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Abstract

Multimedia applications are an increasingly important workload for a large range of systems in-
cluding handheld computers, laptops, and desktops. It is expected that general-purpose processors
will be increasingly employed for such workloads; however, there are still some shortcomings that
they need to overcome. One shortcoming of general-purpose architectures results from their use
of complex techniques (e.g., out-of-order issue, dynamic branch prediction, and caches) for high
performance. It is conjectured that these complex features result in highly unpredictable execution
times, making these architectures unsuitable for meeting the real-time requirements of multimedia
applications. There is, however, little quantitative data to support or disprove this conjecture.
This thesis performs a detailed quantitative analysis of execution time variability at the frame
granularity for a number of multimedia applications processing speech, video, and audio data types.
We find that while execution time varies from frame to frame for many applications, this variability
is mostly caused by the algorithms used by the applications and the media input itself. Aggressive
architectural features induce little additional variability (and unpredictability) in execution time, in
contrast to conventional wisdom. Our finding of frame-level execution time variability also motivates

frame-level architectural adaptivity to better meet the varying requirements of the application.
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1 Introduction

As we move to the post-PC era, multimedia applications are expected to form a large part of the
workload on a growing number of systems [11, 5,13, 4]. These systems include future handheld
computers, wireless telephones, and laptop computers as well as desktop systems. Several articles
have argued that general-purpose processors (vs. specialized DSP processors or ASICs) will be
increasingly employed for such workloads [5, 1, 4]. On the other hand, several articles have pointed
out serious shortcomings of current general-purpose architectures, many of which arise due to their
use of complex features (e.g., out-of-order issue, dynamic branch prediction, and large caches) to
improve performance [11, 1, 5, 6, 4].

One shortcoming relates to execution time predictability. Multimedia applications periodically
process a set of data, typically called a frame, and each frame must be completed in a certain
amount of time. This real-time nature makes it important to be able to predict the execution
time for multimedia applications. The conventional wisdom is that complex features such as out-
of-order issue, branch prediction, and caches induce significant unpredictability in the execution
time, making them undesirable for multimedia applications [11, 1, 5, 6, 4]. There is, however, little
quantitative data on the unpredictability induced by current architectural features. Bose has done
some measurement-based studies on a Pentium workstation to quantify execution time variability,
but only for simple filter (FIR and IIR) and FFT kernels [2]. He did not find much execution time
variability for these kernels, and suggested a statistical real-time system for such applications. Others
have reported significant variability in the execution time for different frames of certain multimedia
applications (e.g., [3]), but do not analyze the source of this variability or its relationship to the
architecture.

This thesis performs a detailed quantitative analysis of execution time variability at the frame
granularity for a number of multimedia applications. Specifically, we use an application suite of nine
encoders and decoders for speech, video, and audio (music) media types (Section 2), and make the
following contributions.

We find that several applications in our suite exhibit significant variability in execution time
across different frames (Section 3). Most of this variability, however, arises from the input-dependent
nature of the algorithms used, combined with the behavior of the inputs. Compared to this input-
induced variability, the variability (and unpredictability) due to complex architectural features is
negligible in almost all cases. This finding challenges the conventional wisdom that current general-

purpose architecture features induce significant unpredictability making their use for real-time appli-



cations untenable. The presence of execution time variability also suggests a potential for architec-
tural adaptation at a frame granularity — better performance or energy consumption may be achieved
by adapting the architecture to the varying needs of the application at the frame granularity. We

also perform a preliminary analysis of variability at a granularity finer than a frame.



2 Methodology

2.1 Workload Description

Our workload consists of nine encoders and decoders (codecs) encompassing three media types —
speech, video, and audio (music) — and is summarized in Table 1. We obtained codes for these
applications from various public domain sources. The applications were chosen for their importance
in real systems and (we believe) to be representative enough to make the inferences in this study.
We evaluated all our applications with four inputs, summarized in Table 2. We only report results
from a single input for each application. We chose the input that gave the highest (normalized)
standard deviation in per frame execution time on our base system. We call these inputs the default
inputs, and list them in the second column of Table 1. We next give a brief background of the

applications in our benchmark suite.

2.1.1 Speech Encoding and Decoding

The first set of applications concern speech compression (encoding) and decompression (decoding).
While speech codecs do not have particularly high bandwidth requirements, some important applica-
tions (such as wireless communications) require very low bit-rates. Also, speech is easily compressible
due to its inherent redundancy. Speech can be compressed in a number of different ways, and a
large number of speech compression standards exist.

The applications studied here use the same basic principle for speech compression. The speech
signal is processed by the encoder to produce synthesis filter parameters. These compactly represent
the vocal tract of the speaker. The encoder also derives a vocal tract excitation signal from the
speech input. The decoder passes the excitation signal through a vocal tract model generated from
the synthesis filter parameters. This produces an approximation of the original speech signal.

This technique is lossy because the model of the vocal tract and the excitation signal are approx-
imate. This implies that the reconstructed output will not be identical to the original input. The
ultimate aim of lossy coding schemes is to optimize decoded data quality for a target bit rate.

Speech data typically consists of 16-bit samples recorded at a sampling rate of SKHz. We looked
at two different speech codecs in this study, one for low bit-rates and one for higher bit-rates. These
are the GSM and G.728 codecs, respectively.

The full-rate GSM speech codec is based on the European GSM (Global System for Mobile

Communications) 06.10 provisional standard for use in mobile communications. It operates at



Applic- | Default Description Frame Size,
ation Input Frame/Sample
Rate
Speech Codecs
GSMenc | orignova Low bit-rate speech coding based on the European GSM 06.10 20ms (160
GSMdec | homemsg | provisional standard. Uses RPE/LTP (residual pulse excitation/ samples),
long term prediction) coding at 13Kbits/sec. Compresses frames 8KHz
of 160 16-bit samples into 264 bits.
GT728enc | Ipcqutfe High bit-rate speech coding based on the G.728 standard. It uses 625 s,
G728dec | homemsg | low-delay CELP (code excited linear prediction) coding at (5 samples),
16Kbits/sec. Compresses frames of five 16-bit samples into 8KHZ
10 bits.
Video Codecs
H263enc | buggy Low bit-rate video coding based on the H.263 standard. 40ms,
H263dec | tens Primarily uses inter-frame coding (P frames). Widely used 25fps
for bit-rates less than 64Kbits/sec.
MPGenc | buggy High bit-rate video coding based on the MPEG-2 video coding 33.3ms,
MPGdec | flwr standard. Uses intra-frame (I) and inter-frame (P, B) coding. 30 fps
Typical bit rate is 1.5-6Mb/s.
Audio (Music) Codecs
MP3dec | filter Audio decoding based on the MPEG Audio Layer-3 standard. 26.1ms (1151
Synthesizes an audio signal out of coded spectral components. samples), 44.1KHz
Typical bit rate is 16-256Kb/s.
Table 1 Workload description.
Media Type | Input Description Size in Length in
frames seconds
Speech GSM G.728 GSM & G.728
clinton Speech by Clinton 922 29504 18.44
homemsg Recording of an answering message | 1000 32000 20
Ipcqutfe Sentence read out by a boy 362 11572 7.23
orignova Different sentences read by 8 1073 34328 21.45
different adults concatenated
Video H.263 & MPEG | H.263 | MPEG
buggy Buggy race 450 18 15
cact Pan over still-life 450 18 15
flwr Drive-by of neighborhood 450 18 15
tens Table tennis match 450 18 15
Audio lopez Rock song 2500 65.25
cat_stevens | Soft rock song 2500 65.25
sting Pop song 2500 65.25
filter Rock song 2500 65.25

Table 2 Inputs used for the workload.

13Kbits/sec and uses regular pulse excited (RPE) speech coding scheme. The GSM encoder splits
input speech into 20ms long frames. For each frame the encoded representation contains the synthesis
filter parameters and the excitation signal. A 20ms long frame containing 160 16-bit PCM samples
is compressed into 264 bits after coding in the current software implementation.

G.728 was developed at the AT&T Bell Labs and standardized in 1992. It operates at 16Kbits/sec
rather than 13Kbits/sec like GSM, and is based on the code excited linear prediction (CELP)

principle. The higher bit-rate results in much better quality reconstructed speech for G.728. The



improved quality of reconstructed speech requires significantly higher compute power as well. G.728
finds use in applications such as video conferencing. This codec differs from the GSM codec in how
it determines the excitation signal. G.728 uses frames of only 625us, or five 16-bit PCM samples. It
compresses these to ten bits in our implementation.

Our analysis uses a frame (described in Table 1) as the basic unit of work for each application.
G728 statically distinguishes multiple frame types. It uses an adaptive algorithm, where certain
parameters are updated every four frames. The processing of each frame in a single four-frame cycle
is different due to the calculation of these parameters. Thus, we treat these as different types of
frames (numbered one through four).

The four speech inputs we use cover a diverse background of human voices. There is a mix
of adults’ and childrens’ voices, male and female voices, and speech transitions in a single input.
The lengths of the speech inputs range from 7.23 to 21.45 seconds. These speech files have been

downloaded from research group websites [20, 21].

2.1.2 Video Encoding and Decoding

The need for video compression is motivated by video processing’s extraordinarily high bandwidth
requirements. For example, one second of 352x240 24-bit video at 30 frames/sec is over 60Mbits of
data. This makes it difficult if not impossible to store or transmit raw video data. Video compression
schemes do not vary overly much in their basic principles, although a large number of standards
exist (for different frame sizes and bit-rates).

Video compression schemes focus on exploiting both spatial and temporal redundancies in input
data to reduce the amount of information needed to represent the original data. Spatial redundancy
is exploited within a frame and temporal redundancy is exploited between frames. The compression
schemes studied here are lossy in nature in order to further increase the compression ratios.

The video codecs studied here exploit spatial and temporal redundancy in the following way.
Certain frames are categorized as intra-frames (I frames), and the codecs use only spatial redundancy
for these. Those for which temporal redundancy is removed are known as inter-frames (P or B
frames). P frames exploit temporal redundancy in a preceding I or P frame, while B frames exploit
temporal redundancy in a preceding and a following I or P frame (i.e., both directions in time).

Each frame is broken into small squares or blocks. For inter-frames the encoder attempts to find
a match for each square in one or more other frames (i.e., it tries to find temporal redundancy). If

a match is found then a reference to the matching square is encoded. Otherwise (and for all squares



in intra-frames), the square is run through a transform where a small number of coefficients which
represent the square is produced. Note that the execution time for encoding and decoding I, P, and
B frames can be different due to the level of redundancy removed from the data and, specifically for
the encoder, the tolerance of the inter-frame matches.

Original video input is represented as frames containing 24-bit pixels, meant to be displayed at
a rate of at least 24 frames per second. We chose to examine the H.263 and MPEG-2 standards for
this study. They are codecs for low bit-rate and high bit-rate video, respectively.

H.263 is a video compression standard for lower bit rate communications, and is frequently used
for bit-rates less than 64Kbits per second. H.263 supports five different picture formats - SQCIF,
QCIF, CIF, 4CIF, and 16CIF. H.263 supports video compression for video-conferencing and video-
telephony applications. The H.263 implementation used in our study generates a single I frame at
the beginning of the movie and P frames for every other frame in the movie. This simulates common
H.263 applications. The number of encoded bits per frame is variable.

Motion Picture Experts Group (MPEG) is a family of audio-visual coding standards. We studied
the MPEG-2 video coding standard implementation available from the MPEG software simulation
group [15]. The MPEG-2 standard aims to provide video quality not lower than NTSC/PAL and up
to CCIR601 quality with bit rates in the 1.5 to 6Mbits/sec range. Typical inputs used in MPEG-2
video encoding includes NTSC (704x488 frame size at 30 frames/sec), PAL (704x576 frame size at
25 frames/sec), CCIR 601(720x480 frame size at 30 frames/sec), and SIF (352x240 frame size at 30
frames/sec). The MPEG-2 encoder targets digital cable TV, digital VTR applications, and satellite
and terrestrial digital broadcasting distribution. It is also frequently used for digital distribution of
video over the Internet.

MPEG encoding operates on I, P, and B frames. Our implementation does so in a deterministic
way, creating groups of pictures (GOPs). A GOP contains a single I frame for reference and then a
regular pattern of P and B frames. The P and B frames allow for better compression, while the I
frames allow a user to fast forward to certain fixed points in the movie with ease (since they can be
decoded in isolation). The number of frames and sequencing of the three different frames relative
to each other in one GOP can vary from one movie to the other. The number of encoded bits per
frame is variable.

It takes excessively long to simulate a frame with the MPG codecs using the frame sizes specified
by the MPEG-2 standard (about 4 to 16 hours per frame for MPGenc on the system discussed in

Section 2.2). We scaled down the frame size to 176x144 pixels so that we could simulate a reasonable



number of frames to assess execution time variability. We ensured that the scaling did not affect the
cache behavior by performing a working set analysis and running representative experiments with
larger frame sizes and different cache sizes, as discussed further in Section 2.2. The chosen frame
size conforms to the H.263 standard, so we used the same size for the H263 codecs for consistency.
Also for consistency, we used the same inputs for both MPG and H263 codecs.

We used four videos as inputs for the video codecs. The movie selection has been based on the
content of the movie. The four input movies try to cover different real life situations with different
levels of motion across inputs as well as within inputs. These inputs contain a great deal of motion
to stress the applications. H263 was designed for low bit-rate applications such as video conferencing
(which typically have less motion); therefore, our results from these inputs represent an upper bound

on the expected variability for H263.

2.1.3 Audio Decoding

High-quality audio applications can require very high bandwidths. Storing raw digitized audio on a
compact disc or DVD works well because of their high capacity. However, the amount of data per
track is too large to allow easy portability. For example, without data compression 1.4Mbit of data
is required for one second of stereo music in CD quality. A variety of audio codec standards exist
to handle different quality and bit-rate audio data.

The standard studied here makes extensive use of the limitations of the human auditory system.
Our limited audible frequency range and effects such as masking (where two simultaneous sounds
close in frequency cannot be distinguished) are exploited in order to obtain large compression ratios
without sacrificing quality. However, these techniques are approximate and thus the scheme is lossy.

Original digital audio signals typically consist of 16-bit samples recorded at a sampling rate in
excess of twice the audio bandwidth. For example, for compact discs it is 44.1KHz. We chose to
study the MP3 audio decoder due to its immense popularity.

The MPEG Audio Layer-3 (MP3) standard is defined by the Motion Picture Experts Group.
MPEG Layer-3 achieves the lowest bit rate in the current MPEG audio coding family. It supports
bit-rates in the 16-256Kbits/sec range. MP3 encodes and decodes frames of 1152 16-bit samples
(26.1ms for 44.1KHz audio). The compression factor achieved by MP3 encoding is in the 10-12x
range and can be as high as 24x.

We have used 4 MP3 encoded music files for the simulations. These represent a variety of musical

genres, including pop, rock and soft rock. The simulations were run for the first 2500 frames (65.25



seconds) of each song.

2.2 Architectures Studied and Experimental Methodology

The base architecture studied is an out-of-order processor similar to the Compaq Alpha 21264, and
is summarized in Table 3. The functional unit latencies were chosen to match those of the Alpha
21264 processor. All functional units are fully pipelined except for the floating point divide unit. All
models use a 64KB two-way associative first-level (L1) data cache and a 1MB four-way associative
second-level (L2) data cache. Both caches have twelve miss status holding registers (MSHRs) to
reserve space for outstanding cache misses, and up to eight concurrent requests are allowed for the
same line. Since the applications studied have small instruction footprints, the instruction cache
is assumed to be perfect and is not modeled. Several variations on the base architecture are also
studied, and are described in the corresponding sections.

To ensure that the scaled inputs of the MPG codecs (Section 2.1) did not affect the cache
behavior, we performed a working set analysis. We found that for the standard MPEG-2 frame size
of 352x240 pixels, the first and second level working sets fit in the base L1 and L2 caches respectively.
Thus, the cache behavior of our scaled inputs is expected to be similar to this standard frame size.
For the standard frame size of 704x480 pixels, we found that again the first level working set fits in
the base L1 cache, but the second level working set does not fit in the base L2 cache. To account for
the latter, we determined the performance with the scaled inputs using a 32KB two-way associative
L1 data cache and a 128KB four-way associative L2 data cache. We found the difference in results
from our base configuration to be negligible.

We use the RSIM simulator [17] for our experimental evaluation. RSIM is a user-level execution-
driven simulator that models the processor and memory in great detail, including contention for all
resources. Operating system and I/O functionality is emulated, not simulated, so their effects are
not reflected in our statistics.

For validation, we performed some experiments on a real machine. We used a Sun Microsystems
Ultra 5 machine with an UltraSPARC 2i processor running at 400MHz and with 128MB of DRAM.
The machine was running Solaris 7 and had no load other than background daemons and the
operating system. Perfmon tool is used to make the measurements on the real machine. Perfmon
is a tool that allows user-level code to access the performance counters present in the Ultra-series
workstations and servers produced by Sun Microsystems. This is accomplished by a loadable driver

that re-programs devices with performance counters so that user-level code can access these counters.



Base Processor Parameters

Base Memory Hierarchy Parameters

Processor Speed 1GHz L1 D-cache 64KB, 2-way associative,
Fetch/Retire Rate 4 per cycle 64B line, 2 ports, 12 MSHRs
Functional Units 2 Int, 2 FP, 2 Add. gen. L2 D-cache 1MB, 4-way associative,

Integer FU Latencies
FP FU Latencies
Instruction window
(reorder buffer) size
Memory queue size
Branch Prediction

1/7/12 add/multiply/divide (pipelined)
4 default, 12 div. (all but div. pipelined)
64 entries

32 entries
2KB bimodal agree, 32 entry RAS

Main Memory

64B line, 1 port, 12 MSHRs
16B/cycle, 4-way interleaved

Base Contentionless Memory Latencies

L1 hit time (on-chip)
L2 hit time (off-chip)
Main Memory (off-chip)

2 cycle
20 cycles
102 cycles

Table 3 Base (default) system parameters.

All applications were compiled with the SPARC SC4.2 compiler with the following options: —z0O4
—ztarget=ultral /170 —xarch=v8plus. The SPARC v9 ISA includes the visual instruction set (VIS)

multimedia extensions. The compiler does not generate these instructions and we did not insert any

by hand. A previous study characterizes the impact of VIS for MPGenc and MPGdec (and other

applications) [19]. Based on that study, we do not expect VIS to qualitatively affect application

characteristics relevant to this study. (For example, the study shows that the memory stall time

remains small for the MPG codes with and without VIS, and the difference between in-order and

out-of-order processors is qualitatively similar for both cases.)

We use a number of evaluation metrics in this study such as the range and standard deviation

of the execution time of all frames. The metrics are described in the first section that uses them.




3 Extent and Nature of Execution Time Variability

This section analyzes the extent and the nature of the variability in the execution time of different
frames in an application. Section 3.1 determines the extent of the variability. Section 3.2 quantifies
the part of the variability induced by the architecture. Section 3.3 ascertains the contribution of
different types of instructions to the variability. Section 3.4 presents the measurement results on a
real machine and compares them with the simulator results. Section 3.5 provides the reasons for the
above findings in terms of high-level application behavior. Section 3.6 summarizes the implications
of the above findings. Section 3.7 presents results for variability at a granularity finer than a frame.

We ouly report results from the applications run with the default input (the input with the
maximum standard deviation for execution time). In most cases, the results with the other inputs
are remarkably similar both qualitatively and quantitatively. We report any important differences

in behavior when the applications are run with the non-default inputs.

3.1 Extent of Variability in Execution Time

We first discuss the extent of the execution time variability for different frames in an application.
Figure 1 shows the execution time in cycles for each frame (referred to as the execution time profile)
for all applications run on the base out-of-order architecture. For the applications with multiple
frame types, G728 and MPG codecs, each frame type is displayed with a different marker. To
quantify the execution time variability, Figure 2 presents the range' and standard deviations, both
relative to the mean, of execution time for each frame. For G728 and MPG codecs, the figure also
shows these statistics for the individual frame types (shown as type A, B, C, and D corresponding to
types 1, 2, 3, and 4 respectively for G728 and type I, P, and B for MPQG). For applications with an
excessively large number of frames, profiles such as in Figure 1 show frames uniformly sampled from
the entire run. All figures with aggregate statistics such as Figure 2, however, reflect all frames. The
numbers in Figure 2 are representative of all inputs except in the case of H.263. For H.263 encoder
the default input’s range is almost twice as large as the other inputs and its standard deviation is
more than twice as large as the rest of the inputs. For H.263 decoder the default input’s range is
close to the other inputs, but its standard deviation is almost twice as large as the other inputs.
All applications with the exception of GSMenc and GSMdec show significant execution time
variability — range from 37% to 195% and standard deviation from 9% to 74%. G728 and MPG differ

(Mazimum ezecution time — Minimum execution time)
- - x 100
Mean execution time

1Range is measured as
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Figure 1 Execution time profiles for inputs that cause the most variability.
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Figure 2 Execution time variability measured as range and standard deviation
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from the other applications in that they statically distinguish different types of frames. Examining
the individual frame types in isolation, we find that G728enc shows little variability in execution
time within each frame type while G728dec shows significant variability for one frame type (range of
49% and standard deviation of 16%). MPGenc and MPGdec show a significant range of execution
time (15% to 43%) with the standard deviation being significant only for some of the encoder frames.

Overall, of the nine applications in our suite, five show significant variability (standard deviation
of 9% or more and range more than 25%) in one or more of their component frame types. Seven of

the nine applications show significant variability when all frame types are viewed as an aggregate.

3.2 Quantifying Variability Due to Architecture

Execution time variability can arise due to the architecture and combination of the algorithm and
input. The execution time variability numbers reported in Section 3.1 do not reflect the contribution
of each of these two factors individually to the variability. We present two methods to quantify the
impact of the architecture. The first method quantifies it in terms of the variability in IPC while
the second method performs a comparison with simpler architectures. Both perspectives offer useful
insights.

IPC vs. Instruction Count Variability.

1

. . . . . . 1
The execution time for each frame is given by the expression Instruction count X 155 X Frequency”

Thus, for a given clock frequency, the variability in execution time can be decomposed into the vari-
ability in dynamic instruction count and that in IPC. For a given instruction-set architecture, the
dynamic instruction count depends solely on the application’s algorithm and the input. Variability
due to algorithm and the input alone can therefore be measured as variability in dynamic instruc-
tion count. The IPC depends on the algorithm, input, and the microarchitecture. Thus, a high
instruction count variability implies a high variability due to the algorithm and input while a low
IPC variability implies low variability due to the architecture.

Figure 3 shows the dynamic instruction count profile for each frame analogous to the execution
time profiles in Figure 1. The instruction count profile for each application matches the corresponding
execution time profile in Figure 1 very closely.

Figure 4 shows the profiles for the mean IPC for each frame. The IPC profiles are much flatter
than the execution time (or instruction count) profiles. The IPC across similar frame types appears
relatively stable for all the applications.

Figure 5 quantifies the variability of both instruction count and IPC by presenting their range
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Figure 3 Dynamic instruction count profiles for inputs that cause the most
variability.

and standard deviations (both relative to the mean). For applications showing significant execution
time variability, the instruction count range for each application is between 14% to 93% and standard
deviation is from 3% to 27%. IPC variability is small for all applications and is negligible for most
— standard deviation is 5% or less, range is less than 20% for all but two cases.

Overall, Figure 5 shows that for the applications and frame types that exhibit execution time
variability, instruction count variability is larger than IPC variability. Thus, most of the variability
in these applications arises from the algorithm and input.

Comparison with Simpler Architectures.

We compare the execution time and IPC variability of our base architecture with an ideal ar-
chitecture and simpler architectures. An ideal architecture is defined as the architecture that adds
no variability to the execution time. An architecture with constant IPC of 1 qualifies as an ideal

architecture. The execution time in this case is equal to the number of instructions and its variabil-
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ity is the same as the instruction count variability. While ideal architecture is a hypothetical case,
simpler architectures are based on realistic architecture implementations.

In comparing variability between base architecture and simpler architectures, the difference in
variability is largely due to the complex architectural features in the base architecture. The sim-
plest architecture chosen represents a DSP-like architecture. DSP architectures are the traditional
alternative to general-purpose architectures for multimedia applications, and are also conjectured to
have better execution time predictability [1, 4, 11]. Specifically, we replace four complex features of
our base architecture with simpler ones to create the simplest architecture modeled: multiple-issue
is replaced with single issue, dynamic branch prediction with a predict not-taken static branch pre-
diction, caches with an infinite amount of single cycle access SRAM (similar to that in most DSPs),
and out-of-order with in-order issue. Further, in order to gauge which architectural features induce
the most execution time variability, we study the range of architectures in between the simple one
and our base architecture.

Figure 6 shows the standard deviation of execution time and IPC (relative to the mean) for the
above range of architectures. 2 The figure shows that, when significant, the standard deviations in
IPC are remarkably close for the entire range of architectures for a given application. The largest
change occurs for MP3dec (for reasons discussed in Section 3.5), but even there, the change is
relatively small. This provides further evidence that aggressive architectural features do not add to
execution time variability for our application suite.

Since very little architecturally induced variability is present, it is difficult to conclude which
features contribute most to it. The data for MP3dec in Figure 6 leads us to speculate that multiple-
issue and out-of-order execution induce the most variability. An important note is that, contrary
to the common perception, caches have negligible effect on execution time and IPC variability on

these applications (for reasons discussed in subsequent sections).

3.3 Contribution of Different Instruction Components to Variability

This section explores the contribution of different instruction types to the execution time variability.
Such information would be useful in ascertaining the cause of the variability and ascertaining how to
adapt architectures to meet the varying requirements of the applications. We divide the instructions

and execution time into different components for each frame. Figure 7 shows the percentage of ALU

2MPGenc and H263enc are run for frames 250 to 350 to save simulation time — these frames capture a part of the
movie that shows high execution time variability.
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Figure 7 Components of dynamic instruction count.

(integer and floating point), branch, and memory instructions in each frame. Figure 8 shows the
percentage of execution time spent busy or stalled for ALU (integer and floating point), branch, and
memory instructions.® Here, we present one graph for applications with multiple frame types. The
frame type showing most variability in execution time is chosen.

First, we find that the distribution of the different instruction and execution time components
stays roughly constant throughout the entire application. Thus, in applications that show execution
time variability, the nature of the computation does not change (at the frame granularity). This
explains the roughly constant IPC through most of the data. Some fluctuations in the instruction
count and execution time composition are present. In particular, G.728 encoder and decoder, H.263

encoder and decoder, MPEG encoder, and MP3 decoder all exhibit some non-negligible (but small)

3Busy and stall times are calculated similar to previous work [16]. For each cycle, the ratio of instructions retired
to the maximum retire rate is recorded as busy time. The remaining fraction of the cycle is charged as stall time to
the first instruction in the instruction window unable to retire.
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changes. These are the applications that have variability. The constant IPC effect (and the reasons
for the small changes seen in some applications) are discussed in Section 3.5.

Second, we note that very little time is spent in memory stalls. Most of the time the processor
is busy or is stalled due to ALU instructions (as also reported in other work characterizing media
applications [19]). This is because the codecs studied here perform significant computation per data
item (as indicated by the composition of instruction count), and small caches are sufficient to hold

the important working sets of these computations.

3.4 Comparing Real Machine and Simulator Results

To verify our key results we also performed some experiments using a real machine described in
Section 2. We collected both per frame execution time and per frame IPC for all applications. We

compare these results to the results we obtained for our in-order processor simulations (since the
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Figure 9 Comparison between measured variability on real machine and simulator.

machine measured is in-order) in Figure 9.

We see that for all applications, the normalized standard deviations for execution time and IPC
measured on the real machine are almost similar to those measured from the simulator. The results
match perfectly for applications spending a large number of execution cycles per frame (MPG,
H263, MP3dec). However, there is some difference between the results on the real machine and
the simulator for GSM and G728 — these applications have a small execution time per frame. In
particular, the variability estimate is higher for these applications. This could be due to higher
impact of file I/O on execution time per frame for such applications which can result in higher

variability.

3.5 Using Application Behavior to Explain Findings

This section uses high-level application behavior to understand the reasons for our findings so far.

These findings are:

e There is significant (per frame) execution time variability due to a combination of the algorithm

and input for several applications.

e The architecture induces very little variability and the IPC stays roughly constant at the frame

granularity.
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e The composition of instructions and execution time stays roughly constant at the frame gran-

ularity.

e The applications spend very little time in memory stalls.

Different media types — speech, video, and audio — have excessively large storage and commu-
nication bandwidth requirements (for speech, the bandwidth requirements are relatively high for
the wireless communication domain). The encoder applications transform the original data into
an alternate representation for compression. The basic principle behind compression schemes is to
either exploit limitations of human perception (used in GSM, G728, MP3) or redundancy in original
representation or a combination of both (H263, MPEG). With media data, humans can often accept
approximations without a perceptible change in quality. The use of these compression principles is
by necessity input-dependent; therefore, any application using them would exhibit execution time
variability depending on the input. Further, the applications can also control the amount of com-
pression depending on the target bit rate parameter which can also impact the execution time. This
explains why several applications in our suite exhibited large execution time variability where a large
part was due to the algorithm and input.

IPC stays roughly constant at the frame granularity because of the similar composition of the in-
structions across different frames. The reason behind similar instruction breakdown for applications
with no execution time variability is because the same code gets executed for each frame. The reason
for applications with execution time variability is as follows. The aforementioned approximations
typically involve avoiding execution of a dominant piece of code for parts of the frame in favor of
a simple approximation. Since the nature of the dominant computation does not change even if
the amount changes, the IPC remains constant. The small variability seen in some applications is
because a different, but significant, piece of code was executed depending on the input. However,
the input-induced change in IPC (and composition of execution time) is not much. We chose vari-
ability in IPC as a metric to measure architecture-induced variability to execution time. Since IPC
variability is negligible, we infer that complex architectural features do not contribute to execution
time variability.

The reason that the applications spend little time in memory stalls is because they perform
significant computation per data item and small caches are sufficient to hold the important working

sets of these computations. Thus, the L1 cache hit rates are very high for all these applications.
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The following demonstrates the above reasoning more concretely for all applications in our bench-
mark suite.

Speech applications

GSM and G728 codecs show no execution time variability with the exception of G728dec frame
type 3. GSM and G728 applications exploit limitations of human perception by approximately
modelling the vocal tract for compression. They do not exploit any inherent redundancies in original
input data. We ran simulations with speech input in which all samples were the same. The execution
time measured is the same as the execution time for speech inputs with significant variability. The
nature of the compression algorithm therefore results in input-independent execution time. Absence
of execution time variability explains the constant IPC and instruction breakdown across different
frames.

G728dec frame type 3 code includes a conditional recomputation of a set of coefficients depending
on whether the inputs for the frame meet a certain set of criteria, resulting in high input-induced
variability. This explains the bimodal nature of execution times of type 3 frames (Figure 1) and the
high variability in execution time and instruction count. It validates that this variability is largely
due to the input. Further, since only the amount of computation changes and not its nature, the
instruction and execution time composition and IPC remain stable throughout.

Video applications

H263 and MPEG video codecs exploit a combination human perception limitation and redun-
dancy compression principle. Both inter and intra frame redundancies are exploited for compression
(discussed in Section 2.1). The amount of redundancy in input has significant impact on execution
time. This reflects in the high execution time variability seen for video applications.

H263enc and MPGenc execution time is dominated by a technique known as motion estimation.
Each frame is divided into blocks of 8x8 or 16x16 pixels. The encoder exploits temporal redundancy
by attempting to find a match for each block in a previous frame. If a match is found, then a reference
to the matching block is encoded. Otherwise, the block is run through a (relatively simple) transform
computation that produces a small number of coefficients to represent the block. The amount of
work in this phase is therefore input-dependent, and depends on the amount of motion in the video.
For parts of the movie with a lot of motion, the motion estimator must do a lot of work and the
execution time is high. If the amount of motion in a video varies, then the execution time will vary
as well, again establishing the input-dependent nature of the execution time variability. Further

again, the amount of computation required changes, but the nature of the dominant computation
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does not change; therefore, the IPC and composition of instructions and execution time remains
roughly the same throughout.

The execution time variability seen in MPGdec and H263dec is also linked to the amount of
motion in the movie. The arguments presented for video encoders apply for the video decoders as
well. H263dec shows significantly higher variability compared to MPGdec. This can be attributed
to the different implementation of the two decoders. H263 is a lower bit rate video codec. For higher
compression ratios, no information is transmitted for macroblocks that find a match in the reference
frame (a match does not mean all the pixels are identical). Inverse discrete cosine transform (iDCT)
is not invoked for such macroblocks. Since iDCT forms the major component of execution time in the
decoders, the amount of execution time variability is almost same as variability in iDCT. MPGdec
transmits the difference between the macroblock and the reference even if a match is found. The
iDCT is therefore always invoked. This explains the difference in variability between MPGdec and
H263dec.

Audio application

MP3dec performs an optimization for audio samples that are very close to zero. It treats such
samples as zeroes, avoiding executing a number of operations with the sample. This greatly reduces
the number of computations performed on quiet frames. The default input is a song which starts
off with a couple of instruments playing, has others come in after a delay, and finally has the
remaining ones begin to play after another delay. This explains the execution time profile in Figure 1,
as the steps in execution time correspond to the three phases of this portion of the song. The
computation avoided for near-zero samples is less efficient, and avoiding it makes the initial part of
the run see slightly higher busy time and TPC. Again, the variability is largely input-driven. Further,
since the majority of the frames are not quiet, they show stable IPC behavior (and execution time

composition).

3.6 Implications

The findings of this section have at least two broad implications. The first concerns execution
time predictability with general-purpose architectures and the second concerns the use of adaptive
architectures for multimedia applications.
Predictability.

Execution time predictability is an important attribute for architectures used for real-time ap-

plications. It has been conjectured that current general-purpose processors are significantly lacking
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in this regard, relative to other alternatives [11, 1, 5, 6, 4].

Our results indicate that the high frame-level variability in execution time may indeed make it dif-
ficult to predict execution time on current general-purpose processors for several of our applications.
The surprising result, however, is that most of this variability is due to the input and algorithm;
therefore, predicting the execution time (in absence of knowledge of the input) would be difficult for
any architecture. Specifically, consider the hypothetical ideal architecture with a predictable IPC of
1 from Section 3.2, which induces no architectural unpredictability. The variability seen is similar to
the execution time variability of the more realistic architectures. This high input-dependent nature
is a result of input-specific approximations made in the application algorithm, and is likely to be a
common feature of many media applications.

Hard real-time system designers typically handle input-dependent variability by making worst-
case assumptions for execution time (e.g., [9, 18]). Our results on the normalized range of instruction
counts show that this assumption would already be quite conservative even for the ideal 1 IPC archi-
tecture. However, many multimedia applications do not have absolutely hard real-time requirements.
In practice, application designers often use measurement to predict expected execution times. Fur-
ther, many applications already make approximations and/or specify statistical error rates (e.g.,
wireless systems need to account for channel induced bit error rates). These soft real-time systems
can afford to miss their frame processing deadlines once in a while. For such systems, it suffices
to make statistical predictions that ensure that the real-time requirements would be met most of
the time [3, 2]. Our results show that the additional execution time variability induced by complex
architectures is low enough to be easily incorporated in such statistical predictions.

Thus, our results challenge the conventional wisdom that current general-purpose architectures
are unsuitable for real-time multimedia workloads due to their inherent unpredictability.
Adaptive architectures.

The frame-level execution time variability exhibited by several of our applications implies that
better performance or energy consumption may be achieved by adapting the architecture to the
varying needs of the application at the frame granularity. A full frame is a relatively long time (625us
to 40ms for our applications); therefore, adaptations at the frame-granularity can tolerate relatively
large overheads in switching between alternate configurations. For example, the overhead involved
in scaling frequency and voltage is about 20 microseconds in Transmeta’s Crusoe processor [8], but
would be acceptable at the frame granularity for most applications. The findings of this thesis are

used to develop an adaptation framework in [10].
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Figure 10 Finer granularity IPC profiles.

It is possible that our applications also exhibit variability in execution time, instruction count,
and TPC within each frame. Such finer-grain adaptivity could potentially also be helpful for energy

efficiency and is discussed in next section.

3.7 Finer Granularity Analysis

Execution time variability results and their implication on architecture have been discussed in the
thesis at a frame level. We also did some experiments to collect and analyze data at a finer gran-
ularity. We chose to do a preliminary analysis at 1000 cycle granularity for all applications except

for MPGenc and H263enc which are evaluated at 100,000 cycle granularity.
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Figure 10 presents the IPC profiles for all applications. For MPGenc and MPGdec, the sections
of profile corresponding to different frame types have been marked with a label. This could not be
done for G728 because of smaller number of 1000 cycle phases per frame. From the profiles, we find
there is significant variability in IPC within a frame. This is in contrast to the relatively constant
IPC’s seen at the frame level. The range of IPC is between 25% and 100%. The IPC jumps are
not gradual but instant. A key observation that can be made from these profiles is that the IPC
profile appears to have a periodic behavior for all applications (except for G728). This periodicity
is observed at a frame granularity. IPC profile for a particular frame type appears to be repeating
in the subsequent frames of the same type. The periodic behavior of IPC profile can be exploited

in adaptive systems for speed and energy benefits.
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4 Related Work

Many characterizations of multimedia applications exist, such as [12, 7, 19]. However, ours is the first
study to quantify execution time variability or predictability for a wide range of media processing
applications.

Several articles have qualitatively conjectured about the unpredictability induced by general-
purpose architectures [11, 1,5, 6, 4]. They examine complex IPC enhancing techniques such as out-
of-order execution, caches, branch prediction, and speculative execution. However, none of these
does an indepth analysis on this topic, nor do they present a quantitative analysis of unpredictability
on general-purpose processors and the reasons behind it.

As mentioned in Section 1, we are aware of only one previous quantitative study related to
the issue of unpredictability induced by aggressive features of general-purpose architectures. This
study measured the performance of simple multimedia kernels (FIR and IIR filters and FFT) in
the context of designing software radios on a Pentium PC [2]. It found very low execution time
variability. It argued that this level of variability can be handled by communications systems which
already have to deal with channel-induced errors in the incoming bit stream and can afford to use
some buffering to smooth out the variability. Our conclusions are similar, but our study is much
more comprehensive as it involves several full applications that do show significant execution time
variability. We analyze this variability to show that most of it is input and algorithm induced and
not architecture-induced.

There is a large body of work on statically predicting worst case execution time to determine the
compute requirements for real-time applications. Recent work in this area has incorporated increas-
ingly complex architectural features (e.g., [9, 18, 14]) as well as explored the use of measurement
for such estimation [18]. The worst-case estimate is used to determine CPU requirements for the
application. Using worst-case estimates, however, is inefficient if the application frequently executes
a frame that is not worst-case. Our study shows that there is significant variability in execution
time for many multimedia applications, and the range of execution times for many applications is

quite large.
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5 Conclusions

General-purpose processors are expected to be widely used for multimedia workloads. However, one
serious perceived concern about the suitability of current architectures for this purpose is regard-
ing their unpredictability. It is conjectured that complex performance-enhancing features used by
current architectures induce significant execution time unpredictability, making them unsuitable for
the realtime nature of multimedia applications.

This thesis performs the first detailed quantitative analysis of execution time variability at the
frame granularity for a number of multimedia applications processing speech, video, and audio data
types. We find that while execution time varies from frame to frame for many applications, this
variability is mostly caused by the algorithm and input and is therefore also present in simpler archi-
tectures. Aggressive architectural features induce little additional variability (and unpredictability)
in execution time, in contrast to widespread perception. System designers of real-time systems with
absolutely hard deadlines deal with input-dependent variability by making worst-case execution time
assumptions. However, these assumptions are often overly conservative and many multimedia appli-
cations do not have hard real-time requirements and/or already deal with approximations and data
errors at the application level. Such soft real-time applications can afford to miss their deadlines once
in a while and it suffices to make statistical predictions that ensure that the real-time requirements
would be met most of the time. In practice, system designers often use measurement to determine
statistical behavior of execution time and use this to ensure that realtime requirements are met most
of the time. Our results show that the additional execution time variability induced by complex
architectures is low enough to be easily incorporated in such statistical predictions for such sys-
tems. The presence of frame-level execution time variability also motivates frame-level architectural
adaptivity.

There are several directions in which we can extend this work. First, we can use our analysis
to develop an adaptivity framework to dynamically choose an energy-efficient architecture [10].
Second, it will be interesting to further explore variability and adaptivity at a granularity finer than
the frame level. Third, in this work, we did not study the impact of the operating system and I/0.
Realtime systems employ several techniques to reduce the unpredictability due to these aspects (e.g.,
reservation based scheduling algorithms) and a comprehensive study was outside the scope of this

work — it is important to explore this issue in the future.
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