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ABSTRACT

Multimedia applications are becoming increasingly important for a large class of general-purpose

processors. Contemporary media applications are highly complex and demand high performance. A

distinctive feature of these applications is that they have significant parallelism, including thread-,

data-, and instruction-level parallelism, that is potentially well-aligned with the increasing paral-

lelism supported by emerging multicore architectures. Designing systems to meet the demands of

these applications therefore requires a benchmark suite comprising these complex applications and

that exposes the parallelism present in them.

This thesis makes three main contributions. First, it presents ALPBench, a publicly released

benchmark suite that pulls together five complex media applications from various sources: speech

recognition (CMU Sphinx 3.3), face recognition (CSU), ray tracing (Tachyon), MPEG-2 encode

(MSSG), and MPEG-2 decode (MSSG). We have modified the original applications to expose

thread-level parallelism using POSIX threads and data-level parallelism using Intel’s SSE2 instruc-

tions and vector extensions. Second, the thesis provides a performance characterization of the

ALPBench benchmarks, with a focus on parallelism. Such a characterization is useful for architects

and compiler writers for designing systems and compiler optimizations for these applications.
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CHAPTER 1

INTRODUCTION

Multimedia applications are becoming an important workload for general-purpose processors [1].

Emerging media applications are highly complex, incorporating increasingly intelligent algorithms

that are more control intensive than in the past and incorporating increasing functionality. These

applications demand high performance and energy efficiency. At the same time, they present

new opportunities, especially in the form of various forms of parallelism. The effective design of

processors for these applications therefore requires a benchmark suite comprising contemporary

complex media applications (versus individual kernels) and that exposes the parallelism in these

applications.

This work makes two contributions. First, it presents ALPBench, a suite of existing and emerg-

ing complex media applications, modified to expose thread-level and data-level parallelism (TLP

and DLP respectively). ALPBench is publicly available from http://www.cs.uiuc.edu/alp/alpbench/.

The current release includes five applications: speech recognition (derived from CMU Sphinx3.3 [2]),

face recognition (derived from CSU face recognizer [3]), ray tracing (same as Tachyon [4]), MPEG-

2 encode (derived from MSSG MPEG-2 encoder [5]), and MPEG-2 decode (derived from MSSG

MPEG-2 decoder [5]). We modified the original applications to expose TLP by using POSIX

threads (ray tracing was already parallelized) and to expose DLP by inserting Intel SSE2, ALP

SVectors/SStreams [6], and Vector of SIMD (VoS) instructions1 into the most commonly used rou-

tines. Both ALP SVectors/SStreams (will be referred to as SVectors) and VoS are vector extensions

of subword SIMD instructions. SVectors provides support for vector memory instructions and uses

subword SIMD instructions for computations. On the other hand, VoS is a full vector extension of

1The publicly released codes contain Intel SSE2 only.
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subword SIMD instructions.

We believe that the applications in ALPBench will be routinely used on general-purpose proces-

sors to fulfill user requirements such as video conferencing, DVD/HDTV playback and recording,

gaming and virtual reality, authoring of home movies, authentication, and personal search/orga-

nization/mining of media/digital information. The applications chosen represent a spectrum of

media processing, covering video, speech, graphics, and image processing. The applications are all

fairly complex, especially in contrast to kernels that are often used in multimedia studies. It is

important to study these applications in their entirety because many effects are difficult to identify

in a study that only evaluates kernels [7].

The second contribution of this work is a characterization of the parallelism and performance

for the five ALPBench applications. We find that these applications contain multiple forms of

parallelism – TLP, DLP, and ILP (instruction-level parallelism). For TLP, we find that all the

applications have coarse-grain threads and most show very good thread scalability. Therefore,

these applications are a good match for emerging processors with chip-multiprocessing (CMP) and

simultaneous multithreading (SMT). For DLP, we find that four out of five of these applications

are amenable to subword SIMD instructions (SIMD for short). Many current general-purpose

processors already use such SIMD media instruction sets (e.g., MMX/SSE [8]). Furthermore,

we find that SVectors and VoS are able to effectively exploit more DLP than subword SIMD

instructions. We also investigate the interaction between different forms of parallelism (e.g., we

find that the effective exploitation of DLP reduces the effectiveness of TLP). Finally, we also

investigate the effects of the memory system on these applications, and report the different working

sets, bandwidth requirements, and memory latency tolerance in these applications.

There are several prior studies that evaluate the individual applications in ALPBench. For

instance, [9–13] characterize MPEG-2, [14–16] study Sphinx, [17] characterizes face recognition,

and [18, 19] study RayTrace. This work differs from most of the above studies because our main

focus is on studying the parallelism in these applications. Chapter 6 provides a detailed description

of the related work.

MediaBench [20], Berkeley multimedia workload [13], MiBench [21], and EEMBC [22] are several

popular benchmark suites that already target media applications. Four of the applications in

2



ALPBench are also present in one or more of the above suites (MPEG encoder and decoder [13, 20–

22], ray tracer [13], and speech recognizer [13, 20, 21]). Unlike those suites, however, ALPBench

exposes parallelism in its applications.

The rest of this thesis is organized as follows. Chapter 2 discusses the different levels of par-

allelism we exploit. Chapter 3 gives a high-level description of each application in ALPBench,

including the use of POSIX threads, subword SIMD, and VoS. Chapter 4 describes our evaluation

methodology. Chapter 5 reports our results on the characterization of our applications. Chapter 6

discusses related work.
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CHAPTER 2

PARALLELISM EXPLOITED

This chapter describes how we exploit different levels of parallelism in ALPBench. The following

sections first briefly describe how we exploit ILP and TLP, followed by a more in-depth description

of how we exploit DLP using SIMD, VoS, and SVectors.

2.1 ILP

For ILP, we rely on the conventional out-of-order (OOO) execution mechanism that exists in most

contemporary processors. Thus, ILP is already implicit in the applications, and we did not modify

the applications for ILP support.

2.2 TLP

All the applications in ALPBench exhibit coarse-grained TLP. To exploit TLP, we use POSIX

threads. The threads usually share read-only data, requiring little additional synchronization. For

most cases, straightforward parallelization was sufficient for the relatively small systems we consider

(e.g., static scheduling of threads).

2.3 DLP

This section compares the programming model and describes the microarchitectures of three dif-

ferent types of DLP processors: subword SIMD capable modern processors (Intel Pentium 4 and

ALP SIMD), VoS, and ALP SVectors/SStreams [6].

4



For the rest of the section, subword SIMD capable modern processors will be referred to as

SIMD, and subword SIMD instructions and subword SIMD registers will be called SIMD instruc-

tions and SIMD registers, respectively.

When describing the programming model, the issue of reductions is also discussed. A reduction

applies the same operation to multiple data elements and produces one element. Typical reduction

operations include sum, average, min, max, etc. As ALPBench applications exhibit a significant

number of reduction operations, it is important to understand how they are handled in these DLP

architectures.

For the rest of the thesis, we define a horizontal reduction as reducing packed elements in a

SIMD register into one element (e.g., sum of four 32-bit floating point numbers in a 128-bit SIMD

register that yields one floating point number). On the other hand, a vertical reduction reduces

multiple SIMD registers into one SIMD register (e.g., sum of an array of packed words which results

in one packed word). In all of the programming models described in this chapter, both the vertical

reduction and the horizontal reduction are described.

2.3.1 SIMD

This section describes the programming models and microarchitectures of Intel SSE2 and ALP

SIMD. ALP SIMD, a subword SIMD instruction set roughly modeled after Intel SSE2, is introduced

in [6] to study DLP of ALPBench applications in AlpSim simulation environment (Chapter 4). Since

ALP SIMD runs on a simulator, we are able to characterize the applications in greater details (e.g.,

branch predictions, cache misses, register pressure, etc.). Further, it can be compared with VoS

and ALP SVectors/SStreams directly because they all use AlpSim.

2.3.1.1 SIMD programming model

Many of the modern general-purpose processors provide SIMD instructions for exploiting DLP.

These SIMD instructions operate on SIMD registers that store multiple data elements. Both Intel

SSE and ALP SIMD offer eight 128-bit architectural SIMD registers that can store two 64-bit, four

32-bit, eight 16-bit, or sixteen 8-bit data elements. SIMD instructions exploit DLP by operating on

multiple data elements in the SIMD registers simultaneously. The most common opcodes supported

5



/* dot product of two vectors with 4N floats, each SIMD reg holds 4 floats */

initialize s3 for accumulation

for N times loop

simd_load r1 -> s0

simd_load r2 -> s1

simd_mul s0, s1 -> s2 /* multiply packed elements in s0 and s1, write s2*/

simd_add s3, s2 -> s3 /* s3 contains the partial dot product */

inc r1 and r2

end loop

/* s3 has 4 partial dot products, need to do horizontal reduction */

simd_red s3 -> s4

Figure 2.1 SIMD reduction code.

by both Intel SSE2 and ALP SIMD are packed addition, subtraction, multiplication, absolute

difference, average, horizontal reduction, logical, and pack/unpack operations.

We use SIMD instructions to vectorize the innermost loops of the DLP kernels. Because all

of the kernels found in ALPBench’s DLP applications originally have two or more dimensions of

loops, vectorizing the innermost loops results in loops of SIMD instructions. For the rest of the

thesis, these loops will be referred to as SIMD loops.

Reduction: Vertical reductions are handled by SIMD instructions within a SIMD loop and a

SIMD register used as an accumulator. Horizontal reductions are carried out with a SIMD reduce

instruction (e.g., sum, min, max, etc.). Figure 2.1 shows one of the very common reduction opera-

tions, the dot-product. The SIMD add within the loop is performing a vertical reduction while the

last SIMD reduce instruction horizontally reduces the data elements in s3 to a dot-product.

2.3.1.2 SIMD microarchitecture

The following briefly describes how SIMD instructions are supported in Pentium 4 and ALP SIMD,

respectively.

Intel Pentium 4: Intel Pentium 4’s [23] SSE2 instructions are executed in the floating-point

pipeline. Since the floating-point execution units are 64-bit wide and the SIMD registers are 128-

bit wide, SIMD instructions always take at least two cycles to complete.

ALP SIMD: Like Intel Pentium 4, ALP SIMD also executes SIMD instructions in the floating-

point pipeline and uses 128-bit wide SIMD registers. However, the floating-point/SIMD units are

128-bit wide and thus able to complete low-latency SIMD instructions (e.g., integer SIMD add,

6



/* int A[N], B[N], C[N];

r4 = address of C

r5 = address of A

r6 = address of B

*/

for i = 1 to (N/4)

simd_load [r5] -> r2 /* load 4 elements from A and B */

simd_load [r6] -> r3

simd_add r2, r3 -> r3 /* A[i]+B[i],...,A[i+3]+B[i+3] */

simd_store r3 -> [r4] /* store the 4 sums to C */

add r5, 16 -> r5 /* increment address pointers */

add r6, 16 -> r6

add r4, 16 -> r4

end for

Figure 2.2 Sum of arrays with SIMD.

subtract, logical, etc.) in one cycle.

For both Pentium 4 and ALP SIMD, the register renaming, instruction scheduling, and in-

struction retirement of SIMD instructions are similar to other floating point instructions. The only

difference is that ALP SIMD assumes a more aggressive SIMD unit and, therefore, lower execution

latencies. The architectural parameters of ALP SIMD are presented in Table 4.1 of Chapter 4.

2.3.2 VoS

2.3.2.1 VoS programming model

VoS stands for Vector of SIMD and is a full vector extension of the SIMD instruction set. The

opcodes of the vector version of ALP SIMD instructions are supported in VoS. The VoS instructions

operate on VoS registers, which are arrays of SIMD registers. In VoS ISA, there are eight archi-

tectural VoS registers and two control registers: vector length (vlen) and vector stride (vstride).

Each VoS register can store 64 128-bit words. The vector length register controls the number of

SIMD words to be processed by each VoS instruction and the vector stride register controls the

strided memory accesses of VoS load and store instructions. VoS does not support gather/scatter

operations since we did not find the need for these operations for our applications.

Figure 2.2 and Figure 2.3 show the code for summing two integer arrays in SIMD and VoS,

respectively. When compared with SIMD, a sequence of VoS instructions instead of a SIMD loop

is used. Consequently, VoS has the fewest dynamic instructions.

Most of the SIMD loops can be directly converted to VoS code sequences. If the number of

7



/* int A[N], B[N], C[N];

r4 = address of C

r5 = address of A

r6 = address of B

M = N/4 (assume M <= max VoS vector length)

*/

set_vstride 16 /* Set Stride to 16 bytes for unit stride access */

set_vlen M /* Set the vector length for the VoS instr */

vos_load [r5] -> v0 /* Load M records from A and B */

vos_load [r6] -> v1

vos_add4 v0, v1 -> v2 /* A[0]+B[0], ..., A[M-1]+B[M-1] */

vos_store v2 -> [r4] /* Store the result to C */

Figure 2.3 Sum of arrays with VoS.

SIMD loop iterations is less than or equal to the maximum vector length (MAXVL), we simply set

the number of SIMD loop iterations as the vector length and convert the SIMD instructions into

their VoS counterparts (e.g., from simd add to vos add). If the number of iterations is larger than

MAXVL, the SIMD loop is appropriately stripmined.

Reduction: Each element of a VoS register can be horizontally reduced with the vector horizontal

reduction instruction (vos red). For vertical reductions, tree reductions are used.

A simple method for tree reductions is to repeatedly store the vector to memory, load back the

second half of the vector into another VoS register, and reduce the two half vectors into one. How-

ever, the vector loads and stores inherently limit the reduction performance. Cray C90, therefore,

introduced the “vector word shift” instruction that moves the end of one vector register to the

start of another. Subsequently, Asanovic et al. used the same concept and introduced the “vector

extract” instruction to improve the T0 processor’s [24] reduction performance. Given the large

number of reduction operations for multimedia applications, VoS also includes the vector extract

(vextv) instruction.

The instruction vextv takes a scalar register and a VoS register as source operands. The scalar

operand is the index to the source VoS register, and vextv moves the vector starting at the specified

index to the destination VoS register. The length of the extracted vector is determined by the vector

length register.

To reduce a VoS register into a scalar value, both a vertical reduction and a horizontal reduction

are needed. Hence, there are two ways: vertical first and horizontal first. Figure 2.4 illustrates the

steps involved in both approaches. A simple analysis shows that the vertical-first approach yields

8



Figure 2.4 Reduction illustrations.

/* assume v0 is a VoS of length N */

r1 = N

set_vlen N

vos_red v0 -> v0 /* horizontal reduction */

while (r1>1) {

shift_right r1, 1 -> r1 /* half the vector length */

set_vlen r1

vextv r1, v0 -> v1 /* extract half of the vector from v0 and

write it to v1 */

vos_add v0, v1 -> v0 /* reduce! */

}

Figure 2.5 Horizontal-first VoS reduction.

fewer number of operations as follows.

In order to reduce a vector of SIMD words of length N with the horizontal-first approach,

vos red of vector length N is first used and the resulting vector is vertically reduced as shown in

Figures 2.4(a) and 2.5. In the vertical-first approach, a SIMD packed word results from the vertical

reduction and is subsequently horizontally reduced with vos red (Figures 2.4(b) and 2.6).

As there are equal number of operations in the vertical reduction loop, the difference comes

from the vector lengths of the vos red instructions. This difference is illustrated in Figure 2.4.

In (a), the horizontal reduction is the vos red instruction with vector length set to N. In (b), the

vector length of the vos red is only 1. Clearly, the vertical-first approach is likely to have better

performance. However, in the case when N is smaller than or equal to the number of vector lanes,

both approaches yield the same performance.
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/* assume v0 is a VoS of length N */

r1 = N

while (r1>1) {

shift_right r1, 1 -> r1 /* half the vector length */

set_vlen r1

vextv r1, v0 -> v1 /* extract half of the vector from v0 and

write it to v1 */

vos_add v0, v1 -> v0 /* reduce! */

}

set_vlen 1

vos_red v0 -> v0 /* horizontal reduction */

Figure 2.6 Vertical-first VoS reduction.

2.3.2.2 VoS microarchitecture

As the VoS ISA targets emerging multimedia applications that are becoming increasingly impor-

tant in general-purpose processing, it is essential for VoS to be integrated with a general-purpose

processor. Tarantula [25] is a novel architecture that integrates an Alpha EV8 core with a vec-

tor unit and has been shown to perform well for scientific and engineering applications. In order

to explore how a similar vector architecture would perform in multimedia applications, the VoS

microarchitecture is modeled after Tarantula.

In VoS, the scalar core (SCore) is responsible for renaming the VoS registers of VoS instructions,

sending the instructions to the VoS unit (VCore), and retiring them. When the VCore receives an

instruction, it inserts the instruction into either the load store queue (VLSQ) or the issue queue

(VIQ) depending on the type of the VoS instruction. Both VLSQ and VIQ are dual-issue. Then,

after the instruction is processed, the VCore signals the SCore to indicate that the instruction is

ready for retirement. Upon branch misprediction, the SCore sends a kill signal to flush the vector

pipeline. Furthermore, there is a 10-cycle data transfer latency between the SCore and the VCore.

The VCore consists of 4 independent lanes. Each lane has a slice of the VoS register file, 2

functional units, an address generation unit (AGU), and a TLB. While there are 8 functional units

in VCore, they only appear as 2 resources (referred to as the north and south ports for Tarantula).

Thus, the VoS register file in each lane only needs 4 read ports and 2 write ports for the functional

units.

After a VoS memory instruction is issued from VLSQ, its memory addresses are generated in

the AGU and looked up in the TLB in each lane. Then, the memory requests of the VoS memory

10



instruction are sent to the L2 cache. For VoS loads, the L2 cache sends the vector elements back to

the VCore as soon as they become available, possibly out of order. As the time of availability of the

different vector elements is unpredictable, VoS does not chain dependent VoS compute instructions

with a VoS load (similar to Tarantula). Moreover, as the DLP sections of the ALPBench appli-

cations need only strided access support, scatter/gather memory instructions are not introduced.

However, VoS can be augmented with such support as described in [25].

For two dependent VoS compute instructions, VoS supports flexible chaining. Thus, a dependent

compute instruction can start executing as soon as the next vector elements of the source operands

(from a previous compute instruction) are ready regardless of whether they are produced from the

execution unit or the register file.

To support the vector extract instruction, a barrel shifter is added between the L2 cache and the

VCore for interlane communication. There is a 4-cycle interlane communication latency. However,

this communication overhead occurs only if the extract index is not a multiple of 4 (the number

of lanes in VoS). If the extract index is a multiple of 4, the source and destination SIMD registers

within the VoS registers are already in the same lane and no interlane communication is needed.

More architectural parameters of VoS can be found in Table 4.1.

2.3.3 SVectors

2.3.3.1 SVectors programming model

ALP [6] introduces the novel SVectors and SStreams programming models. The SVectors model lies

between SIMD and conventional vectors and seeks to provide most of the benefits of pure vectors

with lower cost for multimedia applications. SVectors exploit the regular data access patterns

that are the hallmark of DLP by providing support for conventional vector memory instructions.

They differ from conventional vectors in that computation on vector data is performed by existing

SIMD instructions. Each of the 8 architectural SVector registers (SVRs) is associated with an

internal hardware register that indicates the “current” element of the SVector. A SIMD instruction

specifying an SVR as an operand accesses and auto-increments the current element of that register.

Thus, a loop containing a SIMD instruction accessing an SVR, say V0, marches through V0, much
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/* int A[N], B[N], C[N];

r4 = address of C

r5 = address of A

r6 = address of B

M = N/4 (assume M <= max SVector length)

*/

set_vstride 16 /* the heads of records are 16 bytes apart */

svector_load:M [r5] -> v0 /* load M SIMD words from A to v0 */

svector_load:M [r6] -> v1 /* load M SIMD words from B to v1 */

svector_alloc:M [r4] -> v2 /* allocate M SIMD words for v2,

tag v2 with C’s addr for writeback */

for i = 1 to (N/4)

simd_add v0, v1 -> v2 /* add 4 elements from A and B */

end for

Figure 2.7 Sum of arrays with SVectors.

like a vector instruction. SStreams are similar to SVectors except that they may have unbounded

length.

Figure 2.7 shows the SVector code that computes the sum of two integer arrays. The svector load

instructions bring data into the SVRs v0 and v1. The svector alloc instruction reserves a write-

back register and tags it with C’s memory location. The SIMD add instruction reads SVRs v0 and

v1 sequentially and writes back to v2. Writing to v2 causes data to be stored back to memory

automatically.

Compared with Figure 2.2, SVector loads replace the SIMD loads inside the SIMD loop. Thus,

the use of SVector loads results in reduction of dynamic instruction count since SIMD memory in-

structions and their overhead instructions (index increments) within the SIMD loop are eliminated.

Further, the larger register space offered by SVectors allows significantly higher load latency toler-

ance through aggressive load scheduling and preloading. Using conventional SIMD instructions for

computation allows use of conventional processors with small modifications. In [6], Sasanka et al.

describe the benefits of SVectors over SIMD in more detail.

Reduction: As ALP uses SIMD compute instructions, the reduction procedure is the same as in

SIMD. The difference is that SVector loads instead of SIMD loads are used to bring in the data.

2.3.3.2 SVector microarchitecture

To support SVectors and SStreams, Sasanka et al. [6] employ a reconfigurable L1 data cache for

the SVector register file. The L1 cache is enhanced with an SVector descriptor table to host the
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SVRs. Data are brought in and written out through the L2 cache. To simplify the allocation and

deallocation of SVRs, the SVector architecture uses a writethrough L1 cache and each cacheline is

tagged with a bit to indicate whether an SVR is present.

An SVector descriptor consists of the location of the SVR in the L1 cache, the vector length,

the vector stride, the current record pointer (CRP), the associated base memory address, and the

last available record pointer. For every SVector load and allocate instruction, an SVR is allocated

in the L1 cache and the location is written into the descriptor, along with the memory address,

vector length, and the vector stride. When data comes back for an SVector load, the last available

record pointer is updated. Subsequently, as the SIMD instructions use SVRs as source registers,

their CRPs are incremented. Since SIMD instructions access the SVRs sequentially, they can start

executing as soon as the records to which the CRPs point are available. More details appear in [6].
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CHAPTER 3

APPLICATIONS

This chapter describes our applications and the enhancements we made to them. The programming

models for exploiting TLP and DLP are described in Chapter 2’s Section 2.2 and Section 2.3

respectively. In some cases, we also made a few algorithmic modifications to the original applications

to improve performance.

The following descriptions provide a summary of algorithmic modifications (where applicable),

major data structures, application phases, thread support, subword SIMD support, and VoS sup-

port. Since SVectors use SIMD instructions for computations, the subword SIMD support also

applies to SVectors. Additionally, the loads in the SIMD loops are converted to vector memory

(SVectors) instructions similar to VoS, except for FaceRec which uses SStreams.

3.1 MPEG 2 Encoder (MPGenc)

We use the MSSG MPEG-2 encoder [5]. MPGenc converts video frames into a compressed bit-

stream. A video encoder is an essential component in VCD/DVD/HDTV recording, video editing,

and video conferencing applications. Many recent video encoders like MPEG-4/H.264 use similar

algorithms.

A video sequence consists of a sequence of input pictures. Input images are in the YUV format;

i.e., one luminance (Y) and two chrominance (U,V) components. Each encoded frame is charac-

terized as an I, P, or B frame. I frames are temporal references for P and B frames and are only

spatially compressed. On the other hand, P frames are predicted based on I frames, and B frames

are predicted based on neighboring I and P frames.
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Modifications: We made two algorithmic modifications to the original MSSG code: (1) we use

an intelligent three-step motion search algorithm [26] instead of the original full-search algorithm

and (2) we use a fast integer discrete cosine transform (DCT) butterfly algorithm based on the

Chen-Wang algorithm [27] instead of the original floating point matrix-based DCT.

Data Structures: Each frame consists of 16x16 pixel macroblocks. Each macroblock consists of

four 8x8 luminance blocks and two 8x8 chrominance blocks, one for U and one for V.

Phases: The phases in MPEG-2 include motion estimation (ME), quantization, discrete cosine

transform (DCT), variable length coding (VLC), inverse quantization, and inverse DCT (IDCT).

The first frame is always encoded as an I-frame. For an I-frame, the compression starts with

DCT. DCT transforms blocks from the spatial domain to the frequency domain. Following DCT

is quantization that operates on a given 8x8 block, a quantization matrix, and a quantization

value. The operations are performed on each pixel of the block independent of each other. After

quantization, VLC is used to compress the bit stream. VLC uses both Huffman and run-length

coding. This completes the compression.

For predictive (P and B) frames, the compression starts with motion estimation. In motion

estimation, for each macroblock of the frame being currently encoded, we search for a “best-

matching” macroblock within a search window in a previously encoded frame. The distance or

“match” between two macroblocks is computed by calculating the sum of the differences between

the pixels of the blocks. The original “full-search” algorithm performs this comparison for all

macroblocks in the search window. Instead, we use a three-step search algorithm which breaks

a macroblock search into three steps: (i) search at the center of the search window, (ii) search

around the edges of the search window, and (iii) search around the center of the search window.

A subsequent step is taken only if the previous step does not reveal a suitable match. Motion

estimation is the longest (most compute intensive) phase for P and B frames. The rest of the

compression for P and B frames is the same as that for an I-frame.

For processing subsequent frames, it is necessary to decode the encoded frame. For this purpose,

inverse quantization and inverse DCT are applied to the encoded frame. These inverse operations
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have the same properties as their forward counterparts.

We removed the rate control logic from this application. The original implementation performs

rate control after each macroblock is encoded, which imposes a serial bottleneck. For the threaded

version, rate control at the end of a frame encoding would be more efficient but we did not imple-

ment this.

Threads: We create a given number of threads at the start of a frame and join them at the end

of that frame. Within a frame, each thread encodes an independent set of contiguous macroblock

rows in parallel. Each thread takes such a set through all the listed phases and writes the encoded

stream to a private buffer. Thread 0 sequentially writes the private buffers to the output.

SIMD: Integer SIMD instructions are added to all the phases except VLC. 8b (char) subwords

are used in macroblocks; 16b (short) words are used to maintain running sums. The main SIMD

computation in motion estimation is a calculation of sum of absolute difference (SAD) between two

128b packed words of two macroblocks. psad (packed SAD) instructions in SSE2 are used for this

purpose. The result of the sad is accumulated with SIMD add (sadd) in a register. For half pixel

motion estimation, it is necessary to find the average of two 128b records. This is achieved using

pavg (packed average) SSE2 instructions.

We obtained SSE2 code for DCT and IDCT from [28] and [29] respectively, and both the DCT

and IDCT computations use the optimized butterfly algorithm based on the works of [27] and [30].

Subword sizes of 16b (short) are used for DCT/IDCT and multiply accumulate instructions are used

for common multiply accumulate combinations in this code. Quantization and inverse quantization

involve truncation operations. We use packed minimum and packed maximum for performing the

truncations [8].

Before DCT and after IDCT, the encoder performs a block subtraction and a block addition

where a block of frequency deltas are added or subtracted from a block. We use packed saturated

addition and subtraction for these operations.

VoS: Integer VoS instructions are inserted in all the phases except VLC, DCT, and IDCT. For
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DCT and IDCT, recall that the SIMD-enhanced versions used the optimized butterfly algorithm.

This algorithm is not amenable to vectorization because of its irregular data accesses. We tried

a simple matrix-based algorithm which is amenable to vectorization, but found that the SIMD-

enhanced optimized version performed better. This finding shows that algorithmic optimizations

are important in enhancing DLP kernels.

In motion estimation, vector sad (vsad) and vector pavg (vpavg) are heavily used. For half

pixel estimation, the vpavg of the source VoS registers is first computed. Then, vsad is used to find

the sum of differences between the two macroblocks. After that, reduction operations with vector

sadd (vsadd) are applied to produce an aggregate sum.

Unlike motion estimation, block truncations (in quantization and inverse quantization), sub-

tractions, additions, and saturations do not involve reduction operations. Therefore, they are

seamlessly enhanced with VoS instructions.

3.2 MPEG-2 Decoder (MPGdec)

We use the MSSG MPEG-2 decoder [5]. MPGdec decompresses a compressed MPEG-2 bit-stream.

Video decoders are used in VCD/DVD/HDTV playback, video editing, and video conferencing.

Many recent video decoders, like MPEG-4/H.264, use similar algorithms.

Data Structures: Same as for MPGenc.

Phases: Major phases for MPGdec include variable length decoding (VLD), inverse quantization,

IDCT, and motion compensation (MC).

The decoder applies the inverse operations performed by the encoder. First, it performs variable-

length Huffman decoding. Second, it inverse quantizes the resulting data. Third, the frequency-

domain data is transformed with IDCT to obtain spatial-domain data. Finally, the resulting blocks

are motion-compensated to produce the original pictures.

Threads: At first glance, this application seems to be serial since frames have to be recovered by

decoding blocks one by one from the encoded bit stream. However, a closer look at the application
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shows that the only limitation of exploiting TLP for this application is the serial reads from the

bit stream and the rest can be readily parallelized.

In our implementation, thread 0 identifies the slices (contiguous rows of blocks) in the input

encoded bit-stream. When a given number of slices is identified, those slices are assigned to a new

thread for decoding. Due to this staggered nature of creating threads, different threads may start

(and finish) at different times, thereby reducing the thread-level scalability of the application.

Each thread takes each block in a slice through all the phases listed above and then writes each

decoded block into a nonoverlapping region of the output image buffer.

SIMD: Integer SIMD instructions are added to IDCT and motion compensation. IDCT uses the

same SIMD code used in MPGenc. Motion compensation contains subfunctions like block pre-

diction, add-block (adding the reference block and error (frequency deltas)) and saturate. Block

prediction finds the reference blocks based on motion vectors in the bitstream. For full-pixel pre-

dictions, SIMD loads and stores are used. For half-pixel predictions, pavg instructions are used

prior to the SIMD stores. Add-block and saturate operations are performed using packed addition

with saturate on 16b words.

VoS: Integer VoS instructions are added to motion compensation only. For IDCT, the SIMD-

enhanced version is used as explained in MPGenc’s VoS section.

The block predictions are enhanced with vpavg (for half-pixel predictions) and vector sadd

(vsadd). The block additions and saturations are enhanced with vector sadd (vsadd) and vector

SIMD saturate (vssat) instructions respectively.

3.3 Ray Tracing (RayTrace)

We use the Tachyon ray-tracer [4]. A ray-tracer renders a scene using a scene description. Ray

tracers are used to render scenes in games, 3-D modeling/visualization, virtual reality applications,

etc.

The ray tracer takes in a scene description as input and outputs the corresponding scene. A

scene description normally contains the location and viewing direction of the camera, the locations,
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shapes, and types of different objects in the scene, and the locations of the light sources.

Data Structures: The constructed scene is a grid of pixels. The pixels are colored based on the

light sources and objects in the scene. The objects are maintained in a linked list. The color of

each pixel is determined independently.

Phases: This application does not have distinct phases at a high level. At start, based on the

camera location and the viewing direction specified, the viewing plane is created to represent the

grid of pixels to be projected from the scene to the resulting picture. To project the correct color

for each pixel, a ray is shot from the camera through the viewing plane into the scene. The ray is

then checked against the list of objects to find out the first object that the ray intersects. After

that, the light sources are checked to see if any of the light rays reach that intersection. If so,

the color to be reflected is calculated based on the color of the object and the color of the light

source. The resulting color is assigned to the pixel at where the camera ray and the viewing plane

intersect. Moreover, since objects can be reflective or transparent, the ray may not stop at the first

object it intersects. Instead, the ray can be reflected or refracted to other directions until another

object is intersected. In that case, the color of the corresponding pixel is determined by repeatedly

reflecting/refracting the ray at each surface.

Threads: Each thread is given N independent rays to trace, where N is the total number of pixels

in the viewing plane divided by the number of threads in the system.

SIMD and VoS: No DLP support is added since the various computations done on each ray can

be quite different from neighboring rays. This is because neighboring rays can intersect different

objects leading to different computations (operations) with each ray. Further, there is no DLP

within each ray since each ray performs control intensive operations.
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3.4 Speech Recognition (SpeechRec)

We use the CMU SPHINX3.3 speech recognizer [2]. A speech recognizer converts speech into text.

Speech recognizers are used with communication, authentication, and word processing software and

are expected to become a primary component of the human-computer interface in the future.

Data Structures: The major data structures used include:

(1) 39-element feature vectors extracted from an input speech sample. We modify them to 40

elements for aligned SIMD computations.

(2) Multiple lexical search trees built from the language model provided. Each tree node is a

three-state hidden Markov model (HMM) and describes a phoneme (sound element).

(3) Each senone (a set of acoustically similar HMM states) is modeled by a Gaussian model.

Each Gaussian model contains two arrays of 39-element vectors (mean and variance) and one

array of coefficients. Again, the vectors are modified to be 40 elements long for aligned SIMD

computations.

(4) A dictionary (hash table) of known words.

Phases: The application has three major phases: feature extraction, Gaussian scoring, and search-

ing the language model/dictionary.

First, the feature extraction phase creates 39-element feature vectors from the speech sample.

The Gaussian scoring phase then matches these feature vectors against the phonemes in a database.

It evaluates each feature vector based on the Gaussian distribution in the acoustic model (Gaussian

model) given by the user. In a regular workload, there are usually 6000+ Gaussian models. The

goal of the evaluation is to find the best score among all the Gaussian models and to normalize

other scores with the best one found. As this scoring is based on a probability distribution model,

multiple candidates of phonemes are kept so that multiple words can be matched. The final phase

is the search phase, which matches the candidate phonemes against the most probable sequence of

words from the language model and the given dictionary. Similar to the scoring phase, multiple

candidates of words (hypotheses) are kept so that the most probable sequence of words can be

chosen.
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The algorithm can be summarized as follows:

We make the root node of each lexical search tree active at start. The following steps are

repeated until speech is identified. Step (i) is the feature extraction phase, (ii) is in the Gaussian

scoring phase, and steps (iii) and (iv) are in the search phase.

(i) The feature extraction phase creates a feature vector from the speech sample.

(ii) A feature vector is compared against Gaussian models of most likely senones and a similarity

score is computed for each senone.

(iii) For each active node in each lexical search tree, the best HMM score for it is calculated.

Then the overall best HMM score among all nodes is calculated (call this Sob).

(iv) All nodes with HMM scores below Sob − threshold, where threshold is a given threshold,

are deactivated and the children of the still active nodes are also activated. If the node is a leaf

node with high enough score, the word is recognized and the dictionary is looked up to find the

spelling.

For reporting results, the startup phase, where some data structures are initialized, is ignored

since it is done only once for the entire session and it can be optimized by loading checkpointed

data [14].

Threads: We parallelized both the Gaussian scoring and the search phase. We did not parallelize

the feature extraction phase since it takes only about 2% of the execution time (with a single

thread). A thread barrier is used for synchronization after each phase. To create threads for the

Gaussian scoring phase, we divide the Gaussian models among threads to calculate senone scores.

In the search phase (steps (iii) and (iv) above), active nodes are divided evenly among threads.

We use fine grain locking to synchronize updates to the existing hypotheses in step (iv). This

locking makes this phase less scalable than the Gaussian scoring phase.

SIMD: We enhanced the Gaussian scoring phase with single precision floating point (32b sub-

words) SIMD instructions. The score computation consists of a short loop which performs a packed

subtraction (subps) and two packed multiplications (mulpss). The scalar score is then obtained

through reduction operations: packed addition (addps) and a horizontal sum (sredf) .
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VoS: We inserted single precision floating point VoS instructions to augment the Gaussian scoring

phase. The score computation involves one vector subps (vsubps) and two vector mulpss (vmulpss).

The result vector is subsequently reduced with vector addps (vaddps) and sredf to a scalar score.

3.5 Face Recognition (FaceRec)

We use the CSU face recognizer [3]. Face recognizers recognize images of faces by matching a given

input image with images in a given database. Face recognition is used in applications designed for

authentication, security, and screening. Similar algorithms can be used in other image recognition

applications that perform image searches and data-mining.

This application uses a large database (called subspace) that consists of multiple images. The

objective of phase recognition is to find the image in subspace that matches best with a given input

image. A match is determined by taking the “distance” or difference between two images.

Modifications: The CSU software tries to find the pairwise distances among all images in the

database since the objective of CSU software is to find the effectiveness of distance finding algo-

rithm. We modified the application so that a separate input image is compared with each image

in the subspace to emulate a typical face recognition scenario (e.g., a face of a subject is searched

in a database).

Data Structures: Each image is a single column vector with thousands of rows. The subspace is

a huge matrix where each image is a column of the matrix.

Phases: This application is first trained with a collection of images in order to distinguish faces of

different persons. Moreover, there are multiple images that belong to the same person so that the

recognizer is able to match face images against different expressions and lighting conditions. Then,

the training data is written to a file so that it can be used in the recognition phase. Since training

is done offline we consider only the recognition phase for reporting results.

At the start of the recognition phase, the training data and the image database are loaded. The
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image database creates the subspace matrix.

The rest of the recognition phase has two subphases:

(i) Projection: When an input image is given, it is normalized and projected into the large

subspace matrix that contains the other images. The normalization involves subtracting the sub-

space’s mean from the input. Then that normalized image is “projected” on to the subspace by

taking the cross product between the normalized image and the subspace.

(ii) Distance computation: Computes the difference between each image in the subspace and the

given image by finding the similarity (distance). The vectors representing the input image and the

database image are scaled with a coefficient vector through multiplications. The self dot-products

of each of the scaled vectors are calculated. Then, the dot-product between the two scaled vectors

are computed as well. The distance is the product of the three dot-products

Threads: In the projection subphase, each thread is given a set of columns from the subspace to

multiply. In the distance-computation subphase, each thread is responsible for computing distances

for a subset of images in the database.

SIMD: Double precision floating point (64b) SIMD instructions are used for projection and for

distance finding. In the projection subphase, we enhanced the normalization with packed subtrac-

tion (subpd) and the matrix multiplication with packed multiplication (mulpd), packed addition

(addpd), and sredf. In the distance finding subphase, two mulpds are used. Then, the reduction

operations are performed with addpd and sredf.

VoS: We vectorized the projection and distance finding with double precision floating point (64b)

VoS instructions.

In the projection subphase, the normalization is enhanced with vector subpd (vsubpd) and

the matrix multiplication is enhanced with vector mulpd (vmulpd). Since the vectors used in the

projection subphase are too large to fit in the VoS registers, the computations are stripmined.

Also, because the matrix multiplication contains reduction operations of long vectors, we use a VoS

register to accumulate the partial sums with vector addpd (vaddpd) across the stripmined loops.
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The accumulation VoS register is subsequently reduced to a scalar value with vaddpd and sredf.

In the distance finding subphase, two vmulpds are used. The result vector is then reduced to a

scalar value through vaddpd and sredf.

24



CHAPTER 4

METHODOLOGY

For this study, we primarily obtain results from a simulator called AlpSim [6]. AlpSim allows us

to study the parallelism and scalability of systems under different conditions. To augment these

results, where practically feasible, we also present data obtained on a real Pentium 4 system.

AlpSim is an execution-driven cycle-level simulator derived from RSIM [31], and models wrong

path instructions and contention at all resources. AlpSim simulates all code in C libraries but only

emulates operating system calls.

With AlpSim, we model a CMP system to study the TLP in our applications. Each CMP

processor is an out-of-order superscalar processor and has separate private L1 data and instruction

caches. All cores in the CMP share a unified L2 cache. Each thread is run on a separate CMP

processor. The simulation parameters used are given in Table 4.1. Following the modern trend of

general-purpose processor architectures, almost all processor resources are partitioned and caches

are banked.

Like many existing architectures, AlpSim is capable of executing sub-word SIMD instructions.

In particular, AlpSim supports ALP SIMD. Section 2.3.1 describes the programming model and

the microarchitecture of ALP SIMD.

AlpSim is integrated with a multilane VoS unit to support the VoS instruction set. The VoS

architecture uses AlpSim’s memory system to support its VoS memory instructions. The archi-

tectural specification is described in Table 4.1. As we focus on the DLP speedup from VoS, only

single-thread data were analyzed.

Finally, AlpSim also supports ALP’s SVectors/SStreams programming model. More specifi-

cally, AlpSim’s L1 data caches can be reconfigured to host SVRs, the SIMD functional units can
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Table 4.1 Parameters for AlpSim. Note that several parameter values are per partition

or bank.
Parameter Value PER # of

PARTITION Partitions

Phy Int Reg File (32b) 64 regs, 5R/4W 2
Phy FP/SIMD Reg File (128b) 32 regs, 4R/4W 2
Int Issue Queue 2

-# of Entries 24
-# of R/W Ports 3R/4W
-# of Tag R/W Ports 6R/3W
-Max Issue Width 3

FP/SIMD Issue Queue 2
-# of Entries 24
-# of R/W Ports 3R/4W
-# of Tag R/W Ports 5R/3W
-Max Issue Width 3

Load/Store Queue 2
-# of Entries 16
-# of R/W Ports 2R/2W
-Max Issue Width 2

Branch Predictor (gselect) 2KB 2

Integer ALUs (32b) 2 2
FP SIMD Units (128b) 2 2
Int SIMD Units (128b) 2 2

Reorder Buffer 32 ent, 2R/2W 4
-Retire Width 2

Rename Width 4 per thread 2

Max. Fetch/Decode Width 6 (max 4 per thread)

L2 MSHR Entries 32

Parameter Value PER BANK # Banks

L1 I-Cache 8K, 4 Way, 32B line, 1 Port 2
L1 D-Cache 8K, 2 Way, 32B line, 1 Port 4
(Writethrough)
L2 Cache 256K, 4 Way, 64B line, 1 Port 4
(Writeback, unified)

Bandwidth and Contentionless Latencies @ 4 GHz

Parameter Value (cycles @ 4 GHz)

ALU/Int SIMD/VoS Latency 8 (Div-32b), 2 (Mult-32b), 1 (Other)
FP/FP SIMD/VoS Latency 12 (Div), 4 (Other)
L1 I-Cache Hit Latency 2
L1 D-Cache Hit Latency 3
L2 Cache Hit Latency 18
L2 Miss Latency 256
Memory Bandwidth 16 GB/s

VoS Parameter Value

# of Vector Lanes 4
# of Functional Units Per Lane 2
Issue Width 2

Vector Register File
-# of Arch Registers 8
-# of Phy Registers 24
-# of Records Per Register 64
-Record Width 128b

Scalar-Vector Data Transfer Latency 10 cycles
Inter-Lane Communication Latency 4 cycles
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read/write SIMD records from/to the SVRs, and the pipeline stages are able to support ALP’s

vector memory instructions. Again, only single thread data was analyzed for SVectors.

AlpSim uses SPARC binaries for non-SIMD code. Pthreads-based C code is translated into

binary using the Sun cc 4.2 compiler with options -xO4 -xunroll = 4 -xarch = v8plusa. DLP code

resides in a separate assembly file, organized as blocks of instructions and simulated using hooks

placed in the binary. When such a hook is reached while simulating, the simulator switches to the

proper block of SIMD, SVectors/SStreams, or VoS instructions in the assembly file.

To complement the results obtained using AlpSim, we obtained data using a 3.06-GHz Pentium

4 system with SSE2 running the Linux 2.4 kernel (referred to later as P4Sys). The processor front-

side bus operates at 533 MHz (quad-pumped) and the system has 2GB of PC2100 DDR memory.

The applications for P4Sys were compiled using the Intel icc compiler with maximum optimization

level O3 and options -march=pentium4 -mcpu=pentium4 (for Pentium 4). We aligned data arrays

at 16 B boundaries for best performance as suggested in [8]. On P4Sys, we used the Intel VTune

performance analyzer and used the performance counter (sampling) mode to obtain results without

any binary instrumentation. Only single-thread data were obtained using the P4Sys.

The following inputs were used for each application. For MPGenc and MPGdec, DVD resolution

(704 x 480) input streams were used. For RayTrace, a 512 x 512 resolution picture (a scene of a

room with 20 objects) is used. For SpeechRec, a dictionary/vocabulary of 130 words was used with

the input speech sample containing the words “Erase T M A Z X two thousand five hundred and

fifty four.” For FaceRec, a database of 173 images (resolution 130 x 150) was used with an input

image of the same resolution.
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CHAPTER 5

RESULTS

This chapter provides quantitative results about the parallelism found in our applications. Primar-

ily, we present results using AlpSim, and for DLP, we primarily analyze ALP SIMD. To augment

those results, we present results obtained on a Pentium 4 processor based system for ILP and SIMD

(SSE2). In addition, we also report results comparing ALP SIMD, VoS, and SVectors with each

other in single thread mode.

We categorize our results into several sections. First, we characterize each type of parallelism in

Section 5.1 to 5.4. Next, we analyze the effects of the interaction between two types of parallelism

(e.g., DLP and TLP). Since we observe that all types of parallelism investigated here are sensitive

to the memory system parameters, in Section 5.6, we present data showing the size of the working

sets utilized by our applications, the effect of increasing memory latencies (i.e., frequency scaling),

and the effect of supporting more threads on the memory bandwidth. In Section 5.7, we give the

application-level real-time performance of our applications on the Pentium 4 system with SSE2.

Although the results we show are sensitive to the size of the application inputs (Chapter 4), the

overall parallelism should improve or remain the same with larger inputs for all applications.

5.1 TLP

Figure 5.1(a) and (b) show the speedup achieved with multiple threads on AlpSim with a 1 cycle

ideal memory system and a nonideal memory system, respectively. The threads do not use any

DLP instructions. The ideal memory system results are obtained with perfect 1 cycle L1 caches to

study the TLP scalability independent of the memory system parameters, especially those of the

L2 cache. These applications can be executed on systems with very different L2 configurations,
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Figure 5.1 Scalability of TLP without SIMD instructions (a) with a perfect 1-cycle
memory system, and (b) with realistic memory parameters.

from shared L2 caches to private L2 caches. Similarly, the size and the associativity of L2 caches

vary widely in commercial systems. When we use high memory latencies, the scalability becomes

sensitive to the particular L2 configuration as described in Section 5.6. Therefore, Figure 5.1(a)

shows inherent TLP in applications, independent of L2 parameters. However, since it is useful to

see how these applications will behave on a practical machine, Figure 5.1(b) shows TLP scalability

for the system described in Chapter 4 except for one change; these results use a 16-way, 16MB L2

cache with 64 GB/s memory bandwidth to support up to 16 threads.

As shown in Figure 5.1, MPGenc, MPGdec, FaceRec, and RayTrace scale well up to 16 threads

with both ideal and realistic memory parameters since the threads are independent and hence

do not require extensive synchronization. For MPGenc, there are two limitations to obtaining

ideal scalability characteristics: (i) serialization present at the end for writing private buffers,

and (ii) imperfect load balancing due to different threads performing different amount of work.

The scalability of MPGdec can be further improved by addressing the current limitations to its

scalability, namely, (i) staggered thread creation, and (ii) load imbalance. With larger inputs (e.g.,

HDTV), the former has less effect (HDTV input improved the speedup of 16 threads by 14%-15%

for both ideal and realistic memory parameters). The latter may be improved by dynamic slice

assignment [10].

The thread scalability of SpeechRec is somewhat limited. Its scalability can be slightly im-

proved by threading the feature extraction phase as well. However, the scalability of coarse-grained
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Figure 5.2 Speedup with SSE2 and ALP SIMD.

threads in SpeechRec is mainly limited by the fine grain synchronization (locking) used in the

search phase [16]. However, we found that larger dictionaries increase the thread scalability. Note

that multithreaded versions of SpeechRec achieve slightly better speedups with realistic memory

parameters. In that case, the execution time of the single thread version is dominated by the

time stalled for memory. The multithreaded version can reduce that stall time considerably due to

memory parallelism offered by multiple threads. However, with ideal memory parameters, the mul-

tithreaded version cannot reduce the memory access time any further. Therefore, synchronization

has a larger negative effect on the multithreaded versions with ideal memory parameters.

5.2 DLP - SIMD

This section reports the benefits of SIMD for our applications (all except RayTrace, which does

not show DLP).

Figure 5.2 gives the speedups achieved with SSE2 (on P4Sys) and ALP SIMD (on AlpSim) over

the original non-SIMD single-threaded application. The results with SSE2 show the speedups

achievable on existing general-purpose processors. The results with ALP SIMD indicate the

speedups possible with a more general form of SIMD on a simulated 4-GHz processor. Over-

all, our applications (except RayTrace) achieve significant speedups with ALP SIMD and modest

to significant speedups with SSE2.

For all applications, the speedups with ALP SIMD are higher than the speedups with SSE2

due to several reasons. First, the latency of most SIMD instructions on AlpSim is 1 cycle whereas
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all SSE2 instructions have multicycle latencies. Further, the 128b SSE2 is implemented as two 64b

operations on Pentium processors essentially halving the throughput. Specifically, FaceRec fails to

achieve any significant speedup with SSE2 due to the lack of true 128b units because FaceRec uses

double precision 64b operations. Second, the simulated processor has 4 SIMD units and a different

pipeline and hardware resources. Third, AlpSim supports SIMD opcodes that are more advanced

than those in SSE2. For instance, horizontal subword reductions are available in AlpSim but not

in SSE2 (although they are available with SSE31).

5.2.1 SIMD speedups of individual phases with SSE2

All phases and subphases of an application do not see the same level of performance improvement

with SIMD support. Therefore, it is important to understand which parts of an application are

more amenable to SIMD and which parts are not. Although some phases can show very high

speedups, according to Amdahl’s law, the overall speedup of the application is limited by phases

with small or no speedups.

Table 5.1 shows the percentage of execution time and the SSE2 speedup of each phase in each

application on P4Sys. The total SSE2 speedup for each application is also given. These results show

which phases of the applications are more amenable to SIMD. The data for RayTrace is omitted

since it does not have DLP instructions or multiple major phases. Note that the sampling error for

small phases is more significant than for larger phases; small phases (i.e., phases with non-SSE2

execution time less than 2% or aggregates of such small phases) where the speedup cannot be

measured reliably are marked as N/A in Table 5.1. It should also be noted that the phases in an

application cannot be completely separated from the adjacent phases of the same application when

run on an out-of-order processor where instructions from multiple phases can overlap. Further, the

effects produced by one phase (e.g., branch histories, cache data) can affect other phases. As a

result, Table 5.1 shows small slowdowns for some phases.

MPGenc and MPGdec see good overall speedups with SSE2. All phases of MPGenc and all but

the VLD phase in MPGdec achieve speedups with SSE2. IDCT of MPGdec and DCT/IDCT

1We did not use SSE3 for our applications since it is fairly new and most existing systems do not support it.
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Table 5.1 Percentage execution time and SSE2 speedup for major phases of each
application (except for RayTrace) on P4Sys. Small phases (i.e., phases with non-SSE2
execution time less than 2% or aggregates of such small phases) where the speedup
cannot be measured reliably are marked as N/A.

no-SSE2 with SSE2
% ExTime % ExTime Speedup

MPGenc
Motion Estimation 64.3 66.3 2.69
DCT/IDCT 9.6 6.3 4.24
Form predictions 5.6 11.9 1.3
Quant/IQuant 18.8 9.2 5.69
VLC 1.3 3.8 N/A
Other 0.4 2.5 N/A

Total 100.0 100.0 2.78

MPGdec
IDCT 36.6 13.8 5.38
Motion Compensation
- Saturate 8.3 10.4 1.61
- Add Block 9.3 5.7 3.3
- Form predictions 21.5 20.4 2.14
- Clear Block 2.8 3.9 1.44
VLD 20.3 43.3 0.95
Other 1.3 2.4 N/A

Total 100 100 2.03

SpeechRec
Feature Extraction 1.6 2.1 0.97
Gaussian Scoring
- Vector Quantization 35.4 26.5 1.73
- Short-list Generation 10.5 13.7 0.99
- Gaussian Eval 35.7 34.3 1.34
- Others 7.4 10.8 N/A
Search 7.7 10.5 0.94
Other 1.7 2.1 N/A

Total 100.0 100.0 1.29

FaceRec
Subspace projection 88.0 88.8 1.11
- Transform 87.3 87.4 1.12
Distance calculation 7.4 5.7 1.47
Other 5.3 6.9 N/A

Total 100.0 100.0 1.12

phases of MPGenc achieve excellent speedups due to the use of optimized SSE2 code for these

phases.

The motion estimation phase of MPGenc achieves very good speedups with SSE2 due to the

use of byte operations and the elimination of data-dependent branches using PSAD (packed sum

of absolute difference) instructions. Similarly, quantization achieves excellent speedups due to the

elimination of branches by using PMAX and PMIN instructions to truncate.

In MPGdec, subphases of motion compensation phase like saturate, add block, and form pre-
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Figure 5.3 Speedups of VoS and SVector over SIMD.

diction achieve good speedups with SSE2 since they contain straightforward DLP loops with (sat-

urated) additions and subtractions. But VLD which is a significant portion of the total application

does not see any speedup resulting in a lower overall speedup than MPGenc.

SpeechRec achieves reasonable speedup with SSE2 (due to its use of 32b single precision floats,

the peak possible speedup is roughly 2X on Gaussian scoring). As expected, SIMD instructions

lead to significant speedups in the two most dominant subphases of the Gaussian scoring phase.

However, the overall speedup is limited by phases without DLP.

FaceRec fails to achieve significant speedups with SSE2 due to FaceRec’s use of double precision

64b operations as described above. However, it succeeds in recording a small overall speedup due

to the elimination of overhead instructions.

5.3 DLP - VoS and SVectors

This section compares the different DLP mechanisms—SIMD, VoS, and SVectors/SStreams. For

SIMD, this section uses ALP SIMD. RayTrace will not be discussed because it does not show DLP.

Figure 5.3 presents the speedups over SIMD achieved by SVectors and VoS. Overall, both

SVector and VoS are able to outperform SIMD in all of ALPBench’s DLP applications. That shows

both vector extensions to SIMD are beneficial and able to exploit more DLP than SIMD. Further,
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Figure 5.4 Execution time distribution for SIMD, VoS, and SVector.

SVector is able to exploit much of the benefit of VoS (at lower cost), and in fact, outperforms VoS

for one application.

Across all the applications, SVector achieves speedups between 1.05X and 4.27X (harmonic

mean 1.53X) over SIMD and VoS achieves speedups between 1.12X and 14.87X (harmonic mean

1.76X) over SIMD. Since the benefits of SVector over SIMD have been discussed for our applications

in [6], the following sections will focus on comparing VoS with SIMD and SVector.

The analysis will refer to Figure 5.4, which shows the execution time distributions of SIMD,

SVectors, and VoS in all the applications, normalized to the total time of SIMD. For an out-

of-order processor, it is generally difficult to attribute execution time to different components.

Following prior work [32], we follow a retirement-centric approach. Let r be the maximum number

of instructions that can be retired in a cycle. For a cycle that retires a instructions, we attribute

a/r fraction of that cycle as busy, attributing 1/r cycle of busy time to each retiring instruction.

We charge the remaining 1 - a/r cycle as stalled, and charge this time to the instruction at the top

of the reorder buffer (i.e., the first instruction that could not retire). This technique may appear

simplistic, but it provides insight into the reasons for the benefits seen.

We categorize instructions as: Vector memory (VecMem) (for SVector and VoS), SIMD memory

(SIMDMem), SIMD ALU (SIMDALU), Vector ALU (VecALU) and all others. In Figure 5.4, the
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lower part of the bars shows the busy time divided into the above categories, while the upper part

shows the stall components. The busy time for a category is directly proportional to the number

of instructions retired in that category. We also note that the “other” category includes overhead

instructions for address generation for SIMDMem instructions and SIMD loop branches; therefore,

the time spent in the DLP part of the application exceeds that shown by the SIMD (and vector)

category of instructions.

5.3.1 VoS versus SIMD

This section compares VoS with SIMD.

Reduction in busy time: The reduction of busy time is defined as the decrease from SIMD’s

(SIMDMemBusy +SIMDALUBusy +OtherBusy) to VoS’s (V ecMemBusy +V ecALUBusy +

OtherBusy). In all of the applications, the busy times are reduced because of the instruction

count reduction from vectorizing SIMD loops with VoS instructions. As VoS memory and compute

instructions replace loops of SIMD memory and compute instructions, respectively, the instruction

count is drastically reduced. Further, since the overhead instructions (e.g., address calculations,

loop counting, etc.) are eliminated in the VoS code, shorter OtherBusy time results.

All applications except MPGdec have noticeable reductions. Reduction is small in MPGdec

because IDCT could not be vectorized (Section 3.1), which is a significant portion of MPGdec.

The small reduction comes from the use of VoS instructions in motion compensation.

On the other hand, FaceRec has the most reduction (percentage-wise) mainly because of the

use of long vectors. As the maximum vector length of 64 is used in FaceRec, each VoS instruction

represents 64 SIMD instructions and the number of VoS instructions is roughly 1/64 of the number

of SIMD instructions.

The busy time reductions are noticeable (about 42%) in both MPGenc and SpeechRec. Never-

theless, the reduction is partly offset because VoS’s vertical reduction loops used in both applications

introduce other new overhead instructions.

Reduction in DLP Mem stall: This is defined as the reduction from SIMD’s SIMDMemStall
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to VoS’s (SIMDMemStall + V ecMemStall). In SIMD, the instructions (memory and compute)

in a SIMD loop are queued in the reorder buffer (ROB) and retire from the buffer in program

order after completion. The number of SIMD memory instructions that can be issued in parallel

is therefore limited by the size of the ROB and the distribution of memory instructions in the

SIMD loops. On the other hand, a vector memory instruction gathers up to 64 SIMD memory

accesses but only takes up one entry in the ROB. As a result, VoS memory instructions allow much

more memory-level parallelism to be exploited when compared with SIMD and hence cause fewer

memory stalls. This is particularly beneficial for applications with high L2 miss rates and systems

with long memory latencies.

For our application suite, FaceRec and SpeechRec have the largest L2 working sets and miss

rates (Section 5.6.1) and so see the largest reductions in memory stall time. MPGenc and MPGdec,

on the other hand, have high L1 and L2 hit rates and so see modest benefits.

Reduction in DLP ALU stall: This is classified as the difference between SIMD’s SIMDALUStall

and VoS’s (SIMDALUStall + V ecALUStall). Overall, VoS results in a reduction in DLP ALU

stalls for the following reasons: In SIMD, the number of SIMD compute instructions that can be

issued in parallel is limited (1) by the size of the reorder buffer (ROB) and the distribution of

independent compute instructions in the SIMD loops and (2) by the availability of the functional

units (2 multipliers and 3 adders). In VoS, on the other hand, (1) a vector instruction only takes

up one ROB entry while expressing up to 64 indepdent SIMD operations, making the ROB size

less of a factor and (2) VoS supports more functional units (8 multipliers and 8 adders2) than

SIMD. However, VoS does not completely eliminate DLP ALU stall time for the following three

key reasons: (1) As described in Section 2.3.2.2, VoS does not chain a memory instruction with

a dependent compute instruction. Hence, all vector load dependent vector compute instructions

need to wait for the whole vector to be loaded from the memory before executing. (2) The vertical

reductions of VoS are done after the main computation (versus SIMD’s vertical reductions that

overlap with the main computation in the SIMD loop) and the dependency between instructions

from different reduction loop iterations are exposed as stall time. (3) For MPGdec, the IDCT loop

2The functional units are arranged in four lanes and appear as two resources (Section 2.3.2). Each resource
contains 4 multipliers and 4 adders.
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does not use VoS instructions and so shows negligible reductions.

Reduction in other stall: As the VoS programming model eliminates the need for SIMD loops,

the reduction in other stalls comes from a reduction in the overhead instructions in the SIMD

loops. However, this reduction is offset by the overhead instructions introduced in VoS’s reduction

operations. This effect is most noticeable in SpeechRec because all of SpeechRec’s VoS-enhanced

code involves frequent reductions of short vectors. On the other hand, while MPGenc also in-

volves frequent reductions of short vectors, the other VoS-enhanced subphases (block prediction,

quantization, and inverse quantization) help alleviate this negative effect.

5.3.2 VoS versus SVector

This section compares VoS with SVector.

Reduction in busy time: The reduction of busy time is defined as the decrease from SVector’s

(SIMDMemBusy+V ecMemBusy+SIMDALUBusy+OtherBusy) to VoS’s (V ecMemBusy+

V ecALUBusy + OtherBusy). In all of the applications, the busy times are reduced because of

the instruction count reduction from vectorizing SIMD loops with VoS instructions. As VoS com-

pute instructions replace loops of SVector’s SIMD compute instructions, the instruction count is

noticeably reduced. Further, since the overhead instructions for loop counting are eliminated in the

VoS code, shorter OtherBusy time results. FaceRec has the largest percentage decrease because

the vector instructions operate on the maximum vector length and each is equivalent to 64 SIMD

operations. On the other hand, MPGdec sees the smallest decrease since VoS is not applicable to

the IDCT code which is a major part in the application. Nevertheless, vectorizing motion compen-

sation brings a slight reduction from SVector.

DLP Mem stall: The difference between the (SIMDMemStall+V ecMemStall) of SVector and

VoS is small in MPGdec and SpeechRec. This is because both VoS and SVector use vector memory

instructions at the same DLP regions.

In FaceRec, streaming instructions are used in SVector and result in almost no V ecMemStall.
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This is because SVector’s stream load instruction is retired before the loads complete, at the cost

of a slightly more complex exception model [6]. However, the dependent SIMD instructions are

stalled if the data is not available. Hence, the original memory stall becomes an ALU stall. This

effect can be seen by comparing the SIMDALUStall of SVector and SIMD. Had FaceRec been

enhanced with SVectors (vs. SStreams) instructions only, there would be a noticeable amount of

V ecMemStall in the SVector case.

DLP ALU stall: When comparing the (V ecALUStall + SIMDALUStall) of VoS and SVector,

SVector has the smaller stall time except for FaceRec. This is attributed to SVector’s ability to

chain (i.e., forward) a memory instruction with a dependent compute instruction. In SVector, the

scheduler always checks the availability of the source SVR elements before issuing a SIMD compute

instruction. Therefore, instructions that are dependent on vector loads can execute as soon as

the corresponding vector elements have arrived and need not to wait for the whole vector to be

fetched. On the other hand, the lack of memory-compute chaining support in VoS mentioned in

Section 5.3.1 (Reduction in DLP SIMD stall) causes compute instructions’ latencies to be exposed

as stall time. This difference gives SVector the advantage and thus SVector has fewer stalls than

VoS in MPGenc, MPGdec, and SpeechRec. For FaceRec, due to the retirement model of SStreams

described above, SVector suffers a significant amount of (perceived) ALU stall.

Furthermore, part of VoS’s ALU stalls in MPGenc, SpeechRec, and FaceRec occur becauase

VoS’s tree reductions are carried out separately after the main computation. Consequently, the

tree reductions cannot be overlapped by other computations and result in stalls.

Other stall: MPGenc, SpeechRec, and FaceRec all contain reduction operations. In VoS, reduc-

tion operations introduce overhead instructions and can increase OtherStall. In SpeechRec and

FaceRec, since the SIMD computations that contain reduction operations are the major parts of

the applications, there is an increase in OtherStall. The amount of increase of OtherStall depends

on the vector lengths. In FaceRec, the long vectors (64 records) used in FaceRec result in relatively

less frequent reductions and thus less increase in OtherStall. In SpeechRec, on the other hand, the

short vectors (10 records) and frequent reductions cause more noticeable increase in OtherStall,
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and this stall time is mainly responsible for VoS’s slowdown from SVector.

5.4 ILP

Table 5.2 gives instructions-per-cycle (operations per cycle) achieved on AlpSim and x86 instruc-

tions per cycle (microinstructions per cycle) achieved on P4Sys. The IPC values for AlpSim and

P4Sys cannot be directly compared because they do not use the same instruction set, processor

or memory parameters. Rather, P4Sys data represents a real 3.06 GHz system and AlpSim data

represents a simulated 4 GHz system.

Table 5.2 Instructions per cycle achieved on AlpSim and P4Sys for single-thread ap-
plications. For the ALP SIMD case, the number of subword operations retired per
cycle is also given within square brackets. For P4Sys, x86 microinstructions per cycle
is given in parenthesis.

AlpSim P4Sys (Pentium 4)

App Base SIMD Base SIMD
MPGenc 1.20 1.23 [4.24] 1.45 (1.87) 0.70 (1.03)
MPGdec 1.38 1.17 [3.31] 1.26 (1.73) 0.73 (1.14)
RayTrace 1.33 N/A 0.48 (0.73) N/A
SpeechRec 0.35 0.39 [0.67] 0.38 (0.57) 0.34 (0.45)
FaceRec 0.32 0.30 [0.48] 0.51 (0.61) 0.43 (0.47)

FaceRec and SpeechRec fail to achieve large ILP due to their working sets not fitting in caches

(Section 5.6). Other applications show reasonable ILP on AlpSim. However, the SIMD versions

of MPGenc and MPGdec and the base version of RayTrace achieve lower IPC on P4Sys than on

AlpSim. Specifically for the SIMD versions of MPGenc and MPGdec, as described in Section 5.2,

the longer SSE2 latencies and the lack of true 128-bit functional units lower the IPC on P4Sys. For

RayTrace, P4Sys sees lower IPC than AlpSim due to three main reasons. First, longer FP laten-

cies and longer repetition intervals (lower throughput) of the FP units of P4 reduce performance.

Second, the smaller 8K L1 cache of P4 further reduces the performance since RayTrace achieves

lower hit rates with an 8K L1 data cache compared to a 32K L1 of AlpSim (see Figure 5.6 in Sec-

tion 5.6.1). Third, the much deeper pipeline of P4 reduces performance since branch misprediction

rate is somewhat high (4%) and 10% of all instructions are branches. However, P4Sys sees higher

IPC for some applications due its lower frequency, L2 hardware prefetcher, and differences in the
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ISA (e.g., x86 ISA uses far more register spill instructions than SPARC ISA used with AlpSim).

Although SpeechRec and FaceRec have low ILP due to the high memory latencies, we observed

that their IPC values become higher (1.5 and 1.3, respectively, with SIMD) when the memory

latency is reduced to 42 cycles to simulate a 500 MHz processor or a 500 MHz frequency setting on

a processor with frequency scaling. Further, we noticed that, reducing the fetch/retire width from

4 to 2 reduces the IPC of SIMD versions of MPGenc, MPGdec, and RayTrace by 35%, 33%, and

38%, respectively. This again underscores the importance of ILP for these applications.

5.5 Interactions Between TLP, DLP, and ILP

This section explores the interaction between TLP, DLP, and ILP. For DLP, we use ALP SIMD.

5.5.1 Interaction between TLP and DLP

Most DLP sections in our applications occur within the parallel portions of the code; i.e., we have

only few DLP sections in the sequential parts of the code. Consequently, when we exploit DLP and

TLP together, DLP causes the parallel sections to execute faster. Therefore, according to Amdahl’s

law, the serial sections become more dominant due to the use of DLP. For the following discussion,

let NThrdSpeedupNoDLP be

Execution time of non−DLP N−thread application

Execution time of non−DLP 1−thread application

and NThrdSpeedupDLP be

Execution time of DLP N−thread application

Execution time of DLP 1−thread application

Table 5.3 gives the ratio of NThrdSpeedupNoDLP/NThrdSpeedupDLP for each application for

N = 1, 4, 8, and 16 threads (obtained on AlpSim using 1 cycle perfect memory latencies). A ratio

higher than 1.0 shows a reduction of TLP scalability due to the use of DLP (SIMD) instructions.

Specifically, we see larger ratios for MPGdec and SpeechRec because they have relatively large

serial sections that are devoid of DLP and significant portions of DLP within the thread-parallel

sections. Further, note that the above ratio increases with the number of threads for MPGdec and
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SpeechRec limiting their TLP scalability in the presence of DLP. This can have a significant impact

on the TLP scalability of emerging multicore/multithreaded commercial processors that already

support SIMD instructions. The above ratio stays close to 1 for MPGenc and FaceRec since they

do not have large serial sections.

Table 5.3 Ratio NThrdSpeedupNoDLP / NThrdSpeedupDLP for 1, 4, 8, and 16 threads for all
applications with DLP.

App 1T 4T 8T 16T

MPGenc 1.00 0.99 1.01 1.09
MPGdec 1.00 1.12 1.27 1.55
SpeechRec 1.00 1.09 1.23 1.49
FaceRec 1.00 0.97 0.96 0.96

5.5.2 Interaction between DLP and ILP

Exploiting DLP in a given piece of code should theoretically reduce the amount of ILP present in

that section of code since one DLP instruction can replace multiple independent non-DLP instruc-

tions. Table 5.2 shows this decrease for all applications except MPGenc and SpeechRec with ALP

SIMD.

The exceptions occur for multiple reasons. First, on real processors, the DLP is usually ex-

ploited using separate resources. For instance, on Pentium processors and on AlpSim, the SIMD

instructions are executed in the FP pipeline. Therefore, exploiting SIMD in integer code allows the

otherwise idle FP pipeline to be utilized as well. This could increase the amount of ILP exploited

in a cycle. Second, the SIMD instructions can reduce contention to the critical processor resources

(e.g., load/store queue entries, cache ports) by combining several non-DLP instructions into one

DLP instruction. The reduced contention potentially allows more ILP to be exploited from a piece

of code. Third, SIMD code reduces the number of conditional branch instructions. This happens

mainly because SIMD reduces the number of loop iterations and the branches associated with

them. Further, some SIMD instructions like packed absolute difference, packed sum of absolute

difference (PSAD), or packed maximum and minimum can reduce data dependent branches used

in non-SIMD code.
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Figure 5.5 L2 cache hit rates. The rates are with SIMD for all applications except
RayTrace, for which it is without SIMD.

5.5.3 Interaction between TLP and ILP

The interaction between TLP and ILP is well known. On practical CMP systems, TLP can affect

the amount of ILP available to a particular thread. The behavior of the caches could change due

to the presence of multiple threads and could affect the ILP of each thread. As discussed later

(Figure 5.5 and Section 5.6), it is possible to have both positive and negative cache effects due

to multiple threads. For instance, false sharing in caches could reduce the ILP whereas sharing

of read-only data (or instructions) could increase the ILP of each thread. Table 5.4 gives the

percentage reduction of per thread IPC in a 16-thread CMP with respect to the IPC of a single-

thread processor. The IPC does not include the effect of synchronization instructions. We see that

multiple threads cause a small to modest reduction in per-thread IPC due to the effects discussed

above. This reduction is smallest in FaceRec due to some constructive data sharing among threads

in the L2 cache (see Section 5.6.1).
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Table 5.4 Percentage reduction of per thread IPC in the 16-thread CMP with re-
spect to the IPC of 1-thread processor. The IPC does not include synchronization
instructions or stall cycles caused by them.

Application MPGenc MPGdec RayTrace SpeechRec FaceRec

IPC Reduction 6.1% 8.8% 10.6% 7.8% 2.7%
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Figure 5.6 L1 cache hit rates. The hit rates are with SIMD for all applications except
for RayTrace, for which it is without SIMD.

5.6 Sensitivity to Memory Parameters

As expected, the parallelism of our applications is sensitive to the memory parameters. To under-

stand how different memory parameters impact the parallelism, this section describes the cache

hit ratios/working sets of our applications, how our applications scale with increasing frequency

(memory latencies), and the memory bandwidth requirement as the number of threads is increased.

5.6.1 Working sets

Figure 5.6 gives the L1 data cache hit ratios obtained using AlpSim with SIMD for different L1 cache

sizes (2 KB to 1024 KB). Using the concepts described in [19], all applications, except FaceRec,

have first-level working sets about 8 KB since the first knee of all hit-rate curves occurs around

8 KB. FaceRec has the first-level working set of 16 KB. Both RayTrace and MPGdec can further

benefit significantly from a cache size up to 64 KB. MPGenc sees a slight benefit if the cache size is

further increased to 64 KB. FaceRec and SpeechRec, however, do not benefit much from increasing

the cache size after 8 KB and 16 KB, respectively (up to 1 MB).

Figure 5.5 shows the shared L2 cache hit rates for different cache sizes (2 KB - 1024 KB) for
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both single-thread and four-thread versions of each application with SIMD. The L1 caches were

disabled for this experiment to study the effect of data sharing between multiple threads in L2. If

the threads share a significant portion of data and the single thread version achieves a given hit

rate with x KB, the four-thread version should be able to achieve the same or a better hit rate

with 4x KB of cache. Based on the data of Figure 5.5, we can see that only threads in FaceRec

share a significant portion of data since the four-thread version achieves better hit rates than the

single-thread version for a given cache size. This is because the threads in FaceRec share parts of

the large subspace matrix (database). Since we partition data among threads for all applications,

the threads in the other applications do not exhibit constructive sharing. Even FaceRec, which

exhibits some data sharing, does not share all the data in L2 since a significant portion of its

memory accesses still have to go to memory.

To summarize, first we see that three of our applications have very good cache hit rates whereas

two have low hit rates. Low cache hit rates reduce ILP when memory latencies are high. We also see

that increasing TLP demands larger caches to accommodate the working sets of our applications

since threads do not share much data.

5.6.2 Sensitivity to memory latency or processor frequency

Figure 5.7 shows the speedup achieved by the base (non-SIMD) and SIMD versions of each single-

thread application on AlpSim when the processor frequency is scaled from 4 GHz to 500 MHz.

For RayTrace, the results for non-SIMD single-thread version are shown. The time to access the

memory (and the memory bus) is decreased linearly from 240 cycles (at 4 GHz) to 30 cycles (at 500

MHz) (i.e., the L2 miss latency is the memory/bus access time plus 16 cycles for all frequencies).

The other parameters given in Table 4.1 are not changed. Specifically, the parameters used at 4

GHz are identical to those given in Table 4.1. Speedups reported for non-SIMD (SIMD) are with

respect to the non-SIMD (SIMD) single thread version of the application running at the lowest

frequency (500 MHz). Such frequency scaling data is important since many systems, especially

mobile systems running these media applications, run at lower frequencies. Further, many such

systems employ dynamic frequency scaling to run at lower frequencies than the maximum frequency

supported by the processor to reduce power and energy consumption. The following describes how
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Figure 5.7 Frequency Scalability. The SIMD data are with ALP SIMD for all appli-
cations.

each application scales when the frequency is increased from the lowest (500 MHz) to the highest

(4 GHz).

Figure 5.7 shows that the base cases of RayTrace, MPGenc and MPGdec scale well with in-

creasing frequency since most of their working sets fit in the caches. The base cases of FaceRec

and SpeechRec show poor scalability after 1 or 2 GHz. This is mainly due to their larger working

sets not fitting in caches (Figure 5.6).

Two factors affect the relative scalability between SIMD and non-SIMD versions of the same

application. On the one hand, the SIMD version has a lower computation to memory ratio than

the base case and hence is more sensitive to longer memory latencies. This is because the SIMD

case reduces loop overhead and address calculation overhead instructions, which are compute in-

structions. This effect causes the SIMD versions of MPGenc, MPGdec, and FaceRec to show lower

scalability. The effect is more prominent in MPGenc due to its use of small subwords; in that

case, SIMD can reduce the loop iteration and overhead significantly. On the other hand, the SIMD

version exposes more memory level parallelism to the out-of-order core – since the SIMD loops use
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fewer instructions per loop, the instruction window can contain a larger number of load instructions

than possible in the non-SIMD case. This effect gives the SIMD version better scalability when

the application has a significant L2 miss rate. Specifically, SpeechRec benefits from this effect.

Although, the SIMD version of FaceRec should benefit from the same effect since it has high L2

miss rates, the increase in memory level parallelism for the SIMD version of FaceRec is low due to

its use of double precision operations. That is, the number of additional loop iterations we can fit

in the instruction window is not large as that of SpeechRec.

To summarize, three out of five of our applications scale well with frequency. We see that higher

memory latencies affect applications with and without SIMD differently. SIMD versions of all our

applications except SpeechRec show somewhat poorer scalability with increasing frequency than

their non-SIMD counterparts.

5.6.3 Memory bandwidth

Figure 5.8 shows how memory bandwidth demand increases for each application (non-SIMD) with

the number of threads at 4 GHz. The results were obtained on AlpSim without ALP SIMD using

the same parameters used for obtaining Figure 5.1(b). MPGenc, MPGdec, and RayTrace have

relatively low bandwidth requirements since they have smaller working sets. However, FaceRec

and SpeechRec demand much larger memory bandwidth since their working sets do not fit in the

L2 cache. The increase in bandwidth generally follows the TLP speedup of applications, except for

RayTrace where the 16-thread version requires less memory bandwidth than the 8-thread version.

This is because the L1 hit ratio of the 16-thread case is far better than that for the 8-thread case due

to the working set getting divided into 16 in the 16-thread case. For all applications that have DLP,

SIMD versions will demand more bandwidth since they execute faster. These results show that

the bandwidth of MPGenc, MPGdec, and RayTrace can be fulfilled by existing memory systems

(assuming a maximum of 8.5 GB/s memory bandwidth on current personal computers with DDR2

memory). However, for SpeechRec and FaceRec, CMP systems that support 8 or more threads

will have to support a higher memory bandwidth than supported today on many general-purpose

systems [33].
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Figure 5.8 Memory bandwidth (in GB/s) at 4 GHz without SIMD.

Table 5.5 Application-level real-time performance obtained by single threaded versions
of our applications on a 3.06-GHz Pentium-4 processor with SSE2.

Application Performance

MPGenc 21.8 fps (704x480 DVD resolution)
MPGdec 166.3 fps (704x480 DVD resolution)
RayTrace 0.75 fps (512x512 resolution)
SpeechRec 9.0 words/sec.
FaceRec 152.1 130x150 images/sec.

5.7 Application-Level Real-Time Performance

Table 5.5 shows the application-level real-time performance results for each application on P4Sys

(Section 4). The results are for single-threaded applications with SSE2 (except for RayTrace). The

approximate performance for systems with a higher number of threads and lower frequencies can

be derived using the thread/frequency scaling results presented earlier. MPGdec already achieves

the required real-time performance on current systems. The performance of RayTrace is far from

real-time. Although MPGenc comes close to the required real-time performance of 30 frames

per second, larger inputs (e.g., HDTV) will demand much higher performance. Similarly, although

SpeechRec and FaceRec achieve reasonable performance with the given small input sets, much larger

inputs anticipated in the future (e.g., much larger vocabularies and dictionaries for SpeechRec,

higher resolution image/face recognition used with personal/database search, and much larger

image databases) will demand much higher processing capabilities.
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CHAPTER 6

RELATED WORK

There have been many studies that characterize the individual applications used in ALPBench.

Several papers characterize MPEG-2. Chen et al. [9] and Holliman and Chen [10] characterize

various phases of MPGdec on a real system and discuss and evaluate slice assignment policies, and

data vs. functional partitioning for parallelization. However, they do not perform a thread-scaling

or a frequency scaling study. We also modified MPEG encoder to use an intelligent motion search

algorithm and to use an optimized algorithm for discrete cosine transform. Iwata and Olukotun [11]

propose a number of coarse-grained parallel implementations of MPEG-2 decoding and encoding.

They evaluate the performance of these implementations on a multiprocessor, compare the perfor-

mance against a single and wide issue superscalar processor, and report results with multithreading

for four and eight processors. They also find that thread scalability of MPGenc is better than that

for MPGdec. However, they report eight thread results only with a single issue processor. We

do the TLP scalability study up to 16 threads using the same processor configuration. They also

report 50% speedup with MIPS based SIMD instructions for MPGdec. We report SSE2 speedups

for both MPGenc and MPGdec; we are able to achieve much higher speedups (2X) with SSE2 for

MPGdec. We also perform a frequency scalability study.

Turk and Pentland [34] discuss the theoretical underpinnings of the face recognition algorithms

and Beveridge et al. [35] describe the CSU face identification software used with this study. Mathew

et al. [17] characterize the features of Eigenface face recognition algorithm used in this study.

They characterize the architectural features such as cache hit rates, IPC on several embedded

architectures. In addition to these characterization, we analyze TLP and DLP in this application.

Vorbruggen [36] describes a similar face recognition algorithm used with SPEC CPU2000 but does
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perform an evaluation.

Ravishankar [37] describes the algorithms, data structures, inputs/outputs of Sphinx 3.3 used

with this study. Mathew et al. [14] provide a detailed analysis of CMU’s Sphinx speech recognizer;

they identify the three distinct processing phases (Section 3.5), and quantify the architectural

requirements for each phase. They also describe the large memory footprint and find the Gaussian

and search phases to be the dominant ones. They also developed a parallel version of Sphinx

that runs three major phases (i.e., feature recognition, Gaussian scoring, and search) using three

threads and report a 1.67 speedup. Instead of this type of functional partitioning, we parallelize

Sphinx3.3 using data partitioning (i.e., phases are divided into N symmetric threads). This method

gives better speedups and is more scalable. They also develop a special-purpose accelerator for the

dominant Gaussian scoring phase. The accelerator consists of specialized multipliers and adders to

perform the specific multiply accumulate operation done in the inner loop of Gaussian scoring. To

overcome the latency of FP multiply accumulate operations, they pipeline multiple independent

iterations. Instead of using a separate coprocessor, we use the SIMD units to exploit the DLP in

the Gaussian scoring phase.

Baugh et al. characterize and parallelize Sphinx2 [38].1 They divide Sphinx into multiple phases

and use work queues in between phases. Then they use asymmetric threads to execute each phase.

They also investigate using symmetric threads within each phase. In contrast, we use symmetric

threads that span both Gaussian scoring and search phases and do not use work queues. They

report speedups up to 2.7X using both asymmetric and symmetric threads (a total of 6 threads).

They also show preliminary results where they achieve speedups up to 6.8X with 10 threads. They

do not investigate exploiting DLP in this study.

Krishna et al. [15] analyze parameters affecting the performance of Sphinx2 speech recognition

software with special emphasis on the memory system. They also find poor cache performance

(Figure 5.6), poor memory reference predictability, and potential for using multiple threads albeit

with higher demands on the memory system. Based on the insights from that work, they propose

architectural SMT techniques to exploit the TLP in Sphinx [16]. They develop an architecture with

multiple speech processing elements that are capable of generating their own threads and report

1Sphinx2 has somewhat different Gaussian models than those used in Sphinx3.3 [16].
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good speedups (e.g., approximately 12X speedup with 16 speech processing elements and 4 thread

contexts per processing element). They also perform partitioning of search tree nodes; for thread

creation and synchronization, they use a fork/join model with a special barrier instruction (called

EPOCH) and locks. We use a similar approach to exploit TLP but also investigate DLP.

Woo et al. [19] present a characterization of a different version of RayTrace with other appli-

cations introduced with the SPLASH-2 benchmark. They also report working set characteristics

similar to those reported here and also report good TLP scalability. However, they do not study

the scalability of RayTrace with frequency. Nguyen et al. [18] also characterize RayTrace provided

with the SPLASH as a part of their work in evaluating multi-processor scheduling policies. They

also study the TLP scalability and identify the sources of speedup loss. However, they do not study

working sets or frequency scalability of this application.

In addition to the above studies that focus on the individual applications, there have been several

multimedia benchmark suites that target applications included in ALPBench and report their

characteristics. These include MediaBench [20], Berkeley multimedia workload [13], MiBench [21]

and EEMBC [22]. All these suites include MPEG encoder and decoder. Additionally, MiBench

includes the Sphinx2 speech recognizer, and both MediaBench and Berkeley multimedia workload

contain the RASTA speech recognizer. Berkeley multimedia workload also includes the POVray3

ray tracer as part of the suite. While all of the studies report single thread workload characteristics

of the media applications, they do not characterize DLP and TLP.

Using vector processing techniques to exploit DLP in the applications is not new. There is a

vast amount of literature on conventional vector architectures and their recent uniprocessor and

multiprocessor variations; e.g., Tarantula [25], out-of-order vectors [39], SMT Vectors [40], NEC

SX [41], Cray X1 [42], and Hitachi SR [43]. While these architectures focus on scientific and

engineering applications, VIRAM [44], CODE [45], T0 [24], and SCALE [46] are some of the

vector processors that target media applications. The MOM [47] ISA extends the subword SIMD

instruction set to exploit coarse-grained DLP in media applications. Most of these studies focus

on media kernels. Our work aims to study full media applications and also studies TLP, ILP, and

memory system related characteristics.

In summary, this work is different from each of the above works in one or more of the following
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ways. First, we concentrate on studying the parallelism in these applications. Specifically, we

characterize ILP, TLP, and DLP and also study the interaction between two forms of parallelism.

Second, we look at the complex media applications as a benchmark suite and attempt to identify

the features and parallelism common to all of them. Third, we do this study in the context of

general-purpose CMP processors. Fourth, we include vector extensions of the subword SIMD ISA

and study the corresponding vector architectures to analyze DLP in full media applications.
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CHAPTER 7

CONCLUSION

Complex media applications are becoming increasingly popular on general-purpose systems such as

desktops, laptops, and handheld systems. This thesis presents a suite of five such complex media

applications and characterizes the parallelism and performance of them.

Through our characterization, we find that these applications have multiple levels of parallelism

- TLP, DLP, and ILP. For TLP, we find that all our applications have coarse-grained TLP and most

of them show good thread scalability. As for DLP, we find that these applications produce good

speedups with subword SIMD. We also find that both SVector and Vector of SIMD (VoS) are able

to efficiently exploit coarse-grained DLP and achieve speedups over sub-word SIMD in ALPBench’s

DLP applications. Further, VoS is able to achieve speedups over SVector in three of the four appli-

cations. We also study the interaction between two forms of parallelism and find that exploitation

of DLP could reduce effectiveness of TLP. Further, we also study the effects of the memory sys-

tem on these applications, and report the different working sets, bandwidth requirements, and

memory latency tolerance in these applications. Our characterization of parallelism can be used

by processor/system architects and compiler writers to provide better support for complex media

applications.
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