
Appears in Proceedings of the Fifth International Symposium on High Performance Computer Architecture. January 1999.

Improving the Accuracy vs. Speed Tradeoff for

Simulating Shared-Memory Multiprocessors with ILP Processors �

Murthy Durbhakula, Vijay S. Pai, Sarita Adve

Department of Electrical and Computer Engineering

Rice University

Houston, Texas 77005

fmurthyjvijaypaijsaritag@rice.edu

Abstract

Previous simulators for shared-memory architectures

have imposed a large tradeoff between simulation accu-

racy and speed. Most such simulators model simple pro-

cessors that do not exploit common instruction-level paral-

lelism (ILP) features, consequently exhibiting large errors

when used to model current systems. A few newer simula-

tors model current ILP processors in detail, but we find them

to be about ten times slower. We propose a new simulation

technique, based on a novel adaptation of direct execution,

that alleviates this accuracy vs. speed tradeoff.

We compare the speed and accuracy of our new simu-

lator, DirectRSIM, with three other simulators – RSIM (a

detailed simulator for multiprocessors with ILP processors)

and two representative simple-processor based simulators.

Compared to RSIM, on average, DirectRSIM is 3.6 times

faster and exhibits a relative error of only 1.3% in total ex-

ecution time. Compared to the simple-processor based sim-

ulators, DirectRSIM is far superior in accuracy, and yet is

only 2.7 times slower.

1. Introduction

Shared-memory multiprocessors are a fast growing seg-

ment of the high performance computing and server mar-

ket. Simulation is the most widely used technique to eval-

uate new shared-memory architectures. Recent advances

in processor architecture, however, force a re-evaluation

of current shared-memory simulation methodology. Cur-

rent processors aggressively exploit instruction-level paral-

�This work is supported in part by an IBM Partnership award, Intel Cor-

poration, the National Science Foundation under Grant No. CCR-9410457,

CCR-9502500, CDA-9502791, and CDA-9617383, and the Texas Ad-

vanced Technology Program under Grant No. 003604-025. Sarita Adve

is also supported by an Alfred P. Sloan Research Fellowship and Vijay S.

Pai by a Fannie and John Hertz Foundation Fellowship.

lelism (ILP) through techniques such as multiple issue, out-

of-order issue, non-blocking loads, and speculative execu-

tion. Most shared-memory simulation studies, however, use

a much simpler model of the processor, assuming single-

issue, in-order issue, blocking loads, and no speculative ex-

ecution. We refer to the two types of processors as ILP

processors and simple processors respectively.

Pai et al. showed that using current simple-processor

based simulators to model ILP-processor based systems can

give large and application-dependent errors (over 100% er-

ror in execution time in some cases) [9]. Unfortunately, the

more accurate previous ILP-processor based simulators are

much slower: we find an average slowdown of 9.7X.

The higher speed of simple-processor based simulators

comes from the inherent benefits of a less complex proces-

sor, as well as from several speed enhancing techniques de-

veloped for such simulators. Direct execution is one such

widely used technique that has previously relied on simple-

processor features such as blocking loads, in-order issue,

and no speculation [2, 3, 7].

This paper presents a novel adaptation of direct execu-

tion to substantially speed up simulation of shared-memory

multiprocessors with ILP processors, without much loss

of accuracy. We have developed a new simulator, Di-

rectRSIM, based on our new technique. We evaluate

the accuracy and speed of DirectRSIM by comparing it

with RSIM, a state-of-the-art detailed ILP-processor based

shared-memory simulator, as well as two representative

simple-processor based direct execution simulators. For a

variety of system configurations and applications, and us-

ing RSIM as the baseline for accuracy, we find:

� DirectRSIM, on average, is 3.6X faster than RSIM

with an error in execution time of only 1.3% (range

of -3.9% to 2.2%).

� Simple-processor based simulators remain an average

of 2.7X faster than DirectRSIM. However, this addi-

23

tional speed comes at a high cost, with average error

in execution time of 46% (range of 0% to 128%) with

the best simple-processor model, and average error of

137% (range of 9% to 438%) with the most common

model.

Our results suggest a reconsideration of the appropriate

simulation methodology for shared-memory systems. Ear-

lier, the order-of-magnitude performance advantage of the

simple-processor based simulators over RSIM made a com-

pelling argument for their use in spite of their potential for

large errors. It is not clear that those errors are still justi-

fiable given only a 2.7X performance advantage relative to

DirectRSIM.

2. Background

2.1. Direct execution with simple processors

Direct execution is a widely used form of execution-

driven simulation, and has been shown to be accurate and

fast for modeling shared-memory systems with simple pro-

cessors [2, 3, 7].

Direct execution decouples functional and timing sim-

ulation. Functional simulation generates values (for regis-

ters and memory) and control flow, while timing simula-

tion determines the number of cycles taken by the simu-

lated execution. Direct execution achieves high speed in

two ways. First, for functional simulation, it directly exe-

cutes the application on the host. Second, timing for non-

memory instructions is determined mostly by static analy-

sis. The application is instrumented to convey this analy-

sis to the memory timing simulator. Previous direct execu-

tion shared-memory simulators assume in-order issue and

no speculation since they cannot model the effects of out-

of-order issue statically and they view only one basic block

at a time. With the exception of the Wisconsin Wind Tunnel

II [7], these simulators also assume single-issue processors.

Timing for memory references is modeled in detail, and is

the most expensive part of the simulation.

For memory simulation, the application is usually instru-

mented to invoke the timing simulator on each memory ref-

erence, as these are the only points of interaction between

the processors. When an application process invokes the

timing simulator on a load, its functional simulation is sus-

pended until the timing simulator completes the entire sim-

ulation of the load, thereby modeling only blocking loads.

Stores are either modeled as blocking or non-blocking. In

the non-blocking case, direct execution of the store’s pro-

cess may be resumed as soon as the appropriate simula-

tion events for the store are scheduled (but not necessarily

completed). The timing simulator can process these events

asynchronously with respect to the store’s process because,

unlike a load, later instructions of the process do not depend

on the completion of the store.

2.2. Simulators for ILP shared­memory systems

RSIM [8] and SimOS with the MXS processor sim-

ulator [10] are two previous shared-memory simulators

that model ILP processors explicitly and in detail. They

use straightforward execution-driven simulation, interpret-

ing every instruction and simulating its effects on the com-

plete processor pipeline and memory system in software.

Researchers have also used simple-processor based sim-

ulators to model ILP-processor based shared-memory sys-

tems using certain approximations. The most common ap-

proximation is to simply simulate a system with a simple

processor to approximate a system with an ILP processor

with the same clock speed (referred to as Simple). Other

studies have sped up the clock rate of the simulated simple

processor to model the benefits of ILP [5]. Pai et al. showed

that the best previously used approximation is to speed up

the processor clock cycle and L1 cache access time by a fac-

tor equal to the ILP processor’s peak instruction issue rate

(i) [9] (referred to as Simple-ix). They found that Simple-ix

was reasonably accurate for some applications, but exhib-

ited large errors in others. The key source of inaccuracy

was that simple-processor based simulators do not model

the impact of non-blocking loads (specifically, the overlap-

ping of multiple load misses with each other).

3. Direct execution with ILP shared-memory

multiprocessors

There are two problems with using previous direct exe-

cution techniques for ILP-processor based shared-memory

systems:

Values for non-blocking loads. After a non-blocking load

invokes the timing simulator, its direct execution process

must be allowed to proceed before its timing simulation

completes. This is required so that the direct execution pro-

cess can generate later instructions for the timing simulator

to execute in parallel with the load. However, the value

that the load will return in the simulated architecture is un-

known until the load’s timing simulation is complete; this

value depends on writes to the same location by other pro-

cessors before the load reaches memory in the simulated ar-

chitecture. Thus, the first problem is that the simulator must

decide what value to return when a load occurs in the direct

execution while it is incomplete in the timing simulation,

and what action to take when the direct execution reaches a

later instruction dependent on such a load.

Timing simulation of ILP features. The second problem

is that a simple static analysis is insufficient to determine

the impact of ILP features (such as out-of-order issue, spec-

ulative execution, and non-blocking loads) on the execution

time of CPU instructions and on the time at which a mem-

ory instruction can be issued (or when it stalls the proces-

sor). Previous direct execution techniques do not directly

24

provide a way to account for these features.

Sections 3.1 and 3.2 discuss our solutions to the above

problems. Section 3.3 describes the detailed implementa-

tion of our technique in DirectRSIM.

3.1. Values for non­blocking loads

We focus on a release consistent architecture. For ease

of explanation, we assume that synchronization accesses are

identified to the simulator.

When a synchronization load invokes the timing simula-

tor, it is treated as a blocking load as in previous direct exe-

cution simulators. When invoked by a data load, the timing

simulator starts processing all instructions executed since

its last invocation as described in Section 3.2. The timing

simulator may return control to the direct execution before

the load completes at (or even issues to) the memory hier-

archy. The load returns the current value for the accessed

memory location at the time of the direct execution, based

on the following insight.

If the load does not form a data race with a store from an-

other process in the simulated execution, the load and store

will be executed in the same order in the direct execution

as in the simulated execution. A load that is not part of

a data race (a non-race load) must be separated from any

conflicting store by a chain of synchronization releases and

acquires; these synchronization accesses are ordered as in

previous direct execution simulators and enforce the neces-

sary orderings among non-race accesses. Thus, for a non-

race load, the value at the time of the direct execution can

be safely returned and used by dependent instructions.

For a race load, the value returned may be different from

the one that would be returned in the simulated architecture.

This value would be legal for release consistency, but may

not be possible on the simulated architecture. Since data

races are generally rare in parallel programs, we expect this

issue to not have a significant impact. Further, a system that

obeys the data-race-free consistency model (which requires

identifying data races for a guarantee of sequential consis-

tency) and blocks on race loads can naturally be simulated

with our technique without any error (by simply blocking

on the race loads).

3.2. Timing simulation of ILP features

Like previous direct execution simulators, our technique

performs the functional simulation directly on the host ma-

chine and invokes the timing simulator only on memory ref-

erences. Unlike previous uses of direct execution, the appli-

cation is instrumented to record the path taken by the direct

execution since the previous invocation of the timing simu-

lator by the same process. The timing simulator simulates

the timing for this path with the goal of providing the best

accuracy and performance possible.

A naive timing simulator would simply replicate the fea-

tures of detailed simulators such as RSIM, modeling the

register state, pipeline stages, and all instruction effects in

detail. Instead, our timing simulator improves performance

relative to RSIM in three ways. First, direct execution al-

lows the timing simulator not only to avoid instruction em-

ulation, but also to make use of the values determined in di-

rect execution to speed up several parts of simulation (e.g.,

register renaming and memory disambiguation).

Second, we approximate some parts of the processor

simulation, motivated by previous work that shows that the

key characteristic in determining shared-memory multipro-

cessor performance is the behavior of the memory system

and its interaction with the processor [9]. Our most signif-

icant approximation is that we do not simulate speculated

execution paths that are mispredicted. This approximation

does not preclude modeling other effects of speculation;

e.g., we keep track of branch prediction tables and stall in-

struction fetch on a mispredicted branch as the processor

waits for the branch to be resolved. The simulation speed

benefits of this approximation cannot be exploited by de-

tailed simulators such as RSIM since RSIM does not know

if a prediction is correct until the prediction is actually re-

solved in the simulated execution. The timing simulator of

DirectRSIM has this information at the time the prediction

is made, based on the values generated by the direction ex-

ecution.

Third, with direct execution, the different application

processes execute asynchronously in the simulation. In con-

trast, RSIM’s processor and cache simulation, due to its de-

tailed nature, is inherently a cycle-by-cycle simulation in

which all processors and caches proceed in lockstep (Sec-

tion 4.3). We improve performance of our timing simulation

by further increasing the asynchrony in our system, partly

by exploiting the features described above. The next section

provides further details.

3.3. Implementation of DirectRSIM

DirectRSIM implements the direct execution methodol-

ogy described in Sections 3.1 and 3.2. It consists of an ap-

plication instrumentation mechanism (Section 3.3.1) and a

timing simulator (Section 3.3.2).

3.3.1 Application code instrumentation

The instrumentation code calls the timing simulator on

each memory reference and provides it with the execution

path to be processed. The path is represented as ranges

of contiguous program-counter values traversed by the di-

rect execution since the last invocation of the timing sim-

ulator. For this purpose, the instrumentation code marks

each unconditional branch or taken path of a conditional

branch as ending a program-counter range and starting a

25

new range. We currently instrument the application assem-

bly code, but could also use the more general methods of

executable-editing or dynamic binary translation.

3.3.2 Timing simulator

The timing simulator consists of three main parts: the

event-driven simulation engine, the multiprocessor memory

system simulator, and the processor simulator. The event-

driven simulation engine and multiprocessor memory sys-

tem simulator are common to all our simulators, and are de-

scribed in more detail in Section 4. The processor simulator

is the key feature that sets DirectRSIM apart. Upon entry,

the DirectRSIM processor simulator processes the execu-

tion path provided by the instrumentation code, attempting

to bring each instruction from the path into its instruction

window.

Key functionality, data structures, and simulation

clocks. The key work done by the processor simulator is:

(1) keeping track of true dependences and structural haz-

ards, and determining when instructions complete or when

loads and stores can be issued based on these dependences1,

(2) retiring instructions from the instruction window at ap-

propriate times based on the above completion times, (3)

maintaining branch prediction tables, and (4) memory for-

warding (i.e., if a load is ready to issue while a previous

store to the same location is pending, then the store’s value

is forwarded to the load).

The key data structures in the processor simulator are

(1) a structure analogous to the reorder buffer or instruction

window of an ILP processor, (2) a load queue and a store

queue to track memory accesses that need to be issued, (3)

a structure to track outstanding stores, hashed on their ad-

dresses for efficient forwarding (4) the branch prediction ta-

ble, and (5) a structure for tracking structural hazards for

functional units.

The memory system and event-driven simulation engine

of DirectRSIM provide a global view of time in the system.

However, unlike RSIM, the processors are not required to

be in lockstep with the global clock when performing in-

ternal actions. Each processor is allowed to maintain local

views of the clock that run ahead of the global clock, as long

as it synchronizes with the global clock before issuing any

instruction to the memory system. The completion times-

tamps of individual instructions are one type of localized

clock. Additionally, each processor simulator has two other

views of time: a fetch time and a retire time. Instructions

are marked with the value of the fetch time when they are

1These dependences are the primary reason for DirectRSIM’s proces-

sor model. Although previous work has shown that the Simple-ix model

(Section 2.2) can predict the CPU component of execution time reasonably

well for the applications studied [9], we do not use its processor model

because its policy of simply speeding the CPU clock based on issue rate

would allow multiple non-blocking loads to be issued even if there was a

dependence from one to the next.

fetched into the window, and the processor retires instruc-

tions from the head of its instruction window according to

the value of the retire time (as further explained below).

Instruction issue and completion. As the processor sim-

ulator brings instructions into its simulated instruction win-

dow, it tags non-memory instructions with their completion

times, if known. The completion time for an instruction is

known as long as it is not directly or indirectly data depen-

dent on any incomplete loads. For such an instruction, the

completion timestamp depends on its latency and the avail-

ability of a functional unit. The latter is approximated by

tracking the future use of functional units by instructions

whose completion times are already known; it is possible

that some instructions with unknown completion times may

interfere with the current instruction, but this effect is not

modeled. If an instruction’s completion time is not imme-

diately known, it is attached to the instructions on which

it is dependent; its completion timestamp will be set upon

completion of these instructions.

For a load instruction, the processor simulator calculates

a timestamp for the time when the load is ready to issue (if

known), and inserts it in the load queue in issue time order.

If the issue time is not known (due to dependencies on in-

complete loads), then the load is attached to the instructions

on which it is dependent and inserted into the load queue

on completion of these instructions. When the global sim-

ulation time catches up with the issue time of a load, the

processor simulator checks to see if the load can be for-

warded from a previous store. This check is efficient since

addresses for all previous stores are immediately known

through direct execution, and can be stored and matched

through a hash table. If there is no forwarding, an event is

scheduled for issuing the load to the memory system. On

forwarding, a completion time is marked for the load.

As with most current processor simulators, to ensure pre-

cise interrupts, a store instruction is marked ready for issue

only when it reaches the top of the instruction window. At

this time, the store will be inserted in the store queue with

an issue timestamp equal to the current retire time. When

the global time catches up with the issue time, an event for

the issue of the store is scheduled.

Instruction fetch and retirement. Instruction fetching

continues until either the instruction window or the load

queue or the store queue fills up, or all instructions exe-

cuted by the functional simulator since the last timing simu-

lator invocation are processed, or there is a misspeculation.

In the misspeculation case, instruction fetching continues

once the misspeculation penalty is determined. In the case

that the instruction window is full, the processor simulator

tries to retire the first set of instructions. Retirement is an

entirely local action; the head of the instruction window can

always be retired unless it is an incomplete load. The pro-

cessor’s retire clock is possibly updated based on the com-

26

pletion time of the retiring instruction and the number of

instructions that have already retired at that time relative to

the processor’s peak retire rate.

Suspending and resuming processor simulation. A pro-

cessor’s simulation (and its corresponding direct execution

process) is suspended when its instruction window is full, it

cannot retire any further instructions, and no other loads or

stores can be issued (either because they are dependent on

other loads, or because the cache ports are full, or because

the global time has not caught up with their issue time yet).

At this point, the processor stalls in a state waiting for an ac-

tion that will allow progress on any of the above situations.

A processor’s direct execution may be resumed once all of

its directly executed instructions so far have been entered in

its instruction window.

4. Evaluation Methodology

4.1. Simulated architectures

We model CC-NUMA shared-memory multiprocessors.

Cache coherence is maintained through an invalidation-

based MESI directory coherence protocol. Each system

node includes one processor, a two-level write-back cache

hierarchy, part of the system’s distributed physical memory

and directory, a network interface, and a split-transaction

bus connecting the different components of the node. All

nodes are connected by a two-dimensional mesh network.

Contention is modeled at all resources in the processor,

memory hierarchy, bus, and network.

The base processor incorporates aggressive features such

as multiple issue, out-of-order issue, non-blocking loads

and stores, speculative execution, and register renaming.

Since most previous direct execution simulators model only

single cycle functional unit latencies, we assume the same.

Both caches are non-blocking and use miss status holding

registers (MSHRs) to store state for outstanding accesses.

The L1 and L2 cache sizes follow the methodology of Woo

et al. [13] for our application input sizes (described in Sec-

tion 4.2). All primary working sets in these applications fit

in the L1 cache, while the secondary working sets do not

fit in the L2 cache. Currently, a perfect instruction cache

and TLB are modeled since the application suite is known

to have a small instruction cache and TLB miss ratio. Fig-

ure 1 summarizes the key system parameters for our base

system. Results for five variations of the base system are

also reported, as described in Section 5.

4.2. Applications

We study 5 applications – FFT, LU, and Radix from

SPLASH-2 [13], MP3D from SPLASH [12], and Er-

lebacher from the Rice parallel compiler group [1]. A few

changes have been made to the original SPLASH-2 codes

ILP processor and cache parameters

Processor speed 500MHz

Maximum fetch/decode/retire rate 4

Instruction issue window 64 entries

Functional units 4 integer arithmetic

4 floating point

4 address generation

Branch speculation depth 8

Memory unit size 32 entries

Cache line size 64 bytes

L1 cache (on-chip) Direct mapped, 16 K

L2 cache (off-chip) 4-way associative, 64 K

L1 request ports 2

L2 request ports 1

Number of MSHRs at L1 and L2 8

Representative contentionless latencies

L1 cache hit 1 cycle

L2 cache hit 10 cycles

Local memory 85 cycles

Nearest remote memory 182 cycles

Farthest remote memory 262 cycles

Nearest cache to cache transfer 210 cycles

Farthest cache to cache transfer 309 cycles

Figure 1. Base system parameters. The num­
ber of processors varies by application, as
described in Section 4.2 and Figure 2.

Application Input Size Processors

Erlebacher 64x64x64 cube, block 8 16

FFT 65536 points 16

LU 256x256 matrix, block 8 8

Radix 512K keys, max: 512K, 1024 8

Mp3d 50000 particles 8

Figure 2. Application input sizes and number
of simulated processors.

for better performance. In LU, one loop nest is interchanged

to cluster read misses closer together, thereby increasing

their overlap with each other and improving performance

in a system with ILP processors [9]. A similar change is

applied to two loop nests in FFT. For better load balance,

we use flags instead of barriers for synchronization in LU.

Figure 2 lists the input data sizes (chosen so that the

simulations complete in reasonable time) and the number

of processors simulated for each application (based on the

scalability of the application for the input size used).

4.3. Simulators

We compare DirectRSIM with RSIM (the only pub-

licly available detailed ILP-processor based shared-memory

simulator), and Simple and Simple-ix (two representa-

tive simple-processor based direct execution simulators).

RSIM and DirectRSIM directly model the ILP processor

described in Section 4.1. Simple and Simple-ix use a

simple-processor model to approximate the ILP processor,

using previous direct execution methodology (Section 2).

We chose these two simple-processor approximations since

27

they are the most widely used and the best reported such ap-

proximations respectively [9]. Recall that to model the 500

MHz 4-way base ILP processor, Simple-4x models a 2 GHz

single-issue processor. To ensure that the performance of

our simple-processor based simulators is representative of

the state-of-the-art, we compared Simple to the recently re-

leased Wisconsin Wind Tunnel-II (a simple-processor based

direct execution simulator) and found the speed of the two

simulators to be comparable [4].

The differences between our four simulators are limited

to the processor model and its interaction with the cache hi-

erarchy. The memory system simulation in all simulators

uses nearly identical code. It is based on an event-driven

simulation engine [2], where events for the simulated sys-

tem modules are scheduled by inserting them on a central

event queue, and are triggered by a central driver routine.

A few differences between RSIM and the other simula-

tors arise because of the inherent differences between de-

tailed and direct execution based simulation. The direct ex-

ecution simulators use user-level lightweight processes to

provide the register and stack state needed by each simu-

lated processor for direct execution. Each activation of a

process incurs the overhead of a lightweight context-switch.

RSIM does not use lightweight processes, as it simulates all

register and stack state in software. Instead, it uses a spe-

cial event that occurs every cycle and examines the state of

each processor, L1 cache, and L2 cache, scheduling any ex-

ternal events triggered by these parts of the system in the

event queue. Effectively, RSIM simulates the processors

and caches on a cycle-by-cycle basis, since in a detailed ILP

processor simulation it can be expected that some processor

or cache will have some event scheduled every cycle.

Additionally, the direct execution simulators optimize

L1 cache hits whenever the cache is guaranteed to have

ports available and not be stalled for resources such as

MSHRs. In these cases, the processor simulator itself ac-

counts for the impact of the hit on execution time without

forwarding the request to the L1 cache module. The pro-

cessor may, however, still have to stall to allow the global

simulation clock to catch up with the issue time of such an

access. RSIM issues all hits to the caches, consistent with

its cycle-by-cycle detailed simulation policy.

4.4. Metrics

The accuracy of a direct execution simulator is evaluated

based on the execution time it reports for the simulated ap-

plication (excluding initialization), relative to the time re-

ported by RSIM. Since all simulators use nearly identical

code for the memory system, the discrepancy in simulated

execution times occurs solely due to the level of detail in

the processor models. To gain further insight, we also re-

port three components of the execution time – CPU time,

memory stall time, and synchronization stall time – calcu-

lated as in previous work [9, 10].

To determine simulator performance, the elapsed (wall-

clock) time is measured for each simulation when run on

an unloaded single 250MHz UltraSPARC-II processor of a

Sun Ultra Enterprise 4000 server with 1GB memory and

1MB L2 cache. The simulators were all compiled using the

Sun C 4.2 compiler with the highest practical level of opti-

mization. The time spent in the initialization phase of the

application is not included, since this time is not reported in

the simulated execution time and can be sped up in various

ways orthogonal to the rest of the simulation methodology.

5. Results on simulator accuracy

5.1. Base system configuration

Figure 3 shows the simulated execution time and its

components reported by each simulator for each applica-

tion on the base system configuration, normalized to that for

RSIM. The number above each bar in the figure gives the

percentage error in total execution time relative to RSIM.

Numbers shown at the side of a bar represent the breakup

of the total error among the three components of execution

time.

Figure 3 shows that DirectRSIM reports overall simu-

lated execution time very close to RSIM on all our applica-

tions, with a maximum error of 2.2%. This is a striking im-

provement over the best previous approximation of Simple-

4x, which sees an execution time error of 87% for LU and

25% to 33% on three other applications studied. The Sim-

ple simulator sees much larger errors, ranging from 47% to

271%.

The differences between the four simulators arise from

their abilities to capture the benefits that ILP provides to

the various components of execution time. As discussed

in [9], ILP reduces the CPU component of execution time

by issuing multiple instructions at a time and by issuing in-

structions out of order. ILP reduces the memory component

primarily by overlapping multiple long latency memory op-

erations with each other, or also by overlapping memory

latency with CPU instructions. ILP can also increase the

memory component by increasing contention for resources

or by changing an access pattern. Synchronization time is

negligible for all our applications, and is not discussed fur-

ther.

As reported by Pai et al. [9], the Simple model can-

not capture the effects of ILP on either the CPU or mem-

ory stall component of execution time. Simple-4x mod-

els much of the benefit for the CPU component (because

its clock speed is increased by a factor equal to the issue

width of the processor). Most of the errors seen by Simple-

4x are in the memory stall component, primarily because

Simple-4x does not allow multiple read misses to overlap

with each other. Thus, this method cannot properly capture

28

||0

|

50

|

100

|

150

|

200

 N
or

m
al

iz
ed

 s
im

ul
at

ed
 ti

m
e

Erlebacher

RSIM DirRSIM

-0.9

-0.4

-0.9

-2.2

Simple-4X

0.9

25.6

-1.3

25.2

Simple

2.8

23.4

90.0

116.3
Synch

Mem
CPU

||0

|

50

|

100

|

150

|

200

|

250

 N
or

m
al

iz
ed

 s
im

ul
at

ed
 ti

m
e

FFT

RSIM DirRSIM

-0.8

1.7

-0.8

0.0

Simple-4X

-1.7

36.3

-2.4

32.2

Simple

-1.7

31.9

119.8

150.0
Synch

Mem
CPU

||0

|

50

|

100

|

150

|

200

|

250

|

300

|

350

 N
or

m
al

iz
ed

 s
im

ul
at

ed
 ti

m
e

LU

RSIM DirRSIM

-1.0
0.4

-0.8

-1.5

Simple-4X

6.0

81.7

-0.6

87.1

Simple

20.8

82.1

167.9

270.8
Synch

Mem
CPU

||0

|

20

|

40

|

60

|

80

|

100

|

120

|

140

 N
or

m
al

iz
ed

 s
im

ul
at

ed
 ti

m
e

Mp3d

RSIM DirRSIM

0.6

-1.8

-0.3

-1.4

Simple-4X

2.0

30.9

-0.2

32.8

Simple

2.9

26.9

17.4

47.2
Synch

Mem
CPU

||0

|

20

|

40

|

60

|

80

|

100

|

120

|

140

 N
or

m
al

iz
ed

 s
im

ul
at

ed
 ti

m
e

Radix

RSIM DirRSIM

-0.0

-0.2

-0.5

-0.7

Simple-4X

3.6

-2.6

-1.0

0.0

Simple

2.2

-25.4

74.4

51.3
Synch

Mem
CPU

Figure 3. Simulator accuracy for the base system.

Config. Difference from the base configuration

Lat. x2 Roughly twice the local and remote memory

latencies.

Lat. x3 Three times the local memory latency, and a mini-

mum contentionless remote-to-local latency ratio of

3:1.

ILP+ Processor is twice as aggressive, with double the in-

struction issue width, instruction window size, pro-

cessor memory unit size, functional units, branch-

prediction hardware, cache ports, and MSHRs.

ILP++ Same as ILP+, but with four times the instruction

window size, memory unit size, and MSHRs as the

base.

C. net Constant-latency 50-cycle network instead of a 2-D

mesh network.

Figure 4. Variations on base configuration.

ILP-specific improvements in the memory stall component

of execution time. DirectRSIM models the impact of ILP in

both CPU and memory stall components of execution time,

and provides a closer and more consistent approximation to

the functionality of detailed execution-driven simulators.

5.2. Other system configurations

Figure 4 summarizes the variations on the base system

configuration studied in this section. These configurations

are intended to capture future trends towards higher pro-

cessor clock speeds, larger remote to local memory latency

ratios, aggressive processor microarchitectures, and aggres-

sive network configurations. In the ILP+ and ILP++ config-

urations, Simple-8x is used rather than Simple-4x.

Figures 5(a), (b), and (c) show the percentage errors in

total execution time relative to RSIM as seen by Direct-

RSIM, Simple-ix, and Simple respectively for the various

system configurations (the first row in the tables repeats

the data of the base configuration shown in Figure 3). Di-

Erle. FFT LU Mp3d Radix Avg.

Base -2.2 0.0 -1.5 -1.4 -0.7 1.2

Lat. x2 -1.6 -1.5 -2.0 -0.7 0.0 1.2

Lat. x3 -0.7 2.2 -0.7 0.0 -0.3 0.8

ILP+ -2.8 0.2 -3.5 -3.9 -0.8 2.2

ILP++ 0.7 -1.2 -2.4 -0.9 -0.8 1.2

C. net -1.5 -0.8 -1.6 -0.5 -0.5 1.0

Avg. 1.6 1.0 1.9 1.2 0.5 1.3

(a) % error in execution time for DirectRSIM relative to RSIM

Erle. FFT LU Mp3d Radix Avg.

Base 25.2 32.2 87.1 32.8 0.0 35.5

Lat. x2 27.5 35.0 109.0 31.9 3.6 41.4

Lat. x3 27.6 38.4 90.5 23.3 2.0 36.4

ILP+ 31.4 50.0 122.4 58.6 4.0 53.3

ILP++ 69.8 58.8 127.8 98.2 10.1 72.9

C. net 23.1 29.7 84.7 28.1 3.6 33.8

Avg. 34.1 40.7 103.6 45.5 3.9 45.5

(b) % error in execution time for Simple-ix relative to RSIM

Erle. FFT LU Mp3d Radix Avg.

Base 116.3 150.0 270.8 47.2 51.3 127.1

Lat. x2 77.7 99.5 232.4 38.8 22.7 94.2

Lat. x3 54.5 73.4 147.6 25.8 9.1 62.1

ILP+ 156.3 227.8 425.1 78.2 68.0 191.1

ILP++ 231.2 247.1 437.8 122.8 77.8 223.3

C. net 110.6 145.8 264.9 38.3 55.9 123.1

Avg. 124.4 157.3 296.4 58.5 47.5 136.8

(c) % error in execution time for Simple relative to RSIM

Figure 5. Simulator accuracy for all configu­
rations. (Averages are over absolute values
of the errors.)

rectRSIM continues to see very low errors, with an aver-

age of 1.3% and a maximum of 3.9%. In contrast, the

errors with Simple-ix remain high for most of the appli-

cations, and continue to vary widely, ranging from 0% to

128%, with an average of 46%. The errors seen with Sim-

29

||0

|20

|40

|60

|80

|100

 N
or

m
al

iz
ed

 e
la

ps
ed

 ti
m

e

Erlebacher
RSIM DR

2.8

4X

10.2

Simp

9.4
||0

|20

|40

|60

|80

|100

 N
or

m
al

iz
ed

 e
la

ps
ed

 ti
m

e

FFT
RSIM DR

3.2

4X

9.1

Simp

8.7
||0

|20

|40

|60

|80

|100

 N
or

m
al

iz
ed

 e
la

ps
ed

 ti
m

e

LU
RSIM DR

2.8

4X

8.3

Simp

8.8
||0

|20

|40

|60

|80

|100

 N
or

m
al

iz
ed

 e
la

ps
ed

 ti
m

e

Mp3d
RSIM DR

3.3

4X

5.6

Simp

5.6

||0

|20

|40

|60

|80

|100

 N
or

m
al

iz
ed

 e
la

ps
ed

 ti
m

e

Radix
RSIM DR

2.7

4X

6.0

Simp

6.4

Figure 6. Simulator performance for the base system. DR=DirectRSIM, 4X=Simple­4X, Simp=Simple.

ple are even higher, ranging from 9% to 438%, averaging

137%. As with the base configuration, most of the error

with Simple-ix comes from the memory component, while

the error with Simple comes from both the CPU and the

memory component [4]. As expected, the errors are great-

est in the applications with the most read miss overlap. This

application characteristic becomes even more important for

systems with future aggressive processors (e.g., ILP+ and

ILP++), as seen by the increase in error with Simple and

Simple-ix for these configurations.

In conclusion, DirectRSIM achieves significantly greater

and more reliable accuracy than Simple-ix or Simple in a

variety of current and future multiprocessor configurations.

5.3. Applicability to architectural studies

So far, we have evaluated the simulators based on their

ability to predict absolute execution times and the fraction

of time stalled for memory. The latter is particularly impor-

tant for a large class of architectural studies that target the

memory stall component.

In some architectural studies, accurately modeling rela-

tive gains of an optimization may be more important than

accurately modeling absolute execution time. We evaluate

DirectRSIM and Simple-4x on the base configuration for

their ability to predict the benefits of an example optimiza-

tion. Recall that our version of LU has been optimized with

a loop interchange to increase the overlap of read misses

with each other. We compare the reduction in execution

time due to this optimization reported by the simulators.

We find that RSIM reports a reduction of 26%. DirectRSIM

closely follows RSIM showing a reduction of 23%. In con-

trast, Simple-4x reports no reduction in execution time, as

it does not model the benefits of read miss overlap. There-

fore, unlike DirectRSIM, Simple-4x is unable to predict the

benefits of the optimization.

6. Results on simulator performance

6.1. Overall performance

Figure 6 graphically depicts the elapsed times for the

four simulators in the base configuration for each applica-

tion, normalized to the time for RSIM. The number above

the bars for DirectRSIM, Simple-ix, and Simple are the

Erle. FFT LU Mp3d Radix Avg.

Base 2.8 3.2 2.8 3.3 2.7 3.0

Lat. x2 3.3 3.9 3.0 4.8 3.2 3.6

Lat. x3 3.7 3.8 3.5 5.9 4.8 4.3

ILP+ 3.8 4.4 3.1 3.7 3.2 3.6

ILP++ 2.9 4.2 3.2 5.0 3.7 3.8

C. net 3.1 3.3 3.0 4.4 2.7 3.3

Avg. 3.3 3.8 3.1 4.5 3.4 3.6

(a) Speedup of DirectRSIM over RSIM

Erle. FFT LU Mp3d Radix Avg.

Base 3.6 2.8 3.0 1.7 2.2 2.7

Lat. x2 3.3 2.8 2.8 1.6 2.5 2.6

Lat. x3 3.0 3.8 2.6 2.1 2.7 2.8

ILP+ 3.2 2.7 2.9 1.6 2.2 2.5

ILP++ 4.0 2.8 3.0 1.6 2.9 2.9

C. net 3.6 3.1 3.3 2.0 3.0 3.0

Avg. 3.4 3.0 2.9 1.8 2.6 2.7

(b) Speedup of Simple-ix over DirectRSIM

Erle. FFT LU Mp3d Radix Avg.

Base 10.2 9.1 8.3 5.6 6.0 7.8

Lat. x2 10.9 10.9 8.3 7.8 8.0 9.2

Lat. x3 11.2 14.5 9.2 12.6 12.8 12.1

ILP+ 12.1 11.6 9.1 6.0 7.3 9.2

ILP++ 11.7 11.7 9.5 8.2 10.8 10.4

C. net 11.0 10.1 9.8 8.9 8.0 9.6

Avg. 11.2 11.3 9.0 8.2 8.8 9.7

(c) Speedup of Simple-ix over RSIM

Figure 7. Simulator performance for all con­
figurations.

speedups achieved by those simulators over RSIM. Since

the elapsed times for Simple and Simple-ix are similar in

all cases and since Simple gives much larger errors, we do

not discuss the performance of Simple any further. Figure 7

tabulates speedup for each pair of simulators, for all config-

urations in Figure 4. As reference for absolute performance,

RSIM simulates an average of 20,000 instructions per sec-

ond for the base configuration (more data appears in [4]).

Simple-ix gives the best elapsed time, with an average

speedup of 9.7 over RSIM. DirectRSIM has some addi-

tional overheads from processor simulation, but still sees

an average speedup of 3.6 over RSIM. Of particular inter-

est are the increases in DirectRSIM speedup for the longer-

latency configurations, which represent future configura-

30

tions with faster processor speeds. DirectRSIM profits by

switching from a largely cycle-driven simulator to a purely

event-driven simulator, and so is less sensitive to future in-

creases in system latencies than RSIM. DirectRSIM also

sees higher speedups in ILP+ and ILP++ by effectively tar-

geting the more expensive processor simulation component

seen by these aggressive microarchitectures.

Most notably, the performance advantage of Simple-ix

is reduced to an average of 2.7X compared to DirectRSIM.

The competitive performance of DirectRSIM indicates that

the performance benefits of simple-processor based simula-

tors may no longer be enough to justify their large inaccura-

cies in modeling current and future multiprocessor systems.

6.2. Detailed analysis of DirectRSIM’s performance

To further understand the reasons for the performance

differences among the simulators, Figure 8 depicts their

execution profiles for LU on the base configuration as re-

ported by prof (with monitoring turned on only during

the parallel phase of the application). The other appli-

cations show similar profiles. The function calls of the

simulators are divided according to the logical tasks they

perform. From the bottom to the top of each bar, these

tasks are instruction fetch and decode (including depen-

dence checking), instruction retirement, processor memory

unit simulation, functional unit management, cache sim-

ulation, cycle-driven simulation management, instruction

emulation, direct-execution, event-driven simulation man-

agement, context switching among lightweight processes,

and other tasks (e.g., memory and network simulation, and

branch speculation). Not all tasks are present in all simula-

tors.

DirectRSIM vs. RSIM. DirectRSIM improves perfor-

mance relative to RSIM primarily by reducing the time

spent simulating instruction fetch and decode, instruction

retirement, the processor memory unit, and functional unit

management. DirectRSIM’s knowledge of values and ad-

dresses through direct execution enables more efficient reg-

ister renaming and management of store-to-load forward-

ing, respectively. The provision to allow internal processor

actions to proceed ahead of the global clock enables more

efficient instruction fetching and retirement. The instruction

dependence checking for issue is sped by the use of times-

tamps. Functional unit management is sped by the structure

to approximately track future functional unit utilizations.

DirectRSIM also spends less time than RSIM in cache

simulation by not simulating accesses that are known to hit

in the L1 cache without contention. Among the remaining

components of elapsed time (accounting for less than 20%

of RSIM’s total time), DirectRSIM eliminates the cycle-

driven controller, but adds a component to handle context-

switching and also increases event-driven simulation over-

head. DirectRSIM avoids the overhead of instruction em-

Figure 8. Components of elapsed time.

ulation (about 4% of RSIM time) and replaces it with a

smaller component in direct execution. In the “other” cate-

gory, DirectRSIM also uses values computed in direct exe-

cution to reduce the cost of mispredicted branches.

DirectRSIM vs. Simple-4x. As expected, most of Di-

rectRSIM’s overhead relative to Simple-4x stems from its

processor simulation features. It also sees slightly more

overhead in memory hierarchy simulation (due to increased

resource contention from non-blocking reads).

7 Related Work

Section 2 reviewed the previous shared-memory simu-

lation techniques most relevant to this paper. Additionally,

sampling [10] and parallelization [7] are used to speed up

shared-memory simulation. Both techniques are orthogonal

to ours and can be used in conjunction with DirectRSIM.

Dynamic binary translation is sometimes used to speed

up simulation [10] (as an alternative to direct execution).

For our purposes, this technique can also be seen as a form

of direct execution as it also decouples functional and tim-

ing simulation and executes most of the translated applica-

tion directly on the host. Hence, the techniques presented in

this paper can also be applied to dynamic binary translation.

Effectively, DirectRSIM’s timing simulator acts as a

trace-driven simulator operating on the trace of instructions

executed since its last invocation by the same process. Di-

rectRSIM, however, is still execution-driven because the

simulated application’s execution path is affected by the dy-

namic ordering of synchronization accesses and contention.

In the uniprocessor case, however, DirectRSIM effectively

becomes a trace-driven simulator.

Concurrently, Krishnan and Torrellas have proposed a

method similar to ours for direct-execution for ILP multi-

processors [6]. They do not discuss the potential for er-

ror (or solutions) when using values of non-blocking loads

in direct execution. They also do not assess the accuracy

of their simulator or compare performance with detailed

simulation. Their performance comparison with a previous

31

simple-processor simulator is done without memory system

simulation, and shows slowdowns of 24–29X.

Schnarr and Larus concurrently developed a direct

execution simulator for uniprocessors with ILP proces-

sors [11]. They simulate mispredicted paths and also pro-

pose instruction-window memoization. The use and/or ben-

efits of some of their techniques for shared-memory multi-

processors are unclear (e.g., speculative stores and mem-

oization). Further, their approach focuses on accurate

microarchitectural simulation. We allow approximations,

since we focus on accurate memory simulation in a mul-

tiprocessor with only as much emphasis on microarchitec-

tural simulation as needed for correct memory simulation.

8 Conclusions

This paper presents a new simulation technique for

shared-memory multiprocessors with ILP processors that

combines the speed advantages of simple-processor based

simulators with the accuracy of detailed ILP-processor

based simulators. Our technique is based on a novel adap-

tation of direct execution. First, it allows a data load to

proceed in direct execution even before its simulation has

completed at the memory system. Second, it provides an

efficient timing simulator that accounts for aggressive ILP

features such as multiple issue, out-of-order issue, and non-

blocking loads.

DirectRSIM, our implementation of the new technique,

sees an average of 1.3% error (maximum of only 3.9%) in

simulated execution time relative to RSIM for all studied

applications and configurations. At the same time, Direct-

RSIM sees a speedup of 3.6 over RSIM. In contrast, the

best current simple-processor based simulation methodol-

ogy sees large and variable errors in execution time, rang-

ing from 0% to 128%, and averaging 46%. The most com-

monly used simple-processor based simulation methodol-

ogy sees errors ranging from 9% to 438%, averaging 137%.

Despite its superior accuracy, DirectRSIM sees only a fac-

tor of 2.7X slowdown compared to current simple-processor

based simulators. Although the performance advantage of

simple-processor based simulators is still significant, it may

no longer be enough to justify their high errors. Our results,

therefore, suggest a reconsideration of simulation method-

ology for evaluating shared-memory systems.

In the future, several features supported in other simu-

lators can be added to DirectRSIM to further improve its

performance and/or functionality. Examples include par-

allelization, sampling, instrumentation through executable

editing or binary translation, instruction cache, TLB, and

full simulation of system calls. We are not aware of any

fundamental problems in incorporating such support for Di-

rectRSIM. Finally, if desired, we believe that support for

simulating mispredicted paths could also be incorporated.

Acknowledgments

We thank Jim Larus and Parthasarathy Ranganathan for

valuable comments on earlier versions of this paper.

References

[1] V. S. Adve et al. An Integrated Compilation and Performance

Analysis Environment for Data Parallel Programs. In Proc.

Supercomputing ’95, December 1995.

[2] R. G. Covington et al. The Efficient Simulation of Parallel

Computer Systems. Intl. Journal in Computer Simulation,

1:31–58, January 1991.

[3] H. Davis, S. R. Goldschmidt, and J. Hennessy. Multiproces-

sor Simulation and Tracing Using Tango. In Proc. Intl. Conf.

on Parallel Processing, pages II–99–II107, 1991.

[4] M. Durbhakula, V. S. Pai, and S. V. Adve. Improving the

Speed vs. Accuracy Tradeoff for Simulating Shared-Memory

Multiprocessors with ILP Processors. Technical Report

9802, Department of Electrical and Computer Engineering,

Rice University, April 1998. Revised November 1998.

[5] C. Holt, J. P. Singh, and J. Hennessy. Application and Archi-

tectural Bottlenecks in Large Scale Distributed Shared Mem-

ory Machines. In Proc. 23rd Intl. Symp. on Computer Archi-

tecture, pages 134–145, May 1996.

[6] V. Krishnan and J. Torrellas. A Direct-Execution Framework

for Fast and Accurate Simulation of Superscalar Processors.

In Proc. Parallel Architectures and Compilation Techniques,

October 1998.

[7] S. S. Mukherjee et al. Wisconsin Wind Tunnel II: A Fast and

Portable Parallel Architecture Simulator. In Workshop on

Performance Analysis and Its Impact on Design, June 1997.

[8] V. S. Pai, P. Ranganathan, and S. V. Adve. RSIM Reference

Manual version 1.0. Technical Report 9705, Department of

Electrical and Computer Engineering, Rice University, Au-

gust 1997.

[9] V. S. Pai, P. Ranganathan, and S. V. Adve. The Impact of In-

struction Level Parallelism on Multiprocessor Performance

and Simulation Methodology. In Proc. Intl. Symp. on High

Performance Computer Architecture, pages 72–83, 1997.

[10] M. Rosenblum et al. Using the SimOS Machine Simulator

to Study Complex Computer Systems. ACM Transactions on

Modeling and Computer Simulation, 1997.

[11] E. Schnarr and J. Larus. Fast Out-Of-Order Processor Simu-

lation Using Memoization. In Proc. 8th Intl. Conf. on Archi-

tectural Support for Programming Languages and Operating

Systems, pages 283–294, October 1998.

[12] J. P. Singh, W.-D. Weber, and A. Gupta. SPLASH: Stanford

Parallel Applications for Shared-Memory. Computer Archi-

tecture News, 20(1):5–44, March 1992.

[13] S. C. Woo et al. The SPLASH-2 Programs: Characteriza-

tion and Methodological Considerations. In Proc. 22nd Intl.

Symp. on Computer Architecture, pages 24–36, June 1995.

32

