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Abstract

Current simulators for shared-memory multiprocessor architectures involve a large

tradeo� between simulation speed and accuracy. Most simulators assume much sim-

pler processors than the current generation of processors that aggressively exploit

instruction-level parallelism (ILP). This can result in large simulation inaccuracies.

A few newer simulators model current ILP processors more accurately, but are about

ten times slower.

This study proposes and evaluates a new simulation technique that requires almost

no compromise in accuracy and far less compromise in speed compared to the state-

of-the-art. This technique uses a novel adaptation of direct execution, a methodology

used widely for simulation of multiprocessors with simple processors. We develop a

new simulator based on this technique, called DirectRSIM.

We compare the performance and accuracy of DirectRSIM with three other sim-

ulators { two current direct execution simulators that use a simple processor model,

and RSIM, a state-of-the-art detailed simulator for multiprocessors with ILP proces-

sors. For various combinations of applications and system con�gurations, we �nd that

DirectRSIM is an average of 4 times faster than RSIM with an average relative error

of 1.6%. In contrast, the current direct execution simulators see large and variable

errors relative to RSIM, with an average of around 40% with the best methodology

and 130% for the most commonly used methodology. Despite its superior accuracy,

DirectRSIM achieves a speed within a factor of 2.7 of that achieved by the current

direct execution simulators with simple processors. Although the performance ad-

vantage of simple processor based simulators is still signi�cant, it may no longer be

enough to justify the errors that such simulators see in modeling the performance of

shared-memory systems with state-of-the-art processors.
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Chapter 1

Introduction

1.1 Motivation

Shared-memory multiprocessors o�er signi�cant performance increases over unipro-

cessors, and are a growing segment of the high performance computing market.

Simulation has been the most widely used technique for evaluating new shared-

memory architectures. Recent advances in processor architecture, however, force a

re-evaluation of shared-memory simulation methodology. Speci�cally, recent proces-

sors (referred to as ILP processors in this thesis) exploit instruction-level parallelism

(ILP) through aggressive techniques such as multiple issue, out-of-order issue, non-

blocking loads, and speculative execution. Most shared-memory simulation studies

reported in the literature, however, use a much simpler model of the processor, assum-

ing single-issue, in-order issue, blocking loads, and no speculative execution (referred

to as simple processors in this thesis) [10, 11].

Pai et al. showed that using simple-processor based simulation models to approx-

imate ILP processor based systems can result in large inaccuracies [17]. For the most

commonly used simple-processor based simulation models, Pai et al. report errors

in execution time ranging from 26% to 192% for their applications and simulated

systems. A less commonly used approximation based on simple processor models

reduced these errors, but the errors remained large and application dependent (-8%

to 73%).

In spite of the potential for large errors, the practice of using simple-processor

based simulators continues. This is largely because although the more detailed ILP
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simulators are more accurate, they are generally much slower than the simple proces-

sor simulators. Studies with slow simulators are also potentially subject to erroneous

conclusions as they may be restricted to smaller application input sizes or fewer ap-

plications. Confronted with this dilemma of speed vs. accuracy, the shared-memory

architecture community so far appears to be reconciled to accepting the errors of sim-

ple processor based simulators. For example, of the �ve shared-memory simulation

studies in ISCA '97

1

that reported results for full applications, four studies used a

processor model with in-order issue, blocking loads, and no speculative execution,

and three of these studies assumed a single-issue processor.

Intuitively, simulators that model ILP processors in detail can be expected to

be much slower than simple-processor based simulators because simulating an ILP

processor is inherently more complex (and therefore slower) than simulating a simple

processor. Additionally, over the last decade, several speed enhancing techniques have

been developed for simple-processor simulators that are currently not applicable to

ILP processor simulators. One such widely used technique is direct execution, which

decouples functional and timing simulation. Functional simulation is done at the

speed of the simulation host machine by directly executing application instructions on

the host machine. For the timing simulation, typically only memory accesses are fully

simulated; the timing for other instructions is computed through static instrumenta-

tion of the application program. We hypothesize that speed enhancing techniques for

simple-processor simulators can also be applied to ILP processor simulators, and test

our hypothesis for direct execution.

1.2 Contributions

This thesis develops and evaluates a new simulation technique based on direct ex-

ecution that signi�cantly improves the speed vs. accuracy tradeo� for simulating

1

Proceedings of the 24th Annual International Symposium on Computer Architecture
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shared-memory multiprocessors with ILP processors. We compare four simulators

equivalent in every respect other than the processor simulation:

� RSIM { State-of-the-art detailed simulator for shared-memory multiprocessors

with ILP processors.

� DirectRSIM { Uses our new technique for simulating ILP-based multiproces-

sors using direct execution.

� Simple { Direct execution based simulator for shared-memory multiprocessors

with simple processors

� Simple-ix { This is identical to Simple except that to model an ILP processor

of issue width i, it simulates a simple processor whose clock speed and L1 cache

access time are sped by a factor of i compared to the ILP processor. This

approximation has been used in a few studies, and was shown by Pai et al. to

be the best current approximation when modeling ILP processors with a simple

processor based model [17].

We perform our analysis for di�erent system con�gurations and application pro-

grams. For these con�gurations and programs, our key �ndings are:

� RSIM vs. simple-processor simulators { The simple processor simulators

are an average of 10 times faster than RSIM. The speed advantage, however,

comes at the cost of large errors (as also reported by Pai et al. [17]). We �nd an

error in execution time of 2% to 128% (average of 42%) with Simple-ix and 9%

to 438% (average of 131%) with Simple. The errors are relative to the results

reported by RSIM.

� New simulator vs. RSIM { DirectRSIM is an average of 4 times faster than

RSIM with 1.6% error in execution time on the average (within 2% for most

cases and a maximum of 6.3%).
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� Simple processor simulators vs. New simulator { Simple and Simple-ix

are an average of 2.7 times faster than DirectRSIM. This speed, however, again

has a high cost { up to 128% error in execution time for Simple-ix and up to

438% error for Simple.

The above results clearly illustrate the value of the new simulation technique.

DirectRSIM is much faster than, and almost as accurate as, the detailed ILP sim-

ulator. Comparisons with the more common simple simulators yield an even more

striking result. The 10x speed advantage of the simple simulators over RSIM made a

compelling argument for their use in spite of their potential for large errors. However,

the simple simulators only have a 2.7x speed advantage relative to DirectRSIM.While

this factor is still signi�cant, it is not clear that this advantage is always worth the

cost of the potential errors (up to 128% error in execution time for Simple-ix). Thus,

our results suggest a reconsideration of the appropriate simulation methodology for

shared-memory systems.

This thesis focuses on using direct execution as an optimization technique to en-

hance simulation speed. However, most of the discussion in this thesis also applies

to simulators based on dynamic binary translation [24]. Such simulators dynamically

translate the application code into optimized sequences of the native host machine

code, thereby also applying a form of direct execution and sharing most of the prob-

lems and solutions posed in this thesis. Other simulation optimizations such as par-

allelization [18] and sampling [4] are orthogonal to the processor model, and can be

used to further enhance the performance of ILP-based simulations in a manner simi-

lar to their use for simple-processor based simulations. We also consider simulations

for only user-level code. The core ideas presented here should apply to system-level

simulations as well.
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1.3 Organization

The rest of the thesis is organized as follows. Chapter 2 provides background material

on simulation methods. Chapter 3 describes the technique for using direct execution

for ILP-based shared-memory multiprocessors and the DirectRSIM implementation.

Chapter 4 describes the evaluation methodology. Chapter 5 presents some results.

Chapter 6 describes related work. Chapter 7 concludes the thesis and discusses future

work. Appendix A compares the performance of the baseline Simple simulator with

Wisconsin Wind Tunnel-II, a state-of-the-art direct-execution simulator for shared

memory multiprocessors with models of simple processors. Appendix B provides

performance data for all the simulators studied in terms of simulated instructions per

second.
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Chapter 2

Background

This chapter provides a brief background on existing simulation methodologies for

shared-memory systems. Section 2.1 presents a classi�cation of current simulation

techniques for shared-memory systems, Section 2.2 discusses the current use of di-

rect execution in simulating shared-memory architectures with simple processors, and

Section 2.3 discusses both detailed and approximate models for simulating shared-

memory systems with state-of-the-art ILP processors.

2.1 Overview of Current Simulation Techniques

Figure 2.1 summarizes a classi�cation of simulation techniques. Existing simulation

techniques can be broadly classi�ed as execution-driven and trace-driven simulation

techniques. Execution-driven simulation refers to techniques that execute the applica-

tion during the course of simulation and are in
uenced by the execution path taken by

the application. The input to an execution-driven simulator is the executable of the

application to be simulated. With trace-driven simulation, the input to the simulator

is a trace of instructions or memory references of a given execution of the simulated

application. Execution-driven simulation is widely considered to be more accurate

than trace-driven simulation because it enables dynamic e�ects such as the order of

synchronization and contention in the simulation to a�ect the simulated application's

execution path.

Execution-driven simulation can further be classi�ed into two categories depending

on whether all instructions are interpreted. Simulators in the �rst category interpret
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Trace-driven Execution-driven

Simulation techniques for shared-memory systems

eg., Dinero, Shade

e.g., RSIM, SimOS+MXS

e.g., Embra, MINTe.g., Proteus, RPPT,
Tango, WWT-II

Partial interpretation Full interpretation

Direct execution Dynamic binary translation

Figure 2.1 Classi�cation of Simulation Techniques

each instruction in software, emulating the e�ects of the instruction on a simulated

machine state and measuring its impact on system timing. RSIM, SimOS+MXS are

examples of such simulators [16, 19]. These simulators are signi�cantly slower than

trace-driven simulation

2

, as they simulate not only timing but also the function of

each instruction.

Decoupling functional and timing simulation can improve the speed of an

execution-driven simulator. This concept forms the basis of both direct-execution

and dynamic binary translation based simulators. RPPT, Proteus, WWT, Embra

are all examples of such simulators [6, 3, 18, 24]. Henceforth , only direct-execution

simulators are considered, but most of our discussion applies to simulators based

on dynamic binary translation as well. The next section describes direct execution

simulators.

2

We only consider simulation of user-level instructions here
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2.2 Direct Execution Simulation for Shared-Memory

Architectures with Simple Processors

As discussed in the previous section, in direct execution based simulators functional

and timing simulation are decoupled from each other. Functional simulation is done

by directly executing the application on the host simulation machine and therefore

is very fast. Additionally, timing simulation is sped up by statically assessing the

execution time for non-memory instructions and simulating timing in detail only for

memory instructions. Many direct execution simulators have been built to simulate

shared-memory multiprocessors with simple processors [3, 6, 7, 18].

Components of a direct execution simulator

Common direct execution simulators for shared-memory multiprocessors consist of a

mechanism to instrument the application to be simulated, and a timing simulator.

The instrumentation mechanism may instrument either assembly code or the exe-

cutable of the application. It inserts calls to the timing simulator at each memory

reference, as these are the only points of interaction among the processors. Some

simulators improve performance further by calling the timing simulator only on cache

misses [18]. The instrumentation mechanism also statically determines cycle counts

for the non-memory portion of each basic block according to the latencies of indi-

vidual instructions, possibly accounting for pipelining within the basic block. Most

current simulators assume single cycle functional units when accounting for this exe-

cution time. The Wisconsin Wind Tunnel II simulator assumes a more sophisticated

statically scheduled pipeline modeled after the Ross HyperSPARC processor [14].

However, current simulators based on direct execution cannot model the e�ects of

out-of-order issue since they determine the cycle-counts for the non-memory portion

statically and they only view one basic block at a time.
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The timing simulation in most reported direct execution simulators is based on

a discrete event simulation system, and is responsible for the simulation of memory

references. When a process invokes the timing simulator on a store, the actions

taken depend on whether the simulated target hardware supports blocking or non-

blocking stores. If the target machine blocks on a store, then control is not returned

to the direct execution of the store's process until the timing simulator completes

the simulation of the store. For a non-blocking store, direct execution of the store's

process may be resumed as soon as the appropriate events for the store's execution

are scheduled by the timing simulator. The resumed process proceeds correctly in

spite of the incomplete store because the execution of the rest of the instructions is

not dependent on the completion of the store.

The timing simulator treats a load similar to a blocking store. Thus, the direct

execution of the load's process is suspended until the simulator completes the simu-

lation of the load and the load returns a value. Current direct execution simulators

do not model non-blocking loads.

In this thesis, we use a direct execution simulator, called Simple, as a baseline

simple processor based simulator.

2.3 Simulators for Shared-Memory Architectures with ILP

Processors

2.3.1 ILP Processors

The base ILP processor considered in this thesis incorporates features such as multiple

issue, out-of-order issue, non-blocking loads and stores, register renaming, speculative

execution, and aggressive forwarding of values from a store to a later load to the

same location, as supported by many current processors (e.g., Digital Alpha 21264,

HP-PA8000, Intel Pentium Pro, MIPS R10000). A central data structure in such a

processor is a reorder bu�er which keeps track of all currently active instructions.
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The processor fetches and decodes instructions in program order and inserts them

in the reorder bu�er. Instruction issue and completion may occur out-of-order. An

instruction other than a store is issued to its functional unit as soon as its operands

are ready. As in most processors that implement precise exceptions, a store is not

issued to the memory system until it reaches the top of the instruction window. Our

base processor also implements register renaming and speculative execution as in the

MIPS R10000 and Digital Alpha 21264. Speci�cally, on a branch prediction, it copies

the register �le mappings into the shadow mappers. On a misprediction, these shadow

mappers are used to restore the register mappings in a single cycle. Other important

processor structures are the load and store queues, which also serve as the memory

disambiguation units in our base processor.

2.3.2 Detailed Simulation of Shared-Memory Architectures with ILP

Processors

To the best of our knowledge, only two detailed simulators developed explicitly

for shared-memory architectures with state-of-the-art ILP processors have been re-

ported in the literature. These are RSIM [16] and SimOS with the MXS processor

simulator[19]. These simulators use straightforward execution-driven simulation, in-

terpreting every instruction and simulating its e�ects in software. The complete

processor pipeline and memory system are faithfully simulated.

2.3.3 Current approximations for Simulating Shared-Memory

Architectures with ILP Processors

Researchers have also used simple-processor based simulators to model shared-

memory systems with state-of-the-art ILP processors, using certain simple approxi-

mations. An implicit approximation made by many studies is that a simulation of a

system with a simple processor approximates a system with an ILP processor with

the same clock speed. We refer to this approximation as Simple. Other studies have
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sped up the clock rate of the simulated processor to model the bene�ts of ILP [10, 11].

A previous study by Pai et al. showed that the best approximation currently used is

to speed up the simple processor's clock cycle and L1 cache access time by a factor

equal to the ILP processor's peak instruction issue rate (i) [17]. We refer to this

approximation as Simple-ix.

Pai et al. studied the errors produced by the Simple and Simple-ix approximations

for 6 applications drawn primarily from the SPLASH and SPLASH-2 suites [17]. They

showed that Simple sees errors in execution time ranging from 26% to 192%. Simple-

ix is reasonable for some applications, but continues to see large errors in other

applications (up to 73%). Their study shows that the key source of inaccuracy is the

inability of simple-processor based simulators to model the impact of non-blocking

reads. Speci�cally, the impact of overlapping read misses was found to be contributing

to a large portion of inaccuracy. Applications with a signi�cant number of overlapped

read misses can experience dramatic reductions in memory stall time at the processor;

such overlap is not modeled by current simple-processor based simulators. This work

provided the key motivation for this thesis.
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Chapter 3

Direct Execution for Simulation of

Multiprocessors with ILP Processors

This section investigates the use of direct execution to enhance the speed of simulat-

ing shared-memory systems with ILP processors without signi�cant loss of accuracy.

There are three key problems with using current direct execution techniques for ILP

processor-based shared-memory systems:

� Handling non-blocking loads: With non-blocking loads, the timing simula-

tor needs to transfer control back into the direct execution of the load's process

before the simulation of the load is complete and before the value that the load

will return (in the simulation) is known. This will enable the direct execution

process to generate later instructions that the timing simulator needs to execute

in parallel with the load. Since at this point, the value to be returned by the

simulated load is not known, it is unclear what action to take when the direct

execution reaches a later instruction dependent on such a load, and when (and

if) to block for this load.

� Timing simulation of other ILP features: A simple static analysis is in-

su�cient to model the impact of ILP features such as out-of-order issue and

speculative execution on the execution time of CPU instructions and on the

time at which a memory instruction can be issued. Therefore, additional sup-

port is required for this purpose.

� Accounting for instructions in mispredicted paths: Speculative execution

in ILP processors implies that occasionally a processor will execute instructions
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from an execution path that is later rolled back. Current direct execution

techniques do not directly provide a way to account for the impact of such

instructions.

Sections 3.1 and 3.2 discuss our solutions to the above problems. Section 3.3

describes the detailed implementation of our approach in DirectRSIM.

3.1 Handling Non-Blocking Loads

We focus on a release consistent shared-memory architecture

3

. We assume that syn-

chronization loads and stores are identi�ed to the simulator.

When a synchronization load invokes the timing simulator, it is treated as a block-

ing load as in current direct execution simulators. For data loads, the timing simulator

attempts to bring the load into the simulated processor in order to send the load to

the memory hierarchy. However, the timing simulator does not block the direct exe-

cution waiting for the load to complete at (or even issue to) the memory hierarchy.

Instead, the timing simulator may return control to direct execution as soon as the

load is brought into the simulated processor.

Upon return to direct execution, the simulation executes the load and returns

the value currently in the accessed memory location, based on the following insight.

If the load does not form a race with a store from another process in the simulated

execution, the load and store will be executed in the same order in the direct execution

as in the simulated execution. This is because the load and store will be separated

by a chain of synchronization releases and acquires; these synchronization operations

are executed as in a direct execution simulator and enforce the necessary orderings

3

Our approach is also applicable to other popular memory consistency models such as sequential

consistency and processor consistency. Straightforward implementations of these models use blocking

loads, and so direct execution is straightforward to implement for them. Optimized implementations

of these models allow non-blocking loads using a speculation mechanism [9]. As will be clear from

the rest of the discussion, our approach applies to such implementations as well if these speculations

usually succeed; previous work has shown that to be the case [15].
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among operations that do not race with each other. Thus, for a load that is not

involved in a data race, the value in the memory at the time of the direct execution

can be safely returned by the load and used by dependent instructions

4

.

On the other hand, a load that is involved in a data race may return a di�erent

value in the direct execution than what would be returned in the simulated execution.

The value returned would be a legal value given the release consistency model; how-

ever, the simulator may not model the timing for this load correctly. Since data races

are generally rare in parallel programs, we expect that this will not have a signi�cant

impact on accuracy.

3.2 Timing Simulation of other ILP Features and

Mispredicted Paths

Like current direct execution simulators, our overall approach also separates the func-

tional and timing simulation, executing the functional part directly on the host ma-

chine. Also, like current simulators, our base methodology invokes the timing sim-

ulator just before the application executes a memory instruction. However, the ap-

plication is not instrumented to account for the execution time of any instructions.

Instead, the application is instrumented to communicate the path taken by the direct

execution since the previous invocation of the timing simulator by the same process.

The timing simulator processes this path to perform a timing simulation with the

goal of providing the best accuracy and performance possible.

A naive timing simulator would simply replicate the simulation features of RSIM:

modeling the register state, instruction e�ects, and pipeline stages in detail. However,

RSIM performs much of its work for the purpose of functional simulation itself. Our

timing simulator improves performance relative to RSIM through features based on

two insights. First, the functional simulation of an instruction is already performed in

4

This is always valid in uniprocessor con�gurations, as there are no data races in such systems.
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the direct execution. Second, some parts of the processor simulation can be approx-

imated, as the most important characteristic in determining shared-memory multi-

processor performance is the behavior of the memory system and its interaction with

the processor [17]. The following explains how each of the above insights enables

performance improvements in our timing simulator.

Our timing simulator can avoid some of the overhead of simulation functions

performed by simulators such as RSIM by the following means:

- The simulator avoids the overhead of instruction emulation, or the calculation

of the e�ects of each instruction. The simulator also does not need to maintain

the simulated processor state, as this is maintained by the host processor itself.

- The simulator does not perform a detailed cycle-by-cycle simulation of all the

stages in the processor pipeline. Instead, on arrival, each instruction gets a

timestamp for when it is expected to complete (when known); for a load, we

also determine a timestamp for when it can be issued. The details of the im-

plementation of these timestamps are described in Section 3.3.

- Details of register renaming need not be modelled. Register renaming is used

to alleviate write after write and write after read hazards. However, the timing

simulator does not actually write values into the simulated registers. Thus, the

actual process of mapping logical registers to physical registers is not needed,

and the simulator can model the bene�ts of register renaming without paying

the overhead of this task.

- For memory instructions, address disambiguation and detection of forwarding

(of a value from a previous pending store to a later load to the same location)

can be made more e�cient, since the load and store addresses are known to the

timing simulator as soon as it sees these instructions.
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- At branches, the register �le mappings need not be stored in shadow map-

pers since the timing simulator does not need to restore register mappings at

mispredictions.

- Other optimizations are artifacts of the above. For example, the amount of state

that must tracked along with an instruction is reduced (e.g., renamed register

names). This results in less overhead when initializing the data structures for

each dynamic instruction instance.

None of the above optimizations sacri�ces simulation accuracy. However, we do

include some approximations in the timing simulator based on previous results. We

observe that shared-memory architecture studies are often most concerned with mem-

ory system performance; therefore, we need to be concerned about the accurate mod-

eling of memory instructions and their interaction with the processor [17]. We may

be able to approximate processor features that do not impact memory instructions.

Based on the above observation, the most potentially pro�table approximation we

make is that we do not simulate speculated execution paths that were mispredicted.

This assumption greatly reduces the complexity of modeling an ILP processor with

direct execution. Note that this assumption does not preclude modeling other e�ects

of speculation. Thus, on branches, we can still keep track of prediction tables and

determine whether the branch would be mispredicted in the simulated execution.

Since the correct direction for the branch is provided by the direct execution, the

timing simulator can determine if the branch is predicted correctly as soon as a value

is returned from the branch predictor. On a misprediction, we can simulate the

actual delay in instruction fetch from the correct path as the processor waits for the

branch to be resolved. The only approximation made is that we do not actually

simulate the instructions from the mispredicted path. Non-memory instructions from

the mispredicted path should have little impact on system performance. Memory

instructions allowed to issue from the mispredicted path can help or hurt overall
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system performance by increasing contention in the memory hierarchy, by interfering

with the cached data of other processors, or by bringing useful data into the cache

early. However, the approximation of not simulating mispredicted paths is not likely

to be a signi�cant source of error as long as speculation usually succeeds. This solution

also addresses the third problem raised at the beginning of this section. Section 7.2

discusses the possibility of including mispredicted-path simulation in DirectRSIM.

Note that the optimization of not simulating the mispredicted path is di�cult (if not

impossible) to incorporate within simulators such as RSIM since RSIM does not know

whether the branch is mispredicted or not until the branch is actually resolved.

Contemporary processors also perform speculative load execution, which is analo-

gous in many ways to branch speculation. With this technique, hardware issues a load

while the address of a previous store is not yet disambiguated. If the store later turns

out to be to the same address as the load, then the load and the execution following

it needs to be rolled back. We assume perfect memory disambiguation in our timing

simulator; i.e., neither an incorrectly speculated load nor its following execution are

simulated. Again, this is not likely to be a major source of error if speculation usu-

ally succeeds. As with branch prediction, this approximation is di�cult to include in

simulators such as RSIM.

3.3 Implementation of the DirectRSIM Simulator

DirectRSIM implements the direct execution methodology described in this section.

It consists of an application instrumentation mechanism (Section 3.3.1), and a timing

simulator (Section 3.3.2).

3.3.1 Application Code Instrumentation

Like current direct execution simulators, the instrumentation mechanism for

DirectRSIM inserts calls to the timing simulator before each memory instruction

in the application. However, the instrumentation code does not attempt to stati-
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cally determine cycle counts for the ILP processor. Instead, it records the ranges of

contiguous program-counter values traversed by the direct execution since the last

memory instruction was passed to the timing simulator. For this purpose, the code

instrumentation marks all unconditional branches and the taken paths of all condi-

tional branches as ending a program-counter range and starting a new range. Each

contiguous program-counter range can span multiple basic blocks, and multiple ranges

can be passed to the timing simulator on each call.

Our current implementation of the instrumentation system works on the assembly

code of a program. However, the techniques used here can be extended to the more

general methods of executable-editing or dynamic compilation.

3.3.2 Architectural Timing Simulator Implementation

The timing simulator consists of three main parts: the event-driven simulation engine,

the multiprocessor memory system simulator, and the processor simulator. The event-

driven simulation engine and multiprocessor memory system simulation are common

to all our simulators and are described in more detail in Chapter 4. The processor

simulator is the key feature that sets DirectRSIM apart.

Processor simulator

As discussed in Section 3.3.1, the instrumented application code calls the processor

simulator at each memory reference. The code maintains a list of program counter

ranges traversed since the last simulator call. Upon entry, the processor simulator

processes this list and attempts to bring each instruction from this list into the in-

struction window.

In processing these instructions, the key work that needs to be done by the pro-

cessor simulator is: (1) keeping track of true dependences and structural hazards, and

determining when instructions complete or when loads and stores can be issued based

on these dependences, (2) retiring instructions from the instruction window at appro-

priate times based on the above determination of completion times, (3) maintaining
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branch prediction tables, and (4) implementation of forwarding (i.e., if a load is ready

to issue while a previous store to the same location is pending, then the store's value

is forwarded to the load without issuing the load).

The key data structures in the processor simulator are (1) a structure analogous

to the reorder bu�er or instruction window of an ILP processor, (2) a load queue

and a store queue to keep track of memory operations that need to be issued, (3) a

data structure that keeps track of outstanding stores, hashed on their addresses, to

enable easy store value forwarding to later loads to the same location, (4) the branch

prediction table, and (5) a structure for simulating structural hazards for functional

units.

The memory system and simulation engine of DirectRSIM provide a global view of

time shared by all the nodes in the system. However, unlike RSIM, the processors are

not required to act in lockstep with the global clock when handling internal processor

actions. The processor is allowed to maintain local views of the clock that run ahead

of the global clock, as long as it synchronizes with the global clock before issuing

any instruction to the memory system. The completion timestamps of individual

instructions are one type of localized clock. Additionally, each processor simulator

has two other views of time: a fetch time and a retire time. Instructions are marked

with the value of the fetch time when they are fetched into the window, and the

processor retires instructions from the head of its instruction window according to the

value of the retire time. Both of these clocks can run ahead of the global simulation

clock.

As the processor simulator brings instructions in, it tags non-memory instructions

with their completion times, if known. The completion time for an instruction is

known as long as it is not data dependent on any incomplete loads (either directly

or through other instructions dependent on the load). The completion timestamp

also depends on the latency of the instruction and the availability of a functional

unit. If the completion time is not immediately known, the instruction is attached to



20

the instructions on which it is dependent; its completion timestamp will be set upon

completion of these instructions.

For a load instruction, the processor simulator calculates a timestamp for the time

when the load is ready to issue (if known), and inserts it in the load queue in issue

time order. When the global simulation time catches up with the issue time of a load,

the processor simulator checks to see if the load can be forwarded from a previous

store. DirectRSIM uses the addresses passed in for memory instructions from the

direct-execution to e�ciently check for any instances of a load matching the address

of a previous store in the instruction window. If the load does match an earlier store,

the processor simulator considers the load forwarded and marks a completion time

for the access. Otherwise, the processor simulator schedules an event for issuing the

load to the memory system.

As with most current processor simulators, to insure precise interrupts, a store

instruction is marked ready for issue only when it reaches the top of the instruction

window. At this time, the store will be inserted in the store queue with an issue

timestamp equal to the current retire time. When the global time catches up with

the issue time, the event-driven simulator schedules an event for the issue of the store.

Instruction fetching continues until either the instruction window �lls up, or all

instructions that were executed in the direct execution are exhausted, or a branch is

mispredicted. In the latter case, the fetch continues once the branch miss penalty is

determined. If the instruction window is full, the processor simulator tries to retire

the �rst set of instructions. This is an entirely local action, and takes place according

to the retire time, possibly setting a new value for this clock.

The processor simulation (and the corresponding direct execution) is suspended

when the instruction window of the processor is full, it cannot retire any further

instructions (this can only happen if there is an incomplete load at the head of

the window), and no other loads or stores can be issued (either because they are

dependent on other loads, or because the cache ports are full, or because the global
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time has not caught up with their issue time yet). At this point, the processor

stalls in a state waiting for an action that will allow progress on any of the above

situations. A processor's direct execution may be resumed once all of its directly

executed instructions have been entered in its instruction window.

E�ectively, the timing simulator acts like a trace-driven simulator, operating on

the trace of instructions executed since its last invocation by the same process. The

methodology, however, is still execution-driven and di�ers from conventional trace-

driven simulation because the execution path of the simulated application can still

be a�ected by the dynamic ordering of synchronization accesses and contention in

the system. In the uniprocessor case, however, DirectRSIM e�ectively becomes a

trace-driven simulator for ILP processors.

Other di�erences between DirectRSIM and RSIM

In addition to the di�erences described above, DirectRSIM also uses user-level

lightweight processes to provide the register and stack state needed by each simu-

lated processor for direct execution. Each activation or deactivation of a process

requires the overhead of a lightweight context-switch. Simple and Simple-ix also

use the same lightweight process structure for direct execution. RSIM does not use

lightweight processes, as all register and stack state for the RSIM CPUs is simulated

in software.

DirectRSIM also avoids simulating L1 cache hits whenever possible (whenever

the cache is guaranteed to have ports available and not be stalled for resources such

as MSHRs). The processor simulator may still have to stall to allow the global

simulation clock to catch up with the issue time of an access, but if it determines

(when the global clock has caught up) that the access is a hit and that the cache

is available, the processor does not send the access to the caches to be simulated.

Instead, the processor lets a store that hits in the L1 cache leave the system and

assigns a load that hits in the L1 cache a completion time stamp based on the issue

time and the L1 cache access time. This can save overhead in invocations of the L1
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cache simulation module, as well as the memory allocation and deallocation of the

data structures used to track accesses in the memory system. Simple and Simple-ix

also use this optimization; RSIM actually issues all hits to the caches, consistent with

its cycle-by-cycle detailed simulation philosophy.
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Chapter 4

Evaluation Methodology

This study compares the accuracy and performance of four shared-memory multipro-

cessor simulators. The following sections describe the architectural parameters of the

systems modeled, the simulators used in this study and their di�erences, the metrics

used to evaluate the simulators, and the applications studied.

4.1 Simulated Architectures

We model the performance of cache-coherent, non-uniform memory access (CC-

NUMA) shared memory multiprocessor systems in this study. Cache coherence is

maintained through an invalidation-based MESI directory coherence protocol. Each

system node includes one processor, a two-level write-back cache hierarchy, part of

the system's distributed physical memory and directory structure, a network inter-

face, and a split-transaction bus connecting the di�erent components of the node. All

nodes are connected by a two-dimensional mesh network. Contention is modeled at

all resources in the processor, memory hierarchy, bus, and network.

The base processor incorporates aggressive features such as out-of-order issue,

multiple instruction issue, non-blocking loads and stores, register renaming, and spec-

ulative execution, as described in Section 2.3.1. Both caches are non-blocking and

use a write-allocate write-back policy. Each cache supports 8 miss status holding reg-

isters (MSHRs) [12] to hold state related to outstanding cache misses and to merge

misses to a single cache line into a single external miss. The L1 cache has a size of

16 KB and the L2 cache has a size of 64 KB. These sizes re
ect our application input

sizes (described in Section 4.4), following the methodology of Woo et al. [25]. All
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primary working sets in these applications �t in the L1 cache, while the secondary

working sets do not �t in the L2 cache. Currently, a perfect TLB and instruction

cache are modelled since the application suite is known to have a small instruction

cache and TLB miss ratio. More realistic models of the instruction cache and TLB

can be implemented in all the simulators in a straightforward manner.

Figure 4.1 summarizes the key system parameters of interest for our base system.

Results from �ve other variations of the base system parameters are also reported, as

described in Section 5.

4.2 Simulators Used in the Study

We compare the performance of four di�erent simulators in this study. The di�erences

among all four simulators are limited to the processor model and its interaction with

the cache hierarchy. RSIM and DirectRSIMmodel a processor with out-of-order issue,

multiple issue, and nonblocking loads. RSIM uses detailed simulation (Section 2.3),

and DirectRSIM uses our new technique (Section 3.3). Simple and Simple-ix model

a single-issue, in-order issue processor with blocking loads and no speculation, using

current direct execution methodology. The memory system simulation in all these

simulators uses nearly identical code and is based on an event-driven simulation en-

gine. Most of the system is divided into di�erent modules that generate events in

an obvious manner (example modules are L1 cache, L2 cache, bus, memory modules,

network interfaces, etc.).

Events for the simulated modules (including lightweight process activations) are

scheduled by inserting them on a central event queue. The scheduled activities are

triggered at an appropriate time by a centralized driver routine. One di�erence in

the RSIM's event-driven simulation is a special event called RSIM EVENT. This

event occurs every cycle and examines the state of each processor, L1 cache, and L2

cache, scheduling any external events triggered by these parts of the system in the

event queue. In cycles in which no other event is scheduled, RSIM EVENT repeats
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ILP Processor

Processor speed 500MHz

Maximum fetch/retire rate 4

(instructions per cycle)

Instruction issue window 64 entries

Functional units 4 integer arithmetic

4 
oating point

4 address generation

Branch speculation depth 8

Memory unit size 32 entries

Cache parameters

Cache line size 64 bytes

L1 cache (on-chip) Direct mapped, 16 K

L1 request ports 2

L1 hit time 1 cycle

Number of L1 MSHRs 8

L2 cache (o�-chip) 4-way associative, 64 K

L2 request ports 1

L2 hit time 8 cycles, pipelined

Number of L2 MSHRs 8

Memory and bus parameters

Memory access time 60 cycles

Memory interleaving 4-way

Bus width 32 bytes

Bus frequency 167 MHz

Network parameters

Network speed 125 MHz

Network width 64 bits

Flit delay (per hop) 1 network cycle

Resulting contentionless memory latencies

Local memory 85 cycles

Nearest remote memory 182 cycles

Farthest remote memory 262 cycles

Latency for nearest cache to cache transfer 210 cycles

Latency for farthest cache to cache transfer 309 cycles

Figure 4.1 Base system parameters
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automatically without the overhead of enqueueing and dequeueing the event. Thus,

the processors and caches are simulated on a cycle by cycle basis in RSIM. The

motivation for this is that in a detailed ILP processor simulation, it can be expected

that some processor or cache will have some event scheduled every cycle. In contrast,

the other simulators do no have any events that are always scheduled for every cycle.

4.3 Metrics

This study evaluates the simulators based on their accuracy and performance.

Simulator accuracy

The primary metric used to evaluate the accuracy of a simulator is the execution time

it reports for the simulated application. To gain further insight, we also study three

components of the execution time reported by the simulator { CPU time, memory

stall time, and synchronization stall time. While it is straightforward to determine

these components for a simple-processor based system, it is more di�cult for a system

that models state-of-the-art ILP processors where instructions can be overlapped and

reordered. RSIM and DirectRSIM calculate various stall components according to a

heuristic used in previous work [17, 19]: any cycle in which the processor can retire

instructions at its peak rate is considered a busy cycle. All other cycles are charged

to the �rst instruction that could not retire in that cycle, as that instruction is the

one that is preventing the processor from retiring at peak rate.

The execution times and components for the various simulators are reported not

to suggest any architectural tradeo�s or advantages, but rather to show the ability

of each type of simulator to capture the behavior of a shared-memory multiprocessor

with state-of-the-art processors. In particular, this study measures the error of each

of the direct-execution simulators (Simple, Simple-ix, and DirectRSIM) relative to

the times reported by the detailed execution-driven simulator (RSIM). RSIM has not

been validated against a real machine, as we do not have access to a machine with

the architecture modeled by RSIM. However, any errors seen by RSIM outside the
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processor would also be seen in the other simulators, as these simulators use nearly

identical code in all other modules. Consequently, this error metric represents the

additional discrepancy seen by a simulator with an approximate processor model.

Simulator performance

To measure simulator performance, the elapsed (wall-clock) time is used for each

simulation when run on a single 250MHz UltraSPARC-II processor of a Sun Ultra

Enterprise 4000 server with 1GB memory. The simulators were all compiled using the

Sun C 4.0 compiler with the highest practical level of optimization { for most of the

source �les, this is -xO4; however, some of the context-switching libraries in Simple,

Simple-ix, and DirectRSIM must be compiled with -xO3.

Although each of the simulators supports detailed statistics related to all of its

main modules, the runs for the simulator performance metrics are measured without

collecting or reporting any of the most detailed statistics; only the total execution

time, the percentage of execution time spent in each component of time, the cache

miss behavior, and the cache MSHR occupancy are collected. Thus, these numbers

represent the performance of the actual simulation core, without the need for poten-

tially extraneous statistics.

4.4 Applications

This study uses 5 di�erent applications { FFT and Radix from the SPLASH-2

suite [25], LUopt an optimized version of LU from the SPLASH-2 suite, MP3D from

the SPLASH suite [21], and Erlebacher from the Rice parallel compiler group [1].

In LUopt when compared to LU one important loop nest has been interchanged to

increase the overlap of read misses and thereby improve performance in a system

with ILP processors. For better load balance, LUopt has been modi�ed slightly to

use 
ags for synchronization rather than barriers. The number of processors in the

simulated con�guration for each application is chosen according to the scalability of

the application. Using systems with more processors would require an increase in the
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input size for reasonable scalability; this would result in a very long running time for

RSIM.

Figure 4.2 lists the input sizes for the applications and the number of processors in

each multiprocessor con�guration. The input sizes are at least as large as the default

size speci�ed in the distribution for each application, with the exception of LUopt. In

LUopt, a matrix one size smaller than the default has been used because of the large

simulation time required with RSIM; however, the number of processors has also been

scaled down correspondingly from the maximum recommended con�guration.

Application Input Size Processors

FFT 65536 points 16

LUopt 256 by 256 matrix, block 8 8

Radix 512K keys, max: 512K, 1024 8

Mp3d 50000 particles 8

Erlebacher 64 by 64 by 64 cube, block 8 16

Figure 4.2 Application input sizes and con�gurations
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Chapter 5

Results

This chapter evaluates the accuracy and performance of the simulator models under

investigation. Previous work has explored the di�erences in accuracy between RSIM

and models such as Simple and Simple-ix

5

[17]. Thus, this chapter particularly focuses

on DirectRSIM.

Section 5.1 examines the accuracy of DirectRSIM, Simple-ix, and Simple by com-

paring the values these simulators report for total execution time and its components

with those reported by RSIM. The execution time is divided into CPU, memory, and

synchronization components according to the methodology in Section 4.3. Section 5.2

discusses the performance of the four simulators. Section 5.3 provides a detailed anal-

ysis of the sources of DirectRSIM's performance bene�ts relative to RSIM and the

sources of any slowdown seen by DirectRSIM relative to Simple.

A discussion of the performance of Simple, relative to the recently released

Wisconsin Wind Tunnel-II, is provided in Appendix A. The results in the appendix

show that Simple performs comparably to the Wisconsin Wind Tunnel-II and can thus

be considered representative of the state-of-the-art in direct-execution simulators for

shared-memory multiprocessors with simple processor models.

5

The numbers reported here di�er from those in previous work [17] because this study uses a more

aggressive compiler (Sun C compiler) and uses a slightly di�erent memory hierarchy (write-back L1

cache, MESI coherence protocol, slightly longer memory latencies).
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5.1 Simulator Accuracy

5.1.1 Base Con�guration

Figure 5.1(a) shows the execution time reported by each of the simulation models

for each of the application programs using the base system con�guration described

in Section 4.1. Each one of these graphs shows the total execution time reported

by RSIM, DirectRSIM, Simple-4x, and Simple. These graphs are split up into three

components of execution time (CPU, memory stall, and synchronization stall), and

the lengths of the bars are normalized to the length of the execution time reported by

RSIM. The number above each bar gives the percentage error in total execution time

for the corresponding simulator relative to RSIM. Numbers shown to the side of a

bar represent the breakup of the total error among the three components of execution

time.

Figure 5.1(a) shows that DirectRSIM reports overall simulated execution time

within 5% of RSIM on all of our applications. This is a striking improvement from the

best previous approximate simulation model using Simple-4x, which sees an execution

time error of 87% for LUopt and 20%-40% on 4 other applications studied. The

straightforward version of Simple sees errors ranging from 29% to 271%.

Figure 5.1(a) also shows that most of the errors seen in Simple-4x are in the

memory component of execution time. Proper prediction of the fraction of time

spent in the memory component is important for a large class of architectural studies

that target this execution time component. Figure 5.1(a) shows that Simple-4x often

signi�cantly overestimates the importance of memory time, while Simple often greatly

underestimates this component. In contrast, DirectRSIM provides a close estimate

in all cases.

The di�erences between these four simulation models arise from their ability to

capture the bene�ts that ILP provides to the various components of execution time.

For example, ILP can reduce the CPU component of execution time by issuing multi-
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Figure 5.1 Comparison of simulator accuracy and

performance for the base system con�guration
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ple instructions at a time, or by issuing instructions out of order. ILP can reduce the

memory component by overlapping multiple long latency memory operations with

each other, or by overlapping memory latency with CPU instructions. ILP can also

increase a component of execution time by increasing contention for resources or by

changing an access pattern.

As reported by Pai et al. [17], the Simple model cannot capture the e�ects of

ILP on either the CPU component of execution time or the memory component.

Simple-4x models much of the bene�ts of multiple instruction issue for the CPU

component (because its clock speed is increased by a factor equal to the issue width

of the processor). However, it does not allow multiple read misses to be overlapped

with each other. As a result, this method is not able to properly capture ILP-speci�c

improvements in the memory component of execution time, which is dominated by

read miss penalties.

In contrast, DirectRSIM models the impact of ILP in both CPU and memory

components of execution time. Thus, DirectRSIM provides a closer and more consis-

tent approximation to the functionality of detailed execution-driven simulators than

either Simple or Simple-ix.

5.1.2 Other system con�gurations

Figure 5.2 shows the errors relative to RSIM seen by DirectRSIM, Simple-ix, and

Simple in a variety of multiprocessor con�gurations. It shows the error in the total

execution time, as well as the component of the error in the memory time. The �rst

row in these tables repeats the data of the base con�guration shown in Figure 5.1(a).

The second row represents a system with rougly twice the local and remote memory

latency of the base con�guration. The third row shows a system with three times the

local memory latency of the base con�guration and a minimumcontentionless remote-

to-local latency ratio of 3:1; this is chosen to represent potential future con�gurations

with faster processors and relatively higher remote memory latencies that are much
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harder to overlap. The fourth row shows a system with the base memory and network

parameters, but with a processor that is twice as aggressive as the base. Speci�cally,

we double the instruction issue width, instruction window size, processor memory unit

size, functional units, branch-prediction hardware, cache ports, and MSHRs. The �fth

row similar to the previous row, except that the instruction window size is four times

that of the base

6

. The sixth row shows a system with the base processor, cache,

and memory parameters, but with a constant-latency 50-cycle network rather than a

2-D mesh con�guration. These con�gurations are chosen to represent expected future

trends toward higher processor clock speeds, aggressive processor microarchitectures,

and aggressive network con�gurations.

As Figure 5.2 shows, DirectRSIM continues to see very low errors in execution

time relative to RSIM { an average of 1.6% and a maximum of 6.3%.

In contrast, the errors with Simple-ix remain high for most of the applications, and

continue to vary widely, with errors in total execution time ranging from 2% to 128%,

averaging nearly 40%. The errors seen with Simple range from 9% to 438%, averaging

around 130%. As expected, the errors are greatest in the applications with the most

read miss overlap. This application characteristic becomes even more important in

determining the performance of systems with future aggressive processors (e.g., ILP+

and ILP++ con�gurations).

In conclusion, DirectRSIM achieves signi�cantly greater and more reliable accu-

racy than Simple-ix or Simple in a variety of current-generation and next-generation

multiprocessor con�gurations.

5.2 Simulator Performance

Figure 5.1(b) graphically depicts the relative simulation times taken by each of the

four simulators in the base con�guration. The bars in this graph are normalized to the

6

In the fourth and �fth rows, Simple-8x is used rather than Simple-4x.
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Erle. FFT LUopt Mp3d Radix Avg.

Tot Mem Tot Mem Tot Mem Tot Mem Tot Mem Tot Mem

Base -1.3 -0.4 -0.8 0.5 0.8 -0.4 -4.0 -5.7 0.0 0.2 1.4 1.4

Lat. x2 -1.2 -1.0 -2.0 0.7 1.5 1.1 -3.8 -5.2 0.0 0.5 1.7 1.7

Lat. x3 -0.7 -1.3 0.5 0.2 0.7 -0.0 -2.3 -4.2 0.0 0.4 0.8 1.2

ILP+ -2.3 -0.6 -0.4 0.2 0.3 2.4 -1.9 -4.6 -0.8 -0.0 1.1 1.6

ILP++ -6.3 -2.6 -2.1 -1.2 1.2 4.2 -0.3 -5.8 -1.4 -0.2 2.3 2.8

C. net -0.4 -0.4 -0.8 0.3 0.8 -0.2 -3.4 -4.1 -0.2 0.2 1.1 1.0

Avg. 2.0 1.1 1.1 0.5 0.9 1.4 2.6 4.9 0.4 0.2 1.4 1.6

(a) Error of DirectRSIM relative to RSIM

Erle. FFT LUopt Mp3d Radix Avg.

Tot Mem Tot Mem Tot Mem Tot Mem Tot Mem Tot Mem

Base 25.8 24.9 33.1 36.4 87.1 79.2 19.7 18.9 3.3 2.9 33.8 32.5

Lat. x2 27.6 26.3 35.6 37.0 109.0 98.9 18.0 17.1 3.6 2.2 38.8 36.3

Lat. x3 27.6 23.7 37.2 39.9 90.5 83.0 9.9 10.3 2.0 1.2 33.4 31.6

ILP+ 31.4 32.5 50.0 56.0 121.8 115.0 32.7 32.7 4.0 3.4 48.0 47.9

ILP++ 69.8 72.0 60.0 66.1 127.8 121.5 47.5 51.7 9.4 15.6 62.9 65.4

C. net 23.1 23.7 29.7 33.7 84.7 77.6 17.0 17.0 3.6 3.1 31.6 31.0

Avg. 34.2 33.9 40.9 44.9 103.5 95.9 24.1 24.6 4.3 4.7 41.4 40.8

(b) Error of Simple-ix relative to RSIM

Erle. FFT LUopt Mp3d Radix Avg.

Tot Mem Tot Mem Tot Mem Tot Mem Tot Mem Tot Mem

Base 116.3 23.0 150.0 31.3 270.8 79.6 28.5 15.4 51.3 -25.6 123.4 35.0

Lat. x2 77.9 24.2 100.5 31.1 232.4 100.3 22.2 14.9 23.6 -18.7 91.3 37.8

Lat. x3 54.5 23.0 72.0 35.6 147.6 81.7 10.6 9.1 8.8 -7.2 58.7 31.3

ILP+ 156.3 29.2 227.8 47.1 423.5 115.3 43.2 27.4 68.0 -29.1 183.8 49.6

ILP++ 231.2 67.7 249.5 56.6 437.8 121.8 59.2 45.7 76.8 -18.6 210.9 62.1

C. net 110.6 21.4 145.8 27.9 264.9 78.4 21.2 10.6 55.9 -24.1 119.7 32.5

Avg. 124.5 31.4 157.6 38.3 296.2 96.2 30.8 20.5 47.4 20.5 131.3 41.4

(c) Error of Simple relative to RSIM

Figure 5.2 Execution time errors of simulation models.

(Averages are over the absolute values of the errors.)



35

elapsed time taken by RSIM. The numbers above each bar show the speedup achieved

by each simulator relative to RSIM . Figure 5.3 extends the data of Figure 5.1(b) for

all the applications and con�gurations reported in Section 5.1. It gives the speedup

of DirectRSIM over RSIM, Simple-ix over DirectRSIM, and Simple-ix over RSIM.

We do not report the speedups for Simple as they are similar to those for Simple-ix,

and Simple gives much greater errors.

The Simple-ix simulator gives the best simulation time in each of the cases, as

it avoids the overhead of processor simulation. Consequently, this simulator sees an

average speedup of 10 over RSIM. DirectRSIM does have some runtime overheads

from processor simulation. Nevertheless, DirectRSIM sees an average speedup of 4

over RSIM. Even more interestingly, the performance advantage of Simple-ix is re-

duced to an average of 2.7 compared to DirectRSIM. The competitive performance of

DirectRSIM indicates that the performance bene�ts of simple-processor based simula-

tor models may no longer be enough to justify their inaccuracies in modeling current

and future multiprocessor systems. Further, the relative performance stability of

DirectRSIM shows that it is a cost-e�ective way to accurately simulate many useful

con�gurations.

For reference, Appendix B provides data for absolute performance of all the simulators

in simulated instructions per second.

5.3 Detailed analysis of DirectRSIM's performance

5.3.1 Comparing DirectRSIM with RSIM

As described in Chapters 3 and 4, DirectRSIM sees performance bene�ts by elimi-

nating some of the details of pipeline management, speculative execution, memory

disambiguation, and instruction emulation, as well as by replacing the cycle-driven

processor and cache hierarchy of RSIM with a purely event-driven system. Figure 5.4

summarizes the average results of gprof pro�les of RSIM executions for the appli-
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Erle. FFT LUopt Mp3d Radix Avg.

Base 3.1 3.6 3.0 4.5 2.6 3.4

Lat. x2 3.5 5.0 3.4 6.1 3.1 4.2

Lat. x3 4.0 4.5 3.8 6.7 4.8 4.7

ILP+ 3.6 4.1 2.9 3.4 3.1 3.4

ILP++ 3.9 5.0 3.5 7.0 3.9 4.7

C. net 3.1 3.7 3.0 5.3 2.8 3.6

Avg. 3.5 4.3 3.3 5.5 3.4 4.0

(a) Speedup of DirectRSIM over RSIM

Erle. FFT LUopt Mp3d Radix Avg.

Base 3.8 2.6 2.8 1.7 2.3 2.6

Lat. x2 3.7 2.5 2.6 1.8 2.4 2.6

Lat. x3 3.4 3.4 2.6 2.9 2.6 3.0

ILP+ 3.3 2.4 2.5 2.1 2.1 2.5

ILP++ 3.3 2.4 2.6 1.9 2.6 2.6

C. net 3.6 2.8 3.0 2.0 2.3 2.8

Avg. 3.5 2.7 2.7 2.1 2.4 2.7

(b) Speedup of Simple-ix over DirectRSIM

Erle. FFT LUopt Mp3d Radix Avg.

Base 11.7 9.5 8.3 7.4 6.2 8.6

Lat. x2 13.1 12.5 8.6 11.1 7.6 10.6

Lat. x3 13.7 14.9 9.9 19.4 12.4 14.1

ILP+ 11.9 9.9 7.4 7.0 6.6 8.6

ILP++ 12.8 12.1 9.1 13.2 10.3 11.5

C. net 11.2 10.5 8.9 10.6 6.6 9.6

Avg. 12.4 11.6 8.7 11.4 8.3 10.5

(c) Speedup of Simple-ix over RSIM

Figure 5.3 Performance analysis of the simulators.
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cations studied on the base con�guration, with the function calls of RSIM divided

according to the logical tasks they perform. This �gure also shows the impact of

DirectRSIM on each component of RSIM's execution time as determined by gprof

pro�les of DirectRSIM.

Overhead eliminated by DirectRSIM

As discussed in Section 2, RSIM requires the processors and cache hierarchies of the

system to proceed in lockstep with a global clock, e�ectively using a cycle-driven sim-

ulation controller for that part of the system. As described in Section 3, DirectRSIM

does not tie internal processor actions (such as instruction fetch and retire) to the

global clock; processors must synchronize with the global clock only to issue mem-

ory instructions. Thus, DirectRSIM eliminates the cycle-driven simulation controller

altogether, using event-driven simulation for the entire system.

DirectRSIM also eliminates the overhead of instruction emulation, address gener-

ation, and system call emulation, as these tasks are handled in the course of direct

execution.

Overhead reduced by DirectRSIM

We �nd that DirectRSIM signi�cantly reduces the top �ve overhead components

experienced by RSIM, which collectively account for over 80% of RSIM's execution

time.

DirectRSIM's use of timestamps and the provision to allow internal processor

actions to proceed ahead of the global clock, as described in Section 3 enable more

e�cient management of the instruction window, register renaming, data dependences,

and functional units. For example, the use of timestamps allows DirectRSIM to elimi-

nate some of the queuing for registers and functional units seen in RSIM; DirectRSIM

requires queuing only for instructions data dependent on outstanding loads, and scans

the structural hazard list to determine functional unit availability. Additionally,

DirectRSIM signi�cantly reduces the cache overhead by avoiding cache invocations

on L1 cache hits, as described in Section 3.3.2.
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Task RSIM Overhead Impact of DirectRSIM

Instruction fetch and decode 21.58% reduce

Functional unit management 20.35% reduce

Processor memory unit 17.40% reduce

Instruction retirement 14.38% reduce

Cache simulation 7.07% reduce

Cycle-driven simulation controller 5.17% eliminate

Branch prediction and speculation 4.53% reduce

Instruction emulation 3.06% eliminate

Memory, bus, and network simulation 2.46% no change

Event-driven simulation controller 1.97% increase

Statistics 0.92% no change

Address generation 0.83% eliminate

System call emulation 0.28% eliminate

Figure 5.4 Components of RSIM's

simulation time and impact of DirectRSIM

DirectRSIM reduces the cost of simulating the processor memory unit by taking

advantage of address information provided in direct execution mode. Using this

information, DirectRSIM can e�ciently check for instances of load addresses matching

those of previous stores and can issue a load without any constraints if there is no

match; in contrast, RSIM must �rst check a load against all previous stores in the

instruction window before attempting to issue it. At the completion of the load (and

possibly even after), RSIM may need to check the load address again to determine if

the address of a previous store has been discovered to con
ict with the load.

Additionally, DirectRSIM avoids a small percentage of execution time by using

the results of the direct-execution to determine if a branch to be simulated is taken

or not; if DirectRSIM's prediction does not match the actual direction of the branch,

no instructions on the mispredicted path are simulated. Consequently, DirectRSIM

avoids both the cost of restoring the register renaming table on a recovery and the

cost of 
ushing instructions from the instruction window and memory unit when a

branch is mispredicted. Among the various techniques described in this section to

reduce or eliminate simulation overhead, this is the only one that involves a relatively

signi�cant approximation.
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Overhead increased by DirectRSIM

DirectRSIM can increase overhead related to the simulation engine. First,

DirectRSIM needs to enqueue and dequeue more events on the global event list

than RSIM does, as all the modules of DirectRSIM are event-driven. Additionally,

DirectRSIM introduces context-switch overhead that is not present in RSIM, as

the simulated processors in DirectRSIM are implemented as light-weight processes.

DirectRSIM aims to minimize the number of context switches by delaying and

rescheduling a light-weight process only when the processor must interact with the

cache hierarchy (to issue or wait for an instruction), rather than for any internal

processor actions.

Overall impact

The net impact of these changes in overhead is that DirectRSIM sees an average

speedup of 4 over RSIM for the reported con�gurations and applications. Of particu-

lar interest are the increases in DirectRSIM speedup for the longer-latency con�gura-

tions, which represent future con�gurations with faster processor speeds. DirectRSIM

pro�ts by switching from a cycle-driven simulator to a purely event-driven simula-

tor. As a result, the simulation time taken by DirectRSIM is less sensitive to future

increases in system latencies than the simulation time needed for RSIM.

5.3.2 Comparing DirectRSIM with Simple

As discussed in Section 5.2, DirectRSIM is on average 2.7x slower than Simple

(or Simple-ix) over all the con�gurations and applications studied. Hence, the overall

overhead seen by DirectRSIM relative to Simple amounts to 63% of its execution time.

Figure 5.5 summarizes the average results of gprof pro�les of DirectRSIM executions

for the applications studied with the base con�guration.

The function calls of DirectRSIM are split according to logical task. This �gure

shows the key tasks that contribute directly to the slowdown of DirectRSIM relative

to Simple. These tasks are the processor simulation tasks. The processor simulator in
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Task DirectRSIM Overhead Source of slowdown?

Instruction fetch and decode 29.70%

p

Cache simulation 11.75%

Lightweight processes 11.12%

Event-driven simulation controller 10.34%

Processor memory unit 9.78%

p

Memory, bus, and network simulation 8.86%

Instruction retirement 6.30%

p

Functional unit management 6.11%

p

Direct execution 4.35%

Statistics 1.24%

Branch prediction 0.40%

p

Figure 5.5 DirectRSIM simulation overhead and

sources of slowdown relative to Simple

DirectRSIM models an instruction window including fetching and retiring of instruc-

tions which consumes 36% of the execution time. The processor simulator also models

a memory unit consisting of management of load and store queues which consumes

nearly 10% of the execution time. Other features such as modeling of structural

hazards and branch prediction hardware consume about 6.5% of the execution time.

Thus, the processor simulation in DirectRSIM contributes nearly 53% of the total

execution time. This is a large fraction of the overall overhead seen by DirectRSIM

relative to Simple. At the same time, our experience shows that simulation of key

processor features such as the instruction window and the memory unit is necessary in

capturing the read miss overlap seen in various applications. Hence, modeling these

features accurately contributes to the superior accuracy of DirectRSIM [17].

Some of the other tasks make minor or indirect contributions to the slowdown.

For example, the direct execution portion is slower with DirectRSIM because the

instrumentation code is more complex than in Simple. Cache simulation is some-

what slower in DirectRSIM since more MSHRs are likely to be used at any time,

and the simulation of the memory, bus, and network is somewhat slower because of

an increase in contention caused by the greater frequency of misses in DirectRSIM.
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Overall, DirectRSIM is 2.7x slower than Simple-ix on average for the con�gurations

and applications studied.
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Chapter 6

Related Work

Chapter 2 provided a brief overview of current shared-memory simulation techniques

including a discussion of direct execution simulators, detailed execution-driven sim-

ulators, and a study showing errors from simple-processor based simulators. This

chapter focusses on other existing techniques for fast simulation of shared-memory

multiprocessors.

DirectRSIM has sought to use direct-execution as a means to improve simulation

performance. Dynamic binary translation is another technique that is commonly used

to speedup simulation. Embra, MINT, and Shade are examples of simulators that

use dynamic binary translation [24, 23, 5]. Dynamic binary translation can be seen

as a form of direct execution as it involves executing large portions of the application

directly on the host. Hence techniques presented in this study can also be applied to

such simulators.

Sampling is another technique used to improve the speed of shared-memory system

simulation. SimOS is an example of a simulation system that uses sampling. By

varying the level of detail of simulation dynamically, SimOS avoids simulating the

entire application in detail. This method, however, does not have an impact on

the speed of accurate simulation of the important phases of the application. Thus,

sampling is orthogonal to DirectRSIM and can be combined with DirectRSIM for

further improvements.

A simulator can also be parallelized to run on a multiprocessor host for further

performance improvements. The Wisconsin Wind Tunnel (WWT) is one such simu-
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lator. WWT also makes additional approximations to achieve better parallelism [18].

Parallelization is also orthogonal to DirectRSIM.

Other research has focused on developing analytical models as a way of providing

fast performance evaluation for ILP-based multiprocessors [2, 22]. Sorin et al. provide

a customized approximate mean-value analysis model for ILP multiprocessors that

explicitly accounts for read miss overlap in the workload and the e�ects of CC-NUMA

multiprocessors [22]. This study seeks to tie the parameters of the model closely

to the characteristics of given workloads. Simulation studies based on analytical

modeling can be used to quickly narrow the architectural design space and account for

key constraints. However, a more detailed performance evaluation generally requires

simulation.

Concurrent with our work, a fast simulation technique has been developed for

uniprocessor simulators which is currently not extendable to multiprocessor simula-

tors in an obvious manner. Speci�cally, Schnarr et al. proposes two ideas [20]. First,

they propose using direct execution in a manner similar to that presented in this

thesis, but with a few di�erences. One di�erence is that they simulate mispredicted

paths, as described in Section 7.2. Second, they propose fast forwarding, a technique

that caches the actions of the simulator for a given state of the processor microar-

chitecture (the latency seen by each memory instruction in the instruction window is

also part of the state). When this state repeats, the fast forwarding technique sim-

ply replays the actions from the simulator cache, eliminating much of the simulation

overhead. They see low bene�ts from direct execution itself, but substantial perfor-

mance improvements from fast forwarding. There are two key di�erences between

the goals of the work by Schnarr et al. and this study. First, Schnarr et al. target

uniprocessor systems and thus do not have to address the issue related to the value

of non-blocking loads with direct execution that we address in Section 3.1. Second,

they focus on accurate uniprocessor microarchitectural simulation, while this study

focuses on accurate memory simulation in a multiprocessor con�guration with only
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as much emphasis on microarchitectural simulation as needed for correct memory

simulation. This di�erence in approach allows us to make approximations, and is a

reason that direct execution does not provide them the same bene�ts it provides this

work. It is currently not clear that their fast forwarding optimization will bene�t

multiprocessor systems, since memory latencies in a multiprocessor are more variable

and unpredictable than in a uniprocessor system, potentially decreasing the frequency

of repeating the microarchitectural state. The speculative execution technique they

describe is not directly applicable for multiprocessor simulation, but can be extended

as described in Section 7.2. If their techniques are extensible to multiprocessors, then

it should be possible to combine them with DirectRSIM as well for further bene�ts

in accuracy and performance.
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Chapter 7

Conclusions

7.1 Thesis Summary

Current simulators for shared-memory multiprocessor architectures involve a tradeo�

between simulation speed and accuracy. Most simulators assume much simpler pro-

cessors than the current generation of processors that aggressively exploit instruction-

level parallelism (ILP). This can result in large simulation inaccuracies. A few newer

shared-memory simulators model current ILP processors more accurately, but are

about ten times slower.

This thesis presented a new simulation technique for shared-memory multiproces-

sors with ILP processors. The technique combines the speed advantages of simple-

processor based simulators with accuracy similar to detailed ILP processor based

simulation. It is based on a novel adaptation of direct execution, a widely used sim-

ulation methodology for shared-memory multiprocessors with simple processors. A

simulator, called DirectRSIM, is developed based on the new technique. DirectRSIM

extends current direct execution simulators in two important ways. First, DirectRSIM

allows a data load that invokes the simulator to proceed in direct execution even

before its simulation has completed at the memory system. Second, DirectRSIM

provides an e�cient timing simulator that accounts for the features of modern pro-

cessors to aggressively exploit ILP (such as dynamic scheduling, multiple issue, and

non-blocking loads). This methodology allows signi�cant performance improvements

relative to detailed execution-driven simulators by reducing simulator overhead in

modeling instruction decoding, register renaming, memory disambiguation, specu-
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lative execution, and instruction emulation. Nevertheless, the processor model of

DirectRSIM includes enough detail to account for multiple-issue, out-of-order issue,

and non-blocking loads.

An analysis of performance and accuracy in Chapter 5 shows that DirectRSIM

sees an average of 1.6% error in simulated execution time relative to RSIM across all

studied applications and con�gurations; at most, it sees an error of 6.3% in simulated

execution time. At the same time, DirectRSIM sees a speedup of 4 relative to RSIM.

In contrast, the best current simple-processor based simulation methodology sees large

and variable errors in total execution time, ranging from 2% to 128%, and averaging

40%. The most commonly used simple-processor based simulation methodology sees

errors ranging from 9% to 438%, averaging around 130%. Despite the superior accu-

racy of DirectRSIM, DirectRSIM sees only a factor of 2.7 slowdown compared to the

current simple processor based simulation methodology. Thus, DirectRSIM achieves

far greater accuracy than simple-processor based simulators for shared-memory mul-

tiprocessors while still maintaining performance competitive with these simulators.

In the late 1980's and early 1990's, the shared-memory architecture community

made a shift from trace-driven simulation to execution-driven simulation based on

studies showing inaccuracies in the results generated by trace-driven simulators.

Simple-processor based direct-execution simulators became popular because of their

speed and accuracy. However, the performance and accuracy results in this study

indicate that the shared memory architecture community may again need to recon-

sider the appropriate simulation methodology for shared-memory systems. To date,

the 10x speed advantage of direct execution simulators over detailed simulators like

RSIM has been used to justify the potential for errors in using simple simulators

to model systems built with state-of-the-art processors. However, the performance

advantage of simple simulators drops to 2.7x if they are compared to DirectRSIM.

While this factor is still signi�cant, it is not clear that this advantage can o�set the

potential inaccuracies of such simulators in modeling application performance. Thus,



47

DirectRSIM substantially improves the speed vs. accuracy tradeo� in the simulation

of shared-memory multiprocessors with ILP processors.

7.2 Future Work

Several features supported in other simulators can be added to DirectRSIM to im-

prove performance and/or functionality. As discussed in Chapter 6, DirectRSIM

performance can be directly improved with sampling or parallelization. Techniques

such as executable editing or optimizing binary code translation could be used to

make the instrumentation of application code both more e�cient and more gener-

ally applicable [13, 24]. All of these techniques are independent of the underlying

DirectRSIM methodology.

Additionally, DirectRSIM does not need to wait for the global clock to catch up

to issue time on every L1 cache hit access; it should synchronize only if there is a

possibility that the data could be replaced or invalidated from the L1 cache between

the current value of the global clock and the issue time of the hit.

In DirectRSIM, each load or store executed in the application program currently

calls the timing simulator. However, for data-race-free programs, this call overhead

can be reduced by invoking the timing simulator from direct execution only at each

synchronization, as these are the only logical points of interaction between processors.

This would not reduce the total work done to simulate the instructions; but may

reduce the function call overhead.

DirectRSIM could be further augmented to support TLB accesses, instruction

cache, or operating system calls. We have not yet sought to support any of these

because these are known to have little performance impact on our application suite.

However, we are not aware of any fundamental problems with incorporating this

support for DirectRSIM.

As discussed in Chapter 6, Schnarr et al. discusses how to incorporate support for

speculative execution into direct execution simulators for ILP uniprocessor systems.
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On a branch misprediction, the simulator saves the register state of the system and

allows direct execution to progress on the wrong path. Additionally, each store that

issues in direct execution must save aside a copy of the previous value of the memory

location so as to restore the old value after the branch is resolved. This allows subse-

quent loads on the mispredicted path to read the value of the speculative store, while

ensuring that the proper value can be returned to the memory after the branch is

resolved. This technique is not directly applicable to a multiprocessor simulator like

DirectRSIM because allowing a speculative store to write data in direct execution

mode may lead to an unexpected data race with or corruption of data at another

processor. One possible extension that would allow speculation in a direct-execution

multiprocessor simulator would instrument the code to have speculative stores send

their values to the timing simulator rather than writing their data into system mem-

ory; the timing simulator would then keep these values in a software-managed \write

bu�er." This \write bu�er," rather than the system memory, would be used to ser-

vice later speculative reads to the same address from the same processor. Reads from

other processors would continue to read non-speculative values in the system memory

as before.
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Appendix A

Performance Comparison of Simple Simulators

This appendix provides evidence that the performance of the baseline Simple and

Simple-ix simulators used in this study is representative of current state-of-the-art

simulators that use simple processor models.

The Simple simulator is compared with the recently released Wisconsin Wind

Tunnel-II (WWT-2) [14]. WWT-2 is chosen for comparison since it has been used in

many architectural studies and represents the state-of-the-art, it is publicly available,

and it simulates SPARC executables similar to Simple. WWT-2 supports parallel

simulation. Simple uses sequential simulation, however, since parallel performance is

orthogonal to our comparison; parallel simulation technology could also be applied to

all our simulators but that is beyond the scope of this work.

The performance of WWT-2 is compared with the performance of Simple for

LU, FFT, and Radix with the input sizes used in this study (these are the common

applications among those used in this study and in the application suite distributed

with WWT-2). The simulators are run on the same hardware as the other simulations

reported in this study. Similar parameters were used for both simulators to the extent

possible. For example, a constant latency network con�guration (100 cycle latency)

and direct mapped caches were used in both simulators as these are the only options

supported by the released version of WWT-2. Similarly, since WWT-2 only supports

a single level cache, both cache levels in Simple were set to be the same size; all caches

in both simulators are the L2 cache size used in the rest of this study.

Nevertheless, a completely fair comparison among the two simulators is di�cult

because of di�erences in modeled architectures. The most important di�erence for
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our purposes is that the released version of WWT-2 does not support a CC-NUMA

protocol. The closest protocol to CC-NUMA in WWT-2 is S-COMA; this protocol

was used with the S-COMA hardware stache size of 320K based on a previous WWT-

2 based study of coherence protocols [8]. The latter study showed that S-COMA is

comparable to CC-NUMA for FFT, CC-NUMA performs worse than S-COMA for

LU, and S-COMA performs worse than CC-NUMA for Radix [8].

Our performance measurements, summarized in Figure A.1, closely follow the

above trend { WWT-2 and Simple show similar performance for FFT, Simple is sig-

ni�cantly slower for LU, and WWT-2 is signi�cantly slower for Radix. An interesting

observation is that the total simulation time for all three applications is within 10%

for both simulators.

Application Simple WWT-2

FFT 248 sec 263 sec

LU 394 sec 112 sec

Radix 395 sec 797 sec

Figure A.1 Simulation time for SPLASH-2 applications

Undoubtedly, there are many factors at play that contribute to the above results.

However, our goal is to simply show that the Simple simulator is in the same class

as other widely used simulators. The results in this section provide such evidence,

and increase con�dence that the experimental infrastructure of this study is indeed

representative of the state-of-the-art.
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Appendix B

Absolute Performance of Simulators in

Instructions per Second

Figure B.1 gives the absolute performance in simulated instructions per second for

all the simulators used in this study (data for Simple is not separately reported as it

is similar to Simple-ix). The data reported here is for the same con�gurations and

runs as reported in Figures 5.2 and 5.3.

Erle. FFT LUopt Mp3d Radix Avg.

Base 22.6 23.4 29.6 7.5 17.2 20.1

Lat. x2 20.5 18.4 25.0 6.8 13.6 16.9

Lat. x3 18.6 18.3 23.7 9.0 10.5 16.1

C. net 24.9 25.1 30.0 9.0 18.5 21.5

Avg. 21.6 21.3 27.1 8.1 15.0 18.6

(a) RSIM - Simulated kilo-instructions per second

Erle. FFT LUopt Mp3d Radix Avg.

Base 69.8 85.4 80.9 37.8 45.9 64.0

Lat. x2 73.7 88.5 76.5 46.6 43.9 65.8

Lat. x3 83.4 89.8 80.6 70.7 54.2 75.7

C. net 77.3 93.1 81.2 50.0 53.4 71.0

Avg. 76.0 89.2 79.8 51.3 49.4 69.1

(b) DirectRSIM - Simulated kilo-instructions per second

Erle. FFT LUopt Mp3d Radix Avg.

Base 250.6 205.4 214.8 32.5 93.6 159.4

Lat. x2 240.1 199.6 209.5 32.7 91.5 154.7

Lat. x3 215.1 198.4 196.6 27.7 75.2 142.6

C. net 280.7 243.1 228.5 50.3 126.4 185.8

Avg. 246.6 211.6 212.4 35.8 96.7 160.6

(c) Simple-ix - Simulated kilo-instructions per second

Figure B.1 Absolute performance of the

simulators in kilo-instructions per second.


