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Abstract

Soft errors are a growing concern for processor reliability. Recent work has motivated architecture

level studies of soft errors since the architecture level can mask many raw errors and architectural

solutions can exploit workload knowledge. My dissertation focuses on the modeling and analysis of

soft error issues at the architecture level.

We start with the widely used method for estimating the architecture level mean time to failure

(MTTF) due to soft errors. The method first calculates the failure rate for an architecture level

component as the product of its raw error rate and an architecture vulnerability factor (AVF).

Next, the method calculates the system failure rate as the sum of the failure rates (SOFR) of

all components, and the system MTTF as the reciprocal of this failure rate. Both steps make

significant assumptions. We analyze the validity of the two steps using both mathematical analysis

and experiments. We find that although the AVF+SOFR method is valid for most current systems

under current raw error rates, for some cases it can lead to significant discrepancies. We explore

scenarios in which such discrepancies could occur in practice.

To find an alternative model that is not subject to such limitations, we propose a model and

tool called SoftArch that does not make the above AVF+SOFR assumptions. SoftArch is based on

a probabilistic model of error generation and propagation process in a processor. Our experiments

show that SoftArch does not exhibit the discrepancies the AVF+SOFR suffered. We apply SoftArch

to an out-of-order processor running SPEC2000 benchmarks. Our results motivate selective and

dynamic architecture level soft error protection schemes. Next, as another application, we quantify

the impact of technology scaling on the processor soft error rate, taking the architecture level

masking and workload characteristics into consideration.

By using the SoftArch tool, we observe that there is much architecture level masking and that

the degree of such masking can vary significantly across workloads, individual units, and workload
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phases. Thus, it is natural to consider the architecture level solutions to take advantage of such

variations. In order to do that, one would need reasonably accurate estimate of the amount of

masking effect in real time. For most current systems, AVF is an accurate abstraction of the

architecture level masking effect. Existing solutions for estimating AVF are often based on offline

simulators and usually hard to implement in real processors. In this dissertation, we propose a

novel way of estimating AVF online, using simple modifications to the processor. Our method

applies to both logic and storage structures on the processor and does not require complex offline

calibration for different workloads. We test our method with a widely used simulator from industry

for SPEC benchmarks. The results show that the method provides reasonably accurate run-time

AVF estimates.

To sum up, this dissertation studies the architecture level soft error modeling and analysis

problems. It provides new techniques to examine and take advantage of architecture level soft error

behavior. We apply our tool to investigate the impact of technology scaling on soft errors. We also

propose an efficient online AVF estimation algorithm.

iii



Acknowledgements

This dissertation would not have been possible without the support of many people.

First, I would like to express my deep gratitude to my thesis advisor, Prof. Sarita Adve, for her

constant guidance and invaluable support through my graduate study. Her insights and attention

to detail were instrumental in helping me achieve my academic goals. I also want to thank Dr.

Pradip Bose and Dr. Jude Rivers from IBM research, whom I have been fortunate enough to work

with during my Ph.D. research. They provided vital industrial perspectives for all my research

work.

I am also indebted to the members of my dissertation committee, Prof. Joseph Torrellas, Prof.

Craig Zilles, Prof. Yuanyuan Zhou and Dr. Jude Rivers for their critical feedback, especially at

my preliminary exam and thesis defense.

I would like to thank the members of the RSIM group, especially Alex Li, and Pradeep Ra-

machandran, for their important feedback during my practice talks for the prelim and thesis defense.

Finally, I would like to extend my thankfulness to my family for their support throughout all

these years. I thank my wife, Jing Liu, for her patience and love that helped me survive the hardest

time.

iv



Table of Contents

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation and goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2.1 Limitations of AVF+SOFR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 SoftArch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.3 Online AVF estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Chapter 2 Assumptions and limitations of the AVF+SOFR method . . . . . . . 5
2.1 AVF+SOFR method and assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 The AVF step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 The SOFR step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 AVF+SOFR assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 AVF+SOFR limitations: an analytical view . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 The AVF step: MTTF for an isolated functional or storage unit . . . . . . . 10
2.2.2 The SOFR step: MTTF for multiple functional and/or storage units . . . . . 13
2.2.3 Summary of implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 AVF+SOFR limitations: an experimental view . . . . . . . . . . . . . . . . . . . . . 16
2.3.1 Experimental methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Chapter 3 SoftArch model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 SoftArch details: a model for architecture level MTTF . . . . . . . . . . . . . . . . . 27

3.2.1 Error generation model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.2 Error propagation model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.3 Program failure and time to failure . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.4 Determining mean time to failure (MTTF) . . . . . . . . . . . . . . . . . . . 32

3.3 Implementation of the SoftArch model . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.1 Integration with timing simulation . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.2 Estimation of λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.3 Estimation of elogic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.4 Tracking basic error set Ei for value vi . . . . . . . . . . . . . . . . . . . . . . 37
3.3.5 Identifying values for program failure . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Experiments and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4.1 Compare SoftArch to the Monte-Carlo method . . . . . . . . . . . . . . . . . 38

v



3.4.2 A case study with SoftArch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4.3 Another application of SoftArch: architecture level scaling analysis . . . . . . 44

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Chapter 4 Online estimation of the AVF . . . . . . . . . . . . . . . . . . . . . . . . 51
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 AVF estimation algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.1 Overview of the algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2.2 Determining potential failure . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2.3 Determining N – the number of error injection samples needed . . . . . . . . 57
4.2.4 Determining M – the interval between successive error injections . . . . . . . 59
4.2.5 Hardware support and overhead . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2.6 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Experimental methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Chapter 5 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.1 Soft error modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2 AVF estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3 Soft error protection schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.4 Other related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Chapter 6 Conclusions and future directions . . . . . . . . . . . . . . . . . . . . . 76
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.2 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2.1 Architecture level solution for soft errors . . . . . . . . . . . . . . . . . . . . . 77
6.2.2 Unified system wide adaptation framework . . . . . . . . . . . . . . . . . . . 78

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Author’s Biography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

vi



Chapter 1

Introduction

1.1 Motivation and goal

CMOS technology scaling has brought tremendous improvement in performance for semiconductor

devices. As we move to sub-100nm lithographies, however, soft errors are emerging as a new

challenge in processor design. Soft errors or single event upsets are transient errors caused by high

energy particle strikes such as neutrons from cosmic rays [1, 2] and alpha particles from packaging

material. Such strikes can flip the bit stored in a storage cell and change the value being computed

by a logic element. Although a consensus on exact soft error rates is still lacking, there is a growing

concern about the phenomenon.

Recent work has shown that many of the raw errors that occur at the device and circuit level

may be masked at the architecture level, potentially motivating lower cost protection mechanisms.

For example, Wang et al. report that about 85% of the raw errors are masked at the architecture

level [3]. By considering solutions at the architecture level, knowledge of workload behavior can be

exploited, leading to potentially more efficient protection solutions (e.g., [3, 4]). These observations

motivate the need for comprehensive models and tools to study soft errors at the architecture level

and solutions at the architecture level to remedy the problem.

In this dissertation, we focus on the architecture level modeling and analysis of the soft error

problem.

1.2 Contributions

This dissertation makes three key contributions.
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1. Analyzes the assumptions and limitations of the AVF+SOFR method [5].

2. Proposes SoftArch, a new architecture level model and tool for modeling and analyzing soft

errors at the architecture level [6].

3. Proposes a novel method for online estimation of AVF for soft errors [7].

We now discuss each of the contributions in more detail.

1.2.1 Limitations of AVF+SOFR

The first contribution of this dissertation is a detailed analysis of the limitations of the widely

used method for estimating MTTF due to soft error – the AVF+SOFR method. First, our work

builds a fundamental understanding of the AVF+SOFR method at the architecture level. It explic-

itly identifies some fundamental assumptions in the AVF+SOFR approach and shows that these

assumptions depend on three parameters. We then use both mathematical and experimental tech-

niques to check the validity of the above method across a large design space. We find that the

above method is valid for most of the realistic cases under current raw error rates. However, for

some combinations of large systems, long running workloads with large phases, and/or high raw

error rates, the AVF+SOFR method can lead to significant discrepancies.

1.2.2 SoftArch

In search for an alternative model, we propose SoftArch, to enable analysis of soft errors at the

architecture level in modern processors. SoftArch is based on a probabilistic model of error gener-

ation and propagation process in a processor. Compared to prior architecture level tools, SoftArch

is more comprehensive or faster. What is more important, our experiments show that SoftArch

does not need to make the same assumption that AVF+SOFR method does. The MTTF computed

by SoftArch has less than 2% error relative to the MTTF value calculated using the Monte-Carlo

method for the whole wide design space we have studied.

We also use SoftArch to quantify the MTTF of a modern out-of-order processor and the con-

tribution of different structures to the failure rate, for various SPEC benchmarks. Our results

are consistent with previous studies. We show that not only is there significant architecture level
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masking effects, there is substantial inter- and intra-application variation in MTTF or failure rate

and substantial application-dependent variation that contributes to the failure rate from different

structures. These results motivate selective protection of only the most vulnerable structures and

dynamic, application-aware protection schemes.

As another application, we apply SoftArch to quantify the impact of technology scaling on the

processor soft error rate, taking the architecture level masking effects and workload characteristics

into consideration. For our evaluation, we use SoftArch to study the AVF and soft error rate

(SER) for different structures in a modern superscalar processor running SPEC2000 benchmarks.

We compare the SERs across four different technologies ranging from 180nm to 65nm with the

same microarchitecture. We find that with scaling, the AVF for logic structures often decrease,

the AVF for storage elements remains roughly unchanged, and the MTTF for the full processor

roughly follows the trend for the raw SER of storage structures (i.e., the MTTF decreases from

180nm to 90nm and increases from 90nm to 65nm.) This study assumes the number of transistors

on the chip stays the same.

1.2.3 Online AVF estimation

Using SoftArch, we find that there is much architecture level masking and that the degree of such

masking can vary significantly across workloads and also individual workload phases. This pro-

vides opportunities for an architecture level solution to take advantage of the application behavior

variation. For that to happen, it is important to be able to accurately estimate the masking effect

which is captured by the architecture vulnerability factor (AVF) for most current systems. Existing

solutions for estimating AVF are often based on off-line simulators and are usually hard to imple-

ment in real processors. This dissertation proposes a novel way of estimating AVF on-line while the

program is running. We propose some simple hardware modifications for the processor and use an

algorithm to effectively estimate AVF. It is a general method that applies to both logic and storage

units on the processor. Compared to previous methods for estimating AVF, our method does not

require offline simulation with simulators, nor does it require calibration for different workloads.

We test our method with SoftArch coupled to a widely used simulator from industry and SPEC

benchmarks. The results show that our method provides accurate run-time AVF estimates.
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1.3 Organization

The rest of the dissertation are organized as follows. Chapter 2 analyzes the current state-of-the-art

AVF+SOFR soft error modeling method. Chapter 3 proposes SoftArch, an architecture level model

and tool to analyze soft errors at the architecture level. Chapter 4 proposes a new efficient on-line

AVF estimation method. Chapter 5 discusses related work and Chapter 6 presents the conclusions

of this dissertation and possible avenues of future work.
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Chapter 2

Assumptions and limitations of the
AVF+SOFR method

The AVF+SOFR method has been widely used in estimating processor MTTF values. The method-

ology computes MTTF using two simple steps [8], illustrated in Figure 2.1. The AVF step calcu-

lates the failure rate of each individual processor component (e.g., ALU, register file, issue queue)

as the product of its raw failure rate and a factor that accounts for architecture level masking

effect. Mukherjee et al. formalize the notion of the architecture level masking effect as the ar-

chitectural vulnerability factor (AVF) [8] and show how to calculate it for various architectural

components [9, 8]. The SOFR step calculates the failure rate of the entire processor (or any

system) as the Sum Of the Failure Rates (SOFR) of the individual components of the processor or

system (as calculated in the AVF step). It calculates the MTTF of the processor (or system) as

the reciprocal of its failure rate.

Figure 2.1 The AVF and SOFR steps for MTTF.

Both the AVF and SOFR steps implicitly make certain assumptions about the statistical prop-

erties of the underlying error process. While these assumptions, described below, may hold for the

raw error process, it is unclear whether they hold for the architecturally masked process. Our goal
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is to examine the validity of these assumptions underlying the mathematical basis of the AVF and

SOFR steps, and the implications of these assumptions for evaluating soft error MTTF for real

systems.

Next, we will analyze the assumptions through mathematical analysis and experiments. Our

rigorous mathematical methods analyze the limits and value ranges of various parameters within

which the AVF+SOFR assumptions hold true. In order to validate the conclusions and quantify

the limits, we design simulation-based experiments to explore a wide design space.

We find that the impact of the above assumptions on the MTTF calculation depends on three

parameters related to the environment, system, and the workload respectively: (1) the raw error

rate of the individual components, (2) the number of components in the system on which SOFR

is applied, and (3) the length of the full execution or the longest repeated phase of the workload.

Specifically, our evaluations show the following.

1. For systems where the individual components have small raw error rates, the total number

of components is small, and where the workload consists of repeated executions of a short

program, the AVF+SOFR assumptions introduce negligible error. To our knowledge, previ-

ously published work using the AVF+SOFR methodology considers systems and workloads

that obey the above constraints. This result is by itself significant since it, for the first time,

validates the mathematical basis for using the AVF+SOFR methodology.

2. Our results show that the AVF+SOFR method can result in large discrepancies in MTTF (up

to 100%) for individual components that have large raw error rates (e.g., as would be the case

in space or in accelerated tests or with components consisting of many millions of bits) and/or

systems that have many components (e.g., large clusters of thousands of processors) and/or

long-running workloads with different utilization characteristics over large time windows (e.g.,

server workloads that run at high utilization in the day but low utilization in the night). This

problematic part of the design space is certainly much smaller and less common than the

space over which AVF+SOFR is valid; however, it is not negligible and represents several

realistic systems. Our results give a note of caution against blind use of the AVF+SOFR

method for such systems.

We discuss the AVF+SOFR method and their assumptions in detail in Section 2.1. Section 2.2
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and Section 2.3 provide an analytical and an experimental view.

2.1 AVF+SOFR method and assumptions

2.1.1 The AVF step

In a given cycle, only a fraction of the bits in a processor storage component and only some of

the logic components will affect the final program output. A raw error event that does not affect

these critical bits or logic components has no adverse effect on the program outcome. Mukherjee et

al. used the term architecture vulnerability factor (AVF) to express the probability that a visible

error (failure) will occur, given a raw error event in a component [8]. The AVF for a hardware

component can be calculated as the percentage of time the component contains Architecturally

Correct Execution (ACE) bits (i.e., the bits that affect the final program output). Thus, for a

storage cell, the AVF is the percentage of cycles that this cell contains ACE bits. For a logic

structure, the AVF is the percentage of cycles that it processes ACE bits or instructions.

Mukherjee et al. calculate the FIT rate of a processor component as the product of the com-

ponent’s AVF and its raw FIT rate (i.e., the FIT rate of the component if every bit were ACE).

Denoting the raw FIT rate of the component as λc (also called the raw soft error rate or raw SER)

and its AVF as AV Fc, they derive the MTTF of the component as:

MTTFc =
1

λc · AV Fc

(2.1)

We show in Section 2.2.1 that an assumption underlying the above equation is that the time to

failure for a program is uniformly distributed over the program. We explore the cases where this

assumption is and is not true to assess the validity of the AVF step.

2.1.2 The SOFR step

Sum of failure rates (SOFR) is an industry standard model for combining failure rates of individual

processor (or system) components to give the failure rate and MTTF of the entire processor (or

system). Let the system contain k components with failure rate of component i as FailureRatei

(which is assumed to be the reciprocal of the MTTF of component i or 1/MTTFi). The SOFR
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model calculates the failure rate (FailureRatesys) and the MTTF (MTTFsys) of the system as:

FailureRatesys =
k

∑

i=1

FailureRatei =
k

∑

i=1

1

MTTFi
(2.2)

MTTFsys =
1

FailureRatesys

(2.3)

The SOFR model makes two major assumptions [10]. First, it assumes that each component has

a constant failure rate (i.e., exponentially distributed time to failure) and the failures for different

components are independent of each other. Section 2.2.2 shows that architectural masking may

violate this assumption in some cases. Second, the SOFR model assumes a series failure system; i.e.,

the first instance of a component failure causes the entire processor to fail. This assumption holds

if there is no redundancy in the system. Since our focus is on the impact of program-dependent

architectural masking on the statistical properties of the failure process, we continue to make this

assumption as well and focus only on the first assumption.

2.1.3 AVF+SOFR assumptions

A key assumption behind the AVF step is that the probability of failure due to a soft error in a

given component is uniform across a program’s execution. This allows a single AVF value to be

used to derate the raw error rate of a component. The uniformity assumption is reasonable for raw

error events since the probability of a high energy particle strike is no different at different points

in the program’s execution for most realistic scenarios. However, it is unclear that the assumption

holds after incorporating architectural masking. Similarly, a well-documented assumption for the

SOFR step is that the time to failure for a given component follows an exponential distribution.

Again, the assumption is reasonable and widely accepted for raw error events, but it is unclear that

it holds for failures after architectural masking.

Thus, both the AVF and SOFR steps make assumptions about the error process that may be

considered questionable, once architectural masking effects are taken into account. The question we

address is: Under what conditions (if any) does the violation of the above AVF+SOFR assumptions

introduce significant errors in the calculation of the MTTF?
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2.2 AVF+SOFR limitations: an analytical view

This section uses mathematical analysis to understand the limits of the basic assumptions underly-

ing the AVF+SOFR methodology for estimating MTTF for soft errors. Later sections back these

results with detailed Monte-Carlo simulations for actual workloads.

Our analysis makes two assumptions that are also made by the AVF+SOFR methodology.

(1) Inter-arrival times for raw errors in a component are independent and exponentially dis-

tributed with density function λe−λt. It is reasonable to assume that the time to the next high

energy particle strike is independent of the previous strike and is exponentially distributed (the

process is memoryless). In practice, there is some device- and circuit-level masking, which could

possibly render the raw error process that is subject to architectural masking as non-exponential.

In our experiments, however, we do not have this low-level masking information available; we there-

fore assume the best case for the AVF+SOFR methodology – that the inter-arrival time for raw

errors before any architectural masking is an exponential process with density function λe−λt. We

refer to λ as the raw error rate.

(2) The workload runs in an infinite loop with similar iterations of length L. This work considers

the effect of real application workloads. For a workload that runs for a finite time, there is a

possibility that no failure occurs during its execution. For a meaningful interpretation of MTTF

for a system running such a workload, we assume that the workload runs repeatedly in a loop until

the first failure. All iterations of this loop are identical and each represents a single invocation of

the original workload. We refer to the size of this loop iteration as L. Workloads that are naturally

infinite also run in a loop. We assume that such a workload also consists of identical iterations,

each of size L. This assumption is trivially satisfied since L can potentially be infinite. (All the

prior work on AVF+SOFR has been in the context of finite workloads.)

We additionally assume that program failure occurs if a raw error is not masked. Although

the time to failure and the time to the next raw error event are continuous random variables, for

convenience, we often consider time in units of processor cycles below (for architectural masking,

for a given cycle, all raw error events during any part of the cycle are either masked or not masked).
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Figure 2.2 Sequence of raw error events. ti is the time between two raw error events
and is exponentially distributed. X is a random variable representing the time to the
first raw error event that is not masked and leads to program failure. The figure shows
a case where X = t1 + t2 + t3.

2.2.1 The AVF step: MTTF for an isolated functional or storage unit

The AVF step computes the MTTF of a single component of the processor using equation 2.1. We

examine the validity of this step by deriving the MTTF of a given component from first principles.

Figure 2.2 illustrates a sequence of raw error events with inter-arrival times of t1, t2, .., tn, ...

Each of these times is an instance of a random variable, say T, with exponential density function

λe−λt. Each raw error has some probability of being masked. Failure occurs at the first raw error

that is not masked.

Let X be the random variable that denotes the time to failure. Then X = t1 + t2 + .. + tk if

the first k − 1 raw errors are masked and the kth raw error is not masked. Thus, X =
∑K

i=1 ti,

where K is a random variable such that K = k denotes the event that the first k− 1 raw errors are

masked and the kth raw error is not masked.

Now the MTTF of the component is simply the expected value of X, E(X). Using a standard

result for the expectation of a sum of random variables [11], it follows that: MTTF = E(X) =

E(K)E(T ). We know that E(T ) = 1
λ

(this would be the MTTF if there were no architectural

masking and every raw error resulted in failure). Thus,

MTTF = E(K)
1

λ
(2.4)

Comparing with equation 2.1, to validate the AVF step, we would need to show that E(K) =

1
AV F

for all cases. However, E(K) depends on the workload characteristics and the raw error rate

λ, and, in general, cannot be analytically derived. Nevertheless, with certain assumptions, we show

that we can derive E(K) to be 1/AVF, validating the AVF step for cases where the assumptions

hold. We then show counter-examples where these assumptions do not hold, and the MTTF derived
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from first principles is significantly different from the MTTF derived from the AVF equation 2.1.

AVF is valid when L · λ → 0

We first show that if the product of the raw error rate and the program loop size is very small,

then E(K) = 1
AV F

(and so the AVF equation holds). Below we show that in this case, any of the

L cycles in the program loop are equally vulnerable to a raw error event occurrence. From this,

it will follow that the expected value of K (i.e., the count of the first raw error event that is not

masked) is the same as 1/AVF.

Let T be the cycle count at which the next raw error event occurs. Then, without loss of

generality, T mod L is the cycle count for this event relative to the start of the loop iteration.

Appendix A of an extended version technical report [12] shows that if L · λ → 0, the random

variable T mod L follows a uniform distribution over [0, L]. In other words, for very small L · λ,

any of the L cycles of program execution are equally vulnerable to a raw error event occurrence.

Thus, the probability that the next raw error event occurs at cycle i (relative to the start of

the loop iteration) is 1/L. Let pi be the probability that a raw error event that occurs at cycle i

(relative to the start of the loop iteration) is masked (pi is 0 or 1 for a given program execution).

Therefore, the probability that the next raw error event is masked is
∑L

i=1
1
L
· pi. This value is a

constant that we denote by M .

Now to calculate E(K), we first calculate P{K=k}. This is the probability that the first k − 1

raw error events are masked and the kth raw error event is not masked. Since raw error events are

independent, it follows that P{K=k} = M k−1(1 − M). That is, K is a geometrically distributed

random variable and so E(K) = 1/(1−M). Thus, we just need to show that 1−M is the same as

the AVF.

(1−M) can be expressed as
∑L

i=1
1−pi

L
. 1− pi is the probability that a raw error event at cycle

i will not be masked and will cause failure. 1 − M is therefore the average of this probability over

the entire program length. This is exactly the definition of AVF. Thus, we have shown that the

AVF equation 2.1 is valid when L · λ → 0.
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AVF is not valid for some values of λ and L

In this section, we construct a simple (synthetic) program that serves as a counter-example to show

that the assumptions behind the AVF step do not always hold.

Consider a program with an infinite loop with iteration size L, such that the considered system

component is active for the first A cycles and is idle for the remaining A + 1 to L cycles of the

iteration. As before, let X be the random variable denoting the time to failure for the component

running the above program. Let T be the random variable denoting the time to the first raw error

event. If T is in cycles [0, A], [L,L + A], ..., then the component is active and the time to failure is

simply the value of T . Otherwise, the raw error occurs in an idle period, say, of iteration k, and

it is masked. Further, any raw errors until the next active period (i.e., until cycle kL) will also be

masked.

As seen at cycle kL, the distribution for the time to the next raw error event (starting from kL)

is the same as that starting from time 0. This is due to the memoryless property of the exponential

distribution.1 Further, as seen from kL, the masking process is also the same as at time 0, since

all iterations are identical. Thus, given that there is no failure until cycle kL, the expected time to

failure from cycle kL is again E(X).

It follows that given that the first raw error event occurs in the idle period of the kth iter-

ation, the expected time to failure is kL + E(X). Now using a standard result for conditional

expectation [11], we get the following:

E(X) = E(E(X|T )) =
∫ ∞
0 EX|T (t) · fT (t)dt

=
∫ A
0 λe−λttdt +

∫ L
A λe−λt(L + E(X))dt+

∫ L+A
L λe−λttdt +

∫ 2L
L+A λe−λt(2L + E(X))dt...

The above equation has the following closed form solution (Appendix A of [12]), giving the

MTTF of the component from first principles:

E(X) = 1−e−λL

1−e−λA · ( Le−λL

(1−e−λL)2
− Le−λAe−λL

(1−e−λL)2
− Ae−λA

(1−e−λL)
+

1
λ

(1−e−λA)
(1−e−λL)

+ L e−λA−e−λL

(1−e−λL)2
)

1Recall that for an exponential distribution, P (T < t +4t|T > t) = (e−λt
−e

−λ(t+4t))

e−λt
= 1− e

−λ4t. That is, given
that a raw error has not occurred at time t, the probability that the error will occur within some time 4t after t is
the same as that of it occurring within 4t after time 0.
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Figure 2.3 The relative error in the AVF step applied to a large 100MB cache running
a loop with iteration size of L days with each iteration busy for L/2 days and idle
for the rest. Lambda is the raw error rate of the entire cache (the smallest value
represents 0.001 FIT per bit).

The AVF for our program is A
L

; therefore, the MTTF according to the AVF method is:

EAV F (X) = L
A
· 1

λ

Now we can calculate the relative difference between the MTTF from first principles and from

the AVF method as:

|EAV F (X) − E(X)|
E(X)

When λL is very small, we can show that the two MTTFs converge to the same value. For

other cases, there can be a significant difference. Figure 2.3 shows the difference between the two

MTTF values for a 100MB cache for different values of L and λ. We vary L from 1 to 16 days,

setting A as L/2 in each case. We start with λ at 10−8 errors/year per bit (0.001 FIT/bit) [6]

which translates to 10 errors/year for the full cache. We additionally show results for λ of 3 and 5

times this value to represent changes in technology and altitude. Although the errors are small for

the baseline (smallest) value of λ, they can be significant for higher values. Later sections perform

a more systematic experimental exploration of the full parameter space.

2.2.2 The SOFR step: MTTF for multiple functional and/or storage units

The SOFR step derives the MTTF of a system using the MTTFs of its individual components, as

shown in equations 2.2 and 2.3. As discussed in Section 2.1.2, it assumes that for each component,
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the time to failure follows an exponential distribution with a constant failure rate (in conjunction

with the AVF step, this rate is the product of the component’s raw error rate and AVF). We next

explore the validity of this assumption, given that each component sees significant architectural

masking.

Again, the validity of the assumption depends on the values of the component’s raw error rate

λ and the program loop size L. Sections 2.2.2 and 2.2.2 respectively discuss cases for which the

assumption is and is not valid.

SOFR is valid when L · λ → 0

We show that if L · λ → 0 for a component, then the time to failure, X, for that component is

exponentially distributed with rate parameter λ · AV F .

Section 2.2.1 showed that in this case, X =
∑K

i=1 ti, where K follows a geometric distribution

with mean 1/AV F and the ti’s are exponentially distributed with rate λ. We can calculate the

density function of X as follows:

fX(x) = lim
4x→0

P (x<X<x+4x)
4x

= lim
4x→0

∑∞
i=1

P (x<X<x+4x|K=i)P (K=i)
4x

where P (x < X < x + 4x|K = k) = P (x <
∑k

j=1 tj < x + 4x).

∑k
j=1 tj is the sum of several independent exponentially distributed random variables with rate

λ. Such a sum follows the Erlang-n distribution which has the probability density function of

λ(λx)n−1

(n−1)! e−λx [10]. Thus,

fX(x) =
∑∞

i=1 ((1 − AV F )i−1(AV F )λ(λx)i−1

(i−1)! e−λx

= (AV F )λe−λx
∑∞

i=1
((1−AV F )λx)i−1

(i−1)!

= λ(AV F )e−λ(AV F )x

This is an exponential distribution with rate λ · AV F . This validates the assumption for the

SOFR step for the case when λ · L is small.

The general case for λ and L values

In general, it is difficult to analytically characterize the time to failure distribution function for

real (or even synthetic) programs after architectural masking. In this section, to demonstrate a
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mathematical basis, we choose a distribution that is “close” to exponential (and mathematically

tractable) and determine the validity of using SOFR on that distribution.

We choose the following probability density function for the time to failure (after architectural

masking) for a component.

fX(x) =











2√
π
e−x2

x ∈ [0,∞]

0 elsewhere

The cumulative distribution function (CDF) of X is FX(x) = 2√
π

∫ x
0 e−t2dt, x ∈ [0,∞].

It follows that the MTTF of the component is E(X) = 2√
π

∫ ∞
0 xe−x2

dx = 1√
π
.

Assume a system with N such identical components where Xi denotes the time to failure for

component i. Since we assume series failure, it follows that the time to failure of the system, Y , is

min(X1, X2, ..., XN ).

The CDF of Y is FY (y) = 1 − (1 − FX(y))N .

The PDF is fY (y) = dFY (y)
dy

= N ∗ (1 − FX(y))N−1 ∗ fX(y)

The MTTF of the system is E(Y ) =
∫ ∞
0 fY (y)ydy

The above integration cannot be calculated analytically. We solve it numerically using a software

package to derive the real MTTF for N from 2 to 32.

The SOFR step calculates the MTTF of the system using Equations 2.2 and 2.3. For the

component MTTFs used in the equations, we use the real MTTF derived above ( 1√
π
):

MTTFsofr =
1

∑N
i=1

√
π

=
1

N
√

π

Figure 2.4 shows the error in MTTFsofr relative to the MTTF derived from first principles. We

see that the error grows from 15% for a system with two components to about 32% for a system

with 32 components.

2.2.3 Summary of implications

Our mathematical analysis so far provides intuition for when the AVF+SOFR method works. The

AVF step averages the “utilization” of a component over the whole program. It therefore makes
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Figure 2.4 The relative error introduced by the SOFR step for a synthesized example.

the implicit assumption that every point of the program will have uniform probability of being hit

by a soft error. The SOFR step assumes that the time to failure for each individual component

follows the exponential distribution. Our analysis shows that the above assumptions are valid when

λ ·L → 0. However, in the general case, these assumptions may not hold. We show mathematically

tractable synthetic examples to illustrate a few such cases. The next sections provide a more

systematic experimental exploration of the parameter space to assess the extent of the errors due

to these assumptions.

2.3 AVF+SOFR limitations: an experimental view

In this section, we show that significant discrepancies can arise in many realistic scenarios using

experiments with SPEC benchmarks.

2.3.1 Experimental methodology

This section describes the methodology for our experimental analysis of the assumptions of the

AVF and SOFR steps. For each step, we first evaluate the assumptions for single processor systems

common today running SPEC CPU2000 applications, and using detailed simulation to determine

architectural masking. We then take a broader view, and evaluate the assumptions for a large

design space, including large clusters of processors and a broader range of (synthesized) workloads,

but with less detailed simulation of architectural masking.

For both cases, we first generate a masking trace that indicates, for each system component,

whether a raw error in a given cycle would be masked for the evaluated system and workload.
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Base Processor Parameters

Processor frequency 2.0 GHz
Fetch/finish rate 8 per cycle
Retirement rate 1 dispatch-group (=5, max) per cycle
Functional units 2 integer, 2 FP, 2 load-store, 1 branch
Integer FU latencies 1/4/35 add/multiply/divide
FP FU latencies 5 default, 28 divide (pipelined)
Reorder buffer size 150 entries
Register file size 256 entries (80 integer, 72 FP, and various control)
Memory queue size 32 entries
iTLB 128 entries
dTLB 128 entries

Base Memory Hierarchy Parameters

L1 Dcache 32KB, 2-way, 128-byte line
L1 Icache 64KB, 1-way, 128-byte line
L2 (Unified) 1MB, 4-way, 128-byte line

Base Contentionless Memory Latencies

L1 Latency 1 cycles
L2 Latency 10 cycles
Main memory Latency 77 cycles

Table 2.1 Base POWER4-like processor configuration.

To calculate the real MTTF of the system (without the AVF+SOFR assumptions), we use the

Monte Carlo technique to model the raw error process, apply the masking trace to the process, and

determine the MTTF of the modeled system.

Today’s uniprocessors running SPEC

To determine the impact of architectural masking in a modern processor, we study an out-of-

order 8-way superscalar processor (Table 2.1) running programs from the SPEC CPU2000 suite (9

integer and 12 floating point benchmarks). To generate the masking trace, we use Turandot [13], a

detailed trace-driven microarchitecture level timing simulator. We simulate an instruction trace of

100 million instructions for each SPEC benchmark running on the above processor configuration.

We choose four processor components to study the impact of architecture masking: the integer,

floating point, and instruction decode units, and the 256 entry register file, with raw error rates

of 2.3 ∗ 10−6, 4.5 ∗ 10−6, 3.3 ∗ 10−6, and 1.0 ∗ 10−4 errors/year respectively (10−8 errors/year

= 0.001 FIT). Li et al. [6] derived these error rates using published device error rates for current

technology [14] and estimates of the number of devices of different types in different components [6].

For the integer, floating point, and instruction decode units, we assume that a raw error is

masked in a cycle if the unit is not processing an instruction in that cycle (i.e., the unit is not

busy). If the unit is busy processing an instruction, then for simplicity, we conservatively assume
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that the error is not masked and will lead to failure. For the register file, we assume that the raw

error strikes happen on each register with equal probability and error in a given register is masked

if the register contains a value that will never be read in the future. If the register’s value will be

read, we conservatively assume the error is not masked and will lead to failure. Our assumptions

of when an error is not masked are conservative since it is possible that an error in an active unit

or in a register value that will be read may not affect the eventual result of the program. We did

not perform a more sophisticated analysis to more precisely determine when an error is masked

because such an analysis is orthogonal to the point of this dissertation and beyond the scope of

this work.

Our detailed Turandot simulation produces a masking trace for each simulated SPEC applica-

tion. The trace contains information on whether a raw error in a given cycle in one of the four

considered processor components will or will not be masked.

Broader design space exploration

We also explore a broad design space for the AVF and SOFR steps. We consider a variety of systems

consisting of various numbers of components, operating in various environments, with different raw

error rates, and running different workloads. We use the term system to include a single processor

(either a full processor or only a part of it) or a large cluster of thousands of processors. A

component of a system is the smallest granularity at which the analysis for architectural masking is

applied. Specifically, the AVF is calculated at the granularity of a component; the SOFR step then

aggregates the information from the different components to give the MTTF for the entire system.

In our SOFR experiments, we use component MTTFs obtained from the Monte Carlo method;

therefore, the error reported is only that caused by the SOFR step.

Based on our analysis in Section 2.2, the key parameters affecting the AVF and SOFR steps

are the raw error rate of the different components of the processor (or system), the number of

components in the system (only for SOFR), and the program loop size or workload. The following

discusses the space we explore for each of these important parameters. Table 2.2 summarizes this

space.

Component raw error rate. The component raw error rate depends on the number of devices
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Dimension Value
N 105 106 107 108 109

S 1 5 100 2000 5000
C 2 8 5000 50000 500000

Workload SPEC fp SPEC int day week combined

Table 2.2 The design space explored. N = number of elements (e.g., bits) in a com-
ponent; S = scaling factor for the baseline raw error rate of an element (depends
on technology and altitude); and C = number of components in the system (e.g.,
processors in a cluster).

or elements (bits of on-chip storage or logic elements such as gates) in the component and the raw

error rate per element. We denote the number of elements in a component as N . N can be as

large as 109 for large cache structures or if we consider the entire processor as one component in

a large cluster of multiple processors. To keep the design space exploration tractable, without loss

of generality, we assume that all N elements have the same raw error rate.

We also explore different values for the raw error rate per element. Under current technology,

the terrestrial raw error rate per bit for on-chip storage is about 10−8 errors/year (0.001 FIT),

which we refer to as the baseline raw error rate. To account for changes in the raw error rate due

to technology scaling and at high altitudes, we introduce a parameter S that we use to scale the

above baseline rate. We use scaling factors of 1, 5, 100, 2,000, and 5,000 in our analysis. The larger

factors correspond to systems running in airplanes flying at a high altitude and for systems in outer

space because of strong radiation at those heights [2]. Test systems using accelerated conditions

are also subject to high raw error rates.

The raw error rate for a given component is determined as the product of N , S, and the above

baseline raw error rate (Table 2.2).

Number of components: We denote the number of components in the system as C. We study

a wide range of values for C, ranging from 2 to 500, 000. The larger numbers represent large

cluster systems with C components (each of which may be a full processor or a microarchitectural

component within a processor, depending on the granularity at which AVF is collected).

Workload and generation of the masking traces: We evaluate all systems in the broad

design space with the SPEC CPU2000 benchmarks mentioned in Section 2.3.1. However, these are

short programs (small loop iteration size L). Many real world workloads show large differences in

behavior over long time scales (large L) that are difficult to capture with the SPEC benchmarks.
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In an attempt to simulate some of the behaviors of real world applications, we construct three

synthetic applications. The first (called day) is a continuous loop where the loop iteration size is

set to 24 hours. The loop is busy during the day (half the time) and idle at night. The second

(called week) is a loop with iteration size one week. It is busy during the five business days of the

week and idle for the weekend. The third (called combined) concatenates two SPEC benchmarks

in a loop with iteration size of 24 hours. The first half of the iteration runs one benchmark and the

second half runs the other benchmark.

For a system with multiple processors, we assume all processors run the same workload. Addi-

tionally, for the synthesized workloads, we assume that a component is a full processor; e.g., C=2

implies a 2 processor system. We assume that each processor masks raw errors only during the idle

portion of the workload (e.g., night time for the day workload). For the SPEC workloads, we again

assume that each component is a full processor (running the same benchmark). For the masking

trace, we use the SPEC masking traces for three units in each processor (integer, floating point,

and instruction decode) – we apply these three traces to the corresponding units simultaneously to

determine whether there is a processor-level failure.

Monte carlo simulation

To calculate the real MTTF, we perform Monte Carlo simulation where we do the following for

each trial. For each component in the modeled system, we generate a value from an exponential

distribution with rate specified by the modeled system (Table 2.2). This value gives the arrival

time of the next raw error event for the component. We use the masking trace of the workload to

determine whether a raw error at that time would be masked. If it is masked, we generate a new

raw error event from an independent exponential distribution for that component and repeat. If it

is not masked, we consider the component failed. The component that is earliest to fail gives the

time to failure of the system for this trial. We run a total of 1,000,000 trials and report the average

of the time to failure as the MTTF of the modeled system/workload configuration.
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Figure 2.5 Error in MTTF from the AVF step relative to the Monte Carlo method for
the synthesized workloads for representative values of N ×S (# bits in the component
× scaling factor for baseline raw error rate).

2.3.2 Results

AVF and SOFR with Today’s Uniprocessors Running SPEC

We first evaluated the discrepancy between the Monte Carlo MTTF and the MTTF using the AVF

and SOFR steps for today’s uniprocessors running SPEC (as described in Section 2.3.1). We found

that the MTTF from the AVF step matched the Monte Carlo MTTF very well for each of the

four processor components and each benchmark (< 0.5% discrepancy for all cases). Similarly, the

processor MTTF calculated using the SOFR step also matched the Monte Carlo MTTF very well.

Thus, for single processor systems with a small number of small components running SPEC

benchmarks, the AVF+SOFR method works very well. We note that in prior work, the method

has been applied primarily in this context. These results are consistent with our mathematical

analysis. The loop size L for the SPEC benchmarks and the component raw error rates used here

are small; therefore, from Sections 2.2.1 and 2.2.2, we expect that the AVF and SOFR assumptions

would be valid.
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AVF: A Broad Design Space View

For the design space described in Table 2.2, we computed the component MTTF using the Monte

Carlo and AVF methods as described in Section 2.3.1. Note that since the AVF step is applicable

to only a single component, C = 1 for all experiments in this section. Further, for a given workload,

since only the product of N and S matters, we report relative error in the AVF step as a function

of different values of N × S.

We found that for each SPEC benchmark, the AVF step works well for all N and S values

studied (relative error < 0.5%). However, for the longer running synthesized workloads, we observe

significant discrepancy when N × S is large (i.e., component raw error rate is large). Figure 2.5

shows the error in the AVF MTTF relative to the Monte Carlo MTTF for representative values of

N × S for the three synthesized workloads. In all three cases, for N × S ≥ 109, the AVF step sees

significant errors (up to 90%). This high value of N × S may occur when the AVF step is applied

to either large components (e.g., a 125MB cache with N = 109 bits), or when the component size is

moderate but the raw error rate per element (bit) is high (e.g., S = 1000 because of high radiation

at high altitudes).

Our experiments show both positive and negative errors, depending on the workload. Thus,

AV F may either over- or under-estimate MTTF in practice.

Again, the above observations match well with our theoretical analysis in Section 2.2.1. Thus,

for SPEC like benchmarks that run for a short time, it is safe to use the AVF step to calculate the

MTTF of a component. However, the AVF step must be applied carefully when using a workload

with large variations over large time scales coupled with either a large component or a large per-

element raw error rate for the component.

SOFR: A Broad Design Space View

Figures 2.6(a) and (b) report the error in the SOFR step relative to the Monte Carlo method for

three representative SPEC benchmarks and the three synthesized benchmarks respectively. For

each case, the error is reported for representative values of C and N × S covered by the design

space in Table 2.2.

Focusing on the SPEC workloads (Figure 2.6(a)), we see that the SOFR step is accurate for
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(a) SPEC benchmarks

(b) Synthesized benchmarks

Figure 2.6 Error in MTTF from the SOFR step relative to the Monte Carlo method
for representative values of C (# components) and N×S (bits per component × scaling
factor for baseline raw error rate) for (a) SPEC and (b) synthesized benchmarks.
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systems with a small number of components (C = 2 or 8) for all studied values of N × S. When

system size grows to 5,000 components or larger, we see significant errors, but only with very large

values of N × S. For example, for a cluster of 5,000 processors with each processor containing

N = 109 bits of on-chip storage, the baseline raw error rate would need to scale 2,000 times or

more to see a significant error. In practice, terrestrial systems will likely fall into the part of the

design space where the SOFR step does not introduce any significant error for SPEC applications.

Focusing on the synthesized workloads (Figure 2.6(b)), for the day workload, we see a significant

error using the SOFR step when N×S ≥ 108 and C ≥ 5,000. The error increases as these parameters

increase. For example, with 12.5MB of storage for each processor (N = 108) and baseline raw error

rate (S = 1), a 5,000 processor cluster sees an error in MTTF of 11%. For a similar cluster of 50,000

processors, the error jumps to 50%. While large, such a cluster is not unrealistic. For the week

workload, since the loop size is larger than the day workload, the MTTF errors are correspondingly

larger. Thus, the 5,000 and 50,000 processor systems mentioned above respectively see MTTF

errors of 32% and 80% for this workload. With larger processors (more storage bits) or larger

systems, the error can grow to 90% or more. Thus, for these workloads, the SOFR step incurs

significant errors for realistic systems.

Finally, the combined workload (with two SPEC applications) shows a relative error smaller

than for the day or week workload, but there is still a significant error for some cases.

In summary, for SPEC benchmarks under current technology and on the ground, the SOFR

step gives accurate MTTF estimates. However, in general, for larger scale workloads, care must be

taken to examine the workload behavior, number of system components (e.g., processors), and the

raw error rate for the components (governed by component size and per-bit or per-element error

rate) before applying SOFR.

2.4 Summary

We have examined key assumptions behind the AVF+SOFR method for estimating the architecture

level processor MTTF due to soft errors. We use rigorous theoretical analysis backed by simulation-

based experiments to systematically explore the applicability of the AVF and SOFR steps across

a wide design space. Our analysis and experiments show that while both steps are valid under the
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terrestrial raw soft error rate values of today’s technology for standard workloads (e.g., SPEC),

there are cases in the design space where the assumptions of the AVF and SOFR steps do not

hold. In particular, for long running workloads with large component-level utilization variations

over large time scales, the assumptions are violated for systems with a large number of components

and/or with high component-level raw error rate (i.e., large component size and/or large per-bit or

per-element raw error rate). Under these conditions, the projected MTTF of the modeled system or

chip could show large errors. In general, our work builds a better understanding of the conditions

under which the standard AVF+SOFR method may be used to project MTTF accurately, and

alerts users to the risks of using the model blindly in conditions where the foundational axioms of

the model break down.
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Chapter 3

SoftArch model

As we have shown in Section 2.3.2, the AVF+SOFR method is based on significant assumptions.

The assumptions become questionable for some systems in the design space. In this section, we

propose a model called SoftArch which can provide fast and accurate analysis of soft errors at

the architecture level. We will show in Section 3.4.1 that SoftArch does not need to make the

same assumptions as the AVF+SOFR method. In Section 3.4.2, We apply SoftArch to evaluate

the MTTF of a processor. In Section 3.4.3, we examine the effect of technology scaling on the

architecture level soft error rate taking the architecture level masking effect into consideration.

3.1 Introduction

SoftArch works with a high-level architecture timing simulator to track the raw probability of error

in the value of each bit (instruction or data) communicated or computed by any pipeline stage in

the processor. A value may be erroneous either because (i) it is physically struck by a particle

during its residence time in a structure, or (ii) it is the result of a communication of an erroneous

value, or (iii) it is computed using one or more erroneous input values. We refer to the first case

as error generation and to the second and third cases as error propagation. To model the error

generation probability, we use a combination of residence time and raw SER numbers for storage

structures, and a simple abstraction for logic. For error propagation probability, we apply simple

probability theory on the error probabilities of the sources of the propagation.

During program execution, SoftArch identifies the values that could affect program outcome.

For each such value, it uses the tracked errors for the value and the simulator timing data to

determine the probability of failure and time to failure due to that value. This enables determining
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the mean time to failure using basic probability theory. SoftArch also keeps enough information on

the microarchitectural structures occupied by each value to determine the contribution of different

structures to the overall MTTF.

SoftArch is based on the first principle of the MTTF calculation, thus it does not need to make

the AVF+SOFR assumptions. We perform the same set of experiments for the same designed

space as described in Section 2.3. We find that for every point in the design space, the error in the

MTTF computed by SoftArch is less than 1% for a single component and 2% for the full system.

Thus, SoftArch does not exhibit the discrepancies shown by AVF+SOFR.

Next, we use SoftArch to quantify the MTTF of a modern out-of-order processor and the con-

tribution of different structures to the failure rate, for various SPEC benchmarks. Our results

(consistent with, but more comprehensive than, previous studies) are as follows: (1) there is signif-

icant architecture level masking of soft errors, (2) there is substantial inter- and intra-application

variation in MTTF or failure rate, and (3) there is substantial application-dependent variation in

the contribution to the failure rate from different structures. These results motivate selective pro-

tection of only the most vulnerable structures and dynamic, application-aware protection schemes.

Finally, as another application, we apply SoftArch to quantify the impact of technology scaling

on the architecture level processor soft error rate, taking the architecture level masking effects and

workload characteristics into consideration. We scale the same design with the same number of

transistors over four technology generations. We find that with scaling, the derating factors for

logic structures often decrease, the derating factors for storage elements remain roughly unchanged,

and the FIT for the full processor roughly follows the trend for the raw SER of storage structures.

3.2 SoftArch details: a model for architecture level MTTF

The SoftArch model consists of the following components, covered in Sections 3.2.1– 3.2.4 respec-

tively. (1) A probabilistic model for soft error generation in values residing in storage structures

or passing through logic. (2) A model for soft error propagation, which results in the propagation

of generated errors to other values. (3) A definition of when an erroneous value contributes to

processor failure. (4) A model for calculating mean time to failure (MTTF) for a processor for a

given workload.
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3.2.1 Error generation model

Error generation in storage elements

Current processors include several storage structures such as caches, register files, queues, TLBs,

and latches. A soft error in a storage structure occurs when a high energy particle strikes a device

in the structure, and the resulting charge collected exceeds the critical charge (Qcrit) required to

flip the stored bit value. We call this a raw soft error.

We seek to determine the probability that a value vi residing in a (possibly multiple bit) storage

location for time T incurs a raw soft error during T . We assume that if an error occurs, the value

is corrupted; i.e., we ignore the low probability that multiple errors could correct the value. It

is widely accepted that raw soft errors for storage follow a constant failure rate or exponential

time-to-failure distribution model. Let λ denote the raw failure rate, also referred to as the raw

soft error rate or SER, for the storage location considered. Then the probability that the value v i

will incur a raw soft error in time T , denoted ei, is 1 − e−λ·T . In practice, both λ and T are small

enough that we can approximate e−λ·T as 1 − λ · T . This gives ei = λ · T .

Thus, the probability that an error is generated for a value vi in a storage location depends

on the raw SER for that location, λ, and the residence time of the value in the location, T . λ

is determined by circuit layout, technology, and environmental parameters (e.g., the amount of

charge stored, charge collection efficiency, and particle flux). There has been extensive work on

determining the value of λ using circuit level simulation or measurement (Section 3.3.2). Residence

time T depends on the program and the processor architecture, and can be determined through

architecture level timing simulation (Section 3.3.1).

Error generation in logic elements

Combinational logic elements are used for computation and control within a pipeline stage. A

high energy particle strike on a device in a logic circuit may create a current pulse that may

affect the value produced by the circuit. This transient effect becomes visible only if it is captured

by the subsequent latch. Instead, the transient effect could be masked due to electrical masking

(the current pulse attenuates as it goes through the gates in the circuit), logical masking (the

current pulse affects parts of the circuit that do not affect the output value), or latch window
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masking (the corrupted result is not latched because it does not arrive within the required timing

window for the latch). Logic SER has been ignored in most prior architectural studies because the

above masking makes the effective SER much smaller than that of storage structures. However, as

technology scales, these masking effects are diminishing and the logic SER is projected to increase

significantly [14].

For our architecture level model, it is desirable to include the above circuit-level masking effects

within the raw logic SER value. Because these masking effects depend on the circuit layout and

inputs, the desired raw logic SER will differ for different logic circuits and even for different inputs.

In general, it is hard to abstract all of these effects. We therefore use a simple abstraction consisting

of one parameter called elogic corresponding to each type of logic circuit (e.g., ealu for the ALU

or efpu for the FPU). elogic is defined to be the probability that, given correct inputs, the result

produced by the corresponding circuit at the end of the computation is incorrect because of soft

errors. elogic can be estimated using circuit level SER analysis tools, based on the layout of that

logic circuit and technology parameters. In our implementation, we use a simple estimation based

on prior work [14] and the gate and latch counts for the logic circuit (Section 3.3.3).

3.2.2 Error propagation model

In a processor, values are read from storage locations, possibly processed, and the original or newly

computed values are stored elsewhere. (We consider the values stored in the new locations to be

new values, even if they are identical to the original ones.) During this process, errors in the original

values will propagate to the new values. For example, if the value, v1, in register r1 is corrupted

and later used to generate a result r3 = r1 + r2, the error in v1 will propagate to the new value

stored in r3.

Conceptually, we would like to track how errors are propagated to new values and determine

the probability that a new value is erroneous. These probabilities will then allow us to determine

the probability of failure and the mean time to failure (depending respectively on which erroneous

values cause failure and when). The probability of error in a newly generated value (say v3)

depends on the probability of error in the input values (say v1 and v2) used to generate v3. In

general, denoting Vi to mean the event that value vi has an error, denoting P(Vi) as the probability
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Figure 3.1 An example for error propagation.

of Vi, and assuming that any error in either v1 or v2 will cause an error in v3, the probability of

error in v3 can be given by P(V3) = P(V1
⋃

V2) = P(V1) + P(V2) − P(V1 · V2), where V1 · V2 is the

event that v1 and v2 both have errors.

If the errors in v1 and v2 are independent, then P(V1 · V2) is simply P(V1)P(V2). On the other

hand, if the errors are perfectly correlated (e.g., if v2 was just generated by copying v1 to another

location), then P(V1 · V2) = P(V1) = P(V2). In general, however, the errors in two values could be

partially correlated and estimating P(V1 · V2) is more difficult. Accounting for the correlation and

determining the resultant probability requires keeping track of the raw errors that were originally

responsible for the errors in v1 and v2.

For example, Figure 3.1 shows a dataflow graph where values v1, v2, and v3 incur errors e1, e2,

and e3 with probability |e1|, |e2|, and |e3| respectively. Assuming e1, e2, and e3 are independent

of each other, the probability of error for value v4 is |e1| + |e2| − |e1| · |e2| and that for v5 is

|e2| + |e3| − |e2| · |e3|. The errors in v4 and v5 are correlated since they share the same error from

v2 – if v2 has an error, both v4 and v5 will have errors. Therefore, to calculate the probability of

error in v6, the correlation between the errors in v4 and v5 needs to be taken into account. We do

this by tracking the original independent raw error events that cause errors in different values.

For our model, we do not need to calculate the probability of error for a value immediately

upon its generation – we only need probability calculations for values that eventually cause failure

as defined in the next section. Therefore, for purposes of determining how errors propagate among

values, we simply keep track of the set of all the raw error events that can cause an error in a

value, and propagate this entire set when a value is used to generate a new value. For example, in

Figure 3.1, the error set for v4 is {e1, e2} and for v5 is {e2, e3}. Thus, the error set for v6 should
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be {e1, e2, e3}. We can now easily calculate the error probability for v6, since e1, e2, and e3 are

independent.

More generally, consider a value vi residing in a storage location. Let tj be the time interval

between two successive reads of vi (or between the first write and read of vi). We refer to the event

that vi incurs a raw soft error over time tj as a basic storage error event. If vi was generated through

computation logic, then we refer to the event that vi incurred a logic error (after considering circuit

level masking effects) during this computation as a basic logic error event. We refer to a basic

storage or basic logic error event as a basic error event or simply a basic error. All basic errors are

independent of each other, with probabilities given by the error generation models in Section 3.2.1.

The error propagation model requires determining the basic errors that need to be propagated

to a new value. For each value vi, we associate a basic error set, denoted Ei. This is the set of

basic errors directly incurred by or propagated to vi.
1 Thus, for a new value vi created at time ti,

the propagation model seeks to determine vi’s Ei at ti.

First, we handle the simple case where vi is generated by reading an old value v0 from a storage

location and writing it to another storage location. In this case, the error set Ei is simply the error

set for v0 at time ti.
2

Next, we handle the case where vi is created through some computation op(in1, in2, ...ink), where

k ≥ 1, inj ’s are input operands, and op is any operation. The creation of vi involves a possible

basic logic error event, say bi, with probability eop. Then Ei is simply Ein1 ∪Ein2 ∪· · ·∪Eink
∪{bi}.

Thus, we can generate the basic error set for a newly created value. Since all the error events in

this set are independent, the probability of error in the new value can be calculated as a function

of the probabilities of the errors in its basic error set (which are known from Section 3.2.1). For

example, in Figure 3.1, the probability of error for v6 is |e1| + |e2| + |e3| − |e1| · |e2| − |e2| · |e3| −

|e1| · |e3| + |e1| · |e2| · |e3|.
1Note that for vi in a storage location, each time it is read, a new basic error event is added to Ei (to indicate an

error occurrence in the interval since it was last read).
2We assume the process of moving a value from one location to another across wires does not induce any errors.

Currently, wires do not appear to have soft error problems. However, in the future, soft errors from wires could be
easily incorporated by adding another basic error due to the wires to the set Ei.
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3.2.3 Program failure and time to failure

Not all erroneous values cause program failure. For example, an error that occurs in a dead

value does not cause failure since the value is not used again. Similarly, an error in a speculative

instruction that is later squashed does not cause program failure. We say an erroneous value results

in program failure if the error is observable by an external observer. Broadly, this includes (1) values

that are written to an output device, (2) values that affect program control flow (e.g., the value of

a branch target), (3) the value of an instruction opcode (an error could make the opcode illegal,

causing a program crash), (4) any value representing an address of a memory location (an error

could cause access to prohibited locations, causing a crash), (5) and a destination register field of

an instruction (an error could result in the corruption of an unknown and undesirable register).

Depending on the system modeled and the implementation, the precise set of values where errors

may cause program failure will vary (e.g., in a processor with speculation, an errror in the opcode

of a misspeculated instruction will not cause program failure). Further, a specific implementation

of the model may choose to conservatively assume that errors in a superset of the above values will

cause failure. Section 3.3.5 describes the set of values where errors are considered to cause failure

in our implementation.

We call the above defined set of values where errors would lead to program failures as the

failure set, denoted by VF = {vf1, vf2, ...}. Additionally, our model also requires determining the

time, tfi, at which a failure due to vfi occurs. This is determined through the architectural timing

(performance) simulator. We assume that the failure set {vf1, vf2, ...} is ordered such that tfi <

tfj for i < j.

3.2.4 Determining mean time to failure (MTTF)

We next derive mean time to failure (MTTF) for a processor running a given workload. Our model

so far provides: (1) the values that can cause failure: {vf1, vf2, ...}, (2) the corresponding times

for these failures: {tf1, tf2, ...}, (3) for each value, vfi, the set of independent basic errors Efi =

{efi−1, efi−2, ...} that can produce an error in vfi, and (4) the probability for each independent

basic error.

Infinite programs. First, consider a workload that runs forever. Its MTTF is the sum of the
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tfi’s, each weighted by the probability that vfi is erroneous and no previous value in the failure set

is erroneous. Denoting the number of elements in the failure set as N (N could be ∞), we have:

MTTF =
∑N

i=1 tfi· (Probability that vfi has an error and none of vf1, ..., vfi−1 have an error)

Given the basic error sets Efi and the probabilities of the constituent errors, we use basic

probability theory to determine the probability of the events in the above summation. For example,

let Ef1 = {e1, e2} and Ef2 = {e2, e3}. Then the probability that vf2 has an error and vf1 does not

have an error is the probability that at least one of the errors in (Ef2 - Ef1) occurs and none of

the errors in Ef1 occurs. This is |e3| · (1 − |e1|) · (1 − |e2|), denoting probability of ei by |ei|.

Finite programs. Most of our workloads, however, are finite programs that run for a relatively

short amount of time. To determine MTTF in a meaningful way for a processor running such a

program, we assume that the program runs repeatedly in a loop forever. If a failure always occurs

in the first run of the program, then the MTTF for the finite program, denoted MTTF ′, can also

be represented by the above equation for infinite programs. If there is no failure in the first run,

then we need to expand the equation to include possible failures in subsequent runs.

Let Texec be the execution time of one run of the program. Then the time to failure due to vfi

in the kth run of the program is (k − 1)Texec + tfi. This time to failure must be weighted by the

probability that none of the prior k − 1 (independent) runs fail, vfi is erroneous in the kth run,

and none of the values prior to vfi in the failure set are erroneous in the kth run. That is,

MTTF =
∑

∞

k=1

∑N

i=1{(k−1)Texec + tfi}· (Probability that none of the prior k-1 runs fail) · (Probability

that vfi has an error and none of vf1, ..., vfi−1 have an error)

To simplify the above equation, we define FailureProb′ as the probability that a given run of

the program will see a failure. That is,

FailureProb′ =
∑N

i=1 (Probability that vfi has an error and none of vf1, ..., vfi−1 have an error)

Thus, in the MTTF equation, the term Probability that none of the prior k-1 runs fail can be

represented as (1 − FailureProb′)k−1. The MTTF equation then becomes:

MTTF =
∑

∞

k=1

∑N

i=1{(k−1)Texec + tfi} · (1−FailureProb′)k−1· (Probability that vfi has an error and

none of vf1, ..., vfi−1 have an error)
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Rearranging the terms slightly,

MTTF =
∑

∞

k=1(1−FailureProb′)k−1 ·∑N

i=1{(k− 1)Texec + tfi}· (Probability that vfi has an error and

none of vf1, ..., vfi−1 have an error)

Now applying the definition of MTTF ′, we get:

MTTF =
∑

∞

k=1(1 − FailureProb′)k−1 · {(k − 1)Texec · FailureProb′ + MTTF ′}

= Texec · FailureProb′
∑

∞

k=1(k − 1) · (1 − FailureProb′)k−1 + MTTF ′
∑

∞

k=1(1 − FailureProb′)k−1

Using
∑∞

k=1 xk−1 = 1
1−x

and
∑∞

k=1(k − 1)xk−1 = x
1−x2 to simplify the equation, we get

MTTF = Texec·(1−FailureProb′)
FailureProb′

+ MTTF ′

FailureProb′

= Texec+MTTF ′

FailureProb′
− Texec

Note that we can derive the contribution to MTTF from a specific processor structure by

assuming zero probability for errors generated in other structures.

3.3 Implementation of the SoftArch model

We have implemented the SoftArch model in the SoftArch tool. There are five key components to

the implementation: (1) integration with an architecture level timing (i.e., performance) simulator,

(2) estimation of λ, (3) estimation of elogic, (4) implementation of the basic error set corresponding

to each value and the operations on these sets, and (5) identifying the values in the failure set. The

following sections discuss each of these components.

3.3.1 Integration with timing simulation

The SoftArch model provides MTTF for a specific program running on a processor. It requires

integration with a performance (or timing) simulator that runs the program, and provides to the

SoftArch model timing information about the values read/written/computed in different parts of

the processor. This work also uses the Turandot simulator as described in Section 2.3.1 with the

same parameters that were chosen to roughly correspond to the POWER4 microarchitecture [15].

We track soft errors using the SoftArch model for most of the important structures in the
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processor, including the instruction buffer (IBUF), instruction decode unit (IDU), integer and

floating point register files (REG), integer functional units (FXU), floating point units (FPU),

instruction TLB (iTLB), data TLB (dTLB), and instruction queues (IQ). We assume the load/store

queue, caches, and memory are protected using ECC, and do not consider a soft error rate for them.

We also do not model soft errors for the branch prediction unit since these do not cause processor

failures.

3.3.2 Estimation of λ

Irom et al. [16] and Swift et al. [17] report measured values of raw SER cross section for the TLB

and floating point registers for PowerPC processors. The raw SER cross section is defined as the

number of errors per particle influence and is related to the raw SER as follows [2]:

Raw SER for a storage structure = (SER cross section for the structure)(nucleon flux)(# bits in the structure)

From [16], the raw proton SER cross section for the TLB structure in a 200nm PowerPC

processor is about 5 ·10−14cm2/bit for proton energy larger than 20Mev. From [17], the raw proton

SER cross section for the floating point register structure in a PowerPC 750 processor is about

the same value. Since protons and neutrons have similar characteristics at higher energy range, we

use the proton cross section to roughly estimate the raw neutron SER of different structures. We

do not model the alpha particle SER since Karnik et al. [18] show that in devices where Qcrit is

large, neutron SER dominates. This is the case for the array structures we study here. Further,

the detailed estimation of raw SERs is not the focus of this dissertation.

According to Ziegler [2], neutron flux with sufficient energy (>20 Mev) at sea level is 105particles/cm2·

yr. Using the above equation, we can derive the raw SER for the register file in 200nm technology

as 5.7 · 10−4 FIT/bit (1 FIT is one failure every 109 hours). Since we model a processor in 90nm

technology, we scale the raw SER rate using scaling data by Karnik et al. [18]. Karnik et al. show

that neutron SER in SRAM increases about 30% from 200nm to 90nm technology. Thus, we as-

sume that the raw SER for the register file in 90nm technology is 7.42 · 10−4 FIT/bit. Assuming

a 64 bit register and a 2 GHz processor, we can derive that λ for a register value is 6.60 · 10−24

errors/cycle.
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Although Irom et al. [16] and Swift et al. [17] do not report data for the instruction buffer,

instruction queue and integer register file, we assume the SER cross section value for these to be

similar to the reported results for TLB and floating point registers (we could not find any other

sources of measured data for these structures either). Using an approach similar to the above, we

get λ for an instruction buffer entry as 6.60 · 10−24 errors/cycle and for an instruction queue and a

TLB entry as 1.13 · 10−23 errors/cycle.

3.3.3 Estimation of elogic

At 100nm, Shivakumar et al. [14] showed the raw SER for a latch to be 3.5 · 10−5 FIT and for

a 16FO4 logic chain to be 5 · 10−6 FIT (after circuit level electrical and latch window masking).

Based on the gate and latch counts for a logic circuit, we can therefore estimate the raw SER for

that circuit at 100nm (we use the same value for 90nm). (This is conservative since it ignores

circuit-level logical masking which depends on the inputs and the exact logic function.)

Specifically, let #LogicChains and #Latches be the number of logic chains and latches respec-

tively in a logic circuit (e.g., FPU, FXU, or IDU). Then for our 2 GHz processor,

elogic = (#LogicChains·5·10−6+#Latches·3.5·10−5)
109·3600·2·109

We estimated the gate/latch count information for our simulated processor as follows.3 We first

estimated the relative areas of each modeled structure from published floorplans of the POWER4.

Since the total transistor count for the processor is known, we could then assign area-based estimates

of transistor counts for each modeled structure. Reasonable assumptions about transistor density

differences between SRAM and logic dominated structures were also factored in. We estimate 10K

latches and 70K gates for the FXU (integer ALU), 14K latches and 100K gates for the FPU, and

7K latches and 50K gates for the IDU. (Our implementation assumes all FXU operations have the

same elogic and all FPU operations have the same elogic). It follows that elogic for the IDU, FXU,

and FPU is 5.16 · 10−23, 7.23 · 10−23, and 3.67 · 10−23 respectively.

3Although our microarchitectural parameters were chosen to be close to the POWER4, structure-wise gate/latch
count information for such commercial processors is not available. We acknowledge that our estimates of these counts
may not be close to actual values.
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3.3.4 Tracking basic error set Ei for value vi

The error propagation model requires tracking basic error sets, using set copy and union operations.

These sets can potentially be unbounded. To reduce space and dynamic memory management over-

head, we use a fixed size FIFO table to store the basic errors in a set (one table per set, 100 entries

per table in our implementation). To further reduce space, the table entry only stores a sequence

number that identifies the error. A common central table stores the pertinent information for each

sequence number, including probability of the corresponding error and where it is generated. In

case of overflow of a basic error table (i.e., > 100 basic error sources contribute to the corresponding

value), the oldest entry in the table is discarded. This loses information about an error source for

the value. We conservatively assume that the value causes failure due to the dropped error with

probability of that error and at the time the error is dropped. In our experiments, overflow rarely

occurs.

3.3.5 Identifying values for program failure

Based on Section 3.2.3, our implementation makes the following assumptions about values that can

lead to processor failures and the times at which such failures occur.

Values to output devices: Our program traces are at the user-level and do not contain output

instructions. We conservatively assume that values that are stored in memory are observable

externally, and errors in them cause program failure. We assume that the failure occurs when the

store instruction retires and is issued to memory.

Fields of an instruction: Errors in all fields of loads, stores, and instructions that change control

flow (branches and jumps) are propagated to the retirement queue. These errors are assumed to

cause failure when the instruction retires. This is because these errors can change the op code,

program control flow, memory addresses, or the value stored in memory, which are assumed to

be observable externally. Waiting until retirement to flag a failure ensures that misspeculated

instructions do not flag failures.

For instructions other than the above, we do not consider errors in fields that specify source

registers to cause failures. Instead, we propagate the errors in these fields into the value in the

destination register. Errors in all other fields are considered to cause failure at retirement (similar
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to loads, stores, and branch instructions).

Fields in iTLB and dTLB: Any errors in the TLBs are propagated to the retirement queue entry

of the corresponding instruction, and considered to cause failure on retirement of that instruction.

This is because an error in these structures can lead to memory address related failures.

3.4 Experiments and results

In this section, we first apply SoftArch to calculate MTTF and compare with the MTTF calculated

with Monte-Carlo methods. Next, we use SoftArch to study the workload behavior for soft errors.

Finally, as an application of SoftArch, we use SoftArch to study the effect of technology scaling on

the soft error rate at the architecture level.

3.4.1 Compare SoftArch to the Monte-Carlo method

We have shown in Section 2.3.2 that the AVF+SOFR method leads to significant amount of relative

error for certain parts of the design space.

SoftArch’s probabilistic approach does not require the AVF and SOFR assumptions; it is there-

fore useful to explore whether SoftArch can be applied to the parts of the design space where

AVF+SOFR shows significant discrepancies from the Monte Carlo method. We used SoftArch to

estimate MTTF for the entire design space studied in Section 2.3. We found that for every point

in this space, the error in MTTF computed by SoftArch relative to the Monte Carlo MTTF is less

than 1% for a single component and less than 2% for the full system. Thus, SoftArch does not

exhibit the discrepancies shown by AVF+SOFR. These results are not meant to provide a complete

validation of SoftArch or a complete comparison between SoftArch and AVF+SOFR (such an anal-

ysis is outside the scope of this work). Rather, these results suggest alternative methodologies and

motivate future work combining the best of existing methodologies for the most accurate MTTF

projections across the widest design space.

3.4.2 A case study with SoftArch

In this section, we show what we can get from SoftArch by applying SoftArch to the modeled proces-

sor and SPEC CPU2000 benchmarks (9 integer and 12 floating point). For each benchmark, we use
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Figure 3.2 FIT rates (a) for raw errors, (b) with architectural masking for SPECint
benchmarks, and (c) with architectural masking for SPECfp benchmarks.

sampled traces with 100 million instructions that were validated for acceptable representativeness

against the full trace [19].

Metrics

Our experiments report MTTF for an application (Section 3.2.3). We also compute MTTF for indi-

vidual structures, assuming zero raw SER for other structures. An alternative method of reporting

reliability is in terms of FITs. For failure mechanisms with constant failure rate (i.e., exponential

distribution for time between failures), FIT rate = 1/MTTF and the FITs of individual system

components can be added to give the FITs of the entire system according to the SOFR method.

This additive property is convenient when attempting to understand the relative contribution of

failure rate and importance of different system components. In Chapter 2, we have shown that

although the constant failure rate assumption for raw soft errors is reasonable, the assumption

might not hold after the errors are architecturally masked. Nevertheless, we have shown that for

SPEC benchmark under current terrestrial raw soft error rate, the SOFR method is valid and the

additive property of FIT rate holds well. Our results from SoftArch confirms that the FIT rates

across components are indeed additive in this case. Therefore, for convenience and following other

literature (e.g., [8]), we report our results in terms of FITs (= 1/MTTF) for the entire system and

for each component.

Given the FIT rate and the raw FIT rate of a component, we are able to estimate the amount

of architecture level masking effect. We denote the amount of architecture level masking using use
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Figure 3.3 FIT rate for each structure, averaged across SPECint and SPECfp bench-
marks.

the term derating factor which is defined as FIT
rawFIT

. Derating factor is the same as AVF. In this

paper, we use AVF and derating factor interchangeably.

Overall results

Our results are presented in Figures 3.2 – 3.5. Figure 3.2 shows the FIT rate for an entire applica-

tion. Figure 3.2(a) shows the raw processor FIT rate, which is calculated assuming that each raw

error causes a program failure. Figures 3.2(b) and (c) show the FIT rates for our SPECint and

SPECfp benchmarks respectively, with the rightmost bars showing the average. Each bar in these

figures is further divided to show the contribution to the FIT rates from the different structures –

instruction buffer (IBUF), instruction decode unit (IDU), register file (REG), instruction queues

(IQ), data TLB (dTLB), instruction TLB (iTLB), integer functional unit (FXU), and floating point

unit (FPU).

Figure 3.3 summarizes the structure-wise information by showing the average FIT rate for

each structure across the SPECint and SPECfp benchmarks. Figures 3.4(a) and (b) show the

architectural derating factors for each structure and the entire processor for SPECint and SPECfp

respectively (again, the rightmost bars are the average).

Finally, to understand dynamic application behavior, Figure 3.5 reports the time variation in

processor and per-structure FIT rate for two representative applications. We divide each applica-

tion’s execution into intervals of 64K instructions, and plot the FIT rate (Y-axis) for each such

interval (X-axis), for each structure and the full processor.

The above data shows the following high level results (these are consistent with prior work,
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Figure 3.4 Architectural derating factor for each structure (a) for SPECint and (b)
for SPECfp benchmarks. Note that the scales on the two graphs are different.

but they are more comprehensive since they cover more structures on chip than [8] and longer

application runs than [3]):

Architectural derating. Architectural masking has a large impact on the overall processor FIT

rate (Figures 3.2 and 3.4). While the raw failure rate is 42 FITs, the average architecturally masked

rate for SPECint and SPECfp is 10 and 6 FITs respectively.4 Thus, on average, only 21% and 13%

of the raw errors cause program failure for the SPECint and SPECfp benchmarks respectively.

Variation across workloads. Different benchmarks exhibit significant differences in FIT rates,

with a range of 2.6 for art to 16 for perlbmk (Figure 3.2). In general, SPECfp applications have a

lower FIT rate than SPECint.

Variation across structures. Different structures contribute in different proportions to the

overall FIT rate (Figures 3.2 and 3.3). Although there are workload-specific variations, we can

identify general trends. For SPECint applications, the major contributor to the FIT rate is the

dTLB followed by the iTLB and instruction buffer. For SPECfp, the major contributors are

the instruction buffer, register files, and dTLB, closely followed by iTLB. The logic elements are

insignificant and the instruction queues are not a strong contributor to the SPECfp applications.

4The absolute FITs may appear low; however, these are for only one processor, at 90nm, for soft errors only due
to neutrons, and assume significant protection overhead in the caches.
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Figure 3.5 Intra-application variation in FIT rate for intervals of 64K instructions.

Further, Figures 3.2(a) and 3.4 show that the difference in contribution from the structures come

both from a difference in the raw SER and in the architectural derating.

Intra-application variation is significant for the overall and per-structure FITs (Figure 3.5).

Analysis

We next describe the reasons for our results. The architectural FIT rate for a structure for a given

application is determined by the following three factors for the structure:

Raw FIT rate: This depends on the structure size and the raw SER per bit or logic chain for the

technology.

Base utilization: For logic, this is the fraction of time that the structure is used. For storage, this is

the fraction of values that are live; i.e., values that will be read before being overwritten or before
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program termination.

Effective utilization: This is the fraction of values that are read or computed from the structure

that contribute to program outcome. For example, if the instruction queues are always full, then

their base utilization is high. However, if most of these instructions will be squashed, then the

effective utilization is low. The product of the base and effective utilization is the architectural

derating factor.

The above factors explain the differences in contributions to architectural FIT rates from the

different structures as follows. The instruction buffer and instruction queues have relatively low raw

FIT rates due to their small size (relative to the register files and TLBs). However, the instruction

buffer has a high derating factor due to its high base and effective utilization; therefore, it is one

of the three largest contributors to the architectural FIT rate on average. The instruction queues,

on the other hand, have a more modest derating factor, and hence a modest to low contribution to

the architectural FIT rate.

For the register file, the raw FIT rate is among the highest. For SPECint, however, its architec-

tural FIT rate is much lower than that of the TLBs because the base utilization of the floating point

register file is negligible. For SPECfp, the register file is one of the three largest FIT contributors.

The raw FIT rate of the dTLB and iTLB are the same; however, the dTLB’s FIT rate is larger

than that of the iTLB for SPECint, and is larger for SPECint than for SPECfp. We consider any

erroneous value read from the TLBs to cause program failure; therefore, the above differences occur

from the base utilization. Thus, the fraction of values that are live appears higher for the dTLB

than for the iTLB for SPECint (likely because of smaller footprint for instructions), and higher

for the dTLB for SPECint than for SPECfp (partially corroborated with prior data cache lifetime

results).

For the IDU, FXU, and FPU, the main reason for the low contribution to the overall FIT rate

is the low raw FIT rate of logic and latches relative to array structures. Some predictions expect

this trend to reverse for future technologies [14], in which case the logic elements can be expected

to contribute more to the overall SER.

Similar analysis explain the differences between and within workloads. For example, consider

mcf with its low FIT rate. It is well-known that it spends most of its execution stalled for memory.
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Thus, most structures exhibit a small FIT rate because of low base utilization. The instruction

buffer and queues, however, contain live instructions stalled for memory, and so show higher der-

ating.

Implications and limitations

The above results have at least three broad implications. First, they motivate selective protection,

and can be used to determine which parts of the processor are most cost-effective to protect.

Second, they motivate application-aware protection. As shown, different applications have different

behavior, both in absolute FIT rate and in the structures that contribute most to the FIT rate.

Third, along the same lines, our results show significant variations in FIT rate and in the structures

contributing to FIT rate within an application. This is similar to the phase behavior noted in prior

studies for other metrics (e.g., IPC, cache miss rate) [20]. These results motivate consideration

of dynamic adaptation schemes for managing soft errors, much like adaptation for energy and

temperature management.

SoftArch has at least two limitations. First, it depends on architectural timing simulation.

Typically, such simulators do not include all microarchitectural and circuit-level details, introducing

inaccuracies (e.g., use of elogic and latch/gate count estimates). Second, SoftArch does not simulate

changes to the execution path after an error; therefore, it cannot model effects such as application-

level masking. Please note that the AVF+SOFR method also has the same set of limitations.

3.4.3 Another application of SoftArch: architecture level scaling analysis

With the SoftArch tool, we are now able to analyze the soft error rate of the processor taking into

consideration both the raw error rate and the architecture level masking effect.

The effect of technology scaling on raw error rates for different type of circuits has been ex-

tensively studied. However, there has been no previous work examining the effect of scaling on

processor SER considering architectural derating effects. In this section, we apply SoftArch to

quantify the impact of technology scaling on the architecture level processor soft error rate, taking

the architecture level masking effects and workload characteristics into consideration.

In our experiments, we scale the same design with the same number of transistors over four
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Tech Freq Vdd Off-chip Lat λ (FIT/bit) FPU elogic FXU elogic IDU elogic

180nm 1.1GHz 1.8 V 77 cycles 5.7 ∗ 10−4 1.45 ∗ 10−22 1.06 ∗ 10−22 7.61 ∗ 10−23

130nm 1.35GHz 1.5 V 94 cycles 6.0 ∗ 10−4 9.96 ∗ 10−23 7.34 ∗ 10−23 5.25 ∗ 10−23

90nm 1.65GHz 1.2 V 115 cycles 7.4 ∗ 10−4 5.97 ∗ 10−23 4.40 ∗ 10−23 3.15 ∗ 10−23

65nm 2.0GHz 0.9 V 140 cycles 7.1 ∗ 10−4 3.26 ∗ 10−23 2.40 ∗ 10−23 1.73 ∗ 10−23

Table 3.1 Scaling parameters for the simulated processor.

technology generations ranging from 180nm to 65nm. We find that with scaling, the derating

factors for logic structures often decrease, the derating factors for storage elements remain roughly

unchanged, and the FIT for the full processor roughly follows the trend for the raw SER of storage

structures (i.e., the FIT rate increases from 180nm to 90nm and decreases from 90nm to 65nm.)

Please note that this result is valid only when the transistor number is constant during the scaling

process. In reality, we expect the transistor count to increase and the overall FIT rate per chip to

increase.

Scaling Methodology

The parameters of the base processor we simulate are the same as in Table 2.1. We study the

architecture level FIT rate for the modeled processor for four technology generations, ranging from

180nm to 65nm. We assume that there are no modifications to the processor micro-architectural

pipeline with scaling. Effectively, we scale the same chip from 180nm to 65nm technologies.

Table 3.1 summarizes the parameters that change with scaling. Although with ideal scaling,

the best base frequency scaling per generation should be about 43%, it is hard to achieve the

ideal frequency boosts without significantly re-tuning all the circuit delay paths in the processor.

Therefore, we conservatively assume 22% frequency scaling per generation. Since everything on chip

is scaled, we assume that the on-chip storage structures such as register files, instruction queues,

TLBs, and caches scale linearly with the transistors and their access times in terms of processor

cycles stay the same. For the off-chip L3 cache, we assume that the absolute access time stays

the same and therefore, its access time in terms of processor cycles increases about 22% for each

generation.

Table 3.1 also gives the scaled values for the raw SER for storage structures (denoted as λ)

and logic circuit (denoted as elogic). The base case (180nm) parameters have been estimated in

45



��
��
�
��
��
�

�����
�

������
������
���
������
������
���

	�		�	
�

�
���
���������

��
��
��
�

������
������
������

���������
���������

��
��
��

��
��
��

�����
�

60
55
50
45
40
35
30
25
20
15
10

5
0

 R
aw

 F
IT

 R
at

e
18

0n
m

13
0n

m
90

nm
65

nm

��
��
��
����
����
�

� �� �
� �
!!
!" "#$ $
$ $$ $%%
%
& && &
& &
' '' '
' '( () )* *
* ** *+ ++ +
+ +

,,
,,
--
-./0
0011
1

2 22 2
2 22 2
2 22 2
2 22 2

33
33
33
3
4 456 66 67
7

88
88
88
8

99
99
99
9
::;
;<<=
=

>>
>>
>>
>>
>

??
??
??
??
?
@ABB
BCC
C

D DD D
D DD D
D DD D
D DD D
D D

EE
EE
EE
EE
E
F FGH HH HI
I

J JJ J
J JJ J
KK
KK
L LMN NN N
N N
OO
O

P PP P
P PP P
Q QQ Q
Q QQ Q

R RR RS SS ST TT TU UU U

VV
VV
V
WW
WW
W

XXY
YZZ
Z
[[
[

\ \\ \
\ \\ \
]]
]]

^ ^_` `` `
` `
aa
a

bb
bb
bb

cc
cc
cdef
fgg

hh
hh
h
ii
ii
ijkl
lmm

n nn n
n nn n
n nn n

oo
oo
oo
p pqr rr r
r r
ss
s

tt
tt
tt
t

uu
uu
uu
vwxxy
y

z zz z{
{| |}~ ~� ��
�
���
����
��� ���
������
�
� �� �� �� �� �� �� �
� �� �� �� �
� �

� �� �
� �� �
� �� �
� �

��
��
��
�

� ��� �� ��
�

� �� �
� �� �
� �� �
� �� �

� �� �
� �� �
� �� �
� �� �

� �� �� �� �� �� �

��
��
��
��
�

��
��
��
��
�

 ¡¢¢£
£

¤ ¤¤ ¤
¤ ¤¤ ¤
¤ ¤¤ ¤
¤ ¤¤ ¤
¤ ¤

¥ ¥¥ ¥
¥ ¥¥ ¥
¥ ¥¥ ¥
¥ ¥¥ ¥
¥ ¥

¦ ¦¦ ¦§ §§ §¨ ¨¨ ¨© ©© ©

ªª«
«

¬ ¬¬ ¬


®®¯
¯

25

20

15

10

5

0

 F
IT

 R
at

e

bz
ip2

cra
fty gc

c
gz

ip
mcf

pe
rlb

mk

idu ibuf fpu fxu itlb dtlb iq reg

°°
°°
±±
±
²³´´
´´µµ
µµ

¶ ¶¶ ¶
¶ ¶¶ ¶
··
·
¸ ¸¸ ¸¹
¹º ºº º
º º
»»
»

¼ ¼¼ ¼
¼ ¼¼ ¼
½ ½½ ½
½ ½½ ½
¾ ¾¿ ¿À ÀÀ À
À ÀÀ À
Á ÁÁ Á
Á ÁÁ Á

ÂÂ
Â
ÃÃ
Ã
ÄÄÅ
ÅÆÆ
ÆÆ
ÇÇ
ÇÇ

È ÈÈ ÈÉ ÉÉ ÉÊ ÊË Ë
Ì ÌÌ ÌÍ ÍÍ Í

ÎÎÏ
ÏÐÑÒÒÓ
Ó
Ô ÔÔ ÔÕ ÕÕ ÕÖ Ö× ×
Ø ØØ ØÙ ÙÙ Ù
Ú ÚÚ ÚÛ ÛÛ Û
Ü ÜÝ ÝÞ ÞÞ Þß ßß ß àà

àà
áá
á
âãää
äåå
å

æ ææ æ
æ æ
çç
ç
è èè èé
éê êê ê
ê ê
ëë
ë

ìì
ìì
íí
í
îïðð
ðð
ññ
ññ

òò
ò
óó
ó
ôõöö
ö÷÷
÷

øø
ø
ùùúûü
üüý
ýý

þ þþ þ
þ þ
ÿÿ
ÿ�������
��������
�

������
���
��
�����
	�		�	
	�	






��
�
��
���
����
�

������
������
������
���

������
������
������

���������
���������

��
��
��

��
��
��

����
�
��
�

��
��
��
��

��
��
��
�

�� 
 
!!
!
""
"

#�##�#
#�##�#
#�##�#
#�#

$�$$�$
$�$$�$
$�$$�$
$�$

%�%&�&'�'
'�''�'
'�'
(�((�(
(�((�(

))*
*
++,
,
--
-
..
.

/�//�/0�00�0
1�12�23�3
3�33�34�44�4
4�4

55
5
66

7899
99
9

::
::
:

;;
;
<<
=>>
>>
>

??
??
?

@�@@�@A�AA�A BBCC DDEE
15

10

5

0

 F
IT

 R
at

e

am
mp

art
fac

ere
c

eq
ua

ke

mes
a

mgr
id

idu ibuf fpu fxu itlb dtlb iq reg

(a) (b) (c)

Figure 3.6 FIT rates (a) for raw errors, (b) with architecture masking for SPECint
benchmarks, and (c) with architecture masking for SPECfp benchmarks.

Section 3.3. For storage structures, we then scale the raw SER for different technologies using the

scaling curve provided by Karnik et al. [18]. As shown in Table 3.1 the raw SER (λ) of storage

elements increases as technology scales down from 180nm to 90nm and then decreases slightly from

90nm to 65nm. For logic structures, we use the same methodology as described in Section 3.3.3 to

determine the raw SER for each technology generation. The raw logic SER (elogic) decreases with

scaling. This is because logic error rate is dominated the SER by latches and the SER for latches

will decrease with future technology scaling.

Below we report experimental results for 12 SPEC CPU2000 benchmarks including 6 integer

benchmarks and 6 floating point benchmarks.

Results

Our results are presented in Figures 3.6 and 3.7. Figure 3.6 shows the FIT rate for the processor.

Figure 3.6(a) shows the raw processor FIT rates which are calculated assuming that each raw error

causes a program failure for the four technology generations. Figures 3.6(b) and (c) show the FIT

rates for our SPECint and SPECfp benchmarks respectively. Each group consists of four bars which

are for four technology generations starting from 180nm to 65nm. Each bar is further divided to

show the contribution to the FIT rates from the different structures.
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Figures 3.7 (a) and (b) show the architectural derating factors for each structure and the entire

processor for the SPECint and SPECfp benchmarks respectively for the four technology generations.

In view of the inaccuracies in our method of estimating the raw SER values (Table 3.1), the focus

of the results presented here is not on absolute FIT rates which are almost certainly inaccurate.

Instead, the goal of the ensuing analysis is to show the trends with scaling. We believe these trends

are reasonably accurate.

Our high level results are the following:

FIT rate scaling: The FIT rate of the whole processor increases as technology scales from 180nm

to 90nm and decreases slightly from 90nm to 65nm. The reason is that the dominating source of

the FIT rate is the storage structures. The logic FIT rate is insignificant compared to the storage

element FIT rate. From 180nm to 90nm, the FIT rate of storage structures increases. From 90nm

to 65nm, the FIT rate of storage structures decreases slightly.

Derating factor scaling: (1) The derating factor of logic structures (FPU, FXU, IDU) decreases

as technology scales down. (2) The derating factor of storage elements does not change much with

technology scaling and increasing memory latency. This is the case for both SPECint and SPECfp

applications.

Analysis

To help explain the results, we use a simple model to analyze the FIT rate and derating factor

scaling trends. As discussed in Section 3.4.2, the FIT rate for a given structure is determined

by three factors: raw FIT rate for the structure, base utilization of the structure, and effective

utilization of the structure. The derating factor is only determined by the latter two factors. The

raw FIT rate factor depends on the technology. For storage structures, the base utilization is the

fraction of values that are alive. For logic structures, the base utilization is the fraction of time the

structure is used. The effective utilization of a structure is the fraction of values that are read or

computed from the structure that affect the program outcome.

The scaling of raw FIT rate has been summarized in Section 3.4.3. Next we will analyze the

scaling trend of the base utilization factor. It can be expressed as Tbusy/Texec. Here Texec is the

total execution time of the program. For logic structures, Tbusy is the time the structure is used.
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Figure 3.7 Architectural derating factor for each structure (a) for SPECint and (b)
for SPECfp benchmarks. Note that the scales on the two graphs are different. For
each application, the four bars in a graph represent the four technology generations,
going from 180nm to 65nm.
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For storage elements, Tbusy is the time that the element holds live values. This is equivalent to

Cyclesbusy/Cyclesexec. Here Cyclesexec is the number of cycles for program execution. Cyclesbusy

for a logic structure is the number of cycles the structure is busy. Cyclesbusy for a storage element

is the number of cycles the element has live data.

From 180nm to 65nm, the processor frequency increases 22% every generation. If there is no

memory access, the value of Cyclesexec would stay the same. But for real applications, Cyclesexec

typically increases because the increasing memory latency would delay the program execution.

Figure 3.8 shows the increase in number of cycles for each application when the memory latency

increases from 77 to 140 cycles. From Figure 3.8, the execution time of most integer applications

is not very sensitive to the memory latency (except mcf), while the execution time of most floating

point applications is more sensitive.

The scaling of the Cyclesbusy value is more complex. Next, we will discuss the scaling for logic

and storage structures separately.

For logic structures (FPU, FXU, IDU), although the processor frequency changes, the number of

committed instructions and the instruction sequence stays the same. Thus the number of operations

that are critical to the outcome of the program will not change. For example, for each technology

generation, there would be the same number of FPU operations and FXU operations that are

critical to the program outcome. Thus, the value of Cyclesbusy would be the same for logic. As a

result of the increase of Cyclesexec, the derating factor of logic would decrease.

For storage elements (reg, IQ, TLB, IBUF), Cyclesbusy is the number of cycles data is live in the

element. It tends to increase with technology scaling because the memory latency gets larger from

180nm to 65nm. According to our experiments, the rate of increase of Cyclesbusy and Cyclesexec is

similar. Therefore, the increases roughly cancel out with each other and the derating factor stays

the same.

Scaling summary

Based on on the scaling trend of the above factors, we explain the scaling trend of the derating

factor and the FIT rate as follows:

Scaling trend of the derating factor: The derating factor depends on the utilization factor.
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Figure 3.8 Cyclesexec for each application for different frequencies (technologies)

As the technology scales down from 180nm to 65nm, the derating factor of the storage elements

stays roughly the same, while for logic, the derating factor gets smaller.

Scaling trend of the FIT rate: The processor FIT rate depends on the raw FIT rates and the

derating factors. For the processor and the technologies we modeled, storage elements FIT rate

dominates and the logic FIT rate is insiginifant. Since the derating factor for storage elements does

not change, the FIT rate of the whole processor follows the same trend as the raw FIT rate. It

increases from 180nm to 90nm and decreases slightly from 90nm to 65nm.

3.5 Summary

In this section, we have presented SoftArch, a model and tool for studying and analyzing archi-

tecture level soft error behavior of modern processors. SoftArch can be integrated into high-level

performance simulators and used to (1) determine the architecture level soft error MTTF of a

processor running a specified workload, (2) identify the soft error contributions from various mi-

croarchitectural structures, and (3) study the soft error contributions of different phases of an

application. We first show that SoftArch does not need to make the assumptions that AVF+SOFR

does, thus does not exhibit the discrepancies shown by AVF+SOFR. Then we demonstrate the use

of SoftArch by applying it to a modern out-of-order processor running SPEC2000 benchmarks. We

use SoftArch to study workload behavior and show significant architecture level derating and large

variations of soft error failure rate across workloads, processor structures, and within the same

workload. Finally, as another application, we apply SoftArch to quantify the impact of technology

scaling on the architecture level processor soft error rate, taking the architecture level masking

effects and workload characteristics into consideration.
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Chapter 4

Online estimation of the AVF

4.1 Introduction

As we have mentioned in Chapter 2, the AVF of a structure is defined as the probability that a visible

error (failure) will occur, given a raw error event in the structure. AVF is a simple abstraction for

the amount of architecture level masking in the processor and can be used to estimate the MTTF.

We have shown in Chapter 2 that although the AVF method has strong assumptions, for a large

class of systems and workloads, including those that will be studied in this section, the AVF method

is accurate and AVF value of a structure directly determines its mean time to failure (MTTF) [5]

– the smaller the AVF, the larger the MTTF and vice versa. It is therefore important to be able

to estimate the AVF in the design stage to meet the reliability goal of the system.

Many soft error protection schemes have significant space, performance, and/or energy over-

heads; e.g., ECC, redundant units, etc. Designing a processor without accurate knowledge of the

AVF risks over- or under-design. An AVF-oblivious design must consider the worst case, and so

could incur unnecessary overhead. Conversely, a design that under-estimates the AVF would not

meet the desired reliability goal.

Furthermore, the results in Section 3.4.2 show significant intra-application variation in the

AVF, which motivate the need to estimate AVF at runtime as well. Depending on the workload,

the processor may be more or less vulnerable at different times. This observation creates new

opportunities to reduce the soft error protection overhead while meeting the MTTF goal. If we

are able to estimate AVF in real-time accurately, we can adjust the protection scheme based on

the current AVF value. We can have more protection during highly vulnerable periods and less
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protection during less vulnerable periods, minimizing performance and/or energy overhead. For

example, Soundararajan et al. [21] propose to use the AVF input to control instruction throttling

and selective redundancy schemes. They show that using AVF-controlled selective redundancy

scheme, the AVF of the re-order buffer can often be reduced by more than half (which means

that the MTTF more than doubles) with a relative small performance degradation. In this case,

a real-time online AVF estimation is a must since a slow offline method will not be able to give

timely input to the control logic.

There are some previous studies that provides online AVF estimation; however, they are either

dependent on extensive offline workload analysis [22] or targeted to a single structure [21] (see

Section 5.2). In general, estimating AVF online is a challenging task since the complex computation

used in offline analysis is not feasible in real-time. The AVF for many structures depends on many

factors that are hard to measure and observe. For example, the AVF of the floating point unit

depends not only on its utilization, but also on variables such as the percentage of dead values and

speculative instructions. For storage structures, AVF estimation is even more difficult. It may be

intuitive to think that the number of reads/writes to a storage structure may be correlated with

the AVF of this structure. However, it is easy to construct two read/write sequences that have the

same number of reads and writes, but very different AVF values.

In this dissertation, we describe a general online method to estimate AVF for a variety of

structures (including logic and storage structures) without the need for extensive offline workload

analysis. Our approach is motivated by offline (complex) AVF estimation approaches. Specifically,

a common method for offline estimation is to inject an error in a low-level simulator and determine

whether it results in program failure. Many such injections are performed, and the AVF is calculated

as the fraction of such injections that lead to failure. Our online estimation method effectively seeks

to perform error injection while the program is running in production mode and uses the program

execution to determine whether the error will result in failure. Of course, we cannot actually inject

an error into a production run. We therefore introduce some additional error bits through the

processor pipeline that can emulate the generation and propagation of an error.

To estimate the AVF of a structure, we emulate the injection of an error in the structure by

setting its error bit to 1. An instruction touching this structure then propagates the injected error
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to its destination and so on. In this way, an error is propagated by the executing program. Our

algorithm waits a fixed number of cycles to determine if the error could (potentially) result in

program failure. Multiple such injections are done and as with offline error injection, the fraction

that is determined to potentially result in failure provides an estimate of the AVF of the structure.

Our method depends on two key parameters to get an accurate estimate of AVF: (1) how many

times to inject an error, and (2) after injecting an error, how long to wait to see if the error will

cause a program failure. Setting these parameters too high can result in an estimation procedure

that lasts too long and does not adequately track the AVF changes in the program. Setting them

too low can result in less accurate estimates. The parameters should be set based on the required

estimation precision. The needed accuracy of the AVF estimation depends on how the AVF value

will be used. For example, Walcott et al. [22] propose to use the AVF estimation to enable/disable

the redundant multithreading protection scheme. In this case, the AVF is used to make a binary

decision. As long as the AVF estimation is below or above a certain threshold, the decision will be

the same. Thus, there is no need for a very high precision estimation. However, for the instruction

throttling scheme proposed by Soundararajan et al., since the throttling amount is a continuous

variable that can take any value between 0 and 100%, even a small error in the AVF will cause

the throttling amount to change. The required AVF precision in this case is higher. Our AVF

estimation scheme is flexible and can be configured based on the needed precision. In Section 4.2,

we will show how we use analytical and experimental methods to determine these two parameters.

To evaluate our method, we implement it in a simulator and perform experiments to estimate

the AVF for both logic and storage structures (integer ALU, FPU, instruction queue, and register

file) for 100 to 200 intervals in each of eleven SPEC benchmarks. In order to validate our results,

we compare them with the results SoftArch, which is a more detailed (but complex) offline AVF

estimation method (see Section 5.2). The results show that our method generates very similar

results to SoftArch. The absolute difference in AVF estimated by the two methods rarely exceeds

0.08 across all application intervals and structures studied. The mean absolute difference is less

than 0.05 for any given application and structure. Further, we also compare with an intuitive and

simple AVF estimation method that uses the utilization of logic structures as a proxy for their

AVF (an analogous extension of such a method for storage structures is not clear). We show that
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compared to our method, this simple method shows significant inaccuracies relative to SoftArch,

providing evidence for the need for the hardware support required by our method. Overall, our

results show that our novel method for online estimation of AVF is both accurate and robust in a

variety of situations.

4.2 AVF estimation algorithm

This section describes our online AVF estimation algorithm. We first give an overview of the

algorithm and then describe the details, including the hardware support needed, overhead, and

limitations.

4.2.1 Overview of the algorithm

The main idea of the algorithm is to associate error bits with structures, inject an error by setting an

error bit to 1, use the program execution to propagate the error, determine if the error (potentially)

causes failure, and repeat another injection. The percentage of injections that cause failure is the

estimated AVF. We first illustrate the working of the algorithm with an example small program

segment below.

1. r1 + r2 = r3

2. r1 - r2 = r4

3. r2 + r4 = r3

...

4. r3 + r4 = r5

5. store r5 to address r4

...

6. load r5 from address r4

...

7. r5 + r6 = r7

8. Branch if r7 = 0
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First, let us assume that we want to measure the AVF of the register file. Suppose at some

cycle after completing line 1 but before executing line 3, we inject an error in register r3 by setting

its error bit to 1. When line 3 is executed, the value of r3 is overwritten. Thus, its error bit is

overwritten as well by an “or” of r2’s and r4’s error bits. Since neither of those source registers has

an error, r3 no longer has an error, and so the injected error bit has disappeared. After waiting for

a pre-determined number of cycles, say M , we see no processor failure. This example in particular

shows how our scheme correctly handles dead values. Next, assume that at some cycle before

executing line 4, we inject an error into r4. This error bit will propagate to the result register r5.

Next we see a store writing an erroneous value (r5). As discussed later, we assume errors in retiring

stores can cause program failure; therefore, when that store retires, we update a failure counter.

So far, we have injected two errors and one of them causes program failure. If we calculate AVF

at this time, it would be 50%.

Next, let us examine how our scheme measures the AVF for a functional unit like the integer

ALU. Suppose at the cycle when the load instruction at line 6 is executed, we inject an error into

the ALU by setting its error bit. Since the ALU is not used during that cycle, the error bit will

not propagate to other structures. Thus, the error is masked. Next, assume we inject an error into

the ALU at the cycle when line 7 is executed. The ALU is used during the cycle to calculate r7.

Thus, by our approach, the injected error propagates into r7. Now r7 has its error bit set to 1

which later propagates to the branch instruction. When instruction 8 is executed, we note that

it is an erroneous branch. As discussed next, we assume erroneous branches can potentially cause

program failure and update a failure counter when this branch hits retirement.

Our algorithm tracks only one error at a time; injecting multiple errors simultaneously will

make the algorithm too complex for at least two reasons. First, different errors could merge and

this could obscure the true nature of the structure’s vulnerability information. For example, when

two values x1, x2 are added up together, two separate errors in x1 and in x2 could combine into one

new error and the original error information is lost. Second, one error could propagate into several

values and they might all lead to program failures. We should count them as just one failure since

they are all caused by the same error source. Tracking such information requires complex hardware

and logic. Thus, we only inject one error at a time and clear all current errors before injecting the
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next error.

Algorithm 1 Algorithm to estimate AVF for a structure

1: Set the counters injectionCount = 0 and failureCount = 0
2: while injectionCount < N (N is a predetermined threshold) do
3: Inject an error into the structure by setting its error bit to be 1. For a storage structure that

contains many entries, randomly choose one to inject an error.
4: For the next M cycles (M is predetermined), propagate the error bits according to the

execution. If a bit propagates to certain predefined failure points, set the processor failure
bit.

5: If the processor failure bit is set, failureCount = failureCount + 1.
6: Clear all error bits in the processor.
7: injectionCount = injectionCount + 1.
8: end while
9: AVF = failureCount

injectionCount

The full algorithm is summarized as Algorithm 1 and subsequent sections elaborate on the

details. We first discuss the cases where we assume the injected error results in program error.

Then we discuss the two predetermined variables N and M that are used to control how many

times to inject errors and how long to wait after each error injection (to determine potential failure)

respectively. We then discuss the hardware support required and the other overheads, and finally

the limitations of our method.

4.2.2 Determining potential failure

In reality, an error causes program failure only if it propagates to the program output. Unfortu-

nately, similar to SoftArch, we cannot perform this ideal assessment of failure for two reasons. First,

waiting for propagation to the output could take too long for our technique. That is, it would limit

the number of error injections we could monitor in a reasonable amount of time. Second, since our

method does not disturb the actual program execution, any changes that would occur in the control

flow of the program due to the injected errors are not seen. For these reasons, we conservatively

consider an error to potentially cause failure if it propagates to the some pre-defined failure points.

In this study, we have use the same failure points as we have defined in Section 3.3.5.
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4.2.3 Determining N – the number of error injection samples needed

In this section, we show that Algorithm 1 gives an unbiased estimation of the AVF and, more

importantly, we derive an equation to determine the number of samples needed to get an accurate

estimation.

Algorithm 1 gives an unbiased estimator.

An error injected in a structure is either masked or not masked with probability AVF and 1-

AVF respectively. We introduce a random variable X to model this process: X = 1 if the error is

not masked and X = 0 if the error is masked. X has the following probability mass function:

Pr(X = 1) = AV F, Pr(X = 0) = 1 − AV F

Our algorithm seeks to estimate AVF which is the expectation of X or E(X). It does this by

determining the outcome of N error injections or by generating N samples of X, denoted X1, X2,

..., XN . The algorithm estimates AVF as the mean of these samples denoted X̄ = X1+X2+...+XN

N
.

If the N samples are independent and identically distributed (i.i.d.), then it can be shown using

simple probability theory that X̄ is an unbiased estimator for E(X) since E(X̄) = E(X) [11].

Independence of the samples can be ensured using random sampling; i.e., by using a random

number generator to determine the error injection time. Many hardware random number generators

are very complex. There are some simpler pseudo-random number generators such as the linear

feedback shift register(LFSR) [23]. LFSR can generate a pseudo-random number in between 0

and 2n. In our case, if we need a random number between 0 and any m, we will still need some

more hardware to transform the original random number. In our experiments, we injected errors

at fixed length intervals. Although we expect that small time-scale variations in the workload

behavior will effectively introduce enough randomization, this is an approximation and potential

source of inaccuracy in our estimation. In the following, we assume that the samples are identically

distributed for simplicity, but relax this assumption at the end of the section.

Determining N for an accurate estimation.

To ensure that X̄ is an accurate enough estimator of AVF, we analyze and bound the standard

deviation of X̄, denoted σX̄ , as follows. It is well-known that the standard deviation σX̄ = σX√
N

if
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Figure 4.1 The number of samples N needed for different values of AVF and estimation
precision of σX̄ .

all Xi are i.i.d. [11]. Thus, we can fix the number of samples, N , depending on the desired value of

σX̄ (i.e., the desired accuracy of the AVF estimate). Based on the above equation, we have

N =
σ2

X

σ2
X̄

(4.1)

From the distribution of X, we know that σX =
√

AV F (1 − AV F ), where AVF ∈ [0, 1]. Thus,

we can plot the desired value of N as a function of the AVF, given a desired precision (standard

deviation) of the estimator. Figure 4.1 shows such plots for different values of σX̄ . In practice, the

AVF value is unknown before the estimation, so we cannot directly use the plots to determine N .

Instead, we note that the maximum possible value of σX is 0.5 corresponding to an AVF of 0.5. We

substitute this value in equation 4.1 to derive a conservative upper bound for N . For example, for

the estimation standard deviation to be less than 0.01, we need N = 0.52/0.012 = 2500 samples.

Similarly, for σX̄ < 0.02, we need 0.52/0.022 = 625 samples. In general, N can be chosen based on

the needed precision. In this work, we choose N = 1000 since we empirically find it to be a good

balance between the estimation precision and the simulation time.

Storage structures with multiple entries.

So far, our analysis of the AVF estimation of a component implicitly treats the component

as a single entity. For a storage structure that contains many entries, we can view each entry as

a (sub-)component and sample each entry. Assuming the structure has K entries, we define one

random variable for each of the K entries and denote them as X i, i in 1, 2,...K. The AVF of the

structure is

∑

K

i=1
E(Xi)

K
.
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Suppose we sample the entire structure N times. Ideally, for each sample, we would like

to choose the entry to sample using a random number generator; however, that might be very

expensive in hardware. As an approximation, we choose to sample the different entries in a round-

robin fashion, resulting in N/K samples for each entry or each X i. Our AVF estimator, X̄ , is the

average of these N samples. This is an unbiased estimator for the AVF of the structure since E(X̄)

is the AVF.

Assuming the samples are independent and that all samples for an entry are i.i.d., we can show

that [11]

σX̄ =

√

σ2
X1+σ2

X2+..+σ2
XK

N∗K .

In this formula, if we conservatively assume that all the σXi are the maximum value of 0.5, it

follows that σX̄ < 0.5/
√

N . Thus, even in this case, the bound for N is the same as for the single

structure.

Relaxing the identical distribution assumption.

Above we also assume that all the samples are identically distributed. However, we know that

workload behavior may change significantly over long intervals of time. If the estimation interval

includes such large-scale changes, then we can think of the interval as consisting of multiple phases

(each with its own AVF) and the AVF for the entire estimation interval to be the average AVF

across all the phases.

Now the expectation of our estimation becomes E(X̄) = E(

∑

N

i=1
Xi

N
) = 1

N

∑N
i=1 E(Xi), where

E(Xi) may be different for different i. If our samples are spread evenly over the entire estimation

interval, then it follows that E(X̄) is the AVF of the entire estimation interval. To achieve even

sampling, we inject a new error every fixed time interval M over the entire estimation interval.

The standard deviation of the estimation now is σX̄ = 1
N

√

σ2
X1

+ σ2
X2

+ .. + σ2
XN

. σXi
may

be different for different i. By conservatively assuming that σXi
takes its maximum value, σX̄ <

0.5/
√

N . This is exactly the same equation as with the i.i.d. assumption.

4.2.4 Determining M – the interval between successive error injections

Each time we inject an error, we need to wait to see if it can cause processor failure. The interval

M that we need to wait is an important parameter in our algorithm. If we wait too long, it will
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(a) register file (b) FXU

Figure 4.2 The cumulative distribution for the time taken by an error to propagate to
points of potential failure (defined in Section 4.2.2) for bzip2.

take a long time for us to have a reasonable estimate for AVF. However, if the wait time is too

short, a potentially unmasked error might not have propagated as a failure yet. Thus, we need to

choose M so that it is large enough that most of the unmasked errors propagate as a failure (as

defined above) during that period.

We empirically determine the appropriate injection interval length M using the error propaga-

tion time distribution in the processor. We inject errors into each structure of the processor and

measure the time it takes for the errors to propagate to our predefined failure points. Figure 4.2

shows the cumulative distribution of these propagation times for the register file and FXU units

for application bzip2.

Depending on the various latency parameters of the modeled processor and the workload char-

acteristics, the distribution curves will change. For example, for the issue queue, an error injected

into one of the entries may, in the case of a long latency cache miss, remain ”live” for a duration

that is at least as long as the worst-case miss latency in the system. Different structures may also

have different distribution curves. For example, we can see that the register file and the FXU have

different distribution curves in Figure 4.2. Thus, the optimal choice of M depends on the structure,

workload, and processor. Estimating the optimal M is therefore a complex process.

For our simulations, we choose M to be conservative so that the value covers all the workloads

and the structures we study here, namely register file, instruction queue, FXU, and FPU. Based

on the distributions observed for these structures, we choose M = 1000. We could have used a

60



smaller M for some of our structures; however, even with M = 1000, we need only 1 million cycles

to estimate the AVF (given N = 1000). Thus, for simplicity, we use M = 1000 for all the structures

and workloads we study. Other structures may require larger values of M .

4.2.5 Hardware support and overhead

The processor contains storage and logic structures. For each storage entry such as a register in

a register file or an issue queue entry, an error bit needs to be attached. For the bus, one extra

line is needed to carry over the error bit when a value is transferred over the bus. For each logic

structure like the FXU or FPU, an error bit will is required.

The scheme also needs the necessary hardware logic support to set and clear each error bit.

We emulate the injection of an error to a given structure by setting its error bit to one. When the

structure is used, its error bit needs to be propagated down the pipeline. For example, if the error

bit of a storage cell is set to one, when the value in the cell is read, the error needs to propagate

together with the value. If the value is overwritten, the error bit needs to be overwritten as well.

If the error bit of a logic structure is set to one and this structure is active, the error bit will be

attached to the output value. If the structure is idle, the error bit will not propagate further and

is masked. If a logic structure takes more than one input, such as the ALU, “or” gates are needed

to merge the error bits from each input.

Besides the error bits, the scheme also needs basic hardware counters to track the total number

of errors injected and the number that (potentially) lead to processor failure.

The overhead of the scheme mainly comes from the setting and clearing of the error bits. The

error bits require extra hardware. We need one bit for every 32-or 64-bit value; hence, the space

overhead for storage entries is about 1-3%. For a logic structure however, we only need one bit

for a given structure. We also need the necessary logic to keep track of how many failures have

occurred and how many errors have been injected. This can be done using several basic counters.

In addition, we need a counter to keep track of which storage entry or logic structure to inject next.

During program execution, the error bits propagate together with the values and should not

cause any extra slowdown for the processor. Once in every M ∗N instructions or so, the processor

needs to do the accounting and calculate the AVF. Given that this is done typically once every
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(several) million instructions, the time overhead should be negligible.

4.2.6 Limitations

Our method also has several limitations. A major assumption of our method is that an error in the

processor will propagate and cause program failure in a short period of time, currently less than

several thousand instructions. Otherwise, the time it takes to estimate AVF will be much longer

since M will need to be set to be a large number. Since we conservatively assume that values

stored in memory are observable externally and thus can cause program failure, this assumption

appears satisfactory for the structures we study. However, if we were to set the output instructions

as failure monitoring points, then we may need to wait for longer periods, meaning that we may

not be able to sample enough points. The downside of this is that we have to be very conservative

in estimating when an error leads to failure.

Also, our method only depends on one run of the program and we are not able to simulate and

track execution along incorrect paths invoked due to an error. Without this ability, we are left to

defining the points of failure very conservatively.

Under the current scheme, we attach one bit for each value or instruction in the processor.

Thus, our error injection granularity is limited to the full value or instruction. This means that

we cannot distinguish between errors in different fields of a structure and cannot track which part

of the instruction has error. This could be addressed by supporting multiple error bits per value

or instruction, allowing errors to be injected at a finer granularity. Similarly, since we do not

differentiate between bits constituting a given value, we conservatively assume that the value is

wrong once any of its bits has an error. This prevents us from modeling detailed masking effects

like logical masking.

Finally, the goal of this work is to develop an online AVF estimation algorithm. Our algorithm

estimates the AVF for the past interval. Many processor adaptive control algorithms need the

AVF for the future interval as the input. In order for our approach to be useful for controlling any

processor adaptation, we need to integrate our method with an interval or phase prediction method.

There has been much work on phase prediction. Our work can simply be combined with any phase

prediction algorithm. For example, we could use a simple predictor which always predicts the next
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interval’s AVF to be the same as the past interval.

4.3 Experimental methodology

To evaluate the accuracy of our AVF estimation method, we again use the Turandot simulator [13].

The parameters for the processor are chosen to correspond to the POWER4 microarchitecture and

were the same as in Table 2.1.

We implemented our AVF estimation algorithm in Turandot as described in Section 4.2 to

estimate the AVF of the instruction queue (IQ), register file (REG), integer or fixed point functional

units (FXU), and floating point units (FPU).1

We evaluated our algorithm with eleven SPEC CPU2000 benchmarks. We used traces from

the trace repository generated using the Aria trace facility in the MET toolkit [24], using the full

reference input set. Sampling was used to limit the trace length to 100-200 million instructions per

program. The sampled traces have been validated with the original full traces for accuracy and

correct representation [19].

The value of the parameters M and N depend on the processor and compiler and should

be carefully chosen. In our experiments, as we have mentioned in previous sections, we choose

M = N = 1, 000. Thus, we estimate an AVF value at the granularity of every M ∗ N = 1 million

cycles of an application. We refer to this as the estimation interval below. This gives us 100-200

AVF estimates (one for each distinct 1M cycle interval) for each application and each processor

structure.

To validate the accuracy of our AVF estimates, we compare against the AVF reported by the

SoftArch method [6]. As mentioned, SoftArch is a detailed soft error model that estimates the AVF

offline with a lot of analysis. We use SoftArch since it is the best AVF estimation we have access

to.

Additionally, to justify the full complexity of our method, we also compared its accuracy to that

of a simpler, intuitive method. Specifically, for logic structures, it is intuitive to consider utilization

as an estimation for the AVF (the higher the utilization, the higher the vulnerability to soft errors).

1We were not able to collect data for TLBs since a reasonable M value required for effectively exercising them is
close to 1 million cycles. Thus, to generate one AVF estimation requires a billion cycles of simulation, which made it
difficult to collect a full set of results.
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The utilization of a logic structure can be easily estimated in hardware by counting the number

of cycles it is busy out of all cycles. It is natural to use the utilization as a proxy for AVF since

errors in the structure will be masked if the structure is idle and errors may not be masked when

the structure is busy. An analogous concept is harder to extend to storage structures. We are

not aware of any other general, workload-independent algorithm for online estimation of AVF of

storage structures. Thus, in this study, we use a simple alternative (utilization-based) method only

to estimate AVF for logic structures.

4.4 Results

Figures 4.3(a), (b), (c), and (d) show aggregate statistics to demonstrate the accuracy of our AVF

estimation algorithm relative to SoftArch for the instruction queue, register file, FXU, and FPU

respectively. The FXU and FPU figures also show the accuracy of the simple utilization-based

estimation method relative to SoftArch (right bar for each application).

Below, by absolute error of an estimation method for a given application interval that contains 1

million cycles, we refer to the absolute difference between the AVFs reported by that method and by

SoftArch. By relative error of an estimation method, we refer to |Estimated AV F − SoftArchAV F |
SoftArch AV F

∗100.

Also, we often refer to the SoftArch AVF as the real AVF.

The charts on the left side of Figure 4.3 give three statistics for the absolute errors. For each bar,

the lowest (shaded) stack gives the mean absolute error (referred to as Mean) for the corresponding

estimation method and application (averaged across the different 1M cycle estimation intervals for

that application). The full height of the bar is the maximum absolute error, ignoring the top four

errors to exclude unrepresentative outliers (referred to as Max). The middle stack is the standard

deviation of the absolute error (referred to as Standard Deviation).

Since AVF values can range only from 0 to 1, it is most meaningful to compare the absolute

errors. Small absolute errors may be acceptable even if the relative error is large; e.g., an estimate

of AVF=0.12 for a real AVF of 0.1 reflects a 20% relative error; however, it is unclear if this

difference of 0.02 absolute error is practically significant. Nevertheless, the charts on the right side

of Figure 4.3 provide the relative errors for reference.

For a more detailed look, we take two applications as examples and plot AVF values for them
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(a) Instruction queue
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(b) Register file
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(c) FXU
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(d) FPU

Figure 4.3 Error in AVF estimation when compared to the SoftArch reference for (a)
instruction queue, (b) register file, (c) FXU, and (d) FPU. The left charts show abso-

lute error - mean, standard deviation and maximum - across all estimation intervals
of the application. The right charts show relative error. The errors are shown for
AVF estimates using our online method (denoted O) and the simple utilization-based
method (denote U, for parts (c) and (d) only).
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Figure 4.4 AVFs of instruction queue, register file, FXU, and FPU, as reported by
SoftArch, our online method, and the utilization-based method (for FXU and FPU
only), for applications mesa (left side) and ammp (right side). AVFs are reported for
1M cycle intervals.
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for each 1M cycle estimation interval for each structure in Figure 4.4. For each application, we

show the AVF value calculated by SoftArch and the AVF value estimated by our method. For both

the FPU and FXU, we also show the AVF calculated by the utilization-based method.

We make the following observations from the figures.

Absolute errors.

Comparing absolute errors (left charts in Figure 4.3), we find that our method shows low mean

absolute errors – for all but 3 cases, the mean is less than 0.04 across all four structures and eleven

applications. Even the Max absolute error for our method is less than 0.08 for all the structures

and applications. The standard deviation for the absolute error is less than 0.05 for all cases.

In contrast, the utilization-based method has significantly larger mean absolute error in several

cases. For example, for the FXU, the mean absolute error is over 0.16 for perlbmk and almost 0.1

for mesa and wupwise. The maximum errors are even higher.

In all cases, our estimation method shows better or almost the same absolute error as the

utilization-based method. The main reason that our method shows lower error is that it is able to

account for more sources of masking (e.g., masking due to dead values and instructions) than the

utilization-based method. In four cases, the utilization-based method shows slightly lower mean

absolute error because our method does make some statistical errors. Specifically, we use only a

finite number of samples. Further, we assume that the samples are independent and, for the case of

structures with multiple entries, an entry in a structure is not randomly selected for fault injection.

Relative errors.

Comparing relative errors (right charts in Figure 4.3), we find that in most cases, the mean

relative error for our method is less than 20%, but in some cases, it can be as high as 65% (for

FPU running facerec). The utilization-based method has a much higher mean relative error in most

cases, up to over 300% for FXU running equake and 130% for FXU running wupwise.

We examine the cases where our method has a relative error larger than 20%. We find that in

all these cases, the real AVF is less than 0.2. This small absolute value implies that even a small

absolute error is inflated as a large relative error. At these small AVF values, the modestly large

relative errors of our method are unlikely to affect design choices, given that the absolute errors

are so small.
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Figure 4.5 The relative error of the predicted AVF using a simple predictor. The
predictor assumes the AVF of the next interval is equal to that of the previous interval.

Detailed results.

The detailed plots in Figures 4.4 reveal several interesting observations that are not seen in the

aggregate statistics. First, the absolute value of the AVF stays within 0.2 for most of the cases

examined here, but it often also goes as high as 0.5. Our method is able to track this entire range

of AVFs.

Second, many of the applications show significant changes in the AVF through the course of

the execution. Our method is able to track all such changes very closely. The utilization-based

method also tracks the changes – periods of high utilization correlate well with periods of high real

AVF; however, often a significant gap remains between the absolute values of the utilization-based

method and the real AVF.

Overall, these results show that our method is not only accurate on average, but also robust

across a variety of scenarios. Further, for structures where a simple utilization-based method can be

constructed, our results show that such a method has significantly lower fidelity than our method.

Prediction errors.

We have studied the accuracy of our scheme when used to estimate AVF. The AVF estimation

is obtained at the end of each interval. However, for the AVF value to be useful for any dynamic

control or adaptation scheme, we need to predict the AVF value for the next interval. Detailed

AVF prediction schemes are beyond the scope of this work. In this dissertation, we simply illustrate

that with our AVF estimation method and a simple predictor, we can quite effectively predict the

AVF value for the next interval.
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Such a simple predictor would work as follows. At the end of each estimation interval, it predicts

the AVF of the next interval to be equal to the AVF of the past interval which is estimated using

our scheme. The underlying assumption behind this simple prediction is that the AVF behavior

across consecutive estimation intervals for the same application is stable or changes very slowly.

In order to evaluate the quality of our AVF prediction, for each estimation interval, we calculate

the absolute error in the prediction as the absolute value of the difference between the predicted

AVF and the real AVF. Figure 4.5 reports this absolute prediction error and the real AVF, averaged

across all intervals for each application.

The results show that the absolute prediction error is quite small in all cases (less than 0.05

with two exceptions). The relative prediction error (as a percentage of the real AVF) is less than

30% of the real AVF with a few exceptions when the absolute value of the AVF is small.

The prediction errors arise from two sources.

The first is the predictability of the AVF itself across different intervals of the application. If

the application AVF is unrelated across different intervals and changes abruptly and frequently, any

predictor will fail to produce reasonable predictions. This is regardless of the accuracy of the online

AVF estimation method for the current interval. The predictability of the AVF across different

estimation intervals is a topic beyond the scope of this dissertation. Based on our observation,

however, the AVF of most applications is stable across consecutive intervals, although there are

a few exceptions where AVF behavior changes frequently and is harder to predict. Fu et al. [25]

show that AVF exhibits phase behavior similar to the performance and power domain. They show

that the AVF behavior is mostly related to the program code-structure and run-time events. Thus,

the stable AVF behavior across multiple intervals might be explained by the the underlying similar

code-structure such as code running in the same loop. Similarly, a sudden change of AVF might

indicate that the program has entered a new phase.

The second source of error in the prediction is the error in our online AVF estimation method

for the current interval. If the AVF estimation for the current interval has large errors, then even

if the AVF is stable across all intervals, the prediction for the next interval will contain large

errors. Overall, the results show that our estimation scheme combined with a simple predictor

gives reasonable AVF predictions.
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4.5 Summary

In this chapter, we have proposed and studied a novel technique to estimate architectural vulnera-

bility factors for soft errors in real-time. We have described the AVF estimation algorithm and the

simple hardware modifications to the processor for effectively estimating the AVF. Our method is

general and applies to both logic and storage structures in a microprocessor. We test our method

with a widely used simulator from industry, for four processor structures running SPEC bench-

marks. The results show that our method provides acceptably accurate run-time AVF estimates

under a wide variety of scenarios, compared to a detailed (and complex) offline AVF estimation

tool.

70



Chapter 5

Related work

We classify related soft error work into three main categories: soft error modeling, AVF estimation,

and soft error protection solutions. The first class of work models and investigates the soft error

behavior of a processor at the architecture level. The second class estimates and predicts the AVF

for a running application. The third class proposes new solutions to protect the processors from

soft errors.

In Section 5.1 to 5.3, we describe each of the three categories. In Section 5.4, we discuss other

related work that bears similarity to our online AVF method.

5.1 Soft error modeling

There have been two broad approaches to architecture level modeling of the impact of soft errors.

The first involves fault injection in a simulator to determine whether an injected error is exposed

at the architecture level [26, 27, 3]. For example, Wang et al. perform fault injection experiments

on a latch-accurate Verilog model of a modern Alpha processor (about 25,000 experiments for each

benchmark). This kind of approach is accurate, but slow. The typical simulation is limited to the

order of 10,000 cycles for an application’s execution.

Mukherjee et al. propose the AVF method to calculate the MTTF of a processor [8]. The average

fraction of bits in a structure that will affect the program outcome is termed as the architecture

vulnerability factor (or AVF) for that structure (equivalent to the derating factor). The product of

AVF and the raw SER for a structure gives its architectural failure rate. Biswas et al. [9] extends

the method to cover address-based structures as well.

To our knowledge, there has been no prior attempt to understand the basic assumptions of the

71



AVF+SOFR method and parameter value ranges that bound its validity (or accuracy), when it

comes to reliability modeling at the (micro)architecture level.

5.2 AVF estimation

There have been several studies on estimating the AVF [8, 6, 28, 22, 21]. They can be classified

into two categories.

The first category is the offline method which estimates AVF with complex simulators [8, 6,

28]. This offline estimation is a complex process, requiring many resources to track values and

instructions as they travel through a processor. Normally only a limited number of instructions

can be analyzed in a reasonable amount of time. These methods are therefore not suitable for

online real-time AVF estimation.

The second category is the online method which estimates the AVF in real time [21, 22]. Walcott

et al. [22] apply statistical analysis using a detailed simulator to analyze the AVF behavior. Then

they use regression to explore the relationship between AVF and various micro-architecture level

variables such as structure occupancy, number of instructions executed, etc. After running the

regression offline for certain workloads, the correlation coefficients between AVF and each micro-

architecture variable are established. Since the micro-architecture variables are observable, the AVF

value can be estimated through them. This method can potentially be implemented to estimate the

AVF online; however, it requires heavy offline simulation and calibration for different workloads.

What is more important is that the parameters are dependent on the workload as mentioned in

the paper. It is not clear that the parameters calibrated for one set of workloads will give accurate

estimation for another set. Compared to Walcott et al., our online AVF estimation approach

requires little offline analysis. It only requires two parameters for any structure compared to five

to ten parameters in Walcott et al. The parameters in our method can also be chosen to achieve

the best trade-off between the estimation precision and estimation time. Soundararajan et al. [21]

propose a method to estimate AVF for the reorder buffer (ROB) in the processor. This method

determines the AVF by estimating the occupancy of the instruction queue. The occupancy of the

instruction queue is in turn estimated by counting the number of instructions that are dispatched or

retired. This method can be implemented online, but is limited to a single structure. For example,
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it is hard to extend the same method to estimate the AVF for the register file.

5.3 Soft error protection schemes

There has been a rich body of work in the soft error field on soft error protection schemes. Here we

will focus on some of the key schemes that address the soft error problem from the software level

and architecture level.

On the software level, the compiler or operating system can help introduce redundancy into the

program to check program control flow, memory access, and control signals. For example, Ohlsson

et al. [29] propose that the compiler automatically generate some code for a watchdog processor

to check the protected processor. Along with the recent popularity of SMT and CMP processors,

there have been several papers dealing with soft error protection using redundant threads. SMT and

CMP are able to execute two threads simultaneously, which creates an opportunity for thread level

redundancy. There have been several papers on the implementation of redundant multi-threading.

Depending on the platform (SMT vs. CMP), detection or recovery, different schemes have been

proposed. Some examples are: AR-SMT [30], SRT [31], CRT, Slip-stream, SRTR, CRTR, etc. The

basic idea is very simple – to run two copies of the same thread and check with each other before

the result can be committed to the architecture state. All the proposed schemes require small

amount of modification to the original SMT or CMT processor. Oh et al. [32] propose a technique

called EDDI where all instructions are duplicated and appropriate ”check” instructions are inserted

for error checking. There are other variants of the scheme, such as control-flow checking scheme

(CFSCC) where each control transfer generates a run-time signature that is validated by error

checking code generated by the compiler for each block. Reis et al. [33] propose a software based

technique called SWIFT. SWIFT is a single-threaded software-based error detection approach and

improved version of EDDI. It uses more optimization to cover more kinds of errors and reduces the

overhead of the simple EDDI scheme.

On the micro-architecture and architecture level, redundancy can also be introduced to protect

the processor. Austin et al. [34] propose DIVA. The idea is to use a simple and reliable checker

processor at the commit stage of the main core to verify its result. Since the checker sits at commit

stage, it’s an in-order core and can be made very reliable because of its simplicity. Ernst et al. [35],
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propose Razor, a special latch to protect the data path. The idea is to use a shadow latch to

redundantly latch the data and compare with the main latch. When timing error happens, the

shadow latch will latch in data different from the main latch, thus errors can be detected. Not

only can the Razor latch detect timing errors, it can also provide a mechanism to recover from the

timing errors. Recovery can be achieved using methods including clock gating.

Wang et al. [36] propose a scheme called ReStore to detect symptoms of soft errors and use

existing recovery ability for branch mispredictions in the processor. Racunas et al. [37] detect

soft errors by monitoring for departures from expected program behavior. The SWAT system

detects a variety of faults by monitoring for high level symptoms, including software invariant

violations [38, 39].

5.4 Other related work

Our AVF prediction scheme has some similarity to the work by Fields et al. on critical-path

prediction [40]. Like the AVF prediction, finding the critical-path in the instruction dependence

graph is a very complex task even for offline processing. It is even harder to find the critical paths

in hardware online. Fields et al. propose an online critical-path predictor that passes tokens to

explicitly track dependence chains. Instead of seeking some heuristic events in the pipeline that are

correlated with the instruction criticality [41], Fields et al. directly observe and track dependence

chains in hardware. Using a probabilistic approach, Fields et al. avoided the complex tracking and

analysis. They are able to predict the critical-path in real time with more than 80% accuracy using

a hardware predictor. Our work on the AVF prediction is similar in that we also use a probabilistic

approach. Instead of tracking all the values in the processor, we use a simple error injection and

counting process to estimate the AVF.

There have been at least two major studies that use bits similar to the error bits used in our

online AVF estimation scheme, but for different purposes. First, Weaver et al. [4] propose the π

bit to address false detected errors. Every instruction and register entry is associated with a single

π bit. When an error is detected (e.g., via parity), the affected instruction’s π bit is set by the

instruction queue and the instruction is allowed to progress down the pipeline. When the affected

instruction reaches the commit point, if it is determined to contribute to correct program outcome,
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a machine check error is raised; otherwise the set π bit is ignored. Second, the poison bit [42]

and the analogous NaT bit of the Itanium architecture [43] are used to track deferred speculative

exceptions. Our use of the error bits is different – we use them to estimate the AVF due to soft

errors. Nevertheless, the hardware support required for all of these techniques is likely to be similar.
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Chapter 6

Conclusions and future directions

This chapter summarizes the analysis and insights of this dissertation and discusses future directions

for research motivated by the results of this dissertation.

6.1 Conclusions

The continuous scaling of CMOS technology brought tremendous improvement in processor per-

formance. However, soft errors are becoming an increasing concern for processor reliability. In this

dissertation, we address soft error reliability issues from an architectural perspective.

We first analyze the current state-of-the-art in soft error modeling and analysis techniques –

the AVF+SOFR methodology. Our results show that both the AVF step and the SOFR step make

significant assumptions. We then use both mathematical and experimental techniques to check

the validity of the above method across a large design space. We find that the above method is

valid for most cases under the current raw error rates. However, our results show that for some

combinations of large systems, long running workloads with large phases, and/or high raw error

rates, the MTTF calculated using the AVF+SOFR method shows significant discrepancies from

that using first principles.

To find an alternative model that is not subject to such limitations, we propose a model and

tool called SoftArch that does not make the above AVF+SOFR assumptions. SoftArch is based

on a probabilistic model of error generation and propagation process in a processor. We show

that SoftArch does not show the discrepancies shown by the AVF+SOFR method. We also apply

SoftArch to analyze the effect of technology scaling on the processor soft error rate. We scale a

processor over four technology generations and identify the trend of the processor FIT rate taking
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the architecture level masking effect into consideration.

By using the SoftArch tool, we observe that there is much architecture level masking and that

the degree of such masking can vary significantly across workloads, individual units, and workload

phases. Thus, it is natural to consider the architecture level solutions to take advantage of such

variations. To do that, one would need an reasonably accurate estimates of the amount of masking

effect in real time. We have shown in our analysis that for most current systems (that are the

focus of our study), AVF proves an accurate abstraction of the architecture masking effect. In

this dissertation, we put forward a novel way of estimating AVF in real time. We propose some

simple hardware modifications for the processor and use an algorithm to effectively estimate AVF.

It is a general method that applies to both logic and storage units on the processor. Compared to

previous methods for estimating AVF, our method does not require any offline simulation, nor does

it require any calibration for different workloads. We test our method with a widely used simulator

from industry for SPEC benchmarks. The results show that our method provides accurate run-

time AVF estimates. The absolute error rarely exceeds 0.08 across all application intervals for all

structures, and the mean absolute error for a given application and structure combination is always

within 0.05.

6.2 Future directions

This dissertation lays the foundation for architecture level analysis of soft errors and provides

new tools and techniques to handle this critical emerging technology challenge. There exist many

potential avenues for future work. Below we will highlight two possible directions.

6.2.1 Architecture level solution for soft errors

The ultimate goal of the architecture level soft error study is to design effective architecture level

solutions to help mitigate the problem. Our results in both Section 3.4 and Section 4.4 show

that the AVF for different processor structures changes over time during the program execution.

Depending on the AVF, the optimal protection scheme for these structures also changes over time.

This provides opportunities to dynamically adapt the processor to achieve the best protection in a

cost effective way.
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A good prediction of AVF is important for such adaptation. The AVF prediction has to be real

time in order for the processor to react to application behavior changes quickly. In this dissertation,

we have proposed an effective online AVF prediction method. This could lead to a class of real

time AVF adaptation and optimization solutions for processors.

6.2.2 Unified system wide adaptation framework

Many different adaptation schemes have been proposed for power, temperature, energy, and reliabil-

ity in the past years. Although the power, temperature, energy and reliability problems are highly

related inherently, the schemes have been proposed independently for each field so far. Power,

temperature, energy and reliability are all important requirements for a computer system and the

adaptation for any of them could potentially have an impact on the performance. Considering

only one and ignoring the others could potentially cause problems. For example, most soft error

protection schemes use some form of redundancy to detect and correct errors which will lead to an

increase in the power and energy consumption. This might cause the power and energy constraints

to be violated even though the soft error design specifications are met. Similarly, many power and

energy reduction techniques such as dynamic voltage scaling will increase the processor soft error

rate dramatically which may result in a non-reliable system.

Most previous adaptation schemes have been proposed for a single component of the system

to achieve the component’s optimal configuration. It would be beneficial, however, to adapt all

the components jointly to achieve global optimal adaptation. For example, Li et al. [44] study the

energy management problem for the memory considering the performance constraint. Li et al. [45]

take one step further and study the joint adaptation problem for both processor and memory. The

work shows that by jointly adapting different components of the system, more energy savings can

be achieved.

As such, we should consider the adaptation problem as a multiple dimension problem with multi-

ple tradeoffs and requirements in terms of performance, power, temperature, energy and reliability.

We need to study and better understand the relations between different dimensions. We also need

to better understand the interaction between adaptation for different components of the system.

A unified framework for performance, power, temperature, energy, and reliability would poten-
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tially have a huge benefit, leading to optimal performance/power/temperature/energy/reliability

tradeoffs based on the requirements of the target system.
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