
RICE UNIVERSITY

An Evaluation of Memory Consistency Models

for Shared-Memory Systems with ILP Processors

by

Parthasarathy Ranganathan

A Thesis Submitted

in Partial Fulfillment of the

Requirements for the Degree

Master of Science

Approved, Thesis Committee:

Sarita V. Adve, Chair

Assistant Professor in Electrical and

Computer Engineering

Keith Cooper

Associate Professor of Computer Science

Willy Zwaenepoel

Professor of Computer Science

Houston, Texas

April, 1997

An Evaluation of Memory Consistency Models

for Shared-Memory Systems with ILP Processors

Parthasarathy Ranganathan

Abstract

The memory consistency model of a shared-memory multiprocessor determines the

extent to which memory operations may be overlapped or reordered for better perfor-

mance. Studies on previous-generation shared-memory multiprocessors have shown

that relaxed memory consistency models like release consistency (RC) can signif-

icantly outperform the conceptually simpler model of sequential consistency (SC).

Current and next-generation multiprocessors use commodity microprocessors that ag-

gressively exploit instruction-level parallelism (ILP) using methods such as multiple

issue, dynamic scheduling, and non-blocking reads. For such processors, researchers

have conjectured that two techniques, hardware-controlled non-binding prefetching

and speculative reads, have the potential to equalize the hardware performance of

memory consistency models. These techniques have recently begun to appear in

commercial microprocessors, and re-open the question of whether the performance

bene�ts of release consistency justify its added programming complexity.

This thesis performs the �rst detailed quantitative comparison of several imple-

mentations of sequential consistency and release consistency optimized for aggressive

ILP processors. Our results indicate that although hardware prefetching and spec-

ulative reads dramatically improve the performance of sequential consistency, the

simplest RC version continues to signi�cantly outperform the most optimized SC

version. Additionally, the performance of SC is highly sensitive to the cache write

policy and the aggressiveness of the cache-coherence protocol, while the performance

of RC is generally stable across all implementations. Overall our results show that

RC hardware has signi�cant performance bene�ts over SC hardware, and at the same

time, requires less system complexity with ILP processors. Memory write latencies

that hardware prefetching and speculative loads are unsuccessful in hiding are the

main reason for the performance di�erence between SC and RC.

Acknowledgments

I would like to thank my advisor, Sarita Adve, for her invaluable guidance and men-

toring throughout this work. Her encouragement and enthusiasm were primarily

responsible in making this work possible. I would also like to thank my other com-

mittee members, Willy Zwaenepoel and Keith Cooper, for their encouragement and

suggestions. A signi�cant part of this thesis evolved from my joint work with Vijay

Pai. Many thanks are due to him for the many enriching and interesting conversa-

tions during the course of our research. I would also like to thank all my friends

at Rice who made working at school an enjoyable experience. Finally, I would like

to thank my parents and my elder brother for all their support and encouragement

which enables me to be what I am today.

Contents

Abstract ii

Acknowledgments iii

List of Illustrations vi

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions of this Thesis . 3

1.3 Organization . 4

2 Background 5

2.1 Consistency Models . 5

2.1.1 Sequential Consistency . 6

2.1.2 Release Consistency . 8

2.2 Hardware Techniques to Enhance the Performance of Consistency

Models . 10

2.2.1 Hardware prefetching . 11

2.2.2 Speculative reads . 13

3 Evaluation Methodology 15

3.1 Simulated Architectures . 15

3.1.1 Memory System and Network 15

3.1.2 Base Processor . 19

3.1.3 Variations on the Base Processor 20

3.2 Simulation Methodology and Environment 22

3.3 Performance Metrics . 23

3.4 Applications . 24

4 Impact of Hardware Prefetching and Speculative Reads

on the Performance of Consistency Models 26

v

4.1 Sequential Consistency Implementations 27

4.1.1 Prefetching with Write-Through L1 Caches 27

4.1.2 Speculative Reads with Write-Through L1 Caches 33

4.1.3 Impact of Write-Back L1 Caches 35

4.1.4 Summary for SC . 36

4.2 Release Consistency Implementations 37

4.2.1 Performance with Write-Through L1 Caches 37

4.2.2 Impact of Write-Back L1 Caches 38

4.2.3 Summary for RC . 39

4.3 Comparing SC and RC . 39

4.4 Impact of a More Aggressive Protocol 40

4.5 Summary . 43

5 Related Work 45

5.1 Consistency Models . 45

5.2 Evaluation of Consistency Models . 45

5.3 Aggressive Implementations of Sequential Consistency 46

5.4 Prefetching . 46

6 Conclusions 48

6.1 Thesis Summary . 48

6.2 Future Work . 49

Bibliography 51

Illustrations

2.1 Conceptual representation of sequential consistency (SC) 7

2.2 Comparison of straightforward implementations of consistency models 10

2.3 E�ect of hardware prefetching and speculative reads with SC 11

3.1 Overview of the simulated system. 16

3.2 Default simulation parameters. 17

3.3 Processor micro-architecture. 19

3.4 Applications used and input sizes . 25

4.1 Evaluation of consistency models { Erle, FFT, and LU 28

4.2 Evaluation of consistency models { Mp3d, Radix, and Water 29

4.3 MSHR occupancy { Erle, FFT, and LU 30

4.4 MSHR occupancy { Mp3d, Radix, and Water 31

4.5 Number of rollbacks (with write-through cache) 35

4.6 E�ect of aggressive coherence protocol 41

1

Chapter 1

Introduction

1.1 Motivation

Multiprocessor systems built from commodity high-performance uniprocessors o�er

a cost-e�ective solution to achieve high performance. Shared-memory multiproces-

sor systems, in contrast to the alternative of message-passing systems, provide an

abstraction of a single address space that greatly enhances the ease of programming

and compiler design on such systems. However, long memory latencies remain a sig-

ni�cant impediment to achieving the full performance potential of shared-memory

multiprocessors. Current technology trends indicate further increases in the di�er-

ence between processor and memory speeds [43]. A number of optimizations (caching,

bu�ering, and pipelining) have been proposed in the literature to reduce the impact

of long memory latencies in multiprocessor systems. However, these optimizations

can potentially cause memory operations to be executed in an order di�erent from

that speci�ed by the programmer, sometimes resulting in incorrect executions.

The memory consistency model (also called the memory model or the consistency

model) of a shared-memory multiprocessor system is an architectural speci�cation

of the order in which memory operations will appear to execute to the programmer.

The most intuitivememorymodel considers the multiprocessor as a multiprogrammed

uniprocessor. This intuitive memory model is called sequential consistency (abbre-

viated as SC)[23] and guarantees that all memory operations appear to execute one

at a time, and that operations of a single processor appear to execute in the order

speci�ed by that processor's program. intuitive

2

Relaxed consistency models relax some of the requirements of memory ordering

enforced by sequential consistency. One of the most relaxed models is release consis-

tency (abbreviated as RC) [14]. Release consistency requires synchronization accesses

in the program to be identi�ed and classi�ed as acquires (e.g., locks) or releases (e.g.,

unlocks) and allows signi�cant overlap of memory accesses between synchronization

points. Release consistency can thus get increased performance at the expense of a

more complex programming model.

Previous studies have shown that the release consistency model signi�cantly out-

performs the conceptually simpler model of sequential consistency [11, 16, 13, 44],

albeit with increased programming complexity [2, 14]. However, the �rst two of these

studies [11, 16] assumed single issue, statically scheduled, previous-generation proces-

sors with blocking reads. In contrast, current and next generation high performance

microprocessors exploit increased levels of instruction-level parallelism (ILP), using

aggressive techniques such as multiple issue, dynamic scheduling, speculative execu-

tion, and non-blocking reads. The third study [13] assumed an aggressive current-

generation processor, but examined only straightforward implementations of the con-

sistency models. Further, the study used trace-driven simulations which required

making signi�cant approximations that were not validated (e.g., constant latency for

remote miss). The fourth study [44] examined one optimization with non-blocking

reads, but assumed single issue, statically scheduled processors.

Current and next-generation processors that aggressively exploit ILP allow two

hardware optimizations, hardware-controlled non-binding prefetching and speculative

reads [12], that can enhance the performance of sequential consistency and release

consistency. These optimizations have been conjectured to equalize the performance

of consistency models. Hardware prefetching and speculative reads [12] have recently

begun to appear in commercial microprocessors (e.g. HP PA-8000 [17], Intel Pentium

Pro [18], and MIPS R10000 [25]), and re-open the issue of whether the hardware

3

performance advantages of relaxed consistency models justify the tradeo� in pro-

gramming complexity.

Furthermore, for earlier processors with blocking reads, the decision to support a

relaxed consistency model did not necessarily have to be made at processor design

time, since writes can be made non-blocking by simply providing an early acknowl-

edgment from an external memory controller. Non-blocking reads, however, bring in a

value needed by other instructions and must be integrated into the processor design,

Thus, the consistency model now has a larger impact on processor design, further

increasing the importance of understanding the bene�ts of relaxed consistency on

current processors.

1.2 Contributions of this Thesis

This thesis performs the �rst detailed quantitative comparison of several implemen-

tations of sequential consistency (SC) and release consistency (RC) with processors

supporting dynamic scheduling and non-blocking reads.

We use detailed execution-driven simulation of six applications to compare the

hardware performance of SC and RC with ILP processors, in both simple implemen-

tations as well as with the enhancements provided in current ILP processors (hardware

prefetching and speculative reads). Our simulator accurately models the internals of

an aggressive ILP processor similar to the MIPS R10000 along with an aggressive

memory system. The key results of this study are as follows.

� For SC, the two techniques dramatically improve performance, providing up to

a factor of 2 speedup.

� For RC, overall, the two techniques are not very e�ective, because RC already

manages to hide all write latency and a large part of read latency.

� Comparing SC and RC, we �nd that RC consistently outperforms SC. With

write-through primary caches, RC achieves a speedup of over 1.5 for four of

4

the six applications. With write-back primary caches, the speedups are less

dramatic, but still fairly large (1.25 or more for four applications). With a

more aggressive, but more complex, cache-coherence protocol, optimized SC

achieves performance comparable to RC on two applications, but a signi�cant

gap remains for others.

Overall our results show that RC hardware has signi�cant performance bene�ts

over SC hardware, and at the same time requires less system complexity with ILP

processors. Write latencies that are not overlapped with SC are mainly responsible

for the performance di�erence between SC and RC.

1.3 Organization

The rest of this thesis

�

is organized as follows. Chapter 2 presents the background

material for this thesis. Chapter 3 discusses our simulated architecture, methodology,

and our applications. Chapter 4 describes the results of our comparison of consistency

models. Chapter 5 discusses related work. Chapter 6 summarizes the results from

this dissertation and discusses future work.

�

Large portions of this thesis are based on an earlier work [30] which is copyright by the ACM, 1996.

5

Chapter 2

Background

This chapter provides the background information for the rest of the thesis.

Section 2.1 de�nes the concept of a consistency model and briey describes the consis-

tency models that we study in this thesis. Section 2.2 describes hardware prefetching

and speculative reads, currently implemented hardware optimizations for consistency

models that we study in this work.

2.1 Consistency Models

The memory consistency model (also called the memory model or the consistency

model) of a shared-memory system is an architectural speci�cation of the order in

which memory operations appear to execute to the programmer. The programmer

of an explicitly parallel program has to understand the memory consistency model

to reason about the results that the program can produce. The system (hardware

or compiler) designer, on the other hand, has to understand the memory consistency

model in order to implement only those performance improving optimizations that

do not violate the constraints of the memory model. The memory consistency model

thus forms an integral part of both the system design process and the application

code writing process.

On uniprocessor systems, the memorymodel presented to the programmer usually

guarantees that all memory operations appear to execute one at a time and in the

order speci�ed in the program. The uniprocessor system includes both hardware and

compiler optimizations that improve performance by possibly reordering or overlap-

ping multiple memory operations. However, care is taken to maintain uniprocessor

6

control and data dependences which ensure that memory operations appear to execute

in program order.

The memory model in a multiprocessor system is more complicated than that of

the uniprocessor system because of the possibility of concurrent reads and writes to

the same location by di�erent processors. A number of memory consistency models

for multiprocessors have been proposed in the literature. We next briey discuss the

two consistency models that we use in this thesis.

2.1.1 Sequential Consistency

The most intuitive memory model on multiprocessors retains the characteristics of

the memory model on uniprocessors and extends it for multiprocessors. A simple

de�nition of this model would require the ordering of memory operations to model

that produced by a multiprogrammed uniprocessor. This memory model is called

sequential consistency (abbreviated as SC) and was formally de�ned by Lamport [23]

as follows:

[A multiprocessor is sequentially consistent if] the result of any execution is the same

as if the operations of all the processors were executed in some sequential order and the

operations of each individual processor appear in this sequence in the order speci�ed in

the program.

The two requirements of sequential consistency therefore are (1) all memory oper-

ations appear to execute atomically (one at a time) in some order and (2) all memory

operations of a processor appear to execute in program order. Figure 2.1 shows the

conceptual representation of a sequentially consistent system [1]. The multiprocessor

system is conceptually equal to multiple processors sharing a single memory module

through a central switch.

A naive implementation of sequential consistency would require a processor to wait

for a memory operation to complete before issuing its next memory operation in pro-

7

P1 P2 Pn

Memory

Figure 2.1 Conceptual representation of sequential consistency (SC)

gram order. This requirement, however, can seriously impact the use of performance

improving optimizations to reduce the impact of memory latency in multiprocessors.

These optimizations (both at the hardware and software levels) use bu�ering, pipelin-

ing and reordering to reduce the impact of memory latency in multiprocessors. Note

that the importance of such optimizations is increased in multiprocessors compared

to uniprocessors because of the presence of longer (remote) memory latencies and

coherence misses.

For example, hardware optimizations like a dynamically scheduled processor

(which allows out-of-order execution) or a write-bu�er (which allows reads to bypass

writes), or an aggressive cache implementation (lockup-free caches), or an aggressive

network that does not maintain ordering of requests can all result in violations of the

ordering requirements of sequential consistency. Similarly, compiler optimizations

like register allocation, code motion, common sub-expression elimination, and loop

interchange can potentially reorder (or eliminate) memory operations and violate the

requirements of sequential consistency [1]. A straightforward implementation of se-

8

quential consistency would prevent the use of these optimizations and constrain the

processor to execute memory operations one at a time in program order.

However, sequential consistency does not require memory operations to be exe-

cuted in this way, it only requires that the execution appear as if the memory oper-

ations were executed one at a time in program order [23]. Many schemes using this

observation to enhance the performance of sequential consistency have been proposed

in the literature. In this thesis, we evaluate two hardware techniques [12] that are

currently implemented in commodity microprocessors to improve the performance of

sequential consistency (described in Section 2.2). Other techniques have been pro-

posed to improve the performance of sequential consistency [3, 24, 11]. However, these

techniques either require very aggressive networks, complex hardware, or aggressive

compiler technology.

2.1.2 Release Consistency

Relaxed memory consistency models allow certain memory operations to execute out

of program order or non-atomically, thus enabling more optimizations that require

overlap and reordering of memory operations. However, these models require the

programmer to be explicitly aware of the e�ect of such reorderings and write the

program suitably to ensure correctness. A number of relaxed consistency models,

di�ering in the way in which they relax the requirements between various classes of

memory operations, have been proposed [23, 8, 15, 9, 14, 19, 41, 7]. We next discuss

one of the most relaxed models { release consistency (abbreviated as RC).

Release consistency exploits the key observation that most programs use syn-

chronizing memory operations to ensure ordering between concurrent accesses to the

same memory location by di�erent processors. Release consistency requires that syn-

chronization accesses in the program be identi�ed and classi�ed as either acquires or

releases. Informally, acquires are read synchronization operations that are used to or-

der data operations, and releases are write synchronization operations that are used

9

to order data operations. Release consistency uses this information to allow great

exibility in reordering (and bu�ering/pipelining) of data accesses between synchro-

nization points. Release consistency is formally de�ned as follows [14]:

[A system is release consistent if] (1) before an ordinary read or write access is allowed

to perform with respect to any other processor, all previous acquire accesses must be

performed, and (2) before a release access is allowed to perform with respect to any other

processor, all previous ordinary read and write accesses must be performed, and (3) all

special accesses are processor consistent

y

with respect to one another.

Figure 2.2 graphically demonstrates the di�erence between straightforward imple-

mentations of SC and RC. Figure 2.2(a) shows the execution pro�le of a straightfor-

ward implementation of sequential consistency where memory operations execute one

after the other in order and Figure 2.2(b) shows the execution pro�le of a straightfor-

ward implementation of RC. As seen from the �gure, the main advantage of release

consistency is the potential for increased performance due to increased overlap of

memory operations. The disadvantage is the more complex programming model.

Note that the previous de�nitions of sequential consistency and release consistency

only require memory operations to appear to execute in the order speci�ed by the

memory model. A number of techniques that use this observation to enhance the

performance of consistency models have been proposed in the literature [12, 3, 24, 11].

We next discuss two such hardware techniques for ILP processors that can be used

to improve the performance of consistency models. The other techniques are either

too restrictive, require more aggressive, complex system implementations, or do not

appear to give signi�cant performance bene�ts.

y

Informally, processor consistency di�ers from sequential consistency in that it allows reads to bypass

writes. A more formal de�nition can be found in [15, 14].

10

Acquire Release

Acquire Release

Data

Data

(a) Sequential consistency

Acquire Release

Acquire Release

Data

Data

(b) Release consistency

Figure 2.2 Comparison of straightforward

implementations of consistency models

2.2 Hardware Techniques to Enhance the Performance of

Consistency Models

Current and next-generation processors exploit instruction-level parallelism (ILP)

using techniques like multiple instruction issue, dynamic (out-of-order) scheduling,

register renaming, speculative execution, and non-blocking reads. The processor

exploits ILP by examining a large window of instructions (called the instruction

window or active list [25]) at a time, and executes the instructions that are not

dependent on the completion of any previous incomplete instructions. For such pro-

cessors, Gharachorloo et al. have proposed two hardware techniques to improve the

performance of consistency models. These two techniques, hardware prefetching and

speculative reads [12], exploit the instruction lookahead window in an aggressive ILP

11

Write reg2, B

Read C, reg3

reg1, AWrite

E[reg3], reg4Read

Instruction
Window

Simple SC implementation SC with prefetching

(a) E�ect of hardware prefetching

Write reg2, B

Read C, reg3

reg1, AWrite

E[reg3], reg4Read

Instruction
Window

Simple SC implementation SC with speculative
 read execution

(b) E�ect of speculative reads

Figure 2.3 E�ect of hardware prefetching and speculative reads with SC

processor and take e�ect whenever the constraints of the memory consistency model

could restrict the issue of a memory operation.

Section 2.2.1 describes hardware-controlled non-binding prefetching from the in-

struction window, and Section 2.2.2 describes speculative read execution.

2.2.1 Hardware prefetching

Prefetching seeks to bring the contents of a memory location into the processor cache

before the demand access to that location. The hardware prefetch technique issues

a hardware-controlled non-binding prefetch [16] for a decoded memory operation in

12

the instruction window as soon as its address is available, and if the operation cannot

be issued otherwise due to consistency constraints. This technique seeks to reduce

memory latency by partially servicing large latency accesses that are delayed due to

consistency constraints. In addition to the data of the speci�c prefetched location,

prefetches usually bring in extra data, typically other data that is included in one

transfer unit of the cache (the cache line size).

A read prefetch can be used to bring the data into read-shared state while the

operation is delayed due to consistency requirements. On a sequentially consistent

system, read prefetches can be used to obtain remote data for reads while a regular

memory operation is pending. On a release consistent system, read prefetches can

be used to prefetch reads past acquire operations. Since non-binding prefetches are

still visible to coherence actions which make sure that the value is updated, we are

guaranteed that the actual demand read will return the correct value.

A write prefetch (also referred to as a read-exclusive prefetch) can be issued to

acquire exclusive ownership of the data in addition to fetching the data into the cache.

A write prefetch can be issued in SC when the actual write operation is delayed due to

consistency requirements. Additionally, with ILP processors, writes cannot be issued

till they reach the head of the instruction window, to ensure precise exception [38].

Store prefetches can be used in both SC and RC to initiate ownership requests for all

such store operations in the instruction window.

Figure 2.3(a) demonstrates the bene�ts with hardware prefetching from the in-

struction window on SC. As the �gure shows, hardware prefetching is an e�ective

technique for pipelining large latency references even when the memory consistency

model disallows it. A signi�cant amount of the latency seen in the access of locations

B and C is hidden by hardware prefetching.

Hardware prefetching, however, fails to boost performance in cases when out-

of-order consumption of prefetched values is important, e.g., the read of E in

Figure 2.3(a). We next describe a technique that attempts to address this problem.

13

2.2.2 Speculative reads

Speculative reads [12] extend the bene�ts of hardware prefetching by speculatively

using the values of reads brought into the cache, even while previous demand ac-

cesses are incomplete. If a possible violation of memory ordering is detected due to

early use of such data, the system rolls back the speculative read and all subsequent

instructions.

Speculative read execution preserves correctness by requiring that any data that

is speculatively read remain visible to the coherence mechanism. This is achieved by

using additional on-chip hardware in the form of a speculative read bu�er [12]. The

speculative read bu�er must communicate with the cache, tracking any invalidation,

update, or cache replacement operations on cache lines that have had reads issued

speculatively to them. If such a message reaches the speculative read bu�er, the unit

must then interface with the processor's window of active instructions and not only

reissue the speculated read, but also roll back all subsequent processor operations.

The mechanism used to rollback processor operations after a branch misprediction or

an exception recovery can be used to implement this.

As with hardware prefetching from the instruction window, speculative reads can

be used with both SC and RC whenever a read operation is not issued because of the

constraints of the consistency model. In SC, speculative read execution is used with all

reads; in RC, speculative read execution is used with reads past an acquire operation.

Figure 2.3(b) demonstrates the bene�ts of speculative reads used in conjunction with

hardware prefetching on an SC system. As seen from the �gure, a portion of the

latency to access location E can now be hidden with speculative read execution. The

ability to consume values speculatively can thus lead to improved performance of the

system

Note that both these techniques impose certain basic requirements on the sys-

tem like the need for a hardware-coherence protocol and non-blocking caches. One

important distinction between the prefetch and speculative read techniques is that

14

the prefetching mechanism is useful even for uniprocessors (to prefetch writes) and

can therefore be expected to be employed for purposes other than the consistency

model implementation. The speculative read bu�er and its data and control paths,

however, are required only for aggressive implementations of consistency models and

have no application to uniprocessors. Furthermore, these need to be implemented

on the processor chip. Both these techniques have recently begun to appear in com-

mercial microprocessors (e.g. HP PA-8000 [17], Intel Pentium Pro [18], and MIPS

R10000 [25]).

The remaining chapters in the thesis describe our experimental methodology and

present our results evaluating the performance of consistency models with hardware

prefetching and speculative reads.

15

Chapter 3

Evaluation Methodology

This chapter describes the evaluation methodology used in this thesis. Section 3.1

describes the simulated architecture and Section 3.2 describes our simulation environ-

ment. Section 3.3 describes the performance metrics we use in this thesis. Section 3.4

describes the applications we use.

3.1 Simulated Architectures

This section describes our simulated architecture. Section 3.1.1 �rst describes our

multiprocessor system including the memory system and network. Sections 3.1.2

and 3.1.3 describe our base processor and the variations to the base processor that

we simulate.

3.1.1 Memory System and Network

We simulate a hardware CC-NUMA (cache-coherent non-uniform memory access)

multiprocessor, where processing nodes are connected with a two-dimensional mesh

network. We simulate an 8-processor system. The base system is illustrated in

Figure 3.1. Each processing node consists of a processor, two levels of cache, and a

part of the main memory and directory. A split-transaction system bus connects the

memory, the network interface and the rest of the system node. The system uses a

fully-mapped, invalidation-based, three-state directory coherence protocol.

In our cache hierarchy, the �rst level is always dual-ported, but can be either

write-through with no-write-allocate or write-back with write-allocate. We evalu-

ate both �rst-level cache con�gurations since current systems support both kinds of

16

Processor

L1 Cache WB

L2 Cache

Network Interface

Memory

Directory

Processor

L1 Cache WB

L2 Cache

Network Interface

Memory

Directory

Network

Figure 3.1 Overview of the simulated system.

caches [10, 17, 25, 18]. Additionally, write-hits in SC expose the second-level access

latency in a write-through con�guration, but only the �rst-level access in a write-

back con�guration. In the absence of resource constraints, RC will hide the latency

of writes in either con�guration. Thus, we expect the comparative results of SC

and RC to di�er with these di�erent �rst-level cache con�gurations. If we have a

write-through �rst-level cache, we also include a coalescing line write-bu�er between

the two levels of cache. Regardless of �rst-level cache con�guration, the second-level

cache is always a pipelined write-back, write-allocate cache. Both the �rst-level and

second-level caches allocate a line for a miss (and possibly evict another line) only

upon reply for that line.

Both levels of cache are non-blocking with 8 Miss Status Holding Registers

(MSHRs) [22] each. The MSHRs store information about misses and coalesce multi-

ple requests to the same cache line. A maximum of 16 requests can be coalesced in

one MSHR. When there is a write request to a line which has a read pending, the

MSHR bu�ers the write and issues an ownership request only when the read reply

returns, as in many current processor implementations. We refer to such stalls as

17

Memory Hierarchy Parameters

Cache line size 64 bytes

L1 cache (on-chip) Direct mapped 16K

L1 cache ports 2

L1 MSHRs 8

L2 cache (o�-chip) 4-way associative 64K

L2 MSHRs 8

Write bu�er (coalescing) 8 line entries

Maximum coalescions per line 16

Memory interleaving 4-way

Memory Latency Components

L1 cache access 1 cycle

L2 cache access 8 cycles

Memory bus arbitration delay 3 cycles

Directory and memory access 18 cycles

Memory transfer bandwidth 16 bytes/cycle

Network Parameters

Network speed 150MHz

Network width 64 bits

Flit delay (per hop) 2 network cycles

Bus type Split-transaction

Bus speed 100 MHz

Bus width 128 bits

Processor Parameters

Processor Speed 300MHz

Peak issue, retire rate 4 instructions/cycle

Instruction window size 64

Memory queue size 32

Functional units 2 integer arithmetic

2 oating point

2 address generation

Branch speculation depth 8

Figure 3.2 Default simulation parameters.

18

write-after-read stalls. In addition to preventing overlap of the store ownership re-

quest with load latency, our implementation of write-after-read stalls also blocks a

cache port, possibly preventing later requests from issuing to the cache. Although

our system is representative of current systems, this decision can potentially a�ect

the performance of write prefetching. Allowing this ownership request to overlap with

a previous read request increases the complexity at the directory controller and at

the MSHRs, since potential reordering of requests in the network will now need to be

handled by the system. Section 4.4 assesses the impact of the more aggressive and

more complex protocol where the read and ownership requests are overlapped.

Figure 3.2 gives our default primary memory system parameters. We have chosen

smaller cache sizes than commercial systems, commensurate with our application

input sizes (described in Section 3.4) and following the working-set evaluations of

Woo et al. [42]. Our secondary cache sizes are chosen such that secondary working

sets of most of our applications do not �t in cache; we choose primary cache sizes

such that any applications with �xed-size primary working sets �t in cache.

Main memory is 4-way interleaved (by cache line) and is accessed through a

pipelined split-transaction bus. The interconnect network is a wormhole-routed two-

dimensional mesh network. The system uses separate reply and request networks for

deadlock prevention. Parameters common to all the systems are given in �gure 3.2.

These values assume a 300MHz processor with a 3ns on-chip L1 SRAM cache and a

30ns L2 SRAM cache. The network is assumed to be a 150MHz, 8 byte wide network

with 70ns DRAMmemory and 4-way interleaved directories. The processor, network,

and base memory system parameters are fairly aggressive, and meant to represent cur-

rent aggressive implementations. The parameters were chosen by extrapolating from

numbers given by various system vendors.

19

FPU

Instruction
Fetch
Logic

Branch Prediction

Memory
Queue

Floating-point
Register File

Integer
Register File

Completion
Graduation

Exception Handling

Register mapping
(renaming)

Active List

ALU/
Branch

Addr.
Gen.

Data

Cache

Figure 3.3 Processor micro-architecture.

3.1.2 Base Processor

Figure 3.3 shows the processor micro-architecture that we model. Our base processor

model employs widely used techniques to exploit instruction-level parallelism, such

as multiple instruction issue, dynamic (out-of-order) scheduling, register renaming,

speculative execution, and non-blocking reads. The processor exploits ILP by exam-

ining a large window of instructions (called instruction window or active list [25]) at

a time, and executes the instructions that are are ready to be issued, even before

the completion of any previous incomplete instructions. This allows instructions to

issue and complete out of program order. In particular, the pipeline stages corre-

sponding to Fetch, Decode, and Graduation occur in order, while Issue, Execution,

and Completion proceed out of order. Except for writes in release consistent systems,

an instruction retires (graduates [25]) when it is complete and when all preceding

instructions (by program order) have retired. A write in a release consistent system

20

retires when its address and value are resolved, and when all previous instructions

have retired. To guarantee precise interrupts [38], writes are not issued into the mem-

ory system until they reach the head of the instruction window. We use the SPARC

V9 MEMBAR [39] instructions (memory barriers or memory fences) to enforce ordering

of memory operations as required by the consistency model.

The processor also uses a two-bit hardware branch prediction scheme to enable

speculative execution past branches. A maximum of 8 speculation levels is supported

in the processor. Our base processor uses the notion of shadow mapping [25] (similar

to the MIPS R10000 and the HP-PA8000) to restore the state of a system on a

branch misprediction. Additionally, the processor also supports soft exceptions [25]

to rollback execution on an internally-generated exception condition.

The processor micro-architecture is most closely based on the MIPS R10000 de-

sign [25] though it incorporates features from several other commercial micropro-

cessors like the HP-PA800 [17] and the Intel Pentium Pro [18]. Figure 3.2 gives the

processor parameters used in our simulations. These parameters were chosen to model

next-generation aggressive processors. The default latencies for the various execution

units approximate those for the UltraSPARC [40].

3.1.3 Variations on the Base Processor

The base processor model directly supports the simple implementation of release

consistency (RC). Variations on our processor and memory system include a sequen-

tially consistent (SC) processor model, support for hardware-controlled non-binding

prefetching, and support for speculative read execution.

For a simple implementation of SC, we modify RC's aggressive base memory

system to issue a memory operation only when the previous memory operations of that

processor have completed. This method maintains ordering of all memory operations

as required by SC. Furthermore, a write in SC does not retire from the instruction

21

window until it is globally performed [35]. Unlike the RC model which can retire up

to 4 writes a cycle, the SC model can retire only at most 1 write per cycle.

To implement hardware prefetching, we issue prefetch requests to the cache as

described in Section 2.2. We prefetch requests to the level of cache appropriate for the

corresponding demand fetch; thus write prefetches with the write-back write-allocate

primary cache and all read prefetches go to the primary cache. Write prefetches for

lines not present in the write-through non-write-allocate primary cache only fetch into

the secondary cache; bringing these to the primary cache would defeat the purpose

of a no-write-allocate cache.

z

Read prefetches always fetch the line to the �rst-level

cache. Prefetch instructions are removed from the memory queue once they are issued

to the memory system. Prefetches that cannot be issued due to resource contention

are dropped. This model assumes that the increase in the stall time due to resource

contention outweighs the reduction in the memory latency due to prefetches, and has

been used in previous studies with indiscriminate prefetches [26].

x

We implement the speculative read bu�er at the processor and use a mechanism

similar to but more optimistic than the soft exception mechanism employed by the

MIPS R10000 to rollback execution as described in Section 2.2.2. In SC systems, we

use the speculative read bu�er whenever we want to issue a read out of order; in RC

systems, this bu�er is only used past acquires. We do not impose a constraint on

the size of the speculative read bu�er, limiting it only by the number of reads in the

memory queue (32 in our base con�guration). We force a rollback when the primary

cache gets a coherence request from an external source or an invalidation request

z

We performed experiments with an alternative strategy that brought write prefetches to the �rst-

level write-through cache. For all our applications, the performance was comparable to, or less than

that with the default strategy of prefetching writes only to the second-level cache.

x

We performed experiments varying the prefetch drop strategy for our applications. The alternate

prefetch strategy keeps prefetches in the memory queue and issues them only when resources free

up. With three of our applications (LU, Mp3d, and Water), SC gets a reduction in execution time

between 8% and 12%. Mp3d experiences a slowdown of 8% on RC with the alternate prefetch drop

strategy. All other applications exhibit marginal changes to performance with change in the prefetch

strategy.

22

from the secondary cache for inclusion; there is no need to rollback on primary cache

replacements since those lines will still remain visible to external coherence. We

assume a zero cycle recovery penalty (the number of cycles that are taken to ush

subsequent instructions from the instruction window). Our results show that, on our

base system, the number of rollbacks is very small, and thus the rollback penalty does

not signi�cantly impact the performance of the optimized models.

3.2 Simulation Methodology and Environment

We have developed the Rice Simulator for ILP-based Multiprocessors (RSIM) to

model the architecture described in Section 3.1 [28]. In contrast to many current

direct-execution simulators, RSIM models both the processor pipelines and the mem-

ory subsystem in detail, including contention at various resources. The code for

the memory system and network is heavily drawn from RPPT (the Rice Parallel

Processing Testbed) [5, 31]. RSIM is execution-driven; i.e., it is driven by application

executables rather than traces so that interactions between the processors during the

simulation can a�ect the course of the simulation. The detail in our simulator thus

leads to increased simulation times compared to those seen in either direct-execution

or trace-driven simulations; however, the detail is necessary for the problems ad-

dressed in this thesis.

The applications are compiled with a version of SPARC V9 gcc modi�ed to

eliminate branch delay slots

{

and restricted to 32 bit code, optimized with -O2

-funrollloop. The resulting binary is fed into a predecoder which expands the

instructions into a format that can be interpreted by our simulator.

To speed up the simulations, we assume all instructions hit in the instruction

cache (with 1 cycle hit time) and private (i.e., non-shared) variables also hit in the

data cache. Both of these approximations have been widely used in shared-memory

{

RSIM does not currently support architected delay slots.

23

multiprocessor performance studies. However, we do model contention due to private

data accesses at various processor and cache resources.

3.3 Performance Metrics

We use the execution time as the primary metric to evaluate performance. We also

divide execution times into its various components, namely CPU time, data memory

time, and synchronization time. However, with ILP processors, each instruction can

potentially overlap its execution with both previous and following instructions. Hence,

it is di�cult to assign stall time to speci�c instructions. We adopt the following

convention also used in other work [34]. We count a cycle as part of busy time if

we retire the maximum number of instructions possible in that cycle (four in our

system). Otherwise, we charge that cycle to the stall time component corresponding

to the �rst instruction that could not retire in that cycle. Thus, e�ectively, the stall

component for a class of instruction represents the cumulative time that instructions

in the class stall at the top of the instruction window before retiring. If an instruction

retires without having spent any stall time at the top of the instruction window, it is

considered to have fully overlapped with previous instructions. We use these detailed

statistics only to gain insight into the nature of the various applications and to identify

the portions of the computation overlapped by various optimizations. For purposes of

comparing various implementations, however, we use the total execution time as the

primary performance metric. We additionally subdivide the data memory stall time

into the time spent on L1 hits, L2 hits, local memory accesses, and remote memory

accesses, for both reads and writes. Henceforth, we use the term memory stall time

to denote the data memory stall component of execution time.

We also use statistics on MSHR occupancies to give us an idea of the usage of

MSHRs in the L1 and L2 caches and the extent to which memory operations are

overlapped in our systems.

24

3.4 Applications

We use six applications in this study { Radix, FFT and LU from the SPLASH-2

suite [42]; Water and MP3D from the SPLASH suite [37]; and Erlebacher, obtained

from the Rice parallel Fortran compiler group [4]. We describe the applications briey

below.

LU is a non-contiguous version of the kernel from the SPLASH-2 suite modi�ed

to use ags instead of barriers to improve performance. The version of LU that we use

also includes loop transformations and procedure inlining optimizations to better ex-

ploit the ILP features in the processor [29]. FFT from the SPLASH-2 suite performs

a 1D Fast Fourier Transform using a six-step algorithm. The version of FFT that we

use also includes ILP-speci�c code transformations to improve performance [29]. The

majority of communication in this application occurs in the transpose phase. Radix

is an integer sorting kernel from the SPLASH-2 suite. Mp3d is an application from

the SPLASH suite performing a Monte Carlo simulation of a rare�ed ow simulation.

Water is an N-body molecular dynamics simulation from SPLASH. Erlebacher

solves partial di�erential equations by performing 3-D vectorized tridiagonal solves

using the Alternating-Direction-Implicit (ADI) method [4]. The key data structures

are 3-dimensional arrays which are distributed by assigning a consecutive block of

X-Y planes to each processor. One phase dominates the execution time, and contains

all the communication and synchronization of this application. The computation in

this phase consists of a forward-substitution pipeline and a backward-substitution

pipeline, with ags to synchronize processors sharing a boundary plane. The block

size determines the size of each pipeline stage.

The input sizes for our applications run on an 8-processor system are summarized

in Figure 3.4. These are greater than or equal to the sizes used in the SPLASH and

SPLASH-2 distributions for all applications except LU. In the case of LU, owing to

higher simulation times with our detailed simulator, we use a problem size one step

smaller than recommended, but do not expect the results to be a�ected since we run

25

Application Input Size

LU 256 by 256 matrix, block 8

FFT 65536 points

MP3D 50000 particles

Water 512 molecules

Radix 1024 radix, 512K keys, 512K max key

Erlebacher 64 by 64 by 64 cube, block 8

Figure 3.4 Applications used and input sizes

the smaller problem size only on our 8-processor system (the default problem size is

recommended for up to 64 processors). We use a �rst-level 16K cache and a second-

level 64K cache. These cache sizes were chosen commensurate with the input sizes of

our applications, based on the methodology described byWoo et al. [42]. The primary

working set �ts in the L1 cache, as these are either input-independent or user-de�ned

in each of our applications. The secondary working sets of most applications (which

scale with problem size) do not �t in the L2 cache.

26

Chapter 4

Impact of Hardware Prefetching and Speculative

Reads on the Performance of Consistency Models

This chapter presents our experimental results evaluating the impact of hard-

ware prefetching and speculative reads on the performance of consistency models.

Section 4.1 and 4.2 discuss the e�ect of hardware prefetching and speculative read

execution on SC and RC respectively. Section 4.3 compares SC and RC. Section 4.4

examines the impact of a more aggressive coherence protocol. Finally, Section 4.5

summarizes the results of this chapter.

Figures 4.1 and 4.2 summarize our results. As motivated by Section 3.1.1, we

investigate systems with write-through and write-back �rst-level caches (shown on the

left and right side respectively of each �gure). For each of SC and RC, and for each

�rst-level cache con�guration, we examine three systems: plain refers to the simple

implementation, +PF adds read and write prefetching as discussed in Section 3.1.2, and

+SR further adds speculative reads to the +PF con�guration. For each implementation,

Figures 4.1(a) and 4.2(a) show the total execution time, normalized to the time for a

simple implementation of SC using the write-through L1 cache. The execution times

are divided into three components { CPU, data memory stall and synchronization

stall. Recall that, as described in Section 3.3, the value of each component represents

time stalled at the top of the instruction window. Thus, the low CPU times in

Figures 4.1(a) and 4.2(a) do not generally imply poor speedup; rather, these values

indicate that a large part of the CPU time is completely overlapped with previous

longer latency operations. Figures 4.1(b) and 4.2(b) magnify the memory regions

of Figures 4.1(a) and 4.2(a) providing a more detailed characterization of memory

27

stall time. Each bar showing memory stall time is separated into write and read

components by a horizontal dividing line. Read and write stall times are further

divided into time spent stalled on L1 cache hits, L2 cache hits, misses to local memory,

and misses to remote memory.

Figures 4.3 and 4.4 provide additional data to indicate the overlap of memory

operations in the various implementations. These �gures illustrate MSHR occupancy

distributions at the L1 and L2 caches respectively for the system with �rst level write-

through caches. They give the fraction of total time (on the vertical axis) for which

at least N MSHRs are occupied by misses, where N is the number on the horizontal

axis. Recall that only read misses reserve L1 MSHRs, as the L1 write-through cache

is no-write-allocate. Both read and write misses reserve L2 MSHRS. The L1 MSHR

occupancy graph thus gives an idea of the overlap of read operations and the di�erence

between the L2 and L1 MSHR occupancy graphs indicates the amount of overlap of

write operations.

4.1 Sequential Consistency Implementations

Sections 4.1.1 and 4.1.2 analyze the performance impact of hardware prefetching

and speculative reads in an SC system with write-through L1 caches. Section 4.1.2

summarizes the results with write-through L1 caches. Section 4.1.3 discusses the

impact of a write-back L1 cache.

4.1.1 Prefetching with Write-Through L1 Caches

With a write-through cache, hardware-controlled prefetching helps SC performance

for all applications, but to a variable extent. All applications experience improvements

in execution time ranging from 7% to 23%. Overall, most of the bene�ts of prefetching

appear from reducing read stall time; prefetching is generally unsuccessful in reducing

write stall time.

28

||0

|

20

|

40

|

60

|

80

|

100

 N
o

rm
a

li
z
e

d
 e

x
e

c
u

ti
o

n
 t
im

e

ERLE

Synch
Memory

CPU

Simp

100.0

PF

75.0

+SR

51.0

Simp

34.2

PF

34.9

+SR

33.8

Simp

78.5

+PF

55.3

+SR

41.0

Simp

36.7

+PF

37.2

+SR

36.0

SC, WT RC, WT SC, WB RC, WB

||0
|

5

|

10

|

15

|

20

|

25

|

30

|

35

|

40

|

45

|

50

|

55

|

60

|

65

|

70

 N
o

rm
a

li
z
e

d
 m

e
m

o
ry

 o
v
e

rh
e

a
d

ERLE

Simp

67.4

+PF

43.3

+SR

38.7

Simp

15.1

+PF

15.7

+SR

14.9

Simp

45.8

+PF

23.5

+SR

26.0

Simp

17.4

+PF

17.8

+SR

16.9

remote
local

L2
L1

Writes

Reads

SC, WT RC, WT SC, WB RC, WB

||0

|

20

|

40

|

60

|

80

|

100

 N
o
rm

a
li
z
e
d
 e

x
e
c
u
ti
o
n
 t

im
e

FFT

Synch
Memory

CPU

Simp

100.0

PF

77.9

+SR

67.3

Simp

23.4

PF

27.7

+SR

27.7

Simp

57.1

+PF

41.7

+SR

31.6

Simp

23.1

+PF

23.5

+SR

23.5

SC, WT RC, WT SC, WB RC, WB

||0

|

5

|

10

|

15

|

20

|

25

|

30

|

35

|

40

|

45

|

50

|

55

|

60

|

65

|

70

|

75

|

80

|

85

 N
o
rm

a
li
z
e
d
 m

e
m

o
ry

 o
v
e
rh

e
a
d

FFT

Simp

81.0

+PF

59.1

+SR

57.4

Simp

9.5

+PF

13.8

+SR

13.8

Simp

37.5

+PF

22.4

+SR

20.5

Simp

9.2

+PF

9.7

+SR

9.6

remote
local

L2
L1

Writes

Reads

SC, WT RC, WT SC, WB RC, WB

||0

|

20

|

40

|

60

|

80

|

100

 N
o

rm
a

li
z
e
d
 e

x
e
c
u
ti
o
n
 t

im
e

LU

Synch
Memory

CPU

Simp

100.0

PF

84.3

+SR

57.2

Simp

28.9

PF

28.8

+SR

29.6

Simp

78.4

+PF

67.4

+SR

36.8

Simp

29.6

+PF

29.4

+SR

30.3

SC, WT RC, WT SC, WB RC, WB

||0

|

5

|

10

|

15

|

20

|

25

|

30

|

35

|

40

|

45

|

50

|

55

|

60

|

65

|

70

 N
o

rm
a

li
z
e

d
 m

e
m

o
ry

 o
v
e
rh

e
a
d

LU

Simp

66.3

+PF

51.7

+SR

41.5

Simp

11.9

+PF

11.3

+SR

11.9

Simp

46.3

+PF

36.7

+SR

22.3

Simp

12.5

+PF

11.8

+SR

12.7

remote
local

L2
L1

Writes

Reads

SC, WT RC, WT SC, WB RC, WB

(a) Execution time components (b) Memory time components

Figure 4.1 Evaluation of consistency models { Erle, FFT, and LU

29

||0

|

20

|

40

|

60

|

80

|

100

 N
o

rm
a

li
z
e

d
 e

x
e

c
u

ti
o

n
 t
im

e

MP3D

Synch
Memory

CPU

Simp

100.0

PF

77.1

+SR

62.8

Simp

40.0

PF

41.5

+SR

41.8

Simp

91.6

+PF

84.1

+SR

68.1

Simp

42.5

+PF

45.6

+SR

42.5

SC, WT RC, WT SC, WB RC, WB

||0
|

5

|

10

|

15

|

20

|

25

|

30

|

35

|

40

|

45

|

50

|

55

|

60

|

65

|

70

|

75

|

80

|

85

|

90

|

95

 N
o

rm
a

li
z
e

d
 m

e
m

o
ry

 o
v
e

rh
e

a
d

MP3D

Simp

91.8

+PF

69.5

+SR

58.3

Simp

35.0

+PF

36.6

+SR

36.5

Simp

83.8

+PF

77.1

+SR

63.5

Simp

38.5

+PF

41.5

+SR

38.5

remote
local

L2
L1

Writes

Reads

SC, WT RC, WT SC, WB RC, WB

||0

|

20

|

40

|

60

|

80

|

100

 N
o
rm

a
li
z
e
d
 e

x
e
c
u
ti
o
n
 t

im
e

RADIX

Synch
Memory

CPU

Simp

100.0

PF

92.7

+SR

60.1

Simp

37.3

PF

37.2

+SR

37.3

Simp

82.8

+PF

75.5

+SR

45.8

Simp

28.1

+PF

28.1

+SR

28.1

SC, WT RC, WT SC, WB RC, WB

||0

|

5

|

10

|

15

|

20

|

25

|

30

|

35

|

40

|

45

|

50

|

55

|

60

|

65

|

70

|

75

|

80

|

85

|

90

 N
o
rm

a
li
z
e
d
 m

e
m

o
ry

 o
v
e
rh

e
a
d

RADIX

Simp

87.4

+PF

81.5

+SR

50.7

Simp

28.4

+PF

28.5

+SR

28.8

Simp

70.2

+PF

64.3

+SR

35.2

Simp

20.0

+PF

20.0

+SR

20.0

remote
local

L2
L1

Writes

Reads

SC, WT RC, WT SC, WB RC, WB

||0

|

20

|

40

|

60

|

80

|

100

 N
o

rm
a

li
z
e
d
 e

x
e
c
u
ti
o
n
 t

im
e

WATER

Synch
Memory

CPU

Simp

100.0

PF

87.3

+SR

57.6

Simp

55.4

PF

52.5

+SR

52.0

Simp

96.7

+PF

90.4

+SR

59.4

Simp

55.4

+PF

52.9

+SR

52.9

SC, WT RC, WT SC, WB RC, WB

||0

|

5

|

10

|

15

|

20

|

25

|

30

|

35

|

40

|

45

 N
o

rm
a

li
z
e

d
 m

e
m

o
ry

 o
v
e
rh

e
a
d

WATER

Simp

43.1

+PF

24.3

+SR

20.8

Simp

16.5

+PF

9.8

+SR

10.0

Simp

39.7

+PF

30.1

+SR

25.9

Simp

16.5

+PF

10.5

+SR

10.5

remote
local

L2
L1

Writes

Reads

SC, WT RC, WT SC, WB RC, WB

(a) Execution time components (b) Memory time components

Figure 4.2 Evaluation of consistency models { Mp3d, Radix, and Water

30

� SCplain
� SC+PF

 SC+SR
 RCplain
� RC+PF
� RC+SR

|

0

|

1

|

2

|

3

|

4

|

5

|

6

|

7

|

8

|0.0

|0.2

|0.4

|0.6

|0.8

|1.0

|1.2

 L1 MSHR

 U
til

iz
at

io
n

�

�

� � � � � � �

�

�

�
� � � � � �

�

�

�

� �

� � � �

�

�

�

�
�

� � � �

� SCplain
� SC+PF

 SC+SR
 RCplain
� RC+PF
� RC+SR

|

0

|

1

|

2

|

3

|

4

|

5

|

6

|

7

|

8
|0.0

|0.2

|0.4

|0.6

|0.8

|1.0

|1.2

 L2 MSHR

 U
til

iz
at

io
n

�

�

� � � � � � �

�

�

�
� � � � � �

�

�

�

�

�
�

� � �

�

�

�

�

�
�

� � �

ERLE

� SCplain
� SC+PF

 SC+SR
 RCplain
� RC+PF
� RC+SR

|

0

|

1

|

2

|

3

|

4

|

5

|

6

|

7

|

8

|0.0

|0.2

|0.4

|0.6

|0.8

|1.0

|1.2

 L1 MSHR

 U
til

iz
at

io
n

�

�

� � � � � � �

�

�

� �
� � � � �

�

�

� �
�

� � � �

�

�

� �
�

� � � �

� SCplain
� SC+PF

 SC+SR
 RCplain
� RC+PF
� RC+SR

|

0

|

1

|

2

|

3

|

4

|

5

|

6

|

7

|

8

|0.0

|0.2

|0.4

|0.6

|0.8

|1.0

|1.2

 L2 MSHR

 U
til

iz
at

io
n

�

�

� � � � � � �

�

�

� � � � � � �

�

�

�

�
�

�
� � �

�

�

�

�
�

�
� � �

FFT

� SCplain
� SC+PF

 SC+SR
 RCplain
� RC+PF
� RC+SR

|

0

|

1

|

2

|

3

|

4

|

5

|

6

|

7

|

8

|0.0

|0.2

|0.4

|0.6

|0.8

|1.0

|1.2

 L1 MSHR

 U
til

iz
at

io
n

�

�

� � � � � � �

�

�

�
� � � � � �

�

�

�
� � � � � �

�

�

�
� � � � � �

� SCplain
� SC+PF

 SC+SR
 RCplain
� RC+PF
� RC+SR

|

0

|

1

|

2

|

3

|

4

|

5

|

6

|

7

|

8

|0.0

|0.2

|0.4

|0.6

|0.8

|1.0

|1.2

 L2 MSHR

 U
til

iz
at

io
n

�

�

� � � � � � �

�

�

� �
� � � � �

�

�

�
� � � � � �

�

�

�
� � � � � �

LU

(a) L1 MSHR occupancy (b) L2 MSHR occupancy

Figure 4.3 MSHR occupancy { Erle, FFT, and LU

31

� SCplain
� SC+PF

 SC+SR
 RCplain
� RC+PF
� RC+SR

|

0

|

1

|

2

|

3

|

4

|

5

|

6

|

7

|

8

|0.0

|0.2

|0.4

|0.6

|0.8

|1.0

|1.2

 L1 MSHR

 U
til

iz
at

io
n

�

�

� � � � � � �

�

�

�

� � � � � �

�

�

�

�

�
� � � �

�

�

�

�

� � � � �

� SCplain
� SC+PF

 SC+SR
 RCplain
� RC+PF
� RC+SR

|

0

|

1

|

2

|

3

|

4

|

5

|

6

|

7

|

8
|0.0

|0.2

|0.4

|0.6

|0.8

|1.0

|1.2

 L2 MSHR

 U
til

iz
at

io
n

�

�

� � � � � � �

�

�

�

� � � � � �

�
�

�

�

�

�

� � �

�
�

�

�

�

�
� � �

MP3D

� SCplain
� SC+PF

 SC+SR
 RCplain
� RC+PF
� RC+SR

|

0

|

1

|

2

|

3

|

4

|

5

|

6

|

7

|

8

|0.0

|0.2

|0.4

|0.6

|0.8

|1.0

|1.2

 L1 MSHR

 U
til

iz
at

io
n

�

�

� � � � � � �

�

�

� � � � � � �

�

�

� � � � � � �

�

�

� � � � � � �

� SCplain
� SC+PF

 SC+SR
 RCplain
� RC+PF
� RC+SR

|

0

|

1

|

2

|

3

|

4

|

5

|

6

|

7

|

8

|0.0

|0.2

|0.4

|0.6

|0.8

|1.0

|1.2

 L2 MSHR

 U
til

iz
at

io
n

�

�

� � � � � � �

�

�

� � � � � � �

�

�

� � � � � � �

�

�

� � � � � � �

RADIX

� SCplain
� SC+PF

 SC+SR
 RCplain
� RC+PF
� RC+SR

|

0

|

1

|

2

|

3

|

4

|

5

|

6

|

7

|

8

|0.0

|0.2

|0.4

|0.6

|0.8

|1.0

|1.2

 L1 MSHR

 U
til

iz
at

io
n

�

�

� � � � � � �

�

�

�
�

� � � � �

�

�

�
�

� � � � �

�

�

�
�

� � � � �

� SCplain
� SC+PF

 SC+SR
 RCplain
� RC+PF
� RC+SR

|

0

|

1

|

2

|

3

|

4

|

5

|

6

|

7

|

8

|0.0

|0.2

|0.4

|0.6

|0.8

|1.0

|1.2

 L2 MSHR

 U
til

iz
at

io
n

�

�

� � � � � � �

�

�

�

�
� � � � �

�

�

�

�

� � � � �

�

�

�
�

� � � � �

WATER

(a) L1 MSHR occupancy (b) L2 MSHR occupancy

Figure 4.4 MSHR occupancy { Mp3d, Radix, and Water

32

Several factors limit the bene�ts of hardware-controlled prefetching in our appli-

cations. We next discuss these briey below.

First, the �nite size of the instruction window limits how early a prefetch can be is-

sued. In particular, if there are no other long latency operations before the prefetched

instruction in the instruction window, the potential for overlap is limited. Thus,

prefetching is most e�ective when several memory misses occur close together within

the instruction window (we use the MSHR occupancy graphs in Figures 4.3 and 4.4

as a measure of miss clustering leading to higher overlap).

Second, the address of the instruction to be prefetched may depend on the value

of a read instruction that is also blocked from issuing. Since the value cannot be used

until the read completes, the later memory operation may not be prefetched early

enough. (This is similar to the example discussed in Section 2.2.1.)

Third, for SC with write-through caches, all writes must propagate to at least the

L2 cache before they are considered complete, and before they retire from the instruc-

tion window. This minimum write latency cannot be overlapped by prefetching.

Fourth, as explained in Section 3.1.1, in our default system, if a write prefetch

is issued while a demand or prefetch read to the same cache line is outstanding, the

ownership request for the prefetch is blocked until the outstanding read returns. This

can further limit the e�ectiveness of write prefetching.

Finally, prefetching does not result in reduced latency if the prefetched line is

either invalidated, replaced, or downgraded to read-only state (for write prefetches)

before the corresponding demand access. Such prefetches are called early prefetches.

Such early prefetches may actually degrade performance by replacing a line that will

be used, or invalidating a line that is yet to be used by the remote processor, or

increasing the system contention increasing the latency of all accesses.

One or more of the above e�ects is seen in all our applications. As

Figures 4.3 and 4.4 show, most of our applications exhibit greater potential for read

miss overlap compared to write miss overlap. Subsequently, most of the bene�ts from

33

prefetching appear from reducing read stall time. Mp3d and Water observe some

strided write misses and subsequently see some reductions in write stall time as well.

Prefetching in Radix and Mp3d is limited due to memory references whose addresses

depend on values returned from previous reads (in the permutation phase in Radix,

and during cell array accesses in Mp3d). Additionally, all our applications experience

L2 write latencies since all writes must access the secondary cache with a �rst level

write-through cache con�guration. Finally, Erle, LU, Mp3d, and Water also expe-

rience increased stall times due to write-after-read stalls as discussed above. Mp3d

also sees some performance degradation due to early prefetches occurring from high

false sharing and races.

4.1.2 Speculative Reads with Write-Through L1 Caches

The addition of speculative read execution helps every application signi�cantly, with

improvements in execution time (relative to simple SC) ranging from 23% to 49%.

These improvements are seen in CPU time, read stall time, and write stall time.

Compared to SC with prefetching alone, CPU time decreases signi�cantly for all

applications making a signi�cant impact on execution time for FFT, LU, Erlebacher,

and Water. Each of these applications bene�t from the ability to consume the values

of reads speculatively, as this ability allows computation dependent on those reads to

be largely overlapped with a long latency memory access stalled at the head of the

instruction window.

Compared to SC with prefetching alone, all applications see a reduction in read

stall time with the addition of speculative read execution. Erle, LU, Radix, and

Water see reductions in read stall time mainly due to reductions in the stall time due

to L1 hits. Radix, Mp3d, and LU see reductions in other components of read stall

time as well. Radix and Mp3d have reads with addresses dependent on the values

of previous reads, and subsequently bene�t from the ability to consume the value of

reads as soon as possible, since this gives them more potential for further overlap. LU

34

sees a decrease in conict misses caused by reordering of accesses; in either simple SC

or SC with prefetching, LU experiences repeated conict misses among subsequent

demand read accesses, since these must occur in order (most of these conicts occur

at the �rst-level direct mapped cache; relatively fewer conicts occur at the second-

level four-way associative cache). With speculative read execution, reads can issue in

parallel and out of order; as a result, several reads to the conicting cache lines can

occur concurrently. Read misses to the same cache line can coalesce into the same

MSHR, while other reads can hit a line despite the fact that its set has a pending

MSHR. This eliminates some of the conict misses seen using a system (such as SC

or SC with prefetching alone) in which demand reads can only occur one-at-a-time

and in order.

Among all the applications, only Radix sees a reduction in write stall time. Radix

sees this additional write stall time reduction not seen earlier with the addition of

only prefetching because it also has writes whose addresses depend on values returned

by previous long latency reads. The ability to consume values for reads and use those

values in sending out prefetches for the above writes improves the write overlap for

Radix.

E�ect of rollbacks. One potential limitation of speculative execution is that

overly optimistic speculation could lead to excessive rollbacks, which may hurt per-

formance (in cases analogous to early prefetching). Recall that we rollback execution

whenever we detect an event that signals a possible violation of the memory ordering

required by the consistency model { coherence messages and L2 cache replacements

in our system.

The �rst column of Figure 4.5 summarizes the average number of rollbacks seen

by each processor in the SC+SR system with a �rst-level write-through cache. The

numbers in parentheses indicate the percentage of these rollbacks that are caused due

to replacements. As seen in the �gure, all our applications see a very small number of

rollbacks. Only LU sees more than 1000 rollbacks per processor, and even there, fewer

35

than 0.2% of the total number of reads cause rollbacks; rollback penalties make up

less than 0.05% of total execution time. Additionally, on all our applications except

Mp3d, the rollbacks are mainly caused due to coherence messages and not due to

replacements.

Summary for Write-Through L1 Caches

In summary, for sequentially-consistent systems with a �rst-level write-through cache,

we �nd that hardware-controlled prefetching alone improves performance but the im-

provements are small for some applications; the addition of speculative read execution

consistently and signi�cantly increases system performance showing up to a factor of

two speedup. Nevertheless, we �nd that for an architecture with write-through L1

caches, neither technique is su�cient to handle the large write latency component

associated with SC. We next determine the possible bene�ts of using a �rst-level

write-back cache instead.

4.1.3 Impact of Write-Back L1 Caches

Figures 4.1 and 4.2 show that the primary change from a write-through to a write-

back L1 cache is in the decreased contribution of write latency to execution time. In

Erlebacher, FFT, LU, and Radix, the relative contribution of write latency decreases

Application Total Rollbacks (% replacement-related)

SC+SR RC+SR

Erle 40.2 (0.0%) 3.6 (0.0%)

FFT 80.5 (0%) 0 (0.0%)

LU 1273.0 (0.1%) 1226.0 (0.1%)

Mp3d 411.5 (12.2%) 1.4 (9.1%)

Radix 582.8 (0.2%) 0 (0.0%)

Water 156.1 (0.7%) 9.4 (0.0%)

Figure 4.5 Number of rollbacks (with write-through cache)

36

signi�cantly, since many writes that hit in the write-through L1 cache had to expe-

rience L2 cache latency; with a write-back L1 cache, these writes must only take L1

access time. In contrast, the write latency component does not drop much in Water

and Mp3d. In each of these applications, the write stall component is dominated by

remote write misses, on which write-back caches have little e�ect.

The overall bene�ts of the two techniques of hardware prefetching and speculative

reads on SC systems with write-back L1 caches are qualitatively similar to those

with write-through L1 caches. The improvements in execution time range from 7%

(Radix) to 30% (Erlebacher) for hardware prefetching, and 26% (Mp3d) to 58% (LU)

for speculative read execution (relative to simple SC). As with the write-through

case, on all the applications, the two techniques are more successful at reducing read

latency rather than write latency. The main reason for the di�erent performance

improvements with the optimizations in the write-through and write-back cases is

that the write latency forms a smaller part of the execution time in the write-back

case.

4.1.4 Summary for SC

For sequentially consistent systems with write-through L1 caches, hardware prefetch-

ing alone improves the performance, but the improvements are small for some ap-

plications. The addition of speculative read execution consistently and signi�cantly

increases system performance showing up to a factor of two speedup. Write back

L1 caches additionally reduce a signi�cant portion of the write latency component

in many of the applications. However, a signi�cant portion of memory stall time

associated with both reads and writes still remains.

37

4.2 Release Consistency Implementations

We �rst discuss the impact of hardware prefetching and speculative reads in an RC

system with write-through L1 caches (Section 4.2.1) and then discuss their impact on

an RC system with write-back L1 caches (Section 4.2.2).

4.2.1 Performance with Write-Through L1 Caches

Figures 4.1 and 4.2 show that, unlike SC, RC does not experience much bene�t from

hardware prefetching and speculative reads on a system with write-through caches.

In fact, these optimizations cause a slowdown on some of our applications.

Qualitatively, there are two key di�erences in the way the optimizations a�ect per-

formance with RC and SC. As explained in Section 2.1, RC already allows increased

read and write overlap compared to SC; the optimizations help RC only when there

is an outstanding acquire or when a write with a known address is waiting to reach

the head of the instruction window. Furthermore, once a write reaches the head of

the window, it retires immediately. This implies that most write latency is already

hidden. Therefore, the net e�ect on performance of write prefetching is expected to

be limited.

Additionally, hardware prefetching from the instruction window can actually hurt

performance in two ways. First, write prefetching and prefetching reads and writes

past an acquire can result in bringing in data too early, subsequently increasing the

network tra�c of the system. Second, as seen in Section 4.1, hardware prefetching

can result in write-after-read stalls not seen in the base system. These stalls occur

as a result of write prefetches being issued for an outstanding read access. The base

case issues such writes only after the read completes, and hence does not see the

e�ect of such write-after-read stalls. While both these e�ects are also seen in SC,

the increase in performance due to the reduction in the write miss stall time helps

hide the performance loss due to premature prefetches and write-after-read stalls. In

38

contrast, these e�ects are more pronounced in RC since RC already overlaps all other

write latencies.

Water is the only application helped unequivocally and signi�cantly from the

current optimizations to RC. It shows improvement in execution time from both

prefetching (5.2% improvement over simple RC) and from speculative read execution

(6.1% improvement over simple RC). The bene�ts are achieved by overlapping the

prefetch of the critical section lock for the force updates, and the data within the

critical section. Since the critical sections have low contention, the prefetch brings

in valid data and is useful in hiding a large part of the latency. However, bene�ts

from these techniques are far less signi�cant than the corresponding bene�ts in SC.

Erlebacher, FFT, and Mp3d see performance slowdowns with the addition of hard-

ware prefetching and speculative read execution. The performance slowdown in these

applications is mainly caused due to the negative e�ects of write prefetching like

write-after-read stalls and increased false sharing due to early prefetches.

4.2.2 Impact of Write-Back L1 Caches

Overall, since RC already hides most of the write latency, the choice of the �rst-

level cache does not have signi�cant impact on the performance of RC on all our

applications except Radix. The impact of the various optimizations with �rst-level

write-back caches is qualitatively similar to that with write-through caches.

For a given RC con�guration, Radix sees a signi�cant reduction in execution time

by replacing write-through caches with write-back caches. The di�erence arises with

Radix only because it has a bursty irregular write pattern which overwhelms the sec-

ondary cache. Eventually, writes to remote data �ll up the MSHRs, causing backup

of subsequent requests, including write-throughs from L1. This resource backup even-

tually reaches into the L1 and the processor memory unit, adding contention to both

reads and memory writes. With an L1 write-back cache, many writes hit in the L1;

since these writes do not propagate to the L2, they relieve some of the contention

39

and saturation present in the write-through con�guration. Erle, Mp3d and LU show

a marginal degradation in performance when replacing a write-through cache with a

write-back cache. The reason is that our write-through cache is a no-write-allocate

cache while the write-back cache is a write-allocate cache; bringing the writes into

the �rst-level write-back cache exacerbate conicts within the cache.

4.2.3 Summary for RC

For our applications, the optimizations used in RC do not provide much bene�t; the

best improvement in execution time was 6.1% for Water. For four applications, the

optimizations did not make a di�erence or resulted in a performance degradation.

Thus, our experiments indicate that for RC, the cost of the on-chip hardware for the

optimizations may not be justi�ed. Regarding L1 cache write policy, our results show

that except for one application, write-through L1 caches performed comparable to

write-back L1 caches for RC.

4.3 Comparing SC and RC

Our results so far show that for our applications, the simplest RC implementation

outperforms the most optimized SC. This is especially pronounced in the case with

write-through L1 caches, where simple RC provides over a factor of two speedup for

FFT and LU, a speedup of 1.5 or more for Erlebacher, Radix and Mp3d. (In Water,

SC gets to within 5% of RC.) The performance di�erence between SC and RC is

primarily caused by write latencies in SC that hardware prefetching and speculative

reads are unable to hide for reasons discussed in Section 4.1.

In the case of write-back L1 caches, the performance improvement of RC over

SC is less dramatic, but still signi�cant. Two applications (Radix and Mp3d) see a

speedup of 1.5 or more, and two other applications (LU and FFT) see a speedup of

more than 1.25. Water and Erle show comparable performance with SC and RC (RC

has speedups of 1.07 and 1.13 respectively). The di�erence in the results for write-

40

through and write-back L1 caches arises because SC variants improve in absolute

cycle count from write-through to write-back, while the absolute cycle counts seen by

RC systems stay the same in both con�gurations, except for Radix.

Thus, while SC needs a write-back cache for best performance, the performance

of RC is largely independent of cache write policy. Accounting for possible additional

latencies of having a write-back cache, the gap between RC (which can run just as

well on a write-through L1 cache) and a high-performance SC (which needs a write-

back L1 cache for best results) may increase further. Finally, either write-through or

write-back primary caches with multiple cycle latencies are also likely to increase the

gap between SC and RC.

4.4 Impact of a More Aggressive Protocol

As discussed in Section 3.1.1, to model a protocol with reasonable complexity, our

caches delay ownership requests for writes to lines with pending shared reads. Thus,

a write-prefetch seeking to obtain ownership of a cache line would be delayed if the

cache had an earlier read miss to the same line. Although this implementation is

representative of many current systems, a more aggressive system could allow such

ownership requests to be sent on to the directory in parallel with the outstanding de-

mand read access. However, the system would now need to handle possible races from

network reordering at the directory and cache; this aggressive system may improve

the overlap of ownership requests, but at the cost of added design complexity. Such an

enhancement may have an impact on applications with migratory read-write sharing

such as Water and MP3D, or on applications with producer-consumer sharing such

as Erlebacher and LU where the producer reads the old value of the data before pro-

ducing a new value.

k

However, this protocol enhancement will not have much impact

k

In Erlebacher, some writes following reads to the same word access non-boundary planes in the

3-D array; such planes are accessed by only one processor. For such accesses, a four state protocol

with a valid-exclusive state can get bene�ts similar to a protocol that overlaps read and ownership

requests to the same line.

41

||0

|

20

|

40

|

60

|

80

|

100

 N
o

rm
a

liz
e

d
 e

xe
cu

tio
n

 t
im

e

ERLE

Synch
Memory

CPU

SC+SR

100.0

RC+SR

87.8

SC+SR

87.1

RC+SR

84.6

base base agg agg

||0

|

5

|

10

|
15

|
20

|

25

|

30

|

35

|

40

|

45

|

50

|

55

|

60

|

65

 N
o

rm
a

liz
e

d
 m

e
m

o
ry

 o
ve

rh
e

a
d

ERLE

SC+SR

63.3

RC+SR

41.1

SC+SR

39.6

RC+SR

32.1

remote
local

L2
L1

Writes

Reads

base base agg agg

||0

|

20

|

40

|

60

|

80

|

100

 N
o
rm

a
liz

e
d
 e

xe
cu

tio
n
 t

im
e

MP3D

Synch
Memory

CPU

SC+SR

100.0

RC+SR

62.4

SC+SR

81.6

RC+SR

60.0

base base agg agg

||0

|

5

|

10

|

15

|

20

|

25

|

30

|

35

|

40

|

45

|

50

|

55

|

60

|

65

|

70

|

75

|

80

|

85

|

90

|

95
 N

o
rm

a
liz

e
d
 m

e
m

o
ry

 o
ve

rh
e
a
d

MP3D

SC+SR

93.3

RC+SR

56.5

SC+SR

74.0

RC+SR

52.1

remote
local

L2
L1

Writes

Reads

base base agg agg

||0

|

20

|

40

|

60

|

80

|

100

 N
o
rm

a
liz

e
d
 e

xe
cu

tio
n
 t

im
e

WATER

Synch
Memory

CPU

SC+SR

100.0

RC+SR

89.1

SC+SR

84.6

RC+SR

83.5

base base agg agg

||0

|

5

|

10

|

15

|

20

|

25

|

30

|

35

|

40

|

45

 N
o
rm

a
liz

e
d
 m

e
m

o
ry

 o
ve

rh
e
a
d

WATER

SC+SR

43.6

RC+SR

17.7

SC+SR

28.2

RC+SR

15.4

remote
local

L2
L1

Writes

Reads

base base agg agg

(a) Execution time components (b) Memory time components

Figure 4.6 E�ect of aggressive coherence protocol

42

on applications such as Radix or FFT, since we observe that these two applications

do not see delayed ownership requests in the key sections of their code. LU exhibits a

high L2 write hit rate of more than 95%. Consequently, on our architecture, delayed

ownership requests are not likely to have a signi�cant e�ect on performance. In this

section, we therefore examine the three applications, Erlebacher, Water, and Mp3d,

where an aggressive coherence protocol is likely to impact performance to study the

impact of a more aggressive coherence protocol on the performance of optimized im-

plementations of consistency models on ILP multiprocessors.

We did not simulate the above aggressive protocol because of its signi�cantly

higher complexity. Instead, to approximate the impact of such a system, we inserted

(by hand) explicit software exclusive prefetch instructions immediately before all read

operations that are soon followed by a write to the same word, for Water, MP3D,

and Erlebacher. Figure 4.6 summarizes our results comparing the performance of

the three applications on the base system and a system with an aggressive coherence

protocol, represented by agg, for the versions of SC and RC that support specula-

tive read execution and hardware write prefetching (SC+SR and RC+SR respectively).

Figure 4.6(b) shows the various components of the memory stall time in each system.

We focus only on the system with a �rst-level write-back cache since the results in

Section 4.3 show that write-back caches signi�cantly outperform write-through caches

for the SC implementations.

For SC, with the aggressive protocol, all three applications see more than 10%

improvements in execution time due to reduced write latency and reduced write-

after-read stalls (13% with Erlebacher, 15% with Water, and 18% with Erlebacher).

For RC, all three applications see smaller bene�ts (less than 6%) with the aggressive

coherence protocol since RC already hides write latencies e�ectively. The improve-

ments in Water are due to more e�ective write prefetching which leads to faster

releases and consequently faster acquires.

43

Comparing SC and RC, we �nd that using an aggressive coherence protocol has

narrowed the performance gap between SC and RC by reducing SC's write limita-

tions on all the three applications. Nevertheless, in MP3D, even with the aggressive

coherence protocol, an RC implementation using the base coherence protocol still

sees a reduction in execution time of 27% compared to the optimized implementation

of SC. Erlebacher shows nearly equal performance for the most optimized SC and

simple RC systems. Water stands apart from the other two applications; the best

SC actually performs better than the base implementation of RC. Even though the

RC also sees bene�ts from the more aggressive protocol for Water, the best RC still

performs comparable to SC (within 1%).

Overall, these results suggest that the gap between SC and RC performance can be

decreased by adding complexity to the cache-coherence protocol for some applications;

however, a signi�cant gap still remains for several applications (in applications where

this optimization is not applicable and in applications where this optimization is not

su�cient to equalize the performance of SC and RC). Furthermore, RC does not need

the additional support to achieve its level of performance.

Note that the results in this section should not be interpreted as indicative of the

e�ects of software-controlled prefetching on the performance di�erence between SC

and RC. We insert software exclusive prefetches immediately before all read opera-

tions; our results therefore do not show the latency-hiding bene�ts associated with

software prefetching in the previous section, but instead only approximate the e�ects

of removing write-after-read stalls with an aggressive cache coherence protocol. The

interaction of software prefetching and consistency models on ILP multiprocessors is

discussed elsewhere [32].

4.5 Summary

This chapter presented the result of our study evaluating the e�ects of hardware-

controlled read and write prefetching, and the e�ects of speculative reads with

44

hardware-controlled write prefetching. We found that for SC, these two techniques en-

hanced performance considerably (giving a speedup of over a factor of 2 in some cases).

For RC, however, the optimizations showed an execution time improvement greater

than 5% for only one case. The simplest RC implementation signi�cantly outperforms

the most optimized SC. The di�erence in performance between the two models, how-

ever, depends on the write policy of the primary cache and on the complexity of the

cache-coherence protocol. Four our fairly aggressive base cache-coherence protocol,

the simplest RC implementation signi�cantly outperforms the most optimized SC.

The di�erence is higher with write-through primary caches than with write-back

primary caches, but remains signi�cant for several applications in both cases. With

a more complex cache-coherence protocol, SC achieves performance comparable to

RC for two applications, but a signi�cant performance gap remains for others. The

performance of SC is highly sensitive to cache write policy and the aggressiveness of

the cache-coherence protocol, while the performance of RC is generally stable across

all implementations. Overall, our results show that RC hardware has signi�cant

performance bene�ts over SC hardware, and at the same time requires less system

complexity with ILP processors.

45

Chapter 5

Related Work

5.1 Consistency Models

A number of consistency models have been proposed in the literature or have been

implemented on real systems [1]. In this thesis, we consider two consistency models,

sequential consistency (SC) [23] and release consistency (RC) [14], to represent the

tradeo� between programmability and performance. SC represents the most intu-

itive consistency model while previous studies have shown that RC gives the best

performance for hardware cache-coherent multiprocessor systems.

5.2 Evaluation of Consistency Models

Several studies have evaluated the performance of memory consistency models [11,

13, 16, 44]. This thesis presents the �rst execution-driven simulation study for con-

sistency models for aggressive ILP processors, evaluating two performance-enhancing

techniques for consistency models used in such processors. Two previous quantitative

evaluations of memory consistency models have used relatively aggressive proces-

sors. Gharachorloo et al. studied simple implementations of SC and RC; further,

their study was trace-driven (as opposed to execution-driven) and did not accurately

model the e�ects of synchronization and network contention [13]. Zucker and Baer

studied SC and RC, implementing SC both in a straightforward fashion and also with

the prefetching optimization; however, the processors they inspected were single-issue

and statically scheduled [44].

46

5.3 Aggressive Implementations of Sequential Consistency

A number of hardware optimizations have been proposed in the literature to enhance

the performance of implementations of sequential consistency. Gharachorloo et al.

proposed hardware-controlled non-binding prefetching and speculative read execu-

tion to improve the performance of sequential consistency [12]. Adve and Hill [3]

proposed an implementation of sequential consistency that can alleviate some of the

latency of writes by allowing certain operations that follow the write to be serviced

as soon as the write is serialized (as opposed to waiting for all invalidations to be

acknowledged). Other studies have proposed implementations of SC that use the

ordering guarantees of restrictive network topologies to reduce the write latency seen

in the system [24]. Gharachorloo et al. discuss a technique called store bu�ering to

improve the performance of SC by bu�ering writes separately and stalling the sys-

tem only on the next read operation that follows the write operation [11]. In this

thesis, we study the performance of two techniques, hardware prefetching and spec-

ulative loads, that have been integrated into commodity microprocessors to improve

the performance of sequential consistency. We do not evaluate the other techniques

to improve the performance of sequential consistency since they are either too restric-

tive, require more aggressive, complex system implementations, or do not appear to

give signi�cant performance bene�ts.

5.4 Prefetching

There has been substantial work in prefetching for multiprocessors (e.g., [6, 27]). This

paper evaluates the use of non-binding hardware-controlled prefetching that exploits

an aggressive processor's existing instruction window, to enhance the performance of

consistency models. The interaction of software-controlled prefetching with consis-

tency models has been studied for simpler processors with blocking reads [16, 11].

There has only been one study on the interaction of software prefetching with con-

47

sistency models on ILP multiprocessors with non-blocking reads [32]. This study

showed that while software prefetching was successful in reducing the gap between

the performance of memory consistency models, a large gap still remained between

the simplest RC and most optimized SC.

48

Chapter 6

Conclusions

The memory consistency model of a shared-memory multiprocessor plays a key role in

determining system potential for tolerating latency as it speci�es the extent to which

the system can appear to overlap or reorder memory operations. Previous studies

with shared-memory multiprocessors have shown that the release consistency model

(RC) signi�cantly outperforms sequential consistency (SC), though at the cost of in-

creased programming complexity. However, most of those studies assumed statically

scheduled processors with blocking reads, and all assumed simple implementations

of the consistency models. Current and next generation microprocessors aggressively

exploit instruction-level parallelism (ILP) using methods such as multiple issue, dy-

namic scheduling, and non-blocking reads. For such processors, two optimizations

have been proposed to enhance the performance of consistency models. Qualitatively,

these optimizations may seem to bring the performance of SC closer to RC, potentially

making SC more attractive to build in hardware for its easier programmability.

6.1 Thesis Summary

This thesis provides the �rst quantitative evaluation of various implementations of SC

and RC for aggressive ILP processors. We evaluated the e�ects of hardware-controlled

read and write prefetching, and the e�ects of speculative reads with hardware-

controlled write prefetching. We found that for SC, these two techniques enhanced

performance considerably (giving a speedup of over a factor of 2 in some cases). For

RC, however, the optimizations showed an execution time improvement greater than

5% for only one case. The di�erence in performance between the two models, how-

49

ever, depends on the write policy of the primary cache and on the complexity of the

cache-coherence protocol. For our fairly aggressive base cache-coherence protocol, the

simplest RC implementation signi�cantly outperforms the most optimized SC. The

di�erence is higher with write-through primary caches than with write-back primary

caches, but remains signi�cant in both cases (four applications show a speedup of

1.25 or more with RC for both cache con�gurations). With a more complex cache-

coherence protocol, SC achieves performance comparable to RC for two applications,

but a signi�cant performance gap remains for others. The performance of SC is highly

sensitive to cache write policy and the aggressiveness of the cache-coherence protocol,

while the performance of RC is generally stable across all implementations. Overall,

our results show that RC hardware has signi�cant performance bene�ts over SC

hardware, and at the same time requires less system complexity with ILP processors.

Write latencies that hardware prefetching and speculative reads do not e�ectively

hide remain the most important reason for the performance gap between SC and RC.

6.2 Future Work

Compiler optimizations. In choosing a consistency model, the hardware designer

must consider both system performance and programmability. The techniques of this

paper address hardware performance. However, though there has been some work on

compiler optimizations with sequential consistency [36, 20, 21], SC at the application

programming level also restricts compiler optimizations. To avoid these restrictions, it

is likely that high-performance compilers will expose a release-consistent model to the

applications programmer. If compilers mandate RC, then the improved performance

and lower complexity of RC further favor supporting RC in hardware for systems with

ILP processors. An interesting area of future research is to quantify the performance

improvements due to compiler optimizations allowed by relaxed memory consistency

models.

50

Other hardware optimizations. This study focused on currently used hardware

techniques for enhancing the performance of consistency models. Our results show

that the main di�erence between the performance of SC and RC is the write latencies

seen in SC. We are currently investigating two hardware techniques that target this

additional write latency in the SC system { write bu�ering and speculative gradua-

tion.

Write bu�ering [11] allows writes to graduate from the instruction window, block-

ing only on the �rst read to reach the head of the instruction window while writes

are pending. Write bu�ering can relax the restrictions on the commit rate of writes

and increase the write overlap in current optimized implementations of SC.

Speculative retirement [33] is an optimization that targets the limitation due to

the store-to-load constraint of SC. Loads stalled only for previous incomplete stores

are allowed to speculatively commit their values into the processor's architectural

state and retire from the instruction window, freeing up space for later instructions.

This technique can potentially eliminate the impact of the store-to-load constraint

(potentially equalizing the performance of SC to that of more relaxed models), but

at an additional cost in hardware.

Finally, larger instruction windows can also be used to further increase the perfor-

mance of SC. Larger instruction windows can potentially increase the overlap avail-

able to reads and writes in the system. Unlike RC which bene�ts mainly from the

increased read overlap, SC can bene�t from increases in both the read and the write

overlap. Larger instruction windows thus o�er another hardware technique to address

the store latency responsible for the performance di�erence between SC and relaxed

models.

51

Bibliography

[1] S. V. Adve and K. Gharachorloo. Shared Memory Consistency Models: A Tu-

torial. In IEEE Computer, pages 66{76, December 1996. Also available as Rice

University ECE Technical Report 9512 and Western Research Laboratory Re-

search Report 95/7.

[2] S. V. Adve and M. D. Hill. A Uni�ed Formalization of Four Shared-Memory

Models. IEEE Transactions on Parallel and Distributed Systems, 4(6):613{624,

June 1993.

[3] S. V. Adve and M. D. Hill. Weak Ordering - A New De�nition. In Proceedings

17th Annual International Symposium on Computer Architecture, pages 2{14,

May 1990.

[4] V. S. Adve, J.-C. Wang, J. Mellor-Crummey, D. Reed, M. Anderson, and

K. Kennedy. An Integrated Compilation and Performance Analysis Environ-

ment for Data Parallel Programs. In Proceedings of Supercomputing '95, San

Diego, CA, December 1995.

[5] R. G. Covington, S. Dwarkadas, J. R. Jump, S. Madala, and J. B. Sinclair.

The E�cient Simulation of Parallel Computer Systems. International Journal

of Computer Simulation, 1:31{58, January 1991.

[6] F. Dahlgren and P. Stenstrom. E�ectiveness of Hardware-Based Stride and Se-

quential Prefetching in Shared-Memory Multiprocessors. In Proceedings of the

1st International Symposium on High Performance Computer Architecture, 1995.

[7] Digital Equipment Corporation. Alpha Architecture Reference Manual, 1992.

52

[8] M. Dubois, C. Scheurich, and F. A. Briggs. Memory Access Bu�ering in Multi-

processors. In Proceedings 13th Annual International Symposium on Computer

Architecture, pages 434{442, Tokyo, Japan, June 1986.

[9] M. Dubois, J. C. Wang, L. A. Barroso, K. Lee, and Y.-S. Chen. Delayed Con-

sistency and Its E�ects on the Miss Rate of Parallel Programs. pages 197{206,

November 1991.

[10] J. H. Edmondson, P. I. Rubinfeld, P. J. Bannon, B. J. Benschneider, D. Bern-

stein, R. W. Castelino, E. M. Cooper, D. E. Dever, D. R. Donchin, T. C. Fis-

cher, A. K. Jain, S. Mehta, J. E. Meyer, R. P. Preston, V. Rajagopalan, C. So-

manathan, S. A. Taylor, and G. M. Wolrich. Internal Organization of the Alpha

21164, a 300-MHz 64-bit Quad-issue CMOS RISC Microprocessor. Digital Tech-

nical Journal, 7(1):119{132, 1995.

[11] K. Gharachorloo, A. Gupta, and J. Hennessy. Performance Evaluation of Mem-

ory Consistency Models for Shared-Memory Multiprocessors. In Proceedings of

Fourth International Conference on Architectural Support for Programming Lan-

guages and Operating Systems, pages 245{257, 1991.

[12] K. Gharachorloo, A. Gupta, and J. Hennessy. Two Techniques to Enhance the

Performance of Memory Consistency Models. In Proceedings of the International

Conference on Parallel Processing, pages I355{I364, 1991.

[13] K. Gharachorloo, A. Gupta, and J. Hennessy. Hiding Memory Latency Using

Dynamic Scheduling in Shared-Memory Multiprocessors. In Proceedings of the

19th International Symposium on Computer Architecture, pages 22{33, 1992.

[14] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hen-

nessy. Memory Consistency and Event Ordering in Scalable Shared-Memory

Multiprocessors. In Proceedings of the 17th International Symposium on Com-

puter Architecture, pages 15{26, May 1990.

53

[15] J. R. Goodman. Cache consistency and sequential consistency. Technical Report

Technical Report #61, SCI Committee, March 1989. Also available as Computer

Sciences Technical Report #1006, University of Wisconsin, Madison, February

1991.

[16] A. Gupta, J. Hennessy, K. Gharachorloo, T. Mowry, and W.-D. Weber. Compar-

ative Evaluation of Latency Reducing and Tolerating Techniques. In Proceedings

of the 18th Annual International Symposium on Computer Architecture, pages

254{263, May 1991.

[17] D. Hunt. Advanced Features of the 64-bit PA-8000. Hewlett Packard Company.

[18] Intel Corporation. Pentium (r) Pro Family Developer's Manual.

[19] P. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy Release Consistency for Soft-

ware Distributed Shared Memory. In Proceedings of the 19th Annual Interna-

tional Symposium on Computer Architecture, pages 13{21, 1992.

[20] A. Krishnamurthy and K. Yelick. Optimizing Parallel Programs SPMD Pro-

grams. In Languages and Compilers for Parallel Computing, pages 331{345,

August 1994.

[21] A. Krishnamurthy and K. Yelick. Optimizing Parallel Programs with Explicit

Synchronization. In Proceedings SIGPLAN Conference on Programming Lan-

guage Design and Implementation, July 1995.

[22] D. Kroft. Lockup-Free Instruction Fetch/Prefetch Cache Organization. In Pro-

ceedings of the 8th International Symposium on Computer Architecture, pages

81{87, May 1981.

[23] L. Lamport. How to Make a Multiprocessor Computer That Correctly Executes

Multiprocess Programs. IEEE Transactions on Computers, C-28(9):690{691,

September 1979.

54

[24] A. Landin, E. Hagersten, and S. Haridi. Race-Free Interconnection Networks

and Multiprocessor Consistency. In Proceedings 18th Annual International Sym-

posium on Computer Architecture, pages 106{115, May 1991.

[25] MIPS Technologies, Inc. R10000 Microprocessor User's Manual, Version 2.0,

December 1996.

[26] T. Mowry. Tolerating Latency through Software-controlled Data Prefetching.

PhD thesis, Stanford University, 1994.

[27] T. Mowry and A. Gupta. Tolerating Latency Through Software-Controlled

Prefetching. Journal on Parallel and Distributed Computing, pages 87{106, June

1991.

[28] V. S. Pai, P. Ranganathan, and S. V. Adve. RSIM: An Execution-Driven Simu-

lator for ILP-Based Shared-Memory Multiprocessors and Uniprocessors. In Pro-

ceedings of the Third Workshop on Computer Architecture Education, February

1997.

[29] V. S. Pai, P. Ranganathan, and S. V. Adve. The Impact of Instruction Level

Parallelism on Multiprocessor Performance and Simulation Methodology. In

Proceedings of the 3rd International Symposium on High Performance Computer

Architecture, pages 72{83, February 1997.

[30] V. S. Pai, P. Ranganathan, S. V. Adve, and T. Harton. An Evaluation of Mem-

ory Consistency Models for Shared-Memory Systems with ILP Processors. In

Proceedings of the 7th International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, pages 12{23, October 1996.

[31] U. Rajagopalan. The E�ects of Interconnection Networks on the Performance of

Shared-Memory Multiprocessors. Master's thesis, Department of Electrical and

Computer Engineering, Rice University, January 1995.

55

[32] P. Ranganathan, V. S. Pai, H. Abdel-Sha�, and S. V. Adve. The Interaction of

Software Prefetching with ILP Processors in Shared-Memory Systems. In Pro-

ceedings of the 24th Annual International Symposium on Computer Architecture,

June 1997.

[33] P. Ranganathan, V. S. Pai, and S. V. Adve. Using Speculative Retirement and

Larger Instruction Windows to Narrow the Performance Gap between Memory

Consistency Models. In Proceedings of the Ninth Annual ACM Symposium on

Parallel Algorithms and Architectures, June 1997.

[34] M. Rosenblum, E. Bugnion, S. A. Herrod, E. Witchel, and A. Gupta. The Impact

of Architectural Trends on Operating System Performance. In Proceedings of

the Fifteenth ACM Symposium on Operating Systems Principles, pages 285{298,

December 1995.

[35] C. Scheurich and M. Dubois. Correct Memory Operation of Cache-Based Multi-

processors. In Proceedings 14th Annual International Symposium on Computer

Architecture, pages 234{243, Pittsburgh, PA, June 1987.

[36] D. Shasha and M. Snir. E�cient and Correct Execution of Parallel Programs that

Share Memory. ACM Transactions on Programming Languages and Systems,

10(2):282{312, April 1988.

[37] J. P. Singh, W.-D. Weber, and A. Gupta. SPLASH: Stanford Parallel Appli-

cations for Shared-Memory. Computer Architecture News, 20(1):5{44, March

1992.

[38] J. E. Smith and A. R. Pleszkun. Implementation of precise interrupts in pipelined

processors. In Proceedings of the International Symposium on Computer Archi-

tecture, 1985.

[39] Sparc International. The SPARC Architecture Manual, 1993. Version 9.

56

[40] Sun Microsystems. The UltraSPARC Processor { Technology White Paper, 1995.

[41] Sun Microsystems Inc. The SPARC Architecture Manual, January 1991. No.

800-199-12, Version 8.

[42] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-2

Programs: Characterization and Methodological Considerations. In Proceedings

of the 22nd International Symposium on Computer Architecture, pages 24{36,

June 1995.

[43] W. A. Wulf and S. A. McKee. Hitting the Memory Wall: Implications of the

Obvious. ACM Computer Architecture News., 23(4), Septemeber 1995.

[44] R. N. Zucker and J.-L. Baer. A Performance Study of Memory Consistency

Models. In Proceedings of the 19th International Symposium on Computer Ar-

chitecture, pages 2{12, 1992.

