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Abstract

Relaxed consistency models have been shown to signi�cantly

outperform sequential consistency for single-issue, statically

scheduled processors with blocking reads. However, current

microprocessors aggressively exploit instruction-level paral-

lelism (ILP) using methods such as multiple issue, dy-

namic scheduling, and non-blocking reads. Researchers have

conjectured that two techniques, hardware-controlled non-

binding prefetching and speculative loads, have the potential

to equalize the hardware performance of memory consistency

models on such processors.

This paper performs the �rst detailed quantitative com-

parison of several implementations of sequential consistency

and release consistency optimized for aggressive ILP pro-

cessors. Our results indicate that hardware prefetching and

speculative loads dramatically improve the performance of

sequential consistency. However, the gap between sequen-

tial consistency and release consistency depends on the cache

write policy and the complexity of the cache-coherence pro-

tocol implementation. In most cases, release consistency

signi�cantly outperforms sequential consistency, but for two

applications, the use of a write-back primary cache and a

more complex cache-coherence protocol nearly equalizes the

performance of the two models.

We also observe that the existing techniques, which re-

quire on-chip hardware modi�cations, enhance the perform-

ance of release consistency only to a small extent. We pro-

pose two new software techniques { fuzzy acquires and se-

lective acquires { to achieve more overlap than allowed by

the previous implementations of release consistency. To en-

hance methods for overlapping acquires, we also propose a

technique to eliminate control dependences caused by an ac-

quire loop, using a small amount of o�-chip hardware called

the synchronization bu�er.
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1 Introduction

Long memory latencies remain a signi�cant impediment to

achieving the full performance potential of shared-memory

systems. The memory consistency model of a shared-

memory system determines the extent to which memory op-

erations may be overlapped or reordered for better perform-

ance. Previous studies have shown that the release consis-

tency model signi�cantly outperforms the conceptually sim-

pler model of sequential consistency [9, 13, 11, 27], albeit

with increased programming complexity [2, 8]. However,

the �rst two of these studies [9, 13] assumed single issue

statically scheduled processors with blocking reads. The

third study [11] assumed an aggressive processor, but ex-

amined only straightforward implementations of the consis-

tency models, and used trace-driven simulations requiring

signi�cant approximations. The fourth study [27] examined

one optimization with non-blocking reads, but assumed sin-

gle issue statically scheduled processors.

Current and next generation high-performance micro-

processors exploit increased levels of instruction-level par-

allelism (ILP), using aggressive techniques such as multiple

issue, dynamic scheduling, speculative execution, and non-

blocking reads. For such processors, Gharachorloo et al. pro-

posed two techniques { hardware prefetching and speculative

loads { to enhance the performance of both sequential con-

sistency and release consistency [10]. They conjectured that

these techniques can equalize the hardware performance of

the two models. These techniques have recently begun to ap-

pear in commercial microprocessors (e.g. HP PA-8000 [15],

Intel Pentium Pro [16], and MIPS R10000 [19]), and re-open

the issue of whether the hardware performance advantages

of relaxed consistency models justify the tradeo� in pro-

gramming complexity. Furthermore, for earlier processors

with blocking reads, the decision to support a relaxed con-

sistency model did not necessarily have to be made at pro-

cessor design time, since writes can be made non-blocking by

simply providing an early acknowledgment from an external

memory controller. Non-blocking reads, however, bring in a

value needed by other instructions and must be integrated

into the processor design, Thus, the consistency model now

has a larger impact on processor design, further increasing

the importance of understanding the bene�ts of relaxed con-

sistency on current processors.

This paper performs the �rst detailed quantitative com-

parison of several implementations of sequential consistency

(SC) and release consistency (RC) with processors support-

ing dynamic scheduling and non-blocking reads, and pro-
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poses new techniques to overlap acquire latencies using such

processors.

We use instruction-level simulation on six applications

to compare the hardware performance of SC and RC with

ILP processors, in both simple implementations as well as

with the enhancements provided in current ILP processors:

hardware prefetching and speculative loads. Our simulator

accurately models the internals of an aggressive ILP pro-

cessor similar to the MIPS R10000 along with an aggressive

memory system. The key results of this study are as follows.

� For SC, the two techniques dramatically improve per-

formance, providing a speedup over 2 in several cases.

� For RC, overall, the two techniques are not very ef-

fective, because RC already manages to hide all store

latency and a large part of load latency.

� The di�erence between RC and SC performance de-

pends primarily on whether the �rst level cache is

write-through or write-back and on the complexity

of the cache-coherence protocol. With our base pro-

tocol, which is fairly aggressive and represents many

current implementations, we �nd that RC consistently

outperforms SC. With write-through primary caches,

RC achieves a factor of 2 speedup over the best SC

for two of the six applications, and over 1.5 speedup

for two others. With write-back primary caches, the

speedups are less dramatic, but still fairly large (1.5

or more for three applications). With a more aggres-

sive, but more complex, cache-coherence protocol, op-

timized SC achieves performance comparable to RC

for two applications, but a signi�cant gap remains for

others. Our results show that the performance of SC

is highly sensitive to cache write policy and the ag-

gressiveness of the cache-coherence protocol, while the

performance of RC is generally stable across all imple-

mentations.

RC sees little bene�t from the two techniques because

these optimizations conservatively assume that all opera-

tions in program order after an acquire depend on that ac-

quire. In many cases, however, an acquire is followed by

operations that are independent of it, but may be inter-

spersed with other dependent operations. We propose two

software techniques, fuzzy acquires and selective acquires,

which seek to non-speculatively overlap independent opera-

tions with the latency of an acquire. To enhance methods

for overlapping acquires, we also propose a method to elim-

inate control dependences caused by an acquire loop using

a small amount of o�-chip hardware. We evaluate the new

techniques for the two applications for which the previous

optimizations provided a performance bene�t. We �nd that

the new techniques provide slightly better performance im-

provements than the previous techniques, without the on-

chip hardware support required for speculative loads. How-

ever, our techniques require additional analysis of the pro-

gram to identify operations which actually depend upon the

acquires we seek to overlap.

The remainder of the paper is organized as follows. Sec-

tion 2 discusses current implementations of SC and RC. Sec-

tion 3 presents our simulated architectures, methodology,

and applications. Section 4 describes the results of our com-

parison of current implementations. Section 5 motivates,

presents, and evaluates our new techniques for overlapping

acquires. Section 6 discusses related work. Section 7 con-

cludes the paper.

2 Current Implementations of Consistency Models

The most intuitive memory consistency model, sequential

consistency (SC) [18], guarantees that memory operations

appear to execute in program order. Release consistency

(RC) [8] distinguishes between data operations and acquire

and release synchronization operations. The primary relax-

ation that RC provides over SC is that data operations of a

processor can be reordered with respect to each other. The

primary constraint imposed by RC is that data operations

must appear to await the completion of previous (by pro-

gram order) acquire operations. Simple implementations of

the two models achieve the above constraints by prohibiting

a memory operation from entering the memory system un-

til all previous operations for which it must appear to wait

have completed.

The two optimizations for consistency models we evalu-

ate are hardware prefetching and speculative loads, as pro-

posed by Gharachorloo et al. [10]. These techniques take

e�ect whenever the constraints of a consistency model could

restrict the issue of a memory operation. Both techniques

exploit the instruction lookahead window in an aggressive

ILP processor. Similar techniques are used in the HP

PA-8000 [15], the Intel Pentium Pro [16], and the MIPS

R10000 [19].

The prefetch technique issues a hardware-controlled non-

binding prefetch [13] for a decoded memory operation in the

instruction window as soon as its address is available, and

if the operation cannot be issued otherwise. Prefetch allows

an SC system to obtain remote data for reads while a regular

memory operation is pending; prefetch allows an RC system

to prefetch reads past acquire operations. Since processors

typically implement precise exceptions, stores cannot issue

to the memory system until reaching the head of the instruc-

tion window. The prefetching technique allows both consis-

tency models to issue exclusive prefetches for such stores.

Speculative load execution goes one step beyond

prefetching by actually using the value of a load as soon

as that value becomes available (typically through the

prefetches discussed above). The technique preserves cor-

rectness by requiring that any data that is speculatively

loaded remain visible to the coherence mechanism. This is

achieved by using additional on-chip hardware in the form

of a speculative load bu�er. The speculative load bu�er must

communicate with the cache, tracking any invalidation, up-

date, or cache replacement operations on cache lines that

have had loads issued speculatively to them. If such a mes-

sage reaches the speculative load bu�er, the unit must then

interface with the processor's window of active instructions

and not only reissue the speculated load, but also roll back

all subsequent processor operations. The MIPS R10000 sup-

ports this rollback mechanism by stopping an incorrectly

speculated load when it seeks to retire from the processor's

instruction window; at that time, the hardware re-issues the

load and also 
ushes the rest of the instruction window [19].

3 Evaluation Methodology

The following sub-sections respectively describe the simu-

lated architectures, the simulation methodology and envi-

ronment, the performance metrics, and the applications used

in this work.
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3.1 Simulated Architectures

Memory System and Network. We simulate a hard-

ware cache-coherent multiprocessor with a full-mapped,

invalidation-based, three-state directory coherence proto-

col, where processing nodes are connected with a two-

dimensional mesh network. The number of processing nodes

we simulate is dependent on the application, as explained in

Section 3.4. Each processing node consists of a processor,

two levels of cache, and a part of the main memory and

directory. In our cache hierarchy, the �rst level is always

dual-ported, but can be either write-through with no-write-

allocate or write-back with write-allocate. We evaluate both

�rst-level cache con�gurations since write-hits in SC expose

the second-level access latency in a write-through con�gu-

ration, but only the �rst-level access in a write-back con-

�guration. In the absence of resource constraints, RC will

hide the latency of writes in either con�guration. Thus, we

expect the comparative results of SC and RC to di�er with

these di�erent �rst-level cache con�gurations. If we have a

write-through �rst-level cache, we also include a coalescing

line write-bu�er between the two levels of cache. Regard-

less of �rst-level cache con�guration, the second-level cache

is always a pipelined write-back, write-allocate cache. Both

levels are non-blocking with 8 Miss Status Holding Registers

(MSHRs) [17]. The MSHRs store information about misses

and coalesce multiple requests to the same cache line.

When there is a write request to a line which has a load

pending, the MSHR bu�ers the write and issues an owner-

ship request only when the read reply returns, as in many

current processor implementations. Allowing this ownership

request to overlap with a previous read request increases the

complexity at the directory controller and at the MSHRs,

since they would need to handle potential reordering of re-

quests in the network. Although our system is representa-

tive of current systems, this decision can potentially a�ect

the performance of store prefetching. Section 4.4 also as-

sesses the impact of the more aggressive but complex proto-

col where the read and ownership requests are overlapped.

Figure 1 gives our default primary memory system pa-

rameters. We have chosen smaller cache sizes than com-

mercial systems, commensurate with our application input

sizes (Section 3.4) and following the working-set evaluations

of Woo et al. [26]. Our secondary caches are chosen such

that secondary working sets of most of our applications do

not �t in cache; we choose primary cache sizes such that

any applications with �xed-size primary working sets �t in

cache. For representative applications, we also investigate

performance with cache sizes similar to those found in com-

mercial systems, and we �nd little change in overall results,

as discussed in Section 4.5.

The processor, network, and base memory system pa-

rameters are fairly aggressive, and meant to represent future

implementations. The parameters were chosen by extrapo-

lating from numbers given by various system vendors.

Base Processor. To exploit instruction-level paral-

lelism, our base processor model employs widely used tech-

niques like multiple instruction issue, dynamic (out-of-order)

scheduling, register renaming, speculative execution, and

non-blocking reads. The processor exploits ILP by exam-

ining a large window of instructions at a time, and executes

the instructions that are not dependent on the completion of

any previous incomplete instructions. This allows instruc-

tions to issue and complete out of program order. Except

for stores in the RC models, an instruction retires (gradu-

ates [19]) when it is complete and when all preceding in-

structions (by program order) have retired. A store in RC

retires when its address and value are resolved, and when

all previous instructions have retired. To guarantee precise

interrupts, stores are not issued into the memory system un-

til they reach the head of the instruction window. We use

the SPARC V9 MEMBAR [25] instructions (memory fences) to

enforce ordering of memory operations as required by the

consistency model.

The processor micro-architecture is most closely based on

the MIPS R10000 design [19]. Figure 1 gives the processor

parameters used in our simulations. These parameters were

chosen to model next-generation aggressive processors. The

default latencies for the various execution units approximate

those for the UltraSPARC.

Variations on the Base Processor. The base processor

model directly supports the simple implementation of re-

lease consistency. Variations on our processor and memory

system include a sequentially consistent processor model,

support for hardware-controlled non-binding prefetching,

and support for speculative load execution.

For a simple implementation of SC, we modify the ag-

gressive base memory system to issue a memory operation

only when the previous memory operations of that proces-

sor have completed. This method maintains ordering of all

memory operations as required by SC. Furthermore, a store

in SC does not retire from the instruction window till it is

globally performed.

To implement hardware prefetching, we issue prefetch

requests to the cache as described in Section 2. We prefetch

requests to the level of cache appropriate for the correspond-

ing demand fetch; thus write prefetches with the write-back

write-allocate primary cache and all read prefetches go to the

primary cache. Write prefetches with the write-through non-

write-allocate primary cache only fetch into the secondary

cache; bringing these to the primary cache would defeat the

purpose of a no-write-allocate cache.

We implement the speculative load bu�er near the pro-

cessor and use the mechanism employed by the MIPS

R10000 to rollback execution as described in Section 2. In

SC systems, we use the speculative load bu�er whenever we

want to issue a load out of order; in RC systems, this bu�er is

only used past the memory fences corresponding to acquires.

We do not impose a constraint on the size of the speculative

load bu�er, limiting it only by the number of loads in the

memory unit. We force a rollback when the primary cache

gets a coherence request from an external source or an inval-

idation request from the secondary cache for inclusion; there

is no need to rollback on primary cache replacements since

those lines will still remain visible to external coherence.

3.2 Simulation Methodology and Environment

We have developed the Rice Simulator for ILP-based Mul-

tiprocessors (RSIM) to model the architecture described in

Section 3.1. In contrast to many current execution-driven

simulators, RSIM is an instruction-driven simulator that

models both the processor pipelines and the memory sub-

system in great detail, including contention at various re-

sources. The code for the memory system and network

is heavily drawn from RPPT (the Rice Parallel Processing

Testbed) [6, 22]. RSIM is driven by application executa-

bles rather than traces so that interactions between the pro-

cessors during the simulation can a�ect the course of the

simulation. The detail in our simulator thus leads to in-

creased simulation times compared to those seen in either
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Memory Hierarchy Parameters

Cache line size 64 bytes

L1 cache (on-chip) Direct mapped,4K

L1 cache ports 2

L1 MSHRs 8

L2 cache (o�-chip) 4-way associative 64K

L2 MSHRs 8

Write bu�er (coalescing) 8 line entries

Memory interleaving 4-way

Memory Latency Components

L1 cache access 1 cycle

L2 cache access 8 cycles

Memory bus arbitration delay 3 cycles

Directory and memory access 18 cycles

Memory transfer bandwidth 16 bytes/cycle

Network Parameters

Network speed 150MHz

Network width 64 bits

Flit delay (per hop) 2 network cycles

Processor Parameters

Processor Speed 300MHz

Peak issue, retire rate 4 instructions/cycle

Instruction window size 64

Memory queue size 32

Functional units 2 integer arithmetic

2 
oating point

2 address generation

Renaming registers 128

Branch speculation depth 8

Maximum rollback penalty 8 cycles

Figure 1: Default simulation parameters.

execution-driven or trace-driven simulations; however, the

detail is necessary for the problems addressed by this paper.

The applications are compiled with a version of SPARC

V9 gcc modi�ed to eliminate branch delay slots and re-

stricted to 32 bit code, optimized with -O2 -funrollloop.

To speed up the simulation, we assume all instructions

hit in the instruction cache (with 1 cycle hit time) and pri-

vate (i.e., non-shared) variables also hit in the data cache.

Both of these approximations have been widely used in

shared-memory multiprocessor performance studies.

3.3 Performance Metrics

We divide execution times into its various components,

namely CPU time and stall time due to Reads, Writes,

Locks, Flags, and Barriers. However, with ILP processors,

each instruction can potentially overlap its execution with

both previous and following instructions. Hence, it is di�-

cult to assign stall time to speci�c instructions. We count a

cycle as part of busy time if we retire the maximum number

of instructions possible in that cycle (four in our system).

Otherwise, we charge that cycle to the stall time component

corresponding to the �rst instruction that could not retire in

that cycle. This convention is also followed by Rosenblum

et al. [23] Thus, e�ectively, our statistics for individual stall

components represent the cumulative time instructions in

each class stall at the top of the instruction window before

retiring. If an instruction retires without having spent any

time at the top of the instruction window, it is considered

to have fully overlapped with previous instructions. We use

these detailed statistics only to gain insight into the nature

of the various applications and to identify the portions of

the computation overlapped by various optimizations. For

purposes of comparing various implementations, however,

we use the total execution time as the primary performance

metric.

Application Input Size Processors

Water 343 molecules 16

FFT 65536 points 16

Erlebacher 64 by 64 by 64 cube, block 8 16

Radix 1024 radix, 512K keys, max 512K 8

MP3D 50000 particles 8

LU 256 by 256 matrix, block 8 8

Figure 2: Application parameters

3.4 Applications

We use six applications in this study { Radix, FFT and LU

from the SPLASH-2 suite [26]; Water and MP3D from the

SPLASH suite [24]; and Erlebacher, obtained from the Rice

parallel Fortran compiler group. Erlebacher solves partial

di�erential equations by performing 3-D vectorized tridiag-

onal solves using Alternating-Direction-Implicit (ADI) inte-

gration. The key data structures are 3-dimensional arrays

which are distributed by assigning a consecutive block of X-

Y planes to each processor. One phase dominates the execu-

tion time, and contains all the communication and synchro-

nization of this application. The computation in this phase

consists of a forward-substitution pipeline and a backward-

substitution pipeline, with 
ags to synchronize processors

sharing a boundary plane. The block size determines the

size of each pipeline stage.

The SPLASH and SPLASH-2 application suites have

been widely used in architecture research. LU was slightly

modi�ed to use 
ags instead of barriers for synchronization,

since 
ag synchronization improved performance. We also

inlined a daxpy function and interchanged a key loop nest

so that read misses occurred closer together for better over-

lap of memory operations. Water was modi�ed to move

certain private calculations outside of key critical sections

in the function UPDATE FORCES. Radix employs a tree-based

algorithm for its pre�x sum calculation.

Figure 2 gives the input sizes and number of proces-

sors used for the various applications. Because our simula-

tion times are necessarily much higher than seen in stud-

ies using execution-driven or trace-driven simulation, we

were restricted to using problem sizes one size smaller than

generally recommended for two applications (LU and Wa-

ter). However, we decrease the number of processors appro-

priately to ensure reasonable speedups (the recommended

problem sizes are for con�gurations of up to 64 processors).

We also use a smaller con�guration for MP3D and Radix

because of low speedup; these applications are included to

represent applications that stress the memory system.

4 Evaluation of Current Consistency Implementations

Sections 4.1 and 4.2 investigate the e�ect of the prefetching

and speculative load optimizations on SC and RC respec-

tively, and Section 4.3 compares SC with RC. Section 4.4

examines the impact of a more aggressive coherence proto-

col, while Section 4.5 evaluates the impact of larger cache

sizes on our results.

Figure 3 summarizes our results. As motivated by Sec-

tion 3.1, we investigate systems with write-through and

write-back �rst-level caches (shown on the left and right side

respectively of the �gure for each application). For each of

SC and RC, and for each �rst-level cache con�guration, we

examine three systems: Simp refers to the simple implemen-

tation, +PF adds load and store prefetching as discussed in

Section 2, and +SL further adds speculative loads to the +PF

con�guration. For each implementation, the �gure shows
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the total execution time, normalized to the time for a sim-

ple implementation of SC using the write-through L1 cache.

These times are divided into stall time due to reads, writes,

various synchronization constructs, and the remaining CPU

time, as discussed in Section 3.3. Recall that the value of

each component represents time stalled at the top of the in-

struction window. Thus, the low CPU times in our results

do not generally imply poor speedup; rather, these values

indicate that a large part of the busy time is completely

overlapped with previous longer latency operations.

4.1 Sequential Consistency Implementations

Sections 4.1.1 and 4.1.2 respectively analyze the perform-

ance impact of hardware-controlled prefetching and specu-

lative loads in SC systems with write-through L1 caches.

Section 4.1.3 summarizes the results with write-through L1

caches. Section 4.1.4 discusses the impact of a write-back

L1 cache.

4.1.1 Prefetching with Write-Through L1 Caches

With a write-through cache, hardware-controlled prefetch-

ing helps SC performance for all applications, but to a vari-

able extent. Three applications see an improvement in ex-

ecution time ranging from 14% to 25% (LU, FFT, and Er-

lebacher), while three applications see less than 10% im-

provement (Radix, MP3D, and Water). Overall, most of

the bene�ts of prefetching appear from reducing read stall

time; prefetching is generally unsuccessful in reducing write

stall time.

Several factors limit the bene�ts of hardware-controlled

prefetching in our applications. First, the �nite size of the

instruction window limits how early a prefetch can be issued.

In particular, if there are no other long latency operations

before the prefetched instruction in the instruction window,

the potential for overlap is limited. Thus, prefetching is

most e�ective when several memory misses occur close to-

gether within the instruction window. As a measure of the

amount of overlap obtained, our simulator records the frac-

tion of time that a given number of L1 or L2 MSHR entries

were occupied by memory accesses. We use this informa-

tion (not shown here for lack of space) in our analysis be-

low. Second, the address of the instruction to be prefetched

may depend on the value of a load instruction that is also

blocked from issuing. Since the value cannot be used until

the load completes, the later memory operation may not be

prefetched early enough. Third, for SC with write-through

caches, all writes must propagate to at least the L2 cache

before they are considered complete, and before they retire

from the instruction window. This minimum write latency

cannot be overlapped by prefetching. Finally, as explained

in Section 3.1, in our default system, if a store prefetch is

issued while a demand or prefetch load to the same cache

line is outstanding, the ownership request for the prefetch is

blocked until the outstanding read returns. (Sections 4.1.4

and 4.4 respectively describe the impact of eliminating the

last two limitations.) We next discuss how the above e�ects

impact the individual applications.

Radix and MP3D show less than 10% improvements with

prefetching. The key reason is that the most memory-

intensive portions of these codes contain memory opera-

tions whose addresses depend on values returned by previous

loads. This kind of dependence is exhibited by Radix in its

permutation phase and by MP3D in its cell array accesses.

Additionally, MP3D has limited write overlap when a write

prefetch to a cell following a read to the same cell is blocked

at the MSHRs.

Erlebacher shows the most bene�ts from prefetching. It

shows a high occupancy of both L1 and L2 MSHRs, indicat-

ing signi�cant overlap. Erlebacher sees bene�ts from store

prefetching because in the main computation (a �nely syn-

chronized pipeline), writes occur in a strided manner and

miss on the �rst access to each line in the pipeline stage.

As a result, for each pipeline stage, the �rst few writes miss

in the L2 cache and occur close together in the instruction

window. This clustering yields e�ective write prefetching. A

large part of the write latency still remains since only writes

that miss are overlapped with each other in small clusters,

and all writes (including hits and misses) still see the L2

hit latency. Further, writes often follow reads to the same

word, resulting in the ownership request of a write prefetch

to be serialized behind the corresponding read. Finally, Er-

lebacher follows the owner-computes rule, and so all write

misses are serviced by the memory on the writer's node ex-

hibiting a relatively low latency. In this application, reads

also have a strided access pattern, and so exhibit large ben-

e�ts from prefetching.

FFT behaves like Erlebacher in that it has clustered,

strided writes in the important transpose phase, making

store prefetching e�ective. As in Erlebacher, FFT still has

a signi�cant write latency because it pays the penalty of an

L2 hit for every write.

LU has a high degree of read overlap and bene�ts primar-

ily from read prefetching. However, the bene�ts are limited

because most of the overlapped misses in LU are L2 hits,

and the longer remote misses are not overlapped with one

another. A high (98%) secondary cache write hit rate (stem-

ming from the blocked nature of the computation) e�ectively

prevents store prefetching from getting any bene�ts, since

even prefetched writes in this con�guration must access the

secondary cache.

Water is successful in eliminating most of its read miss

latency stalls with prefetching; however, this does not trans-

late to a large improvement in execution time since read

misses form a relatively small fraction of the total execu-

tion time. The primary computation in Water consists of

an update of the force vector of a molecule in a critical sec-

tion. The lock acquire and a data read from the critical

section can be overlapped with each other. Water continues

to show a large write stall component because the prefetch

ownership request for the force update is blocked behind the

outstanding read to the same line. Further, several consecu-

tive loads and stores occur to di�erent elements of the same

molecule structure. These accesses are likely to access the

same cache line, limiting the potential for overlap within the

window. Water has two or more L2 cache MSHRs (which

include both read and write misses) occupied for less than

10% of the time.

4.1.2 Speculative Loads with Write-Through L1 Caches

The addition of speculative load execution helps every ap-

plication signi�cantly, with improvements in execution time

(relative to simple SC) ranging from 29% in MP3D to 51%

in LU. These improvements are seen in CPU time, read stall

time, and store stall time.

Compared to SC with prefetching alone, CPU time de-

creases signi�cantly for FFT, LU, Erlebacher, and Water.

Each of these applications bene�t from the ability to con-

sume the values of loads speculatively, as this ability allows

computation dependent on those loads to be largely over-
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Figure 3: Evaluation of Consistency models

lapped with a long latency memory access stalled at the

head of the instruction window.

FFT, LU, Radix, and MP3D see a signi�cant decrease

in their memory component. In the case of FFT and LU,

this decrease arises from a decrease in con
ict misses caused

by reordering of accesses; in either simple SC or SC with

prefetching, these applications see repeated con
ict misses

among subsequent demand read accesses, since these must

occur in order. With speculative load execution, loads can

issue in parallel and out of order; as a result, several loads

to the con
icting lines can occur concurrently. Load misses

to the same line can coalesce into the same MSHR, while

other loads can hit a line despite the fact that its set has a

pending MSHR. This eliminates some of the con
ict misses

seen using a system (such as SC or SC with prefetching

alone) in which demand reads can only occur one-at-a-time

and in order.

Radix and MP3D decrease in read time since each of

these applications has reads with addresses dependent on

the values of previous reads; such applications bene�t from

the ability to consume the value of reads as soon as possible,

since this gives them more potential for further overlap.

Among all the applications, only Radix sees bene�ts in

store latency. Radix gets these bene�ts that it did not get

with prefetching alone because it also has stores whose ad-

dresses depend on values returned by previous long latency

loads. The ability to consume values for loads and use those

values in sending out prefetches for the above stores im-

proves the write overlap for Radix.

One potential limitation of speculative execution is that

overly optimistic speculation could lead to excessive roll-

backs, which may hurt performance. However, we found

the number of rollbacks to be small for each of our appli-

cations. In the SC case, only LU sees a signi�cant number

of rollbacks (6094), and even there, fewer than 0.2% of all

loads cause rollbacks; rollback penalties make up less than

0.05% of total execution time. As expected, RC sees fewer

rollbacks (almost zero on all applications except LU) than

in the SC case, largely because RC issues far fewer loads

speculatively than SC does.

4.1.3 Summary for Write-Through L1 Caches

For sequentially-consistent systems with a �rst-level write-

through cache, we �nd that hardware-controlled prefetching

alone improves performance but the improvements are small

for some applications; the addition of speculative load execu-

tion consistently and signi�cantly increases system perform-

ance showing up to a factor of two speedup. Nevertheless, we

�nd that for an architecture with write-through L1 caches,

neither technique is su�cient to handle the large store la-

tency component associated with SC. We next determine
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the possible bene�ts of using a write-back cache instead.

4.1.4 Impact of Write-Back L1 Caches

Figure 3 shows that the primary change from a write-

through to a write-back L1 cache is in the decreased con-

tribution of write latency to execution time (Figure 3). In

FFT, LU, and Erlebacher, the relative contribution of write

latency decreases signi�cantly, since many writes that hit

in the write-through L1 cache had to experience L2 cache

latency; with a write-back L1 cache, these writes must only

take L1 access time. In contrast, the write latency compo-

nent does not drop much in Radix, Water, and MP3D. In

each of these applications, the write stall component is dom-

inated by remote write misses, on which write-back caches

have little e�ect.

The overall bene�ts of the two techniques of hardware

prefetching and speculative loads on SC systems with write-

back L1 caches are qualitatively similar to those with write-

through L1 caches. The improvements in execution time

range from 7% (Radix) to 28% (Erlebacher) for prefetch-

ing, and 28% (MP3D) to 60% (LU) for speculative load

execution (relative to simple SC). As for the write-through

case, the two techniques are more successful at reducing read

latency rather than write latency; the di�erence from the

write-through case is that the write latency forms a smaller

part of the execution time.

One di�erence from the write-through case occurs with

the speculative load con�guration for LU. LU sees previ-

ously unseen bene�ts in store stall time. These bene�ts

arise for reasons similar to the reduction in read stall time

for LU with a write-through L1: reordering of accesses and

prefetches cause many L1 con
ict misses to instead coalesce

in the MSHRs. This bene�t did not arise in the write-

through cache since all store accesses saw at least the L2

cache access time, regardless of whether or not they hit in

the L1 cache. The majority of the bene�ts with speculative

load execution for LU, however, come from faster loads and

computation, as in the write-through case.

4.2 RC Implementations

Performance with Write-Through L1 Caches. While

SC showed signi�cant improvements from the optimizations

of hardware-controlled prefetching and speculative loads,

Figure 3 shows that RC does not in general experience much

bene�t from these optimizations.

Qualitatively, there are two key di�erences in the way

the optimizations a�ect performance with RC and SC. As

explained in Section 2, RC already allows increased overlap

compared to SC; the optimizations help RC only when there

is an outstanding acquire or when a store with a known ad-

dress is waiting to reach the head of the instruction window.

Furthermore, once a store reaches the head of the window,

it retires immediately. This implies that most write latency

is already hidden. Therefore, the net e�ect on performance

of store prefetch is expected to be limited, and the e�ects

caused by the write-through L1 cache with SC are not ob-

served with RC.

Water is the only application helped unequivocally and

signi�cantly from the current optimizations to RC. It shows

improvement in execution time from both prefetching (5.2%

improvement over simple RC) and from speculative load exe-

cution (7.7% improvement over simple RC). The bene�ts are

achieved by overlapping the prefetch of the critical section

lock for the force updates, and the data within the critical

section. Since the critical sections have low contention, the

prefetch brings in valid data and is useful in hiding a large

part of the latency. However, bene�ts from these techniques

are far less signi�cant than the corresponding bene�ts in SC.

Erlebacher experiences marginal bene�ts from specu-

lative loads, with about 2.5% improvement in execution

time. The main communication in Erlebacher proceeds in a

pipeline, where the stages of the pipeline are tightly synchro-

nized with 
ags. If the pipeline is slightly unbalanced, the


ag and data values can be prefetched prematurely, elimi-

nating some of the potential performance bene�t from these

optimizations.

The remaining applications either remain unchanged or

degrade very slightly with the optimizations, possibly due

to premature prefetches.

Impact of Write-Back L1 Caches. Overall, unlike the

SC case, the choice of the �rst-level cache does not have

signi�cant impact on RC. The impact of the various op-

timizations with write-back caches is virtually identical to

that with write-through caches.

For a given RC con�guration, only one application

(Radix) sees a signi�cant reduction in execution time by

replacing write-through caches with write-back caches. The

di�erence arises with Radix only because it has a bursty

irregular write pattern which overwhelms the secondary

cache. Eventually, writes to remote data �ll up the MSHRS,

causing backup of subsequent requests, including write-

throughs from L1. This resource backup eventually reaches

into the L1 and the processor memory unit, adding con-

tention to both reads and memory writes. With an L1 write-

back cache, many writes hit in the L1; since these writes do

not propagate to the L2, they relieve some of the contention

and saturation present in the write-through con�guration.

MP3D and LU show a marginal degradation in perform-

ance when replacing a write-through cache with a write-back

cache. The reason is that our write-through cache is a no-

write-allocate cache while the write-back cache is a write-

allocate cache. Thus, the writes into the write-back cache

exacerbate con
icts within the cache.

Summary for RC. In summary, for our applications, the

optimizations used in RC do not provide much bene�t; the

best improvement in execution time was 7.7% for Water.

For four applications, the optimizations did not make a dif-

ference or resulted in a very slight degradation. Thus, our

experiments indicate that for RC, the cost of the on-chip

hardware for the optimizations may not be justi�ed. Re-

garding L1 cache write policy, our results show that except

for one application, write-through L1 caches performed com-

parable to write-back L1 caches for RC.

4.3 Comparing SC and RC

Our results so far show that for our application suite, the

simplest RC implementation outperforms the most opti-

mized SC. This is especially pronounced in the case with

write-through L1 caches, where simple RC provides over a

factor of two speedup for FFT and LU, a speedup of 1.5 or

more for Erlebacher, Radix and MP3D, and a speedup over

1.2 for Water. In the case of write-back L1 caches, the per-

formance improvement is less dramatic, but still signi�cant.

The speedups for simple RC relative to the most optimized

SC range from 1.15 for Water to 1.65 for Radix; three ap-

plications (LU, Radix, and MP3D) see a speedup of 1.5 or

more. The di�erence in the results for write-through and

write-back L1 caches arises because SC variants improve in

absolute cycle count from write-through to write-back, while
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the absolute cycle counts seen by RC systems stay the same

in both con�gurations, except for Radix. Thus, while SC

needs a write-back cache for best performance, the perform-

ance of RC is largely independent of cache write policy. Ac-

counting for possible additional latencies of having a write-

back cache, the gap between RC (which can run just as well

on a write-through L1 cache) and a high-performance SC

(which needs a write-back L1 cache for best results) may

increase further. Finally, either write-through or write-back

primary caches with multiple cycle latencies are also likely

to increase the gap between SC and RC.

4.4 Impact of a More Aggressive Protocol

As discussed in Section 3.1, to model a protocol with rea-

sonable complexity, our caches delay ownership requests for

writes to lines with pending shared reads. Thus, a write-

prefetch seeking to obtain ownership of a cache line would

be delayed if the cache had an earlier load miss to the same

line. A more aggressive system could allow such ownership

requests to be sent on to the directory, but would need to

handle possible races from network reordering at the direc-

tory and cache; this aggressive system may improve the over-

lap of ownership requests, but at the cost of added design

complexity. Such an enhancement may have an impact on

applications with migratory read-write sharing such as Wa-

ter and MP3D, or on applications with producer-consumer

sharing such as Erlebacher where the producer reads the

old value of the data before producing a new value.

1

How-

ever, this protocol enhancement will not have much impact

on applications such as Radix or FFT, since we observe that

these two applications do not see delayed ownership requests

in the key sections of their code. On our architecture, the

enhancement is also not likely to have a signi�cant e�ect on

LU since the lines that are read are likely to be replaced in

the L1 cache by con
icts before they are written, and LU

already exhibits an L2 write hit rate of 98%.

We did not simulate the above aggressive protocol be-

cause of its signi�cantly higher complexity. Instead, to ap-

proximate the impact of such a system, we inserted (by

hand) explicit software exclusive prefetch instructions imme-

diately before all read operations that are soon followed by a

write to the same word, for Water, MP3D, and Erlebacher.

Below, we report results comparing the performance of the

three applications with and without software prefetch in-

structions, for the versions of SC and RC that support spec-

ulative load execution and hardware store prefetching.

For SC, all three applications see further bene�ts in

terms of reduced store latency with one exception. The ex-

ception is Erlebacher with a write-through primary cache;

this con�guration is not amenable to further bene�ts in

the store component since Erlebacher achieves a very high

secondary-cache hit rate. The bene�ts for other experiments

range from a 12% improvement in execution time for Er-

lebacher with a write-back L1 cache to 22% improvement

for Water with a write-back L1 cache (relative to the best

SC without the software prefetch).

For RC, MP3D and Erlebacher do not achieve any im-

provements, since RC already hides store latencies e�ec-

tively. Water sees a further 12% improvement in execution

time because of more e�ective store-prefetching, which leads

to faster releases and consequently faster acquires.

1

In Erlebacher, some writes following reads to the same word ac-

cess non-boundary planes in the 3-D array; such planes are accessed

by only one processor. For such accesses, a four state protocol with a

valid-exclusive state can get bene�ts similar to a protocol that over-

laps read and ownership requests to the same line.

Comparing SC and RC, we �nd that this optimization

has narrowed the performance gap by reducing SC's store

limitations. Nevertheless, in MP3D, simple RC still sees a

speedup of 1.44 relative to the most optimized SC with a

write-through L1 cache and 1.3 with a write-back L1 cache.

Erlebacher sees a simple RC speedup of 1.43 over the most

optimized SC with a write-through L1, but �nds nearly

equal performance for the most optimized SC and simple

RC with write-back caches. Water stands apart from the

other two applications; the best SC now actually performs

better than simple RC. However, since RC also sees bene�ts

from the more aggressive protocol for Water, the best RC

achieves a speedup of 1.18 over the best SC with a write-

through L1 cache and a speedup of 1.1 with a write-back L1

cache.

Overall, these results suggest that the gap between SC

and RC performance can be decreased by adding complexity

to the cache-coherence protocol for some applications; how-

ever, a signi�cant gap still remains for many applications.

Furthermore, RC does not need the additional support to

achieve its level of performance.

The above results should not be interpreted as indica-

tive of the e�ects of software-controlled prefetching on the

performance di�erence between SC and RC, since we have

inserted software prefetches in a simple way only to ap-

proximate the more aggressive protocol. Previous work has

shown that aggressive use of software prefetching can en-

hance the performance of both SC and RC on a processor

with blocking reads [9, 13]. Processors with non-blocking

reads can also be expected to see bene�ts for both models;

however, the interaction between software prefetching and

non-blocking reads is more complex [21] and an evaluation

is outside the scope of this paper.

4.5 Impact of Larger Cache Sizes

We have also performed an analysis similar to that in Sec-

tion 4.3 using much larger caches (�rst level 32 KB, 2-way

associative, second level 2 MB, 8-way associative) for three

representative applications: Water, in which the best SC

and RC are close in both write-through and write-back;

Radix, in which there is a large di�erence between SC and

RC in both versions; and FFT, where the di�erence drops

signi�cantly from write-through to write-back. The results

for Water and FFT are almost identical to those of our pri-

mary runs. With Radix, write-back caches no longer per-

form any better than write-through primary caches for RC;

the di�erence is caused by a higher secondary-cache hit rate,

leading to lower MSHR occupancy and subsequently pre-

venting request backup even in the write-through case.

5 New Techniques to Tolerate Acquire Latency

Although RC provides signi�cant bene�ts over SC, only two

applications (Water and Erlebacher) saw any improvement

over simple RC by using the two techniques of hardware-

controlled prefetching and speculative loads. In Water, the

two techniques obtain their performance bene�ts by overlap-

ping data accesses within a critical section with the acquire

of the lock. In Erlebacher, speculative load execution only

shows bene�t in the backward pipeline stage of the computa-

tion. Both of these applications spend a signi�cant portion

of their execution time in synchronization. Although spec-

ulative load execution can improve performance, RC must

assume that all memory operations following an acquire in
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Code for Processor P

j

/* Prologue code */

WaitFlag(Flag[j][1])

for(i=1; i < N+1; i++)f for(i=1; i < N; i++) f

WaitFlag(Flag[j][i]) AcquireMemBar

AcquireMemBar WaitFlag(Flag[j][i+1])

DoWork(X[i]) DoWork(X[i])

ReleaseMemBar ReleaseMemBar

SetFlag(Flag[j+1][i]) SetFlag(Flag[j+1][i])

g g

/* Epilogue code */

AcquireMemBar

DoWork(X[N])

ReleaseMemBar

SetFlag(Flag[j+1][N])

(a) (b)

Figure 4: Application of fuzzy acquires.

program order depend on that acquire. Therefore, opera-

tions after an acquire can only speculatively overlap with

the acquire latency; if there is a mis-speculation, the sys-

tem must rollback all later instructions. We propose two

techniques to reduce the e�ect of acquire dependences by

recognizing that some operations after an acquire can be

independent of that acquire and can thus non-speculatively

overlap with the acquire latency. We also show a way to

further exploit this independence by decoupling acquire de-

pendences from control dependences.

5.1 Fuzzy Acquires

Our �rst technique, fuzzy acquires, is similar to the no-

tion of fuzzy barriers[14]. Fuzzy acquires can be used on sys-

tems which provide memory barrier or fence instructions (as

supported by most current architectures, including SPARC

V9, MIPS IV, and Alpha). On such systems, an acquire

can be implemented as an ordinary non-blocking load im-

mediately followed by a memory barrier. Fuzzy acquires

explicitly separate the acquire load and the memory barrier

following the load. Operations dependent on the acquire

must follow the memory barrier; however, operations inde-

pendent of the acquire can now be inserted between the read

and the memory barrier. This allows the acquire latency to

be overlapped with the independent instructions.

Fuzzy acquires are especially applicable when acquires

occur in computation loops. For example, consider the code

in Figure 4(a), performing a pipelined computation. In it-

eration i, processor P

j

waits on 
ag Flag[j][i] (set by the

previous processor in the pipeline), performs some compu-

tation on data X[i], and sets the 
ag Flag[j+1][i] for the

next processor. The AcquireMemBar and the ReleaseMemBar

are memory fence instructions that enforce ordering between

memory operations. The AcquireMemBar ensures that all pre-

vious loads (including acquires) complete before any subse-

quent operations are issued into the memory system, and

the ReleaseMemBar ensures that all previous operations com-

plete before subsequent stores (including releases) are is-

sued. These partial fences can be implemented using di�er-

ent classes of MEMBAR instructions available in the SPARC

V9 architecture

2

.

The key observation used to exploit fuzzy acquires for

the code in Figure 4(a) is that the 
ag acquire access in it-

eration i+1 (i.e., acquire of Flag[j][i+1]) is independent of

the computation of iteration i. We use software pipelining

2

Fuzzy acquires can also be used with full memory fences, as sup-

ported by the MIPS IV and Alpha architectures, with slight modi�-

cations to the code of Figure 4.

with fuzzy acquires to rewrite the given code segment as in

Figure 4(b) so that the acquire of Flag[j][i+1] is accessed

in the same iteration as the independent computation on

data X[i]. The AcquireMemBar at the beginning of the iter-

ation insures that the acquire of Flag[j][i] has completed

before the access to X[i]. Since the computation on X[i]

does not depend on the acquire of Flag[j][i+1], it can now

be overlapped with that acquire. Using fuzzy acquires has

e�ectively increased the space between the acquire operation

and its subsequent memory barrier operation and inserted

useful computation from the previous iteration to overlap

the latency of the acquire.

The following factors may limit the performance gain

due to fuzzy acquires. The �rst limitation occurs because

typical implementations of acquires involve spin-waiting in

a loop. In such a case, if the 
ag is not available, the pro-

cessor branch prediction algorithm is likely to �ll up the

instruction window with useless instructions from various

iterations of the acquire loop. Section 5.3 describes a tech-

nique to eliminate this problem. Second, the size of the

instruction window limits the overlap we can get, since the

acquire does not retire from the instruction window until

it is complete. Section 5.4 describes how this e�ect can be

alleviated. Third, in a case with critical sections, if the inde-

pendent computation added between the acquire read and

the memory barrier is not completely overlapped, then the

optimization may lengthen the critical section and increase

subsequent acquire times.

The software pipelining for fuzzy acquires can be imple-

mented transparent to the application programmer, by a

suitably aggressive optimizing compiler in places where it

can improve performance. In particular, moving the acquire

read one iteration ahead still retains the ordering of memory

operations imposed by the RCpc model [8].

5.2 Selective Acquires

Our second technique, selective acquires, eliminates mem-

ory fences which force all subsequent operations to await

the completion of an acquire. Instead, this technique uses

arithmetic instructions to explicitly and selectively establish

only the needed acquire dependences. We achieve this by in-

ducing a data dependence from the value returned by the

acquire to the addresses of those memory operations that

depend on the acquire. These dependences prevent the is-

sue of dependent operations, while allowing other operations

to issue non-speculatively.

For example, consider Figure 5(a), which shows two pro-

cessors accessing a shared task queue. There is no semantic

reason for the unrelated operations following P1's task en-

queue to await the completion of the enqueue. A system

could allow these later operations to issue non-speculatively

while P1's lock access for the queue is pending. Selective

acquires provide exactly this facility: exactly those opera-

tions dependent upon the acquire have their addresses set by

(and thus dependent on) lock values. Every dependent op-

eration does not need an explicitly added dependence. For

example, in the case of multiple dereferencing of a pointer,

only the �rst dereference must be made dependent on the

synchronization; others become dependent by transitivity.

The pseudocode in Figure 5(b) represents an enqueue op-

eration with selective acquires. Operations within the criti-

cal section are set to have address dependences on the lock.

In this case the lock is expected to return 0 when it is free,

so we add the value returned by the lock to the address of

the dependent operation (i.e., the access to the tail pointer).
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P1 P2

...

generate new task; ...

/* enqueue new task */ /* dequeue new task */

lock(L) lock(L)

insert task in queue remove task from queue

unlock(L) unlock(L)

... ...

(a) Enqueue-dequeue

! new task pointer is in r5

EnQ: acq [lock],X ! Acquire lock

add X, qtailptr, ptr ! Add lock value to tail

load [ptr], tail ! Get the queue tail

add tail, nexto�set, tail ! Reserve queue space

st task, [tail] ! Put task into list

rel 0, [lock] ! Release lock

Work: ld [var1], val

ld [var2], val2

cmp val1, val2

...

(b) Enqueue with added dependences

Figure 5: Code for a task queue.

When the lock is obtained, the address of the tail pointer

will be unchanged, but until then, the address will appear

unknown and the load of the pointer will not be issued. In

cases where the synchronization returns a value other than

zero, other operations, such as a subtraction followed by

an addition, can be used for inducing explicit dependences.

The pseudocode in Figure 5(b) explicitly generates a depen-

dence only on the �rst load within the critical section, so

only that load and operations dependent upon it must wait

on the lock. The unrelated operations in the Work section

may continue independently.

Selective acquires are not always applicable. For exam-

ple, Processor P2 in Figure 5(a) performs a dequeue opera-

tion, where all memory operations subsequent to the critical

section intrinsically depend on the values obtained within

the critical section. The compiler, library writers, or high-

level language programmers should use selective acquires

only where appropriate; a simpli�cation of this process is

part of our ongoing work [1].

5.3 Decoupling Acquire Dependences from Control De-

pendences

Fuzzy acquires and selective acquires improve performance

by eliminating arti�cial synchronization dependences in tra-

ditional memory consistency models. This section describes

a technique to remove arti�cially introduced control depen-

dences caused by implementations of synchronization.

Usually, synchronization operations are implemented us-

ing looping constructs, imposing a control dependence on

subsequent instructions. It is possible that processor branch

prediction may �ll up the processor's instruction window

with useless instructions from various speculative iterations

of the synchronization loop. These useless instructions can

prevent the processor from �nding useful subsequent ac-

cesses to overlap with acquire latency. To address this issue,

Gharachorloo et al. explicitly assume that the branch pre-

dictor will always predict that an acquire will succeed [10].

Forcing static prediction for a branch, however, may lead

to repeated mispredictions and rollbacks in cases where the

synchronization variables are not yet available.

We propose a mechanism to replace the acquire loop con-

struct with a single equivalent instruction, avoiding the use

of branches. This mechanism, called the synchronization

bu�er, can be implemented entirely o�-chip and does not

require changes to current commodity microprocessors.

Speci�cally, we tag the acquire memory operation as un-

cacheable and make it identi�able by the memory system

in some way (e.g., through a certain range of addresses as

possible with the MIPS R10000 [19], or through alternate

space identi�er bits as provided by the SPARC V8 and V9

architectures [25]). The o�-chip synchronization bu�er cap-

tures the tagged access and assumes responsibility for its

completion. If the value returned by the memory system for

the access does not indicate a successful acquire, the logic

associated with the synchronization bu�er transparently re-

issues the access, e�ectively implementing the synchroniza-

tion loop in hardware. The synchronization bu�er need only

re-issue requests when an external coherence action (such as

an invalidate) takes place. The bu�er also acts as a small

cache for synchronization variables. The small amount of

hardware required for the bu�er can sit at any level of the

o�-chip cache hierarchy, and does not require any modi�-

cation to current processors. This synchronization bu�er

scheme can be used with both the previous and the new

optimizations discussed in this paper.

5.4 Preliminary Evaluation of the New Techniques

This section evaluates our techniques, and also investigates

a combination of our techniques with hardware-controlled

prefetching. We do not combine our techniques with specu-

lative loads because the latter seeks to speculatively perform

all accesses subsequent to an acquire, while our techniques

seek to non-speculatively perform some accesses after an ac-

quire. We focus on Water and Erlebacher, which are the

only applications that give bene�ts with the optimizations

for RC seen in Section 4. Both of these applications spend

a signi�cant amount of execution time in synchronization.

Water. The simple RC version of Water has a synchroniza-

tion time of 20.1% of which 12.2% is due to lock synchro-

nization and 7.9% is due to barrier synchronization. The

lock time is a rough estimate of the maximum improvement

we can expect from our optimizations. For Water, we evalu-

ate selective acquires along with the synchronization bu�er;

the fuzzy acquire optimization is not applicable. We apply

the optimization primarily to the critical sections where a

processor atomically updates several force �elds of a water

molecule structure. Only the operations within the critical

section are dependent on the acquire; operations after the

critical section can proceed in parallel with the acquire.

To use selective acquires, we remove any memory fence

instructions for the critical section lock acquires, and make

the loads in the critical section dependent on the acquire

through an arithmetic dependence. Since the loads within

the critical sections in Water act on di�erent variables in the

same molecule structure, it su�ces to add only one explicit

dependence to the molecule pointer.

The use of selective acquires, along with the synchro-

nization bu�er and store prefetching, achieves an 11.0% re-

duction in total execution time compared to simple RC. In

contrast, prefetching alone fetched an improvement of 5.2%

and the addition of speculative loads to prefetching fetched

an improvement of 7.7% compared to simple RC. Recall that

the maximum achievable reduction when all lock accesses are

completely overlapped is 12.2%. Without the synchroniza-

tion bu�er, the bene�ts of selective acquires slightly exceed

those with prefetching alone, and are comparable to gains

with speculative loads. Thus, overall, our techniques pro-

vide small improvements over previous optimizations, but

do not require the on-chip support for the speculative load

bu�er and its associated data and control paths.
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Erlebacher. We evaluate the use of fuzzy acquires on Er-

lebacher. Only one phase in Erlebacher contains any com-

munication or synchronization. The key computation in this

phase consists of a forward substitution step and a backward

substitution step. This computation involves a recurrence,

where each value in the X-Y plane to be computed depends

on its neighbor in the Z plane below it (for the forward

substitution) and above it (for the backward substitution).

The computation is distributed among processors along the

Z-dimension, and is parallelized by implementing a pipeline.

In each pipeline stage, a processor computes a few values in

the X-Y planes allocated to it. At the end of a pipeline stage,

processors that share a boundary plane synchronize with

each other using 
ags, similar to the code in Figure 4(a).

Here we focus only on the backward substitution pipeline;

only this phase sees bene�ts from previous techniques.

3

We use software pipelining to incorporate fuzzy acquires;

loop iteration i issues an acquire of the 
ag for iteration i + 1

and accesses data for iteration i. A memory fence at the

beginning of each iteration ensures that data of iteration i

is not accessed until the relevant acquire (issued in iteration

i � 1) completes. The code transformation roughly follows

the example shown in Figure 4.

The use of fuzzy acquires gives a 4.3% reduction in exe-

cution time (relative to simple RC) without the synchroniza-

tion bu�er, and 7% with the synchronization bu�er. This

is comparable to the 6.3% reduction seen with the best RC

using the previous techniques in the backward substitution

phase. The synchronization bu�er does not give signi�cant

further improvements because we do not allow the acquire

to issue speculatively; the latter restriction arises because

our synchronization bu�er is assumed to be o�-chip and be-

cause we map the acquire operation into an uncached region.

As a result, the acquire stays at the head of the instruction

window longer and the instruction window �lls up. An al-

ternative scheme would have the processor treat this acquire

as a store, thus allowing it to retire earlier, and allowing the

synchronization bu�er to internally convert the operation to

a 
ag acquire. For such a case, the AcquireMemBar would

be substituted with a memory fence that stopped later loads

and stores until all previous stores had completed. We do

not evaluate such a scheme here, but expect that it will allow

greater potential for overlap than the current system.

6 Related Work

Several studies have evaluated the performance of mem-

ory consistency models [9, 11, 13, 27]. This paper presents

the �rst instruction-driven (or program-driven) simulation

study for consistency models for aggressive ILP processors,

evaluating two performance-enhancing techniques for con-

sistency models used in such processors. We also study new

techniques for overlapping acquire latency.

Two previous quantitative evaluations of memory consis-

tency models have used processors with non-blocking reads.

Gharachorloo et al. studied simple implementations of SC

and RC; further, their study was trace-driven (as opposed to

instruction or program-driven) and did not accurately model

the e�ects of synchronization and network contention [11].

Zucker and Baer studied SC and RC, implementing SC both

in a straightforward fashion and also with the prefetching

3

In the forward substitution pipeline, remote memory latency is

hidden because of a fortuitous branch misprediction, which allows

even simple RC to overlap synchronization latency with later work.

optimization; however, the processors they inspected were

single-issue and statically scheduled [27].

Previous studies have also considered techniques to over-

lap acquire latency. Several consistency models allow an ac-

quire to be overlapped with previous operations of its proces-

sor, but not with later operations [2, 8]. Entry consistency

allows acquires to be overlapped with certain subsequent

operations [5]. However, entry consistency is motivated

by software distributed shared-memory systems; therefore,

quantitative studies of entry consistency focus on the reduc-

tion in the number of messages and amount of data com-

municated due to synchronization rather than on overlap-

ping acquires with later operations. Our fuzzy acquire tech-

nique is a generalization of the fuzzy barrier technique [14]

but requires only a memory fence instruction and applies

to general acquires in RC. Rapid context switching on syn-

chronization [3, 4] can e�ectively overlap synchronization

latency, but requires special processor support. The QOLB

primitive prefetches a lock variable and gets data along with

the lock, resulting in decreased lock latency and overall com-

munication [12]. Our techniques of overlapping acquires can

be used in combination with QOLB since our technique al-

lows the prefetching to be overlapped with more instruc-

tions, making the prefetching more e�ective.

There has been substantial work in prefetching for mul-

tiprocessors (e.g., [7, 20]). This paper addresses the use

of non-binding hardware-controlled prefetching that exploits

an aggressive processor's existing instruction window, to en-

hance the performance of consistency models. The inter-

action between non-binding software-controlled prefetching

and the consistency model has been studied for simpler pro-

cessors with blocking reads [9, 13]; software prefetching was

found to signi�cantly enhance the performance of both SC

and RC. The interaction between software prefetching and

non-blocking loads is more complex [21], and its impact on

consistency models deserves further study.

7 Conclusions

Current ILP processors use the optimizations of non-binding

hardware-controlled prefetching and speculative loads to en-

hance the performance of consistency models. Qualitatively,

these optimizations seem to bring the performance of se-

quential consistency (SC) closer to release consistency (RC),

potentially making SC more attractive to build in hard-

ware for its easier programmability. This paper provides

the �rst quantitative evaluation of various implementations

of SC and RC for aggressive ILP processors. We evaluated

the e�ects of hardware-controlled load and store prefetch-

ing, and the e�ects of speculative loads with hardware-

controlled store prefetching. We found that for SC, these

two techniques enhanced performance considerably (giving

a speedup of over a factor of 2 in some cases). For RC, how-

ever, the optimizations showed an execution time improve-

ment greater than 5% for only one case. The di�erence in

performance between the two models, however, depends on

the write policy of the primary cache and on the complex-

ity of the cache-coherence protocol. For our fairly aggres-

sive base cache-coherence protocol, the simplest RC imple-

mentation signi�cantly outperforms the most optimized SC.

The di�erence is higher with write-through primary caches

than with write-back primary caches, but remains signi�cant

in both cases (three applications show a speedup of 1.5 or

more with RC for both cache con�gurations). With a more

complex cache-coherence protocol, SC achieves performance

comparable to RC for two applications, but a signi�cant per-
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formance gap remains for others. The performance of SC is

highly sensitive to cache write policy and the aggressiveness

of the cache-coherence protocol, while the performance of

RC is generally stable across all implementations. Overall,

our results show that RC hardware has signi�cant perform-

ance bene�ts over SC hardware, and at the same time re-

quires less system complexity with ILP processors.

Although RC performs well, the best RC implementation

had signi�cant acquire overhead in some applications. We

proposed the alternative software techniques of fuzzy and se-

lective acquires to overlap acquire latency. To alleviate the

e�ect of control dependences, we proposed an o�-chip hard-

ware synchronization bu�er to replace an acquire loop with

a single equivalent instruction. Our experiments with the

new optimizations show that they can provide comparable

or better improvements than previous techniques, without

the complexity of an on-chip speculative load bu�er.

In choosing a consistency model, the hardware designer

must consider both system performance and programmabil-

ity. The techniques of this paper address hardware perform-

ance. However, SC at the application programming level

also restricts compiler optimizations. To avoid these restric-

tions, it is likely that high-performance compilers will expose

a release-consistent model to the applications programmer.

If compilers mandate RC, then the improved performance

and lower complexity of RC further favor supporting RC in

hardware for systems with ILP processors.

This study has focused on increasingly used hardware

techniques for enhancing the performance of consistency

models. In the future, we plan to study the interaction

of software-controlled prefetching with consistency models

on aggressive ILP processors. We also plan to study the

impact of increased overlap of memory operations through

better compiler instruction scheduling for such processors.
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