
c© 2011 Pradeep Ramachandran

DETECTING AND RECOVERING FROM IN-CORE HARDWARE FAULTS

THROUGH SOFTWARE ANOMALY TREATMENT

BY

PRADEEP RAMACHANDRAN

DISSERTATION

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the

University of Illinois at Urbana-Champaign, 2011

Urbana, Illinois

Doctoral Committee:

Professor Sarita V. Adve, Chair, Director of Research

Associate Professor Vikram S. Adve

Assistant Professor Samuel T. King

Professor Marc Snir

Pradip Bose, Ph.D., IBM Research

Abstract

Aggressive scaling of CMOS transistors has enabled extensive system integration and building faster

and more efficient systems. On the flip side, this has resulted in an increasing number of devices

that fail in shipped components in-the-field for a variety of reasons including soft errors, wear-out

failures, and infant mortality. The pervasiveness of the problem across a broad market demands

low cost and generic reliability solutions, precluding traditional solutions that employed excessive

redundancy or piecemeal solutions that address only a few failure modes.

This dissertation presents SWAT (SoftWare Anomaly Treatment), a low cost resiliency solution

that effectively handles hardware faults while incurring low cost during the common mode of fault-

free operations. SWAT is based on two key observations about the design of resilient systems. First,

only those hardware faults that affect software need to be handled and second, since the common

mode of operation is fault-free, fault-free execution should incur near-zero overheads. SWAT thus

uses novel zero to low cost hardware and software monitors that watch for anomalous software

behavior to detect hardware faults. SWAT then relies on hardware support for checkpointing and

rollback recovery. When dealing with fault recovery in the presence of I/O, we identify that existing

software-level mechanisms that handle output buffering fall short. This dissertation therefore pro-

poses a simple low-cost hardware buffer for output buffering and demonstrates that this strategy

achieves high recoverability while incurring low overheads. Although not detailed in this disserta-

tion, SWAT contains a comprehensive diagnosis procedure that is invoked in the rare event of a fault

to isolate the root-cause of the fault by distinguishing between software bugs, transient hardware

faults, and permanent hardware faults. Effectively, SWAT handles hardware faults uniformly as

software bugs, amortizing the resiliency cost across both hardware and software reliability.

The results in this dissertation show that the SWAT strategy is effective to detect and recover the

ii

system from a variety of in-core permanent and transient faults in various microarchitecture units for

both compute-intensive and I/O-intensive workloads. In particular, this dissertation demonstrates

that the SWAT detectors detect nearly all permanent and transient faults in most hardware units

in both types of workloads, with only a small fraction of the faults corrupting application output.

(Certain hardware structures like the FPU may need additional support to be amenable to software

anomaly detection.) Further, a majority of these faults are tolerated by the applications due to their

inherent fault-tolerant nature, resulting in only 0.2% of the injected faults affecting the application

and yielding incorrect outputs (such faults are classified as Silent Data Corruptions, or SDCs).

When attempting to recover the detected faults, we show that handling I/O is important for fault

recovery. With our proposed low-cost hardware for output buffering, we show that over 94% of the

detected faults are recoverable with low performance and area overheads during fault-free execution

even in the presence of I/O. Finally, this dissertation builds a fundamental understanding behind

why the SWAT strategy is effective for handling faults in modern workloads. The key insight is

that the SWAT detectors are adept at detecting perturbations in control operations and memory

addresses and a majority of the application values affect such operations. Faults in values that that

never affect such operations are hard-to-detect and require additional support to be amenable to

software anomaly detection.

In summary, this dissertation presents SWAT as a complete solution to detect and recover from

from in-core hardware faults. The techniques presented here therefore have far reaching implications

on the design of low-cost solutions to handle unreliable hardware.

iii

For Suchi

iv

Acknowledgments

I have waited for six long years to write this chapter of my thesis and thank everyone who has

helped me achieve my most arduous goal to date, but now that I am here, I am lost in memories

and my words are failing me. I imagine that I can never do justice to all the sacrifices that people

have made for me in this small acknowledgments section, but I will, as I have always done in life,

put my best step forward.

No language has enough words to capture the gratitude that I feel towards my adviser, Sarita

Adve. Her calm and composed approach towards technically challenging problems and her never-

say-die attitude to attain the optimal solution has groomed me to become an energetic and innova-

tive researcher. Apart from her work (which she is absolutely brilliant at), I adore her many values

towards life at large and hope that some day, I will be as successful a researcher and as nice a person

as she is today. Thanks Sarita, its been a pleasure and an honor to work under your guidance.

I would also like to thank my lab-mates, Alex, Siva, Byn, Hyojin, Rakesh, Rob, Vibhore, and

Jayanth for a healthy research environment and many collaborations. Special thanks to the members

of my committee, Prof. Vikram Adve, for many discussions about the SWAT project and beyond,

Prof. Sam King for valuable feedback on my work and the friendly discussions in the hallway about

conference deadlines and the paper-beard, Prof. Marc Snir, for detailed comments on my thesis,

and Dr. Pradip Bose for being a part of my research for the last six years and my manager when I

was an intern at IBM.

Many thanks to the several support staff in the department including Molly (thanks for the

occasional free coffee), David Anderson (you are a genius at bringing our cluster out of trouble),

Andrea (for the never-ending list of conference room reservations that I request), and Mary Beth

(for helping me with the deposit process) for their support. My research has been supported by

v

the NSF grant numbers CCF 0541383 and CCF 0811693, the Gigascale Systems Research Center

(funded under FCRP, an SRC program), an Intel PhD Fellowship, and an IBM PhD Scholarship.

In the barren landscape of Champaign, I have had the honor of meeting the most wonderful set

of people who forever will stay in my heart. This dissertation might have been ready a little sooner

were it not for these folks, but the experience would not have been anything close to this magical.

Each and every one of them has touched my heart every single day and has helped me keep my

barely-there sanity through the years. Thanks to Dog, Harini, Poba, Kaushik, Pitu, Chandu, Aari,

JP, Raghu, AJ, Vivek, Milu, Aloo, Bedhi, Vids, and Thathu. I could never have done it without

all of you!

I would also like to acknowledge the support that I have received from my family from India –

Amma, Appa, Praveen, Ammamma, Archana, Shraddha, Latha, Periyamma, Periyappa, and Dilip.

They have helped me persevere through all these years to attain what seemed like an impossible

mountain. Thanks for having the faith in my abilities and for teaching me how to dream.

Last, but certainly not the least, I would like to acknowledge the contribution of that one special

person in my life – Suchi. My closest friend, my best bud, and the only person in the world who

understands and appreciates my madness in all its vibrant colors. She has given me strength,

courage, and reason to finish this dissertation. I hope that some day, I can do for you all the

wonderful things that you have done for me and as a small token of my appreciation towards all

that you have done for me, I dedicate this dissertation to you. Thanks!

vi

Table of Contents

List of Tables . x

List of Figures . xii

Chapter 1 Introduction . 1
1.1 Motivation . 1
1.2 SWAT – An Error Resilient System . 2
1.3 Advantages of SWAT . 4
1.4 Contributions of This Thesis . 5

1.4.1 Low-Cost Software Anomaly Detection . 6
1.4.2 Application-Aware Silent Data Corruptions 7
1.4.3 Application-Aware Detection Latency . 7
1.4.4 Hardware Output Buffering for Fault Recovery 8
1.4.5 A Solution for Detecting and Recovering In-Core Hardware Faults 8
1.4.6 A Qualitative Understanding of Why SWAT Works 9

1.5 Organization . 9

Chapter 2 Related Work . 11
2.1 Fault Detection . 11

2.1.1 Hardware-Only Detectors . 11
2.1.2 Symptom Detectors . 12

2.2 Application-Aware Fault Tolerance Metrics . 13
2.3 Fault Recovery . 14

2.3.1 Hardware Versus Software Checkpointing . 14
2.3.2 Recovery without I/O . 15
2.3.3 Recovery with I/O Handling . 15

2.4 Modeling Application-Level Fault Propagation . 16
2.5 Other Related Work . 17

Chapter 3 Fault Detection . 18
3.1 Low-Cost Software Anomaly Detectors . 18

3.1.1 Fatal Traps . 19
3.1.2 Hangs . 19
3.1.3 Kernel Panics . 19
3.1.4 High OS . 19
3.1.5 Application Aborts . 20

vii

3.1.6 Address Out-of-Bounds . 20
3.2 Evaluating SWAT Detectors . 22

3.2.1 Simulation Environment . 22
3.2.2 Fault Model . 24
3.2.3 Fault Detection . 25
3.2.4 Metrics for Fault Detection . 26

3.3 Results . 27
3.3.1 Potential SDC rate . 27
3.3.2 Detection Latency . 30
3.3.3 Contributions from Each Software Anomaly Detector 32
3.3.4 Software Components Corrupted . 34

3.4 Summary and Implications . 36

Chapter 4 Application Aware Metrics for SWAT 38
4.1 Application Aware Silent Data Corruptions . 38

4.1.1 I/O Intensive Distributed Client-Server Workloads 39
4.1.2 Compute Intensive SPEC Workloads . 40

4.2 Application Aware Detection Latency . 46
4.2.1 Soft-Latency: A Recovery-Oriented Definition of Detection Latency 46
4.2.2 Evaluating the Soft-Latency . 48

4.3 Summary and Implications . 50

Chapter 5 Fault Recovery . 52
5.1 SWAT Recovery Components . 53

5.1.1 Processor Checkpointing . 54
5.1.2 Memory Logging . 54
5.1.3 Device Recovery . 55
5.1.4 Output Buffering . 55

5.2 Evaluating SWAT Recovery . 59
5.2.1 Simulation Environment . 59
5.2.2 SWAT Recovery Implementation . 60
5.2.3 Metrics for Evaluation . 62

5.3 Results . 64
5.3.1 Overheads During Fault-free Execution . 64
5.3.2 Recoverability of SWAT . 67

5.4 Summary and Implications . 69

Chapter 6 Understanding When and Where SWAT Works 71
6.1 An Application-Centric View of Faults . 72

6.1.1 A Model of How Faults Propagate Through the Application 73
6.2 Data-Only Values . 76

6.2.1 Number of Data-only Values in Applications 76
6.2.2 Faults in Data-only Values . 80
6.2.3 Detecting Hard-to-detect Faults in Data-Only Values 82
6.2.4 Detecting Hard-to-detect Faults in Random Values 85
6.2.5 Identifying Critical Data-Only Values . 85

viii

6.3 A Hardware-Centric View of Faults . 87
6.3.1 Structure-specific SDC Rates . 87
6.3.2 Effect of Utilization on SDC Rates . 88

6.4 Summary and Implications . 89

Chapter 7 Conclusion and Future Work . 91
7.1 Summary and Conclusions . 91
7.2 Limitations and Future Work . 93

7.2.1 Leveraging Cross-Layer Support to Lower the SDC Rate 93
7.2.2 Low-Cost Fault Recovery for Multithreaded Applications in Multicore Systems 94
7.2.3 Analytical Model of Application Resiliency 95
7.2.4 A SWAT Prototype . 96
7.2.5 Other Fault Models and Faults in Other Components 97

Appendix A Data Tables For Graphs . 98

References . 107

Author’s Biography . 113

ix

List of Tables

3.1 Parameters of the simulated processor. 22
3.2 Description of server workloads, along with their outputs, used in the evaluation. In

addition to these workloads, we also evaluate SWAT on all the 16 SPEC CPU 2000
C/C++ codes. 23

3.3 Fault injection locations. 25

4.1 Inherent fault tolerance of SPEC C/C++workloads. The errors under output quality
refer to the difference from the fault-free output. The following 4 of the 16 SPEC
CPU 2000 C/C++ workloads do not tolerate error in their output and are not listed
above– 197.parser, 253.perlbmk, 254.gap, and 255.vortex. Any departures of the
outputs of these applications from their fault-free outputs are classified as SDCs. . . 42

5.1 Components of fault recovery. SWAT relies on hardware support for checkpointing
and for output buffering to achieve low cost fault recovery. 54

5.2 I/O statistics of our server workloads. Although the client drivers are all multi-
threaded (except for mysql), the client drivers spend a majority of their time waiting
for I/O from the sever. 60

5.3 95th percentile of memory log sizes. The area overheads from storing the memory logs
in hardware may be reduced by keeping a small hardware buffer that is periodically
flushed to a dedicated portion of the memory. 65

6.1 Number of static locations chosen for inserting value-based invariants to detect hard-
to-detect faults in data-only values. Each chosen location has at least one dynamic
instance that was classified as data-only. 83

6.2 Reduction in Potential SDCs in 3 structures from uniform round-robin utilization for
permanent and transient faults. 89

A.1 Data for Figure 3.2 that shows the potential SDC rates from permanent and transient
faults injected into non-FP units in server and SPEC workloads. 98

A.2 Data for server workloads in Figure 3.3 that shows the per-structure breakdown of
the outcome of permanent and transient faults injected into server workloads. 98

A.3 Data for SPEC workloads in Figure 3.3 that shows the per-structure breakdown of
the outcome of permanent and transient faults injected into SPEC workloads. 99

A.4 Data for Figure 3.4 that shows the detection latency for permanent and transient
faults in server and SPEC workloads. 99

x

A.5 Data for server workloads in Figure 3.5 that shows the per-structure breakdown of
the detection latency for permanent and transient faults in server workloads. 100

A.6 Data for SPEC workloads in Figure 3.5 that shows the per-structure breakdown of
the detection latency for permanent and transient faults in SPEC workloads. 101

A.7 Data for Figure 3.7 that shows the software components corrupted for faults detected
in (a) server and (b) SPEC workloads. 101

A.8 Data for the server workloads in Figure 4.7 that shows the distinction between Hard-
and Soft- Latency for detected permanent and transient faults. 102

A.9 Data for the SPEC workloads in Figure 4.7 that shows the distinction between Hard-
and Soft- Latency for detected permanent and transient faults. 102

A.10 Data for Figure 5.3 that shows the performance and area overheads from buffering
external outputs in hardware on fault-free execution. 102

A.11 Data for Figure 5.4 that shows (in KB) the sizes of the memory logs for various
checkpoint intervals. 102

A.12 Data for Figure 5.5 that shows the outcome of detecting and recovering from perma-
nent and transient faults injected into the server workloads. 103

A.13 Data for Figure 5.6 that shows the importance of device recovery and output buffer-
ing for system recovery in the presence of permanent faults in I/O intensive server
workloads.. 103

A.14 Data for Figure 6.2 that shows the percentage of data-only values for the SPEC
workloads under the ref and test input sets. 104

A.15 Data for Figure 6.3 that shows the change in the number of data-only values as the
window of propagation is increased from 1M instructions till 20M instructions. . . . 104

A.16 Data for Figure 6.4 that shows the outcome of architecture-level transient faults
injected into (a) data-only values and (b) random values for the SPEC workloads. . 105

A.17 Data for Figure 6.5 that shows the coverage and false positives in detecting hard-
to-detect faults in data-only values with invariants on all data-only values in the
workloads. 106

A.18 Data for Figure 6.6 that shows the coverage of hard-to-detect faults with oracular
detectors placed using the fanout metric. 106

xi

List of Figures

1.1 High-level overview of SWAT. SWAT uses software anomalies to detect faults that
manifest as errors on software, and invokes diagnosis and recovery to ensure contin-
uous system operation. 4

3.1 Identifying the limits of the globals address space, heap and the stack to detect out-of-
bounds accesses. The software communicates the limits to hardware which enforces
the checks. 21

3.2 Potential SDC rates from permanent and transient faults injected into non-FP units
in server and SPEC workloads. The low rates show that the SWAT detectors are
highly effective in detecting hardware faults. 27

3.3 Per-structure breakdown of outcomes from permanent and transient faults in (a)
server and (b) SPEC workloads. While SWAT is effective for most structures, yielding
low SDC rates. Faults in structures that operate on purely data-only values, such
as the FPU, cause higher rates of potential-SDCs, warranting additional support for
software anomaly detection. 29

3.4 Detection latency for detected non-FPU permanent and transient faults in (a) Server
and (b) SPEC workloads. Over 98% of the detected faults are detected at a latency
of < 10M instructions, making then recoverable with hardware checkpointing. 31

3.5 Per-structure breakdown of the detection latency of permanent and transient faults
in (a) server and (b) SPEC workloads. 33

3.6 Contribution of each detector towards detecting permanent and transient faults in
(a) server and (b) SPEC workloads. 34

3.7 Software components corrupted for faults detected in (a) server and (b) SPEC work-
loads. System state is corrupted in 46% of the faults detected, making it important
to restore the system state during fault recovery. 35

4.1 Reduction of potential SDCs in server workloads with application-driven analysis for
(a) permanent and (b) transient faults. The numbers at the top of each bar are the
number of potential-SDCs in absolute terms and as a percentage of injected faults (in
parenthesis). Client-side retries reduce potential-SDCs in server workloads significantly. 40

xii

4.2 Reduction of potential SDCs in SPEC workloads with application-driven analysis for
(a) permanent and (b) transient faults. The numbers at the top of each bar are the
total number of potential-SDCs in absolute terms and as a percentage of total injected
faults (in parenthesis). The bars labeled > X% show the number of potential-SDCs
if quality degradation of X% is assumed as acceptable, with the baseline and out-
of-bounds SWAT detectors. The application-driven analysis shows that many of the
potential-SDCs do not affect the quality of the solution. 43

4.3 An example of an SDC in the application eon. The small perturbations caused by
the faults are not detected by the anomaly detectors employed by SWAT, resulting
in small variations in the image output image. Support from the software may be
leveraged to detect such faults and lower the SDC rate further. 44

4.4 Application-aware analysis of permanent faults in the FPU with SPEC workloads. A
large fraction of the faults in the FPU that were previously categorized as potential
SDCs are tolerated by the SPEC workloads. Additional support is however required
to lower the SDC rate for faults in such units that are used for pure data computations. 45

4.5 Example execution to show that the system may be recovered even from checkpoints
that record corrupted architecture state. Although the checkpoint taken at T2 records
corrupted architecture state, the system would be recovered by rolling back to that
checkpoint. Ignoring this property of recovery may lead to making unnecessarily
conservative conclusions about the recoverability of detected faults. 47

4.6 Difference between Hard- and Soft-Latency. Although the checkpoint at T2 records
corrupted architecture state, the software state is clean, resulting in successful fault
recovery. Thus, the Soft-Latency is more relevant for studying fault recovery than
the Hard-Latency. 47

4.7 Detection latency for (a) server and (b) SPEC workloads. With the new definition
of detection latency, 90% of the faults are detected within 100K instructions for all
workloads across permanent and transient faults. In contrast, 90% recoverability
required millions of instructions for transient faults in SWAT. This latency reduction
reduces recovery overheads significantly. 49

5.1 A hardware-level implementation of output buffering. The proposed buffer is a simple
hardware structure that delays device outputs until they are verified to be fault-free. 57

5.2 Inter-arrival rate of I/O operations for the server workloads. Although our workloads
are of smaller scales than commercial workloads, they exhibit similar trends for I/O
operations when compared to commercial workloads. 61

5.3 Overheads from hardware output buffering on fault-free execution. The low perfor-
mance overheads and log sizes for checkpointing intervals of under 100K instructions
motivate designing systems with these checkpoint intervals. 64

5.4 Maximum Sizes of the memory logs for various workloads (in KB). The memory logs
grow to MegaBytes in size for checkpoint intervals of millions of instructions. 66

5.5 Outcome of detecting and recovering injected permanent and transient faults. At a
checkpoint interval of 100K instructions, SWAT detects and recovers over 94% of the
injected faults with < 0.2% of the faults resulting in unacceptable SDCs. 67

5.6 Importance of device recovery and output buffering for system recovery in the pres-
ence of I/O. The No-Device and No-I/O systems show that device recovery and
output buffering are required for system recovery and cannot be ignored. 69

xiii

6.1 A fault may corrupt opcode, register names, address, or data values (of src/dest
registers). Each such corruption propagates through the application in a variety of
ways. The SWAT detectors identify corruptions in most values but are limited in
their ability to identify pure data value corruptions. 73

6.2 Fraction of application values that are data-only in the SPEC workloads. The small
number of data-only values demonstrates that faults in most values propagate to con-
trol instructions and/or memory values, resulting in detectable anomalous execution.
Further, workloads with floating point data have more data-only values making them
more vulnerable than those that purely operate on integer values. 77

6.3 Number of data-only values with increasing window of propagation for SPEC work-
loads with test inputs. 79

6.4 Outcome of architecture-level transient faults injected into (a) data-only values and
(b) random values for SPEC workloads. Faults in data-only values are detected at
longer latencies, and lead to more SDCs, making such values critical to protect to
harden the application against hardware faults. 81

6.5 Effect of using range-based invariant detectors to detect hard-to-detect faults in data-
only application values. 84

6.6 Efficacy of oracular detectors derived with the fanout metric to identify hard to detect
faults. The fanout metric identifies critical values to protect accurately. However,
the detectors must be carefully designed to keep the false positive rates low. 86

xiv

Chapter 1

Introduction

1.1 Motivation

The number of transistors on a given piece of Silicon has seen an exponential growth over the last

few decades, as predicted by Moore’s law [45]. This trend in technology scaling has lead to ever-

increasing integration in the processor core, resulting in faster systems. This has fueled a computing

revolution, resulting in the use of computers in all walks of life and affecting nearly every action in

our daily lives.

This revolution, however, has a dark side. Although the scaled transistors are faster and cheaper,

they are prone to failures due to their smaller dimensions. As we enter the late CMOS era where

device dimensions approach atomic distances, components in shipped chips are expected to fail

for a variety of reasons including soft-errors due to radiation from cosmic particles and packaging

material, wear-out failures due to aging and elevated operating temperatures from increased power

density, infant mortality due to insufficient burn-in, and design defects due to highly complex

integrations [8, 79].

There is thus an impending challenge to the design of computer systems – one of building

reliable systems from such unreliable hardware [8]. Effective fault tolerance mechanisms to detect

such failures, diagnose their root cause, recover the system, and repair/reconfigure around the failed

components are thus required. Further, this problem of unreliable hardware is expected to pervade

the entire computing market, warranting solutions that incur low performance, area, and power

costs to be deployable across a broad market.

High-end systems, such as main frames, and server systems, have employed methods that achieve

high reliability and availability targets (of five 9’s of reliability or more) for several decades now [7,

1

39, 72]. In order to achieve such high reliability targets, these systems deployed extensive amounts

of redundancy in hardware and in software to detect and recover the system from faults. Dual

modular redundancy (or its generalization, n-modular redundancy) is a commonly used mechanism

for hardware redundancy where the hardware is duplicated (or has n copies in the n-modular system)

to check for inconsistencies during execution. Software duplication through N-version programming

has also been employed by such systems to ensure that the executing software does not contain any

bugs [5]. Although these mechanisms achieve high reliability targets, they incur excessively high

overheads. The dual-modular solution, for example, incurs an overhead of 100% in core area and

power, and significant overheads in performance [4].

The challenge of unreliable hardware is, however, expected to affect consumer systems of the

future. Such systems have stringent requirements in cost, making traditional solutions that employ

excessive redundancy inviable due to their high overheads. Such systems may in fact be willing to

accommodate slightly lower reliability targets at the benefit of lower performance, power, and area

overheads. In a recent workshop, an industry panel converged on a 10% area overhead target to

handle all sources of chip errors as a guideline for academic researchers [67].

1.2 SWAT – An Error Resilient System

This thesis presents SWAT (Software Anomaly Treatment) – a complete low-cost solution for in-core

fault resiliency for commodity systems. SWAT encompasses strategies for detection, diagnosis, and

recovery of permanent and transient hardware faults in both single and multicore systems [28, 33,

34, 35, 66].

Two high-level observations drive the SWAT work. First, a hardware reliability solution should

handle only those faults that affect software execution. Second, despite the growing threat of

reliability, fault-free operation remains the common case and must be optimized.

Motivated by these observations, SWAT detects faults by watching for anomalous software

behavior with zero to low-cost hardware and software monitors. Fault detection is thus largely

oblivious to the underlying mechanisms that causes the fault, treating hardware faults analogous

to software bugs and potentially amortizing the overheads for system reliability. Once a fault is

2

detected, SWAT relies on checkpointing support for rollback recovery. Since committed external

outputs cannot be rolled-back for recovery, externally visible outputs are buffered until they are

verified to be fault-free (commonly referred to as the output-commit problem). Given that fault

detection happens at a high level, diagnosis is required to identify the root cause of the fault by

distinguishing between software bugs, transient hardware faults and permanent hardware faults [28,

34]. SWAT uses repeated rollbacks for both single-threaded and multi-threaded workloads to achieve

this distinction. For permanent hardware faults, SWAT first diagnoses the faulty core in the multi-

core environment [28], and then the faulty microarchitecture-level component within the faulty

core [34]. SWAT thus relies on low-cost hardware and minimal support from software for fault

detection and on a thin firmware layer to orchestrate diagnosis, recovery, and repair once a fault is

detected.

Figure 1.1 gives a high level overview of SWAT. The SWAT system takes periodic checkpoints of

the execution. When a fault in the underlying hardware is activated by the software and manifests as

an error, the execution of the software is corrupted (shown in dotted lines). The SWAT detectors

monitor for such anomalous execution of the software and detect the underlying hardware fault

through a Software Anomaly Detection. If the fault does not cause any anomalous execution, the

fault is successfully ignored.1 Subsequently, the SWAT firmware is invoked to diagnose the fault,

and to take the appropriate recovery action to ensure continuous system operation. For permanent

faults, repair may also be invoked on the faulty component.

Compared to prior work on low-cost solutions that handle hardware faults, SWAT is a complete

solution for fault resiliency that is not tailored to any particular fault model. Much of the prior

work has focused only on detection and for faults from a particular fault model, such as transient

faults [26, 55, 61, 63, 64, 75, 78], software bugs [21, 52] or permanent faults [12]. Further, most

prior solutions tackle only one component (i.e., detection, diagnosis, or recovery) at a time, without

considering its interactions with the other components. This may result in ignoring certain inter-

actions that are critical to the design of the whole system (such as the relationship between fault

detection and recovery), and may also result in high overheads when all the components are assem-

1A small fraction of the anomalous executions may escape SWAT’s detectors. The detectors are designed such
that these instances of escaped faults are minimized.

3

Figure 1.1: High-level overview of SWAT. SWAT uses software anomalies to detect faults that
manifest as errors on software, and invokes diagnosis and recovery to ensure continuous system
operation.

bled together for a full solution. Finally, SWAT is the first solution that proposes implementing

output buffering with simple hardware. While much of the prior work has ignored output buffering,

the only existing solution for buffering outputs in a modern system that relies on checkpointing for

recovery is implemented in software [51] and suffers from fundamental limitations that make the

committed outputs vulnerable to in-core faults.

1.3 Advantages of SWAT

Owing to the above strategy to handle failures, SWAT has the following advantages, overcoming

several key limitations of existing solutions.

1. Handles faults that matter. Since SWAT uses software anomaly detectors that detect

faults at a high level, it is oblivious to underlying failure modes. Further, the SWAT strategy

results in ignoring faults that are masked at lower levels of the system such as the circuit, the

microarchitecture, the architecture and the application. SWAT thus handles only those faults

that matter, reducing overheads.

2. Holistic systems view enables novel solutions. The detection, diagnosis, and recovery

components in SWAT are built in unison, with each component exploiting synergies from

its interactions with other components. This holistic view enables novel solutions that were

previously not feasible [66], providing avenues for further innovation.

4

3. Low, amortized overheads. The SWAT detectors are implemented with low-cost hardware

monitors that do not affect the fault-free operations of the system. The philosophy of SWAT

to optimize for the common case of fault-free operations thus results in a low-cost solution.

Further, SWAT employs solutions (some of which are derived from prior work on handling

software bugs) to handle a variety of hardware faults, amortizing the cost of resiliency across

different hardware failure modes.

4. Customizable and flexible. The detection module of SWAT reports to a thin firmware

layer that orchestrates the diagnosis, recovery, and repair processes. This firmware layer sits

under the software and is customizable by the hardware vendor based on the needs of the

system. (The hardware vendor thus does not have to entirely rely on the software vendor

for resiliency, although the software may provide some hooks to observe anomalous software

execution.) The firmware can be used to implement runtime trade-offs between overheads

during fault-free execution and the achieved resiliency targets. This provides an additional

degree of flexibility to the system, making the firmware-based strategy of SWAT attractive.

5. Beyond hardware reliability. While the focus of SWAT has been largely on hardware

faults, the long term goal in SWAT is to build a unified solution that treats the problems of

unreliable hardware and software as one. Further, some concepts in SWAT, especially in the

diagnosis components [28, 34] may also have applications in post-Silicon test and debug cycles

by providing debug traces that activate the underlying fault.

1.4 Contributions of This Thesis

The main contribution of this dissertation is presenting SWAT as a solution that detects and recovers

from in-core hardware faults, along with an intuition behind its effectiveness. We do not evaluate

SWAT on faults in the memory subsystem as techniques such as parity and ECC are commonly

deployed to protect the system against such faults while the logic is typically not well-protected. For

faults within the core, the SWAT detection strategy is demonstrated on various types of workloads,

including compute-intensive, I/O-intensive, and media workloads [28, 35, 66]. The recovery module

5

orchestrates fault recovery in the presence of I/O, effectively handling the notorious output commit

problem.

Other members of the SWAT team led the development of the SWAT diagnosis module that

handles fault diagnosis in both single-core and multi-core systems has been developed [28, 34]. The

diagnosis module leverages checkpointing support from the recovery module for repeated rollback-

replays and first identifies whether the software anomaly detection was because of a software bug, a

transient hardware fault or a permanent hardware fault. In the case of permanent hardware faults,

it first identifies the faulty core in a multi-core environment without assuming a spare fault-free

core [28], and then refines the diagnosis to a finer microarchitecture-level granularity using Trace-

Based Fault Diagnosis (TBFD) [34]. Additionally, the diagnosis module may also be used to identify

false positives from the heuristic software anomaly detectors. The diagnosis module is not detailed

in this thesis, but interested readers can refer to the relevant paper for the single-threaded [34] and

multi-threaded [28] diagnosis modules in SWAT.

1.4.1 Low-Cost Software Anomaly Detection

This thesis presents a collection of low-cost software anomaly detectors that are effective in detecting

both permanent and transient hardware faults in compute-intensive SPEC and I/O-intensive server

workloads. The detectors observe anomalous execution of the software with minimal support from

the software (in the form of hooks that declare locations of key software-level events such as signaling

mechanisms and abort routines) and are implemented with low-cost hardware (such as existing

performance counters in modern processors).

Our results unequivocally show that this handful of simple detectors effectively detect most of the

injected permanent and transient faults, while incurring low overheads during fault-free execution.

A majority of the injected permanent and transient faults (injected at randomly chosen locations

within the processor core and at random points during the execution of the application) that are

not masked by these workloads are detected, and only a small fraction of the faults that escape

detection corrupt the outputs of the application; such faults are called silent data corruptions (or

SDCs). The server workloads have a resulting potential-SDC rate of under 0.2% and 0.4% for

6

permanent and transient faults, respectively, while the rates for the SPEC workloads are 0.6%

and 0.6% for permanent and transient faults injected into non-FPU units, respectively. Further,

over 98% of the faults detected in non-FPU units have a detection latency of under 10 million

instructions.

1.4.2 Application-Aware Silent Data Corruptions

Since software anomaly detectors, like SWAT, detect hardware faults by observing anomalous soft-

ware behavior, the properties of the application need to be considered to accurately gauge their

limits. Taking such application-level fault tolerance properties into consideration, we show that

most of the faults that escape fault detection and corrupt application outputs are tolerated by the

application. For the server workloads, since network failures are common, the clients codes have

fault tolerance built-in, in the form of repeated retries with back-off, that may be used to tolerate

faults. For the SPEC codes, we follow previous work [17, 36] and show that many of these codes

perform soft computations that can handle some degradation in output quality. Although the latter

observation has been made previously, our analysis spans all 16 C/C++ workloads of the SPEC

CPU 2000 suite and is thus more comprehensive. After considering application-level tolerance, we

find that only 56 of the 35,760 faults injected into the server and SPEC workloads (< 0.2%) are

SDCs (assuming 1% quality degradation is acceptable for the soft computations in SPEC). This

translates to a two orders of magnitude reduction in the FIT rate when compared to the base system

with no protection against faults (all faults that are not masked lead to failures in the base system).

Further, several of these 56 faults may be identified with additional support from the software, but

we leave this exploration to future work.

1.4.3 Application-Aware Detection Latency

We next consider application-level metrics for the detection latency and understand its implications

on fault recovery. We identify that although a fault may corrupt the architecture state, the system

may still be recoverable as long as the affected state does not perturb software state. We thus

redefine detection latency as the time from software state corruption (vs. architecture state corrup-

7

tion) to detection and show that although a shorter checkpoint intervals is sufficient, ignoring this

distinction leads us to choosing checkpoint intervals of millions of instructions where the overheads

from checkpointing are several orders of magnitude higher. It is thus important to consider an

application-aware notion of detection latency to accurately evaluate the efficacy and the overheads

of fault recovery.

1.4.4 Hardware Output Buffering for Fault Recovery

Previous work has largely ignored buffering external outputs to handle the output commit problem

although it is important for any fault tolerance scheme that relies on checkpointing for fault recov-

ery. We present and evaluate, for the first time, a hardware implementation of output buffering that

circumvents fundamental limitations of previously proposed solutions that buffered outputs in soft-

ware. Our results show that at short checkpoint intervals of up to 100K instructions, the proposed

technique incurs <5% performance overhead on fault-free execution and incurs area overhead of

under 2KB. At checkpoint intervals of millions of instructions, however, the incurred performance

overheads are much higher, with up to a 62X increase in client response time for a checkpoint

interval of 10M instructions. Practical systems should thus support short checkpoint intervals of

under millions of instructions (milliseconds of execution in a modern processor) to minimize the

fault-free overheads. Prior work on hardware checkpointing assumed, however, that intervals of 10s

of milliseconds may be acceptable as they did not consider the overheads incurred from buffering

outputs.

1.4.5 A Solution for Detecting and Recovering In-Core Hardware Faults

Putting the detection and the recovery modules together, we demonstrate a system that achieves

low SDC rates and high recoverability for in-core hardware faults, while incurring low overheads

during fault-free execution. To our knowledge, this is the first evaluation of a full recovery scheme

with a software anomaly detection technique that detects and recovers from in-core faults even in the

presence of I/O; prior work has evaluated solutions for either detection or for recovery in isolation.

In this combined system, at a recovery interval of 100K instructions for server workloads, 94% of the

8

injected permanent and transient faults are either masked or recovered without affecting application

output, 4% are detected but not recovered, and only 44 (0.2% of the injected 17,920) faults corrupt

the application outputs and result in SDCs. We also demonstrate that output buffering and device

recovery are critical for system recovery in the presence of I/O.

Given this high recoverability at short checkpoint intervals, SWAT can protect systems that see

less than one fault every 10 milliseconds. Since the latency to fault detection and recovery is of the

order of 100K instructions for a majority of the injected faults (which translates to sub-millisecond

intervals in a modern 1GHz processor with an IPC of 1), and diagnosis takes up to 10 milliseconds

to identify the root cause of the fault [28], SWAT can handle such high fault rates.

1.4.6 A Qualitative Understanding of Why SWAT Works

Finally, this dissertation builds an intuition behind why SWAT works by taking both an application-

centric and a hardware-centric view on faults. With the application-centric view, it shows that < 6%

of application values in modern applications do not affect control flow or memory addresses (we

classify such faults are data-only). Consequently, a majority of the injected faults affect control

operations or memory addresses and since software anomaly detectors are adept at identifying such

perturbations, software anomaly detection is effective for fault detection. It also shows that faults

in such data-only values are hard to detect and require additional support from techniques that are

devised to identify faults in data values [66]. With a hardware-centric view, the dissertation also

shows that faults in structures used for control operations are easier to detect than those that affect

pure data low, and that a uniform round-robin schedule may help fault detection by making fault

activation more uniform.

1.5 Organization

This dissertation is organized as follows. Chapter 2 presents work related to the concepts discussed

in this thesis. Chapter 3 discusses the techniques for fault detection, along with an evaluation of

their efficacy to detect permanent and transient hardware faults. Chapter 4 takes an application-

aware notion towards fault tolerance and re-visits the SDC rate and the detection latency for the

9

SWAT detectors. Chapter 5 discusses fault recovery in SWAT, with particular emphasis on fault

recovery in the presence of I/O. It also ties the recovery module along with the detection module and

presents the efficacy of SWAT to detect and recover in-core hardware faults. Chapter 6 then builds

a fundamental understanding behind why SWAT works by taking an application- and hardware-

centric view on faults. Chapter 7 summarizes this dissertation and concludes with a discussion on

directions for future work.

10

Chapter 2

Related Work

The SWAT system presented in this thesis is a low-cost solution encompassing detection, recovery,

and diagnosis in the presence of permanent and transient hardware faults. Although there has

been prior and concurrent work related to SWAT, to the best of our knowledge, SWAT is the first

low-cost solution that provides a comprehensive solution for detection, diagnosis, and recovery of

both permanent and transient hardware faults.

This chapter outlines related work with respect to fault detection (Section 2.1), application aware

metrics (Section 2.2), fault recovery (Section 2.3), modeling application-level fault propagation

(Section 2.4), and other related work (Section 2.5).

2.1 Fault Detection

2.1.1 Hardware-Only Detectors

Traditional Detectors

Traditional high-end commercial systems often detect faults through coarse-grain hardware-level

redundancy (e.g., replicating an entire processor or a major portion of the pipeline) [7, 47, 72].

Such approaches incur significant area, performance, and power overheads as a significant portion

of the hardware is duplicated.

Low-Cost Hardware Detectors

In an attempt to reduce the cost incurred from full hardware duplication, several approaches have

been proposed to selectively place hardware-only detectors that detect hardware faults. Austin

proposed DIVA, an efficient checker processor that is tightly coupled with the main processor’s

11

pipeline to check every committed instruction for errors while incurring lower overheads than repli-

cating the entire processor [4]. Argus proposed using computation checkers to detect hardware faults

by monitoring their manifestations in data-flow, control-flow, and memory address values [44]. The

IBM POWER6 system also uses hardware checker circuits to detect hardware faults by monitoring

low-level hardware events [38]. Although these solutions lower the cost incurred from hardware

added for resiliency, the overheads may still by significant. Argus, for example, reported a 16% area

overhead for the core from the extra logic for fault detection [44]. Further, such low-level detection

mechanisms may not identify faults in all hardware components (only those components that have

checkers are protected) and may identify faults that are masked by higher levels of the system, such

as the architecture or the application, incurring unnecessary overheads.

Shyam et al. recently proposed online testing of certain structures in the microprocessor for

hard faults and recovery by disabling them and rolling back to a hardware checkpoint [68]. Since

these tests are run only when the structures are idle, the performance loss incurred is rather small.

Constantinides et al. enhanced this scheme further in by adding hardware support so that the

software can control the online testing process, adding flexibility for choosing test vectors [12]. The

performance penalty incurred by this form of software-controlled online testing is high for reasonable

hardware checkpointing intervals (which are of the sub-millisecond range) as shown in Chapter 5.

Furthermore, the continuous testing of hardware may accelerate the wear-out process, exacerbating

the problem of failing hardware.

2.1.2 Symptom Detectors

Since the problem of unreliable hardware is expected to even affect commodity systems where some

trade-offs in fault coverage for lower overheads may be acceptable, detectors that employ excessive

redundancy may not be applicable owing to the high incurred cost.

This has resulted in a surge of low-cost solutions that monitor for software misbehavior or

anomalies as symptoms of faults in the underlying hardware [12, 21, 26, 52, 55, 61, 63, 64, 75, 78].

Compared to traditional detectors, such detectors incur low cost in the common mode of fault-free

operation, making them attractive alternatives. While these solutions have shown the efficacy of

12

symptom detectors to handle transient faults [26, 55, 61, 63, 64, 75, 78] and software bugs [21, 52],

permanent hardware faults have been less studied [12]. Further, these solutions are largely piece-

meal and are typically tailored for a particular type of fault, ignoring the effects of other faults in the

system. The SWAT system, on the other hand, reduces the cumulative costs by not distinguishing

between transient and permanent faults during fault detection and by devising a solution that

encompasses all aspect of fault tolerance, including detection, recovery, and diagnosis.

2.2 Application-Aware Fault Tolerance Metrics

Previous work has observed that certain applications have an additional degree of fault tolerance

by virtue of their computations [17, 36] and because they are recoverable even from corrupted

architecture state, as long as the state of the application is pristine [1, 2, 10, 25].

We adapt previous work on application-level fault tolerance of multimedia [17, 36], artificial

intelligence [36], and compute-intensive workloads [36] and derive acceptance criterion for the set

of SPEC workloads and the server workloads that we use. We expand on prior work that observed

that although commonly regarded as being intolerant to faults, even some of the SPEC workloads

may tolerate corruptions in output values [36]. We demonstrate that only 4 of the 16 C/C++ codes

in the SPEC suite do not tolerate corrupted outputs.

Further, prior work on application-level reliability has been largely restricted to using software

assisted checkpointing techniques to record and replay the minimal state required for application-

level recovery [1, 2, 10, 25, 32, 36, 69]. The focus of using application-aware notions to study the

detection latency in this thesis is, however, to make the distinction between correct execution from

an architecture and from an application stand point, and understand its impact on recoverability.

While a similar observation was made by Li et al. [36], the focus of their work was on recovering the

application by checkpointing minimal amount of state (their checkpoint constitutes registers state,

PC, and stack). In this work, we are more concerned with identifying the checkpoint intervals for

fault recovery; prior work on reducing the size of the checkpoints can still be leveraged.

13

2.3 Fault Recovery

Once a fault is detected, the system may be recovered through either forward-error recovery (FER),

or backward-error recovery (BER) techniques. In FER, the detectors provide sufficient information

that enable fault recovery without re-execution. ECC is a good example of an FER scheme where

single bit-flips are easily identified and corrected with ECC and without re-execution. BER schemes,

on the other hand, rely on replaying the execution from a pre-recorded pristine checkpoint to restore

the system. BER schemes therefore take periodic checkpoints of the system state, and buffer external

outputs until they are verified to be fault-free to avoid the output commit problem.

SWAT relies on backwards-error recovery mechanisms for fault recovery, with support for check-

pointing and output buffering. Since the detectors detect faults by observing software-level anoma-

lies, the fault is allowed to corrupt the state of the system which is then recovered from a pristine

checkpoint.

While BER techniques for fault recovery and support for transaction abort in transactional

systems [46] bear some similarities, there are two key differences between the two solutions. First,

owing to the limited abilities in I/O handling and limited buffering capabilities in caches, transac-

tions are typically limited to be for short durations (of 10s or 100s of instructions). Fault-tolerant

systems, on the other hand, warrant recovery for longer intervals, requiring explicit support for

buffering outputs. Second, the frequency with which fault recovery is invoked for fault tolerant

systems is much lower than that in transactional systems as faults are much rarer than transaction

aborts. Transactional memory systems have nevertheless borrowed several ideas from the literature

on BER techniques for fault recovery to enable low cost recovery when a transaction is aborted.

2.3.1 Hardware Versus Software Checkpointing

Software-level checkpointing schemes [11, 32, 41] are typically used for low frequency checkpointing

(every few seconds or minutes) as they incur high overheads from operations for checkpointing.

Consequently, they add unacceptable delays to I/O operations, significantly impacting fault-free

execution. We therefore focus on hardware checkpointing schemes [16, 51, 60, 71] as they can handle

high frequency checkpointing (every few milliseconds, or lower) at lower performance overheads.

14

2.3.2 Recovery without I/O

SafetyNet [71] and ReVive [60] are two schemes that handle recovery with hardware checkpointing

without any application or ISA changes. Both schemes rely on a periodic snapshot of the architec-

ture registers for processor checkpointing. SafetyNet collects its memory logs in dedicated hardware

buffers called CLBs (Checkpoint Log Buffers), incurring hardware overheads. For checkpoint in-

tervals of 1000s of instructions SafetyNet incurs negligible performance impact with a CLB sized

at 512KB. ReVive, on the other hand, collects its memory logs in memory and protects them with

parity. ReVive incurs much lower hardware and negligible performance overheads for checkpoint

intervals in the 10s of milliseconds range. Recent proposals have also suggested using a combination

of hardware and software for system recovery [16]. These schemes, however, do not handle recovery

in the presence of I/O, making them unusable for any real-world application where I/O to crucial

to communicate with the external world (either through inputs or through outputs).

2.3.3 Recovery with I/O Handling

In addition to architecture state recovery, output buffering and device recovery become important

in the presence of I/O. Traditional fault-tolerant systems used replicated executions (with duplicate

processors) to check the values and the order of I/O operations before committing them [7, 39]. To

our knowledge, ReVive-I/O is the first and only implementation of output buffering in a modern

checkpointing-based system without relying on such redundant executions [51].

For output buffering, ReVive I/O relies on a dedicated software layer called Pseudo Device

Drivers (PDDs) [41] that buffers outputs in memory. These outputs are protected from faults by

ReVive’s memory checkpointing scheme. When the outputs are verified to be fault-free (i.e., at the

next checkpoint interval), the PDD invokes the device driver to commit the outputs to the devices.

There are, however, three limitations to such a software-level implementation. First, ReVive I/O

assumes that the driver that actually commits the outputs to the devices does not activate the fault

and that the committed outputs are fault-free. However, since the buffered outputs are high-level

events (such as DMA writes to disk or to the network card), the driver may take tens of milliseconds

to commit them to the devices [51]. In this interval, the driver software may activate an in-core

15

fault and commit corrupted outputs. This a fundamental, yet subtle, limitation of software-level

buffering that has not been previously explored. Second, the PDD software that buffers outputs

is complex as it requires understanding the output semantics of the devices. It is thus hard to

extend this complex buffering to support generic devices. For example, ReVive I/O cannot handle

outputs that by-pass kernel interfaces or use dedicated hardware. Finally, the lowest checkpoint

interval that ReVive I/O has been evaluated for is 20ms for which outputs are delayed by 40ms.

Since the acceptable response time for a latency-bound transaction is 100ms [53], the 40ms addition

significantly reduces the amount of time available to handle the transaction, making the delays

excessive. In fact, through the techniques presented in this dissertation, current symptom detectors

can support shorter checkpoint intervals (of 100s of kilo-instructions) at which software-level solution

like ReVive I/O have not been evaluated.

For device recovery, ReVive I/O resets the devices and reinitializes the drivers to a state corre-

sponding to the reset device. In order to bring the reset devices (and drivers) to a state consistent

with the current execution, the PDD then recommits outputs buffered (in software) from the pre-

vious recovery interval. Prior work on Shadow Drivers also relies on a similar strategy to recover

the device and the driver from transient faults in the device [30, 74]. Both ReVive-I/O and the

Shadow Drivers then rely on higher level protocols to replay inputs and handle duplicate outputs

from recovery operations. Since the software for device recovery can be restored with the hardware

checkpoint, our system relies on these schemes for device recovery.

2.4 Modeling Application-Level Fault Propagation

There is growing interest to model how hardware faults propagate through the application for

software anomaly detectors [6, 44, 56, 62, 73]. Benso et al developed a software-level analytical

model to predict which application variables are critical for SDCs and demonstrated its accuracy

with small benchmarks [6]. Other work developed models to depict how hardware faults lead

to application crashes [44, 56, 62] and derived hardware-level detectors [44] and application-level

detectors [56, 62] from such models.The application-level detectors were chosen based on metrics

such as fanout, lifetime, etc. that signify the criticality of the value to propagate the fault. By

16

selectively protecting these variables, they demonstrated that the detection latency and SDCs may

be reduced. The PVF metric also studied fault propagation through a program to remove the

microarchitecture-dependent components from AVF [73]. The PVF metric predicts when a fault

may be masked by the program but does not distinguish faults that are detected from those that

are SDCs.

Although this dissertation also studies program properties to understand how faults propagate

through an application, it differs from the above works its goal is to reduce SDCs from software

anomaly detectors; the focus of much of the prior work was on fault detection [44, 56, 62] or to

understanding fault masking [73]. The only other work that tried to identify SDCs was the work

by Benso et al. [6] which studied small benchmarks that had 100s of variables and for for 1000s

of instructions; we use real-world SPEC workloads that contain millions of values and execute for

billions of instructions. At such a scale, the analytical models proposed by Benso et al are unusable,

making our evaluations more realistic.

2.5 Other Related Work

Once a software anomaly is detected, the source of the fault needs to be diagnosed and repaired

before proceeding with recovery. We leverage the SWAT diagnosis module for fault diagnosis [28, 34],

and other prior work for repair [9, 59, 65] and focus here on the fault detection and recovery

components of SWAT.

17

Chapter 3

Fault Detection

Fault detection is the cornerstone of any fault tolerance solution. Its purpose is to ensure that

faulty execution is promptly flagged and that the appropriate action to restore fault-free execution

is initiated. The focus of this thesis is on studying faults in the field. In such a mode of operation,

faults are rare and the common mode of execution is fault-free. Therefore, the “always-on” fault

detection module should be designed to incur minimal overheads during fault-free execution.

Traditional systems have used heavy amounts of redundancy (in space and time) for fault de-

tection. For example, the IBM-G5 system employed dual-module redundant hardware for fault

detection, incurring at least a 100% overhead in core area from the duplicate hardware [72]. Such

solutions are, however, no longer applicable owing to the high overheads that they impart on fault-

free execution.

SWAT uses a collection of simple low-cost detectors to detect (permanent and transient) hard-

ware faults. These detectors monitor the execution of the software and look for anomalous software

execution to indicate the presence of a fault in the underlying hardware. This chapter presents these

low-cost software anomaly detectors, along with an evaluation of their efficacy to detect hardware

faults.

3.1 Low-Cost Software Anomaly Detectors

SWAT employs the following low-cost detectors that monitor anomalous behavior of both the ap-

plication and the OS for fault detection. A strategy to implement each detector such that it incurs

low hardware cost is also discussed below.

18

3.1.1 Fatal Traps

This detector monitors for illegal software operations identified by traps that are not seen dur-

ing normal software operations. SWAT designates the following traps as fatal – Divide by Zero,

Misaligned Memory Access (in SPARC), Data Access Exception, Illegal Instruction, RED state (Re-

cover Error and Debug, thrown on excessively nested traps), and Watchdog Timer (thrown when

no instruction retires in the last 215 ticks). This detector can be implemented at near-zero cost by

monitoring the trap state from the hardware trap handling unit. Existing performance counter that

monitor such events from the trap-handler may also be used for this purpose.

3.1.2 Hangs

An application or an OS hang is an indication of software misbehavior. SWAT employs a low-

cost heuristic hang detector that is implemented in hardware to monitor the frequency of retiring

branches and to identify hangs. If a branch executes more frequently than a pre-defined threshold,

a hang is flagged. Previous work has proposed hardware implementations for detecting hangs while

incurring low area and power overheads [52]. Such implementations may also be leveraged for hang

detection.

3.1.3 Kernel Panics

Modern operating systems employ several software-level checks to detect erroneous kernel execution.

If such checks fail, the execution of the kernel is frozen to prevent further fault propagation and

the kernel is forced to enter a panic state. SWAT thus monitors for when the kernel panics, and

identifies faults that have corrupted system state. Implementing this detector requires (existing)

support from the OS to declare the location of the panic handler (set of PCs of the function) that

SWAT can then monitor.

3.1.4 High OS

Typical OS invocations take 10s to 100s of instructions to complete in order to reduce the amount

of time spent in the OS (interrupts and system calls for I/O operations are exceptions). Thus, an

19

abnormally high amount of contiguous activity (10s of 1000s of instructions) represents anomalous

software behavior, indicating an underlying fault. SWAT uses performance counters that exist in

today’s hardware to monitor such information and to identify High OS activity.

3.1.5 Application Aborts

Applications that perform illegal operations (such as accessing addresses on invalid pages, or writing

to pages without sufficient permissions, etc.) may be terminated by the OS by signaling them [43].

SWAT thus uses application aborts as a direct indicator of anomalous software behavior. Iden-

tifying such App-Aborts require that the OS be modified to inform the hardware of the signaling

mechanisms, either through debug registers or through other schemes. Currently, SWAT monitors

application aborts for non-daemon applications by monitoring when the system idle loops in the

OS and inferring that the application was terminated (since daemons spend a lot of time idling in

the OS, this indirect method would not work for such applications).

3.1.6 Address Out-of-Bounds

Faults that affect data values are known to cause violations in addresses accessed by loads and

stores. Software bugs and security violations also cause variations in address values, motivating

much prior work that has proposed out-of-bounds detectors for corrupted addresses [3, 19, 20, 50].

Such detectors use sophisticated monitors that track the precise objects being manipulated and

perform validity checks on their boundaries. Hardware faults, however, result in more obvious

address corruptions such as unallocated addresses on valid pages, or invalid addresses. Thus, a

simple detector that identifies legal address limits is sufficient to detect the perturbations caused

by hardware faults.

SWAT thus deploys a low-cost out-of-bounds detector that leverages software support to identify

such out-of-bounds accesses. Figure 3.1 shows the address space of an application within the

OpenSolaris architecture, and how the software can assist the hardware in tracking the limits. All

application data loads and stores must access addresses in the globals address space, the heap, or on

the stack. The sizes of the globals and static variables are known at compile time. The changes to

20

App code

Stack

Globals

Libraries

Heap

0x100000000

0x0

0xffff... (2^64 - 1)

Limits recorded
when function

begins execution

Size known at compile
time. Communicated
to hardware

Instrument malloc, and
other functions, and
report to hardware

APPLICATION ADDRESS SPACE

Figure 3.1: Identifying the limits of the globals address space, heap and the stack to detect out-of-
bounds accesses. The software communicates the limits to hardware which enforces the checks.

the heap boundaries are identified by instrumenting library function calls that grow the heap. The

current top of the stack may be identified by instrumenting call sites in the application to identify

the size of the activation record used to setup a function call that grows the stack. Each of these

limits are then communicated to the hardware using predefined registers against which all loads and

store access are checked for compliance. Since these checks are off the critical path, this detector

imparts negligible performance overheads to fault-free execution. The incurred hardware overhead

is minimal as only a few registers and some comparison circuitry to check the generated addresses

are required. (We also implemented a more sophisticated detector that monitors precise object

boundaries, similar to HardBound [19], but found that it improves our results only marginally.)

These software anomaly detectors have also been augmented with software-level invariants mined

using the compiler in the iSWAT framework [66]. iSWAT significantly reduces the fraction of faults

that escape detection, with low rates for false positives, reducing the overall SDC rate. This thesis

does not study these detectors for fault detection due to lack of sufficient software support to

instrument the application binary (we couldn’t find a working compiler back-end for the SPARC

V9 ISA).

The occurrence of any of the above events cedes control to a thin layer of SWAT firmware

(without making the event visible to the user), which initiates diagnosis and recovery. Since each of

21

Per-core parameters

Frequency 2.0GHz
Fetch/decode/ 4 per cycle
execute/retire
Functional units 2 Int add/mul, 1 Int div

2 Load, 2 Store, 1 Br
2 FP add, 1 FP mult
1 FP div/sqrt

Integer FU latencies 1 add, 4 mul, 24 div
FP FU latencies 4 default, 7 mul, 12 div
Reorder buffer size 256
Register file size 256 integer, 256 FP
Load-store queue 64 entries

Memory Hierarchy Parameters

Data/Instruction L1 64KB
L1 hit latency 2 cycle
L2 size 2MB
L2 hit/miss latency 6/80 cycles

Table 3.1: Parameters of the simulated processor.

these software anomaly detectors monitor events that occur only during anomalous execution and

may be implemented with near-zero hardware overheads, fault-free execution is minimally affected.

3.2 Evaluating SWAT Detectors

We evaluate the efficacy of these detectors to detect hardware faults through microarchitecture-

level fault injections in a full system simulator. We chose this form of evaluation over hardware

fault injections [31], gate-level fault injections [12, 44], and fault injections in FPGA [57] owing to

its combination of high controllability and observability at sufficient speed, without a significant

compromise in accuracy [33]. We do not perform high-speed mixed-mode fault simulations [33] as

we do not have gate-level models for all modules of interest.

3.2.1 Simulation Environment

The simulation is performed by a combination of the Simics full system functional simulator [76]

and the Wisconsin GEMS detailed timing models [40]. Within this framework, we simulate a full

22

Benchmark Description Fault-free Output

apache

Provides web pages and files to requesting clients
using the HTTP protocol. 4 threads service the
requests from a synthetic client driver with 20
threads, obtained from the cURL [15] utility.

Each client thread receives the requested
files that are the same as stored on the
server.

sshd

Provides files to clients using the SSH protocol.
One daemon thread listens to a synthetic client
system with 10 threads, and spawns threads with
added connections.

Each client thread receives the requested
files that are the same as stored on the
server.

squid
The server caches remote web pages and services
requests from 7 requesting client threads by
providing cached pages.

Each client thread receives the requested
files from the squid server. The metadata
from the server is not considered as part
of the output.

mysql

The server performs a sequence of queries
provided by a client on over 10,000 inserted
entries. The queries consists of 112 select queries
with varying conditions, on created tables.

Client records outputs of all queries. It
also requests the inserted data for
consistency check.

Table 3.2: Description of server workloads, along with their outputs, used in the evaluation. In
addition to these workloads, we also evaluate SWAT on all the 16 SPEC CPU 2000 C/C++ codes.

system that implements the SPARC V9 ISA with a modern out-of-order processor a full memory

hierarchy, and peripheral I/O devices. The processor and memory are simulated with cycle-accurate

GEMS timing models (Table 3.1 gives their configuration) while the rest of the system is simulated

functionally.

For workloads, we use 4 I/O intensive server workloads (Table 3.2) and all 16 SPEC CPU 2000

C/C++ codes running on the OpenSolaris operating system. The server workloads are set up in a

distributed client-server environment inside Simics using two systems with identical configurations

connected by a simulated Ethernet link with a latency of 0.1ms. In these workloads, the server

is simulated in detail with the GEMS timing models (Table 3.1) while the client is simulated

functionally with Simics.

In this thesis, we restrict our evaluation to faults in systems with single core, and do not

explore SWAT in multicore systems (the server workloads that we use are, however, multithreaded).

Interested readers are referred to mSWAT which shows that these detectors are also effective in

detecting faults in multithreaded workloads running on multicore systems [28].

23

3.2.2 Fault Model

We inject microarchitecture-level stuck-at-0 and stuck-at-1 permanent faults and transient faults by

leveraging the timing-first approach used in the GEMS+Simics infrastructure [42]. In this approach,

an instruction is first executed by the cycle-accurate GEMS timing simulator. On retirement, the

Simics functional simulator is invoked to execute the same instruction again and to compare the

full architecture state between GEMS and Simics. This comparison allows GEMS the flexibility to

not fully implement a small (complex and infrequent) subset of the SPARC ISA – GEMS uses the

comparison to make its state consistent with that of Simics in the case that the mismatch occurs

because of such an instruction.

We modified this checking mechanism for the purposes of microarchitecture-level fault injection.

We inject a fault into the timing simulator’s microarchitecture state and track its propagation as

the faulty values are read through the system. When a mismatch in the architecture state of the

functional and the timing simulator is detected, we check if it is due to the injected fault. If not,

we read in the value from Simics to correct GEMS’ architecture state. However, if the mismatch

is because of an injected fault, we corrupt the corresponding state in Simics (register and memory)

with the faulty state from GEMS, ensuring that Simics continues to follow the faulty execution

trace, upholding the timing-first paradigm.

We say an injected fault is activated when it results in corrupting the architecture state, as

above. If the fault is never activated, we say the fault is architecturally masked (e.g., a stuck-at-0

fault in a bit that is already 0 or a fault in a misspeculated instruction are trivially masked).

In each run, we inject one fault in a randomly chosen bit in one of the representative structures

of a modern processor in Table 3.3. For each application, we pick 4 base injection points (or phases)

spaced sufficiently apart in the entire execution, to capture different application behavior. We

do not use SimPoints [27] to pick the phases for the SPEC workloads as they were designed for

performance evaluations and their relevance to reliability is unknown. For each phase, and each

structure, we pick several spatially and temporally random injection points. Since the distribution

of faults may not be correlated to the area of a structure, especially for permanent faults, we inject

the same number of faults in each structure. For the server workloads, we inject faults only in the

24

µarch structure Fault location

Instruction decoder Input latch of one of the decoders
Integer ALU Output latch of one of the integer ALUs
Register bus Bus on reg file write port to the register file
Physical int reg file An int physical register in the integer register file
Reorder Buffer (ROB) Entry’s source/destination register number of an instr in ROB entry
Reg Alias Table (RAT) Log→ phys mapping
Address unit (AGEN) Virtual address generated by the unit
Floating Point Unit Output latch of one FPU

Table 3.3: Fault injection locations.

server systems to model a situation where the server, serving remote clients, is subjected to faults

and is protected by SWAT.

Using this randomized selection, we inject a total of 8960 permanent and 8960 transient faults

while running server workloads and an equivalent number while running SPEC workloads. This

gives us statistically significant samples for our results. To attain this number of injections, we

select 40 random injection points in a server workload phase and inject one stuck-at-0 and one

stuck-at-1 faults during the execution (giving a total of 4 applications × 4 phases × 7 structures ×

40 random points × 2 fault models = 8,960 faults). For transient faults in servers, we pick 80 such

injection points. Since we simulate faults in 16 benchmarks in SPEC, and only 4 server workloads,

we picked 10 such random points for permanent faults and 20 such random points for transient

faults in SPEC.

3.2.3 Fault Detection

After fault injection, we simulate the system for 10 million instructions (including application and

OS instructions) to identify the faults that are architecturally masked. Once the fault corrupts the

architecture state, or is activated, we continue timing simulation for 10 million instructions to detect

the fault. For the High-OS software anomaly detector, we set the threshold at 20,000 contiguous

OS instructions for the SPEC workloads (based on fault-free profiles) and disabled this detector for

the server workloads as these daemons execute a lot of idle instructions in the OS while waiting for

client requests. The thresholds of the Hang detector are set at 0.1% instructions for server workloads

and 1% of instructions for SPEC based on fault-free profiles in order to avoid false positives. If an

25

activated fault is not detected in this window, we functionally simulate the system to completion

without the fault to identify faults masked by the application (i.e., when the final output is the

same as the fault-free run), and faults detected at longer latencies. The remaining faults corrupt

the output of the application and are classified as Potential-SDCs.

3.2.4 Metrics for Fault Detection

We use two metrics to evaluate the efficacy of the detectors to detect hardware faults – Potential

SDC rate, and detection latency.

The Potential SDC rate is defined as the fraction of injected faults that are activated, escape

fault detection, and corrupt the output of the application. Since these faults constitute instances

when software anomaly detection fails, anomaly detectors strive to reduce this rate. Further, since

some such corruptions may be tolerated by the application, only a fraction of these would constitute

true SDCs. (Chapter 4 discusses this distinction in more detail.)

The detection latency for the detected faults is defined as the latency between activation (ar-

chitecture state corruption) and fault detection. The detection latency has a direct bearing on the

efficacy and overheads of fault recovery and is hence an important metric to study for any fault

detection scheme. (Chapter 4 revisits this definition and presents a more recover-oriented definition

of the detection latency.)

The large number of injections across the different workloads (8960 per fault model for each

class of workloads) results in low error bars at high confidence intervals for these metrics. At a

95% confidence interval, the measured potential SDC rate has an error bar of under 0.1% for faults

in each fault model (transient and permanent hardware faults) injected in each class of workloads

(SPEC and server workloads). For the detection latency, the fraction of faults detected in under

10M instructions also has a low error bar of under 0.5% at a confidence interval of 95%, making our

results statistically significant.

26

Figure 3.2: Potential SDC rates from permanent and transient faults injected into non-FP units in
server and SPEC workloads. The low rates show that the SWAT detectors are highly effective in
detecting hardware faults.

3.3 Results

3.3.1 Potential SDC rate

Overall Results

Figure 3.2 shows the overall outcome of (a) permanent and (b) transient faults injected into non-FPU

structures for the server and SPEC workloads. For faults in each type of workload, the stacks show

the fraction of injected faults that are Masked, detected by anomaly detectors from the application

(Detect-App), detected by anomaly detectors from the OS (Detect-OS), and that result in Potential

SDC. Since the server workloads do not use the FP unit, we do not inject faults into the FPU for

the server workloads and drop the results from the injections into the FPU for the SPEC workloads

as well, in order to keep the comparison uniform. (We discuss results from the FPU separately.)

The numbers on top of each bar shows the potential SDC rate for faults in the given workloads.

From the figure, we see that the Potential SDC rate is < 0.6% for the injected permanent and

transient faults in SPEC and server workloads. The low rates for the permanent faults shows that a

large fraction of such faults affect the software and cause anomalous execution, which is monitored

27

by the SWAT detectors. The transient faults in Figure 3.2, demonstrate a high rate of masking

(85% and 88% of the transient faults injected in the server and SPEC workloads are respectively

masked). This high masking rate is because of microarchitecture-level masking, faults in dead

values, and logical masking; these results are consistent with previous work [61, 78].

The figure also shows that a large fraction of detections come from the OS – Detect-OS accounts

for 77% and 23% of the faults detected in the server and SPEC workloads, respectively. Since the

simulated system has a software managed TLB, the OS is invoked to handle TLB misses caused

by the fault. This may result in the OS further activating the fault and undergoing anomalous

execution. This shows that simulating the operating system is important when studying the impact

of hardware faults.

The SWAT detectors are therefore effective in detecting hardware faults, resulting in low poten-

tial SDC rates. Further, the low overheads (in performance, power, and area) associated with these

detectors makes them an attractive option for low-cost fault detection in future systems.

Per-Structure Results

Figure 3.3 further breaks these results down on a per-structure basis for permanent (left-side) and

transient (right-side) faults in (a) server, and (b) SPEC workloads. (The outcome of faults injected

into the FPU for SPEC workloads is also shown.) In each graph, for each structure, the stacks in

the bars correspond to faults that are Masked, detected by the application Detect-App, detected by

the OS Detect-OS, and Potential SDCs. The number on top of each bar shows the potential SDC

rate for faults in that structure. The Avg bar in each graph shows the aggregate results for faults

in all structures excluding the FPU (same as the bars in Figure 3.2).

From the figures we see that the potential SDC rates of the structures that directly influence the

control flow of the application (Decoder, ROB, and RAT) is lower than 0.5% across the all the bars.

This is because the SWAT detectors are adept at detecting faults that affect control flow. Faults

in structures that affect data-flow (Int ALU, Reg Dbus, Int Reg, AGEN, and FPU) tend to have

higher rates of potential SDCs than the former 3 structures. However, barring permanent faults in

the FPU, even these structures have rates of under 2.0%. This is because a large fraction of the

28

Permanent Transient
(a) Server workloads

Permanent Transient
(b) SPEC workloads

Figure 3.3: Per-structure breakdown of outcomes from permanent and transient faults in (a) server
and (b) SPEC workloads. While SWAT is effective for most structures, yielding low SDC rates.
Faults in structures that operate on purely data-only values, such as the FPU, cause higher rates
of potential-SDCs, warranting additional support for software anomaly detection.

29

values corrupted from faults in these structures also affect values that are used in control decisions

and/or memory addresses, resulting in anomalies that the SWAT detectors monitor. (Chapter 6

builds this intuition further.) The SWAT detectors are therefore effective to detect faults in most

hardware structures.

We now turn our focus to the permanent faults injected in the FPU for SPEC workloads (left-

side graph of Figure 3.3(b)). Since 12 of the 16 SPEC C/C++ workloads are Integer workloads

that sparingly use the FPU, 74.4% of the injected permanent faults (and all the injected transient

faults) in this structure are masked. Only a small fraction of the unmasked faults are detected by

the SWAT detectors, resulting in a high potential SDC rate of 17.3%. Since the floating point data

values that get corrupted from these faults are primarily used only for pure data computations,

without affecting control decisions or memory addresses, they do not result in software-visible

anomalies. The SWAT detectors discussed here are therefore insufficient to detect faults in such

structures, warranting additional support. Software-level invariants that target data values [66] and

circuit-level BIST techniques [54] may be used to protect the software from faults in such structures.

Chapter 4 discusses these potential SDCs further and demonstrates that a large fraction of these

faults may actually be tolerated by the application.

3.3.2 Detection Latency

Another important aspect of fault detection is the latency at which a fault that corrupts the archi-

tecture state is detected. Since the detection latency directly governs fault recoverability and the

overheads from operations related to fault recovery (such as checkpointing and output buffering),

it is important that faults are detected at short latency to keep these overheads low.

Overall Results

Figure 3.4 shows the cumulative percentage for detected permanent and transient faults across all

structures (without the FPU) in (a) server and (b) SPEC workloads. The faults are categorized in

to the following latency bins – < 10K, < 100K, < 1M , < 10M , and > 10M instructions. Faults

detected at > 10M are detected in the functional simulation mode after the fault is turned off.

30

(a) Server (b) SPEC

Figure 3.4: Detection latency for detected non-FPU permanent and transient faults in (a) Server
and (b) SPEC workloads. Over 98% of the detected faults are detected at a latency of < 10M
instructions, making then recoverable with hardware checkpointing.

The figures show that at a given detection latency, more permanent faults, than transient faults,

are detected. This is because permanent faults may be activated by multiple instructions, corrupting

multiple values in the application, and making them more visible to the software anomaly detectors.

Transient faults, on the other hand, are activated only once, making them harder to detect.

At a short latency of 100K instructions, 81% of the detected faults (both permanent and tran-

sient faults) are detected. At this latency, the overheads from the operations for fault recovery

(checkpointing and output buffering, discussed in Chapter 5) are minimal, making the SWAT de-

tector effective in enabling low cost recovery solutions.

Existing hardware checkpointing scheme, like SafetyNet [71] and ReVive [60], claim to support

recovery at latencies of 10s of milliseconds, which corresponds to approximately 10M instructions in

a modern processor (assuming a 1GHz processor with an IPC of 1). At this latency, Figure 3.4 shows

that 99% of the detected permanent faults and 93% of the detected transient faults are detected,

making such faults amenable to hardware recovery. (Chapter 5 further explores the validity of these

claims in the presence of device I/O.)

Faults detected at latencies longer than those handled by hardware checkpointing schemes may

require additional support from software [10, 16, 25, 36]. Such hardware-software cooperative tech-

31

niques are emerging as low-cost implementations of fault recovery for future systems and require

further exploration which is beyond the scope of this thesis.

Per-Structure Results

Figure 3.5 categorizes the detection latencies on a per-structure basis. For permanent faults (left-

side graphs) and transient faults (right-side graphs) in (a) server and (b) SPEC workloads, each

bar bins the detection latencies of the detected faults in to the following bins – < 10K, < 100K,

< 1M , < 10M , and > 10M . The Avg bars shows the cumulative results for faults injected into

the non-FPU units. Since the server workloads do not use the FPU, no FPU faults were injected

(and hence, none were detected). For the SPEC workloads, while some permanent FPU faults were

detected, all the injected FPU transient faults were either masked or caused SDCs, giving it zero

detections.

Comparing the permanent and transient faults detected across both sets of workloads, we see

that the transient faults incur longer detection latency for reasons previously described. Consistent

with the structure-specific results for the potential SDC rates (Figure 3.3), we see that the detection

latencies for faults in structures that directly affect control operations (Decoder, ROB, and RAT)

to be lower than the detection latencies for the other structures.

3.3.3 Contributions from Each Software Anomaly Detector

We now study the efficacy of each software anomaly detector employed by SWAT to detect per-

manent and transient faults. Figure 3.6 shows the distribution of the faults detected per detector

(aggregated across both permanent and transient faults) for (a) server and (b) SPEC workloads.

The numbers next to each sector gives the percentage of detected faults that are covered by that

detector.

Since the High-OS and App-Abort detectors are not used in the server workloads, they do not

feature in the chart in Figure 3.6(a). Of the remaining software anomaly detectors, Fatal-Traps

account for just under half the detections, making them the most effective detectors for server

workloads. Further, since these workloads serve random client requests, they do not have regular

32

Permanent Transient
(a) Server workloads

Permanent Transient
(b) SPEC workloads

Figure 3.5: Per-structure breakdown of the detection latency of permanent and transient faults in
(a) server and (b) SPEC workloads.

33

(a) Server (b) SPEC

Figure 3.6: Contribution of each detector towards detecting permanent and transient faults in (a)
server and (b) SPEC workloads.

memory access patterns making the out-of-bounds detector less effective for faults in server work-

loads (only 21% of the faults detected in server workloads are covered by this detector, compared

to a much higher 51% for SPEC).

In contrast, for faults in the SPEC workloads (Figure 3.6(b)), the Out-of-Bounds detector ac-

counts for over 51% of the detections owing to the regular memory access patterns of these work-

loads, making it the most effective detector. Fatal-Traps account for the next largest slice of the

pie, detecting 36% of the detected faults. Further, there are small contributions from each soft-

ware anomaly detector, making each detector important to achieve the low potential SDC rates

previously demonstrated.

3.3.4 Software Components Corrupted

We next focus on understanding which software components (application or OS) are corrupted

before a fault is detected (within the 10M instruction window of detailed simulation). This has

clear implications for recovery. If only the application state is corrupted, it can likely be recovered

through application-level checkpointing (for which there is a rich body of literature). However, OS

state corruptions can potentially be difficult – software-driven OS checkpointing has been proposed

34

(a) Server (b) SPEC

Figure 3.7: Software components corrupted for faults detected in (a) server and (b) SPEC workloads.
System state is corrupted in 46% of the faults detected, making it important to restore the system
state during fault recovery.

only for a virtual machine approach so far [22] and the feasibility of hardware checkpointing would

depend on detection latency.

We note that whether the state of the application or the OS was corrupted is not necessarily

correlated with whether the fault was detected from the application or from the OS. A fault could

be detected in the OS but may have already corrupted the application state. Similarly, a fault could

be detected in application code, but meanwhile the application may have invoked the OS resulting

in a (so far undetected) corruption in the OS state.

Figure 3.7 shows the components of the software that are corrupted for faults detected in each

structure in the (a) server and (b) SPEC workloads (the results from the permanent and transient

faults are aggregated for brevity). In each bar, the faults detected in each unit are divided into

three categories – App-only shows the fraction of detected faults in which only the state of the

application is corrupted, System shows the fraction in which the system state (and potentially the

state of the application) is corrupted, and None shows the fraction in which the fault is detected

before any architecture state is corrupted. (No faults were injected into the FPU for the server

workloads, giving an empty bar for the FPU in Figure 3.7(a).)

The figures show that the system state (and potentially also the state of the application) is

35

corrupted before the fault is detected for a large fraction of the detected faults (62% and 26% of

the faults detected in the server and SPEC workloads fall under this category, respectively). The

large difference between the fractions for the server and SPEC workloads stem from the fact that

the out-of-bounds detector detects many of the faults in the SPEC workload before they corrupt

the system state; for the server workloads, the OS is invoked in the simulated system to handle the

consequent TLB miss, which further activates the fault corrupting the state of the system. This

motivates the exploration of checkpointing the OS and/or fault-tolerant strategies within the OS.

Additionally, there are a few detected fault cases where neither the application nor the OS

state is corrupted (32% of detected faults in the ROB and 8% in the RAT across both sets of

workloads). In all of these cases, the faults cause watchdog reset fatal traps to be thrown – the

instruction at the head of the ROB never retires because its source physical register (say preghead)

never becomes available. These cases usually involve fairly complex interactions involving the ROB

and the RAT. For example, consider a fault in the ROB that corrupts the destination field of a

prior instruction that was supposed to write to preghead. Because of the fault, the prior instruction

writes to another physical register and never sets preghead as available. If the corrupted destination

was previously free, then this does not corrupt the architectural state (our implementation of reg-

ister renaming records the corrupted destination name in the retirement RAT (RRAT) when the

corrupted instruction retires, thereby preserving the architectural state).

3.4 Summary and Implications

This chapter presented a collection of simple low-cost detectors to detect both permanent and

transient hardware faults. Since the detectors monitor anomalous software behavior, they are

oblivious to the root-cause of the fault, reducing their overheads during fault-free execution.

Our evaluation showed that these detectors are highly effective in detecting permanent and

transient faults in compute-intensive and I/O-intensive workloads. In particular, a large fraction

of the injected permanent and transient faults in both server and SPEC workloads are detected,

resulting in a low potential SDC rate. Further, these faults are detected at sufficiently short latencies

that enables recovery with hardware support. However, faults in certain structures that affect purely

36

data computations, such as the FPU, may require additional support for detection as SWAT incurs

a high potential SDC rate for faults in these structures. The results also show that a large fraction

of faults are detected through software anomalies from the OS, making system recovery important.

These results have far-reaching implications on the design of resilient systems. First, it demon-

strates that identifying hardware faults by observing anomalous software execution is feasible. Since

the hardware faults that matter are those that affect software execution, this strategy for detection

seems an viable choice for future systems. Second, it demonstrates that the proposed low-cost detec-

tors achieve high reliability targets (analogous to low SDC rates), precluding the need for expensive

solutions that involve excessive amounts of redundancy. Finally, while the detectors presented here

already achieve low SDC rates, they can be tailored to suit the needs of the application; higher

reliability targets may be achieved by using sophisticated detection schemes that may incur higher

overheads. For example, the software-level invariant detectors proposed by iSWAT detect several

faults that escape these base-line SWAT detectors, but do so at marginally higher performance

overheads [66]. Such trade-offs between resiliency and performance/power are expected to become

increasingly important in future systems.

37

Chapter 4

Application Aware Metrics for SWAT

SWAT, like other symptom detectors, identifies the presence of an underlying hardware fault by

observing anomalous software execution. By virtue of such a detection strategy, SWAT successfully

ignores faults that are masked by higher levels of the hardware and by software as they do not lead to

anomalous software execution. While the faults that escape detection affect the outputs produced by

the software, certain classes of applications may be able to tolerate even such faults [17, 28, 36]. This

is commonly known as application-level fault tolerance and such applications are said to perform

soft-computations [36]. Common examples of soft-computations include image processing, video

compression/decompression, optimization algorithms that may have multiple solutions at the same

cost, etc. Since such faults do not result in anomalous execution, they cannot (and arguably should

not) be detected through software anomaly detection.

In this chapter, we consider these notions of application-level fault tolerance and revisit the

SWAT detectors. In particular, we take a closer look at the potential SDCs and classify which of

these may result in true SDCs that produce unacceptable application outputs. We also revisit the

detection latency and understand the impact of application-aware metrics on the detection latency

and on fault recovery.

4.1 Application Aware Silent Data Corruptions

Faults that escape detection and produce outputs different from the fault-free outputs are tradi-

tionally classified as SDCs. However, certain applications may be able to tolerate departures from

the fault-free output. If such departures do not flag anomalous behavior, then the SWAT detectors

cannot (and arguably should not) be expected to detect them, and the faults should not be classified

38

as an SDC.

4.1.1 I/O Intensive Distributed Client-Server Workloads

Distributed client-server applications are typically deployed in distributed environments where the

client and server may be present at different physical locations. Network interruptions and link

failures are common in such distributed systems. Distributed applications that extensively use

the network are therefore written to work even in the presence of such failures, making them

fault tolerant by design. A typical mechanism used by such applications when a transaction to

communicate with the server fails is for the client to retry the transaction (maybe with with back-

off). Thus, if the fault corrupts the server thread that is handling a client and sends no response

within a fixed interval, the client may retry the request which is typically serviced by a new server

thread. Thus, the effect of the fault is masked by the application, not resulting in an SDC.

Table 3.2 gave a description of the server workloads that we use, along with a brief description of

its fault-free output. Each of these applications is a distributed client-server application where the

fault is simulated on the server. Thus, if an undetected fault results in a lost connection from the

client and a failed request, the client can retry the request, depending on the type of the application.

If the retry is successful, then the application is said to have tolerated the fault.

Figure 4.1 shows the impact of the application-driven analysis on the potential-SDCs for server

workloads. The height of each bar and the number at the top shows the remaining potential-SDCs

in absolute terms; the number in parenthesis shows potential-SDCs as a percentage of total injected

faults. In our experiments, we explicitly added client-side retries to only the sshd workload as a

proof-of-concept of the retry behavior. Based on the impressive success of these retries, we classify

those faults in the other workloads that also lead to detecting a failed connection with the server

(identified through console logs) as tolerated by the application on retry.

The figures show that application-driven analysis has a dramatic effect on the potential SDCs

in the server workloads (bars labeled w/app tolerated). We find that the simple mechanism of

retrying a request on a lost connection seen at the client side eliminates most of the potential-SDCs

remaining with the out-of-bounds detector – 81% of the permanent and 67% of the transient faults

39

(a) Permanent Faults (b) Transient Faults

Figure 4.1: Reduction of potential SDCs in server workloads with application-driven analysis for
(a) permanent and (b) transient faults. The numbers at the top of each bar are the number of
potential-SDCs in absolute terms and as a percentage of injected faults (in parenthesis). Client-side
retries reduce potential-SDCs in server workloads significantly.

that were originally classified as potential SDCs from the server workloads are now tolerated by the

application. This shows that considering application-level fault tolerance is important to accurately

classify the true SDC rate from real-world workloads.

After incorporating client-side retries, we are left with only 3 permanent faults (0.03% of total

injected) and 12 transient faults (0.13% of total injected) as SDCs. Of these 15 faults, only 3 are

genuine SDCs – one from squid with an error in the a transferred web stream, and 2 from mysql

with incorrect employee numbers. The remaining are errors have clearly software visible software

anomalies – 7 have missing transactions because the connection with the server was prematurely

terminated, 2 have invalid entries in the location field of a database in the mysql workload, 1 case

with the mysql workload has an employee number of 0, and two have negative values for salary.

Server applications often have integrity checks and assertions built into them for software bug

detection – these could potentially be leveraged to detect the above SDCs as well.

4.1.2 Compute Intensive SPEC Workloads

For other types of applications, although the fault may propagate to generated outputs, the applica-

tion may be able to tolerate such differences in outputs, making them inherently fault-tolerant. For

40

example, a noisy image output may be an acceptable output of an image rendering engine as long as

the Signal-to-Noise Ratio (SNR) of the output image is above a certain threshold. Such applications

are said to perform soft computations that can tolerate certain faults in their outputs [36].

Expanding on previous work that explores application-level fault tolerance [17, 36], we analyze

all the SPEC C/C++ workloads to understand their ability to tolerate faults. Although these

workloads have been traditionally thought of as tolerating zero errors in output, an analysis of the

applications, and observations from previous work [36], revealed that several SPEC workloads per-

form soft computations. Table 4.1 gives a description of the fault-free outputs of the C/C++ SPEC

CPU 2000 benchmarks that tolerate errors in output values. For these applications, we evaluate the

output produced in the presence of a fault based on two aspects – consistency and quality, as defined

in Table 4.1. The remaining 4 Integer benchmarks, namely 197.parser, 253.perlbmk, 254.gap, and

255.vortex, do not tolerate any differences in their outputs, and any departures of the output from

the fault-free output are considered to be SDCs.

For the benchmarks shown in Table 4.1, even though the faulty output may be different from

the fault-free output, it may be acceptable as long as the output passes the consistency check of

the benchmark. The quality of the output can then be judged on application-specific thresholds for

acceptable error in outputs (relative to the fault-free output). For certain benchmarks that produce

multimedia outputs, like 252.eon and 177.mesa in Table 4.1, the consistency of the output is defined

by its quality (a low quality output may be considered inconsistent).

Results from non-FPU faults

We apply this notion of application-level fault tolerance to categorize the undetected faults into

those that are tolerated by the application, and those that may result in SDCs. Figure 4.2 shows

these results for faults in non-FPU units (we discuss faults in the FPU separately). It shows the

number of potential-SDCs when an output quality degradation of > 0%, > 0.01%, > 0.1%, and

> 1% relative to the fault-free output is deemed acceptable. Thus, a potential-SDC case where

the output is different but of the same quality as the fault-free output (i.e., degradation is 0%) is

counted as masked for all of these bars (and not included in the potential-SDC count). Potential-

41

Benchmark Category Fault-free output Consistent output Output quality

Integer benchmarks

164.gzip Compression Compressed file
Lossless compressed
output

Error in
compression ratio

175.vpr
FPGA circuit placement
and routing

Detailed placement and
cost information

Valid placement
satisfying constraints

Absolute error in
cost

176.gcc
C programming language
compiler

Assembly program for
the Morotola 88100
processor

Valid assembly with
same output

Performance

181.mcf
Combinatorial optimization
of a scheduling problem

Schedule with minimal
cost

Valid schedule
Absolute error in
cost of schedule

186.crafty Chess simulation
Game outcome with
number of moves to
mate

Valid game outcome
Error in number
of moves

252.eon Computer visualization
Image file in PPM
format

PPM image file Peak SNR

256.bzip2 Compression Compressed file
Lossless compressed
file

Error in
compression ratio

300.twolf Place and route simulator
Detailed placement
information and cost

Valid placement
satisfying constraints

Absolute error in
cost

Floating point benchmarks

177.mesa 3-D graphics library
2D image file in PNG
format

PNG image file Peak SNR

179.art
Image recognition/Neural
networks

Field ((x,y) coordinates)
of recognized objects

Successful
recognition

RMS error in
location

183.equake
Seismic wave propagation
simulation

Displacements caused
by seismic wave

Successful seismic
simulation

RMS error in
displacements

188.ammp Computational chemistry Energy of 3 molecules
3 energy values, one
for each molecule

RMS error in
energy values

Table 4.1: Inherent fault tolerance of SPEC C/C++workloads. The errors under output quality
refer to the difference from the fault-free output. The following 4 of the 16 SPEC CPU 2000 C/C++
workloads do not tolerate error in their output and are not listed above– 197.parser, 253.perlbmk,
254.gap, and 255.vortex. Any departures of the outputs of these applications from their fault-free
outputs are classified as SDCs.

42

(a) Permanent Faults (b) Transient Faults

Figure 4.2: Reduction of potential SDCs in SPEC workloads with application-driven analysis for
(a) permanent and (b) transient faults. The numbers at the top of each bar are the total number of
potential-SDCs in absolute terms and as a percentage of total injected faults (in parenthesis). The
bars labeled > X% show the number of potential-SDCs if quality degradation of X% is assumed as
acceptable, with the baseline and out-of-bounds SWAT detectors. The application-driven analysis
shows that many of the potential-SDCs do not affect the quality of the solution.

SDCs from applications that do not have a notion quality degradation (i.e., any departure from

fault-free output is deemed as infinite degradation) are included in all of these bars.

From the figures, we see that the 40 of the 56 permanent faults and 12 of the 58 transient

faults that were classified as potential SDCs are just different solutions with the same quality as the

fault-free outputs (such as a different schedule with the same cost, or a different placement with the

same cost, etc.). This shows that simply accepting alternate outputs with no degradation in the

output quality reduces the potential SDC rates significantly – the rate drops by 68% for permanent

faults, and by 20% for transient faults.

The other bars in Figure 4.2 tolerate an increasing amount of error in the quality of a consistent

output. From the figures we see that lowering the threshold for tolerance further reduces the SDC

rate seem by the detectors. At a tolerance level of < 1% for quality, SWAT has just 8 permanent

faults and 33 transient faults from SPEC workloads classified as SDCs (0.2% of the injected 17K

faults). Application-aware SDC categorization is thus effective in identifying the true SDCs from

SWAT and other software anomaly detectors, and accurately measuring their SDC rates.

The 41 faults that are now classified as unacceptable SDCs may be detected with additional

43

(a) Fault-free output (b) An SDC

Figure 4.3: An example of an SDC in the application eon. The small perturbations caused by the
faults are not detected by the anomaly detectors employed by SWAT, resulting in small variations
in the image output image. Support from the software may be leveraged to detect such faults and
lower the SDC rate further.

support from software. An analysis of the corrupted outputs revealed that many of these faults

corrupt pure data-values without corrupting much of the control flow of the application. (Chapter 6

builds an intuition behind these hard-to-detect faults further.) In order to visually see such an SDC,

Figure 4.3(a) shows the fault-free output of the SPEC application eon, while Figure 4.3(b) shows

an output that is classified as an SDC. The image in Figure 4.3(b) is classified as an SDC because

the small perturbations in the rendering of the image of the chair results in a PSNR of < 50 (the

output classified as SDC has a small vertical white line to the right side of the chair; the fault-free

output does not have this line). Although we classify this perturbation as an SDC, a less stringent

classifier may consider this output to be acceptable. For some outputs that were classified as SDCs,

we observed more significant perturbations. In those cases, software-level support, in the form of

detectors that monitor such semantics of the application, might be necessary for fault detection.

We leave devising and studying such detectors to future work.

Results from FPU faults

Figure 4.4 is similar to Figure 4.2 but shows the effect of application-level fault tolerance for per-

manent faults injected into the FPU. (We do not study transient faults injected into the FPU as

44

Figure 4.4: Application-aware analysis of permanent faults in the FPU with SPEC workloads. A
large fraction of the faults in the FPU that were previously categorized as potential SDCs are
tolerated by the SPEC workloads. Additional support is however required to lower the SDC rate
for faults in such units that are used for pure data computations.

they were all masked, as shown in Figure 3.3(b).) The results from faults in the FPU are shown

separately as previous results on fault detection (Figure 3.3 in Chapter 3) showed that permanent

faults in the FPU with SPEC workloads yielded a high potential SDC rate of 17.3%, making it

a vulnerability of SWAT. For increasing threshold of quality of the output, the figure shows the

number and the fraction of faults injected into the FPU that are classified as SDCs. The numbers

for the baseline SWAT system are also shown.

Similar to results on other structures, the number of faults in the FPU that are categorized

as potential SDCs reduce significantly as we increase the threshold for acceptable output quality.

When only alternate solutions with no degradation of output quality if accepted (the > 0%) bar,

the SDC rate in the FPU reduces by 49% to a rate of 8.8%. As we increase the threshold further,

even a conservative threshold of 1% is effective in reducing the number of SDCs to a mere 51,

resulting in an SDC rate of 4.0% for permanent faults in the FPU. Additional support from the

application for FP values, such as using invariants generated by iSWAT [66] and other software-level

techniques [37, 80], may be used to reduce this rate even further.

45

4.2 Application Aware Detection Latency

Traditionally, once the fault propagates to the architectural state recorded in a checkpoint, the

system is said to be no longer recoverable as the architectural state corruption remains even after

the system rolls back to the checkpoint. Thus, detection latency has been defined as the latency

from architecture state corruption to detection (the Hard-Latency) and is assumed to govern the

recoverability of the fault – if the last checkpoint available for fault recovery was taken within this la-

tency, all checkpoints are corrupted, making the system unrecoverable. Such faults are traditionally

considered to be Detected Unrecoverable Errors or DUEs [48].

In reality, however, recoverability is governed by when the fault corrupts the execution of the

software and makes it unrecoverable. Faults that remain in the architecture state even after rollback

may be subsequently masked by the software, resulting in successful recovery. Consider the fault-free

execution shown in Figure 4.5(a), with checkpoints taken at T1, T2, and T3. If the fault affects the

values of a and b as shown in Figure 4.5(b), the checkpoint at T1 records fault-free architecture state,

while those at T2 and T3 record corrupted architecture state. If a fault is subsequently detected

(through a division by zero anomaly detector), rolling back to T3 would not result in recovery as the

fault-free value of b is not restored. However, if the system rolls back to the checkpoint at T2, the

system would be recovered although the checkpoint records corrupted architecture state (the value

of a is corrupted in this checkpoint) as the faulty value of b that lead to the detection was restored,

assuming that a is not used for any other computation. Not accounting for these differences would

make us draw unnecessarily conservative inferences on fault recovery as we would consider only the

checkpoint at T1 to be recoverable.

4.2.1 Soft-Latency: A Recovery-Oriented Definition of Detection Latency

In order to account for these differences, we define a notion of software state corruption to study

fault recovery. We do not give a constructive definition of software state as the precise set of values

that define the state of the software is software-specific and hard to determine. We simply define

software state corruption as the point where a checkpoint would not result in recovery.

Figure 4.6 shows the time line for the execution shown in Figure 4.5, elucidating the differences

46

(a) Fault-free Execution (b) Faulty Execution

...

...
a* = 10* ;

...

...
b* = 0* ;
if (a > 0) {

...
 c = 10 / b*;

...
}

T1

T2

T3

...

...
a = 5 ;

...

...
b = 10 ;
if (a > 0) {

...
 c = 10 / b;

...
}

T1

T2

T3

Figure 4.5: Example execution to show that the system may be recovered even from checkpoints
that record corrupted architecture state. Although the checkpoint taken at T2 records corrupted
architecture state, the system would be recovered by rolling back to that checkpoint. Ignoring
this property of recovery may lead to making unnecessarily conservative conclusions about the
recoverability of detected faults.

Periodic

Checkpoints

Arch state

Corruption
SW state

Corruption

T1 T2

Rollback and Replay

Clean SW state => Recovery

Fault

Detection

SOFT LATENCY

HARD LATENCY

T3

Figure 4.6: Difference between Hard- and Soft-Latency. Although the checkpoint at T2 records
corrupted architecture state, the software state is clean, resulting in successful fault recovery. Thus,
the Soft-Latency is more relevant for studying fault recovery than the Hard-Latency.

between the Hard- and the Soft-latency. Since the architecture state is corrupted after T1, the

checkpoint taken at T1 records clean architecture state. The Hard-Latency is the latency from when

the architecture state is corrupted to when the fault is detected. Since rolling back to the checkpoint

at T2 would recover the software, we say that T2 has recorded clean software state. The latency from

when the software state is corrupted until when the fault is detected is the Soft-Latency. Rolling

back to a checkpoint taken after the software state is corrupted, such as the one at T3, would not

result in successful recovery, making the software state recorded in this checkpoint tainted.

This latency between software state corruption and fault detection, or the Soft-Latency, is the

47

latency pertinent to recovering this fault. If the Soft-Latency is considerably lower than the Hard-

Latency, the recovery intervals will be much shorter, resulting in lower overheads during fault-free

execution.

4.2.2 Evaluating the Soft-Latency

Measuring the Soft-Latency is, however, non-trivial as the state of the software is software-specific.

Note, however, that this measurement is required only for analyzing the recovery interval and is not

required in a real system. A real system would simply roll back by the identified recovery interval

to recover from the detected fault.

In this work, we measure this latency post facto. We take periodic checkpoints of the entire

system; once a fault is detected, we rollback to successive checkpoints and replay the full application

without the fault for each such checkpoint. The most recent checkpoint for which this replay

produces fault-free output provides the new latency. Application state is clearly not corrupted at

that checkpoint and hence the soft-latency must be less than the interval between this checkpoint

and detection. Note that this elaborate procedure is only required to measure the new-latency to

guide recovery overhead analysis – a real system does not need to measure this detection latency.

In the future, we can also leverage prior work on identifying the minimal amount of state required

for correct application execution [10, 25, 36] for a more efficient measurement.

Figure 3.5 shows the distinction between the Hard-Latency and Soft-Latency for permanent

and transient faults in (a) server and (b) SPEC workloads. In each graph, Hard-Latency shows the

detection latency from architecture state corruption, and Soft-Latency SWAT shows latency from

software state corruption.

From the figure we see that for faults detected in both the server workloads and the SPEC

benchmarks, there is a significant difference between the Soft-Latency and the Hard-Latency – at

any given latency, more faults are recoverable than previously reported, as shown by the difference

between the Soft- and Hard-Latency curves. For example, for the transient faults detected in server

workloads (right-side graph in Figure 3.5(a)), only 45% of detected faults have Hard-Latency of under

10K instructions, while nearly twice as many faults (87% of the detected faults) have Soft-Latency

48

Permanent Faults Transient Faults
(a) Server Workloads

Permanent Faults Transient Faults
(b) SPEC workloads.

Figure 4.7: Detection latency for (a) server and (b) SPEC workloads. With the new definition of
detection latency, 90% of the faults are detected within 100K instructions for all workloads across
permanent and transient faults. In contrast, 90% recoverability required millions of instructions for
transient faults in SWAT. This latency reduction reduces recovery overheads significantly.

49

(and are hence recoverable with full client and server checkpointing) within 10K instructions. The

graphs show such trends for nearly all other latencies in both the SPEC and the server workloads.

Additionally, these results show that over 90% of the faults have a Soft-Latency of under 100K

instructions, making them recoverable with a full system checkpoint taken at this checkpoint in-

terval. In contrast, with the old definition of latency (the Hard-Latency curves in Figure 4.7),

90% recoverability required millions of instructions, especially for transient faults. Thus, the over-

heads from fault recovery are actually lower than that predicted by the Hard-Latency, making this

distinction important to consider.

These results show that for system recovery, it is not necessary to recover from all corruptions in

the architecture state; the system may be recovered even without restoring some corruptions that

may not affect software state. Ignoring this distinction and deciding the recovery interval based

on the Hard-Latency may result in choosing unnecessarily conservative intervals for checkpointing,

resulting in high overheads during fault-free execution.

4.3 Summary and Implications

In this chapter, we identify properties that enable certain applications to tolerate faults in data

values and outputs. We apply these properties to fault detection and revisit the SDC rates and

detection latency results presented in the previous chapter. Our results and analysis show that

taking application-level fault tolerance is important for SWAT as it helps to identify the real SDCs

from the previously reported potential SDCs. It also helps to accurately guage the overheads from

fault recovery by making a distinction between architecture-state and software-state corruptions.

Overall, the results show that SWAT achieves a low SDC rate of 0.2% (56/35,760 faults) for per-

manent and transient faults in SPEC and server workloads for faults in non-FPU structures, and

demonstrates promise for high recoverability with short checkpoint intervals. This translates to a

two orders of magnitude reduction in the FIT rate when compared to the base system with no pro-

tection against faults.1 Further, several of these 56 faults may be identified with additional support

1Of the 17,880 permanent and 17,880 transient faults injected into the workloads, 2,571 permanent and 15,195
transient faults were masked. The remaining 17.521 faults are activated and affect software execution. We assume
that they result in failures in the base system that is not protected by SWAT. With SWAT, however, only the 56

50

from the software, but we leave this exploration to future work.

The results presented in this chapter demonstrate the importance of taking application properties

into consideration while designing future resilient systems. With future systems expected to breach

existing boundaries of hardware and software abstractions to achieve solutions that incur low cost,

leveraging application properties for fault resiliency is expected to become the norm. This chapter

also paves the way for future research that leverages support from the application to achieve higher

reliability targets at the cost of higher overheads.

SDCs are not handled and cause system failures. SWAT thus reduces The FIT rate by over two orders of magnitude.

51

Chapter 5

Fault Recovery

The goal of the recovery module is to restore the system to a fault-free state after a fault has been

detected. Fault recovery is therefore an important part of any fault tolerance solution. Consequently,

fault recovery is an extensively studied topic, spanning decades of research in commercial and client

systems.

There are several alternatives to implementing effective fault recovery. First, mechanisms for

fault recovery can be implemented either in software or in hardware. Software-level checkpointing

schemes [11, 32, 41] are typically used for low frequency checkpointing (every few seconds or minutes)

as they require a globally synchronous checkpoint. Hardware checkpoint is typically used for high

frequency checkpointing (every few milliseconds, or lower) as they incur lower overheads [16, 51, 60,

71]. Another alternative is to implement employ either forward-error recovery techniques where the

detectors provide sufficient information to recover the system instantaneously, or backward-error

recovery where the fault is allowed to corrupt the state of the system system, but there exists

support for checkpointing and rollback once a fault is detected.

While there are several constraints involved in the deciding between the various alternatives

for fault recovery, perhaps the most important consideration is the overheads incurred from the

operations that enable recovery. Since these operations that enable fault recovery are performed

during the common-mode of fault-free execution, the recovery module should be designed such that

it incurs minimal overheads in this mode. Additionally, the overheads from these operations are

intrinsically linked to the fault detection scheme. On the one hand, while shorter detection latencies

ensure that these overheads are lowered, the overheads from the detectors that are required to detect

the faults at shorter latencies may become too high. On the other hand, longer detection latencies

may lower the overheads from the detectors, but recovery may require restoring much of the system

52

state, making the overheads from fault recovery prohibitive. There is thus an intricate relationship

between fault detection and recovery, making it important to consider the detection scheme when

designing and evaluating a scheme for fault recovery. Much prior work has ignored this relationship,

making their evaluations incomplete.

SWAT is designed a complete solution that encompasses detection, recovery, and diagnosis.

We thus design fault recovery in light of fault detection, taking design decisions that consider the

relationship between them. SWAT employs low-cost detectors that allow the fault to corrupt the

state of the system and identify the fault be observing anomalous software execution. Since the

goal of SWAT is to achieve low-cost for overall system resiliency and the detectors detect faults

at sufficiently short latencies (Chapter 3), SWAT relies on hardware support for fault recovery.

Further, since the SWAT detectors allow the fault to corrupt the state of the system may not

provide sufficient information to the recovery module for instantaneous recovery, SWAT uses BER

schemes that rely on support for checkpointing and output buffering for fault recovery.

In this chapter, we take a closer look at the various components in SWAT’s recovery module

(Section 5.1). Of particular importance is the hardware support that SWAT uses for output buffer-

ing. Although output buffering is essential for fault recovery, much prior work has not ignored

output buffering. We also evaluate the overheads incurred from the operations for fault recovery

during fault-free execution (Section 5.3.1). Finally, we tie the fault recovery and detection together

and present SWAT as a solution for in-core fault resiliency capable of detecting and recovering from

permanent and transient faults even in the presence of I/O (Section 5.3.2).

5.1 SWAT Recovery Components

The SWAT recovery module contains 4 key components - processor checkpointing, memory check-

pointing, device recovery, and output buffering. Once a fault is detected, each component of the re-

covery subsystem must take appropriate action to restore the state of the system to its checkpointed

state – the processor and memory are restored from their checkpoints, devices are reinitialized, and

buffered outputs are discarded. We refer to the interval by which the system is rolled back as the

recovery interval. Note that the recovery interval may span multiple checkpoint intervals. Fur-

53

Component Fault-free Operation Recovery Operation
Fault-free Overheads

Performance Area

Processor Register snapshot Restore registers Pipeline flush Negligible
Memory Record undo log for stores Replay undo log [60, 71] [60, 71]

System Devices Monitor open connections Reset devices, restore connections Negligible Negligible
Outputs Buffer outputs Discard unverified outputs Outputs delayed Impl. dependent

Table 5.1: Components of fault recovery. SWAT relies on hardware support for checkpointing and
for output buffering to achieve low cost fault recovery.

ther, since all components are on during the common mode of fault-free operation, their overheads,

dictated directly by the recovery interval, must be minimized.

Table 5.1 gives a high level overview of each component of SWAT’s recovery module, along with

its overheads. The following sections describe each component in more detail. We rely on existing

work for recovering the processor, memory and devices, and propose a new technique for buffering

externally visible outputs in hardware.

5.1.1 Processor Checkpointing

A processor checkpoint periodically records all the architecturally visible registers of a processor.

Since the pipeline is flushed at each checkpoint, checkpointing incurs a small performance overhead.

The area overheads from the recorded registers state is fixed per checkpoint and is rather small.

Further, since processor checkpointing may be used for other optimizations (such as run-ahead

execution [49]), its cost is amortized.

5.1.2 Memory Logging

A memory log is an undo log that records changes to memory since the last checkpoint. The log

records the old value at a memory location that the first store to that memory location since the last

checkpoint is about to modify. The overheads from memory logging are dependent on how logging

is implemented. Hardware-based implementations like SafetyNet [71] incur negligible performance

overheads. In-memory schemes like ReVive [60] require flushing all dirty cache states to the memory

at the checkpoint, incurring higher performance overheads especially at shorter checkpoint intervals.

SWAT’s memory logs are implemented like the logs in SafetyNet, incurring near-zero performance

overheads for short checkpoint intervals but some area overheads to store the logs.

54

5.1.3 Device Recovery

Once a fault is detected, the devices in the system need to be restored to a consistent state.

Checkpointing devices by taking a periodic snapshot of device registers may be expensive as it

would require modifying a large number of hardware devices. As a practical alternative, the devices

can simply be reset during fault recovery and the associated driver can be recovered to a state

consistent with the reset device by using software, as demonstrated by prior work [30, 51, 74].

These scheme relies on higher levels of the software stack to replay inputs lost during recovery

and to handle duplicate outputs during replay. Our recovery strategy is to rely on such software

support to reset and recover the devices. Since this software that orchestrates the device recovery

is recovered from the processor checkpoint and the memory logs, we can leverage this solution even

in the presence of faults.

5.1.4 Output Buffering

An important, but commonly ignored aspect of fault recovery is output buffering. Buffering external

outputs until they are known to be fault-free is essential to avoid the output commit problem which

states that committed external outputs (such as a network packet, or a display on the screen) cannot

be rolled-back during recovery. Buffering for the duration of the recovery intervals guarantees that

these outputs are fault-free when they are released to the external world and would not require

undoing. Since device outputs (that potentially affect waiting clients) are delayed, the performance

overhead incurred from output buffering is directly related to the recovery interval.

To our knowledge, Revive-I/O [51] is the only existing work in a modern system that relies

on hardware checkpointing that handles output buffering with relatively low performance impact.

Revive-I/O buffers outputs in software, using a pseudo-device driver (PDD) to intercept output

calls to device drivers which it holds till the end of the recovery interval. At that time, the PDD

calls the actual device driver to process the intercepted output call and release the outputs. Revive-

I/O makes a subtle, previously unexplored, assumption that this device driver software will run

fault-free. Unfortunately, the device driver runs on a potentially faulty core and is vulnerable to

generating corrupted outputs – once these corrupted outputs become user visible, there is no way to

55

recover them. This vulnerability can be potentially serious as the device driver is a complex piece

of software, and maybe affected by hardware faults as much as any other code.

Buffering Outputs in Hardware

SWAT uses an alternate solution to the output commit problem that does not have the above

vulnerability. In contrast to the high-level software buffering, it buffers low-level output requests

(stores to I/O space) in hardware until the end of the recovery interval. The hardware based

solution has the advantage that it is device-oblivious and is hence easily extendable to a variety

of devices; in contrast, software-level solutions deal with high-level device operations and must be

aware of the semantics of these operations. Further, the hardware solution is arguably simpler than

the software-level solution as it does not need any complex changes to device software. While we

still need to protect the hardware buffer and the (very simple) finite state machine controlling the

buffer, this is far easier than protecting the full core running the complex software device driver.

Modern processors communicate with external devices (such as the ethernet card, disk, etc.)

through accesses to dedicated memory locations that are uncacheable. Inputs from the devices are

read using load instructions, and outputs are issued through store instructions. The hardware buffer

thus buffers stores from the CPU to these dedicated memory locations to handle the output commit

problem. This buffer is implemented in the core and requires no changes to device hardware, as

shown in Figure 5.1(a). It thus supports output buffering for any I/O device that sits on the PCI

bus with no modifications. (Certain user-level devices that are not implemented on the PCI bus,

but are implemented on the memory bus may not be amenable to this form of output buffering.)

The fault-free and recovery operations of this hardware output buffer are described below.

Fault-free Operation: During fault-free execution, the buffer delays all stores from the CPU to

the devices for the duration of the recovery interval. Subsequent reads to addresses with buffered

stores return the values from the buffer. The buffer may be drained under two conditions. First,

at the next checkpoint interval, the buffered stores are verified to be fault-free and would not

require rolling back. Second, the ISA may require that at certain memory fences, all previous I/O

instructions should be completed in order to guarantee that their side-effects have occurred (as some

56

(b) Fault-free Operation (c) Recovery Operation(a) Output Buffer Location

Chkpt Chkpt

Buffer
Device
Stores

Dev
St 2

Dev
St 1

Drain stores
in background

Dev
St 2

Dev
St 1

St 1
St 2

Dev
St 3

Buffer Buffer

Fault
Detection

Discard st3
Reissue st1, st2

OUTPUT
BUFFER

CPU

DEVICE

DEVICE

DEVICE

Memory

PCI Bus

Memory
Bus

Rollback
Recovery

St 1
St 2

$

Figure 5.1: A hardware-level implementation of output buffering. The proposed buffer is a simple
hardware structure that delays device outputs until they are verified to be fault-free.

I/O stores may implicitly affect the contents at other addresses). Under either of these conditions,

the outputs are released to the devices in the background (much like how the store buffer for data

memory in a modern processor drains its stores) so that the execution is not stalled to drain the

outputs, as shown in Figure 5.1(b).1 Although some of these stores may not result in externally

visible outputs and may only configure the devices, the hardware cannot identify such outputs owing

to the lack of semantic information about the outputs.

Once the buffered store is issued to the device, the device may access certain resources (such

as in-memory buffers) that need to be transferred to the device. Since this transfer is not atomic,

the hardware fault in the core may corrupt the resource during the transfer and make the fault

externally visible. The system should therefore be designed such that the outputs are protected

during the period of this transfer to avoid the output commit problem. Further, this protection

would have to be implemented with minimal hardware without trusting the software as it may be

executing erroneously under the influence of the hardware fault.

The only such instance in our system that warrants special attention are DMA transfers from

the CPU to the devices. DMA transfers are initiated by the CPU setting up an in-memory buffer

with outputs and then allowing the DMA engine or the device to transfer the buffer to the device

(during which time the PCI bus is controlled by the DMA engine or the device). Although the in-

memory buffer is locked with page-level protection mechanisms that prevent any CPU stores from

modifying the buffer [13, 14], the hardware fault may corrupt the protection bits used to protect the

1I/O fences may artificially shorten the checkpoint interval and affect recoverability. However,
such fences account for < 0.01% of our dynamic instructions in our workloads, making this loss
insignificant.

57

DMA buffer. Consequently, CPU stores may erroneously modify the contents of the DMA buffer

before it is transferred to the device, making the fault externally visible.

We leverage the synchronization mechanism employed between the CPU and the device to

implement a low-cost solution that avoids such corruptions. A simple hardware that ensures that

the location of the protection bits is not modified during this transfer would suffice to prevent such

a corruption. (The location of the protection bits can be identified by monitoring the page table

when the DMA buffer is allocated through dedicated system calls.) Since this hardware cannot

trust the software to identify when these checks should be turned on and turned off, it monitors the

store that modifies the protection bit to turn on the checking and turns off the monitoring when

the interrupt from the DMA engine to acknowledge the completion of the transfer is received.2

Recovery Operation: Once a fault is detected, the outputs buffered in the current recovery

interval are discarded to prevent committing faulty outputs. The processor and memory are then

rolled back to a pristine checkpoint, as shown in Figure 5.1(c). During this rollback, outputs

committed at the end of the previous recovery interval are nullified. They are thus reissued to bring

the system to a consistent state; committed stores are therefore retained for one extra recovery

interval in the hardware buffer. The system then invokes existing software-level solutions to recover

the devices through a device reset and by reissuing any on-going logical operation [51, 74]. Similar

to these solutions, we rely on higher level protocols to handle duplicate outputs and replay inputs.

Fault Tolerance: The hardware buffer is thus a simple piece of hardware that can be periodically

tested for faults with previous techniques that identify faults in control structures [12]. Further,

outputs in the hardware buffer are ECC checked to protect from faults in the buffer. The committed

outputs are thus protected from faults in the processor, making our technique attractive.

Overheads: Although a hardware output buffering solution appears like a conceptually simple

implementation of software-level output buffering in hardware, its feasibility for software anomaly

detection techniques is far from clear. Software-level buffering, on the one hand, delays each high-

level device operations (such as a single disk write, or sending a packet using the ethernet device)

2Although a device-level fault may result in faking this interrupt, the focus here is on faults within the core. Faults
in off-core components require further exploration that is beyond the scope of this thesis.

58

by one recovery interval. Since each such high-level output may correspond to multiple low-level

stores (one high-level disk write, for example, may correspond to multiple device stores to configure

the disk controller, etc.), hardware buffering may incur delays of multiple recovery intervals for

each high-level output, imparting potentially high delays to waiting clients. Further, buffering

outputs in hardware may require large buffers (as multiple stores may be delayed in each interval),

incurring high area overheads; the buffer size is less important in software-level solutions which

store the buffers in main memory. The performance and the area overheads need to be evaluated

and minimized so that fault-free execution is not affected.

5.2 Evaluating SWAT Recovery

5.2.1 Simulation Environment

We implemented the SWAT recovery module within a simulation framework that models a full

system, including the CPU, the memory, and peripheral I/O devices. We used the simics full system

simulation framework to model a distributed system with a server and client system communicating

through a simulated ethernet link with a latency of 0.1ms. The server and client systems have

identical configurations with UltraSPARC-III-like processors, 4GB of physical memory and I/O

peripherals.

In this configuration, we study 4 I/O intensive server workloads with multithreaded drivers

running on the client and transfer 10s of MBs of data from the server to the client. We restrict our

evaluation of fault recovery to these I/O intensive workloads as their recovery is known to be hard

due to the presence of I/O. Table 3.2 gives a description of the operations of our workloads and

Table 5.2 gives more details about their data-transfer rates. Although all the client drivers, except

that for mysql, are multithreaded, the client systems spend a significant fraction of time waiting for

I/O from the server, much like today’s systems. These measurements are made without any added

delays from output buffering.

Real-world server workloads may, however, contain multiple server daemons or commercial

database backends that may be dependent on each other and serve thousands of requesting clients

59

Application Data Transfered Average Rate
Percentage of execution

waiting for I/O

apache 38MB 9.57MBps 76.53%
sshd 19MB 2.49MBps 24.33%
squid 20MB 11.64MBps 69.50%
mysql 7.5MB 1.05MBps 71.13%

Table 5.2: I/O statistics of our server workloads. Although the client drivers are all multithreaded
(except for mysql), the client drivers spend a majority of their time waiting for I/O from the sever.

while transferring gigabytes of data. Our server workloads, however, contain only one daemon that

processes client requests and do not model interactions between different daemons. We neverthe-

less verified that our workloads exhibit I/O trends similar to published results from commercial

workloads, making them representative of real-world workloads. Figure 5.2, for example, shows the

cumulative distribution of the inter-arrival rate of I/O operations (in instructions) for our workloads.

These rates are similar to published rates of the inter-arrival rate of I/O operations in commercial

TPC-C workloads for IBM-DB2 [70], demonstrating that our workloads exhibit similar trends in

I/O operations when compared to commercial workloads. Further, even when performing measure-

ments with workloads that transfer gigabytes of data, only a small fraction of the overall execution

is studied owing to limitations of simulation speed. In these intervals, these real-world workloads

would appear like the ones that we simulate within our infrastructure.

5.2.2 SWAT Recovery Implementation

Within this simulation framework, we implement fault recovery in the server system to model a

scenario where the server that serves remote clients is protected from hardware faults by SWAT.

We therefore model the server system in detail with the GEMS timing models for the processor and

memory (Table 3.1).

Processor and Memory Checkpoint

For the processor checkpoint, we take a periodic snapshot of the processor’s architecture registers.

The memory logging is implemented with a SafetyNet-like logging scheme. The first stores to a

60

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

C
D

F
 o

f I
/O

 o
pe

ra
tio

ns

Inter-arrival rate (in instructions)

I/O profile of benchmarks

apache
sshd
squid
mysql

Figure 5.2: Inter-arrival rate of I/O operations for the server workloads. Although our workloads
are of smaller scales than commercial workloads, they exhibit similar trends for I/O operations
when compared to commercial workloads.

memory location since the last checkpoint triggers entering the old value at that memory location

into a log. This enables undoing the store at the time of recovery. While this incurs near-zero perfor-

mance overhead, the CLBs that store the memory logs may incur considerable hardware overhead

if they are implemented entirely in hardware. This overhead may be reduced by maintaining a

small hardware CLB that is periodically flushed it to a dedicated portion of the main memory.

(Section 5.3.1 discusses this further.)

Hardware Buffering

The operations of the hardware output buffer is simulated with a new Simics module in the server

that buffers writes from the processor to devices. At each checkpoint, writes buffered in the second-

to-last checkpoint interval are committed assuming that the recovery interval spans less than two

checkpoint intervals. Although the recovery interval can technically span arbitrarily many check-

point intervals, the outputs would have to be buffered for the entire duration, motivating this choice

for our evaluations.

In addition to draining at the checkpoint and at memory fences that enforce orderings between

I/O operations, the hardware output buffer is drained when loads that attempt to read values

61

from buffered stores (as they pertain to the same address) are encountered. Simics limits us from

performing this store-to-load forwarding accurately, forcing us to drain the output buffer when we

encounter such dependencies. However, we see such loads that not preceded by memory fences to

be rare, making our loss in recoverability insignificant.

Device Recovery

Due to infrastructure limitations we implement device recovery by taking a periodic snapshot of the

device registers in the server and restoring them during rollback, instead of resetting the devices

and reinitializing the drivers.

5.2.3 Metrics for Evaluation

Overheads during Fault-free Execution

We do not measure the overheads from periodic register checkpointing as it is known to incur near-

zero performance and area overheads. The register checkpoints can be stored in dedicated memory

locations that are ECC protected.

The overheads from hardware output buffering and memory logging on fault-free execution are

measured by simulating the entire application without any faults. Since attaching timing models

prohibitively slows down the simulation, the processor and memory are simulated functionally with

each instruction and memory operations taking 1 cycle to complete. While more accurate models

would yield more accurate results, we believe that the qualitative nature of our results would still

hold.

The performance overhead from output buffering is measured as the ratio of the time taken by

the client to receive all its requested files from a server which performs output buffering in hardware,

when compared to requesting files from a server that does not buffer outputs. While the buffered

stores would be drained in the background in a real system, they are drained instantaneously in our

implementation; we conservatively charge one cycle to drain each such store. The area overhead of

the hardware buffer is measured by recording the sizes of data and addresses buffered.

For the memory logs, we measure the log sizes from memory writes (from the CPU and from

62

DMA) for varying checkpoint intervals. We do not focus on the performance overheads from memory

logging as prior work has extensively studied these overheads and has devised mechanisms for

memory checkpointing that incur low overheads [71].

Recoverability

The SWAT detectors and the recovery module that buffers external outputs in hardware provide a

solution to detect and recover from hardware faults. We evaluate this combined system by injecting

8,960 permanent and 8,960 transient hardware faults in the server workloads, with the infrastructure

described in Chapter 3. Since we inject and detect faults only in the server, we recover only the

server system without affecting the client.

The injected faults are detected using the SWAT detectors discussed in Chapter 3. For faults

detected within the 10M instruction window of detailed simulation, the system is recovered with

checkpoints taken at different intervals from 10K instructions up to 10M instructions.

Once a fault is detected, SWAT restores the processor, memory, and devices from their check-

points, discards unverified outputs as they may be faulty, and recommits outputs buffered in the

previous recovery interval. We then turn the fault off and simulate the system until either a software

anomaly is triggered or the application completes. The fault is recoverable if the application output

matches the fault-free output. Since the purpose of this functional simulation is to collect the output

of the application, output buffering is turned off after the fault is detected. In addition to this Full

system, we study two other systems to evaluate the importance of each recovery component – the

No-Device system that buffers outputs but does not recover devices, and the No-I/O system that

neither buffers outputs nor recovers devices (both systems recover the architecture state).

The faults are then classified into 4 categories based on their outcomes. Faults masked by

the architecture or the application are classified as Masked. Detected faults that are successfully

recovered at the given checkpoint interval are classified as Detected + Recovered, and those that are

not as Detected + Unrecovered, also known as DUEs. (All faults detected at a latency of > 10M

instructions are trivially DUEs.) The remaining faults corrupt the output of the application and

are classified as Potential SDCs. As discussed in Chapter 4, some of these faults may be tolerated

63

(a) Performance Overheads (b) Area Overheads

Figure 5.3: Overheads from hardware output buffering on fault-free execution. The low performance
overheads and log sizes for checkpointing intervals of under 100K instructions motivate designing
systems with these checkpoint intervals.

by the server workloads through simple retries. We account for this application-level tolerance and

measure the true SDC rates as well.

The recoverability of the SWAT detectors is measured as a fraction of the injected faults that

are either masked or are detected and recovered by SWAT. Such faults are externally invisible,

demonstrating the efficacy of SWAT to contain the fault within the server. Owing to the large

number of injected faults, we see a statistical error of under 0.7% at a 95% confidence intervals for

the recoverability, giving us high confidence in our results.

5.3 Results

5.3.1 Overheads During Fault-free Execution

Hardware Output Buffering

Figure 5.3 shows the overheads from buffering outputs in hardware for several checkpoint intervals.

Figure 5.3(a) shows the performance overheads while Figure 5.3(b) shows the area overheads.

Server-side buffering incurs overheads as responses to clients are delayed. From Figure 5.3,

we see that buffering external outputs in hardware incurs low performance and area overheads at

64

Workload Maximum Size (in KB) 95th Percentile (in KB)

apache 121 21
sshd 141 56
squid 170 47
mysql 152 16

Table 5.3: 95th percentile of memory log sizes. The area overheads from storing the memory logs
in hardware may be reduced by keeping a small hardware buffer that is periodically flushed to a
dedicated portion of the memory.

checkpoint intervals of under millions of instructions (<5% performance and < 2KB area overheads

for intervals of 10K and 100K). However, at longer intervals of millions of instructions, the overheads

incurred are much higher. At an interval of 1M instructions, the performance overheads are as high

as 5X and rise up to 62X at a 10M instructions checkpoint interval. The area overheads plateaus

at a maximum of 18KB for intervals of millions of instructions.

These overheads from buffering outputs in hardware may in fact be higher than those incurred

from software buffering. To understand the reasons behind these overheads, consider a checkpoint

interval of C and a high-level output command comprising several low-level stores. Assume some of

these stores depend on a client response acknowledging a previous store (e.g., like TCP flow control),

creating a dependence chain. Software buffers the entire high-level command, delaying the entire

dependence chain by a total of 2 checkpoint intervals or 2×C. Hardware buffering will delay each

server-store to client-response dependence by two checkpoint intervals, resulting in additive delays

of 2×C×L for a dependence chain of length L. Hardware buffering is nevertheless more attractive

as buffering in software assumes that the software draining the outputs is fault-free.

Memory Logging

Figure 5.4 and Table 5.3 show the sizes of the memory logs during fault-free execution. Figure 5.4

shows the maximum log sizes, while Table 5.3 lists the maximum and 95th percentile of the log

sizes for a checkpoint interval of 100K instructions.

From Figure 5.4, we see that checkpoint intervals of under 100K instructions give a maximum

log size of 170KB. Increasing this interval to millions of instructions, however, results in log sizes of

several megabytes For example, the maximum log size at a checkpoint interval of 10M instructions

65

Figure 5.4: Maximum Sizes of the memory logs for various workloads (in KB). The memory logs
grow to MegaBytes in size for checkpoint intervals of millions of instructions.

is 4.4MB.

The true overheads from memory logging, however, depend on how the logs are implemented.

SafetyNet proposed that the CLBs that store the memory logs be completely implemented in hard-

ware [71]. The resulting overhead of 170KB per checkpoint interval may be too high. This overhead

can be further reduced by using a small hardware buffer that is periodically flushed to memory.

Table 5.3 shows the 95th percentile for memory logs for a checkpoint interval of 100K instructions.

(The maximum sizes are also shown for comparison.) From this table we see that sizing this hard-

ware buffer at 57KB, which is the maximum 95th percentile for the memory logs for our server

workloads at a checkpoint interval of 100K instructions, would require infrequent flushes of this

buffer to memory (for < 5% of the checkpoint intervals). The area overheads from the memory logs

is therefore significantly reduced with minimal impact to fault-free execution.

These results show that the checkpoint interval for any practically acceptable hardware recovery

solution should be under millions of instructions so that fault-free execution is minimally affected.

Previous work assumed, however, that checkpoint intervals of millions of instructions may be ac-

ceptable as they ignored the impact of output buffering on fault-free execution.

66

(a) Permanents (b) Transients

Figure 5.5: Outcome of detecting and recovering injected permanent and transient faults. At a
checkpoint interval of 100K instructions, SWAT detects and recovers over 94% of the injected faults
with < 0.2% of the faults resulting in unacceptable SDCs.

5.3.2 Recoverability of SWAT

Overall Results

The bars in Figure 5.5 shows the efficacy of SWAT to detect and recover the system from in-core

permanent (Figure 5.5(a)) and transient (Figure 5.5(b)) faults in the presence of I/O. The numbers

on top of this bar for each checkpoint interval is the fraction of injected faults that either escape

detection and result in potential SDCs, or are detected but the output of the recovered application

differs from the fault-free output.

The graphs show that the the fraction of injected faults that result in potential SDCs decreases

as we increase the checkpoint interval from 10K instructions till 10M instructions. The higher

masking rate for permanent faults at the 10M checkpoint interval is an artifact of our simulation

window of 10M instructions coinciding with the checkpoint interval. Consequently, buffered outputs

are not released within our simulation window, limiting the amount of forward progress that the

applications make at this checkpoint interval.

The overheads results from Section 5.3.1 showed that checkpoint intervals of 100K instructions

or lower is preferable to minimize the impact on fault-free performance. Focusing on a checkpoint

interval of 100K instructions (motivated by Section 5.3.1), we see that the detection and recovery

67

solutions are effective for hardware faults. Even at a this low checkpoint interval, 94% of the injected

faults are either masked or are detected and recovered by SWAT without affecting application

output. Although 5% of the injected faults are DUEs (Detected Unrecovered Errors) that may

have affected outputs prior to detection, SWAT can inform the clients to discard the outputs as

they may be faulty. Of the remaining faults, only 44 faults (0.2% of the injected 17,920 faults)

are true SDCs. Shorter checkpoint intervals yield larger potential SDC rates (1.2% at a checkpoint

interval of 10K instructions from Figure 5.5), making the 100K instruction interval the sweet-spot

for checkpointing.

Our system therefore achieves high recoverability rate, and low SDC rate for both permanent

and transient faults while incurring low overheads during fault-free execution.

Importance Of I/O For Fault Recovery

Figure 5.6 shows the importance of device recovery and output buffering for system recovery in the

presence of I/O. For each checkpoint interval, the bars show the outcomes from detecting and recov-

ering permanent faults injected into No I/O system that recovers only the architecture state without

buffering outputs or recovering devices, the No Dev system that recovers the architecture state and

buffer outputs but does not recover devices, and the Full system that recovers the architecture state

and devices, and buffers outputs.

From the figure, we see that buffering external outputs and device recovery are essential for

system recovery in the presence of I/O across all checkpoint intervals. Removing device recovery

reduces the fraction of recovered faults by as much as 89% as seen in the No-Device system. In

the absence of output buffering and device recovery, i.e., in the No-I/O system, the fraction of

unrecovered faults is further reduced by as much a 37%. These components of fault recovery have,

however, been ignored by much prior work as they did not study recovery in the presence of I/O.

Further, no prior work has evaluated the extent to which each of these components are required for

fault recovery as demonstrated here.

68

Figure 5.6: Importance of device recovery and output buffering for system recovery in the presence
of I/O. The No-Device and No-I/O systems show that device recovery and output buffering are
required for system recovery and cannot be ignored.

5.4 Summary and Implications

SWAT relies on BER schemes for fault recovery as the detectors allow the fault to corrupt system

state prior to detection. SWAT therefore requires support for checkpointing and output buffering

to recover the system once a fault is detected. This recovery module of SWAT is intricately related

to the fault detection scheme as the checkpoint intervals for fault recovery, and consequently the

overheads on fault-free execution, are dictated by the latencies at which the faults are detected.

This chapter presented the various components involved in SWAT’s recovery module. Of par-

ticular emphasis is the hardware module used for output buffering that does not suffer from the

identified limitations of existing software-level techniques. The simple buffer reduces the vulnera-

bility of external outputs to faults and incurs low performance and area overheads at checkpoint

intervals of under millions of instructions. We then present a comprehensive solution for in-core

fault resiliency by evaluating the fault detection and recovery modules together. Our results show

that the SWAT system achieves high recoverability, incurs low overheads during fault-free execution,

and results in low SDC rates for in-core permanent and transient hardware faults.

69

Although the recovery results are presented in the context of SWAT, we believe that the princi-

ples of fault recovery presented here are applicable to other software anomaly detection and recovery

schemes as well. We demonstrate how output buffering may be done with low-cost hardware, reduc-

ing the vulnerability of externally visible outputs. Further, this chapter shows that fault recovery

and detection are two aspects of system reliability that go hand-in-hand and and must be studied

together.

70

Chapter 6

Understanding When and Where
SWAT Works

The SWAT system has so far been demonstrated to be large successful in detecting and recovering

from permanent and transient faults for a variety of single-threaded and multi-threaded work-

loads running on single and multi-core systems. (Although this thesis does not deal with faults in

multi-core systems interested readers are referred to the mSWAT paper that demonstrates SWAT’s

effectiveness in such scenarios [28].) We saw in the previous chapters that the SWAT detectors

achieve SDC rates of under 0.5% for permanent and transient faults in a variety of workloads.

Despite the promise of low SDC rates at low overheads, the evidence for the success of SWAT

and other software anomaly detectors has been through statistical fault injection experiments and

are therefore, largely empirical. An intuitive understanding of the hard-to-detect faults that result

in SDCs has not been built this far and is important for software anomaly detection for the following

reasons. First, the SDC rates, although low, may not be low-enough for certain application classes

such as mission critical systems, and finance applications. Understanding these SDCs may yield

better detectors that lower the SDC rates further. Second, this understanding can help select the

instructions that need to be protected through software-level redundancy methods [24, 44, 61, 66] in

order to make the application more resilient to hardware faults. Third, the statistical fault injectors

used to evaluate the detectors can be guided to inject these hard-to-detect faults and stress-test the

detectors.

There are two axes along which the characteristics of these SDCs need to be studied – a hardware-

centric axes and an application-centric axes. A hardware-centric characterization would help to

understand how hardware faults manifest themselves as faults in the application by studying which

instructions are affected. An application-centric characterization would then help to understand

how faults at the instruction level manifest themselves as visible software anomalies that may be

71

detected. These hardware-centric classification would help to identify those hardware structures

in which faults may be harder to detect and can be used to choose which hardware structures to

harden against faults. The application-centric classification, on the other hand, would help identify

application values in which faults may be harder to detect, enabling application hardening against

hardware faults.

In this chapter, we build such an intuitive understanding of faults and answer the following

questions – Why are software anomaly detectors, like SWAT, effective in detecting hardware faults?

Where do they fall short? What values should we target for future detectors? Are there hardware

properties that may be exploited for improving fault resiliency? We first take an application-centric

view of faults and understand how faults propagate through the application and result in detectable

anomalies (Section 6.1). The key insight used is that software anomaly detectors, like SWAT, rely

on some form of deviation in control flow or memory addresses for successful detection. Faults in

values that do not affect such operations, classified as data-only values, are therefore vulnerable

under software anomaly detection. We then measure the frequency of these data-only values in

real workloads, and study how faults in such values may be detected (Section 6.2). We then

take a hardware-centric view of faults and demonstrate that faults in certain structures that are

sparingly utilized (because of microarchitecture-level redundancies) may result in higher SDC rates

(Section 6.3). Enforcing a uniform utilization of such structures may help reduce the SDC rates,

making software anomaly detection more effective.

6.1 An Application-Centric View of Faults

In this section, we take an application-centric view of faults to how SWAT detects faults that corrupt

the application. For this purpose, we first assume that the hardware fault has resulted in a fault in

the application instruction. We present a model of how such a fault in the instruction word may

affect the execution of software in order to build some intuition behind the propagation of faults

through the application. Subsequently, we identify some limitations in the existing SWAT detectors

based on this model and study strategies to overcome the identified limitations.

72

Figure 6.1: A fault may corrupt opcode, register names, address, or data values (of src/dest regis-
ters). Each such corruption propagates through the application in a variety of ways. The SWAT
detectors identify corruptions in most values but are limited in their ability to identify pure data
value corruptions.

6.1.1 A Model of How Faults Propagate Through the Application

Any instruction consists of four parts – opcode, register names (sources and destinations), address

computed for memory operations, and data values of source and destination registers. The following

sections describe the impact of corrupting each of these parts. Figure 6.1 gives a high level overview

of the propagation.

Corruption in Opcode

A fault that affects the opcode can either mutate the instruction to an invalid instruction, that

results in an Illegal Instruction fatal trap, or to another valid instruction. Valid mutations may

result in either value corruptions, if the mutation involves non-branch opcodes, or in control flow

corruptions if the mutation involves branches. Invalid control flow may result in Illegal Instruction or

App Abort anomalies. Other types of corruptions are analogous to data value corruptions discussed

below.

73

Corruption in Register Names

A fault may change the name of an architecture register used or produced by an instruction (e.g.,

source register changes from r5 to r9). If a different register is read, then the effect of the fault

is similar to a data value corruption in the destination register. However, if a different register is

written, the fault corrupts the data values in two registers. All such corruptions propagate as faults

in data values.

In architectures with register renaming, the hardware fault affects the renamed register numbers

(of either source or destination registers) resulting in instructions indefinitely waiting for either free

registers (if the source register number is free) or in data value corruptions (if the destination register

number is currently in use). The former instances of lack of forward progress can be identified with

a Watchdog Timer, while the latter results in data value corruptions.

Corruption in Address

For a memory instruction, the fault may mutate the address into an address on an invalid page, on

a valid unmapped page, or a valid mapped page.

In architectures like SPARC, accesses to misaligned addresses are treated as illegal accesses,

resulting in a Misaligned address trap for such mutations. Further, if the address translation misses

in the TLB, the software managed TLB invokes the OS to handle the miss. Since the OS uses the

same faulty hardware, it could further activate the fault and result in anomalous software execution.

Several detectors in SWAT detect such anomalous execution from the OS – Kernel Panic, High OS,

System Hang, and RED State.

Invalid Page: Invalid pages are identified through a page table walk by either the hardware or

software, depending on TLB management. Hardware managed TLBs would give a trap indicating

an invalid page on such addresses. Software managed TLBs invoke the OS for this identification

that may either activate the fault and result in anomalous software execution, or may identify the

illegal address and abort the application – identified by the App-Abort detector.

Valid Unmapped Page: Although the corrupted address may be in a valid page, the page may

74

currently not be mapped in the page table, incurring a page fault. The OS is then invoked to

handle such page faults. Since the OS has elaborate control flows, the hardware fault is further

activated by the OS result in several anomalous executions from the OS which are detected through

the Kernel Panic, High OS, System Hang, and RED State detectors.

Valid Mapped Page: If the address is (allocated or unallocated) on a valid page that is currently

mapped, the effect of the fault is analogous to corruptions in data values.1 If the page misses in the

TLB that is software managed, the OS may be invoked to handle the fault, further activating the

fault.

Corruption in Data Values

A corruption in a data value is the most fundamental way in which a hardware fault can affect the

application. The data value corruption can affect the program execution in the following ways:

Control Instructions: If the fault propagates to a control instruction, either the conditional that

decides the direction of the branch or the target of the branch may be corrupted.

If the conditional is affected without affecting the outcome (e.g., in a < 0, if the value of a

changes from −5 to −10), the fault is logically masked by the application. If the outcome is altered,

control branches to an alternate target, producing more faulty data values on the new path of

execution.

If the target is affected by the fault, control may branch to either an invalid target, or to a valid

legal target that is different from the correct (fault-free) target. An invalid target outside the code

space results in an Illegal Instruction trap. Invalid targets to within the code space can either jump

to the start or to the middle of a basic block. A subset of such branches, and branches to other

legal targets can be identified using a Hang Detector. In either case, more faulty data values are

produced by the erroneous branch, further propagating the fault.

Address of memory instructions: The outcome of a fault propagating to an address is similar to

that of a fault that directly affects the address of a memory instruction (Section 6.1.1).

1Heap allocation by malloc() may not be contiguous, resulting in holes of unallocated addresses in valid pages.

75

Pure Data values: All other corruptions fall into this last category where only data values that are

neither used in control flow nor address computations are affected. These faults are the hardest to

detect as these are data-only corruptions. The Division-by-Zero detector of SWAT identifies some of

these faults. Extensions to SWAT that include compiler-assisted invariant violation detectors [66],

and other data-centric detectors [23, 44, 61] may be used to detect such faults.

Implications

From the above qualitative description of how faults propagate through the application, we see

that SWAT has detectors for most outcomes except for faults that result in data-only corruptions.

Despite this shortcoming, SWAT has large success in detecting hardware faults injected in several

parts of the processor indicating that such behavior may be rare in real software.

6.2 Data-Only Values

We define a value to be a data-only value if it never affects a value that is used in a control

instruction or a memory address. As previously described, the model of fault propagation through

the application predicts that faults in such data-only values are harder to detect by SWAT and

hypothesizes that since SWAT is highly effective to detect faults, such values should be far and few

in the application. We take a closer look at these values here and study how faults in such values

behave, as opposed to faults in other random application values.

6.2.1 Number of Data-only Values in Applications

Figure 6.2 presents the fraction of data-only values in the C/C++ workloads of the SPEC CPU 2000

benchmark suite. The data is collected from a simulated system running unmodified OpenSolaris OS

on an UltraSPARC-III-like processor with a full memory hierarchy. The system is simulated with

the Simics full-system simulator along with the GEMS timing models for processor and memory

(Tables 3.1 gives the parameters of the processor and memory in the simulated system). For

each workload, we pick 4 random phases (each 11 million instructions long) during the application

execution and track with the help of a Dynamic Data Flow Graph (DDFG) how data values produced

76

Figure 6.2: Fraction of application values that are data-only in the SPEC workloads. The small
number of data-only values demonstrates that faults in most values propagate to control instruc-
tions and/or memory values, resulting in detectable anomalous execution. Further, workloads with
floating point data have more data-only values making them more vulnerable than those that purely
operate on integer values.

in the first million instructions in each phase are used in the next 10 million instructions of the

program (dependencies through memory stores and loads are also tracked in the DDFG). If a value

does not affect control instructions or memory addresses in this 10 million instruction window, it is

classified as a data-only value. We do not track the values all the way until application output as

the DDFG grows to unmanageable sizes for longer simulation periods (of billions of instructions);

our results are therefore conservative as the set of values we classify as data-only is a super set of

the true data-only values. The figure aggregates the number of data-only values across the four

phases for each workload. The fraction of values that are data-only are shown for the ref and test

inputs of SPEC in order to gauge the effects of changing the size of the inputs on the number of

the data-only values.

From this figure we see that the fraction of values that are data-only is fairly low across the

entire suite of SPEC workloads for both the larger ref and the smaller test input sets. Nearly all

the workloads have < 6% of values as data-only for both sets of inputs. Workloads that operate on

floating point values (such as eon, although it is a SpecInt benchmark, equake, ammp, and mesa)

have more data-only values than the other workloads as floating point values are seldom used for

77

control decisions.

The three outliers from this observation are the FP workloads art for both sets of inputs, equake

for the ref input, and ammp for the test input. art has no data-only values in the measured

intervals as it takes several control decisions based on floating point values, unlike other FP work-

loads. (This workload tries to recognize known objects in a given image, resulting in elaborate

FP-value dependent control-flow.) On the flip-side, the fraction of data-only application values is

> 20% for equake with the ref input set (with 21% data-only values), and ammp with the test

input set (with 26% data-only values). In our chosen phases, these configurations exhibit half an

order of magnitude or more floating point operations than the other benchmarks, resulting in much

higher data-only values. We believe that these outliers are artifacts of our simulation not tracking

data-only values for the entire application, and are not fundamental to these workloads.

Additionally, we see no clear relationship between the size of the inputs and the fraction of

data-only values. Although the larger ref input has more data values because of larger arrays and

data-structures, it does not have more data-only values than the smaller test input. One possible

reason for this is that the data-only value categorization also depends on the extent of control flow

in the application which varies based on the inputs provided. The ref input, for example, may have

more extensive control flow, making many of its data values affect control operations or memory

addresses, resulting in fewer data-only values overall. Data-only values is thus a property of the

application and is not necessarily related to the sizes of the inputs provided to the application.

The overall low fraction of data-only values demonstrates why software anomaly detection

schemes like SWAT are effective. Faults in a large fraction of the values eventually affect con-

trol decisions or memory addresses, resulting in anomalous software execution such as branching off

to a wrong location or indefinitely looping because of a fault in the control instruction, or out-of-

bounds accesses and protection violations from faults in memory addresses. Since software anomaly

detectors, like SWAT, monitor the software for such behaviors, they detect a large fraction of the

hardware faults.

In order to understand the effects of infrastructure limitations to track data-only values, Fig-

ure 6.3 presents how the fraction of application values that are classified as data-only changes as we

78

Figure 6.3: Number of data-only values with increasing window of propagation for SPEC workloads
with test inputs.

track the uses of the values for intervals of 1M, 2M, 10M, and 20M instructions. (Figure 6.2 only

showed the results for a 10M instruction propagation window.) The results are shown only for the

test input as we observed similar results from the ref inputs. The only application with > 10% of

application values as data-only (the scale of the y-axis is from 0%–10%) is ammp which has 26.4%

data-only values, consistent with Figure 6.2.

The figure shows that, as expected, the fraction of values classified as data-only decreases as we

increase the window of propagation. This is because with longer windows, the value affects other

values which may eventually be used in control decisions or as memory addresses. We also see from

the figure that tracking the propagation for a longer window of 2M instructions, instead of a shorter

1M instruction window results in the largest reduction of data-only values (an average reduction

of 17%). Increasing this window, however, reduces the overall data-only values count by smaller

fractions, with rather small differences between propagation windows of 10M and 20M instructions

(only 3 applications show any differences of > 2% in the fraction of data-only values between these

windows).

Therefore, although we consider a non-ideal propagation window and do not track the uses of

the values till the application output, these results show that the limitations of our infrastructure

79

may not result in significant errors in the categorization.

6.2.2 Faults in Data-only Values

Since these data-only values may not affect control decisions or memory addresses, faults in such

data-only values may not result in visible anomalous software execution, making them harder to

detect than faults in randomly chosen values.

Figure 6.4 compares the outcomes of injecting transient faults into (a) data-only values, and

(b) random application values for all 16 SPEC C/C++ workloads with the test inputs.2 Each

workload is simulated in the afore-mentioned simulation framework and a transient fault is injected

(one per run) into a random bit in the value chosen in the first million instructions of each phase.

In Figure 6.4(a), up to 4000 randomly chosen values from the set of data-only values identified for a

propagation window of 10M instructions (Figure 6.2) are chosen for injections. The workloads mcf

and twolf have only 255 and 561 data-only values in the measured window, respectively, resulting

in one injection in each of their data-only values. For Figure 6.4(b), 4000 random values that form

the destination values of the first million instructions are chosen for injections. Once a fault is

injected, the system is simulated for 100K instructions in detailed timing mode to identify faults

that are detected by the SWAT detectors (Chapter 3) at short latencies. Faults detected in this

window are classified as Detected-Short. (We chose 100K as the threshold for this category based

on the fault recovery results presented in Chapter 5.) Faults that are are not detected in the 100K

instruction window are then simulated functionally until either the application finishes or the fault

is detected. Faults detected in this mode are classified as Detected-Long category and are classified

as unrecoverable. Activated transient faults that produce application outputs that are identical to

the fault-free output are classified as Masked, while those that corrupt the outputs are classified as

SDC. The large number of fault injections give a standard error of under 0.2% for the SDC rate at

a confidence interval of 95%.

Faults that are either detected at longer latencies or result in SDCs are hard to detect by the

SWAT detectors, making it important to protect those values through special techniques. From

2We chose the smaller test inputs over the larger ref inputs in order to contain the duration of the fault injection
experiments.

80

(a) Data-Only Values (b) Random Values

Figure 6.4: Outcome of architecture-level transient faults injected into (a) data-only values and (b)
random values for SPEC workloads. Faults in data-only values are detected at longer latencies,
and lead to more SDCs, making such values critical to protect to harden the application against
hardware faults.

Figure 6.4(a), we see that on an average, 6.8% and 6.5% of the faults in data-only values fall

under the Detected-Long and SDC categories, respectively. The corresponding numbers from the

faults in random values shown in Figure 6.4(b) are, on the average, only 1.4%, and 3.1%. Faults in

data-only values may cause detectable software anomalies when the values affect control instructions

and/or memory operations. Since our infrastructure does not track the propagation until application

output, as previously discussed, it categorizes some of these faults as data-only. Nevertheless, since

all the faults detected in data-only values are detected at long latencies, they are arguably as critical

to protect as those that result in SDCs.

We also see that several applications show marked differences between faults in data-only value

and random values, with some apps demonstrating high SDC rates from data-only values (the

ammp workload, for example, has an SDC rate of 22.8% in Figure 6.4(a)). This demonstrates the

importance of considering application-specific properties when studying the effect of faults.

Figure 6.4 shows a couple of other interesting trends in fault masking and fault detection. First,

we see that the masking rate is higher for faults in data-only values than for faults in random

values; on the average, 85% of the faults in Figure 6.4(a) are masked while only 66% of the faults

in Figure 6.4(b) are masked. Faults in random values show lower masking rates as the values

81

affected by the fault may be used for a variety of operations including control-flow and memory

addressing. Faults in data-only values, on the other hand, are used purely for data-flow and have

a higher chance to be logically masked.3 Second, we see that over 86% of the unmasked faults in

random values are detected in under 100K instructions by the SWAT detectors (Detected-Short in

Figure 6.4(b)), demonstrating that the SWAT detectors are highly effective in detecting faults in

random application values. In Figure 6.4(a), however, only 2.5% of the unmasked transient faults

in data-only values are detected at short latencies showing that data-only values need additional

support to enable software anomaly detection.

These results show that faults in data-only values are hard-to-detect with existing software

anomaly detectors. Additional support from the application may be required to enable software

anomaly detection for faults in such values.

6.2.3 Detecting Hard-to-detect Faults in Data-Only Values

The existing SWAT detectors are therefore insufficient to detect faults in data-only values. Over

13% of the faults injected into data-only values in Figure 6.4(a) were classified as Detected-Long or

as SDC and are thus hard-to-detect. We subsequently leverage existing work on using value-based

software-level invariants to detect such hard-to-detect faults [66].

For each application, we derive invariants on the dynamic values of all static instructions that

have at least one data-only dynamic instance.4 The invariants track the minimum and maximum

values produced by dynamic instances of the chosen instructions and enforce the ranges at run-

time. Table 6.1 gives the number of data-only locations in each workload at which such value-based

invariants are derived and monitored.

For each instruction, the range of values monitored by the invariants are derived across the 4

randomly chosen phases in the SPEC workload and are aggregated per static instruction across the

four phases. The invariants are then monitored within the afore-mentioned simulation framework for

fault injection without modifying the application. If a static instruction that contains an invariant

3Note that the fault model used here is an instruction-level fault model, as opposed to the microarchitecture-level
fault model used in previous chapters, resulting in far more activations than those seen previously.

4We saw in our experiments that not all dynamic instances of a given static instruction had identical behavior,
resulting in some being classified as data-only while others were not.

82

Application Number of Locations

gcc 41
gzip 2
mcf 12

bzip2 10
twolf 15
parser 49
crafty 55
eon 65
gap 13

perlbmk 5
vortex 38
vpr 17

equake 17
ammp 100

art 0
mesa 0

Table 6.1: Number of static locations chosen for inserting value-based invariants to detect hard-to-
detect faults in data-only values. Each chosen location has at least one dynamic instance that was
classified as data-only.

attempts to retire, the dynamic value produced is checked against the ranges monitored by the

invariant – if the value does not conform to the range, then a detection is flagged. In order to

explore the limits of these invariants, we use the same set of inputs (the test inputs for SPEC) to

derive the invariant ranges and to enforce them.

Figure 6.5 shows the effect of using of these invariant detectors to detect the hard-to-detect

faults in data-only application values. Figure 6.5(a) shows the fraction of hard-to-detect faults

that are detected by these range-based detectors. Since the application may tolerate some value

perturbations that makes the dynamic values violate the monitored ranges, these invariants may

also incur false positives. Figure 6.5(b) shows the fraction of faults detected by these detectors that

would have been masked by the application were the execution allowed to continue. Each graph

also shows the results aggregated across all the workloads in the Avg bar.

We see from Figure 6.5(a) that, on the average, 56% of the hard-to-detect faults are detected by

these detectors. This translates to reducing the rate of hard-to-detect faults from 13.8% to 6.5%.

Although not shown in this figure, these detectors cover 69% of the faults in data-only values that

are detected at long latencies (Detected-Long in Figure 6.4(a)) and 39% of the SDCs in data-only

83

(a) Coverage of Hard-to-Detect Faults (b) False Positives Rate

Figure 6.5: Effect of using range-based invariant detectors to detect hard-to-detect faults in data-
only application values.

values. In most workloads, a significant fraction of the hard-to-detect faults are identified, except for

perlbmk where no hard-to-detect faults are detected and ammp where only 6% of the hard-to-detect

faults are detected. Further sophistication in the types of detectors used to identify the remaining

faults is required.

Figure 6.5(b) shows that these detectors also incur a high rate of false positives. On an average,

72% of the faults detected would have been masked by the application were the execution allowed

to continue, making them false positives. Recent work has however shown that training such value-

based invariants on multiple inputs and altering the ranges dynamically based on the observed

false positives reduces this false positives rate significantly, with the rate becoming nearly 0% when

training with 50 inputs [66, 80]. Such a strategy may be used to reduce the false positives incurred

from these detectors. Further, since such faults in data-only values are rare (given that < 6% of

application values are data-only), these false positives may not cause notable perturbations when

these detectors are deployed in commodity systems.

These results show that range-based value invariants may be effective to detect hard-to-detect

faults in data-only values. However, further research is required to identify the types of faults that

escape these detectors and to reduce the false positive rates incurred. Such explorations are beyond

the scope of this thesis and is left to future work.

84

6.2.4 Detecting Hard-to-detect Faults in Random Values

Although detecting faults in data-only values is important to improve the efficacy of software

anomaly detection, faults in other random values that escape the SWAT detectors are also im-

portant to detect. In fact, from the faults injected in random values in Figure 6.4(b), only 12% of

the hard-to-detect faults are from data-only values. The remaining 78% are from faults in other

values that do affect control instructions and memory addresses and are hence not data-only.

We identified through some analysis that these faults tend to have some close connections with

the data-only values that have been explored previously. Although the fault corrupts values that

affect control instructions and/or memory addresses, we noticed that the values affected as a result

of the control flow deviations tended to be data-only values. The control flow subsequently merges

with that of the fault-free execution, resulting in no software-level anomalies (previous work has

demonstrated that such control convergences in the presence of faults that affect branches are

common occurrences in real-world applications [77]). Effective detectors that detect faults in data-

only values may thus also detect hard-to-detect faults in random values. We however leave the

exploration of such detectors to future work but believe that the insight presented here would help

guide the development of such detectors.

6.2.5 Identifying Critical Data-Only Values

Detecting faults in data-only values may not only reduce the hard-to-detect faults from data-only

values but may also help reduce the fraction of hard-to-detect faults in random values. We therefore

analyze the data-flow properties of the data-only values in an attempt to predict which values are

more important to protect than which others. While there has been much work to identify such

critical application values, we explore the previously proposed metric of fanout [56] owing to it

overwhelming success in identifying critical application values.

The fanout of a value is defined as the number of dynamic instructions dependent on, i.e. uses

the value as a source, the static instruction that produces this value. Since a value with a high

fanout will result in propagating the fault to more values, it is classified as being more critical to

protect than one with a low fanout. We use this notion of fanout to identify which critical data-only

85

Figure 6.6: Efficacy of oracular detectors derived with the fanout metric to identify hard to detect
faults. The fanout metric identifies critical values to protect accurately. However, the detectors
must be carefully designed to keep the false positive rates low.

values need to be protected so as to reduce instances of hard to detect faults. For each data-only

value, the fanout is computed by aggregating (with set union) all dynamic instructions that use as

source a data-only dynamic instance of the corresponding static instruction.5

We select those data-only values that have at least one hard-to-detect fault and rank them based

on their fanout. We then select the top 1, 10, and 100 data-only locations and assume oracular

predictors that identify the presence of any fault at these data-only values. Figure 6.6 shows the

effect of deploying these oracular detectors in the SPEC workloads. For each application, the stacks

show the fraction of hard-to-detect faults in data-only values that are identified with 1, 10, and

100 oracular detectors placed based on the fanout metrics. The results aggregated across all the

workloads is also shown in the Avg bar.

From the figure we see that a small number of detectors, selected based on the fanout metric

may be sufficient to detect a large fraction of the hard-to-detect faults. Since values with high

fanout affect much of the application state, faults in these values affect the application in noticeable

ways. With just 10 detectors, Figure 6.6 shows that over 80% of the hard-to-detect faults in several

5Previous work aggregated fanout statistics across all instances of a static instruction with the assumption that
multiple dynamic instances may share identical behavior in the presence of faults. We have found, however, that this
need not be the case and hence aggregate our statistics only for those instances that produce data-only values.

86

workloads are detected, with an average coverage of 62% of the hard-to-detect faults. With 100

detectors, all the hard-to-detect faults in data-only values are covered for all workloads except ammp.

ammp exhibits a coverage of only 38% with even 100 detectors as it has over 500 static values that

cause hard-to-detect faults (recall from Figure 6.2 that this application had the maximum number

of data-only values for the test input set); increasing the number of detectors for this workload

would improve its coverage with 100% coverage at approximately 500 detectors. The workload

art has no data-only values and all faults injected into data-only values in the workload mesa are

masked, resulting in no detectors for these two workloads.

The fanout metric may thus be used to select effective locations for software-level detectors to

identify the hard-to-detect faults. Although we leave the exploration of the specific detectors to

future work, we would like to note that an important consideration for these detectors is to keep

the false positives from the detectors under check. Of the faults in the top-10 locations chosen for

detectors for each application based on the fanout metrics also, 69% were masked by the application

on average. The detectors would thus have to be carefully chosen to not identify such faults and to

keep the false positives under check.

6.3 A Hardware-Centric View of Faults

Another axes to characterize the properties of these hard to detect faults that may result in SDCs is

a hardware centric view. Understanding SDCs from this view will help identify those structures in

which faults are harder to detect, guiding the choice of which structure should be hardened against

hardware faults.

6.3.1 Structure-specific SDC Rates

Section 3.3.1 presented the potential SDC rates and detection latencies for faults injected in several

microarchitecture units in a modern processor. From the discussion in that section, we saw that

the ability of software anomaly detectors to detect hardware faults depended on how the hardware

fault manifested at the application-level instruction. Faults in structures that affect control flow

in the program (such as the Decoder, ROB, and RAT) are the easiest to detect as they result in

87

anomalous software execution identifiable at low latencies. Faults in structures that affect data-flow

(Int ALU, Reg Dbus, Int Reg, AGEN, and FPU) tend to have higher rates of potential SDCs than

the former 3 structures. However, barring permanent faults in the FPU, most faults in even these

structures were detected. This is because a large fraction of the values corrupted from faults in these

structures also affect values that are used in control decisions and/or memory addresses, resulting in

anomalous executions that the SWAT detectors monitor. Faults in structures such as the FPU that

purely affect data flow without affecting control (analogous to the data-only application values that

were previously discussed), are the hardest to identify, making these structures prime candidates

for hardware techniques to hardware against faults. There have been several techniques proposed

to harden such structures against faults, such as residue coding [37], which may be applicable to

further reduce the SDC rate.

Building a model that accurately captures this manifestation and predicts which application-level

instruction would be affected by a hardware fault would be immensely useful to develop cross-layer

resiliency solutions that achieve the highest reliability targets at the lowest cost. However, building

such models may not be straightforward as faults in some hardware units may manifest themselves in

not-so-direct ways at the application level, making it hard to establish the link between a hardware

fault and its application-level manifestations. Faults in the cache tag array, privileged bits are some

such examples. We leave exploring such models to future work beyond the scope of this thesis.

6.3.2 Effect of Utilization on SDC Rates

Since the hardware of modern processors have replicas of many units to increase performance (such

as multiple decoders, multiple ALUs, and multiple address-generation units), faults in less-utilized

structures may see lower activation rates, resulting in subtle corruptions of the software and in

higher SDC rates. Although prior work has identified that this lowered activation rate may make

fault diagnosis harder [71], the effect of altering this activation rate on the SDC rate has not been

studied.

Table 6.2 shows the effect of enforcing a uniform round-robin utilization on the SDC rates for

permanent and transient faults in 3 hardware structures – the decoder, the Integer ALU, and the

88

Fault Type Non-Uniform Uniform

Permanents 57 54
Transients 27 24

Table 6.2: Reduction in Potential SDCs in 3 structures from uniform round-robin utilization for
permanent and transient faults.

address generation unit. The results are obtained by injecting 1280 permanent and 1280 transient

faults in each structure while running all 16 C/C++ SPEC CPU 2000 workloads within the afore-

described simulation environment. For each workload, we pick four random phases during the

application’s execution, inject faults in them, and perform detailed timing simulation (with the

GEMS timing models) for 10M instructions to detect the fault with the SWAT detectors. Faults

that are not detected in this window are simulated functionally (with just simics) to completion

and those faults that affect the output of the application and are not detected are classified as

Potential-SDCs, as the application may tolerate some of these faults in its output. The table shows

the Potential SDCs from the base system that uses non-uniform scheduling for these 3 structures,

and the one that uses uniform round-robin scheduling. In the simulated base system, there are 4

instances of each of these units, with the first instance being preferred over the second (which is

used only when the first instance is currently busy) and so on. In the system that uses uniform

round-robin scheduling, the instructions are scheduled to the 4 units in a round-robin fashion by

remembering which instance was last used.

From Table 6.2, we see that uniform scheduling reduces the instances of SDCs by 5% for per-

manent faults and by 11% for transient faults. Round-robin scheduling is therefore useful to reduce

the potential SDC rate by making the faults more visible to software.

6.4 Summary and Implications

This chapter builds the intuition behind why the SWAT detectors are effective in detecting hardware

faults, and yield low rates of silent data corruptions. It builds this intuition along two angles, one

with an application-centric view and another with a hardware-centric view. With an application-

centric view, it demonstrated that faults in most application values affect control operations and/or

89

memory addresses, resulting in identifiable anomalous software execution. Only a small fraction of

application values do not affect control operations or memory addresses, making the SWAT detectors

effective for handling a majority of the faults that affect modern workloads. This chapter also shows

that faults in these data-only values are hard-to-detect and need special software-level detectors for

fault detection. (Since the software may be more adept at detecting faults in pure data values

through built-in consistency checks, and the hardware is more adept at detecting perturbations in

control flow or memory addresses, this is arguably the right distribution of specialized detectors

based on the manifestation of the hardware fault at the application level.) These software-level

detectors may be placed with the help of data-flow properties of the application. Second, taking

a hardware-centric view, this chapter showed that faults in certain structures that influence the

control flow of the application are easier to detect than those in structures that are data-centric. It

also shows that a uniform hardware schedule of redundant microarchitecture units may help lower

the SDC rates by ensuring that faults in rarely used structures are activated more often.

The results presented in this chapter may be used to design fault-tolerant applications and

hardware that is less prone to failures. The data-only categorization of application values may be

used to guide which application-level data values need to be protected in order to keep the SDC

rates under check. These data values can be protected through several techniques that have been

proposed to protect applications from faults in data values [24, 61, 66]. The categorization also

exposes those values in which faults are hard-to-detect and can be used to guide fault injection

techniques to stress-test future fault tolerant solutions. Additionally, the hardware-centric analysis

helps select which structures to harden against hardware faults.

90

Chapter 7

Conclusion and Future Work

7.1 Summary and Conclusions

The problem of unreliable hardware is expected to affect commodity systems of the future, war-

ranting alternatives to traditional redundancy based solutions that incurred high overheads. Such

solutions should incur low-cost in performance, power, and area while detecting, diagnosing, and

recovering the system from hardware failures. Although there have been several proposals to imple-

ment low-cost solutions for detection, recovery, and diagnosis, most of them are piece-meal solutions,

making the cumulative cost of resiliency unacceptable.

This thesis presents SWAT, standing for SoftWare Anomaly Treatment, which takes a full-system

approach to system resiliency and presents a solution to detect and recover from in-core permanent

and transient faults. (SWAT also implements an effective strategy for fault diagnosis [28, 34] to

identify the root-cause of the fault but is not discussed in this thesis.) SWAT detects hardware faults

by observing anomalous software execution, ignoring faults masked at lower levels of the hardware

and system. Consequently, SWAT relies on checkpointing-based schemes for rollback recovery, and

buffers externally visible outputs and releases them only when they are known to be fault-free (thus

handling the output commit problem). The SWAT diagnosis module leverages support from this

checkpointing system to repeatedly replay the faulting execution to distinguish between transient

faults, software bugs, and permanent hardware faults in single- and multi-core systems. This thesis

also presents an intuition behind why this strategy is effective for fault tolerance by presenting an

in-depth characterization of how faults propagate through an application, and by studying the types

of values affected by the fault.

Our evaluations show that the SWAT strategy is effective to detect and recover from in-core

91

hardware faults. (Interested readers are referred to other work that demonstrates the effectiveness

of the SWAT diagnosis module [28, 34]). In particular, the evaluations in the thesis demonstrate

the following.

• The low-cost SWAT detectors incur near-zero performance, area, and power overheads and

detect a high fraction of the permanent and transient faults injected into various microarchitec-

ture structures in a modern processor with compute-intensive and I/O-intensive applications.

Under 0.6% of the faults in non-FPU structures escape the SWAT detectors and corrupt the

output of the application. By considering the operations of the application, we identify that

a large fraction of these erroneous outputs may actually be tolerated by the applications,

resulting in only 0.2% of the injected faults resulting in SDCs. This translates to a two orders

of magnitude reduction in the FIT rate when compared to the base system with no protection

against faults (all faults that are not masked lead to failures in the base system). Structures

such as the FPU that affect only data computations need additional support for software

anomaly detection.

• The evaluations from fault recovery show that buffering external outputs in software may

still make the outputs vulnerable to faults in the processor core. This thesis presents, for the

first time, an implementation and evaluation of buffering external outputs in hardware and

demonstrates that such a strategy may be used if the checkpoint interval from the detectors

is under millions of instructions (or sub-millisecond range in a modern processor). Since the

SWAT detectors are adept at detecting hardware faults at such short latencies, we show that

> 94% of the harwdare faults may be detected and recovered by SWAT at a short checkpoint

interval of 100K instructions. At this checkpoint interval, fault-free execution is minimally

affected from output buffering; the performance impact is < 5%, and the area overheads are

under 2KB.

• This thesis also presents an intuition behind why the SWAT strategy is effective for handling

faults in modern workloads. It shows that only a small fraction of the values in modern

workloads do not affect control decisions or memory addresses, making faults in majority of

92

the values cause deviation in control flow or memory addresses. Since SWAT is effective in

detecting such perturbations in the system, it detects a majority of the hardware faults. The

thesis also shows that faults in such data-only values are hard to detect, warranting additional

support from the software to render them amenable to software anomaly detection.

The above findings have far reaching implications on resilient systems design. First, it makes

the case for software anomaly detection to be used in future systems by demonstrating that they are

highly effective, incur low cost during common mode of fault-free operation, and incur short detec-

tion latencies that enables low-cost fault recovery. Second, it shows that considering application-level

properties is important when evaluating the fault tolerance of software anomaly detection schemes.

Ignoring this aspect of fault tolerance may lead to unnecessarily conservative estimates about their

fidelity. Third, it presents a strategy for hardware output buffering while incurring low performance

and area overheads, and with no changes to excising device hardware. Finally, it performs a first-

cut evaluation of the fundamental reasons behind why software anomaly detectors, such as the ones

used in SWAT, are effective and identifies values which may require additional support for software

anomaly detection.

7.2 Limitations and Future Work

The ideas and evaluations presented in this thesis are not without assumptions and limitations. In

this section, we highlight some limitations of the work presented in this thesis and suggest directions

for future research on those topics.

7.2.1 Leveraging Cross-Layer Support to Lower the SDC Rate

The SWAT system presented in this thesis achieves low SDC rates for compute-intensive and I/O-

intensive workloads. However, this rate may not be low enough for certain classes of applications

such as banking or mission critical applications. For such applications that require attaining higher

reliability targets and for other systems that require even lower cost for the achieved reliability

targets, support from the application or other venues may be required.

93

To this end, there has been a recent thrust towards using cross-layer techniques that span

solutions from the hardware-level all the way up to the application-level to reduce instances of such

SDCs at the lowest possible cost [18]. While SWAT is a major step in this direction, there are plenty

of alternatives to consider for this purpose. An important paradigm to consider when exploring this

direction of research is to understand the trade-offs between performance overheads and resiliency

targets that such detectors are capable of achieving; exploiting these trade-offs would be crucial to

achieve the highest resiliency targets at the lowest possible overheads.

Using application-level assertions and consistency checks embedded by the programmer into the

application is one such strategy to achieve lower SDC rates at a marginally higher cost. Although

many of these assertions are turned-off for production runs, modern software has an increasing

number of these assertions left on even in production codes to eliminate instances of unexpected

outcomes from executions that were not previously tested [81, 82]. Since these checks are inserted by

the programmer, they may be highly effective as they encapsulate the semantics of the application.

In addition to such checks, there is a plethora of literature on techniques to identify corruptions in

application values, with specific focus on those corruptions that affect pure data values (the data-

only classification presented in Chapter 6). Exploiting these assertions to improve the resiliency

folds well into SWAT as one it its philosophies involves the use of software support to improve

the resiliency against hardware faults. The iSWAT framework, which used compiler-assisted likely

program invariants for hardware fault tolerance, is a small step in this direction.

7.2.2 Low-Cost Fault Recovery for Multithreaded Applications in Multicore

Systems

Multithreaded applications running on multi-core systems is emerging as the configuration of future

systems. The threat of unreliable hardware is expected to plague even such systems, warranting

low-cost solutions to detect, diagnose, and recover from faults in such systems. The mSWAT

extension of the SWAT framework presented in this thesis demonstrated that the SWAT strategy

is applicable for detecting and diagnosing faults in such multicore systems when running multicore

workloads [28].

94

While some aspects of fault recovery in multi-core system have been explored, there are two

aspects that warrant special attention. The first aspect is enabling fault recovery with multi-core

systems in the presence of I/O. Extending the notion of hardware output buffering presented in this

thesis to multicore systems it not straight-forward because the buffers in the different cores would

have to be synchronized with each other in-order to keep the global order of I/O operations consistent

(mechanisms similar to those proposed by SafetyNet [71] or ReVive [60] for memory consistency in

multicore systems may be leveraged). Further research is required to implement effective solutions

that incur low performance, and area overheads. The second aspect of implementing recovery

for future systems is to reduce the overall area overheads incurred by the operations involved in

checkpointing. Although SafetyNet has demonstrated a low-cost strategy to reduce the performance

overheads from checkpointing in multicore systems, the area overheads from storing the memory

logs is of the order of 100s of KBs [71]. We propose a technique where only a part of this overhead is

incurred in hardware (Section 5.3.1). The overheads may, however, be further minimized by taking

additional support from the software to infer the minimal state that is required for restarting the

executions. There have been several recent proposals on low-cost fault recovery that lower the

amount of state to checkpoint by understanding the functionality of the application which may be

leveraged for this purpose as well [1, 2, 10, 25, 32, 36, 69]

7.2.3 Analytical Model of Application Resiliency

Chapter 6 presented a first-cut understanding of how faults propagate through an application and

builds an intuition behind why the SWAT detectors are effective in detecting hardware faults with

such high fidelity. This is helpful in understanding the relationship between applications and faults,

and identifies an important class of application values (data-only values) that need additional sup-

port for software anomaly detection. It would however be helpful to convert this into an analytical

model which, given an application a fault model, and a set of detectors, predicts the SDC rate of

the application with high fidelity. Such a model would help do away completely with fault injection

experiments, and would help devise both fault-tolerant applications and detection schemes which

are highly effective. We believe that the concepts presented in this thesis, along with the tree of

95

application-level fault propagation (Figure 6.1) lay the foundations for future research to develop

such analytical models. Research for such an analytical model is already under-way in the SWAT

group [29].

7.2.4 A SWAT Prototype

The evaluation of SWAT presented in this thesis is largely within a simulation framework that

simulates a full system running a modern operating system with peripheral I/O devices. Although

this evaluation has high fidelity (based on the comparison of SWAT’s results to results from faults

injected with lower gate-level simulators [33]), a prototype of SWAT demonstrating its abilities

to detect, diagnose, and recover faults is necessary to enable transfer of the SWAT technology to

industry.

Implementing such a prototype would require solving real-world engineering problems in both

software and hardware levels. At the software-level it involves implementing the actual SWAT

firmware that orchestrates the diagnosis and recovery process once a fault is detected. It also

requires handling the complex interactions of the hardware with the operating system, which may

require innovations at various levels. At the hardware-level, the prototype would demonstrate the

true hardware overheads incurred by the SWAT detectors; although the detectors monitor software

anomalies, they are implemented in hardware. The prototype would also require implementing the

hardware module that achieves fault recovery and would demonstrate the applicability of SWAT’s

strategy for hardware output buffering to generic devices.

This prototyping of SWAT is already underway. Concurrent with this thesis, my colleagues have

implemented a first-cut prototype of the SWAT system, and have demonstrated the ability of SWAT

to detect gate-level stuck-at and transient faults injected in various gate-level modules [58]. There

is however a long way to go to implement the diagnosis and recovery modules, and demonstrate

that the robustness of the SWAT strategy to generic types of faults.

96

7.2.5 Other Fault Models and Faults in Other Components

SWAT has so far been evaluated for single stuck-at and transient faults for various components

within the processor core. We have demonstrated in the SWAT-Sim work that these fault models

may be inaccurate representations of faults at the gate-level, although the inaccuracies do not lead

to differences of orders of magnitude [33]. Nevertheless, there is much work that can be done in the

future to explore SWAT under other fault models and for faults in other components.

With respect to other fault models, there are several fault models emerging as the most rep-

resentative model of faults in future systems. Process variations, NBTI degradation, intermittent

faults, multiple faults are but some of the many such fault models that are emerging. While the

representativeness of each of these models still constitutes avenues for future research, evaluating

SWAT under each such fault model would help improve SWAT and make it a more robust solution

for faults from several avenues.

Another aspect that needs to be evaluated is the fidelity of SWAT to detect faults in other

components. The evaluations of SWAT presented in this thesis have been largely confined to faults

within the core of the processor, and has not considered faults in other system components. Of

particular importance are faults in off-core components such as caches and I/O-controllers as such

faults are expected to become increasingly common with continued integration in the late CMOS

era.

97

Appendix A

Data Tables For Graphs

Fault Type Workload Masked Detected Potential SDC

Permanents SPEC 1965 6937 56

Server 606 8295 16

Transients SPEC 7520 909 58

Server 7675 1239 37

Table A.1: Data for Figure 3.2 that shows the potential SDC rates from permanent and transient
faults injected into non-FP units in server and SPEC workloads.

Permanent Faults

Type Masked Detect-App Detect-OS
Potential

SDC rate
SDC

Decoder 0 512 758 0 0.0%
INT ALU 21 398 858 2 0.2%
Reg Dbus 24 464 787 3 0.2%
Int reg 199 326 754 0 0.0%
ROB 0 647 629 0 0.0%
RAT 155 359 765 0 0.0%

AGEN 211 464 574 7 0.6%

Average 606 1526 5125 16 0.2%

Transient Faults

Type Masked Detect-App Detect-OS
Potential

SDC rate
SDC

Decoder 1136 83 54 7 0.5%
INT ALU 1212 49 11 8 0.6%
Reg Dbus 1188 51 35 6 0.5%
Int reg 1178 51 44 7 0.5%
ROB 1237 22 14 0 0.0%
RAT 540 227 510 1 0.1%

AGEN 1190 47 41 2 0.2%

Average 7675 207 709 37 0.4%

Table A.2: Data for server workloads in Figure 3.3 that shows the per-structure breakdown of the
outcome of permanent and transient faults injected into server workloads.

98

Permanent Faults

Type Masked Detect-App Detect-OS
Potential

SDC rate
SDC

Decoder 295 768 214 1 0.1%
INT ALU 56 846 363 15 1.2%
Reg Dbus 58 909 295 18 1.4%
Int reg 307 742 220 11 0.9%
ROB 0 1240 40 0 0.0%
RAT 435 541 303 0 0.0%

AGEN 164 866 239 11 0.9%
FPU 953 5 100 222 17.3%

Avg No FPU 1315 5912 1674 56 0.6%

Transient Faults

Type Masked Detect-App Detect-OS
Potential

SDC rate
SDC

Decoder 1196 52 24 7 0.5%
INT ALU 1170 51 33 26 2.0%
Reg Dbus 1204 51 16 9 0.7%
Int reg 1230 23 17 10 0.8%
ROB 1237 34 1 1 0.1%
RAT 696 386 195 3 0.2%

AGEN 1224 31 23 2 0.2%
FPU 1279 0 0 0 0.0%

Avg No FPU 7957 628 309 58 0.6%

Table A.3: Data for SPEC workloads in Figure 3.3 that shows the per-structure breakdown of the
outcome of permanent and transient faults injected into SPEC workloads.

Fault Workload < 10K < 100K < 1M < 10M > 10M

Permanents SPEC 5821 6475 6710 6997 7053

Server 6561 7170 7313 8195 8307

Transients SPEC 543 701 765 828 884

Server 563 715 834 1149 1254

Table A.4: Data for Figure 3.4 that shows the detection latency for permanent and transient faults
in server and SPEC workloads.

99

Permanent faults

Fault < 10K < 100K < 1M < 10M > 10M

Decoder 1073 58 16 117 16
INT ALU 1015 63 12 143 15
Reg Dbus 890 135 39 173 17

Int reg 609 204 54 181 14
ROB 1264 8 4 0 18
RAT 956 55 10 100 15

AGEN 754 86 8 168 17
FPU 0 0 0 0 0

Avg 6561 609 143 882 112

Transient faults

Fault < 10K < 100K < 1M < 10M > 10M

Decoder 95 6 5 20 16
INT ALU 21 12 3 16 14
Reg Dbus 44 4 7 19 17

Int reg 22 10 3 35 13
ROB 35 0 0 1 14
RAT 284 118 89 219 16

AGEN 62 2 12 5 15
FPU 0 0 0 0 0

Avg 563 152 119 315 105

Table A.5: Data for server workloads in Figure 3.5 that shows the per-structure breakdown of the
detection latency for permanent and transient faults in server workloads.

100

Permanent faults

Fault < 10K < 100K < 1M < 10M > 10M

Decoder 894 47 27 19 8
INT ALU 946 124 49 65 4
Reg Dbus 949 119 60 57 10

Int reg 701 153 29 59 6
ROB 630 9 4 0 8
RAT 759 54 15 17 8

AGEN 892 123 35 36 4
FPU 50 25 16 34 10

Avg 5821 654 235 287 56

Transient faults

Fault < 10K < 100K < 1M < 10M > 10M

Decoder 55 1 3 3 10
INT ALU 52 11 3 5 11
Reg Dbus 48 8 3 3 6

Int reg 41 22 2 7 7
ROB 22 0 0 0 6
RAT 289 106 53 44 8

AGEN 36 10 0 1 7
FPU 0 0 0 0 1

Avg 543 158 64 63 56

Table A.6: Data for SPEC workloads in Figure 3.5 that shows the per-structure breakdown of the
detection latency for permanent and transient faults in SPEC workloads.

Fault App-only System None

Decoder 524 865 1
INT ALU 381 904 0

FPU 0 0 0
Reg Dbus 384 927 0

Int reg 284 833 1
ROB 468 425 419
RAT 497 1188 146

AGEN 374 723 0

Average 2912 5865 567

Fault App-only System None

Decoder 848 201 0
INT ALU 832 423 0

FPU 68 57 0
Reg Dbus 914 333 0

Int reg 716 296 2
ROB 428 16 221
RAT 713 511 113

AGEN 899 230 4

Average 5418 2067 340

(a) Server Workloads (b) SPEC Workloads

Table A.7: Data for Figure 3.7 that shows the software components corrupted for faults detected
in (a) server and (b) SPEC workloads.

101

Latency Hard-Latency Soft-Latency

< 10K 0.7910 0.8996
< 100K 0.8644 0.9336
< 1M 0.8816 0.9704
< 10M 0.9879 0.9932
> 10M 1.0000 1

Latency Hard-Latency Soft-Latency

< 10K 0.4544 0.8711
< 100K 0.5771 0.8922
< 1M 0.6731 0.9244
< 10M 0.9274 0.9468
> 10M 1.0000 1

(a) Permanent Faults (b) Transient Faults

Table A.8: Data for the server workloads in Figure 4.7 that shows the distinction between Hard-
and Soft- Latency for detected permanent and transient faults.

Latency Hard-Latency Soft-Latency

< 10K 0.7090 0.9216
< 100K 0.9246 0.9611
< 1M 0.9562 0.9752
< 10M 0.9928 0.9934
> 10M 1.0000 1

Latency Hard-Latency Soft-Latency

< 10K 0.6122 0.8538
< 100K 0.7903 0.9061
< 1M 0.8625 0.9274
< 10M 0.9335 0.937
> 10M 1.0000 1

(a) Permanent Faults (b) Transient Faults

Table A.9: Data for the SPEC workloads in Figure 4.7 that shows the distinction between Hard-
and Soft- Latency for detected permanent and transient faults.

Chkpt apache sshd squid mysql

10K 1.00 1.01 1.00 1.01
100K 1.00 1.01 1.04 1.01
1M 1.57 1.20 5.46 1.50
2M 3.19 1.41 11.69 2.13
5M 15.24 2.38 31.33 3.92
10M 18.99 4.09 62.62 7.39

Chkpt apache sshd squid mysql

10K 0.208 0.32 0.22 0.20
100K 0.972 1.51 1.99 1.49
1M 15.55 2.58 7.71 1.58
2M 15.79 5.52 10.45 1.54
5M 15.88 5.59 10.45 1.54
10M 16.75 5.90 11.02 1.6

(a) Performance overheads (b) Output Buffer Size (in KB)

Table A.10: Data for Figure 5.3 that shows the performance and area overheads from buffering
external outputs in hardware on fault-free execution.

Chkpt apache sshd squid mysql

10K 40.32 100.00 64.22 76.10
100K 163.15 450.00 176.62 154.51
1M 724.32 1410.48 661.18 977.83
2M 1121.47 5260.68 1268.71 1345.39
5M 4042.58 5921.50 1428.08 4074.19
10M 4440.44 6504.26 3749.69 5472.35

Table A.11: Data for Figure 5.4 that shows (in KB) the sizes of the memory logs for various
checkpoint intervals.

102

Chkpt Masked
Detected + Detected + Potential
Recovered Unrecovered SDC

10K 317 7521 833 267
100K 338 7834 693 82
1M 614 7638 643 40
10M 1919 6704 300 36

(a) Permanent Faults

Chkpt Masked
Detected + Detected + Potential
Recovered Unrecovered SDC

10K 7731 899 230 70
100K 7724 913 187 46
1M 7750 990 176 39
10M 7858 911 120 35

(b) Transient Faults

Table A.12: Data for Figure 5.5 that shows the outcome of detecting and recovering from permanent
and transient faults injected into the server workloads.

Chkpt System Masked
Detected + Detected + Potential
Recovered Unrecovered SDC

10K Full 317 7621 733 267
No Dev 317 5938 2413 271
No I/O 318 5525 2848 265

100K Full 338 7934 593 82
No Dev 336 4885 3644 82
No I/O 335 4467 4083 70

1M Full 614 7738 543 40
No Dev 613 4177 4089 37
No I/O 342 4160 4418 36

10M Full 1919 6804 200 36
No Dev 1919 4292 2715 34
No I/O 353 4276 4307 20

Table A.13: Data for Figure 5.6 that shows the importance of device recovery and output buffering
for system recovery in the presence of permanent faults in I/O intensive server workloads..

103

Application Ref Input Test Input

gcc 1.41 0.43
gzip 0.0 0.72
mcf 0.04 0.01

bzip2 0.63 1.31
twolf 0.14 0.02
parser 2.15 1.33
crafty 0.4 0.17
eon 3.42 5.15
gap 0.97 6.03

perlbmk 0.0 0.38
vortex 0.14 0.22
vpr 1.58 0.31

equake 21.22 5.67
ammp 4.6 26.44

art 0.0 0.00
mesa 2.64 4.68

Table A.14: Data for Figure 6.2 that shows the percentage of data-only values for the SPEC
workloads under the ref and test input sets.

App 1M 2M 10M 20M

gcc 1.47% 0.89% 0.43% 0.35%
gzip 2.43% 2.37% 0.72% 0.03%
mcf 0.43% 0.05% 0.01% 0.01%

bzip2 1.35% 1.31% 1.31% 1.28%
twolf 0.10% 0.06% 0.02% 0.02%
parser 1.50% 1.38% 1.33% 1.32%
crafty 0.25% 0.18% 0.17% 0.17%
eon 5.46% 5.15% 5.15% 5.15%
gap 6.10% 6.03% 6.03% 0.63%

perlbmk 0.84% 0.51% 0.38% 0.38%
vortex 0.26% 0.23% 0.22% 0.22%
vpr 0.74% 0.48% 0.31% 0.24%

equake 5.69% 5.67% 5.67% 5.67%
ammp 26.45% 26.44% 26.44% 26.44%

art 6.19% 0.44% 0.00% 0.00%
mesa 7.98% 4.68% 4.68% 4.68%

Average 4.20% 3.49% 3.30% 2.91%

Table A.15: Data for Figure 6.3 that shows the change in the number of data-only values as the
window of propagation is increased from 1M instructions till 20M instructions.

104

App Injected Masked Detected-Short Detected-Long SDC

gcc 3003 1648 0 1350 5
gzip 4004 3784 0 220 0
mcf 255 71 0 54 35

bzip2 4004 2720 0 3 747
twolf 561 462 0 3 96
parser 4004 2809 0 1127 68
crafty 4004 3310 0 188 506
eon 4004 3267 0 15 722
gap 3003 2913 0 89 0

perlbmk 3327 3315 0 12 0
vortex 3385 3218 0 117 50
vpr 3219 3035 0 175 2

equake 4004 3954 0 0 50
ammp 4004 3047 0 6 902

art 0 0 0 0 0
mesa 4004 4004 0 0 0
Avg 48785 41557 0 3359 3183

(a) Faults in Data-Only Values

App Injected Masked Detected-Short Detected-Long SDC

gcc 4000 2777 1159 56 8
gzip 4000 2591 1223 122 64
mcf 4000 2429 1265 24 277

bzip2 4000 2504 1138 272 49
twolf 4000 2418 1273 9 299
parser 4000 2989 927 28 52
crafty 4000 2639 1166 23 158
eon 4000 3066 610 4 317
gap 4000 2355 1215 240 181

perlbmk 4000 3925 60 14 0
vortex 4000 2642 1277 38 43
vpr 4000 2307 1586 69 38

equake 4000 2409 1563 11 17
ammp 4000 2532 919 4 497

art 4000 2019 1977 4 0
mesa 4000 3111 885 4 0
Avg 64000 42713 18243 922 2000

(b) Faults in Random Values

Table A.16: Data for Figure 6.4 that shows the outcome of architecture-level transient faults injected
into (a) data-only values and (b) random values for the SPEC workloads.

105

App Total Coverage False Positives

gcc 42.07% 24.60%
gzip 0.00% N/A
mcf 19.57% 16.28%

bzip2 37.77% 21.77%
twolf 74.44% 1.47%
parser 14.73% 78.82%
crafty 59.08% 32.12%
eon 33.26% 58.89%
gap 86.67% 14.29%

perlbmk 0.00% 100.00%
vortex 18.56% 22.50%
vpr 32.95% 6.45%
Avg 34.84% 42.59%

Table A.17: Data for Figure 6.5 that shows the coverage and false positives in detecting hard-to-
detect faults in data-only values with invariants on all data-only values in the workloads.

App 1 Detector 10 Detectors 100 Detectors

gcc 6.13% 61.18% 32.69%
gzip 87.73% 12.27% 0.00%
mcf 7.07% 87.50% 5.43%

bzip2 18.89% 81.11% 0.00%
twolf 49.49% 45.46% 5.05%
parser 59.50% 11.46% 29.04%
crafty 25.94% 53.74% 20.32%
eon 6.36% 35.88% 57.76%
gap 11.11% 78.89% 10.00%

perlbmk 8.33% 91.67% 0.00%
vortex 16.77% 51.49% 31.74%
vpr 1.63% 44.02% 54.35%

equake 16.00% 66.00% 18.00%
ammp 0.84% 6.06% 31.24%

art 0.00% 0.00% 0.00%
mesa 0.00% 0.00% 0.00%
Avg 22.62% 40.81% 27.23%

Table A.18: Data for Figure 6.6 that shows the coverage of hard-to-detect faults with oracular
detectors placed using the fanout metric.

106

References

[1] N.R. Adiga et al. An overview of the BlueGene/L Supercomputer. In Proceedings of the
International Symposium on Super Computing, 2002.

[2] Saurabh Agarwal, Rahul Garg, Meeta S. Gupta, and Jose E. Moreira. Adaptive incremental
checkpointing for massively parallel systems. In Proceedings of the International Symposium
on Super Computing, 2004.

[3] Periklis Akritidis et al. Preventing Memory Error Exploits with WIT. In Proceedings of the
Symposium on Operating Systems Principles, 2008.

[4] Todd M. Austin. DIVA: A Reliable Substrate for Deep Submicron Microarchitecture Design.
In Proceedings of the International Symposium on Microarchitecture, 1998.

[5] A. Avizienis. The N-Version Approach to Fault-Tolerant Software. IEEE Transaactions of
Software Engineering, 11(12), 1985.

[6] A. Benso, S. Di Carlo, G. Di Natale, P. Prinetto, and L. Tagliaferri. Data Critically Estimation
In Software Applications. In Proceedings of the International Test Conference, 2003.

[7] David Bernick et al. NonStop Advanced Architecture. In Proceedings of the International
Conference on Dependable Systems and Networks, 2005.

[8] Shekhar Borkar. Designing Reliable Systems from Unreliable Components: The Challenges of
Transistor Variability and Degradation. IEEE Micro, 25(6), 2005.

[9] Fred Bower, Daniel Sorin, and Sule Ozev. Online Diagnosis of Hard Faults in Microprocessors.
Proceedings of the ACM Transactions on Architecture and Code Optimization, 4(2), 2007.

[10] Greg Bronevetsky, Daniel Marques, Keshav Pingali, and Radu Rugina. Compiler-Enhanced
Incremental Checkpointing. 20th Intl. Workshop on Languages and Compilers for Parallel
Computing, 2008.

[11] Jonathan Chang, George Reis, and David August. Automatic Instruction-Level Software-Only
Recovery. In Proceedings of the International Conference on Dependable Systems and Networks,
2006.

[12] Kypros Constantinides et al. Software-Based On-Line Detection of Hardware Defects: Mecha-
nisms, Architectural Support, and Evaluation. In Proceedings of the International Symposium
on Microarchitecture, 2007.

107

[13] Jonathan Corbet and Greg Kroah-Hartman Alessandro Rubini. Linux Device Drivers. O’Reilly,
3rd edition, 2005.

[14] Oracle Corporation. Solaris Device Driver Tutorial, 2010.

[15] cURL. Tool for transfering files with URL syntax. Website. http://curl.haxx.se.

[16] Marc de Kruijf, Shuou Nomura, and Karthikeyan Sankaralingam. Relax: An Architectural
Framework for Software Recovery of Hardware Faults. In Proceedings of the International
Symposium on Computer Architecture, 2010.

[17] Marc de Kruijf and Karthikeyan Sankaralingam. Exploring the Synergy of Emerging Workloads
and Silicon Reliability Trends. In Proceedings of the Workshop on Silicon Errors in Logic –
System Effects, 2009.

[18] A. DeHorn, N. Carter, and H. Quinn. Final Report on CCC Cross-Layer Reliability Visioning
Study, 2011.

[19] Joe Devietti, Colin Blundell, Milo Martin, and Steve Zdancewic. Hardbound: Architectural
Support for Spatial Safety of the C Programming Language. In Proceedings of the International
Conference on Architectural Support for Programming Languages and Operating Systems, 2008.

[20] Dinakar Dhurjati, Sumant Kowshik, and Vikram Adve. SAFECode: Enforcing Alias Analysis
for Weakly Typed Languages. SIGPLAN Not., 41(6), 2006.

[21] Martin Dimitrov and Huiyang Zhou. Unified Architectural Support for Soft-Error Protec-
tion or Software Bug Detection. In Proceedings of the International Conference on Parallel
Archtectures and Compilation Techniques, 2007.

[22] George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza A. Basrai, and Peter M. Chen. Re-
Virt: Enabling Intrusion Analysis through Virtual-Machine Logging and Replay. In Proceedings
of the International Symposium on Operating Systems Design and Implmentation, 2002.

[23] Dan Ernst et al. Razor: A Low-Power Pipeline Based on Circuit-Level Timing Speculation. In
MICRO, dec 2003.

[24] Michael D. Ernst et al. The Daikon System for Dynamic Detection of Likely Invariants. Science
of Computer Programming, 2007.

[25] Roberto Gioiosa, Jose Carlos Sancho, Song Jiang, and Fabrizio Petrini. Transparent, Incremen-
tal Checkpointing at Kernel Level: A Foundation for Fault Tolerance for Parallel Computers.
In Proceedings of the International Symposium on Super Computing, 2005.

[26] O. Goloubeva et al. Soft-Error Detection Using Control Flow Assertions. In Proceedings of the
International Conference on Digital Fault Testing, 2003.

[27] Greg Hamerly, Erez Perelman, Jeremy Lau, and Brad Calder. SimPoint 3.0: Faster and More
Flexible Program Analysis. In Workshop on Modeling, Benchmarking and Simulation, June
2005.

108

[28] Siva Hari, Manlap Li, Pradeep Ramachandran, and Sarita Adve. Low-cost Hardware Fault
Detection and Diagnosis for Multicore Systems. In Proceedings of the International Symposium
on Microarchitecture, 2009.

[29] Siva Kumar Sastry Hari, Helia Naeimi, Pradeep Ramachandran, and Sarita Adve. Relyzer:
Application Resiliency Ananlyzer for Transient Faults. In Proceedings of the Workshop on
Silicon Errors in Logic – System Effects, 2011.

[30] Asim Kadav et al. Tolerating Hardware Device Failures in Software. In Proceedings of the
Symposium on Operating Systems Principles, 2009.

[31] G. Kanawati et al. FERRARI: A Flexible Software-based Fault and Error Injection System.
IEEE Computer, 44(2), 1995.

[32] Andrew Lenharth, Vikram S. Adve, and Samuel T. King. Recovery Domains: An Organizing
Principle for Recoverable Operating Systems. In Proceedings of the International Conference
on Architectural Support for Programming Languages and Operating Systems, 2009.

[33] Manlap Li, Pradeep Ramachandran, Rahmet Ulya Karpuzcu, Siva Hari, and Sarita Adve.
Accurate Microarchitecture-Level Fault Modeling for Studying Hardware Faults. In Proceedings
of the International Symposium on High Performance Computer Architecture, 2009.

[34] Manlap Li, Pradeep Ramachandran, Swarup Sahoo, Sarita Adve, Vikram Adve, and Yuanyuan
Zhou. Trace-Based Microarchitecture-Level Diagnosis of Permanent Hardware Faults. In Pro-
ceedings of the International Conference on Dependable Systems and Networks, 2008.

[35] Manlap Li, Pradeep Ramachandran, Swarup Sahoo, Sarita Adve, Vikram Adve, and Yuanyuan
Zhou. Understanding the Propagation of Hard Errors to Software and Implications for Resilient
Systems Design. In Proceedings of the International Conference on Architectural Support for
Programming Languages and Operating Systems, 2008.

[36] Xuanhua Li and Donald Yeung. Application-level correctness and its impact on fault tolerance.
In Proceedings of the International Symposium on High Performance Computer Architecture,
2007.

[37] Jien-Chung Lo. Reliable Floating-Point Arithmetic Algorithms for Error-Coded Operands.
IEEE Transactions on Computers, 43, 1994.

[38] M. J. Mack, W. M. Sauer, S. B. Swaney, and B. G. Mealey. IBM POWER6 reliability. IBM
Journal of Research and Development, 51(6), November 2007.

[39] Peter B. Mark. The Sequoia Computer: A Fault-Tolerant Tightly-Coupled Multiprocessor
Architecture. In Proceedings of the International Symposium on Computer Architecture, 1985.

[40] Milo Martin et al. Multifacet’s General Execution-Driven Multiprocessor Simulator (GEMS)
Toolset. SIGARCH Computer Architecture News, 33(4), 2005.

[41] Yoshio Masubuchi, Satoshi Hoshina, Tomofumi Shimada, Hideaki Hirayama, and Nobuhiro
Kato. Fault Recovery Mechanism for Multiprocessor Servers. In Proceedings of the International
Symposium on Fault-Tolerant Computing, 1997.

109

[42] Carl Mauer, Mark Hill, and David Wood. Full-System Timing-First Simulation. SIGMETRICS
Perf. Eval. Rev., 30(1), 2002.

[43] Richard McDougall and Jim Mauro. Solaris Internals: Solaris 10 and OpenSolaris Kernel
Architecture. Prentice Hall, 2nd edition, 2006.

[44] Albert Meixner, Michael E. Bauer, and Daniel Sorin. Argus: Low-Cost, Comprehensive Error
Detection in Simple Cores. In Proceedings of the International Symposium on Microarchitecture,
2007.

[45] Gordon E. Moore. Cramming more Components onto Integrated Circuits. Electronics, 38(8),
April 1965.

[46] Kevin E. Moore, Jayaram Bobba, Michelle J. Moravan, Mark D. Hill, and David A. Wood.
LogTM: Log-Based Transactional Memory. In Proceedings of the International Symposium on
High Performance Computer Architecture, 2006.

[47] M. Mueller et al. RAS Strategy for IBM S/390 G5 and G6. IBM Journal on Research and
Development, 43(5/6), Sept/Nov 1999.

[48] Shubhendu Mukherjee et al. The Soft Error Problem: An Architectural Perspective. In Pro-
ceedings of the International Symposium on High Performance Computer Architecture, 2005.

[49] Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale Patt. Runahead Execution: An Alter-
native to Very Large Instruction Windows for Out-of-order Processors. In Proceedings of the
International Symposium on High Performance Computer Architecture, 2003.

[50] Santosh Nagarakatte, Jianzhou Zhao, Milo Martin, and Steve Zdancewic. SoftBound: Highly
Compatible and Complete Spatial Memory Safety for C. In Proceedings of the International
Conference on Programming Language Design and Implementation, 2009.

[51] Jun Nakano et al. ReVive I/O: Efficient Handling of I/O in Highly-Available Rollback-Recovery
Servers. In Proceedings of the International Symposium on High Performance Computer Ar-
chitecture, 2006.

[52] Nithin Nakka et al. An Architectural Framework for Detecting Process Hangs/Crashes. In
European Dependable Computing Conf, 2005.

[53] Jakob Nielsen. Usability Engineering. Morgran Kaufmann, 1st edition, 1993.

[54] Praveen Parvathala, Kaila Maneparambil, and William Lindsay. FRITS: A Microprocessor
Functional BIST Method. In Proceedings of the International Test Conference, 2002.

[55] Karthik Pattabiraman et al. Dynamic Derivation of Application-Specific Error Detectors and
their Implementation in Hardware. In European Dependable Computing Conference, 2006.

[56] Karthik Pattabiraman, Zbigniew Kalbarczyk, and Ravishankar K. Iyer. Application-based
metrics for strategic placement of detectors. In Proceedings of the Pacific Rim International
Symposium on Dependable Computing, 2005.

110

[57] Andrea Pellegrini et al. CrashTest: A Fast High-Fidelity FPGA-based Resiliency Analysis
Framework. In Proceedings of the International Conference on Computer Design, 2008.

[58] Andrea Pellegrini, Robert Smolinski, Lei Chen, Xin Fu, Siva Kumar Sastry Hari, Junhao Jiang,
Sarita Adve, Todd Austin, and Valeria Bertacco. CrashTest’ing SWAT: Accurate, Gate-Level
Evaluation of Symptom-Based Resiliency Solutions. In Proceedings of the Workshop on Silicon
Errors in Logic – System Effects, 2011.

[59] Michael D. Powell, Arijit Biswas, Shantanu Gupta, and Shubhendu S. Mukherjee. Architec-
tural core salvaging in a multi-core processor for hard-error tolerance. In Proceedings of the
International Symposium on Computer Architecture, 2009.

[60] Milos Prvulovic et al. ReVive: Cost-Effective Arch Support for Rollback Recovery in Shared-
Mem Multiprocessors. In Proceedings of the International Symposium on Computer Architec-
ture, 2002.

[61] Paul Racunas et al. Perturbation-based Fault Screening. In Proceedings of the International
Symposium on High Performance Computer Architecture, 2007.

[62] L. Rashid, K. Pattabiraman, and S. Gopalakrishnan. Towards Understanding the Effects of
Intermittent Hardware Faults on Programs. In Proceedings of the International Conference on
Dependable Systems and Networks, 2010.

[63] V. Reddy et al. Assertion-Based Microarchitecture Design for Improved Fault Tolerance. In
Proceedings of the International Conference on Computer Design, 2006.

[64] George Reis et al. Software-Controlled Fault Tolerance. Proceedings of the ACM Transactions
on Architecture and Code Optimization, 2(4), 2005.

[65] Bogdan Romanescu and Daniel Sorin. Core Cannibalization Architecture: Improving Lifetime
Chip Performance for Multicore Processors in the Presence of Hard Faults. In Proceedings of
the International Conference on Parallel Archtectures and Compilation Techniques, 2008.

[66] Swarup Sahoo et al. Using Likely Program Invariants to Detect Hardware Errors. In Proceedings
of the International Conference on Dependable Systems and Networks, 2008.

[67] Design Panel, SELSE II - Reverie, 2006. http://www.selse.org/selse2.org/recap.pdf.

[68] Smitha Shyam et al. Ultra Low-Cost Defect Protection for Microprocessor Pipelines. In Pro-
ceedings of the International Conference on Architectural Support for Programming Languages
and Operating Systems, 2006.

[69] Stelios Sidiroglou, Oren Laadan, Carlos Perez, Nicolas Viennot, Jason Nieh, and Angelos D.
Keromytis. ASSURE: Automatic Software Self-Healing Using Rescue Points. In Proceedings
of the International Conference on Architectural Support for Programming Languages and Op-
erating Systems, 2009.

[70] Jared C. Smolens, Brian T. Gold, Jangwoo Kim, Babak Falsafi, James C. Hoe, and Andreas G.
Nowatzyk. Fingerprinting: Bounding Soft-Error Detection Latency and Bandwidth. In Pro-
ceedings of the International Conference on Architectural Support for Programming Languages
and Operating Systems, 2004.

111

[71] Daniel Sorin et al. SafetyNet: Improving the Availability of Shared Memory Multiprocessors
with Global Checkpoint/Recovery. In Proceedings of the International Symposium on Computer
Architecture, 2002.

[72] Lisa Spainhower et al. IBM S/390 Parallel Enterprise Server G5 Fault Tolerance: A Historical
Perspective. In IBM Journal of R&D, September/November 1999.

[73] V. Sridharan and D.R. Kaeli. Eliminating Microarchitectural Dependency from Architectural
Vulnerability. In Proceedings of the International Symposium on High Performance Computer
Architecture, 2009.

[74] Micael Swift, Muthukaruppan Annamalai, Brian Bershad, and Henry Levy. Recovering Device
Drivers. In Proceedings of the International Symposium on Operating Systems Design and
Implmentation, 2004.

[75] Rajesh Venkatasubramanian et al. Low-Cost On-Line Fault Detection Using Control Flow
Assertions. In Proceedings of the International Online Test Symposium, 2003.

[76] Virtutech. Simics Full System Simulator. Website, 2006. http://www.simics.net.

[77] Nicholas Wang, Michael Fertig, and Sanjay Patel. Y-Branches: When You Come to a Fork in
the Road, Take It. In Proceedings of the International Conference on Parallel Archtectures and
Compilation Techniques, 2003.

[78] N.J. Wang and S.J. Patel. ReStore: Symptom-Based Soft Error Detection in Microprocessors.
IEEE Transactions on Dependable and Secure Computing, 3(3), July-Sept 2006.

[79] David Yen. Chip Multithreading Processors Enable Reliable High Throughput Computing. In
Proceedings of the International Reliability Physics Symposium, 2005. Keynote Address.

[80] Keun Soo Yim and Ravishankar Iyer. Hauberk: Lightweight Silent Data Corruption Error
Detectors for GPGPU. In In Proceedings of the 17th Humantech Thesis Prize (Also in IPDPS
2011), 2011.

[81] Pin Zhou, Wei Liu, Fei Long, Shan Lu, Feng Qin, Yuanyuan Zhou, Sam Midkiff, and Josep
Torrellas. AccMon: Automatically Detecting Memory-Related Bugs via Program Counter-
based Invariants. In Proceedings of the International Symposium on Microarchitecture, 2004.

[82] Pin Zhou, Feng Qin, Wei Liu, Yuanyuan Zhou, and Josep Torrellas. iWatcher: Simple, General
Architectural Support for Software Debugging. In Micro Special Issue: Micro’s Top Picks from
Computer Architecture Conferences, 2004.

112

Author’s Biography

Pradeep Ramachandran was born in Madras, India on the 2nd of March, 1984. He finished his

schooling at St. John’s English School and Junior College, Besant Nagar and graduated high school

from P. S. Senior Secondary School, Mylapore. He received his Bachelor of Technology degree

in Computer Science and Engineering from the Indian Institute of Technology (IIT), Madras in

2005 and his Master of Science degree from the University of Illinois at Urbana Champaign in

2007. He was awarded an IBM PhD scholarship and an Intel PhD fellowship in 2009, and the

W.J.Poppelbaum Memorial Award in 2011.

113

