section III implies that the key rea-

sons for the limited bene�ts are the lack of opportunity

for overlapping load misses and/or increased contention in

the system. Compiler optimizations akin to the loop inter-

changes used to generate LUopt and FFTopt may be able to

expose more potential for load miss overlap in an applica-

tion. The simple loop interchange used in LUopt provides

a 13% reduction in execution time compared to LU on an

ILP multiprocessor. Hardware enhancements can also in-

crease load miss overlap; e.g., through a larger instruction

window. Targeting contention requires increased hardware

resources, or other latency reduction techniques.

The results of Section IV show that while software

prefetching improves memory system performance with

ILP processors, it does not change the memory-bound

nature of these systems for most of the applications be-

cause the latencies are too long to hide with prefetching

and/or because of increased contention. Our results moti-

vate prefetching algorithms that are sensitive to increases

in resource usage. They also motivate latency-reducing

(rather than tolerating) techniques such as producer-

initiated communication, which can improve the e�ective-

ness of prefetching [1].

VI. Conclusions

This paper evaluates the impact of ILP techniques sup-

ported by state-of-the-art processors on the performance of

shared-memory multiprocessors. All our applications see

performance improvements from current ILP techniques.

However, while ILP techniques e�ectively address the CPU

component of execution time, they are less successful in im-

proving data memory stall time. These applications do not

see the full bene�t of the latency-tolerating features of ILP

processors because of insu�cient opportunities to overlap

multiple load misses and increased contention for system

resources frommore frequent memory accesses. Thus, ILP-

based multiprocessors see a larger bottleneck frommemory

system performance and generally poorer parallel e�cien-

cies than previous-generation multiprocessors.

Software-controlled non-binding prefetching is a la-

tency hiding technique widely recommended for previous-

generation shared-memory multiprocessors. We �nd that

while software prefetching results in substantial reductions

in execution time for some cases on the ILP system, in-

creased late prefetches and increased contention for re-

sources cause software prefetching to be less e�ective in

reducing memory stall time in ILP-based systems. Even

after the addition of software prefetching, most of our ap-

plications remain largely memory bound.

Thus, despite the latency-tolerating techniques inte-

grated within ILP processors, multiprocessors built from

ILP processors have a greater need for additional tech-

niques to hide or reduce memory latency than previous-

generation multiprocessors. One ILP-speci�c technique

discussed in this paper is the software clustering of load

misses. Additionally, latency-reducing techniques such as

producer-initiated communication that can improve the ef-

fectiveness of prefetching appear promising.
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