
A Comparison of Entry Consistency and

Lazy Release Consistency Implementations

Sarita V. Adve, Alan L. Cox, Sandhya Dwarkadas, Ramakrishnan Rajamony, Willy Zwaenepoel

Departments of Computer Science and Electrical and Computer Engineering

Rice University

Houston, TX 77005-1892

fsarita,alc,sandhya,rrk,willyg@rice.edu

Abstract

This paper compares several implementations of

entry consistency (EC) and lazy release consistency

(LRC), two relaxed memory models in use with soft-

ware distributed shared memory (DSM) systems. We

use six applications in our study: SOR, Quicksort,

Water, Barnes-Hut, IS, and 3D-FFT. For these ap-

plications, EC's requirement that all shared data be

associated with a synchronization object leads to a fair

amount of additional programming e�ort. We identify,

in particular, extra synchronization, lock rebinding,

and object granularity as sources of extra complexity.

In terms of performance, for the set of applications

and for the computing environment utilized neither

model is consistently better than the other. For SOR

and IS, execution times are about the same, but LRC

is faster for Water (33%) and Barnes-Hut (41%) and

EC is faster for Quicksort (14%) and 3D-FFT (10%).

Among the implementations of EC and LRC, we

independently vary the method for write trapping and

the method for write collection. Our goal is to separate

implementation issues from any particular model. We

consider write trapping by compiler instrumentation

of the code and by twinning (comparing the current

version of shared data with an older version). Write

collection is done either by scanning timestamps or by

building di�s, records of the changes to shared data.

For write trapping in EC, twinning is faster if data is

shared at the granularity of a single word. For larger

granularities than a word, compiler instrumentation

is faster. For write trapping in LRC, twinning gives

the best performance for all applications. For write

collection in EC, timestamping works best in appli-

cations dominated by migratory data, while for other

data di�ng works best. For LRC, increased communi-

cation overhead in transmitting timestamps becomes

an additional factor working in favor of di�ng for ap-

plications with �ne-grain sharing.

This work is supported in part by the National Sci-

ence Foundation under Grants CCR-91163343, CCR-9211004,

CCR-9410457, CCR-9502500, and CDA-9502791, by the Texas

Advanced Technology Program under Grants 0036404013 and

003604016, and by a grant from Tech-Sym, Inc.

1 Introduction

Distributed shared memory (DSM) enables pro-

cesses on di�erent machines to share memory, even

though the machines physically do not share mem-

ory [11]. This approach is attractive since most pro-

grammers �nd shared memory easier to use than mes-

sage passing, which requires them to explicitly parti-

tion data and manage communication. Here, we fo-

cus on software implementations of DSM. Early such

systems su�ered from high communication overhead.

To combat these problems, software DSM implemen-

tations have turned to relaxed memory models [6].

Two popular models in use with current DSM sys-

tems are lazy release consistency (LRC) [8], used in

TreadMarks [10], and entry consistency (EC) [3], used

in Midway [13].

Both LRC and EC allow delaying the propagation

of modi�cations to shared data until a synchroniza-

tion operation occurs. To do so, both models re-

quire that the programmer use only system-provided

synchronization primitives. EC, in addition, requires

shared data to be associated with a synchronization

object. This additional requirement complicates the

programming model in EC compared to LRC. In both

models, synchronization primitives are divided into re-

leases and acquires, and consistency actions are taken

at the time an acquire occurs. In EC only the data

that is associated with the synchronization object be-

ing acquired is made consistent at the acquirer. LRC

instead makes all shared data consistent at the ac-

quirer.

This paper presents a detailed comparison of the

two models. To make such a comparison, we must

answer two methodological questions: 1) what is the

proper program for a particular application in each

model?, and 2) what is the proper implementation

of each model? To answer the �rst question, we

obtained a number of programs written by the au-

thors of Midway and TreadMarks, representative sys-

tems for EC and LRC, respectively These programs

are SOR, Quicksort, and Water. Additional applica-

tions were written in the same programming style for

each model. We also explore some alternatives in Sec-

tions 3.3 and 7.2.

To address the second question, we have considered

a number of implementations of each model, both pre-



viously published methods and improvements thereof.

In the comparison between the models, we represent

each by the implementation that performs the best for

the particular application.

The implementations of the two models vary both

the method of write trapping and the method of write

collection. Write trapping detects what shared mem-

ory locations have been changed, and is done in one

of two ways. The twinning mechanism maintains an

unmodi�ed copy of a shared data object (called a

twin), and compares the current copy with the twin

to determine the changes to shared data. Twinning

requires no support from the compiler. In contrast,

with compiler instrumentation, the compiler emits ex-

tra instructions that set software dirty bits when the

corresponding shared data objects are changed.

Write collection refers to the mechanisms used for

determining what modi�ed data needs to be propa-

gated to the acquirer. This requires a mechanism for

recording at what \logical" time a given data item

was last modi�ed. Again, two methods are consid-

ered. The �rst method uses timestamps. A timestamp

is associated with each shared data item, and records

when that data item was last modi�ed. The second

method creates di�s. Di�s are associated with execu-

tion intervals and record the changes to a shared data

item made during that execution interval.

Although in theory one could combine each of the

two methods for write trapping with each of the two

methods for write collection, only three out of the four

combinations are explored in this paper. The combi-

nation of compiler instrumentation and di�ng is not

considered in any detail because its memory require-

ments appear prohibitive. The combination of com-

piler instrumentation and timestamps is used to im-

plement EC in Midway [13]. Twinning and di�ng

is used to implement LRC in TreadMarks [10]. This

paper attempts a more methodical exploration of the

various combinations, and considers in addition to the

above: compiler instrumentation and timestamps for

LRC, twinning and timestamps both for LRC and EC,

and a twinning and di�ng algorithm for EC that im-

proves over earlier published methods [13]. Table 1

summarizes the various implementations.

An implementation of EC or LRC must also decide

whether to use an invalidate or an update protocol.

Previous work [9] has shown that an invalidate pro-

tocol results in the best performance for LRC. An in-

Trapping Model Comp.Ins. Twinning

Collection

Timestamping EC �Midway new

LRC new new

Di�ng EC [13] improved

LRC TreadMarks

Table 1 Combinations of Write Trapping

and Write Collection Explored in This Paper

validate protocol is therefore used in TreadMarks, and

also in the implementations of LRC in this study. In

contrast, the papers on EC have argued that by re-

stricting the regions of memory to be made consistent

to those associated with a synchronization object, EC

is best served by an update protocol [3]. Midway uses

an update protocol, and so do the implementations of

EC in this study. We will discuss the in
uence of these

implementation decisions on the performance results

in Section 7. We could not directly compare Tread-

Marks and Midway, because TreadMarks runs on Unix

and Midway runs on Mach. Di�erences in communica-

tion and page fault handling overheads between Unix

and Mach would obscure the di�erences between the

two models.

Our comparison of EC and LRC shows no clear win-

ner in terms of performance for the environment and

the applications examined. EC outperforms LRC if

the data associated with a lock is larger than a page.

If it is smaller than a page, then EC outperforms LRC

if there is false sharing, while LRC outperforms EC if

there is spatial locality resulting in a prefetch e�ect.

With respect to write trapping, twinning is faster if

the program requires sharing of individual words. On

the other hand, if the smallest shared datum is larger

than a word, compiler instrumentation is faster. With

respect to write collection, for migratory data, times-

tamps perform better than di�s. For other types of

data, the higher computation overhead and higher

communication overhead due to sending timestamps

yields poorer performance for timestamping. These

overheads are more signi�cant in LRC.

The experiments were carried out on a 100-

Mbps point-to-point ATM network connecting 8

DECstation-5000/240s. The applications used in

the comparison are: Red-Black Successive Over-

Relaxation (SOR), Quicksort, Water, Barnes-Hut, In-

teger Sort (IS), and three-dimensional FFT (3D-FFT).

SOR and Quicksort are small test programs. Water

and Barnes-Hut are from the Splash suite [12]. IS and

3D-FFT are from the NAS benchmark suite [2].

The outline of the rest of this paper is as follows.

Section 2 presents the applications used in this study.

Section 3 discusses EC and LRC, contrasts program-

ming in EC and LRC, and illustrates the di�erences

with examples from the applications. Section 4 dis-

cusses write trapping. Section 5 discusses write col-

lection. Section 6 describes the experimental environ-

ment. Section 7 compares the performance of EC and

LRC. Section 8 compares the performance of the write

trapping and write collection techniques, both for EC

and LRC. Section 9 presents related work. Section 10

summarizes our conclusions.

2 Applications

We used six programs in this study: Red-Black

SOR, Quicksort, Water, Barnes-Hut, Integer Sort, and

3D-FFT. SOR, Quicksort, andWater were used in ear-

lier studies of Midway [13] and TreadMarks [10]. We

describe the applications as written for a sequentially

consistent system.

SOR uses Red-Black Successive Over-Relaxation

to solve partial di�erential equations. The program



determines the steady state values in a system where

the boundary elements are kept constant. A matrix of


oating-point numbers represents the system in which

the four edges are kept constant. The program iter-

ates over this matrix, computing a new value for each

element based on its four neighbors. Each iteration

is made up of two phases separated by a barrier: the

black elements are updated based on the values for the

red elements computed in the previous phase and vice

versa. The matrix is divided into roughly equal size

bands of consecutive rows, with each band being as-

signed to a di�erent processor. Communication occurs

across the boundary between bands.

Quicksort (QS) uses a centralized task-queue

based approach to sort an array of integers. Initially,

the entire array is inserted in the task queue. A pro-

cessor repeatedly dequeues a sub-array to be sorted

from the queue and recursively applies the quicksort

algorithm to the dequeued element. Application of

the algorithm results in partitioning the dequeued el-

ement into two sub-arrays around the chosen pivot.

The smaller partition is enqueued in the task queue

and the processor continues to work on the larger par-

tition. When the partition size reaches a threshold of

1024 integers, the partition is sorted locally using a

bubblesort algorithm.

Water, from the SPLASH suite [12], is a molecular

dynamics simulation. The molecules are distributed

equally among processors. There are two key phases

in each timestep. In the �rst phase, called the force

computation phase, a processor updates the forces due

to the interaction of its molecules with those of half

of the other processors. The force computation re-

quires reading the displacement vectors of the inter-

acting molecules, which are calculated in the previous

timestep. In the second phase, called the displace-

ment computation phase, a processor updates the dis-

placements of its molecules based on the forces calcu-

lated in the previous phase. The phases are separated

by barriers. A lock protects access to each molecule

record during the force computation phase, because

each force value is updated by several processors. No

lock is required during the displacement computation

phase, because each processor only updates the dis-

placements of the molecules it owns. As suggested

in the SPLASH report [12], in the force computation

phase, each processor uses a local variable to accu-

mulate its updates to a molecule's force record. At

the end of the phase, the processor acquires a lock on

each molecule that it needs to update and applies the

accumulated updates at once.

Barnes-Hut is a simulation of a system of bodies

in
uenced by gravitational forces. A body is repre-

sented as a point mass that exerts forces on all other

bodies. The algorithm uses a hierarchical oct-tree rep-

resentation of space in three dimensions. The space is

broken into cells. The internal nodes of the oct-tree

represent the cells, and the leaves represent the bodies

in the corresponding cells. Each time step consists of

the following key phases: a processor traverses the tree

to obtain a set of bodies that results in good load bal-

ance between processors; it then computes the forces

on these bodies; and �nally it computes the new po-

sitions of the bodies. We refer to these phases as the

load balancing phase, the force computation phase,

and the position computation phase. Barriers sepa-

rate the di�erent phases. No locks are required since

in each phase at most one processor updates any data

item.

The Integer Sort (IS) NAS benchmark requires

ranking an unsorted sequence of N keys. The rank of

a key in a sequence is the index value i that the key

would have if the sequence of keys were sorted. All

the keys are integers in the range [0, B

max

] and the

method used is counting or bucket sort. The amount

of computation required for this benchmark is rela-

tively small { linear in the size of the array N . The

amount of communication is proportional to the size

of the key range, since an array of size B

max

has to be

passed around between processors. The program con-

sists of two phases. In the �rst phase, each processor

�rst ranks its set of keys. It then requests exclusive

access (via a lock) to a shared array, and increments

the values in the shared array with its own rankings,

keeping a local copy of the current values in the shared

array. In this phase the shared array exhibits migra-

tory behavior. A barrier ends the �rst phase. In the

second phase each processor reads the �nal values in

the shared array in order to determine the �nal ranks

for its local keys.

The 3D-FFT NAS benchmark numerically solves a

partial di�erential equation using forward and inverse

FFT's. Assuming an n

1

�n

2

�n

3

input array (say A)

organized in row-major order, we distribute the array

elements along the �rst dimension of A. That is, for

any i, all elements of A[i; �; �] are contained within a

single processor. A 1-D FFT is �rst performed on the

n

1

� n

2

n

3

-point vectors, and then on the n

3

� n

1

n

2

-

point vectors. For these phases, each processor can

work on its part of the array without any communica-

tion. A barrier separates these �rst two phases from

the third and �nal phase, which is a transpose followed

by a 1-D FFT on the n

2

� n

3

n

1

-point vectors. Dur-

ing the transpose, with n processors, each processor

needs to read 1=n of its data from each of the other

processors.

3 Entry Consistency vs. Lazy Release

Consistency

Sections 3.1 and 3.2 summarize the two consistency

models under discussion. For more extensive discus-

sions we refer the reader to the papers introducing re-

lease consistency [7], lazy release consistency [8], and

entry consistency [3]. Section 3.3 discusses the di�er-

ences in programming under the two models.

3.1 Entry Consistency (EC)

In EC, all shared data must be explicitly declared

as such in the program text, and associated with a syn-

chronization object that protects access to that shared

data. Processes must synchronize via system-supplied

primitives. Synchronization operations are divided

into acquires (getting access to shared data) and re-

leases (granting access to shared data). After com-

pleting an acquire, EC guarantees that a process sees

the most recent version of the data associated with



the acquired synchronization variable. In our imple-

mentations of EC, synchronization primitives include

exclusive locks, read-only locks, and barriers. Follow-

ing the practice adopted in Midway, shared data is

associated with locks but not with barriers.

3.2 Lazy Release Consistency (LRC)

Release consistency is similar to EC in that it guar-

antees consistency only after a synchronization opera-

tion. In the lazy version of release consistency (LRC),

the propagation of consistency information is post-

poned until the time of an acquire, as in EC. Unlike

EC, however, there is no notion of association between

synchronization objects and data. This reduces pro-

gramming e�ort, but it has the disadvantage that, at

an acquire, LRC must make all shared data consistent

between the releaser and the acquirer. The implemen-

tation of LRC used in this paper provides exclusive

locks and barriers. There is no need for read-only

locks for the application suite we consider.

3.3 Programming Under EC and LRC

In contrast to LRC, EC requires programmers to

associate (or bind) every shared data object with a

lock, and to access a shared data object only after

acquiring the corresponding lock. The lock may be

acquired in read-only or exclusive mode, as appropri-

ate. We describe several scenarios where these require-

ments result in modi�cations to a program written for

sequential consistency, and illustrate these with ex-

amples from our application suite in Section 2. No

changes were required for the programs in our appli-

cation suite to work correctly on LRC.

Barriers. We �rst look at programs in which dif-

ferent phases are separated by barriers. Consider a

phase where each processor reads part of a data struc-

ture which is modi�ed by other processors in a pre-

vious phase. With sequential consistency and LRC,

the barrier at the beginning of the phase ensures that

each processor reads the up-to-date value. With EC,

following the practice adopted in Midway, a processor

needs to acquire read-only locks for the data it needs

to read. Extra read-only locks occur in �ve out of our

six applications: SOR, Water, Barnes-Hut, IS, and

3D-FFT. SOR acquires read-only locks on the bound-

ary rows of the matrix. Water acquires (per-molecule)

read-only locks on the displacements during the force

computation and (per-molecule) read-only locks on

the forces during the displacement computation. In

Barnes-Hut, read-only locks are acquired on the cell

and body structures in the load balancing and force

computation phases. IS acquires a read-only lock on

the shared array of buckets during the second phase

of the program where each processor computes the

global ranking of its keys. 3D-FFT acquires read-only

locks on the parts of the matrix to be read as input

to the transpose separating the second and the third

one-dimensional FFT. This data is not contiguous in

memory, and therefore requires support for binding

non-contiguous pieces of memory to a single lock for

e�ciency.

A potential alternative to the use of read-only locks

is to associate the data to be read in a phase with the

barrier at the beginning of the phase. However, in

SOR, Water, 3D-FFT, and Barnes-Hut, each proces-

sor reads a relatively small and often distinct part of

the data set in a given phase (e.g., in the displace-

ment computation phase of Water, a processor reads

the forces of only the molecules it owns). In such a

case, the barrier would have to be associated with the

union of all the data read by all the processors. With

an update protocol, this union of the data has to be

transferred to all the processors, resulting in unneces-

sary data movement. An extension to EC that allows

a per-processor association of data at a barrier might

address this overhead, but involves further complexity

in the programming model. Further, such a modi�ca-

tion does not apply to the force computation phase of

Barnes-Hut, where at the beginning of the phase, it

cannot be determined which body and cell positions

will be read by a particular processor. In contrast to

the above applications, in IS, all processors read the

same data, and so it may be pro�table to rebind the

data with the barrier. We do not explore binding data

locations with barriers in this paper.

The above discussion also applies to the case where

in a phase, at most one processor modi�es a data ob-

ject. In that case, sequential consistency and LRC rely

on the barrier at the end of the phase to ensure that

the modi�cation is seen by other processors. However,

with EC, we use additional exclusive locks. This case

occurs in SOR, the displacement computation phase

of Water, the force and position computation phases

of Barnes-Hut, and 3D-FFT. The alternative of asso-

ciating data with a barrier and the resulting tradeo�s

discussed above for the read-only locks apply to the

exclusive-lock case as well.

Task queues. The use of task queues can lead to

extra synchronization in EC. Consider a task queue

based program where processors execute the following

actions in a loop. A processor dequeues a task from

the task queue and executes the task. While executing

the task, the processor potentially produces data for

more tasks and enqueues the newly generated tasks.

With sequential consistency and LRC, the enqueue

and dequeue of the tasks take place in a critical section

using locks. These locks also ensure that the dequeuer

of a task sees the data produced by the enqueuer of the

task. Thus, no further synchronization is necessary

for accessing the task data. With EC, however, the

locks around the queue ensure consistency only for

the queue data. The programmer must put additional

acquires and releases around the writes and reads of

the task data. This case occurs in Quicksort.

Lock rebinding. In some cases, it is necessary to

rebind the data associated with a lock. We identify

two such scenarios.

The �rst scenario occurs in task queue based pro-

grams where the same data locations may become part

of di�erent tasks in di�erent parts of the program. In

this case, the programmer might allocate a lock for

each entry in the task queue. When a task is en-

queued, the lock for the corresponding queue entry

is rebound to the data associated with the new task.

In contrast, sequential consistency and LRC do not re-

quire any locks for the task data. This scenario occurs

in Quicksort.



The second scenario occurs when memory is re-used

for di�erent purposes. As a result, the sharing and

required communication pattern in distinct parts of

the program can be di�erent. Therefore, in EC, the

programmermust explicitly rebind locks with di�erent

data to re
ect the new sharing pattern. In some cases,

it is possible to duplicate memory instead, and thereby

avoid re-use and rebinding. This scenario occurs in

3D-FFT. We chose to duplicate memory instead of

paying the penalty of rebinding.

Object granularity. In EC, the granularity at

which an object is bound to a lock can be a key de-

terminant of performance. Consider an array, where

each element is a complex data structure containing

several �elds. Possible alternatives include a lock per

�eld per array element, or a lock per array element, or

a lock for some subset of the array. The answer clearly

depends on the nature of sharing and communication

in the application. For example, if all �elds of a data

element are accessed in one phase of the program, it

is preferable to have one lock for the entire structure.

Then the entire structure can be accessed with a single

acquire. However, if only one part of the data struc-

ture is accessed in a di�erent phase, then associating

a single lock with the entire structure transfers more

data than necessary. Further, if some �elds of a large

subset of the array elements are accessed in a phase,

it may be pro�table to associate a single lock with

these �elds for the entire subset. A tradeo� also oc-

curs when, in one phase of a program, part of a data

structure is read by many processors while the other

part is written by one processor. If only one lock is

associated with this data structure, then the struc-

ture will unnecessarily bounce from one processor to

another.

In our application suite, granularity was an issue in

SOR,Water and Barnes-Hut. To explore the granular-

ity issue in SOR, we use two di�erent versions of SOR:

one in which the entire array is declared shared and

which we will continue to call SOR, and one in which

only the boundary rows are declared shared and which

we will call SOR+.

As described earlier, in the force computation phase

of Water, a processor uses several per-molecule read-

only locks to read the displacements of molecules.

However, the displacements of molecules owned by a

single processor are modi�ed only by that processor

in the previous phase. Performance may be improved

by using a per-processor lock for the displacements,

resulting in a single message for all the displacement

reads of molecules owned by a single processor. This

either requires the ability and potential overhead of

associating small non-contiguous regions of memory

with one lock, or it requires splitting the displacement

�elds from the molecule data structure into a sepa-

rate array and then associating a contiguous chunk

of the array with a lock. We experimented with this

approach and report the results in Section 7.2. Note

that a similar approach cannot be applied to the reads

of the forces in the displacement computation phase

of Water, because in the preceding force computation

phase the forces are modi�ed by di�erent processors

whose identity cannot be determined statically. Thus,

a per-molecule lock for the forces is still required.

In Barnes-Hut, the force and position �elds of the

body data structures are accessed di�erently in dif-

ferent phases of the program. However, in this case,

the choice of granularity was guided by correctness re-

quirements. In one phase, di�erent �elds of two di�er-

ent bodies are accessed together, resulting in a nested

access of locks corresponding to the two bodies. If only

one lock is associated with all �elds of a body, then

the nested locks can result in deadlock. Therefore, the

�elds of a body were divided into two sets, and a lock

was associated with each set. A change similar to Wa-

ter involving association of locks with multiple bodies

or cells is not possible with Barnes-Hut because at

the beginning of a phase it is not known which parts

of the data structures that require read-only locks will

be accessed.

These granularity issues do not arise in LRC be-

cause it does not need the locks described above.

4 Write Trapping

Both EC and LRC need mechanisms for detecting

what shared data is changed during a particular exe-

cution interval, for it is the modi�ed data that is com-

municated at synchronization points. We used two

basic mechanisms for write trapping, compiler instru-

mentation and twinning. In this section, we explain

these mechanisms and how they are adapted for EC

and LRC.

4.1 Compiler Instrumentation

Compiler instrumentation of the code requires the

compiler to emit extra code to set a dirty bit on writes

to shared memory. A dirty bit that is set indicates

that the corresponding shared data has been modi�ed.

Although always referred to as a dirty bit, each dirty

bit actually takes up a word of memory, for reasons

explained in Section 5.

As the overhead to set the dirty bit is incurred on

every shared write, we have to carry out this oper-

ation as fast as possible. The approach we follow is

identical to the one presented by Zekauskas et al. [13].

Shared data is allocated from large, �xed size regions.

A region is made up of three parts. At the head is

a code template, which consists of a set of routines

that set the dirty bits for stores of di�erent granular-

ity (word, double-word, etc.). The actual shared data

space is next, followed by space for the dirty bits corre-

sponding to the data. On a shared write, the dirty bit

code inserted by the compiler vectors to the appropri-

ate template code depending on the store granularity.

The template code sets the dirty bit corresponding to

the location being modi�ed.

We made modi�cations to the front and back ends

of the Gnu C compiler (gcc) to make it emit extra

code after a shared write. The front end modi�cation

consisted of adding a new type quali�er shared. This

keyword indicates that the data it quali�es falls in the

shared address space of the process. No restrictions

are placed on the use of this keyword (pointers and

complex types using shared are permitted).

In the back end, we scan the RTL (register transfer

language) description of each function in the source



program. After a shared write, we insert code to vec-

tor to the appropriate template code. The store gran-

ularity determines the code that is inserted. The in-

serted code computes the beginning of the template

from the store address, and branches to the code

within it.

For EC, the extra code inserted after a shared write

by our compiler, and the template code itself, are iden-

tical to the Midway codes [13].

Di�erences between EC and LRC. When

shared writes are instrumented, write collection re-

quires scanning the dirty bits to determine which ones

are set. In EC, when a lock is acquired, we only need

to scan the dirty bits of the shared data object asso-

ciated with the lock. As there is no such association

in LRC, we would need to scan the entire shared data

region, although only a small portion of it may have

been updated. To avoid this problem, we use a hier-

archical dirty bit scheme for LRC. This scheme sets a

dirty bit for the page that is modi�ed, in addition to

setting the dirty bits for the words being modi�ed.

Thus, for write collection, we need to scan the word-

level dirty bits only for those pages for which the page-

level dirty bit is set. A similar strategy could be useful

for EC if the data structure associated with a lock is

large and is sparsely updated between synchroniza-

tion operations. Our application suite does not in-

clude such a case, and therefore we did not implement

a hierarchical dirty bit scheme for EC.

Optimization of Instrumentation Code.

Naive instrumentation of every shared write as sug-

gested above, leads to suboptimal code for a number

of programs. For instance, when consecutive elements

of an array are updated inside a loop, the correspond-

ing compiler inserted software dirty bit writes will also

appear inside this loop.

By breaking this loop into two separate loops, one

for setting the software dirty bits, and one for up-

dating the shared data, the per-unit cost for setting

the dirty bits can be reduced. In addition, the cache

behavior is also improved, leading to a more e�cient

execution. Although current compilers are able to per-

form this kind of transformation, our compiler cannot,

so we hand-modi�ed the code to examine its e�ects.

4.2 Twinning

Twinning makes a copy of the shared data for the

system, called the \twin", and later compares the user

copy of the shared data to the twin to discover which

elements were modi�ed.

Twinning for EC. Our implementation of EC us-

ing twinning distinguishes between small and large ob-

jects, with the boundary between the two drawn at the

size of a virtual memory page. For small objects, we

make a copy of the object as soon as a write lock is

requested on the object. For large objects, we make a

virtual copy using copy-on-write techniques as follows.

When the write lock is acquired, we write-protect the

pages corresponding to the object using the virtual

memory hardware. When the page is written, we make

a physical copy (the twin), and unprotect the page in

user space.

Our implementation di�ers from the Midway VM

implementation of EC [13] in that they do not distin-

guish between large and small objects, thereby taking

a protection fault on each �rst write to a shared object.

We avoid taking this fault for small objects, based on

the assumption that when a write lock is acquired, the

object associated with the lock is likely to be written.

A potential disadvantage of our approach is that if the

object is not written, we perform an unnecessary twin

(and a di� later). However, since the object is small,

this overhead is small as well.

Twinning for LRC. Our twinning implementa-

tion of LRC uses virtual memory protection as used

for large objects under EC. The small object approach

does not apply here because there is no notion of data

objects being associated with synchronization objects.

4.3 Discussion

The performance di�erences between compiler in-

strumentation and twinning depend on the number of

writes to shared memory, their granularity, and their

distribution in the shared address space. With a large

number of writes, compiler instrumentation becomes

expensive. If, however, compiler instrumentation can

be done at granularities larger than a word, then it

has an advantage because with twinning the compar-

isons are always at a word granularity. Furthermore, if

the writes to shared memory are sparse, the twinning

approach must make copies and comparisons over siz-

able areas of memory, and many protection faults may

occur.

Finally, the decision of compiler instrumentation

vs. twinning for write trapping also a�ects write col-

lection, speci�cally for LRC. With twinning in LRC,

write collection need scan only the twinned pages.

With compiler instrumentation in LRC, the hierar-

chical nature of the scheme alleviates some overhead;

nevertheless, write collection must still check at least

one dirty bit per page in the data set.

5 Write Collection

When a synchronization request arrives, the re-

quester must be informed of changes made to shared

data. Write collection involves determining what data

needs to be sent. We consider two methods, times-

tamping and di�ng.

5.1 Timestamping

In both EC and LRC, each block of one or more

consecutive words is assigned a timestamp, which is

used to determine what data needs to be exchanged.

A block is the resolution at which write trapping is

done. For compiler instrumentation a block is either a

word or a double-word. For twinning a block is always

a single word. The notion of a timestamp is di�erent

for EC and LRC, because of di�erences in the two

models.

Timestamping for EC. We use the notion of an

incarnation number associated with each lock, as in-

troduced in Midway [3]. Every time a lock is trans-

ferred, its incarnation number is incremented.

A timestamp is associated with each block in the

shared address space (i.e., each word or double-word).

When it is discovered that a block has changed (using

the write trapping methods explained in Section 4),



we set that block's timestamp to the current value of

the incarnation number for the lock with which the

block is associated.

With the compiler instrumentation approach, the

data area for the software dirty bits and the data area

for the timestamps are the same. Storage for this

timestamp is the reason that each dirty \bit" takes

up a word of memory, as mentioned in Section 4.

When acquiring a lock, the requesting processor in-

cludes its incarnation number for the lock in the ac-

quire message. The responding processor sends back

its incarnation number for the lock, all of its blocks

of shared data associated with that lock that have a

larger timestampvalue than the lock incarnation num-

ber in the request, and the timestamps corresponding

to the blocks. For the timestamps, only one value is

sent for each run (i.e., each sequence of blocks with

the same timestamp). The acquiring processor sets

its incarnation number for the lock to the one re-

ceived in the response message plus one, and updates

its memory and timestamps with the data blocks and

the timestamps received in the message.

Timestamping for LRC. The LRC model re-

quires a more complicated timestamping procedure.

The approach used in EC, timestamping updates to

shared data with lock incarnation numbers, does not

work for LRC, because there is no notion of data be-

ing associated with a lock. Instead, LRC uses interval

indices as follows. The execution of each process is

divided into intervals, each denoted by an interval in-

dex. Every time a process executes a release or an

acquire, a new interval begins and the interval index

is incremented. Similar to EC, in LRC a timestamp

is associated with each shared block (i.e., each word).

Unlike EC however, the timestamp for a block is a

pair (p; i) consisting of a processor identi�er and an

interval index for that processor. These values indi-

cate that processor p wrote the current value of the

block during its interval i. For each block for which a

change is detected at the end of an interval, the cor-

responding entry in the timestamp array is set to the

tuple (local processor id, current interval index).

Intervals of di�erent processes are partially or-

dered [1]: (i) intervals on a single processor are to-

tally ordered by program order, and (ii) an interval

on processor p precedes an interval on processor q if

the interval of q begins with the acquire corresponding

to the release that concluded the interval of p. This

partial order can be represented concisely by assigning

a vector to each interval.

1

This vector contains one

entry for each processor. In the vector for interval i

of processor p, the entry for processor p is equal to i.

The entry for processor q 6= p denotes the most re-

cent interval of processor q that precedes the current

interval of processor p according to the partial order.

When processor p acquires a lock from processor q,

p sends its current vector to q. As part of the lock

1

In earlier papers (e.g.,[8]), the term vector timestamp was used

to denote this vector, but we do not use this term here to avoid

confusion with the use of the word timestamp to denote the

combination of processor identi�er and interval index.

grant message, q returns its current vector. Processor

p computes its new vector as the pairwise maximumof

its previous vector and the vector returned by q. Pro-

cessor q further piggybacks on the lock grant message

to p, write notices for all intervals named in q's current

vector but not in the vector received from p. A write

notice is an indication that a page has been modi�ed

in a particular interval, but (with an invalidate proto-

col) it does not contain the actual modi�cations. The

arrival of a write notice for a page causes the processor

to invalidate its copy of that page. A subsequent ac-

cess to that page causes an access miss, at which time

the modi�cations are propagated to the local copy.

When taking an access miss, the faulting processor

includes its vector in the page fault message. The pro-

cessor responding to the request then sends the times-

tamps and the data for the blocks in the page which

have a timestamp (p; i) such that i is larger than the

interval index for p in the vector received in the page

fault message. Like in EC, only one timestamp value

is sent for each run (i.e., each sequence of blocks with

the same timestamp). The faulting processor uses the

received information to update its memory for this

page and its timestamps for the page's blocks.

5.2 Di�ng

With di�ng, a record called a di�, is created. A

di� is a runlength encoding of the actual changes to

the object (in EC) or to the page (in LRC).

Di�ng in EC. As in timestamping for EC, each

lock has an incarnation number, which is incremented

every time the lock is transferred. At that time, a di�

is made encapsulating the changes to the associated

shared data object, and this di� is tagged with the

incarnation number.

When a process requests a lock, it sends its in-

carnation number for the lock with the lock request

message. When the current owner grants the lock,

it sends with the lock grant message all the di�s that

have an incarnation number larger than the one in the

lock request message, and deletes these di�s. The re-

quester applies the di�s in incarnation number order

to its memory, and also saves them for possible future

transmission to other processors.

Di�ng in LRC. As in timestamping, LRC main-

tains interval indices and a vector of interval indices,

and sends write notices during synchronization. For

each page for which a change has been detected dur-

ing an interval, a di� is made. At the time of an

access miss, the faulting processor requests those di�s

for which it has received write notices with a vector

dominating the current vector for its copy of the page.

The requester applies the di�s in vector order to the

page, and also saves them for possible future trans-

mission to other processors.

5.3 Discussion

Both EC and LRC use the lazy di�ng optimization,

making di�s only when the data is requested rather

than at the end of an interval.

Di�ng is used in combination with twinning only,

and not in combination with compiler instrumenta-

tion, because the latter combination would incur the



memory overhead of both the software dirty bits and

the di�s.

The potential performance di�erences between

timestamping and di�ng can be understood by sep-

arately considering the computation and communica-

tion overhead of the two approaches.

The timestamp approach incurs more computation

overhead because each time a request for data comes

in, a scan of the timestamps is required. With di�ng,

the di� is computed only once, and is returned imme-

diately in response to subsequent requests for it. If the

data is requested n�1 times (by each of n�1 other pro-

cessors), the timestampmethod requires n�1 scans of

the timestamps while the di�ng scheme requires only

one di� creation.

The timestamp approach incurs a lower communi-

cation overhead than di�ng for migratory data, but a

higher communication overhead than di�ng for data

that is shared at a �ne granularity.

For migratory data, that passes in a round-robin

fashion from one processor to the next and gets up-

dated by every processor, di�ng sends more data than

timestamping. In the di�ng approach, a di� will be

created at each processor. After the initial startup,

with n processors, n � 1 di�s are passed on to the

next processor every time, even though some or all of

those di�s might contain changes to the same data.

In contrast, with the timestamping approach, only a

single value is sent for each data item changed.

On the other hand, consider programs with �ne-

grain sharing where di�erent elements of the trans-

ferred data (a page with LRC and a data object as-

sociated with synchronization in EC) are updated by

di�erent processors. In this case, the number of data

elements in a run with the same timestamp will be

small and so several timestamps need to be commu-

nicated. Moreover, for LRC, each of the timestamps

consists of a processor identi�er and an interval index.

Di�ng requires only a single vector of interval indices

for the entire di�.

6 Experimental Environment

Our experimental environment consists of 8

DECstation-5000/240's running Ultrix V4.3. Each

machine has a Fore ATM interface that is connected

to a Fore ATM switch. The connection between the

interface boards and the switch operates at 100-Mbps;

the switch has an aggregate throughput of 1.2-Gbps.

The interface board does programmed I/O into trans-

mit and receive FIFOs, and requires fragmentation

and reassembly of ATM cells by software. Interrupts

are raised at the end of a message or a (nearly) full re-

ceive FIFO. Unless otherwise noted, the performance

numbers describe 8-processor executions on the ATM

LAN using the low-level adaptation layer protocol

AAL3/4.

In order to make a fair comparison, the various im-

plementations share as much code as possible. In par-

ticular, the location and synchronization aspects of

locks and barriers are implemented in the same way,

although the consistency aspects di�er. Furthermore,

all communication and memory management aspects

also share the same code.

Each lock has a statically assigned manager pro-

cessor. Assignment of locks to processors is done in

a round-robin way to distribute the load. The iden-

tity of a lock's manager can be derived from its lock

identi�er. A request for a lock is �rst sent to the man-

ager, and then forwarded to the processor that last

requested the lock. If the lock is free, it is granted

by a message from the last owner to the requester. If

not, the request is queued and granted when the lock

becomes available.

Barriers also have a statically assigned manager.

When a processor arrives at a barrier, it sends a mes-

sage to the barrier manager. When the barrier man-

ager has received arrival messages from all other pro-

cessors and has itself arrived at the barrier, it lowers

the barrier by sending a departure message to all other

processors. Upon receipt of that departure message, a

processor continues its execution after the barrier.

All implementations rely on Unix and its standard

libraries to accomplish remote process creation, inter-

processor communication, and memory management.

Interprocessor communication is done through the

socket interface using the AAL3/4 protocol. AAL3/4

is a connection-oriented, unreliable message protocol

speci�ed by the ATM standard. We use operation-

speci�c, user-level protocols on top of AAL3/4 to in-

sure delivery. To minimize latency in handling incom-

ing asynchronous requests, we use a SIGIO signal han-

dler. After the handler receives the message, it per-

forms the request and returns. To implement memory

protection, we use the mprotect system call to control

access to shared pages. Any attempt to perform a re-

stricted access on a shared page generates a SIGSEGV

signal.

Table 2 presents the parameters used for the appli-

cations used in the experiments. In order to provide

a fair comparison between compiler instrumentation

and di�ng for SOR and SOR+, we initialized all in-

ternal elements to nonzero values in such a way that

they change on every iteration.

7 Performance of EC vs. LRC

In Section 7.1 we qualitatively analyze the factors

that may lead to di�erent performance for EC and

LRC. In Section 7.2 we turn our attention to the ap-

plications. For each application, we compare the best

implementation of EC and LRC, and explain the dif-

ferences, based on the factors outlined in Section 7.1.

Application Data Set Size

SOR 1000x1000 
oats

SOR+ 1000x1000 
oats

QS 262,144 integers, cuto� 1024

Water 343 molecules, 5 iterations

Barnes-Hut 8,192 bodies, 5 iterations

IS N = 2

20

, B

max

= 2

9

, 10 rankings

3D-FFT 64x64x32

Table 2 Application Parameters



7.1 Expected Performance Di�erences

We identify �ve factors that can lead to a perfor-

mance di�erence between EC and LRC.

Extra synchronization. EC can result in lower

performance than LRC because EC requires more syn-

chronization as discussed in Section 3.3. The extra

synchronization translates into more messages for EC.

Update vs. invalidate. The update protocol used

in EC reduces the number of access misses and the

number of message exchanges, compared to the inval-

idate protocol used in LRC.

Prefetching. LRC makes a whole page consistent

on an access miss. In EC, only the data that is as-

sociated with a lock gets updated at a lock acquire.

If multiple data items associated with di�erent locks

lie within the same page, then EC requires a message

exchange for each data item, while LRC makes the

entire page consistent on the �rst access miss to the

page. To achieve this prefetch e�ect, LRC does not

need to transmit the entire page. Only the modi�ed

elements are transmitted.

False sharing. The primary potential perfor-

mance advantage for EC arises because at a lock ac-

quire, only data associated with the lock needs to be

made consistent. In contrast, an LRC system needs

to ensure consistency for all data objects. This can

result in less data being transferred in EC than in

LRC. Consider, for example, the following scenario.

Two processors access two di�erent parts of the same

page, and each of these parts is bound to a di�erent

lock. The processors write their respective parts in one

phase and read the same parts in the next phase, with

a barrier separating the two phases. No communica-

tion for the page is needed for the second phase, since

each processor has the most recent value of the data

that it will read. With EC, no communication takes

place. With LRC, at the barrier before the second

phase, the page must be invalidated at both proces-

sors. Our implementations of LRC are, however, not

subject to the \ping-pong" e�ect, because they allow

multiple concurrent writers per page [4].

Rebinding. The rebinding e�ect is an artifact of

the extra synchronization required in EC (see Sec-

tion 3.3). In the EC implementations, the acquire

message carries the acquirer's value of the incarnation

number for the lock. This value indicates to the re-

leasing processor the last time that the acquiring pro-

cessor saw the values of the data bound to the lock.

The releasing processor then forwards only the data

(bound to the lock) that has changed since the acquir-

ing processor last held the lock. After a lock has been

rebound to a new set of memory locations, neither the

acquiring nor the releasing processor knows which part

of the new data bound to the lock is consistent at the

acquiring processor. Therefore, the releasing proces-

sor has to conservatively send all data that is rebound

to the lock, potentially resulting in unnecessary data

transfer. This issue does not arise in LRC since there

is no notion of rebinding.

7.2 Application Performance

Table 3 compares EC vs. LRC. For each appli-

cation, the columns EC and LRC show the execu-

tion times on 8 processors for the best implemen-

tations of EC and LRC. Columns EC Imp. and LRC

Imp. show the implementation that achieved the best

performance. EC-ci and LRC-ci denote the compiler-

instrumented version of EC and LRC, respectively.

LRC-di�, EC-di�, LRC-time, and EC-time perform

twinning for write trapping. The \di�" and \time" de-

scriptions represent whether the implementation uses

di�s or timestamps for write collection. Column 1

proc. shows the single-processor execution time of the

sequential version of the application.

Two applications (IS and SOR) show very little dif-

ference between EC and LRC. For two applications

(Water and Barnes-Hut), LRC is better than EC. For

two applications (QS and 3D-FFT), EC is better than

LRC.

The execution time of SOR is approximately the

same on the best LRC implementation (LRC-di�) as

on the best EC implementation (EC-time). Compared

to EC, the positive e�ects of prefetching balance the

negative e�ects of false sharing in LRC. False sharing

occurs because the size of a row is a little short of the

size of a page. Therefore, EC-time transfers less data

(5.7MB) than LRC-di� (5.8MB). Prefetching occurs

in LRC because a row of the matrix is laid out with

all its red elements �rst and its black elements next.

The data size is such that the red and black elements

can both be on the same page. In LRC-di�, when

a processor fetches the red part of the row from its

neighbor below, this neighbor processor has often al-

ready �nished computing the values of the black part

of that row for the current phase. This new value

for the black part is fetched along with the red val-

ues. Therefore, in the next phase, there is no miss for

the black row. EC-time, on the other hand, needs to

communicate to get a read-only lock each time it ac-

cesses a boundary black or red row. This is borne out

by the di�erence in the number of messages (6936 for

LRC-di� vs. 10498 for EC-time).

Making only the boundary elements shared, as in

SOR+, does not a�ect the performance of EC-time

by much, since twinning does not take place unless

the data is actively shared.

ForQS the best EC execution time (EC-di�) is 14%

lower than the best LRC execution time (LRC-time).

App. 1 proc. EC LRC EC LRC

Imp. Imp.

SOR 86.10 13.23 13.14 time di�

SOR+ 86.10 13.22 n/a time n/a

QS 47.89 8.33 9.66 di� time

Water 61.21 18.25 12.41 ci di�

Barnes 133.76 63.07 37.75 time di�

IS 10.27 1.81 1.86 time time

3D-FFT 39.82 8.32 9.23 ci di�

Table 3 EC vs. LRC: Execution Times (in

Seconds) for Best Implementation of Each

Model



The task size in QS is not a multiple of the page size,

resulting in false sharing for LRC. This observation

is borne out by comparing the amount of data trans-

ferred in EC-di� (3.4MB) vs. LRC-time (7.1MB). QS

requires rebinding of locks in EC, but any potential

performance e�ect is completely masked because all

of the data associated with the lock has been modi-

�ed by the processor inserting the task in the queue.

Hence all the data needs to be moved anyway.

Water's execution time is about 33% better on

the best LRC implementation (LRC-di�) than on the

best EC implementation (EC-ci). The dominant ef-

fect in Water is prefetching in the phase where a pro-

cessor computes the new displacements of its own set

of molecules. EC-ci requires a write lock for every

molecule in order to update the displacements. LRC-

di�, on the other hand, does not require a lock in

this phase, because the programmer knows that the

displacements are modi�ed by a single processor. In

LRC-di�, whenever there is a miss, the entire page

is updated, including the records for all molecules

on that page, resulting in fewer messages than EC-

ci. There is a similar prefetching e�ect in the phase

where the forces are computed from the displacements.

Fewer lock accesses and prefetching results in a much

reduced message count on LRC-di� (11381) compared

to EC-ci (69422).

Both the EC version and the LRC version of Water

could be further optimized by reorganizing the data

structures. In the commonlyused version of Water the

molecules are represented by an array of records, each

of which contains the displacements and the forces

for a single molecule. By reorganizing this single ar-

ray into two arrays, one which contains the displace-

ments for all molecules and one which contains the

forces for all the molecules, better performance can be

achieved. In LRC, using two separate arrays leads to

better locality and less data transmitted. In EC, this

restructuring allows a per-processor lock to be bound

to all displacements computed by that processor, es-

sentially achieving a prefetch e�ect similar to LRC for

the force computation phase. This restructuring led

to an execution time of 12.50 seconds for EC vs. 11.45

seconds for LRC on 8 processors. The same e�ect

could be obtained in the original program by binding

a per-processor lock to multiple regions of memory, in

particular to the displacement �elds in the individual

records. Note that these changes do not provide the

same prefetch e�ect for EC in the phase where the dis-

placements are computed from the forces, because the

forces are updated by di�erent processors and there-

fore still require a per-molecule lock. To provide the

prefetch e�ect in this phase, the force �elds accessed

by a processor would have to be rebound to a single

lock.

Barnes-Hut's execution time is about 41% bet-

ter on the best LRC implementation (LRC-di�) than

on the best EC implementation (EC-time). This re-

sult is explained by the combination of three di�erent

factors: extra synchronization, prefetching, and false

sharing. The extra synchronization and the prefetch-

ing are seen in the load balancing phase and in the

force calculation phase. Both phases involve a traver-

sal of the tree and reads of several cells and bodies.

Each time a body or cell is read, EC-time requires the

use of a read-only lock. LRC-di� does not need such

locks. Furthermore, on every access miss for a body

or a cell, LRC-di� fetches consistent copies of all the

other cells or bodies in the page. It is likely that a

processor that accesses a cell on a page will also ac-

cess other cells on the same page. Consequently, the

number of messages with LRC-di� is lower than that

with EC-ci. For example, in the last iteration of the

above two phases, LRC-di� sends 1851 messages while

EC-time sends 3207 messages. A signi�cant amount

of false sharing occurs in LRC-di� in all phases of the

program. There are several cells or bodies in one page.

Typically, accessing a cell or body on a page does

not imply that the processor will access all other cells

or bodies on that page. As a result, EC-time trans-

fers less data than LRC-di� (9.5MB for EC-time and

29.9MB for LRC-di�). Of the three e�ects described,

reduced synchronization and prefetching in LRC dom-

inate its disadvantage in terms of false sharing for this

application.

For IS the execution time is about the same for

the best EC implementation (EC-time) and for the

best LRC implementation (LRC-time). The small im-

provement in EC occurs because of the update pro-

tocol used in EC. There is one critical section in the

program that is accessed once by each processor to

add its increments to the shared array. The size of

the shared array is less than a page, resulting in one

additional message (due to an access miss) for every

processor with LRC-time.

3D-FFT's execution time is about 10% smaller on

the best EC implementation (EC-ci), compared to the

best LRC implementation (LRC-di�) primarily be-

cause of the update protocol used by EC. The size

of a data object bound to a lock is eight pages. Fur-

thermore, for every acquire of the object, all the eight

pages get written. On EC-ci, 3D-FFT gets all the data

at the acquire because of the update protocol. LRC-

di�'s invalidation protocol results in separate page

fault requests for each page. This argument is veri�ed

through the greater number of messages seen on LRC-

di� (7175) than on EC-ci (2517), while the amount of

data transferred is about the same (12.9MB for LRC-

di� vs. 13.0MB for EC-ci).

In summary, neither EC nor LRC perform con-

sistently better than the other. The di�erences in per-

formance seen between EC and LRC are largely due

to the size of the coherence unit. In our implementa-

tions of EC, the coherence unit is the size of the data

bound to a synchronization object, while for LRC, the

coherence unit is the size of a virtual memory page.

For our applications, EC outperforms LRC if its

coherence unit is larger than a page, as in 3D-FFT. If

EC's coherence unit is smaller than a page, then EC

outperforms LRC if there is false sharing, as in QS,

while LRC outperforms EC if there is spatial locality

resulting in a prefetch e�ect, as in Water or Barnes-

Hut. For Water, an equivalent prefetching e�ect can

be achieved in EC with further programming e�ort, as

suggested in the discussion on Water above. A similar

change with Barnes-Hut is more di�cult, because in



the force calculation phase of Barnes-Hut, the bodies

and cells that will be read are not known a priori.

Most of the extra programming e�ort suggested for

EC attempts to bring in exactly the right data to a

processor. Similar programmer or compiler e�ort may

also have a bene�cial e�ect for a more sophisticated

implementation of LRC. There it could be used to

selectively update certain pages rather than using a

simple invalidate protocol.

8 Performance of Write Trapping and

Write Collection

Tables 4 and 5 contain the performance results for

the various combinations of write trapping and write

collection examined for EC and LRC, respectively.

2

8.1 Write Trapping

In order to evaluate write trapping performance, we

compare the implementations with identical write col-

lection mechanisms, i.e., EC-ci and EC-time for EC,

and LRC-ci and LRC-time for LRC, all of which use

timestamping for write collection.

For EC (see Table 4), EC-ci performs better only

when the dirty bit represents a data item larger than

4 bytes, the granularity of comparison for the twin-

ning version. The programs for which this is the case

are 3D-FFT and Water, both of which use an 8-byte

granularity. With an 8-byte granularity, the number

of dirty bits that need to be scanned in the write col-

lection phase is halved, reducing computation. Our

current implementation of timestamps using twinning

uses a granularity of 4 bytes even when the object

granularity is higher.

For LRC, the trade-o�s between the compiler-

instrumented and twinning versions are more well-

de�ned (see Table 5). The compiler-instrumented ver-

sion performs worse than the twinning versions for all

the programs. We attribute the inferior performance

of compiler instrumentation for LRC to a number of

EC-ci EC-time EC-di�

Trapping Comp. Ins. Twinning

Collection Timestamps Timestamps Di�s

SOR 14.86 13.23 13.28

SOR+ 14.09 13.22 13.25

QS 9.71 8.50 8.33

Water 18.25 19.21 19.73

Barnes-Hut 63.15 63.07 64.89

IS 1.86 1.81 2.01

3D-FFT 8.32 9.59 8.68

Table 4 Execution Times (in Seconds) for

Various Combinations of Write Trapping and

Write Collection in EC

2

The execution time for Barnes-Hut LRC-ci was not available

at the time of writing.

LRC-ci LRC-time LRC-di�

Trapping Comp. Ins. Twinning

Collection Timestamps Timestamps Di�s

SOR 18.87 13.41 13.14

SOR+ n/a n/a n/a

QS 26.44 9.66 10.04

Water 17.11 13.05 12.41

Barnes-Hut 57.59 37.75

IS 2.42 1.86 2.06

3D-FFT 13.95 10.32 9.23

Table 5 Execution Times (in Seconds) for

Various Combinations of Write Trapping and

Write Collection in LRC

factors including the need to scan over larger ranges

of timestamps for write collection, and the increased

cost of setting dirty bits because of their hierarchical

nature.

All results for EC-ci and LRC-ci in this paper

are with the compiler optimization discussed in Sec-

tion 4.1 in place. Except for SOR, where the compiler

optimization achieved a 16% execution time improve-

ment, the bene�ts were minor (5% for SOR+, 2% for

Water, and no improvement for the other programs).

8.2 Write Collection

In order to evaluate write collection performance,

we compare the implementations with identical write

trapping mechanisms, i.e., EC-time and EC-di� for

EC, and LRC-time and LRC-di� for LRC, all of which

use twinning.

For EC, the timestampingversion performs the best

for programs with migratory data that send multiple

overlapping di�s, such as IS and Water. For exam-

ple, the di�ng version of IS sends 4 times as much

data as the timestamping version (1.3MB for EC-di�

vs. 0.3MB for EC-time) at 8 processors. Hence, the

execution time of the timestamping version is 10% bet-

ter. For programs that require only a single di� to

be communicated at any acquire (for example, with

producer-consumer data), such as QS and 3D-FFT,

the di�ng version performs the best because it re-

quires less computation, while the amount of data

sent stays the same. For SOR, SOR+, and Barnes-

Hut, there is little di�erence between timestamping

and di�ng.

For LRC, SOR and SOR+ continue to show lit-

tle di�erence, IS again shows better performance with

timestamping, as does 3D-FFT with di�ng. For

Barnes-Hut, however, di�ng performs much better

than timestamping. Also, Water's performance with

di�ng has become better than with timestamping.

We attribute this result to the need to communicate

a large number of timestamps for these applications

which exhibit relatively �ne-grain sharing within a

page (see Section 5.3).



9 Related Work

The paper by Zekauskas et al. [13] studies the dif-

ference between a compiler instrumentation based and

a virtual memory based implementation of EC. There

are a number of di�erences between their study and

ours. First, we consider both EC and LRC, and of-

fer a comparison between the two. Second, our EC

twinning implementation results in far fewer protec-

tion faults than their virtual memory based imple-

mentation, because for small objects we copy the ob-

ject immediately when a write lock is acquired, rather

than write-protecting it. Our implementation per-

forms worse only if the object is not written, a rare

occurrence. Even in that case the cost is small be-

cause the object is small and therefore copying and

di�ng it is not very expensive. Third, they inves-

tigate only the combinations of write instrumentation

and timestamps, and the combination of twinning and

di�ng. We investigate also the combination of twin-

ning and timestamps, which is seen to be advanta-

geous for applications dominated by migratory data.

The execution times in this paper should not be com-

pared directly to their results, because of di�erences in

processor speed (40Mhz vs. 25Mhz) and di�erences in

communication speed and page fault overhead in the

underlying operating systems (Ultrix vs. Mach 3.0).

Castro et al. [5] compare DiSOM, an object-

oriented parallel programming system using EC, to

TreadMarks, a DSM system using LRC. They con-

clude that DiSOM provides better performance than

TreadMarks for a number of applications (matrix mul-

tiply, SOR, TSP, and Water). Super�cially, these re-

sults appear to contradict the results in this paper.

However, the nature of the comparison in Castro et

al. is very di�erent from the comparison made in this

paper. In addition to using EC, DiSOM relies on a

number of other techniques to achieve good perfor-

mance. These techniques include taking advantage of

the object-oriented nature of the system to avoid write

trapping, and �ne-grain control over communication,

such as per-object pack and unpack routines.

10 Conclusions

For the environment and the applications exam-

ined, neither EC nor LRC consistently outperforms

the other. The di�erences are largely due to the dif-

ferent coherence units in these software DSM systems.

EC outperforms LRC if the e�ect of false sharing

within a page dominates, or if the coherence unit is

larger than a page. LRC outperforms EC if the page-

sized coherency unit results in prefetching due to lo-

cality of future accesses. Given that there is no clear

winner in terms of performance, the choice between

the two models should probably be guided by pro-

grammability considerations.

In terms of programmability, we found that, in gen-

eral, writing a program to run correctly on EC re-

quired more e�ort than on LRC. For the programmer

who is writing a parallel program from scratch, this

e�ort may not be signi�cant since most of the sharing

behavior is well-understood. However, for the pro-

grammer who needs to port a program written for se-

quential consistency to EC, the e�ort required can be

substantial since detailed data access behavior needs

to be understood. The e�ort in writing a program for

good performance with EC, however, seems to be con-

siderable for many programs for both the initial pro-

grammer and the programmer concerned with porting.

We also assessed the performance of two write trap-

ping and two write collection techniques. For write

trapping, compiler instrumentation pays o� in EC

only when the granularity of sharing is greater than

a word, since the number of dirty bits scanned, and

therefore the computation, is reduced. In the case

of LRC, compiler instrumentation has worse perfor-

mance than twinning for all the applications that

we examined. For write collection, we have demon-

strated that for EC, timestamps perform better for mi-

gratory data due to reduced communication require-

ments. Di�ng sends more data because of multiple

overlapping di�s being communicated. For other types

of data, the higher computation overhead and com-

munication overhead due to sending multiple times-

tamps result in poorer performance for timestamping.

These overheads for timestamping are more important

in LRC, and sometimes dominate the gains of times-

tamping for migratory data.

References

[1] S. V. Adve and M. D. Hill. A uni�ed formalization of four

shared-memory models. IEEE TPDS, June 1993.

[2] D. Bailey et al. The NAS parallel benchmarks. Technical

Report TR RNR-91-002, NASA Ames, August 1991.

[3] B.N. Bershad, M.J. Zekauskas, and W.A. Sawdon. The

Midway distributed sharedmemory system. In Proceedings

of the '93 CompCon Conference, February 1993.

[4] J.B. Carter, J.K. Bennett, andW. Zwaenepoel. Techniques

for reducing consistency-related information in distributed

shared memory systems. ACM TOCS, August 1995.

[5] M. Castro et al. E�cient and 
exible object sharing. Tech-

nical report, INESC, July 1995.

[6] M. Dubois and C. Scheurich. Memory access dependencies

in shared-memorymultiprocessors. IEEE TSE, June 1990.

[7] K. Gharachorloo et al. Memory consistency and event or-

dering in scalable shared-memorymultiprocessors. In Pro-

ceedings of the 17th ISCA, May 1990.

[8] P. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy release

consistency for software distributed shared memory. In

Proceedings of the 19th ISCA, May 1992.

[9] P. Keleher et al. An evaluation of software-based release

consistent protocols. JPDC, October 1995.

[10] P. Keleher et al. Treadmarks: Distributed shared memory

on standard workstations and operating systems. In Pro-

ceedings of the Winter Usenix Conference, January 1994.

[11] K. Li and P. Hudak. Memory coherence in shared virtual

memory systems. ACM TOCS, November 1989.

[12] J.P. Singh, W.-D. Weber, and A. Gupta. SPLASH: Stan-

ford parallel applications for shared-memory. Technical Re-

port CSL-TR-91-469, Stanford University, April 1991.

[13] M.J. Zekauskas, W.A. Sawdon, and B.N. Bershad. Soft-

ware write detection for distributed shared memory. In

Proceedings of the 1st OSDI Symposium, November 1994.


