
c
 2008Xiaodong Li

SOFT ERROR MODELING AND ANALYSIS FOR MICROPROCESSORS

BY

XIA ODONG LI

B.Eng., University of Scienceand Technology of Beijing, 1997
M.Eng., Institute of Automation, ChineseAcademy of Sciences,2000

M.S., Purdue University, 2002

DISSERTATION

Submitted in partial ful�llmen t of the requirements
for the degreeof Doctor of Philosophy in Computer Science

in the Graduate Collegeof the
University of Illinois at Urbana-Champaign, 2008

Urbana, Illinois

Doctoral Committee:

ProfessorSarita V. Adve, Chair
ProfessorJosephTorrellas
Associate ProfessorYuanyuan Zhou
Assistant ProfessorCraig Zillas
Doctor Jude Rivers, IBM Research

Abstract

Soft errors are a growing concernfor processorreliabilit y. Recent work has motivated architecture

level studies of soft errors sincethe architecture level can mask many raw errors and architectural

solutions can exploit workload knowledge. My dissertation focuseson the modeling and analysisof

soft error issuesat the architecture level.

We start with the widely usedmethod for estimating the architecture level meantime to failure

(MTTF) due to soft errors. The method �rst calculates the failure rate for an architecture level

component as the product of its raw error rate and an architecture vulnerabilit y factor (AVF).

Next, the method calculates the system failure rate as the sum of the failure rates (SOFR) of

all components, and the system MTTF as the reciprocal of this failure rate. Both steps make

signi�cant assumptions. We analyzethe validit y of the two stepsusing both mathematical analysis

and experiments. We �nd that although the AVF+SOFR method is valid for most current systems

under current raw error rates, for somecasesit can lead to signi�cant discrepancies.We explore

scenariosin which such discrepanciescould occur in practice.

To �nd an alternative model that is not subject to such limitations, we proposea model and

tool called SoftArch that doesnot make the above AVF+SOFR assumptions. SoftArch is basedon

a probabilistic model of error generation and propagation processin a processor.Our experiments

show that SoftArch doesnot exhibit the discrepanciesthe AVF+SOFR su�ered. We apply SoftArch

to an out-of-order processorrunning SPEC2000benchmarks. Our results motivate selective and

dynamic architecture level soft error protection schemes.Next, asanother application, we quantify

the impact of technology scaling on the processorsoft error rate, taking the architecture level

masking and workload characteristics into consideration.

By using the SoftArch tool, we observe that there is much architecture level masking and that

the degreeof such masking can vary signi�cantly acrossworkloads, individual units, and workload

ii

phases. Thus, it is natural to consider the architecture level solutions to take advantage of such

variations. In order to do that, one would need reasonably accurate estimate of the amount of

masking e�ect in real time. For most current systems, AVF is an accurate abstraction of the

architecture level masking e�ect. Existing solutions for estimating AVF are often basedon o�ine

simulators and usually hard to implement in real processors. In this dissertation, we proposea

novel way of estimating AVF online, using simple modi�cations to the processor. Our method

applies to both logic and storagestructures on the processorand doesnot require complex o�ine

calibration for di�eren t workloads. We test our method with a widely usedsimulator from industry

for SPEC benchmarks. The results show that the method provides reasonablyaccurate run-time

AVF estimates.

To sum up, this dissertation studies the architecture level soft error modeling and analysis

problems. It providesnew techniquesto examineand take advantage of architecture level soft error

behavior. We apply our tool to investigate the impact of technology scalingon soft errors. We also

proposean e�cien t online AVF estimation algorithm.

iii

Ac knowledgemen ts

This dissertation would not have beenpossiblewithout the support of many people.

First, I would like to expressmy deepgratitude to my thesisadvisor, Prof. Sarita Adve, for her

constant guidanceand invaluable support through my graduate study. Her insights and attention

to detail were instrumental in helping me achieve my academicgoals. I also want to thank Dr.

Pradip Boseand Dr. Jude Rivers from IBM research, whom I have beenfortunate enoughto work

with during my Ph.D. research. They provided vital industrial perspectives for all my research

work.

I am also indebted to the members of my dissertation committee, Prof. JosephTorrellas, Prof.

Craig Zilles, Prof. Yuanyuan Zhou and Dr. Jude Rivers for their critical feedback, especially at

my preliminary exam and thesis defense.

I would like to thank the members of the RSIM group, especially Alex Li, and Pradeep Ra-

machandran, for their important feedback during my practice talks for the prelim and thesisdefense.

Finally, I would like to extend my thankfulness to my family for their support throughout all

theseyears. I thank my wife, Jing Liu, for her patienceand love that helped me survive the hardest

time.

iv

Table of Con ten ts

Chapter 1 In tro duction . 1
1.1 Motiv ation and goal . 1
1.2 Contributions . 1

1.2.1 Limitations of AVF+SOFR . 2
1.2.2 SoftArch . 2
1.2.3 Online AVF estimation . 3

1.3 Organization . 4

Chapter 2 Assumptions and limitations of the AVF+SOFR metho d 5
2.1 AVF+SOFR method and assumptions . 7

2.1.1 The AVF step . 7
2.1.2 The SOFR step . 7
2.1.3 AVF+SOFR assumptions . 8

2.2 AVF+SOFR limitations: an analytical view . 9
2.2.1 The AVF step: MTTF for an isolated functional or storageunit 10
2.2.2 The SOFR step: MTTF for multiple functional and/or storageunits 13
2.2.3 Summary of implications . 15

2.3 AVF+SOFR limitations: an experimental view . 16
2.3.1 Experimental methodology . 16
2.3.2 Results . 21

2.4 Summary . 24

Chapter 3 SoftArc h mo del . 26
3.1 Introduction . 26
3.2 SoftArch details: a model for architecture level MTTF 27

3.2.1 Error generation model . 28
3.2.2 Error propagation model . 29
3.2.3 Program failure and time to failure . 32
3.2.4 Determining mean time to failure (MTTF) 32

3.3 Implementation of the SoftArch model . 34
3.3.1 Integration with timing simulation . 34
3.3.2 Estimation of � . 35
3.3.3 Estimation of elogic . 36
3.3.4 Tracking basic error set E i for value vi . 37
3.3.5 Identifying valuesfor program failure . 37

3.4 Experiments and results . 38
3.4.1 Compare SoftArch to the Monte-Carlo method 38

v

3.4.2 A casestudy with SoftArch . 38
3.4.3 Another application of SoftArch: architecture level scaling analysis 44

3.5 Summary . 50

Chapter 4 Online estimation of the AVF . 51
4.1 Introduction . 51
4.2 AVF estimation algorithm . 54

4.2.1 Overview of the algorithm . 54
4.2.2 Determining potential failure . 56
4.2.3 Determining N { the number of error injection samplesneeded 57
4.2.4 Determining M { the interval betweensuccessive error injections 59
4.2.5 Hardware support and overhead . 61
4.2.6 Limitations . 62

4.3 Experimental methodology . 63
4.4 Results . 64
4.5 Summary . 70

Chapter 5 Related work . 71
5.1 Soft error modeling . 71
5.2 AVF estimation . 72
5.3 Soft error protection schemes . 73
5.4 Other related work . 74

Chapter 6 Conclusions and future directions . 76
6.1 Conclusions . 76
6.2 Future directions . 77

6.2.1 Architecture level solution for soft errors . 77
6.2.2 Uni�ed system wide adaptation framework 78

References . 80

Author's Biograph y . 84

vi

Chapter 1

In tro duction

1.1 Motiv ation and goal

CMOS technology scalinghasbrought tremendousimprovement in performancefor semiconductor

devices. As we move to sub-100nm lithographies, however, soft errors are emerging as a new

challengein processordesign. Soft errors or single event upsetsare transient errors causedby high

energyparticle strikessuch as neutrons from cosmicrays [1, 2] and alpha particles from packaging

material. Such strikescan
ip the bit stored in a storagecell and changethe value being computed

by a logic element. Although a consensuson exact soft error rates is still lacking, there is a growing

concernabout the phenomenon.

Recent work has shown that many of the raw errors that occur at the device and circuit level

may be masked at the architecture level, potentially motivating lower cost protection mechanisms.

For example, Wang et al. report that about 85% of the raw errors are masked at the architecture

level [3]. By consideringsolutions at the architecture level, knowledgeof workload behavior can be

exploited, leading to potentially more e�cien t protection solutions (e.g., [3, 4]). Theseobservations

motivate the needfor comprehensive modelsand tools to study soft errors at the architecture level

and solutions at the architecture level to remedy the problem.

In this dissertation, we focus on the architecture level modeling and analysis of the soft error

problem.

1.2 Con tributions

This dissertation makesthree key contributions.

1

1. Analyzes the assumptionsand limitations of the AVF+SOFR method [5].

2. ProposesSoftArch, a new architecture level model and tool for modeling and analyzing soft

errors at the architecture level [6].

3. Proposesa novel method for online estimation of AVF for soft errors [7].

We now discusseach of the contributions in more detail.

1.2.1 Limitations of AVF+SOFR

The �rst contribution of this dissertation is a detailed analysis of the limitations of the widely

used method for estimating MTTF due to soft error { the AVF+SOFR method. First, our work

builds a fundamental understanding of the AVF+SOFR method at the architecture level. It explic-

itly identi�es somefundamental assumptionsin the AVF+SOFR approach and shows that these

assumptionsdepend on three parameters. We then useboth mathematical and experimental tech-

niques to check the validit y of the above method acrossa large design space. We �nd that the

above method is valid for most of the realistic casesunder current raw error rates. However, for

somecombinations of large systems, long running workloads with large phases,and/or high raw

error rates, the AVF+SOFR method can lead to signi�cant discrepancies.

1.2.2 SoftArc h

In search for an alternative model, we proposeSoftArch, to enable analysis of soft errors at the

architecture level in modern processors.SoftArch is basedon a probabilistic model of error gener-

ation and propagation processin a processor.Compared to prior architecture level tools, SoftArch

is more comprehensive or faster. What is more important, our experiments show that SoftArch

doesnot needto make the sameassumptionthat AVF+SOFR method does. The MTTF computed

by SoftArch has lessthan 2% error relative to the MTTF value calculated using the Monte-Carlo

method for the whole wide designspacewe have studied.

We also use SoftArch to quantify the MTTF of a modern out-of-order processorand the con-

tribution of di�eren t structures to the failure rate, for various SPEC benchmarks. Our results

are consistent with previous studies. We show that not only is there signi�cant architecture level

2

masking e�ects, there is substantial inter- and intra-application variation in MTTF or failure rate

and substantial application-dependent variation that contributes to the failure rate from di�eren t

structures. These results motivate selective protection of only the most vulnerable structures and

dynamic, application-aware protection schemes.

As another application, we apply SoftArch to quantify the impact of technology scaling on the

processorsoft error rate, taking the architecture level masking e�ects and workload characteristics

into consideration. For our evaluation, we use SoftArch to study the AVF and soft error rate

(SER) for di�eren t structures in a modern superscalarprocessorrunning SPEC2000benchmarks.

We compare the SERs acrossfour di�eren t technologies ranging from 180nm to 65nm with the

samemicroarchitecture. We �nd that with scaling, the AVF for logic structures often decrease,

the AVF for storage elements remains roughly unchanged, and the MTTF for the full processor

roughly follows the trend for the raw SER of storage structures (i.e., the MTTF decreasesfrom

180nm to 90nm and increasesfrom 90nm to 65nm.) This study assumesthe number of transistors

on the chip stays the same.

1.2.3 Online AVF estimation

Using SoftArch, we �nd that there is much architecture level masking and that the degreeof such

masking can vary signi�cantly acrossworkloads and also individual workload phases. This pro-

vides opportunities for an architecture level solution to take advantage of the application behavior

variation. For that to happen, it is important to be able to accurately estimate the masking e�ect

which is captured by the architecture vulnerabilit y factor (AVF) for most current systems.Existing

solutions for estimating AVF are often basedon o�-line simulators and are usually hard to imple-

ment in real processors.This dissertation proposesa novel way of estimating AVF on-line while the

program is running. We proposesomesimple hardware modi�cations for the processorand usean

algorithm to e�ectiv ely estimate AVF. It is a generalmethod that applies to both logic and storage

units on the processor.Compared to previous methods for estimating AVF, our method doesnot

require o�ine simulation with simulators, nor does it require calibration for di�eren t workloads.

We test our method with SoftArch coupled to a widely used simulator from industry and SPEC

benchmarks. The results show that our method provides accurate run-time AVF estimates.

3

1.3 Organization

The rest of the dissertation are organizedasfollows. Chapter 2 analyzesthe current state-of-the-art

AVF+SOFR soft error modeling method. Chapter 3 proposesSoftArch, an architecture level model

and tool to analyzesoft errors at the architecture level. Chapter 4 proposesa new e�cien t on-line

AVF estimation method. Chapter 5 discussesrelated work and Chapter 6 presents the conclusions

of this dissertation and possibleavenuesof future work.

4

Chapter 2

Assumptions and limitations of the
AVF+SOFR metho d

The AVF+SOFR method hasbeenwidely usedin estimating processorMTTF values. The method-

ology computesMTTF using two simple steps[8], illustrated in Figure 2.1. The AVF step calcu-

lates the failure rate of each individual processorcomponent (e.g., ALU, register �le, issuequeue)

as the product of its raw failure rate and a factor that accounts for architecture level masking

e�ect. Mukherjee et al. formalize the notion of the architecture level masking e�ect as the ar-

chitectural vulnerabilit y factor (AVF) [8] and show how to calculate it for various architectural

components [9, 8]. The SOFR step calculates the failure rate of the entire processor(or any

system) as the Sum Of the Failure Rates (SOFR) of the individual components of the processoror

system (as calculated in the AVF step). It calculates the MTTF of the processor(or system) as

the reciprocal of its failure rate.

Figure 2.1 The AVF and SOFR steps for MTTF.

Both the AVF and SOFR stepsimplicitly make certain assumptionsabout the statistical prop-

erties of the underlying error process.While theseassumptions,described below, may hold for the

raw error process,it is unclear whether they hold for the architecturally masked process.Our goal

5

is to examinethe validit y of theseassumptionsunderlying the mathematical basisof the AVF and

SOFR steps, and the implications of these assumptions for evaluating soft error MTTF for real

systems.

Next, we will analyze the assumptions through mathematical analysis and experiments. Our

rigorous mathematical methods analyze the limits and value rangesof various parameters within

which the AVF+SOFR assumptionshold true. In order to validate the conclusionsand quantify

the limits, we designsimulation-based experiments to explore a wide designspace.

We �nd that the impact of the above assumptionson the MTTF calculation dependson three

parameters related to the environment, system, and the workload respectively: (1) the raw error

rate of the individual components, (2) the number of components in the system on which SOFR

is applied, and (3) the length of the full execution or the longest repeated phaseof the workload.

Speci�cally , our evaluations show the following.

1. For systemswhere the individual components have small raw error rates, the total number

of components is small, and where the workload consistsof repeated executions of a short

program, the AVF+SOFR assumptionsintroduce negligible error. To our knowledge,previ-

ously published work using the AVF+SOFR methodology considerssystemsand workloads

that obey the above constraints. This result is by itself signi�cant sinceit, for the �rst time,

validates the mathematical basis for using the AVF+SOFR methodology.

2. Our results show that the AVF+SOFR method can result in large discrepanciesin MTTF (up

to 100%)for individual components that have large raw error rates (e.g., aswould be the case

in spaceor in acceleratedtests or with components consistingof many millions of bits) and/or

systemsthat have many components (e.g., large clusters of thousandsof processors)and/or

long-running workloadswith di�eren t utilization characteristics over large time windows (e.g.,

server workloads that run at high utilization in the day but low utilization in the night). This

problematic part of the design spaceis certainly much smaller and less common than the

spaceover which AVF+SOFR is valid; however, it is not negligible and represents several

realistic systems. Our results give a note of caution against blind use of the AVF+SOFR

method for such systems.

We discussthe AVF+SOFR method and their assumptionsin detail in Section2.1. Section2.2

6

and Section 2.3 provide an analytical and an experimental view.

2.1 AVF+SOFR metho d and assumptions

2.1.1 The AVF step

In a given cycle, only a fraction of the bits in a processorstorage component and only some of

the logic components will a�ect the �nal program output. A raw error event that doesnot a�ect

thesecritical bits or logic components hasno adversee�ect on the program outcome. Mukherjee et

al. used the term architecture vulnerabilit y factor (AVF) to expressthe probabilit y that a visible

error (failure) will occur, given a raw error event in a component [8]. The AVF for a hardware

component can be calculated as the percentage of time the component contains Architecturally

Correct Execution (ACE) bits (i.e., the bits that a�ect the �nal program output). Thus, for a

storage cell, the AVF is the percentage of cycles that this cell contains ACE bits. For a logic

structure, the AVF is the percentage of cyclesthat it processesACE bits or instructions.

Mukherjee et al. calculate the FIT rate of a processorcomponent as the product of the com-

ponent's AVF and its raw FIT rate (i.e., the FIT rate of the component if every bit were ACE).

Denoting the raw FIT rate of the component as � c (also called the raw soft error rate or raw SER)

and its AVF as AV Fc, they derive the MTTF of the component as:

M TTFc =
1

� c � AV Fc
(2.1)

We show in Section2.2.1 that an assumptionunderlying the above equation is that the time to

failure for a program is uniformly distributed over the program. We explore the caseswhere this

assumption is and is not true to assessthe validit y of the AVF step.

2.1.2 The SOFR step

Sum of failure rates (SOFR) is an industry standard model for combining failure rates of individual

processor(or system) components to give the failure rate and MTTF of the entire processor(or

system). Let the system contain k components with failure rate of component i as F ail ur eRatei

(which is assumedto be the reciprocal of the MTTF of component i or 1/ M TTF i). The SOFR

7

model calculatesthe failure rate (F ail ur eRatesys) and the MTTF (M TTFsys) of the system as:

F ail ur eRatesys =
kX

i =1

F ail ur eRatei =
kX

i =1

1
M TTFi

(2.2)

M TTFsys =
1

F ail ur eRatesys
(2.3)

The SOFR model makestwo major assumptions[10]. First, it assumesthat each component has

a constant failure rate (i.e., exponentially distributed time to failure) and the failures for di�eren t

components are independent of each other. Section 2.2.2 shows that architectural masking may

violate this assumptionin somecases.Second,the SOFR model assumesa seriesfailure system;i.e.,

the �rst instance of a component failure causesthe entire processorto fail. This assumption holds

if there is no redundancy in the system. Since our focus is on the impact of program-dependent

architectural masking on the statistical properties of the failure process,we continue to make this

assumption as well and focus only on the �rst assumption.

2.1.3 AVF+SOFR assumptions

A key assumption behind the AVF step is that the probabilit y of failure due to a soft error in a

given component is uniform acrossa program's execution. This allows a single AVF value to be

usedto derate the raw error rate of a component. The uniformit y assumption is reasonablefor raw

error events since the probabilit y of a high energy particle strike is no di�eren t at di�eren t points

in the program's execution for most realistic scenarios.However, it is unclear that the assumption

holds after incorporating architectural masking. Similarly, a well-documented assumption for the

SOFR step is that the time to failure for a given component follows an exponential distribution.

Again, the assumption is reasonableand widely acceptedfor raw error events, but it is unclear that

it holds for failures after architectural masking.

Thus, both the AVF and SOFR stepsmake assumptionsabout the error processthat may be

consideredquestionable,oncearchitectural maskinge�ects are taken into account. The questionwe

addressis: Under what conditions (if any) doesthe violation of the above AVF+SOFR assumptions

introduce signi�cant errors in the calculation of the MTTF?

8

2.2 AVF+SOFR limitations: an analytical view

This sectionusesmathematical analysisto understand the limits of the basicassumptionsunderly-

ing the AVF+SOFR methodology for estimating MTTF for soft errors. Later sectionsback these

results with detailed Monte-Carlo simulations for actual workloads.

Our analysis makestwo assumptionsthat are also made by the AVF+SOFR methodology.

(1) Inter-arrival times for raw errors in a component are independent and exponentially dis-

tributed with density function �e � �t . It is reasonableto assumethat the time to the next high

energy particle strike is independent of the previous strike and is exponentially distributed (the

processis memoryless). In practice, there is somedevice- and circuit-level masking, which could

possibly render the raw error processthat is subject to architectural masking as non-exponential.

In our experiments, however, we do not have this low-level masking information available; we there-

fore assumethe best casefor the AVF+SOFR methodology { that the inter-arrival time for raw

errors beforeany architectural masking is an exponential processwith density function �e � �t . We

refer to � as the raw error rate.

(2) The workload runs in an in�nite loop with similar iterations of length L. This work considers

the e�ect of real application workloads. For a workload that runs for a �nite time, there is a

possibility that no failure occurs during its execution. For a meaningful interpretation of MTTF

for a systemrunning such a workload, we assumethat the workload runs repeatedly in a loop until

the �rst failure. All iterations of this loop are identical and each represents a single invocation of

the original workload. We refer to the sizeof this loop iteration asL . Workloads that are naturally

in�nite also run in a loop. We assumethat such a workload also consistsof identical iterations,

each of size L . This assumption is trivially satis�ed since L can potentially be in�nite. (All the

prior work on AVF+SOFR has beenin the context of �nite workloads.)

We additionally assumethat program failure occurs if a raw error is not masked. Although

the time to failure and the time to the next raw error event are continuous random variables, for

convenience,we often consider time in units of processorcyclesbelow (for architectural masking,

for a given cycle,all raw error events during any part of the cycleare either masked or not masked).

9

Figure 2.2 Sequence of raw error events. t i is the time between two raw error events
and is exp onentially distributed. X is a random variable represen ting the time to the
�rst raw error event that is not mask ed and leads to program failure. The �gure shows
a case where X = t1 + t2 + t3.

2.2.1 The AVF step: MTTF for an isolated functional or storage unit

The AVF step computesthe MTTF of a single component of the processorusing equation 2.1. We

examinethe validit y of this step by deriving the MTTF of a given component from �rst principles.

Figure 2.2 illustrates a sequenceof raw error events with inter-arrival times of t 1; t2; ::; tn ; ::.

Each of these times is an instance of a random variable, say T, with exponential density function

�e � �t . Each raw error has someprobabilit y of being masked. Failure occurs at the �rst raw error

that is not masked.

Let X be the random variable that denotesthe time to failure. Then X = t 1 + t2 + :: + tk if

the �rst k � 1 raw errors are masked and the kth raw error is not masked. Thus, X =
P K

i=1 t i ,

whereK is a random variable such that K = k denotesthe event that the �rst k � 1 raw errors are

masked and the kth raw error is not masked.

Now the MTTF of the component is simply the expected value of X , E(X). Using a standard

result for the expectation of a sum of random variables [11], it follows that: M TTF = E(X) =

E(K)E(T). We know that E(T) = 1
� (this would be the MTTF if there were no architectural

masking and every raw error resulted in failure). Thus,

M TTF = E(K)
1
�

(2.4)

Comparing with equation 2.1, to validate the AVF step, we would need to show that E(K) =

1
AV F for all cases.However, E(K) dependson the workload characteristics and the raw error rate

� , and, in general,cannot be analytically derived. Nevertheless,with certain assumptions,we show

that we can derive E(K) to be 1/AVF, validating the AVF step for caseswhere the assumptions

hold. We then show counter-exampleswheretheseassumptionsdo not hold, and the MTTF derived

10

from �rst principles is signi�cantly di�eren t from the MTTF derived from the AVF equation 2.1.

AVF is valid when L � � ! 0

We �rst show that if the product of the raw error rate and the program loop size is very small,

then E(K) = 1
AV F (and so the AVF equation holds). Below we show that in this case,any of the

L cycles in the program loop are equally vulnerable to a raw error event occurrence. From this,

it will follow that the expected value of K (i.e., the count of the �rst raw error event that is not

masked) is the sameas 1/AVF.

Let T be the cycle count at which the next raw error event occurs. Then, without loss of

generality, T mod L is the cycle count for this event relative to the start of the loop iteration.

Appendix A of an extended version technical report [12] shows that if L � � ! 0, the random

variable T mod L follows a uniform distribution over [0; L]. In other words, for very small L � � ,

any of the L cyclesof program execution are equally vulnerable to a raw error event occurrence.

Thus, the probabilit y that the next raw error event occurs at cycle i (relative to the start of

the loop iteration) is 1=L. Let pi be the probabilit y that a raw error event that occurs at cycle i

(relative to the start of the loop iteration) is masked (pi is 0 or 1 for a given program execution).

Therefore, the probabilit y that the next raw error event is masked is
P L

i=1
1
L � pi . This value is a

constant that we denote by M .

Now to calculate E(K), we �rst calculate Pf K=k g. This is the probabilit y that the �rst k � 1

raw error events are masked and the kth raw error event is not masked. Sinceraw error events are

independent, it follows that Pf K=k g = M k� 1(1 � M). That is, K is a geometrically distributed

random variable and so E(K) = 1=(1 � M). Thus, we just needto show that 1 � M is the sameas

the AVF.

(1 � M) can be expressedas
P L

i=1
1� pi

L . 1 � pi is the probabilit y that a raw error event at cycle

i will not be masked and will causefailure. 1 � M is therefore the averageof this probabilit y over

the entire program length. This is exactly the de�nition of AVF. Thus, we have shown that the

AVF equation 2.1 is valid when L � � ! 0.

11

AVF is not valid for some values of � and L

In this section,we construct a simple (synthetic) program that servesasa counter-example to show

that the assumptionsbehind the AVF step do not always hold.

Considera program with an in�nite loop with iteration sizeL , such that the consideredsystem

component is active for the �rst A cycles and is idle for the remaining A + 1 to L cycles of the

iteration. As before, let X be the random variable denoting the time to failure for the component

running the above program. Let T be the random variable denoting the time to the �rst raw error

event. If T is in cycles[0; A]; [L; L + A]; :::, then the component is active and the time to failure is

simply the value of T. Otherwise, the raw error occurs in an idle period, say, of iteration k, and

it is masked. Further, any raw errors until the next active period (i.e., until cycle kL) will also be

masked.

As seenat cyclekL , the distribution for the time to the next raw error event (starting from kL)

is the sameas that starting from time 0. This is due to the memorylessproperty of the exponential

distribution. 1 Further, as seenfrom kL, the masking processis also the sameas at time 0, since

all iterations are identical. Thus, given that there is no failure until cycle kL , the expected time to

failure from cycle kL is again E(X).

It follows that given that the �rst raw error event occurs in the idle period of the kth iter-

ation, the expected time to failure is kL + E(X). Now using a standard result for conditional

expectation [11], we get the following:

E(X) = E(E(X jT)) =
R1

0 EX jT (t) � f T (t)dt

=
RA

0 �e � �t tdt +
RL

A �e � �t (L + E(X))dt+
RL + A

L �e � �t tdt +
R2L

L + A �e � �t (2L + E(X))dt:::

The above equation has the following closed form solution (App endix A of [12]), giving the

MTTF of the component from �rst principles:

E(X) = 1� e� �L

1� e� �A � (Le � �L

(1� e� �L)2 � Le � �A e� �L

(1� e� �L)2 � Ae � �A

(1� e� �L) +

1
�

(1� e� �A)
(1� e� �L) + L e� �A � e� �L

(1� e� �L)2)

1Recall that for an exponential distribution, P (T < t + 4 t jT > t) = (e� �t � e� � (t + 4 t))
e� �t = 1 � e� � 4 t . That is, given

that a raw error has not occurred at time t, the probabilit y that the error will occur within some time 4 t after t is
the sameas that of it occurring within 4 t after time 0.

12

Figure 2.3 The relativ e error in the AVF step applied to a large 100MB cache running
a lo op with iteration size of L days with each iteration busy for L=2 days and idle
for the rest. Lam bda is the raw error rate of the entire cache (the smallest value
represen ts 0.001 FIT per bit).

The AVF for our program is A
L ; therefore, the MTTF according to the AVF method is:

EAV F (X) = L
A � 1

�

Now we can calculate the relative di�erence betweenthe MTTF from �rst principles and from

the AVF method as:
jEAV F (X) � E(X)j

E(X)

When �L is very small, we can show that the two MTTFs converge to the samevalue. For

other cases,there can be a signi�cant di�erence. Figure 2.3 shows the di�erence betweenthe two

MTTF values for a 100MB cache for di�eren t values of L and � . We vary L from 1 to 16 days,

setting A as L=2 in each case. We start with � at 10� 8 errors/year per bit (0.001 FIT/bit) [6]

which translates to 10 errors/year for the full cache. We additionally show results for � of 3 and 5

times this value to represent changesin technology and altitude. Although the errors are small for

the baseline(smallest) value of � , they can be signi�cant for higher values. Later sectionsperform

a more systematic experimental exploration of the full parameter space.

2.2.2 The SOFR step: MTTF for multiple functional and/or storage units

The SOFR step derives the MTTF of a system using the MTTFs of its individual components, as

shown in equations2.2 and 2.3. As discussedin Section 2.1.2, it assumesthat for each component,

13

the time to failure follows an exponential distribution with a constant failure rate (in conjunction

with the AVF step, this rate is the product of the component's raw error rate and AVF). We next

explore the validit y of this assumption, given that each component seessigni�cant architectural

masking.

Again, the validit y of the assumption dependson the valuesof the component's raw error rate

� and the program loop size L . Sections2.2.2 and 2.2.2 respectively discusscasesfor which the

assumption is and is not valid.

SOFR is valid when L � � ! 0

We show that if L � � ! 0 for a component, then the time to failure, X , for that component is

exponentially distributed with rate parameter � � AV F .

Section 2.2.1 showed that in this case,X =
P K

i=1 t i , where K follows a geometric distribution

with mean 1/ AV F and the t i 's are exponentially distributed with rate � . We can calculate the

density function of X as follows:

f X (x) = lim
4 x! 0

P (x<X <x + 4 x)
4 x

= lim
4 x! 0

P 1
i=1

P (x<X <x + 4 xjK = i)P (K = i)
4 x

where P(x < X < x + 4 xjK = k) = P(x <
P k

j =1 t j < x + 4 x).
P k

j =1 t j is the sum of several independent exponentially distributed random variableswith rate

� . Such a sum follows the Erlang-n distribution which has the probabilit y density function of

� (�x)n � 1

(n� 1)! e� �x [10]. Thus,

f X (x) =
P 1

i=1 ((1 � AV F) i � 1(AV F) � (�x) i � 1

(i � 1)! e� �x

= (AV F)�e � �x P 1
i=1

((1 � AV F)�x) i � 1

(i � 1)!

= � (AV F)e� � (AV F)x

This is an exponential distribution with rate � � AV F . This validates the assumption for the

SOFR step for the casewhen � � L is small.

The general case for � and L values

In general, it is di�cult to analytically characterize the time to failure distribution function for

real (or even synthetic) programs after architectural masking. In this section, to demonstrate a

14

mathematical basis, we choosea distribution that is \close" to exponential (and mathematically

tractable) and determine the validit y of using SOFR on that distribution.

We choosethe following probabilit y density function for the time to failure (after architectural

masking) for a component.

f X (x) =

8
><

>:

2p
� e� x2

x 2 [0; 1]

0 elsewhere

The cumulativ e distribution function (CDF) of X is FX (x) = 2p
�

Rx
0 e� t2

dt, x 2 [0; 1].

It follows that the MTTF of the component is E(X) = 2p
�

R1
0 xe� x2

dx = 1p
� .

Assumea system with N such identical components where X i denotesthe time to failure for

component i . Sincewe assumeseriesfailure, it follows that the time to failure of the system,Y , is

min(X 1; X 2; :::; X N).

The CDF of Y is FY (y) = 1 � (1 � FX (y))N .

The PDF is f Y (y) = dFY (y)
dy = N � (1 � FX (y))N � 1 � f X (y)

The MTTF of the system is E(Y) =
R1

0 f Y (y)ydy

The above integration cannot becalculatedanalytically. Wesolve it numerically usinga software

packageto derive the real MTTF for N from 2 to 32.

The SOFR step calculates the MTTF of the system using Equations 2.2 and 2.3. For the

component MTTFs usedin the equations,we usethe real MTTF derived above (1p
�):

M TTFsof r =
1

P N
i=1

p
�

=
1

N
p

�

Figure 2.4 shows the error in M TTFsof r relative to the MTTF derived from �rst principles. We

seethat the error grows from 15% for a system with two components to about 32% for a system

with 32 components.

2.2.3 Summary of implications

Our mathematical analysisso far provides intuition for when the AVF+SOFR method works. The

AVF step averagesthe \utilization" of a component over the whole program. It therefore makes

15

Figure 2.4 The relativ e error in tro duced by the SOFR step for a synthesized example.

the implicit assumption that every point of the program will have uniform probabilit y of being hit

by a soft error. The SOFR step assumesthat the time to failure for each individual component

follows the exponential distribution. Our analysisshows that the above assumptionsare valid when

� � L ! 0. However, in the generalcase,theseassumptionsmay not hold. We show mathematically

tractable synthetic examples to illustrate a few such cases. The next sections provide a more

systematic experimental exploration of the parameter spaceto assessthe extent of the errors due

to theseassumptions.

2.3 AVF+SOFR limitations: an exp erimen tal view

In this section, we show that signi�cant discrepanciescan arise in many realistic scenariosusing

experiments with SPEC benchmarks.

2.3.1 Exp erimen tal metho dology

This section describes the methodology for our experimental analysis of the assumptions of the

AVF and SOFR steps. For each step, we �rst evaluate the assumptionsfor singleprocessorsystems

common today running SPEC CPU2000 applications, and using detailed simulation to determine

architectural masking. We then take a broader view, and evaluate the assumptions for a large

designspace,including large clusters of processorsand a broader rangeof (synthesized)workloads,

but with lessdetailed simulation of architectural masking.

For both cases,we �rst generatea masking trace that indicates, for each system component,

whether a raw error in a given cycle would be masked for the evaluated system and workload.

16

Base Pro cessor Parameters
Pro cessor frequency 2.0 GHz
Fetch/�nish rate 8 per cycle
Retiremen t rate 1 dispatch-group (=5, max) per cycle
Functional units 2 integer, 2 FP, 2 load-store, 1 branch
Integer FU latencies 1/4/35 add/m ultiply/divide
FP FU latencies 5 default, 28 divide (pip elined)
Reorder bu�er size 150 entries
Register �le size 256 entries (80 integer, 72 FP, and various control)
Memory queue size 32 entries
iTLB 128 entries
dTLB 128 entries

Base Memory Hierarc hy Parameters
L1 Dcache 32KB, 2-way, 128-byte line
L1 Icache 64KB, 1-way, 128-byte line
L2 (Uni�ed) 1MB, 4-way, 128-byte line

Base Con ten tionless Memory Latencies
L1 Latency 1 cycles
L2 Latency 10 cycles
Main memory Latency 77 cycles

Table 2.1 Base PO WER4-lik e pro cessor con�guration.

To calculate the real MTTF of the system (without the AVF+SOFR assumptions), we use the

Monte Carlo technique to model the raw error process,apply the masking trace to the process,and

determine the MTTF of the modeled system.

Today's unipro cessors running SPEC

To determine the impact of architectural masking in a modern processor,we study an out-of-

order 8-way superscalarprocessor(Table 2.1) running programs from the SPEC CPU2000suite (9

integer and 12
oating point benchmarks). To generatethe masking trace, we useTurandot [13], a

detailed trace-driven microarchitecture level timing simulator. We simulate an instruction trace of

100 million instructions for each SPEC benchmark running on the above processorcon�guration.

We choosefour processorcomponents to study the impact of architecture masking: the integer,

oating point, and instruction decode units, and the 256 entry register �le, with raw error rates

of 2:3 � 10� 6, 4:5 � 10� 6, 3:3 � 10� 6, and 1:0 � 10� 4 errors/year respectively (10� 8 errors/year

= 0.001FIT). Li et al. [6] derived theseerror rates using published device error rates for current

technology [14] and estimatesof the number of devicesof di�eren t typesin di�eren t components [6].

For the integer,
oating point, and instruction decode units, we assumethat a raw error is

masked in a cycle if the unit is not processingan instruction in that cycle (i.e., the unit is not

busy). If the unit is busy processingan instruction, then for simplicit y, we conservatively assume

17

that the error is not masked and will lead to failure. For the register �le, we assumethat the raw

error strikeshappen on each register with equal probabilit y and error in a given register is masked

if the register contains a value that will never be read in the future. If the register's value will be

read, we conservatively assumethe error is not masked and will lead to failure. Our assumptions

of when an error is not masked are conservative since it is possiblethat an error in an active unit

or in a register value that will be read may not a�ect the eventual result of the program. We did

not perform a more sophisticated analysis to more precisely determine when an error is masked

becausesuch an analysis is orthogonal to the point of this dissertation and beyond the scope of

this work.

Our detailed Turandot simulation producesa masking trace for each simulated SPEC applica-

tion. The trace contains information on whether a raw error in a given cycle in one of the four

consideredprocessorcomponents will or will not be masked.

Broader design space exploration

We alsoexplorea broad designspacefor the AVF and SOFR steps. Weconsidera variety of systems

consistingof various numbersof components, operating in various environments, with di�eren t raw

error rates, and running di�eren t workloads. We usethe term systemto include a single processor

(either a full processoror only a part of it) or a large cluster of thousands of processors. A

component of a systemis the smallestgranularit y at which the analysisfor architectural masking is

applied. Speci�cally , the AVF is calculated at the granularit y of a component; the SOFR step then

aggregatesthe information from the di�eren t components to give the MTTF for the entire system.

In our SOFR experiments, we use component MTTFs obtained from the Monte Carlo method;

therefore, the error reported is only that causedby the SOFR step.

Based on our analysis in Section 2.2, the key parameters a�ecting the AVF and SOFR steps

are the raw error rate of the di�eren t components of the processor(or system), the number of

components in the system(only for SOFR), and the program loop sizeor workload. The following

discussesthe spacewe explore for each of these important parameters. Table 2.2 summarizesthis

space.

Comp onent raw error rate. The component raw error rate dependson the number of devices

18

Dimension Value
N 105 106 107 108 109

S 1 5 100 2000 5000
C 2 8 5000 50000 500000

Workload SPEC fp SPEC int day week combined

Table 2.2 The design space explored. N = num ber of elemen ts (e.g., bits) in a com-
ponent; S = scaling factor for the baseline raw error rate of an elemen t (dep ends
on technology and altitude); and C = num ber of comp onents in the system (e.g.,
pro cessors in a cluster).

or elements (bits of on-chip storageor logic elements such as gates) in the component and the raw

error rate per element. We denote the number of elements in a component as N . N can be as

large as 109 for large cache structures or if we consider the entire processoras one component in

a large cluster of multiple processors.To keepthe designspaceexploration tractable, without loss

of generality, we assumethat all N elements have the sameraw error rate.

We also explore di�eren t values for the raw error rate per element. Under current technology,

the terrestrial raw error rate per bit for on-chip storage is about 10� 8 errors/year (0.001 FIT),

which we refer to as the baselineraw error rate. To account for changesin the raw error rate due

to technology scaling and at high altitudes, we introduce a parameter S that we use to scalethe

above baselinerate. We usescaling factors of 1, 5, 100,2,000,and 5,000in our analysis. The larger

factors correspond to systemsrunning in airplanes
ying at a high altitude and for systemsin outer

spacebecauseof strong radiation at those heights [2]. Test systemsusing acceleratedconditions

are also subject to high raw error rates.

The raw error rate for a given component is determined as the product of N , S, and the above

baselineraw error rate (Table 2.2).

Num ber of comp onents: We denote the number of components in the system as C. We study

a wide range of values for C, ranging from 2 to 500; 000. The larger numbers represent large

cluster systemswith C components (each of which may be a full processoror a microarchitectural

component within a processor,depending on the granularit y at which AVF is collected).

W orkload and generation of the masking traces: We evaluate all systems in the broad

designspacewith the SPEC CPU2000benchmarks mentioned in Section2.3.1. However, theseare

short programs (small loop iteration sizeL). Many real world workloads show large di�erences in

behavior over long time scales(large L) that are di�cult to capture with the SPEC benchmarks.

19

In an attempt to simulate some of the behaviors of real world applications, we construct three

synthetic applications. The �rst (called day) is a continuous loop where the loop iteration size is

set to 24 hours. The loop is busy during the day (half the time) and idle at night. The second

(called week) is a loop with iteration sizeone week. It is busy during the �v e businessdays of the

week and idle for the weekend. The third (called combined) concatenatestwo SPEC benchmarks

in a loop with iteration sizeof 24 hours. The �rst half of the iteration runs onebenchmark and the

secondhalf runs the other benchmark.

For a systemwith multiple processors,we assumeall processorsrun the sameworkload. Addi-

tionally, for the synthesizedworkloads, we assumethat a component is a full processor;e.g., C=2

implies a 2 processorsystem. We assumethat each processormasksraw errors only during the idle

portion of the workload (e.g., night time for the day workload). For the SPEC workloads, we again

assumethat each component is a full processor(running the samebenchmark). For the masking

trace, we use the SPEC masking traces for three units in each processor(integer,
oating point,

and instruction decode) { we apply thesethree traces to the corresponding units simultaneously to

determine whether there is a processor-level failure.

Mon te carlo simulation

To calculate the real MTTF, we perform Monte Carlo simulation where we do the following for

each trial. For each component in the modeled system, we generatea value from an exponential

distribution with rate speci�ed by the modeled system (Table 2.2). This value gives the arrival

time of the next raw error event for the component. We usethe masking trace of the workload to

determine whether a raw error at that time would be masked. If it is masked, we generatea new

raw error event from an independent exponential distribution for that component and repeat. If it

is not masked, we consider the component failed. The component that is earliest to fail gives the

time to failure of the systemfor this trial. We run a total of 1,000,000trials and report the average

of the time to failure as the MTTF of the modeled system/workload con�guration.

20

Figure 2.5 Error in MTTF from the AVF step relativ e to the Mon te Carlo metho d for
the synthesized workloads for represen tativ e values of N � S (# bits in the comp onent
� scaling factor for baseline raw error rate).

2.3.2 Results

AVF and SOFR with Today's Unipro cessors Running SPEC

We �rst evaluated the discrepancybetweenthe Monte Carlo MTTF and the MTTF using the AVF

and SOFR stepsfor today's uniprocessorsrunning SPEC (as described in Section2.3.1). We found

that the MTTF from the AVF step matched the Monte Carlo MTTF very well for each of the

four processorcomponents and each benchmark (< 0.5% discrepancyfor all cases).Similarly, the

processorMTTF calculated using the SOFR step also matched the Monte Carlo MTTF very well.

Thus, for single processorsystemswith a small number of small components running SPEC

benchmarks, the AVF+SOFR method works very well. We note that in prior work, the method

has been applied primarily in this context. These results are consistent with our mathematical

analysis. The loop sizeL for the SPEC benchmarks and the component raw error rates usedhere

are small; therefore, from Sections2.2.1and 2.2.2,we expect that the AVF and SOFR assumptions

would be valid.

21

AVF: A Broad Design Space View

For the designspacedescribed in Table 2.2, we computed the component MTTF using the Monte

Carlo and AVF methods as described in Section 2.3.1. Note that sincethe AVF step is applicable

to only a singlecomponent, C = 1 for all experiments in this section. Further, for a given workload,

sinceonly the product of N and S matters, we report relative error in the AVF step as a function

of di�eren t valuesof N � S.

We found that for each SPEC benchmark, the AVF step works well for all N and S values

studied (relative error < 0.5%). However, for the longer running synthesizedworkloads, we observe

signi�cant discrepancywhen N � S is large (i.e., component raw error rate is large). Figure 2.5

shows the error in the AVF MTTF relative to the Monte Carlo MTTF for representativ e valuesof

N � S for the three synthesizedworkloads. In all three cases,for N � S � 109, the AVF step sees

signi�cant errors (up to 90%). This high value of N � S may occur when the AVF step is applied

to either large components (e.g., a 125MB cache with N = 109 bits), or when the component sizeis

moderate but the raw error rate per element (bit) is high (e.g., S = 1000becauseof high radiation

at high altitudes).

Our experiments show both positive and negative errors, depending on the workload. Thus,

AV F may either over- or under-estimate MTTF in practice.

Again, the above observations match well with our theoretical analysis in Section 2.2.1. Thus,

for SPEC like benchmarks that run for a short time, it is safeto usethe AVF step to calculate the

MTTF of a component. However, the AVF step must be applied carefully when using a workload

with large variations over large time scalescoupled with either a large component or a large per-

element raw error rate for the component.

SOFR: A Broad Design Space View

Figures 2.6(a) and (b) report the error in the SOFR step relative to the Monte Carlo method for

three representativ e SPEC benchmarks and the three synthesized benchmarks respectively. For

each case,the error is reported for representativ e values of C and N � S covered by the design

spacein Table 2.2.

Focusing on the SPEC workloads (Figure 2.6(a)), we seethat the SOFR step is accurate for

22

(a) SPEC benchmarks

(b) Synthesizedbenchmarks

Figure 2.6 Error in MTTF from the SOFR step relativ e to the Mon te Carlo metho d
for represen tativ e values of C (# comp onents) and N � S (bits per comp onent � scaling
factor for baseline raw error rate) for (a) SPEC and (b) synthesized benchmarks.

23

systemswith a small number of components (C = 2 or 8) for all studied values of N � S. When

systemsizegrows to 5,000components or larger, we seesigni�cant errors, but only with very large

values of N � S. For example, for a cluster of 5,000 processorswith each processorcontaining

N = 109 bits of on-chip storage, the baseline raw error rate would need to scale2,000 times or

more to seea signi�cant error. In practice, terrestrial systemswill likely fall into the part of the

designspacewhere the SOFR step doesnot introduce any signi�cant error for SPEC applications.

Focusingon the synthesizedworkloads(Figure 2.6(b)), for the day workload, we seea signi�cant

error usingthe SOFR stepwhenN � S � 108 and C � 5,000. The error increasesastheseparameters

increase.For example,with 12.5MB of storagefor each processor(N = 108) and baselineraw error

rate (S = 1), a 5,000processorcluster seesan error in MTTF of 11%. For a similar cluster of 50,000

processors,the error jumps to 50%. While large, such a cluster is not unrealistic. For the week

workload, sincethe loop sizeis larger than the day workload, the MTTF errors are correspondingly

larger. Thus, the 5,000 and 50,000 processorsystems mentioned above respectively seeMTTF

errors of 32% and 80% for this workload. With larger processors(more storage bits) or larger

systems, the error can grow to 90% or more. Thus, for these workloads, the SOFR step incurs

signi�cant errors for realistic systems.

Finally, the combined workload (with two SPEC applications) shows a relative error smaller

than for the day or weekworkload, but there is still a signi�cant error for somecases.

In summary, for SPEC benchmarks under current technology and on the ground, the SOFR

step givesaccurateMTTF estimates. However, in general,for larger scaleworkloads, care must be

taken to examinethe workload behavior, number of systemcomponents (e.g., processors),and the

raw error rate for the components (governed by component size and per-bit or per-element error

rate) beforeapplying SOFR.

2.4 Summary

We have examinedkey assumptionsbehind the AVF+SOFR method for estimating the architecture

level processorMTTF due to soft errors. We userigorous theoretical analysisbacked by simulation-

basedexperiments to systematically explore the applicabilit y of the AVF and SOFR steps across

a wide designspace.Our analysisand experiments show that while both stepsare valid under the

24

terrestrial raw soft error rate values of today's technology for standard workloads (e.g., SPEC),

there are casesin the design spacewhere the assumptions of the AVF and SOFR steps do not

hold. In particular, for long running workloads with large component-level utilization variations

over large time scales,the assumptionsare violated for systemswith a large number of components

and/or with high component-level raw error rate (i.e., large component sizeand/or large per-bit or

per-element raw error rate). Under theseconditions, the projected MTTF of the modeledsystemor

chip could show large errors. In general,our work builds a better understanding of the conditions

under which the standard AVF+SOFR method may be used to project MTTF accurately, and

alerts usersto the risks of using the model blindly in conditions where the foundational axioms of

the model break down.

25

Chapter 3

SoftArc h mo del

As we have shown in Section 2.3.2, the AVF+SOFR method is basedon signi�cant assumptions.

The assumptionsbecomequestionable for somesystemsin the design space. In this section, we

propose a model called SoftArch which can provide fast and accurate analysis of soft errors at

the architecture level. We will show in Section 3.4.1 that SoftArch does not need to make the

sameassumptionsas the AVF+SOFR method. In Section 3.4.2, We apply SoftArch to evaluate

the MTTF of a processor. In Section 3.4.3, we examine the e�ect of technology scaling on the

architecture level soft error rate taking the architecture level masking e�ect into consideration.

3.1 In tro duction

SoftArch works with a high-level architecture timing simulator to track the raw probabilit y of error

in the value of each bit (instruction or data) communicated or computed by any pipeline stage in

the processor. A value may be erroneouseither because(i) it is physically struck by a particle

during its residencetime in a structure, or (ii) it is the result of a communication of an erroneous

value, or (iii) it is computed using one or more erroneousinput values. We refer to the �rst case

as error generation and to the secondand third casesas error propagation. To model the error

generation probabilit y, we usea combination of residencetime and raw SER numbers for storage

structures, and a simple abstraction for logic. For error propagation probabilit y, we apply simple

probabilit y theory on the error probabilities of the sourcesof the propagation.

During program execution, SoftArch identi�es the values that could a�ect program outcome.

For each such value, it uses the tracked errors for the value and the simulator timing data to

determine the probabilit y of failure and time to failure due to that value. This enablesdetermining

26

the meantime to failure using basicprobabilit y theory. SoftArch alsokeepsenoughinformation on

the microarchitectural structures occupiedby each value to determine the contribution of di�eren t

structures to the overall MTTF.

SoftArch is basedon the �rst principle of the MTTF calculation, thus it doesnot needto make

the AVF+SOFR assumptions. We perform the same set of experiments for the same designed

spaceas described in Section2.3. We �nd that for every point in the designspace,the error in the

MTTF computed by SoftArch is lessthan 1% for a single component and 2% for the full system.

Thus, SoftArch doesnot exhibit the discrepanciesshown by AVF+SOFR.

Next, we useSoftArch to quantify the MTTF of a modern out-of-order processorand the con-

tribution of di�eren t structures to the failure rate, for various SPEC benchmarks. Our results

(consistent with, but more comprehensive than, previous studies) are as follows: (1) there is signif-

icant architecture level masking of soft errors, (2) there is substantial inter- and intra-application

variation in MTTF or failure rate, and (3) there is substantial application-dependent variation in

the contribution to the failure rate from di�eren t structures. Theseresults motivate selective pro-

tection of only the most vulnerable structures and dynamic, application-aware protection schemes.

Finally, as another application, we apply SoftArch to quantify the impact of technology scaling

on the architecture level processorsoft error rate, taking the architecture level masking e�ects and

workload characteristics into consideration. We scale the samedesign with the samenumber of

transistors over four technology generations. We �nd that with scaling, the derating factors for

logic structures often decrease,the derating factors for storageelements remain roughly unchanged,

and the FIT for the full processorroughly follows the trend for the raw SER of storagestructures.

3.2 SoftArc h details: a mo del for architecture level MTTF

The SoftArch model consistsof the following components, covered in Sections3.2.1{ 3.2.4 respec-

tiv ely. (1) A probabilistic model for soft error generation in values residing in storage structures

or passingthrough logic. (2) A model for soft error propagation, which results in the propagation

of generated errors to other values. (3) A de�nition of when an erroneousvalue contributes to

processor failure. (4) A model for calculating mean time to failure (MTTF) for a processorfor a

given workload.

27

3.2.1 Error generation model

Error generation in storage elemen ts

Current processorsinclude several storage structures such as caches, register �les, queues,TLBs,

and latches. A soft error in a storagestructure occurs when a high energyparticle strikesa device

in the structure, and the resulting charge collected exceedsthe critical charge (Qcr it) required to

ip the stored bit value. We call this a raw soft error.

We seekto determine the probabilit y that a value vi residing in a (possiblymultiple bit) storage

location for time T incurs a raw soft error during T. We assumethat if an error occurs, the value

is corrupted; i.e., we ignore the low probabilit y that multiple errors could correct the value. It

is widely accepted that raw soft errors for storage follow a constant failure rate or exponential

time-to-failure distribution model. Let � denote the raw failure rate, also referred to as the raw

soft error rate or SER, for the storage location considered.Then the probabilit y that the value v i

will incur a raw soft error in time T, denoted ei , is 1 � e� � �T . In practice, both � and T are small

enoughthat we can approximate e� � �T as 1 � � � T . This givesei = � � T .

Thus, the probabilit y that an error is generated for a value vi in a storage location depends

on the raw SER for that location, � , and the residencetime of the value in the location, T. �

is determined by circuit layout, technology, and environmental parameters (e.g., the amount of

charge stored, charge collection e�ciency , and particle
ux). There has been extensive work on

determining the value of � using circuit level simulation or measurement (Section 3.3.2). Residence

time T depends on the program and the processorarchitecture, and can be determined through

architecture level timing simulation (Section 3.3.1).

Error generation in logic elemen ts

Combinational logic elements are used for computation and control within a pipeline stage. A

high energy particle strike on a device in a logic circuit may create a current pulse that may

a�ect the value produced by the circuit. This transient e�ect becomesvisible only if it is captured

by the subsequent latch. Instead, the transient e�ect could be masked due to electrical masking

(the current pulse attenuates as it goes through the gates in the circuit), logical masking (the

current pulse a�ects parts of the circuit that do not a�ect the output value), or latch window

28

masking (the corrupted result is not latched becauseit doesnot arrive within the required timing

window for the latch). Logic SER has beenignored in most prior architectural studies becausethe

above masking makesthe e�ectiv e SER much smaller than that of storagestructures. However, as

technology scales,thesemasking e�ects are diminishing and the logic SER is projected to increase

signi�cantly [14].

For our architecture level model, it is desirableto include the above circuit-level masking e�ects

within the raw logic SER value. Becausethese masking e�ects depend on the circuit layout and

inputs, the desiredraw logic SER will di�er for di�eren t logic circuits and even for di�eren t inputs.

In general,it is hard to abstract all of thesee�ects. We thereforeusea simple abstraction consisting

of one parameter called elogic corresponding to each type of logic circuit (e.g., ealu for the ALU

or ef pu for the FPU). elogic is de�ned to be the probabilit y that, given correct inputs, the result

produced by the corresponding circuit at the end of the computation is incorrect becauseof soft

errors. elogic can be estimated using circuit level SER analysis tools, basedon the layout of that

logic circuit and technology parameters. In our implementation, we usea simple estimation based

on prior work [14] and the gate and latch counts for the logic circuit (Section 3.3.3).

3.2.2 Error propagation model

In a processor,valuesare read from storagelocations, possibly processed,and the original or newly

computed values are stored elsewhere. (We consider the values stored in the new locations to be

new values,even if they are identical to the original ones.) During this process,errors in the original

valueswill propagate to the new values. For example, if the value, v1, in register r 1 is corrupted

and later used to generatea result r 3 = r 1 + r 2, the error in v1 will propagate to the new value

stored in r 3.

Conceptually, we would like to track how errors are propagated to new values and determine

the probabilit y that a new value is erroneous. Theseprobabilities will then allow us to determine

the probabilit y of failure and the mean time to failure (depending respectively on which erroneous

values cause failure and when). The probabilit y of error in a newly generated value (say v3)

depends on the probabilit y of error in the input values (say v1 and v2) used to generatev3. In

general,denoting Vi to meanthe event that value vi hasan error, denoting P(Vi) as the probabilit y

29

Figure 3.1 An example for error propagation.

of Vi , and assumingthat any error in either v1 or v2 will causean error in v3, the probabilit y of

error in v3 can be given by P(V3) = P(V1
S

V2) = P(V1) + P(V2) � P(V1 � V2), where V1 � V2 is the

event that v1 and v2 both have errors.

If the errors in v1 and v2 are independent, then P(V1 � V2) is simply P(V1)P(V2). On the other

hand, if the errors are perfectly correlated (e.g., if v2 was just generatedby copying v1 to another

location), then P(V1 � V2) = P(V1) = P(V2). In general,however, the errors in two valuescould be

partially correlated and estimating P(V1 � V2) is more di�cult. Accounting for the correlation and

determining the resultant probabilit y requires keeping track of the raw errors that were originally

responsible for the errors in v1 and v2.

For example,Figure 3.1 shows a data
o w graph wherevaluesv1, v2, and v3 incur errors e1, e2,

and e3 with probabilit y je1j, je2j, and je3j respectively. Assuming e1, e2, and e3 are independent

of each other, the probabilit y of error for value v4 is je1j + je2j � je1j � je2j and that for v5 is

je2j + je3j � je2j � je3j. The errors in v4 and v5 are correlated sincethey share the sameerror from

v2 { if v2 has an error, both v4 and v5 will have errors. Therefore, to calculate the probabilit y of

error in v6, the correlation betweenthe errors in v4 and v5 needsto be taken into account. We do

this by tracking the original independent raw error events that causeerrors in di�eren t values.

For our model, we do not need to calculate the probabilit y of error for a value immediately

upon its generation { we only needprobabilit y calculations for valuesthat eventually causefailure

as de�ned in the next section. Therefore, for purposesof determining how errors propagateamong

values, we simply keep track of the set of all the raw error events that can causean error in a

value, and propagate this entire set when a value is usedto generatea new value. For example, in

Figure 3.1, the error set for v4 is f e1; e2g and for v5 is f e2; e3g. Thus, the error set for v6 should

30

be f e1; e2; e3g. We can now easily calculate the error probabilit y for v6, sincee1, e2, and e3 are

independent.

More generally, consider a value vi residing in a storage location. Let t j be the time interval

betweentwo successive readsof vi (or betweenthe �rst write and read of vi). We refer to the event

that vi incurs a raw soft error over time t j asa basic storageerror event. If vi wasgeneratedthrough

computation logic, then we refer to the event that vi incurred a logic error (after consideringcircuit

level masking e�ects) during this computation as a basic logic error event. We refer to a basic

storageor basic logic error event as a basic error eventor simply a basic error. All basic errors are

independent of each other, with probabilities given by the error generationmodels in Section3.2.1.

The error propagation model requiresdetermining the basic errors that needto be propagated

to a new value. For each value vi , we associate a basic error set, denoted E i . This is the set of

basic errors directly incurred by or propagated to vi .1 Thus, for a new value vi created at time t i ,

the propagation model seeksto determine vi 's E i at t i .

First, we handle the simple casewherevi is generatedby reading an old value v0 from a storage

location and writing it to another storagelocation. In this case,the error set E i is simply the error

set for v0 at time t i .2

Next, wehandlethe casewherevi is createdthrough somecomputation op(in 1; in 2; :::in k), where

k � 1, in j 's are input operands, and op is any operation. The creation of vi involves a possible

basic logic error event, say bi , with probabilit y eop. Then E i is simply E in 1 [E in 2 [� � � [E in k [f bi g.

Thus, we can generatethe basicerror set for a newly createdvalue. Sinceall the error events in

this set are independent, the probabilit y of error in the new value can be calculated as a function

of the probabilities of the errors in its basic error set (which are known from Section 3.2.1). For

example, in Figure 3.1, the probabilit y of error for v6 is je1j + je2j + je3j � je1j � je2j � je2j � je3j �

je1j � je3j + je1j � je2j � je3j.

1Note that for vi in a storage location, each time it is read, a new basic error event is added to E i (to indicate an
error occurrence in the interval since it was last read).

2We assumethe processof moving a value from one location to another acrosswires does not induce any errors.
Currently , wires do not appear to have soft error problems. However, in the future, soft errors from wires could be
easily incorporated by adding another basic error due to the wires to the set E i .

31

3.2.3 Program failure and time to failure

Not all erroneous values cause program failure. For example, an error that occurs in a dead

value does not causefailure since the value is not usedagain. Similarly, an error in a speculative

instruction that is later squasheddoesnot causeprogram failure. We say an erroneousvalue results

in program failure if the error is observableby an external observer. Broadly, this includes(1) values

that are written to an output device, (2) valuesthat a�ect program control
o w (e.g., the value of

a branch target), (3) the value of an instruction opcode (an error could make the opcode illegal,

causing a program crash), (4) any value representing an addressof a memory location (an error

could causeaccessto prohibited locations, causinga crash), (5) and a destination register �eld of

an instruction (an error could result in the corruption of an unknown and undesirableregister).

Dependingon the systemmodeledand the implementation, the precisesetof valueswhereerrors

may causeprogram failure will vary (e.g., in a processorwith speculation, an errror in the opcode

of a misspeculated instruction will not causeprogram failure). Further, a speci�c implementation

of the model may chooseto conservatively assumethat errors in a supersetof the above valueswill

causefailure. Section 3.3.5 describes the set of valueswhere errors are consideredto causefailure

in our implementation.

We call the above de�ned set of values where errors would lead to program failures as the

failure set, denoted by VF = f vf 1; vf 2; :::g. Additionally , our model also requires determining the

time, t f i , at which a failure due to vf i occurs. This is determined through the architectural timing

(performance) simulator. We assumethat the failure set f vf 1; vf 2; :::g is ordered such that t f i <

t f j for i < j .

3.2.4 Determining mean time to failure (MTTF)

We next derive meantime to failure (MTTF) for a processorrunning a given workload. Our model

so far provides: (1) the values that can causefailure: f vf 1; vf 2; :::g, (2) the corresponding times

for these failures: f t f 1; t f 2; :::g, (3) for each value, vf i , the set of independent basic errors E f i =

f ef i � 1; ef i � 2; :::g that can produce an error in vf i , and (4) the probabilit y for each independent

basic error.

In�nite programs. First, consider a workload that runs forever. Its MTTF is the sum of the

32

t f i 's, each weighted by the probabilit y that vf i is erroneousand no previous value in the failure set

is erroneous.Denoting the number of elements in the failure set as N (N could be 1), we have:

M TTF =
P N

i =1 t f i � (Probability that vf i has an error and none of vf 1; :::; vf i � 1 havean error)

Given the basic error sets E f i and the probabilities of the constituent errors, we use basic

probabilit y theory to determine the probabilit y of the events in the above summation. For example,

let E f 1 = f e1; e2g and E f 2 = f e2; e3g. Then the probabilit y that vf 2 has an error and vf 1 doesnot

have an error is the probabilit y that at least one of the errors in (E f 2 - E f 1) occurs and none of

the errors in E f 1 occurs. This is je3j � (1 � je1j) � (1 � je2j), denoting probabilit y of ei by jei j.

Finite programs. Most of our workloads, however, are �nite programs that run for a relatively

short amount of time. To determine MTTF in a meaningful way for a processorrunning such a

program, we assumethat the program runs repeatedly in a loop forever. If a failure always occurs

in the �rst run of the program, then the MTTF for the �nite program, denoted MTTF 0, can also

be represented by the above equation for in�nite programs. If there is no failure in the �rst run,

then we needto expand the equation to include possiblefailures in subsequent runs.

Let Texec be the execution time of one run of the program. Then the time to failure due to vf i

in the kth run of the program is (k � 1)Texec + t f i . This time to failure must be weighted by the

probabilit y that none of the prior k � 1 (independent) runs fail, vf i is erroneousin the kth run,

and none of the valuesprior to vf i in the failure set are erroneousin the kth run. That is,

M TTF =
P 1

k=1

P N
i =1 f (k � 1)Texec + t f i g� (Probability that none of the prior k-1 runs fail) � (Probability

that vf i has an error and none of vf 1; :::; vf i � 1 havean error)

To simplify the above equation, we de�ne F ail ur ePr ob0 as the probabilit y that a given run of

the program will seea failure. That is,

F ail ur eProb0 =
P N

i =1 (Probability that vf i has an error and none of vf 1; :::; vf i � 1 havean error)

Thus, in the MTTF equation, the term Probability that none of the prior k-1 runs fail can be

represented as (1 � F ail ur ePr ob0)k� 1. The MTTF equation then becomes:

M TTF =
P 1

k=1

P N
i =1 f (k � 1)Texec + t f i g� (1 � F ail ur eProb0)k � 1� (Probability that vf i has an error and

none of vf 1; :::; vf i � 1 havean error)

33

Rearranging the terms slightly,

M TTF =
P 1

k=1 (1 � F ail ur eProb0)k � 1 �
P N

i =1 f (k � 1)Texec + t f i g� (Probability that vf i has an error and

none of vf 1; :::; vf i � 1 havean error)

Now applying the de�nition of M TTF 0, we get:

M TTF =
P 1

k=1 (1 � F ail ur eProb0)k � 1 � f (k � 1)Texec � F ail ur eProb0+ M TTF 0g

= Texec � F ail ur eProb0P 1
k=1 (k � 1) � (1 � F ail ur eProb0)k � 1 + M TTF 0P 1

k=1 (1 � F ail ur eProb0)k � 1

Using
P 1

k=1 xk� 1 = 1
1� x and

P 1
k=1 (k � 1)xk� 1 = x

1� x2 to simplify the equation, we get

M TTF = Texec � (1 � F ailur eP r ob0)
F ailur eP r ob0 + M T T F 0

F ailur eP r ob0

= Texec + M T T F 0

F ailur eP r ob0 � Texec

Note that we can derive the contribution to MTTF from a speci�c processorstructure by

assumingzero probabilit y for errors generatedin other structures.

3.3 Implemen tation of the SoftArc h mo del

We have implemented the SoftArch model in the SoftArch tool. There are �v e key components to

the implementation: (1) integration with an architecture level timing (i.e., performance)simulator,

(2) estimation of � , (3) estimation of elogic , (4) implementation of the basicerror set corresponding

to each value and the operations on thesesets,and (5) identifying the valuesin the failure set. The

following sectionsdiscusseach of thesecomponents.

3.3.1 In tegration with timing simulation

The SoftArch model provides MTTF for a speci�c program running on a processor. It requires

integration with a performance(or timing) simulator that runs the program, and provides to the

SoftArch model timing information about the values read/written/computed in di�eren t parts of

the processor. This work also usesthe Turandot simulator as described in Section 2.3.1 with the

sameparametersthat were chosento roughly correspond to the POWER4 microarchitecture [15].

We track soft errors using the SoftArch model for most of the important structures in the

34

processor, including the instruction bu�er (IBUF), instruction decode unit (IDU), integer and

oating point register �les (REG), integer functional units (FXU),
oating point units (FPU),

instruction TLB (iTLB), data TLB (dTLB), and instruction queues(IQ). We assumethe load/store

queue,caches,and memory are protected using ECC, and do not considera soft error rate for them.

We also do not model soft errors for the branch prediction unit sincethesedo not causeprocessor

failures.

3.3.2 Estimation of �

Irom et al. [16] and Swift et al. [17] report measuredvaluesof raw SER crosssection for the TLB

and
oating point registers for PowerPC processors.The raw SER crosssection is de�ned as the

number of errors per particle in
uence and is related to the raw SER as follows [2]:

Raw SER for a storagestructure = (SER crosssection for the structure)(nucleon
ux)(# bits in the structure)

From [16], the raw proton SER cross section for the TLB structure in a 200nm PowerPC

processoris about 5� 10� 14cm2=bit for proton energylarger than 20Mev. From [17], the raw proton

SER cross section for the
oating point register structure in a PowerPC 750 processoris about

the samevalue. Sinceprotons and neutrons have similar characteristics at higher energyrange, we

use the proton crosssection to roughly estimate the raw neutron SER of di�eren t structures. We

do not model the alpha particle SER since Karnik et al. [18] show that in deviceswhere Qcr it is

large, neutron SER dominates. This is the casefor the array structures we study here. Further,

the detailed estimation of raw SERs is not the focus of this dissertation.

According to Ziegler [2], neutron
ux with su�cien t energy(> 20Mev) at sealevel is 105particl es=cm2�

yr . Using the above equation, we can derive the raw SER for the register �le in 200nm technology

as 5:7 � 10� 4 FIT/bit (1 FIT is one failure every 109 hours). Sincewe model a processorin 90nm

technology, we scalethe raw SER rate using scaling data by Karnik et al. [18]. Karnik et al. show

that neutron SER in SRAM increasesabout 30% from 200nm to 90nm technology. Thus, we as-

sume that the raw SER for the register �le in 90nm technology is 7:42 � 10� 4 FIT/bit. Assuming

a 64 bit register and a 2 GHz processor,we can derive that � for a register value is 6:60 � 10� 24

errors/cycle.

35

Although Irom et al. [16] and Swift et al. [17] do not report data for the instruction bu�er,

instruction queueand integer register �le, we assumethe SER crosssection value for these to be

similar to the reported results for TLB and
oating point registers (we could not �nd any other

sourcesof measureddata for thesestructures either). Using an approach similar to the above, we

get � for an instruction bu�er entry as 6:60� 10� 24 errors/cycle and for an instruction queueand a

TLB entry as 1:13 � 10� 23 errors/cycle.

3.3.3 Estimation of elogic

At 100nm, Shivakumar et al. [14] showed the raw SER for a latch to be 3:5 � 10� 5 FIT and for

a 16FO4 logic chain to be 5 � 10� 6 FIT (after circuit level electrical and latch window masking).

Basedon the gate and latch counts for a logic circuit, we can therefore estimate the raw SER for

that circuit at 100nm (we use the same value for 90nm). (This is conservative since it ignores

circuit-level logical masking which dependson the inputs and the exact logic function.)

Speci�cally , let #L ogicChains and #L atchesbe the number of logic chains and latches respec-

tiv ely in a logic circuit (e.g., FPU, FXU, or IDU). Then for our 2 GHz processor,

elogic = (# LogicC hains �5�10� 6+# Latches �3:5�10� 5)
109 �3600�2�109

We estimated the gate/latch count information for our simulated processoras follows.3 We �rst

estimated the relative areasof each modeled structure from published
o orplans of the POWER4.

Sincethe total transistor count for the processoris known, wecould then assignarea-basedestimates

of transistor counts for each modeled structure. Reasonableassumptionsabout transistor density

di�erences betweenSRAM and logic dominated structures were also factored in. We estimate 10K

latches and 70K gates for the FXU (integer ALU), 14K latches and 100K gates for the FPU, and

7K latchesand 50K gatesfor the IDU. (Our implementation assumesall FXU operations have the

sameelogic and all FPU operations have the sameelogic). It follows that elogic for the IDU, FXU,

and FPU is 5:16 � 10� 23, 7:23 � 10� 23, and 3:67 � 10� 23 respectively.

3Although our microarchitectural parameters were chosen to be close to the POWER4, structure-wise gate/latc h
count information for such commercial processorsis not available. We acknowledge that our estimates of thesecounts
may not be close to actual values.

36

3.3.4 Tracking basic error set E i for value vi

The error propagation model requirestracking basicerror sets,using set copy and union operations.

Thesesetscan potentially beunbounded. To reducespaceand dynamic memory management over-

head,we usea �xed sizeFIFO table to store the basicerrors in a set (one table per set, 100entries

per table in our implementation). To further reducespace,the table entry only storesa sequence

number that identi�es the error. A commoncentral table storesthe pertinent information for each

sequencenumber, including probabilit y of the corresponding error and where it is generated. In

caseof over
o w of a basicerror table (i.e., > 100basicerror sourcescontribute to the corresponding

value), the oldest entry in the table is discarded. This losesinformation about an error sourcefor

the value. We conservatively assumethat the value causesfailure due to the dropped error with

probabilit y of that error and at the time the error is dropped. In our experiments, over
o w rarely

occurs.

3.3.5 Iden tifying values for program failure

Basedon Section3.2.3,our implementation makesthe following assumptionsabout valuesthat can

lead to processorfailures and the times at which such failures occur.

Values to output devices: Our program traces are at the user-level and do not contain output

instructions. We conservatively assumethat values that are stored in memory are observable

externally, and errors in them causeprogram failure. We assumethat the failure occurs when the

store instruction retires and is issuedto memory.

Fields of an instruction: Errors in all �elds of loads,stores,and instructions that changecontrol

o w (branches and jumps) are propagated to the retirement queue. These errors are assumedto

causefailure when the instruction retires. This is becausethese errors can change the op code,

program control
o w, memory addresses,or the value stored in memory, which are assumedto

be observable externally. Waiting until retirement to
ag a failure ensuresthat misspeculated

instructions do not
ag failures.

For instructions other than the above, we do not consider errors in �elds that specify source

registers to causefailures. Instead, we propagate the errors in these �elds into the value in the

destination register. Errors in all other �elds are consideredto causefailure at retirement (similar

37

to loads, stores,and branch instructions).

Fields in iTLB and dTLB: Any errors in the TLBs are propagatedto the retirement queueentry

of the corresponding instruction, and consideredto causefailure on retirement of that instruction.

This is becausean error in thesestructures can lead to memory addressrelated failures.

3.4 Exp erimen ts and results

In this section,we �rst apply SoftArch to calculate MTTF and comparewith the MTTF calculated

with Monte-Carlo methods. Next, we useSoftArch to study the workload behavior for soft errors.

Finally, as an application of SoftArch, we useSoftArch to study the e�ect of technology scaling on

the soft error rate at the architecture level.

3.4.1 Compare SoftArc h to the Mon te-Carlo metho d

We have shown in Section2.3.2that the AVF+SOFR method leadsto signi�cant amount of relative

error for certain parts of the designspace.

SoftArch's probabilistic approach doesnot require the AVF and SOFR assumptions;it is there-

fore useful to explore whether SoftArch can be applied to the parts of the design spacewhere

AVF+SOFR shows signi�cant discrepanciesfrom the Monte Carlo method. We usedSoftArch to

estimate MTTF for the entire designspacestudied in Section 2.3. We found that for every point

in this space,the error in MTTF computed by SoftArch relative to the Monte Carlo MTTF is less

than 1% for a single component and less than 2% for the full system. Thus, SoftArch does not

exhibit the discrepanciesshown by AVF+SOFR. Theseresults are not meant to provide a complete

validation of SoftArch or a completecomparisonbetweenSoftArch and AVF+SOFR (such an anal-

ysis is outside the scope of this work). Rather, theseresults suggestalternative methodologiesand

motivate future work combining the best of existing methodologiesfor the most accurate MTTF

projections acrossthe widest designspace.

3.4.2 A case study with SoftArc h

In this section,weshow what wecanget from SoftArch by applying SoftArch to the modeledproces-

sor and SPEC CPU2000benchmarks (9 integer and 12
oating point). For each benchmark, we use

38

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

���

45
40
35
30
25
20
15
10
5
0

 F
IT

 R
at

e

42

Raw
_F

IT
�	

�

�

�

�

�

�

��

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

��� �

���

��� �

�

���

���

���

���

���

�

�

�

�

�

���

!

!"#

#$

$

%

%

%

%

%

%

%

%

%

&

&

&

&

&

&

&

&

&'(

)�) *

+�+

+�+ ,

,

-�-

-�-

-�-

.

.

.

/�/ 0

1�1

2�2

3�3

3�3

3�3

3�3

4�4

4�4

4�4

4�4

5�5

6�6

7�7

89

:

:;

;

<

<

<

<

<

<

<

<

<

<

=

=

=

=

=

=

=

=

=

=>

?�? @

A�A B

C�C

C�C

C�C

D

D

D

E�E

E�E F

F

G�G

H�H

I�I

I�I

I�I

J�J

J�J

J�J

K�K

K�K

K�K

L�L

L�L

L�L

M�M

N

NOP

P

PQ

Q

Q

R

R

R

R

S

S

S

STU

V

VW

W

X�X

X�X

Y�Y

Y�Y Z�Z

Z�Z

[�[

[�[\�\

\�\

]�]

]�]

18

12

6

0

 F
IT

 R
at

e

6

13.5

7.6

11
9

4

16

10 10 10

bz
ip

cr
af

ty
ga

p
gc

c
gz

ip
m

cf

pe
rlb

m
k

vp
r

tw
olf

AVG

fpufxuitlbdtlbiqregiduibuf

^�^

^�^

�

`�`

`�`

a�a

a�a

b�b

b�b

b�b

b�b

c�c

c�c

c�c

c�c

d�d

d�d

e�e

e�e

f�f

g�g

h�h

i�i

j�j

k�k

l�l

m�m

n�n

o�o

p�p

q�q

r�r

s�s

t�t

u�u

v�v

w�w

x�x

y�y

y�y

y�y

y�y

z�z

z�z

z�z

z�z

{�{

|�|

}~

•€

•

•

•

‚

‚

‚ƒ

ƒ„

„

…�… †

‡�‡ ˆ

‰�‰ Š‹�‹ Œ

•�• Ž

•�•

•�• •

•
‘�‘

‘�‘ ’

’

“�“

“�“ ”

”

•

•–

—̃

™

™

™

™

š

š

š

š›

›œ

œ

•�•

•�• ž

Ÿ�Ÿ

Ÿ�Ÿ

¡�¡

¡�¡

¡�¡

¢

¢

¢

£�£ ¤

¥

¥¦

§̈

©

©ª

ª«¬

­�­

®�®

¯�¯

°�°

±�±

±�±

²�²

²�²

³�³

´�´

µ�µ

µ�µ

¶�¶

·�·

¸�¸

¹�¹

¹�¹

º�º

º�º

»�»

»�»

¼�¼

¼�¼

½¾

¿

¿À

ÀÁ

ÁÂ

ÂÃ

ÃÄ

Ä

Å

ÅÆ

Æ

Ç

ÇÈ

È

É�É

É�É

Ê�Ê

Ê�Ê Ë

Ë

Ì

Ì

18

12

6

0

 F
IT

 R
at

e

7

2.6

5.6
7

6.3
4.6 5

9

6.6
8

4
5.6 6

am
m

p
ar

t
ap

plu ap
si

fa
ce

re
c

eq
ua

ke

luc
as

m
es

a

m
gr

id

six
tra

ck

sw
im

wup
wise

AVG

fpufxuitlbdtlbiqregiduibuf

(a) (b) (c)

Figure 3.2 FIT rates (a) for raw errors, (b) with architectural masking for SPECin t
benchmarks, and (c) with architectural masking for SPECfp benchmarks.

sampledtraces with 100 million instructions that were validated for acceptablerepresentativ eness

against the full trace [19].

Metrics

Our experiments report MTTF for an application (Section 3.2.3). We alsocompute MTTF for indi-

vidual structures, assumingzero raw SER for other structures. An alternative method of reporting

reliabilit y is in terms of FITs. For failure mechanisms with constant failure rate (i.e., exponential

distribution for time between failures), FIT rate = 1/MTTF and the FITs of individual system

components can be added to give the FITs of the entire system according to the SOFR method.

This additiv e property is convenient when attempting to understand the relative contribution of

failure rate and importance of di�eren t system components. In Chapter 2, we have shown that

although the constant failure rate assumption for raw soft errors is reasonable,the assumption

might not hold after the errors are architecturally masked. Nevertheless,we have shown that for

SPEC benchmark under current terrestrial raw soft error rate, the SOFR method is valid and the

additiv e property of FIT rate holds well. Our results from SoftArch con�rms that the FIT rates

acrosscomponents are indeed additiv e in this case.Therefore, for convenienceand following other

literature (e.g., [8]), we report our results in terms of FITs (= 1/MTTF) for the entire systemand

for each component.

Given the FIT rate and the raw FIT rate of a component, we are able to estimate the amount

of architecture level masking e�ect. We denote the amount of architecture level masking using use

39

�����

����� �����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

����� 	�	

�
 ���

���

���

���

���

���

�

�

�

�

�

�

�

���

���

���

���

���

���

���

���

���

�

��

�

�

��

�

�

��

�

�

��

�

5

4

3

2

1

0

 F
IT

 R
at

e

1.3

0.1

0.90.9

4.4

2

0.2
0

1.5

0

1.5

0.3

1.5
1

0 0

SPECint SPECfp

fpufxuitlbdtlbiqregiduibuf

Figure 3.3 FIT rate for each structure, averaged across SPECin t and SPECfp bench-
marks.

the term derating factor which is de�ned as F I T
r awF I T . Derating factor is the sameas AVF. In this

paper, we useAVF and derating factor interchangeably.

Ov erall results

Our results are presented in Figures 3.2 { 3.5. Figure 3.2 shows the FIT rate for an entire applica-

tion. Figure 3.2(a) shows the raw processorFIT rate, which is calculated assumingthat each raw

error causesa program failure. Figures 3.2(b) and (c) show the FIT rates for our SPECint and

SPECfp benchmarks respectively, with the rightmost bars showing the average. Each bar in these

�gures is further divided to show the contribution to the FIT rates from the di�eren t structures {

instruction bu�er (IBUF), instruction decode unit (IDU), register �le (REG), instruction queues

(IQ), data TLB (dTLB), instruction TLB (iTLB), integer functional unit (FXU), and
oating point

unit (FPU).

Figure 3.3 summarizes the structure-wise information by showing the average FIT rate for

each structure across the SPECint and SPECfp benchmarks. Figures 3.4(a) and (b) show the

architectural derating factors for each structure and the entire processorfor SPECint and SPECfp

respectively (again, the rightmost bars are the average).

Finally, to understand dynamic application behavior, Figure 3.5 reports the time variation in

processorand per-structure FIT rate for two representativ e applications. We divide each applica-

tion's execution into intervals of 64K instructions, and plot the FIT rate (Y-axis) for each such

interval (X-axis), for each structure and the full processor.

The above data shows the following high level results (these are consistent with prior work,

40

���

���

���

���

���

���

���

���

���

���

���

���

���

���

�

�

�

�

�

�

�

�

�

�

�

��

�

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

	�	

	�	

	�	

	�	

	�	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

�

�

�

�

�

�

�

�

�

�

���

���

���

���

���

���

���

���

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

���

���

���

���

���

���

���

���

���

���

���

���

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

���

 � !

!

!

!

!

!

!

!

!

"

"

"

"

"

"

"

"

"

#$ %�%

%�%

%�%

%�%

%�%

%�%

%�%

&�&

&�&

&�&

&�&

&�&

&�&

&�&

'�'

'�'

'�'

'�'

'�'

(�(

(�(

(�(

(�(

(�(

)

)

)

)

)

)

)

)

)

)

)

)

)

*

*

*

*

*

*

*

*

*

*

*

*

*

+, -�-

-�-

-�-

-�-

.�.

.�.

.�.

.�.

/�/

/�/

/�/

/�/

0�0

0�0

0�0

0�0

1

1

1

2

2

2

34 5�5

5�5

5�5

5�5

6

6

6

6

7�7

7�7

7�7

7�7

7�7

7�7

8�8

8�8

8�8

8�8

8�8

8�8

9

9

9

:

:

:

;< =�=

=�=

=�=

=�=

=�=

>

>

>

>

>

?�?

?�?

?�?

?�?

?�?

@�@

@�@

@�@

@�@

@�@

A

A

A

A

A

A

B

B

B

B

B

B

CD

E

EF

F

G

GH

H

I

IJ

J

K�K

K�K L

L

80%
70%
60%
50%
40%
30%
20%
10%

0

 D
er

at
in

g
F

ac
to

r

43
19

7
20

42
19

28
0

21

bzip crafty gap gcc gzip mcf perlbmk vpr twolf AVG

chipfpufxuitlbdtlbiqregiduibuf

(a)

MNM

MNM

MNM

MNM

ONO

ONO

ONO

ONO

P

P

P

P

P

P

P

Q

Q

Q

Q

Q

Q

Q

R

R

R

R

R

R

S

S

S

S

S

S

TU VNV W

XNX

XNX

XNX

XNX

YNY

YNY

YNY

YNY

Z[\] ^N^

^N^

^N^

^N^

^N^

N

N

N

N

`N`

`N` a

a

b

bc

c

d

de

e

fNf

fNf

fNf

fNf

fNf

fNf

gNg

gNg

gNg

gNg

gNg

gNg

h

h

h

i

i

i

j

j

j

j

j

k

k

k

k

k

l

l

l

m

m

m

nNn

nNn

nNn

nNn

nNn

nNn

o

o

o

o

o

p

p

p

q

q

q

r

r

r

r

r

s

s

s

s

s

t

t

t

u

u

u vNv

vNv

wNw

wNw x

x

y

y z

z

{

{ |

} ~N~

~N~ •

•

€N€

€N€

€N€

€N€

€N€

€N€

•N•

•N•

•N•

•N•

•N•

•N•

‚

‚ƒ

ƒ

„

„…

…

†N†

†N†

†N†

†N†

†N†

†N†

†N†

‡

‡

‡

‡

‡

‡

‡

ˆNˆ

ˆNˆ

ˆNˆ

ˆNˆ

‰N‰

‰N‰

‰N‰

‰N‰

Š

Š

Š

Š

Š

Š

Š

‹

‹

‹

‹

‹

‹

‹

Œ

Œ•

•

ŽNŽ

ŽNŽ

ŽNŽ

ŽNŽ

ŽNŽ

•N•

•N•

•N•

•N•

•N•

•N• ‘ ’

’

’

’

’

’

“

“

“

“

“

“

”• –N–

–N–

–N–

–N–

–N–

–N–

–N–

–N–

—

—

—

—

—

—

—

—

˜N˜

˜N˜

™N™

™N™ š

š

š

š

›

›

›

›

œ

œ

œ

œ

•

•

•

•

žNž

žNž

žNž

žNž

Ÿ

Ÿ

Ÿ

 N ¡ ¢

¢

£

£ ¤

¤

¥

¥ ¦N¦

¦N¦

¦N¦

¦N¦

¦N¦

§N§

§N§

§N§

§N§

§N§

¨N¨

¨N¨

¨N¨

¨N¨

¨N¨

©

©

©

©

©

ª

ª

ª

«

«

«

¬

¬­

­

®N®

®N®

®N®

®N®

¯

¯

¯

¯

°N°

°N°

°N°

±N±

±N±

±N±

²

²

²

²

²

³

³

³

³

³

´

µ́

µ

¶N¶

¶N¶ ·

·

¸

¹̧

¹

º

º»

»

¼N¼

¼N¼ ½

½

60%
50%
40%
30%
20%
10%

0

 D
er

at
in

g
F

ac
to

r

49
11 13

7
14

10 6 4
13

ammp art applu apsi facerec equake lucas mesa mgrid sixtrack swim wupwise AVG

chipfpufxuitlbdtlbiqregiduibuf

(b)

Figure 3.4 Arc hitectural derating factor for each structure (a) for SPECin t and (b)
for SPECfp benchmarks. Note that the scales on the t wo graphs are di�eren t.

but they are more comprehensive since they cover more structures on chip than [8] and longer

application runs than [3]):

Arc hitectural derating. Architectural masking has a large impact on the overall processorFIT

rate (Figures 3.2 and 3.4). While the raw failure rate is 42 FITs, the averagearchitecturally masked

rate for SPECint and SPECfp is 10 and 6 FITs respectively.4 Thus, on average,only 21%and 13%

of the raw errors causeprogram failure for the SPECint and SPECfp benchmarks respectively.

Variation across workloads. Di�eren t benchmarks exhibit signi�cant di�erences in FIT rates,

with a range of 2.6 for art to 16 for perlbmk (Figure 3.2). In general,SPECfp applications have a

lower FIT rate than SPECint.

Variation across structures. Di�eren t structures contribute in di�eren t proportions to the

overall FIT rate (Figures 3.2 and 3.3). Although there are workload-speci�c variations, we can

identify general trends. For SPECint applications, the major contributor to the FIT rate is the

dTLB followed by the iTLB and instruction bu�er. For SPECfp, the major contributors are

the instruction bu�er, register �les, and dTLB, closely followed by iTLB. The logic elements are

insigni�can t and the instruction queuesare not a strong contributor to the SPECfp applications.

4The absolute FITs may appear low; however, these are for only one processor,at 90nm, for soft errors only due
to neutrons, and assumesigni�can t protection overhead in the caches.

41

0 200 400 600 800 1000

ibuf

idu

reg

iq

dtlb

itlb

fxu

fpu

chip

(a) facerec

0 500 1000 1500 2000

ibuf

idu

reg

iq

dtlb

itlb

fxu

fpu

chip

(b) wupwise

Figure 3.5 In tra-application variation in FIT rate for in terv als of 64K instructions.

Further, Figures 3.2(a) and 3.4 show that the di�erence in contribution from the structures come

both from a di�erence in the raw SER and in the architectural derating.

In tra-application variation is signi�cant for the overall and per-structure FITs (Figure 3.5).

Analysis

We next describe the reasonsfor our results. The architectural FIT rate for a structure for a given

application is determined by the following three factors for the structure:

Raw FIT rate: This dependson the structure sizeand the raw SER per bit or logic chain for the

technology.

Baseutilization: For logic, this is the fraction of time that the structure is used. For storage,this is

the fraction of valuesthat are live; i.e., valuesthat will be read beforebeing overwritten or before

42

program termination.

E�e ctive utilization: This is the fraction of values that are read or computed from the structure

that contribute to program outcome. For example, if the instruction queuesare always full, then

their base utilization is high. However, if most of these instructions will be squashed,then the

e�ectiv e utilization is low. The product of the baseand e�ectiv e utilization is the architectural

derating factor.

The above factors explain the di�erences in contributions to architectural FIT rates from the

di�eren t structures asfollows. The instruction bu�er and instruction queueshave relatively low raw

FIT rates due to their small size(relative to the register �les and TLBs). However, the instruction

bu�er has a high derating factor due to its high baseand e�ectiv e utilization; therefore, it is one

of the three largest contributors to the architectural FIT rate on average. The instruction queues,

on the other hand, have a more modest derating factor, and hencea modest to low contribution to

the architectural FIT rate.

For the register �le, the raw FIT rate is amongthe highest. For SPECint, however, its architec-

tural FIT rate is much lower than that of the TLBs becausethe baseutilization of the
oating point

register �le is negligible. For SPECfp, the register �le is one of the three largest FIT contributors.

The raw FIT rate of the dTLB and iTLB are the same;however, the dTLB's FIT rate is larger

than that of the iTLB for SPECint, and is larger for SPECint than for SPECfp. We considerany

erroneousvalue read from the TLBs to causeprogram failure; therefore, the above di�erences occur

from the baseutilization. Thus, the fraction of values that are live appears higher for the dTLB

than for the iTLB for SPECint (lik ely becauseof smaller footprin t for instructions), and higher

for the dTLB for SPECint than for SPECfp (partially corroborated with prior data cache lifetime

results).

For the IDU, FXU, and FPU, the main reasonfor the low contribution to the overall FIT rate

is the low raw FIT rate of logic and latches relative to array structures. Somepredictions expect

this trend to reversefor future technologies[14], in which casethe logic elements can be expected

to contribute more to the overall SER.

Similar analysis explain the di�erences between and within workloads. For example, consider

mcf with its low FIT rate. It is well-known that it spendsmost of its execution stalled for memory.

43

Thus, most structures exhibit a small FIT rate becauseof low baseutilization. The instruction

bu�er and queues,however, contain live instructions stalled for memory, and so show higher der-

ating.

Implications and limitations

The above results have at least three broad implications. First, they motivate selective protection,

and can be used to determine which parts of the processorare most cost-e�ective to protect.

Second,they motivate application-aware protection. As shown, di�eren t applications have di�eren t

behavior, both in absolute FIT rate and in the structures that contribute most to the FIT rate.

Third, along the samelines, our results show signi�cant variations in FIT rate and in the structures

contributing to FIT rate within an application. This is similar to the phasebehavior noted in prior

studies for other metrics (e.g., IPC, cache miss rate) [20]. These results motivate consideration

of dynamic adaptation schemes for managing soft errors, much like adaptation for energy and

temperature management.

SoftArch has at least two limitations. First, it depends on architectural timing simulation.

Typically, such simulators do not include all microarchitectural and circuit-level details, introducing

inaccuracies(e.g., useof elogic and latch/gate count estimates). Second,SoftArch doesnot simulate

changesto the execution path after an error; therefore, it cannot model e�ects such as application-

level masking. Pleasenote that the AVF+SOFR method also has the sameset of limitations.

3.4.3 Another application of SoftArc h: architecture level scaling analysis

With the SoftArch tool, we are now able to analyzethe soft error rate of the processortaking into

consideration both the raw error rate and the architecture level masking e�ect.

The e�ect of technology scaling on raw error rates for di�eren t type of circuits has been ex-

tensively studied. However, there has been no previous work examining the e�ect of scaling on

processorSER considering architectural derating e�ects. In this section, we apply SoftArch to

quantify the impact of technology scaling on the architecture level processorsoft error rate, taking

the architecture level masking e�ects and workload characteristics into consideration.

In our experiments, we scale the samedesign with the samenumber of transistors over four

44

Tech Freq Vdd O�-c hip Lat � (FIT/bit) FPU elog ic FXU elog ic IDU elog ic

180nm 1.1GHz 1.8 V 77 cycles 5:7 � 10� 4 1:45� 10� 22 1:06� 10� 22 7:61� 10� 23

130nm 1.35GHz 1.5 V 94 cycles 6:0 � 10� 4 9:96� 10� 23 7:34� 10� 23 5:25� 10� 23

90nm 1.65GHz 1.2 V 115 cycles 7:4 � 10� 4 5:97� 10� 23 4:40� 10� 23 3:15� 10� 23

65nm 2.0GHz 0.9 V 140 cycles 7:1 � 10� 4 3:26� 10� 23 2:40� 10� 23 1:73� 10� 23

Table 3.1 Scaling parameters for the sim ulated pro cessor.

technology generations ranging from 180nm to 65nm. We �nd that with scaling, the derating

factors for logic structures often decrease,the derating factors for storageelements remain roughly

unchanged,and the FIT for the full processorroughly follows the trend for the raw SER of storage

structures (i.e., the FIT rate increasesfrom 180nm to 90nm and decreasesfrom 90nm to 65nm.)

Pleasenote that this result is valid only when the transistor number is constant during the scaling

process.In reality, we expect the transistor count to increaseand the overall FIT rate per chip to

increase.

Scaling Metho dology

The parameters of the base processorwe simulate are the same as in Table 2.1. We study the

architecture level FIT rate for the modeledprocessorfor four technology generations,ranging from

180nm to 65nm. We assumethat there are no modi�cations to the processormicro-architectural

pipeline with scaling. E�ectiv ely, we scalethe samechip from 180nm to 65nm technologies.

Table 3.1 summarizesthe parameters that change with scaling. Although with ideal scaling,

the best base frequency scaling per generation should be about 43%, it is hard to achieve the

ideal frequency boosts without signi�cantly re-tuning all the circuit delay paths in the processor.

Therefore,weconservatively assume22%frequencyscalingper generation. Sinceeverything on chip

is scaled,we assumethat the on-chip storage structures such as register �les, instruction queues,

TLBs, and caches scale linearly with the transistors and their accesstimes in terms of processor

cycles stay the same. For the o�-c hip L3 cache, we assumethat the absoluteaccesstime stays

the sameand therefore, its accesstime in terms of processorcycles increasesabout 22% for each

generation.

Table 3.1 also gives the scaled values for the raw SER for storage structures (denoted as �)

and logic circuit (denoted as elogic). The basecase(180nm) parameters have been estimated in

45

�

�

�

�

�

�

�

�

�

�

���

��

�

���

���

���

���

���

���

���

���

���

���

	�	

	�	

�

�

���

���

���

���

�

�

�

�

�

�

�

���

���

���

���

���

���

���

���

���

���

���

���

�

�

�

�

�

�

�

�

�

�

�

�

���

��

�

60
55
50
45
40
35
30
25
20
15
10
5
0

 R
aw

 F
IT

 R
at

e
18

0n
m

13
0n

m
90

nm
65

nm

�

�

�

�

�

�

���

�

�

�

�

�

�

� �

� �

� �

!

!

!

" " #

$ $

$ $

$ $

%

%

%

& &

& &

& &

' '

' '

' '

((

))

* *

* *

* *

+ +

+ +

+ +

,

,

,

,

-

-

-./

0

0

0

1

1

1

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

3

3

3

3

3

3

3

4 4 5

6 6

6 6 7

7

8

8

8

8

8

8

8

9

9

9

9

9

9

9

:

:;

;

<

<=

=

>

>

>

>

>

>

>

>

>

?

?

?

?

?

?

?

?

?

@AB

B

BC

C

C

D D

D D

D D

D D

D D

D D

D D

D D

D D

E

E

E

E

E

E

E

E

E

F F G

H H

H H I

I

J J

J J

J J

J J

K

K

K

K

L L M

N N

N N

N N

O

O

O

P P

P P

P P

P P

Q Q

Q Q

Q Q

Q Q

R R

R R

S S

S S

T T

T T

U U

U U

V

V

V

V

V

W

W

W

W

W

X

XY

YZ

Z

Z

[

[

[

\ \

\ \

\ \

\ \

]

]

]

]

^ ^ _

` `

` `

` `

a

a

a

b

b

b

b

b

b

c

c

c

c

c

def

fg

g

h

h

h

h

h

i

i

i

i

i

jkl

lm

m

n n

n n

n n

n n

n n

n n

o

o

o

o

o

o

p p q

r r

r r

r r

s

s

s

t

t

t

t

t

t

t

u

u

u

u

u

u

vwx

xy

y

z z

z z {

{

| | }

~ ~ •

€

€

€

•

•‚

‚ƒ

ƒ„

„

…

…

†

†‡

‡̂‰Š

Š‹

‹

Œ Œ

Œ Œ

• •

• •

Ž Ž

• •

• •

• •

• •

‘ ‘

‘ ‘

‘ ‘

’ ’

’ ’

’ ’

’ ’

’ ’

’ ’

’ ’

“

“

“

“

“

“

“

” ” •

– –

– – —

—

˜ ˜

˜ ˜

˜ ˜

˜ ˜

˜ ˜

˜ ˜

˜ ˜

˜ ˜

™ ™

™ ™

™ ™

™ ™

™ ™

™ ™

™ ™

™ ™

š š

› ›

œ œ

œ œ

• •

• •

ž

ž

ž

ž

ž

ž

ž

ž

ž

Ÿ

Ÿ

Ÿ

Ÿ

Ÿ

Ÿ

Ÿ

Ÿ

Ÿ

 ¡¢

¢£

£

¤ ¤

¤ ¤

¤ ¤

¤ ¤

¤ ¤

¤ ¤

¤ ¤

¤ ¤

¤ ¤

¥ ¥

¥ ¥

¥ ¥

¥ ¥

¥ ¥

¥ ¥

¥ ¥

¥ ¥

¥ ¥

¦ ¦

¦ ¦

§ §

§ §

¨ ¨

¨ ¨

© ©

© ©

ª

ª«

«

¬ ¬

¬ ¬ ­

­

®

®̄

¯

25

20

15

10

5

0

 F
IT

 R
at

e

bz
ip2

cr
af

ty
gc

c
gz

ip
m

cf

pe
rlb

m
k

idu ibuf fpu fxu itlb dtlb iq reg

°

°

°

°

±

±

±

²³́

´

´

´

µ

µ

µ

µ

¶ ¶

¶ ¶

¶ ¶

¶ ¶

·

·

·

¸ ¸

¸ ¸ ¹

¹

º º

º º

º º

»

»

»

¼ ¼

¼ ¼

¼ ¼

¼ ¼

½ ½

½ ½

½ ½

½ ½

¾ ¾

¿ ¿

À À

À À

À À

À À

Á Á

Á Á

Á Á

Á Á

Â

Â

Â

Ã

Ã

Ã

Ä

ÄÅ

Å

Æ

Æ

Æ

Æ

Ç

Ç

Ç

Ç

È È

È È

É É

É É

Ê Ê

Ë Ë

Ì Ì

Ì Ì

Í Í

Í Í

Î

ÎÏ

ÏÐÑÒ

ÒÓ

Ó

Ô Ô

Ô Ô

Õ Õ

Õ Õ

Ö Ö

× ×

Ø Ø

Ø Ø

Ù Ù

Ù Ù

Ú Ú

Ú Ú

Û Û

Û Û

Ü Ü

Ý Ý
Þ Þ

Þ Þ

ß ß

ß ß

à

à

à

à

á

á

á

âãä

ä

ä

å

å

å

æ æ

æ æ

æ æ

ç

ç

ç

è è

è è é

é

ê ê

ê ê

ê ê

ë

ë

ë

ì

ì

ì

ì

í

í

í

îïð

ð

ð

ð

ñ

ñ

ñ

ñ

ò

ò

ò

ó

ó

ó

ôõö

ö

ö÷

÷

÷

ø

ø

ø

ù

ùúûü

ü

üý

ý

ý

þ þ

þ þ

þ þ

ÿ

ÿ

ÿ

��� �

���

���

���

�

�

�

���

���

���

�

�

�

��� �

	�	

	�	

	�	

�

�

�

�

�

�

��

�

�

�

�

�

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

�

�

�

�

�

�

�

�

�

�

�

�

���

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

!

!

!

"

"

"

#�#

#�#

#�#

#�#

#�#

#�#

#�#

$�$

$�$

$�$

$�$

$�$

$�$

$�$

%�%

&�&

'�'

'�'

'�'

'�'

(�(

(�(

(�(

(�(

)

)*

*

+

+,

,

-

-

-

.

.

.

/�/

/�/

0�0

0�0

1�1

2�2

3�3

3�3

3�3

4�4

4�4

4�4

5

5

5

6

6

789

9

9

9

9

:

:

:

:

:

;

;

;

<

<

=>

>

>

>

>

?

?

?

?

?

@�@

@�@

A�A

A�A B

B

C

C D

D

E

E

15

10

5

0

 F
IT

 R
at

e

am
m

p
ar

t
fa

ce
re

c

eq
ua

ke

m
es

a

m
gr

id

idu ibuf fpu fxu itlb dtlb iq reg

(a) (b) (c)

Figure 3.6 FIT rates (a) for raw errors, (b) with architecture masking for SPECin t
benchmarks, and (c) with architecture masking for SPECfp benchmarks.

Section 3.3. For storagestructures, we then scalethe raw SER for di�eren t technologiesusing the

scaling curve provided by Karnik et al. [18]. As shown in Table 3.1 the raw SER (�) of storage

elements increasesas technology scalesdown from 180nmto 90nm and then decreasesslightly from

90nm to 65nm. For logic structures, we usethe samemethodology as described in Section 3.3.3 to

determine the raw SER for each technology generation. The raw logic SER (elogic) decreaseswith

scaling. This is becauselogic error rate is dominated the SER by latches and the SER for latches

will decreasewith future technology scaling.

Below we report experimental results for 12 SPEC CPU2000 benchmarks including 6 integer

benchmarks and 6
oating point benchmarks.

Results

Our results are presented in Figures 3.6 and 3.7. Figure 3.6 shows the FIT rate for the processor.

Figure 3.6(a) shows the raw processorFIT rates which are calculated assumingthat each raw error

causesa program failure for the four technology generations. Figures 3.6(b) and (c) show the FIT

rates for our SPECint and SPECfp benchmarks respectively. Each group consistsof four bars which

are for four technology generationsstarting from 180nm to 65nm. Each bar is further divided to

show the contribution to the FIT rates from the di�eren t structures.

46

Figures 3.7 (a) and (b) show the architectural derating factors for each structure and the entire

processorfor the SPECint and SPECfp benchmarks respectively for the four technology generations.

In view of the inaccuraciesin our method of estimating the raw SER values(Table3.1), the focus

of the results presented here is not on absolute FIT rates which are almost certainly inaccurate.

Instead, the goal of the ensuinganalysisis to show the trends with scaling. We believe thesetrends

are reasonablyaccurate.

Our high level results are the following:

FIT rate scaling: The FIT rate of the whole processorincreasesas technology scalesfrom 180nm

to 90nm and decreasesslightly from 90nm to 65nm. The reasonis that the dominating sourceof

the FIT rate is the storagestructures. The logic FIT rate is insigni�can t comparedto the storage

element FIT rate. From 180nm to 90nm, the FIT rate of storagestructures increases.From 90nm

to 65nm, the FIT rate of storagestructures decreasesslightly.

Derating factor scaling: (1) The derating factor of logic structures (FPU, FXU, IDU) decreases

as technology scalesdown. (2) The derating factor of storageelements doesnot changemuch with

technology scalingand increasingmemory latency. This is the casefor both SPECint and SPECfp

applications.

Analysis

To help explain the results, we use a simple model to analyze the FIT rate and derating factor

scaling trends. As discussedin Section 3.4.2, the FIT rate for a given structure is determined

by three factors: raw FIT rate for the structure, base utilization of the structure, and e�ective

utilization of the structure. The derating factor is only determined by the latter two factors. The

raw FIT rate factor dependson the technology. For storagestructures, the baseutilization is the

fraction of valuesthat are alive. For logic structures, the baseutilization is the fraction of time the

structure is used. The e�ectiv e utilization of a structure is the fraction of values that are read or

computed from the structure that a�ect the program outcome.

The scaling of raw FIT rate has been summarized in Section 3.4.3. Next we will analyze the

scaling trend of the baseutilization factor. It can be expressedas Tbusy=Texec. Here Texec is the

total execution time of the program. For logic structures, Tbusy is the time the structure is used.

47

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

���

���

���

���

���

���

���

���

���

���

���

���

���

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

���

���

���

���

���

���

���

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

���

���

���

���

���

���

���

���

���

���

���

���

���

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

 �

 �

 �

 �

!

!"

"

#�#

#�#

#�#

#�#

$

$

$

$

%�%

%�%

%�%

%�%

%�%

%�%

%�%

%�%

%�%

%�%

%�%

%�%

%�%

%�%

%�%

%�%

%�%

%�%

%�%

%�%

%�%

%�%

%�%

%�%

%�%

%�%

&�&

&�&

&�&

&�&

&�&

&�&

&�&

&�&

&�&

&�&

&�&

&�&

&�&

&�&

&�&

&�&

&�&

&�&

&�&

&�&

&�&

&�&

&�&

&�&

&�&

&�&

'

'

'

'

'

'

'

'

'

'

'

'

(

(

(

(

(

(

(

(

(

(

(

(

)�)

)�)

)�)

)�)

)�)

)�)

)�)

)�)

)�)

)�)

)�)

)�)

)�)

)�)

�

�

�

�

�

�

�

�

�

�

�

�

�

�

+�+

+�+

+�+

+�+

+�+

+�+

+�+

+�+

+�+

+�+

+�+

+�+

+�+

+�+

+�+

+�+

+�+

+�+

+�+

+�+

+�+

+�+

+�+

+�+

,�,

,�,

,�,

,�,

,�,

,�,

,�,

,�,

,�,

,�,

,�,

,�,

,�,

,�,

,�,

,�,

,�,

,�,

,�,

,�,

,�,

,�,

,�,

-

-

-

-

-

-

-

-

-

.

.

.

.

.

.

.

.

.

/

/

/

/

/

/

/

/

/

/

0

0

0

0

0

0

0

0

0

0

1�1

1�1

1�1

1�1

1�1

1�1

1�1

1�1

1�1

1�1

1�1

1�1

1�1

1�1

1�1

1�1

1�1

1�1

1�1

1�1

1�1

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

4

4

4

4

4

4

4

4

5�5

5�5

5�5

5�5

5�5

5�5

5�5

5�5

5�5

6�6

6�6

6�6

6�6

6�6

6�6

6�6

6�6

6�6

7�7

7�7

7�7

7�7

7�7

7�7

7�7

7�7

7�7

7�7

7�7

7�7

7�7

7�7

7�7

7�7

8�8

8�8

8�8

8�8

8�8

8�8

8�8

8�8

8�8

8�8

8�8

8�8

8�8

8�8

8�8

8�8

9

9

9

9

9

9

9

9

9

9

9

:

:

:

:

:

:

:

:

:

:

:

;�;

;�;

;�;

;�;

;�;

;�;

;�;

;�;

<

<

<

<

<

<

<

<

=�=

=�=

=�=

>�>

>�> ?

?

?

@

@

@

A

A

A

B

B

B

80%

70%

60%

50%

40%

30%

20%

10%

0

 D
er

at
in

g
F

ac
to

r

7
20

42
19

28
0

21

bzip crafty gap gcc gzip mcf perlbmk vpr twolf AVG

chipfpufxuitlbdtlbiqreg

CD
EFE G HI J

JK

K

LFL

LFL

LFL

LFL

LFL

LFL

LFL

LFL

LFL

M

M

M

M

M

M

M

M

M

N

N

N

N

N

N

N

N

N

O

O

O

O

O

O

O

O

O

PFP

PFP

PFP

PFP

PFP

PFP

PFP

PFP

PFP

PFP

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

R

R

R

R

R

R

R

R

R

S

S

S

S

S

S

S

S

S

T

T

T

T

U

U

U

U

VFV

VFV

VFV

W

W

W

XFX

XFX

XFX

XFX

YFY

YFY

YFY

YFY

Z

Z

Z

[

[

[

\F\

]F] _̂

`F` abFb

cFc d

de

e

fFf

fFf g

g

h

hi

i

jFj

jFj k

k

lm nopFp q rs tFt

tFt

tFt

tFt

tFt

tFt

tFt

tFt

tFt

tFt

tFt

u

u

u

u

u

u

u

u

u

u

v

v

v

v

v

v

v

v

v

v

w

w

w

w

w

w

w

w

w

w

x

x

x

x

x

x

x

x

x

x

x

x

y

y

y

y

y

y

y

y

y

y

y

y

zFz

zFz

zFz

zFz

zFz

zFz

zFz

zFz

zFz

zFz

zFz

zFz

zFz

{

{

{

{

{

{

{

{

{

{

{

{

{

|

|}

} ~• €

• ‚ƒ „F„

„F„

„F„

…

…

…

†

†

†

‡

‡

‡

ˆ

ˆ

ˆ

‰

‰

‰

ŠFŠ

ŠFŠ

ŠFŠ

‹

‹

‹

Œ

Œ•

•

ŽFŽ

ŽFŽ

•F•

•F• •F•

•F•

‘F‘

‘F‘ ’

’

“

“

70%
60%
50%
40%
30%
20%
10%

0

 D
er

at
in

g
F

ac
to

r

reg iq dtlb itlb fxu fpu ibuf idu chip

perlbmkperlbmkperlbmkperlbmkmcfmcfmcfmcfgzipgzipgzipgzip

(a) SPEC int

”•”

”•”

”•”

”•”

”•”

”•”

”•”

”•”

”•”

”•”

”•”

–

–

–

–

–

–

–

–

–

–

–

—

—

—

—

—

˜

˜

˜

˜

™

™

™

™

™

™

™

™

™

™

™

™

š

š

š

š

š

š

š

š

š

š

š

š

›•›

›•›

›•›

›•›

›•›

›•›

œ

œ

œ

œ

œ

•ž Ÿ

Ÿ

Ÿ

Ÿ

¡•¡

¡•¡

¡•¡

¡•¡

¡•¡

¡•¡

¡•¡

¡•¡

¡•¡

¡•¡

¡•¡

¢•¢

¢•¢

¢•¢

¢•¢

¢•¢

¢•¢

¢•¢

¢•¢

¢•¢

¢•¢

¢•¢

£¤ ¥

¥

¥

¥

¥

¥

¥

¥

¥

¦

¦

¦

¦

¦

¦

¦

¦

¦

§•§

§•§

§•§

§•§

§•§

§•§

§•§

§•§

§•§

§•§

§•§

§•§

¨•¨

¨•¨

¨•¨

¨•¨

¨•¨

¨•¨

¨•¨

¨•¨

¨•¨

¨•¨

¨•¨

¨•¨

©

©

©

©

©

©

©

©

©

©

ª

ª

ª

ª

ª

ª

ª

ª

ª

ª

«•«

«•«

«•«

«•«

«•«

«•«

«•«

«•«

«•«

«•«

«•«

¬

¬

¬

¬

¬

¬

¬

¬

¬

¬

¬

­•­

­•­

­•­

­•­

­•­

­•­

­•­

­•­

­•­

­•­

®•®

®•®

®•®

®•®

®•®

®•®

®•®

®•®

®•®

®•®

¯

¯

¯

¯

¯

¯

¯

¯

¯

¯

°

°

°

°

°

°

°

°

°

°

±•±

±•±

±•±

±•±

±•±

±•±

±•±

±•±

±•±

±•±

±•±

²

²

²

²

²

²

²

²

²

²

³•³

³•³

³•³

³•³

³•³

³•³

³•³

³•³

³•³

³•³

´

´

´

´

´

´

´

´

´

´

µ¶ ·•·

·•·

·•·

·•·

·•·

·•·

¸

¸

¸

¸

¸

¸

¹•¹

¹•¹

¹•¹

¹•¹

º

º

º

º

»

»¼

¼

½•½

½•½

½•½

½•½

½•½

½•½

½•½

¾•¾

¾•¾

¾•¾

¾•¾

¾•¾

¾•¾

¾•¾

¿•¿

¿•¿

¿•¿

¿•¿

¿•¿

¿•¿

¿•¿

¿•¿

¿•¿

¿•¿

¿•¿

¿•¿

¿•¿

¿•¿

¿•¿

¿•¿

¿•¿

¿•¿

¿•¿

¿•¿

¿•¿

¿•¿

¿•¿

¿•¿

À

À

À

À

À

À

À

À

À

À

À

À

À

À

À

À

À

À

À

À

À

À

À

À

Á

Á

Á

Á

Á

Á

Á

Á

Á

Á

Á

Á

Á

Á

Á

Á

Á

Â

Â

Â

Â

Â

Â

Â

Â

Â

Â

Â

Â

Â

Â

Â

Â

Â

Ã

Ã

Ã

Ã

Ã

Ã

Ã

Ã

Ã

Ã

Ã

Ã

Ã

Ã

Ã

Ä

Ä

Ä

Ä

Ä

Ä

Ä

Ä

Ä

Ä

Ä

Ä

Ä

Ä

Ä

Å•Å

Å•Å

Å•Å

Å•Å

Å•Å

Å•Å

Æ•Æ

Æ•Æ

Æ•Æ

Æ•Æ

Æ•Æ

Æ•Æ

ÇÈ É

É

É

É

É

É

É

É

É

É

É

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ë•Ë

Ë•Ë

Ë•Ë

Ë•Ë

Ë•Ë

Ë•Ë

Ë•Ë

Ë•Ë

Ë•Ë

Ë•Ë

Ë•Ë

Ë•Ë

Ë•Ë

Ë•Ë

Ë•Ë

Ë•Ë

Ë•Ë

Ë•Ë

Ë•Ë

Ë•Ë

Ë•Ë

Ë•Ë

Ë•Ë

Ë•Ë

Ë•Ë

Ë•Ë

Ì•Ì

Ì•Ì

Ì•Ì

Ì•Ì

Ì•Ì

Ì•Ì

Ì•Ì

Ì•Ì

Ì•Ì

Ì•Ì

Ì•Ì

Ì•Ì

Ì•Ì

Ì•Ì

Ì•Ì

Ì•Ì

Ì•Ì

Ì•Ì

Ì•Ì

Ì•Ì

Ì•Ì

Ì•Ì

Ì•Ì

Ì•Ì

Ì•Ì

Í

Í

Í

Í

Í

Í

Í

Í

Í

Î

Î

Î

Î

Î

Î

Î

Î

Î

Ï•Ï

Ï•Ï

Ï•Ï

Ï•Ï

Ï•Ï

Ï•Ï

Ï•Ï

Ï•Ï

Ï•Ï

Ï•Ï

Ï•Ï

Ï•Ï

Ï•Ï

Ð•Ð

Ð•Ð

Ð•Ð

Ð•Ð

Ð•Ð

Ð•Ð

Ð•Ð

Ð•Ð

Ð•Ð

Ð•Ð

Ð•Ð

Ð•Ð

Ð•Ð

Ñ•Ñ

Ñ•Ñ

Ñ•Ñ

Ñ•Ñ

Ñ•Ñ

Ñ•Ñ

Ñ•Ñ

Ò•Ò

Ò•Ò

Ò•Ò

Ò•Ò

Ò•Ò

Ò•Ò

Ò•Ò

Ó

Ó

Ó

Ó

Ô

Ô

Ô

Ô

Õ

Õ

Õ

Õ

Õ

Õ

Õ

Ö

Ö

Ö

Ö

Ö

Ö

Ö

×•×

×•×

×•×

×•×

×•×

×•×

Ø•Ø

Ø•Ø

Ø•Ø

Ø•Ø

Ø•Ø

Ø•Ø

Ù

Ù

Ù

Ù

Ù

Ù

Ú

Ú

Ú

Ú

Ú

Ú

Û•Û

Û•Û

Û•Û

Û•Û

Û•Û

Û•Û

Û•Û

Û•Û

Ü

Ü

Ü

Ü

Ü

Ü

Ü

Ü

Ý•Ý

Ý•Ý

Ý•Ý

Ý•Ý

Ý•Ý

Ý•Ý

Ý•Ý

Ý•Ý

Ý•Ý

Ý•Ý

Ý•Ý

Ý•Ý

Þ

Þ

Þ

Þ

Þ

Þ

Þ

Þ

Þ

Þ

Þ

ß

ß

ß

ß

ß

à

à

à

à

à

á•á

á•á

á•á

á•á

á•á

á•á

á•á

á•á

á•á

á•á

â

â

â

â

â

â

â

â

â

â

ã

ãä

ä

å

åæ

æ

ç•ç

ç•ç

è•è

è•è

40%

30%

20%

10%

0

 D
er

at
in

g
F

ac
to

r

13
7

14
10

6
4

1

ammp art applu apsi facerec equake lucas mesa mgrid sixtrack swim wupwise AVG

corefpufxuitlbdtlbiqreg

é

é

é

é

é

é

ê

ê

ê

ê

ê

ëFë

ëFë

ëFë

ëFë

ëFë

ëFë

ìFì

ìFì

ìFì

ìFì

ìFì

ìFì

í

í

í

í

í

í

î

î

î

î

î

î

ï

ï

ï

ï

ï

ð

ð

ð

ð

ð

ñFñ

ñFñ

ñFñ

ñFñ

òFò

òFò

òFò

òFò

ó

ó

ó

ó

ô

ô

ô

ô

õFõ

õFõ

õFõ

õFõ

öFö

öFö

öFö

öFö

÷

÷

÷

÷

÷

ø

ø

ø

ø

ø

ù

ù

ù

ù

ù

ù

ù

ù

ù

ù

ù

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ûFû

ûFû

ûFû

ûFû

ûFû

ûFû

ûFû

ûFû

ûFû

ûFû

ûFû

üFü

üFü

üFü

üFü

üFü

üFü

üFü

üFü

üFü

üFü

üFü

ýFý

ýFý

ýFý

ýFý

ýFý

ýFý

ýFý

ýFý

ýFý

ýFý

ýFý

ýFý

þFþ

þFþ

þFþ

þFþ

þFþ

þFþ

þFþ

þFþ

þFþ

þFþ

þFþ

þFþ

ÿ

ÿ

ÿ

ÿ

ÿ

ÿ

ÿ

ÿ

ÿ

ÿ

ÿ

ÿ

�

�

�

�

�

�

�

�

�

�

�

�

���

���

���

���

���

���

���

���

���

���

���

���

���

���

�

�

�

�

�

�

�

�

�

�

�

�

�

�

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

	

	

	

	

	

	

	

�

�

�

�

�

�

�

�

�

���

���

���

���

���

���

���

���

���

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

�

��

�

�

��

�

���

���

���

��� �

�

�

�

�

�

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

 �

 �

 �

 �

 �

 �

 �

 �

 �

 �

 �

 �

 �

 �

 �

!�!

!�!

!�!

!�!

!�!

!�!

!�!

!�!

!�!

!�!

!�!

!�!

!�!

!�!

!�!

"

"

"

"

"

"

"

"

#

#

#

#

#

#

#

#

$

$

$

$

$

$

$

$

$

%

%

%

%

%

%

%

%

%

&

&

&

&

&

&

&

&

'

'

'

'

'

'

'

'

(

(

(

(

(

(

(

(

)

)

)

)

)

)

)

)

�

�

�

�

�

�

�

�

+

+

+

+

+

+

+

+

,

,

,

,

,

,

,

,

-

-

-

-

-

-

-

-

.

.

.

.

.

.

.

.

.

/

/

/

/

/

/

/

/

/

0�0

0�0

0�0

0�0

0�0

0�0

0�0

0�0

1�1

1�1

1�1

1�1

1�1

1�1

1�1

1�1

2

23

3

4�4

4�4 5

5

6�6

6�6

7�7

7�7 8

8

9

9

60%
50%
40%
30%
20%
10%

0

 D
er

at
in

g
F

ac
to

r

reg iq dtlb itlb fxu fpu ibuf idu chip

mgirdmgridmgridmgridmesamesamesamesaequakeequakeequakeequake

(b) SPEC fp

Figure 3.7 Arc hitectural derating factor for each structure (a) for SPECin t and (b)
for SPECfp benchmarks. Note that the scales on the t wo graphs are di�eren t. For
each application, the four bars in a graph represen t the four technology generations,
going from 180nm to 65nm.

48

For storage elements, Tbusy is the time that the element holds live values. This is equivalent to

Cyclesbusy=Cyclesexec. Here Cyclesexec is the number of cyclesfor program execution. Cyclesbusy

for a logic structure is the number of cyclesthe structure is busy. Cyclesbusy for a storageelement

is the number of cyclesthe element has live data.

From 180nm to 65nm, the processorfrequency increases22% every generation. If there is no

memory access,the value of Cyclesexec would stay the same. But for real applications, Cyclesexec

typically increasesbecausethe increasing memory latency would delay the program execution.

Figure 3.8 shows the increasein number of cycles for each application when the memory latency

increasesfrom 77 to 140 cycles. From Figure 3.8, the execution time of most integer applications

is not very sensitive to the memory latency (except mcf), while the execution time of most
oating

point applications is more sensitive.

The scaling of the Cyclesbusy value is more complex. Next, we will discussthe scaling for logic

and storagestructures separately.

For logic structures (FPU, FXU, IDU), although the processorfrequencychanges,the number of

committed instructions and the instruction sequencestays the same. Thus the number of operations

that are critical to the outcome of the program will not change. For example, for each technology

generation, there would be the same number of FPU operations and FXU operations that are

critical to the program outcome. Thus, the value of Cyclesbusy would be the samefor logic. As a

result of the increaseof Cyclesexec, the derating factor of logic would decrease.

For storageelements (reg, IQ, TLB, IBUF), Cyclesbusy is the number of cyclesdata is live in the

element. It tends to increasewith technology scaling becausethe memory latency gets larger from

180nmto 65nm. According to our experiments, the rate of increaseof Cyclesbusy and Cyclesexec is

similar. Therefore, the increasesroughly cancelout with each other and the derating factor stays

the same.

Scaling summary

Based on on the scaling trend of the above factors, we explain the scaling trend of the derating

factor and the FIT rate as follows:

Scaling trend of the derating factor: The derating factor depends on the utilization factor.

49

�

�

�

�

�

�

�

�

�

�

�

�

�

�

���

���

���

���

���

�

�

�

�

�

�

�

�

�

�

�

�

�

	�	

	�	

	�	

	�	

	�	

	�	

	�	

	�	

	�	

	�	

	�	

	�	

	�	

	�	

	�	

	�	

	�	

	�	

	�	

	�	

	�	

	�	

	�	

	�	

	�	

	�	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

���

���

���

���

�

�

�

�

�

�

�

�

�

�

�

�

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

���

���

���

���

���

���

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

���

���

���

���

���

���

�

�

�

�

�

�

�

��

�

 N
um

be
r

of
 C

yc
le

s

bz
ip2

cr
af

ty
gc

c
gz

ip
m

cf

pe
rlb

m
k

am
m

p
ar

t
fa

ce
re

c

eq
ua

ke

m
es

a

m
gr

id

65nm_2.0GHz90nm_1.65GHz130nm_1.35GHz180nm_1.1GHz

Figure 3.8 Cyclesexec for each application for di�eren t frequencies (tec hnologies)

As the technology scalesdown from 180nm to 65nm, the derating factor of the storage elements

stays roughly the same,while for logic, the derating factor gets smaller.

Scaling trend of the FIT rate: The processorFIT rate dependson the raw FIT rates and the

derating factors. For the processorand the technologies we modeled, storage elements FIT rate

dominatesand the logic FIT rate is insiginifant. Sincethe derating factor for storageelements does

not change, the FIT rate of the whole processorfollows the sametrend as the raw FIT rate. It

increasesfrom 180nm to 90nm and decreasesslightly from 90nm to 65nm.

3.5 Summary

In this section, we have presented SoftArch, a model and tool for studying and analyzing archi-

tecture level soft error behavior of modern processors.SoftArch can be integrated into high-level

performance simulators and used to (1) determine the architecture level soft error MTTF of a

processorrunning a speci�ed workload, (2) identify the soft error contributions from various mi-

croarchitectural structures, and (3) study the soft error contributions of di�eren t phasesof an

application. We �rst show that SoftArch doesnot needto make the assumptionsthat AVF+SOFR

does,thus doesnot exhibit the discrepanciesshown by AVF+SOFR. Then we demonstrate the use

of SoftArch by applying it to a modern out-of-order processorrunning SPEC2000benchmarks. We

useSoftArch to study workload behavior and show signi�cant architecture level derating and large

variations of soft error failure rate acrossworkloads, processorstructures, and within the same

workload. Finally, as another application, we apply SoftArch to quantify the impact of technology

scaling on the architecture level processorsoft error rate, taking the architecture level masking

e�ects and workload characteristics into consideration.

50

Chapter 4

Online estimation of the AVF

4.1 In tro duction

As wehavementioned in Chapter 2, the AVF of a structure is de�ned asthe probabilit y that a visible

error (failure) will occur, given a raw error event in the structure. AVF is a simple abstraction for

the amount of architecture level masking in the processorand can be usedto estimate the MTTF.

We have shown in Chapter 2 that although the AVF method has strong assumptions, for a large

classof systemsand workloads, including thosethat will bestudied in this section,the AVF method

is accurate and AVF value of a structure directly determines its mean time to failure (MTTF) [5]

{ the smaller the AVF, the larger the MTTF and vice versa. It is therefore important to be able

to estimate the AVF in the designstageto meet the reliabilit y goal of the system.

Many soft error protection schemeshave signi�cant space,performance, and/or energy over-

heads;e.g., ECC, redundant units, etc. Designing a processorwithout accurate knowledgeof the

AVF risks over- or under-design. An AVF-oblivious design must consider the worst case,and so

could incur unnecessaryoverhead. Conversely, a design that under-estimatesthe AVF would not

meet the desiredreliabilit y goal.

Furthermore, the results in Section 3.4.2 show signi�cant intra-application variation in the

AVF, which motivate the need to estimate AVF at runtime as well. Depending on the workload,

the processormay be more or less vulnerable at di�eren t times. This observation creates new

opportunities to reduce the soft error protection overhead while meeting the MTTF goal. If we

are able to estimate AVF in real-time accurately, we can adjust the protection scheme basedon

the current AVF value. We can have more protection during highly vulnerable periods and less

51

protection during less vulnerable periods, minimizing performance and/or energy overhead. For

example, Soundararajan et al. [21] proposeto use the AVF input to control instruction throttling

and selective redundancy schemes. They show that using AVF-controlled selective redundancy

scheme, the AVF of the re-order bu�er can often be reduced by more than half (which means

that the MTTF more than doubles) with a relative small performancedegradation. In this case,

a real-time online AVF estimation is a must since a slow o�ine method will not be able to give

timely input to the control logic.

There are someprevious studies that provides online AVF estimation; however, they are either

dependent on extensive o�ine workload analysis [22] or targeted to a single structure [21] (see

Section5.2). In general,estimating AVF online is a challenging task sincethe complexcomputation

usedin o�ine analysis is not feasiblein real-time. The AVF for many structures dependson many

factors that are hard to measureand observe. For example, the AVF of the
oating point unit

dependsnot only on its utilization, but also on variablessuch as the percentage of deadvaluesand

speculative instructions. For storagestructures, AVF estimation is even more di�cult. It may be

intuitiv e to think that the number of reads/writes to a storage structure may be correlated with

the AVF of this structure. However, it is easyto construct two read/write sequencesthat have the

samenumber of readsand writes, but very di�eren t AVF values.

In this dissertation, we describe a general online method to estimate AVF for a variety of

structures (including logic and storagestructures) without the needfor extensive o�ine workload

analysis. Our approach is motivated by o�ine (complex) AVF estimation approaches. Speci�cally ,

a commonmethod for o�ine estimation is to inject an error in a low-level simulator and determine

whether it results in program failure. Many such injections areperformed,and the AVF is calculated

asthe fraction of such injections that lead to failure. Our online estimation method e�ectiv ely seeks

to perform error injection while the program is running in production mode and usesthe program

execution to determine whether the error will result in failure. Of course,we cannot actually inject

an error into a production run. We therefore introduce some additional error bits through the

processorpipeline that can emulate the generation and propagation of an error.

To estimate the AVF of a structure, we emulate the injection of an error in the structure by

setting its error bit to 1. An instruction touching this structure then propagatesthe injected error

52

to its destination and so on. In this way, an error is propagated by the executing program. Our

algorithm waits a �xed number of cycles to determine if the error could (potentially) result in

program failure. Multiple such injections are done and as with o�ine error injection, the fraction

that is determined to potentially result in failure provides an estimate of the AVF of the structure.

Our method dependson two key parametersto get an accurateestimate of AVF: (1) how many

times to inject an error, and (2) after injecting an error, how long to wait to seeif the error will

causea program failure. Setting theseparameters too high can result in an estimation procedure

that lasts too long and doesnot adequately track the AVF changesin the program. Setting them

too low can result in lessaccurate estimates. The parametersshould be set basedon the required

estimation precision. The neededaccuracyof the AVF estimation dependson how the AVF value

will be used. For example,Walcott et al. [22] proposeto usethe AVF estimation to enable/disable

the redundant multithreading protection scheme. In this case,the AVF is used to make a binary

decision. As long as the AVF estimation is below or above a certain threshold, the decisionwill be

the same. Thus, there is no needfor a very high precisionestimation. However, for the instruction

throttling scheme proposedby Soundararajan et al., since the throttling amount is a continuous

variable that can take any value between 0 and 100%, even a small error in the AVF will cause

the throttling amount to change. The required AVF precision in this caseis higher. Our AVF

estimation schemeis
exible and can be con�gured basedon the neededprecision. In Section 4.2,

we will show how we useanalytical and experimental methods to determine thesetwo parameters.

To evaluate our method, we implement it in a simulator and perform experiments to estimate

the AVF for both logic and storagestructures (integer ALU, FPU, instruction queue,and register

�le) for 100 to 200 intervals in each of eleven SPEC benchmarks. In order to validate our results,

we compare them with the results SoftArch, which is a more detailed (but complex) o�ine AVF

estimation method (see Section 5.2). The results show that our method generatesvery similar

results to SoftArch. The absolute di�erence in AVF estimated by the two methods rarely exceeds

0.08 acrossall application intervals and structures studied. The mean absolute di�erence is less

than 0.05 for any given application and structure. Further, we also comparewith an intuitiv e and

simple AVF estimation method that usesthe utilization of logic structures as a proxy for their

AVF (an analogousextension of such a method for storagestructures is not clear). We show that

53

compared to our method, this simple method shows signi�cant inaccuraciesrelative to SoftArch,

providing evidencefor the need for the hardware support required by our method. Overall, our

results show that our novel method for online estimation of AVF is both accurate and robust in a

variety of situations.

4.2 AVF estimation algorithm

This section describes our online AVF estimation algorithm. We �rst give an overview of the

algorithm and then describe the details, including the hardware support needed,overhead, and

limitations.

4.2.1 Overview of the algorithm

The main ideaof the algorithm is to associate error bits with structures, inject an error by setting an

error bit to 1, usethe program execution to propagatethe error, determine if the error (potentially)

causesfailure, and repeat another injection. The percentage of injections that causefailure is the

estimated AVF. We �rst illustrate the working of the algorithm with an example small program

segment below.

1. r1 + r2 = r3

2. r1 - r2 = r4

3. r2 + r4 = r3

...

4. r3 + r4 = r5

5. store r5 to address r4

...

6. load r5 from address r4

...

7. r5 + r6 = r7

8. Branch if r7 = 0

54

First, let us assumethat we want to measurethe AVF of the register �le. Supposeat some

cycle after completing line 1 but beforeexecuting line 3, we inject an error in register r3 by setting

its error bit to 1. When line 3 is executed, the value of r3 is overwritten. Thus, its error bit is

overwritten aswell by an \or" of r2 's and r4 's error bits. Sinceneither of thosesourceregistershas

an error, r3 no longer hasan error, and so the injected error bit hasdisappeared. After waiting for

a pre-determined number of cycles,say M , we seeno processorfailure. This example in particular

shows how our scheme correctly handles dead values. Next, assumethat at some cycle before

executing line 4, we inject an error into r4 . This error bit will propagate to the result register r5 .

Next we seea store writing an erroneousvalue (r5). As discussedlater, we assumeerrors in retiring

stores can causeprogram failure; therefore, when that store retires, we update a failure counter.

So far, we have injected two errors and one of them causesprogram failure. If we calculate AVF

at this time, it would be 50%.

Next, let us examine how our scheme measuresthe AVF for a functional unit like the integer

ALU. Supposeat the cycle when the load instruction at line 6 is executed,we inject an error into

the ALU by setting its error bit. Since the ALU is not used during that cycle, the error bit will

not propagate to other structures. Thus, the error is masked. Next, assumewe inject an error into

the ALU at the cycle when line 7 is executed. The ALU is usedduring the cycle to calculate r7 .

Thus, by our approach, the injected error propagates into r7 . Now r7 has its error bit set to 1

which later propagatesto the branch instruction. When instruction 8 is executed, we note that

it is an erroneousbranch. As discussednext, we assumeerroneousbranchescan potentially cause

program failure and update a failure counter when this branch hits retirement.

Our algorithm tracks only one error at a time; injecting multiple errors simultaneously will

make the algorithm too complex for at least two reasons. First, di�eren t errors could merge and

this could obscurethe true nature of the structure's vulnerabilit y information. For example,when

two valuesx1, x2 are addedup together, two separateerrors in x1 and in x2 could combine into one

new error and the original error information is lost. Second,one error could propagate into several

valuesand they might all lead to program failures. We should count them as just one failure since

they are all causedby the sameerror source. Tracking such information requirescomplexhardware

and logic. Thus, we only inject one error at a time and clear all current errors before injecting the

55

next error.

Algorithm 1 Algorithm to estimate AVF for a structure
1: Set the counters inj ectionCount = 0 and f ail ur eCount = 0
2: while inj ectionCount < N (N is a predetermined threshold) do
3: Inject an error into the structure by setting its error bit to be 1. For a storagestructure that

contains many entries, randomly chooseone to inject an error.
4: For the next M cycles (M is predetermined), propagate the error bits according to the

execution. If a bit propagatesto certain prede�ned failure points, set the processorfailure
bit.

5: If the processorfailure bit is set, f ail ur eCount = f ail ur eCount + 1.
6: Clear all error bits in the processor.
7: inj ectionCount = inj ectionCount + 1.
8: end while
9: AVF = f ail ur eCount

inj ectionC ount

The full algorithm is summarized as Algorithm 1 and subsequent sectionselaborate on the

details. We �rst discussthe caseswhere we assumethe injected error results in program error.

Then we discussthe two predetermined variables N and M that are used to control how many

times to inject errors and how long to wait after each error injection (to determine potential failure)

respectively. We then discussthe hardware support required and the other overheads,and �nally

the limitations of our method.

4.2.2 Determining poten tial failure

In reality, an error causesprogram failure only if it propagatesto the program output. Unfortu-

nately, similar to SoftArch, we cannot perform this ideal assessment of failure for two reasons.First,

waiting for propagation to the output could take too long for our technique. That is, it would limit

the number of error injections we could monitor in a reasonableamount of time. Second,sinceour

method doesnot disturb the actual program execution,any changesthat would occur in the control

o w of the program due to the injected errors are not seen. For these reasons,we conservatively

consideran error to potentially causefailure if it propagatesto the somepre-de�ned failure points.

In this study, we have usethe samefailure points as we have de�ned in Section 3.3.5.

56

4.2.3 Determining N { the number of error injection samples needed

In this section, we show that Algorithm 1 gives an unbiased estimation of the AVF and, more

importantly, we derive an equation to determine the number of samplesneededto get an accurate

estimation.

Algorithm 1 giv es an unbiased estimator.

An error injected in a structure is either masked or not masked with probabilit y AVF and 1-

AVF respectively. We introduce a random variable X to model this process:X = 1 if the error is

not masked and X = 0 if the error is masked. X has the following probabilit y massfunction:

Pr (X = 1) = AV F; Pr (X = 0) = 1 � AV F

Our algorithm seeksto estimate AVF which is the expectation of X or E(X). It does this by

determining the outcome of N error injections or by generating N samplesof X , denoted X 1, X 2,

..., X N . The algorithm estimatesAVF as the mean of thesesamplesdenoted �X = X 1+ X 2+ :::+ X N
N .

If the N samplesare independent and identically distributed (i.i.d.), then it can be shown using

simple probabilit y theory that �X is an unbiasedestimator for E(X) sinceE(�X) = E(X) [11].

Independenceof the samplescan be ensuredusing random sampling; i.e., by using a random

number generatorto determine the error injection time. Many hardwarerandom number generators

are very complex. There are somesimpler pseudo-randomnumber generatorssuch as the linear

feedback shift register(LFSR) [23]. LFSR can generate a pseudo-randomnumber in between 0

and 2n . In our case,if we need a random number between 0 and any m, we will still need some

more hardware to transform the original random number. In our experiments, we injected errors

at �xed length intervals. Although we expect that small time-scale variations in the workload

behavior will e�ectiv ely introduce enough randomization, this is an approximation and potential

sourceof inaccuracy in our estimation. In the following, we assumethat the samplesare identically

distributed for simplicit y, but relax this assumption at the end of the section.

Determining N for an accurate estimation.

To ensurethat �X is an accurateenoughestimator of AVF, we analyzeand bound the standard

deviation of �X , denoted � �X , as follows. It is well-known that the standard deviation � �X = � Xp
N

if

57

Figure 4.1 The num ber of samples N needed for di�eren t values of AVF and estimation
precision of � �X .

all X i are i.i.d. [11]. Thus, we can �x the number of samples,N , depending on the desiredvalue of

� �X (i.e., the desiredaccuracyof the AVF estimate). Basedon the above equation, we have

N =
� 2

X

� 2
�X

(4.1)

From the distribution of X , we know that � X =
p

AV F (1 � AV F), where AVF 2 [0; 1]. Thus,

we can plot the desired value of N as a function of the AVF, given a desired precision (standard

deviation) of the estimator. Figure 4.1 shows such plots for di�eren t valuesof � �X . In practice, the

AVF value is unknown before the estimation, so we cannot directly use the plots to determine N .

Instead, we note that the maximum possiblevalue of � X is 0.5 corresponding to an AVF of 0.5. We

substitute this value in equation 4.1 to derive a conservative upper bound for N . For example, for

the estimation standard deviation to be lessthan 0.01, we needN = 0:52=0:012 = 2500 samples.

Similarly, for � �X < 0:02, we need0:52=0:022 = 625 samples. In general,N can be chosenbasedon

the neededprecision. In this work, we chooseN = 1000sincewe empirically �nd it to be a good

balancebetweenthe estimation precision and the simulation time.

Storage structures with multiple entries.

So far, our analysis of the AVF estimation of a component implicitly treats the component

as a single entit y. For a storage structure that contains many entries, we can view each entry as

a (sub-)component and sample each entry. Assuming the structure has K entries, we de�ne one

random variable for each of the K entries and denote them as X i , i in 1, 2,...K . The AVF of the

structure is
P K

i =1
E (X i)

K .

58

Suppose we sample the entire structure N times. Ideally, for each sample, we would like

to choose the entry to sample using a random number generator; however, that might be very

expensive in hardware. As an approximation, we chooseto samplethe di�eren t entries in a round-

robin fashion, resulting in N=K samplesfor each entry or each X i . Our AVF estimator, �X , is the

averageof theseN samples.This is an unbiasedestimator for the AVF of the structure sinceE(�X)

is the AVF.

Assuming the samplesare independent and that all samplesfor an entry are i.i.d., we can show

that [11]

� �X =

r
� 2

X 1 + � 2
X 2 + ::+ � 2

X K

N � K .

In this formula, if we conservatively assumethat all the � X i are the maximum value of 0.5, it

follows that � �X < 0:5=
p

N . Thus, even in this case,the bound for N is the sameas for the single

structure.

Relaxing the iden tical distribution assumption.

Above we also assumethat all the samplesare identically distributed. However, we know that

workload behavior may change signi�cantly over long intervals of time. If the estimation interval

includessuch large-scalechanges,then we can think of the interval as consistingof multiple phases

(each with its own AVF) and the AVF for the entire estimation interval to be the averageAVF

acrossall the phases.

Now the expectation of our estimation becomesE(�X) = E(
P N

i =1
X i

N) = 1
N

P N
i =1 E(X i), where

E(X i) may be di�eren t for di�eren t i . If our samplesare spreadevenly over the entire estimation

interval, then it follows that E(�X) is the AVF of the entire estimation interval. To achieve even

sampling, we inject a new error every �xed time interval M over the entire estimation interval.

The standard deviation of the estimation now is � �X = 1
N

q
� 2

X 1
+ � 2

X 2
+ :: + � 2

X N
. � X i may

be di�eren t for di�eren t i . By conservatively assumingthat � X i takes its maximum value, � �X <

0:5=
p

N . This is exactly the sameequation as with the i.i.d. assumption.

4.2.4 Determining M { the in terv al between successive error injections

Each time we inject an error, we needto wait to seeif it can causeprocessorfailure. The interval

M that we need to wait is an important parameter in our algorithm. If we wait too long, it will

59

(a) register �le (b) FXU

Figure 4.2 The cum ulativ e distribution for the time tak en by an error to propagate to
poin ts of poten tial failure (de�ned in Section 4.2.2) for bzip2 .

take a long time for us to have a reasonableestimate for AVF. However, if the wait time is too

short, a potentially unmasked error might not have propagated as a failure yet. Thus, we needto

chooseM so that it is large enough that most of the unmasked errors propagate as a failure (as

de�ned above) during that period.

We empirically determine the appropriate injection interval length M using the error propaga-

tion time distribution in the processor. We inject errors into each structure of the processorand

measurethe time it takes for the errors to propagate to our prede�ned failure points. Figure 4.2

shows the cumulativ e distribution of these propagation times for the register �le and FXU units

for application bzip2.

Depending on the various latency parametersof the modeled processorand the workload char-

acteristics, the distribution curveswill change. For example, for the issuequeue,an error injected

into one of the entries may, in the caseof a long latency cache miss, remain "liv e" for a duration

that is at least as long as the worst-casemiss latency in the system. Di�eren t structures may also

have di�eren t distribution curves. For example,we can seethat the register �le and the FXU have

di�eren t distribution curvesin Figure 4.2. Thus, the optimal choiceof M dependson the structure,

workload, and processor.Estimating the optimal M is therefore a complex process.

For our simulations, we chooseM to be conservative so that the value covers all the workloads

and the structures we study here, namely register �le, instruction queue,FXU, and FPU. Based

on the distributions observed for these structures, we choose M = 1000. We could have used a

60

smaller M for someof our structures; however, even with M = 1000,we needonly 1 million cycles

to estimate the AVF (given N = 1000). Thus, for simplicit y, we useM = 1000for all the structures

and workloads we study. Other structures may require larger valuesof M .

4.2.5 Hardw are supp ort and overhead

The processorcontains storage and logic structures. For each storage entry such as a register in

a register �le or an issuequeue entry, an error bit needsto be attached. For the bus, one extra

line is neededto carry over the error bit when a value is transferred over the bus. For each logic

structure like the FXU or FPU, an error bit will is required.

The scheme also needsthe necessaryhardware logic support to set and clear each error bit.

We emulate the injection of an error to a given structure by setting its error bit to one. When the

structure is used, its error bit needsto be propagated down the pipeline. For example, if the error

bit of a storage cell is set to one, when the value in the cell is read, the error needsto propagate

together with the value. If the value is overwritten, the error bit needsto be overwritten as well.

If the error bit of a logic structure is set to one and this structure is active, the error bit will be

attached to the output value. If the structure is idle, the error bit will not propagate further and

is masked. If a logic structure takesmore than one input, such as the ALU, \or" gatesare needed

to mergethe error bits from each input.

Besidesthe error bits, the schemealsoneedsbasichardware counters to track the total number

of errors injected and the number that (potentially) lead to processorfailure.

The overheadof the schememainly comesfrom the setting and clearing of the error bits. The

error bits require extra hardware. We need one bit for every 32-or 64-bit value; hence,the space

overhead for storage entries is about 1-3%. For a logic structure however, we only need one bit

for a given structure. We also need the necessarylogic to keep track of how many failures have

occurred and how many errors have beeninjected. This can be done using several basic counters.

In addition, we needa counter to keeptrack of which storageentry or logic structure to inject next.

During program execution, the error bits propagate together with the values and should not

causeany extra slowdown for the processor.Once in every M � N instructions or so, the processor

needsto do the accounting and calculate the AVF. Given that this is done typically once every

61

(several) million instructions, the time overheadshould be negligible.

4.2.6 Limitations

Our method alsohasseveral limitations. A major assumptionof our method is that an error in the

processorwill propagate and causeprogram failure in a short period of time, currently lessthan

several thousand instructions. Otherwise, the time it takes to estimate AVF will be much longer

since M will need to be set to be a large number. Since we conservatively assumethat values

stored in memory are observable externally and thus can causeprogram failure, this assumption

appearssatisfactory for the structures we study. However, if we were to set the output instructions

as failure monitoring points, then we may need to wait for longer periods, meaning that we may

not be able to sampleenoughpoints. The downside of this is that we have to be very conservative

in estimating when an error leadsto failure.

Also, our method only dependson one run of the program and we are not able to simulate and

track execution along incorrect paths invoked due to an error. Without this abilit y, we are left to

de�ning the points of failure very conservatively.

Under the current scheme, we attach one bit for each value or instruction in the processor.

Thus, our error injection granularit y is limited to the full value or instruction. This meansthat

we cannot distinguish betweenerrors in di�eren t �elds of a structure and cannot track which part

of the instruction has error. This could be addressedby supporting multiple error bits per value

or instruction, allowing errors to be injected at a �ner granularit y. Similarly, since we do not

di�eren tiate between bits constituting a given value, we conservatively assumethat the value is

wrong onceany of its bits has an error. This prevents us from modeling detailed masking e�ects

like logical masking.

Finally, the goal of this work is to develop an online AVF estimation algorithm. Our algorithm

estimates the AVF for the past interval. Many processoradaptive control algorithms need the

AVF for the future interval as the input. In order for our approach to be useful for controlling any

processoradaptation, we needto integrate our method with an interval or phaseprediction method.

There hasbeenmuch work on phaseprediction. Our work can simply be combined with any phase

prediction algorithm. For example,we could usea simple predictor which always predicts the next

62

interval's AVF to be the sameas the past interval.

4.3 Exp erimen tal metho dology

To evaluate the accuracyof our AVF estimation method, we again usethe Turandot simulator [13].

The parametersfor the processorare chosento correspond to the POWER4 microarchitecture and

were the sameas in Table 2.1.

We implemented our AVF estimation algorithm in Turandot as described in Section 4.2 to

estimate the AVF of the instruction queue(IQ), register �le (REG), integeror �xed point functional

units (FXU), and
oating point units (FPU). 1

We evaluated our algorithm with eleven SPEC CPU2000 benchmarks. We used traces from

the trace repository generatedusing the Aria trace facilit y in the MET toolkit [24], using the full

referenceinput set. Sampling wasusedto limit the trace length to 100-200million instructions per

program. The sampled traces have been validated with the original full traces for accuracy and

correct representation [19].

The value of the parameters M and N depend on the processorand compiler and should

be carefully chosen. In our experiments, as we have mentioned in previous sections, we choose

M = N = 1; 000. Thus, we estimate an AVF value at the granularit y of every M � N = 1 million

cyclesof an application. We refer to this as the estimation interval below. This gives us 100-200

AVF estimates (one for each distinct 1M cycle interval) for each application and each processor

structure.

To validate the accuracy of our AVF estimates, we compareagainst the AVF reported by the

SoftArch method [6]. As mentioned, SoftArch is a detailed soft error model that estimatesthe AVF

o�ine with a lot of analysis. We useSoftArch since it is the best AVF estimation we have access

to.

Additionally , to justify the full complexity of our method, we alsocomparedits accuracyto that

of a simpler, intuitiv e method. Speci�cally , for logic structures, it is intuitiv e to considerutilization

asan estimation for the AVF (the higher the utilization, the higher the vulnerabilit y to soft errors).

1We were not able to collect data for TLBs since a reasonableM value required for e�ectiv ely exercising them is
closeto 1 million cycles. Thus, to generate one AVF estimation requires a billion cyclesof simulation, which made it
di�cult to collect a full set of results.

63

The utilization of a logic structure can be easily estimated in hardware by counting the number

of cycles it is busy out of all cycles. It is natural to use the utilization as a proxy for AVF since

errors in the structure will be masked if the structure is idle and errors may not be masked when

the structure is busy. An analogousconcept is harder to extend to storage structures. We are

not aware of any other general, workload-independent algorithm for online estimation of AVF of

storagestructures. Thus, in this study, we usea simple alternative (utilization-based) method only

to estimate AVF for logic structures.

4.4 Results

Figures 4.3(a), (b), (c), and (d) show aggregatestatistics to demonstrate the accuracyof our AVF

estimation algorithm relative to SoftArch for the instruction queue, register �le, FXU, and FPU

respectively. The FXU and FPU �gures also show the accuracy of the simple utilization-based

estimation method relative to SoftArch (right bar for each application).

Below, by absoluteerror of an estimation method for a given application interval that contains 1

million cycles,we refer to the absolutedi�erence betweenthe AVFs reported by that method and by

SoftArch. By relative error of an estimation method, we refer to jE stimated AV F � Sof tAr chAV F j
Sof tAr ch AV F � 100.

Also, we often refer to the SoftArch AVF as the real AVF.

The charts on the left sideof Figure 4.3give three statistics for the absoluteerrors. For each bar,

the lowest (shaded)stack givesthe meanabsoluteerror (referred to asMean) for the corresponding

estimation method and application (averagedacrossthe di�eren t 1M cycle estimation intervals for

that application). The full height of the bar is the maximum absolute error, ignoring the top four

errors to excludeunrepresentativ e outliers (referred to as Max). The middle stack is the standard

deviation of the absolute error (referred to as Standard Deviation).

Since AVF values can range only from 0 to 1, it is most meaningful to compare the absolute

errors. Small absolute errors may be acceptableeven if the relative error is large; e.g., an estimate

of AVF=0.12 for a real AVF of 0.1 re
ects a 20% relative error; however, it is unclear if this

di�erence of 0.02 absolute error is practically signi�cant. Nevertheless,the charts on the right side

of Figure 4.3 provide the relative errors for reference.

For a more detailed look, we take two applications as examplesand plot AVF values for them

64

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

��� �����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

���

���

���

��� 	�	

	�	

	�	

	�	

	�	

�

�

�

�

�

���

���

���

���

���

���

���

���

�

�

�

�

���

���

���

���

�����

�����

�����

�����

�����

���

���

���

���

���

�����

�����

�����

���

���

���

�����

�����

�����

���

���

��� �����

�����

�����

�����

�����

�����

�����

�����

���

��� �

�

0.10

0.08

0.06

0.04

0.02

0

 A
bs

ol
ut

e
E

rr
or

 o
f A

V
F

am
m

p
ar

t
bz

ip2

eq
ua

ke

fa
ce

re
c

luc
as

m
es

a

pe
rlb

m
k

six
tra

ck

sw
im

wup
wise

MaxStandard_DeviationMean

���

���

���

���

���

���

���

���

�����

�����

�����

�����

�����

���

���

���

���

�����

�����

�����

�����

�����

�����

�����

�����

���

���

���

���

���

���

���

 �

 �

 �

 �

 �

 �

 �

!�!

!�!

!�!

!�!

"�"

"�"

"�"

"�"

#�#

#�#

#�#

#�#

$�$

$�$

$�$

$�$

%�%

%�%

%�%

&�&

&�&

&�&

'�'�'

'�'�'

'�'�'

'�'�'

(�(

(�(

(�(

(�()�)�)

)�)�)

)�)�)

)�)�)

)�)�)

)�)�)

)�)�)

�

�

�

�

�

�

+�+�+

+�+�+

+�+�+

+�+�+

+�+�+

+�+�+

,�,

,�,

,�,

,�,

,�,

,�,

-�-�-

-�-�-

-�-�-

-�-�-

.�.�.

.�.�.

.�.�.

.�.�.

/�/

/�/ 0

0

1.2

1

0.8

0.6

0.4

0.2

0

 R
el

at
iv

e
E

rr
or

 o
f A

V
F

am
m

p
ar

t
bz

ip2

eq
ua

ke

fa
ce

re
c

luc
as

m
es

a

pe
rlb

m
k

six
tra

ck

sw
im

wup
wise

MaxStandard_DeviationMean

(a) Instruction queue

1�1

1�1

1�1

1�1

1�1

1�1

1�1

2�2

2�2

2�2

2�2

2�2

2�2

2�2

3�3

3�3

4�4

4�4 5�5�5

5�5�5

5�5�5

6�6�6

6�6�6

6�6�6

7�7

7�7

7�7

8�8

8�8

8�8

9�9

9�9

9�9

9�9

9�9

:�:

:�:

:�:

:�:

:�:

;�;

;�;

;�;

;�;

;�;

<�<

<�<

<�<

<�<

<�<

=�=

=�=

=�=

>�>

>�>

>�>

?�?�?

?�?�?

?�?�?

?�?�?

@�@

@�@

@�@

A�A�A

A�A�A

A�A�A

A�A�A

B�B

B�B

B�B

B�B

C�C�C

C�C�C

C�C�C

C�C�C

C�C�C

C�C�C

C�C�C

C�C�C

C�C�C

C�C�C

D�D

D�D

D�D

D�D

D�D

D�D

D�D

D�D

D�D

E�E�E

E�E�E

E�E�E

E�E�E

E�E�E

F�F�F

F�F�F

F�F�F

F�F�F

F�F�F

G�G

G�G H

H

0.08

0.06

0.04

0.02

0

 A
bs

ol
ut

e
E

rr
or

 o
f A

V
F

am
m

p
ar

t
bz

ip2

eq
ua

ke

fa
ce

re
c

luc
as

m
es

a

pe
rlb

m
k

six
tra

ck

sw
im

wup
wise

MaxStandard_DeviationMean

I�I

I�I

I�I

I�I

I�I

I�I

J�J

J�J

J�J

J�J

J�J

J�J

K�K�K

K�K�K

K�K�K

K�K�K

L�L

L�L

L�L

L�L

M�M�M

M�M�M

M�M�M

M�M�M

N�N�N

N�N�N

N�N�N

N�N�N

O�O

O�O

O�O

P�P

P�P

P�P

Q�Q

Q�Q

Q�Q

Q�Q

Q�Q

Q�Q

R�R

R�R

R�R

R�R

R�R

R�R

S�S

S�S

S�S

T�T

T�T

T�T

U�U

U�U

U�U

V�V

V�V

V�V W�W�W

W�W�W

W�W�W

X�X

X�X

X�X

Y�Y�Y

Y�Y�Y

Y�Y�Y

Z�Z

Z�Z

Z�Z

[�[�[

[�[�[

[�[�[

[�[�[

[�[�[

[�[�[

\�\

\�\

\�\

\�\

\�\

\�\

]�]�]

]�]�]

]�]�]

]�]�]

]�]�]

^�^�^

^�^�^

^�^�^

^�^�^

^�^�^

�

� `

`

0.8

0.6

0.4

0.2

0

 R
el

at
iv

e
E

rr
or

 o
f A

V
F

am
m

p
ar

t
bz

ip2

eq
ua

ke

fa
ce

re
c

luc
as

m
es

a

pe
rlb

m
k

six
tra

ck

sw
im

wup
wise

MaxStandard_DeviationMean

(b) Register �le

a�a�a

a�a�a

a�a�a

b�b�b

b�b�b

c�c�c

c�c�c

c�c�c

d�d�d

d�d�d

d�d�d

e�e�e

e�e�e

f�f�f

g�g�g

h�h�h

i�i�i

i�i�i

i�i�i

i�i�i

j�j�j

j�j�j

j�j�j

j�j�j

k�k

k�k

k�k

l�l

l�l

l�l

m�m�m

n�n

o�o

o�o

o�o

p�p

p�p

q�q

q�q

r�r

r�r

s�s

s�s

s�s

s�s

s�s

s�s

s�s

s�s

s�s

t�t

t�t

t�t

t�t

t�t

t�t

t�t

t�t

t�t

u�u

u�u

v�v

v�v w�w

x�x

y�y

y�y

y�y

z�z

z�z

z�z

{�{

{�{

{�{

{�{

|�|

|�|

|�|

}�}

}�}

}�}

~�~

~�~

•�•

•�•

•�•

•�•

•�•

€�€

€�€

€�€

€�€

•�•

•�•

‚�‚

‚�‚

ƒ�ƒ

ƒ�ƒ

ƒ�ƒ

ƒ�ƒ

„�„

„�„

„�„

…�…

…�…

…�…

†�†

†�†

‡�‡�‡

‡�‡�‡

‡�‡�‡

ˆ�ˆ�ˆ

ˆ�ˆ�ˆ

ˆ�ˆ�ˆ

‰�‰

‰�‰

‰�‰

Š�Š

Š�Š

‹�‹�‹

‹�‹�‹

‹�‹�‹

Œ�Œ�Œ

Œ�Œ�Œ

Œ�Œ�Œ

•�•

•�•

•�•

Ž

Ž

0.25

0.2

0.15

0.1

0.05

0

 A
bs

ol
ut

e
E

rr
or

 o
f A

V
F

O U O U O U O U O U O U O U O U O U O U O U

am
m

p
ar

t
bz

ip2

eq
ua

ke

fa
ce

re
c

luc
as

m
es

a

pe
rlb

m
k

six
tra

ck

sw
im

wup
wise

MaxStandard_DeviationMean

•�•�•

•�•�•

•�•�•

‘�‘�‘

‘�‘�‘

‘�‘�‘

‘�‘�‘

‘�‘�‘

’�’�’

’�’�’

’�’�’

’�’�’

“�“�“

“�“�“

”�”�”

•�•�•

•�•�•

•�•�•

•�•�•

•�•�•

–�–�–

–�–�–

–�–�–

–�–�–

–�–�–

—�—�—

˜�˜�˜ ™�™

™�™

š�š

›�›�›

›�›�›

›�›�›

›�›�›

›�›�›

œ�œ

œ�œ

œ�œ

œ�œ

•�•�•

•�•�•

•�•�•

•�•�•

•�•�•

•�•�•

•�•�•

•�•�•

•�•�•

•�•�•

•�•�•

•�•�•

•�•�•

•�•�•

ž�ž�ž

ž�ž�ž

ž�ž�ž

ž�ž�ž

ž�ž�ž

ž�ž�ž

ž�ž�ž

ž�ž�ž

ž�ž�ž

ž�ž�ž

ž�ž�ž

ž�ž�ž

ž�ž�ž

ž�ž�ž

Ÿ�Ÿ

Ÿ�Ÿ

 �

¡�¡�¡

¡�¡�¡

¡�¡�¡

¡�¡�¡

¢�¢

¢�¢

¢�¢

£�£�£

£�£�£

£�£�£

¤�¤

¤�¤ ¥�¥

¥�¥

¦�¦

¦�¦ §�§�§

¨�¨

©�©

©�©

©�©

©�©

©�©

©�©

©�©

ª�ª

ª�ª

ª�ª

ª�ª

ª�ª

ª�ª

«�«

¬�¬

­�­

­�­

®�® ¯�¯

¯�¯

°�°

±�±

±�±

²�² ³�³

³�³

´�´

´�´

µ�µ�µ

µ�µ�µ

µ�µ�µ

µ�µ�µ

¶�¶�¶

¶�¶�¶

¶�¶�¶

¶�¶�¶

·�·

·�·

¸�¸

¹�¹�¹

¹�¹�¹

¹�¹�¹

¹�¹�¹

¹�¹�¹

º�º�º

º�º�º

º�º�º

º�º�º

º�º�º

»�»

»�»

»�»

¼

¼

6

5

4

3

2

1

0

 R
el

at
iv

e
E

rr
or

 o
f A

V
F

O U O U O U O U O U O U O U O U O U O U O U

am
m

p
ar

t
bz

ip2

eq
ua

ke

fa
ce

re
c

luc
as

m
es

a

pe
rlb

m
k

six
tra

ck

sw
im

wup
wise

MaxStandard_DeviationMean

(c) FXU

½�½�½

½�½�½

½�½�½

¾�¾�¾

¾�¾�¾

¾�¾�¾

¿�¿�¿

¿�¿�¿

¿�¿�¿

¿�¿�¿

¿�¿�¿

¿�¿�¿

À�À�À

À�À�À

À�À�À

À�À�À

À�À�À

À�À�À

Á�Á�Á

Á�Á�Á

Â�Â�Â

Â�Â�Â

Ã�Ã�Ã

Ã�Ã�Ã

Ã�Ã�Ã

Ä�Ä�Ä

Ä�Ä�Ä

Å�Å

Æ�Æ�Æ

Æ�Æ�Æ

Ç�Ç

Ç�Ç

È�È

È�È

É�É

É�É Ê�Ê

Ê�Ê

Ê�Ê

Ê�Ê

Ê�Ê

Ê�Ê

Ë�Ë

Ë�Ë

Ë�Ë

Ë�Ë

Ë�Ë

Ë�Ë

Ì�Ì

Ì�Ì

Ì�Ì

Ì�Ì

Ì�Ì

Ì�Ì

Í�Í

Í�Í

Í�Í

Í�Í

Í�Í

Í�Í

Î�Î

Î�Î

Î�Î

Ï�Ï

Ï�Ï

Ï�Ï Ð�Ð

Ð�Ð

Ñ�Ñ

Ñ�Ñ Ò�Ò

Ò�Ò

Ò�Ò

Ó�Ó

Ó�Ó

Ó�Ó

Ô�Ô

Õ�Õ

Ö�Ö

×�× Ø�Ø

Ù�Ù

Ú�Ú

Ú�Ú

Ú�Ú

Ú�Ú

Û�Û

Û�Û

Û�Û

Û�Û

Ü�Ü

Ü�Ü

Ü�Ü

Ü�Ü

Ü�Ü

Ü�Ü

Ý�Ý

Ý�Ý

Ý�Ý

Ý�Ý

Ý�Ý

Þ�Þ

Þ�Þ

Þ�Þ

Þ�Þ

ß�ß

ß�ß

ß�ß

ß�ß

à�à�à

à�à�à

à�à�à

á�á�á

á�á�á

á�á�á â�â

â�â

â�â

ã�ã

ã�ã

ã�ã

ä�ä�ä

ä�ä�ä

ä�ä�ä

ä�ä�ä

ä�ä�ä

å�å�å

å�å�å

å�å�å

å�å�å

æ�æ

æ�æ

æ�æ

ç

ç

0.12

0.10

0.08

0.06

0.04

0.02

0

 A
bs

ol
ut

e
E

rr
or

 o
f A

V
F

O U O U O U O U O U O U O U O U O U O U O U

am
m

p
ar

t
bz

ip2

eq
ua

ke

fa
ce

re
c

luc
as

m
es

a

pe
rlb

m
k

six
tra

ck

sw
im

wup
wise

MaxStandard_DeviationMean

è�è�è

è�è�è

è�è�è

é�é�é

é�é�é

é�é�é

ê�ê�ê

ê�ê�ê

ê�ê�ê

ê�ê�ê

ê�ê�ê

ê�ê�ê

ê�ê�ê

ê�ê�ê

ë�ë�ë

ë�ë�ë

ë�ë�ë

ë�ë�ë

ë�ë�ë

ë�ë�ë

ë�ë�ë

ì�ì�ì

ì�ì�ì

ì�ì�ì

í�í�í

í�í�í

í�í�í

î�î�î

î�î�î

î�î�î

î�î�î

ï�ï�ï

ï�ï�ï

ï�ï�ï

ï�ï�ï

ð�ð�ð

ð�ð�ð

ñ�ñ

ñ�ñ

ò�ò�ò

ò�ò�ò

ò�ò�ò

ó�ó�ó

ó�ó�ó

ó�ó�ó

ô�ô

ô�ô

ô�ô

ô�ô

õ�õ

õ�õ

õ�õ

õ�õ

ö�ö�ö

ö�ö�ö

ö�ö�ö

ö�ö�ö

ö�ö�ö

ö�ö�ö

ö�ö�ö

÷�÷

÷�÷

÷�÷

÷�÷

÷�÷

÷�÷

÷�÷

ø�ø�ø

ø�ø�ø

ø�ø�ø

ø�ø�ø

ø�ø�ø

ù�ù

ù�ù

ù�ù

ù�ù

ú�ú

ú�ú

ú�ú

ú�ú

ú�ú

ú�ú

ú�ú

ú�ú

û�û

û�û

û�û

û�û

û�û

û�û

û�û

ü�ü�ü

ü�ü�ü

ü�ü�ü

ý�ý

ý�ý

ý�ý

þ�þ

þ�þ

ÿ�ÿ

ÿ�ÿ ���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

	�	

	�	

	�	

�

�

�

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�

�

�

�

�

3

2.5

2

1.5

1

0.5

0

 R
el

at
iv

e
E

rr
or

 o
f A

V
F

O U O U O U O U O U O U O U O U O U O U O U

am
m

p
ar

t
bz

ip2

eq
ua

ke

fa
ce

re
c

luc
as

m
es

a

pe
rlb

m
k

six
tra

ck

sw
im

wup
wise

MaxStandard_DeviationMean

(d) FPU

Figure 4.3 Error in AVF estimation when compared to the SoftArc h reference for (a)
instruction queue, (b) register �le, (c) FXU, and (d) FPU. The left charts show abso-
lute err or - mean, standard deviation and maxim um - across all estimation in terv als
of the application. The righ t charts show relative err or . The errors are shown for
AVF estimates using our online metho d (denoted O) and the simple utilization-based
metho d (denote U, for parts (c) and (d) only).

65

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 10 20 30 40 50 60 70 80 90 100

In
st

ru
ct

io
n

Q
ue

ue
 A

V
F

 fo
r

m
es

a

Real AVF
Estimated AVF

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 20 40 60 80 100 120 140 160 180 200

In
st

ru
ct

io
n

Q
ue

ue
 A

V
F

 fo
r

am
m

p

Real AVF
Estimated AVF

instruction queue

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 10 20 30 40 50 60 70 80 90 100

R
eg

is
te

r
fil

e
A

V
F

 fo
r

m
es

a

Real AVF
Estimated AVF

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 20 40 60 80 100 120 140 160 180 200

R
eg

is
te

r
fil

e
A

V
F

 fo
r

am
m

p

Real AVF
Estimated AVF

register �le

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 10 20 30 40 50 60 70 80 90 100

F
X

U
 A

V
F

 fo
r

m
es

a

Real AVF
Estimated AVF

Utilization based AVF

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 20 40 60 80 100 120 140 160 180 200

F
X

U
 A

V
F

 fo
r

am
m

p

Real AVF
Estimated AVF

Utilization based AVF

FXU

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 10 20 30 40 50 60 70 80 90 100

F
P

U
 A

V
F

 fo
r

m
es

a

Real AVF
Estimated AVF

Utilization based AVF

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 20 40 60 80 100 120 140 160 180 200

F
P

U
 A

V
F

 fo
r

am
m

p

Real AVF
Estimated AVF

Utilization based AVF

FPU

Figure 4.4 AVFs of instruction queue, register �le, FXU, and FPU, as rep orted by
SoftArc h, our online metho d, and the utilization-based metho d (for FXU and FPU
only), for applications mesa (left side) and ammp (righ t side). AVFs are rep orted for
1M cycle in terv als.

66

for each 1M cycle estimation interval for each structure in Figure 4.4. For each application, we

show the AVF value calculated by SoftArch and the AVF value estimated by our method. For both

the FPU and FXU, we also show the AVF calculated by the utilization-based method.

We make the following observations from the �gures.

Absolute errors.

Comparing absoluteerrors (left charts in Figure 4.3), we �nd that our method shows low mean

absoluteerrors { for all but 3 cases,the mean is lessthan 0.04 acrossall four structures and eleven

applications. Even the Max absolute error for our method is lessthan 0.08 for all the structures

and applications. The standard deviation for the absolute error is lessthan 0.05 for all cases.

In contrast, the utilization-based method hassigni�cantly larger meanabsoluteerror in several

cases.For example, for the FXU, the mean absolute error is over 0.16 for perlbmk and almost 0.1

for mesaand wupwise. The maximum errors are even higher.

In all cases,our estimation method shows better or almost the same absolute error as the

utilization-based method. The main reasonthat our method shows lower error is that it is able to

account for more sourcesof masking (e.g., masking due to dead valuesand instructions) than the

utilization-based method. In four cases,the utilization-based method shows slightly lower mean

absolute error becauseour method does make somestatistical errors. Speci�cally , we use only a

�nite number of samples.Further, we assumethat the samplesare independent and, for the caseof

structures with multiple entries, an entry in a structure is not randomly selectedfor fault injection.

Relativ e errors.

Comparing relative errors (right charts in Figure 4.3), we �nd that in most cases,the mean

relative error for our method is less than 20%, but in somecases,it can be as high as 65% (for

FPU running facerec). The utilization-based method hasa much higher meanrelative error in most

cases,up to over 300%for FXU running equake and 130%for FXU running wupwise.

We examine the caseswhere our method has a relative error larger than 20%. We �nd that in

all thesecases,the real AVF is lessthan 0.2. This small absolute value implies that even a small

absolute error is in
ated as a large relative error. At thesesmall AVF values, the modestly large

relative errors of our method are unlikely to a�ect design choices,given that the absolute errors

are so small.

67

���

���

���

���

���

���

���

���

�

�

�

�

�

�

�

�

���

���

���

���

���

�

�

�

�

�

�

�

�

�

�

�

�

��

�

	

	

	

	

���

��� �

�

� �� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

���

���

���

���

�

�

�

�

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

���

���

���

�

� ���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

��� �� �

�

�

�

�

!

!

!

!

!

!

!

"

"

"

"

"

"

"

#

#

#

#

#

#

#

#

$

$

$

$

$

$

$

%

%

%

&

&

&

'�'

'�'

'�'

'�'

'�'

'�'

'�'

(

(

(

(

(

(

(

)�)

)�)

)�)

)�)

)�)

)�)

)�)

)�)

*

*

*

*

*

*

*

*

+�+

+�+ ,

, -�- .

/

/

/

/

/

/

/

/

0

0

0

0

0

0

0

1�1

1�1

1�1

1�1

1�1

1�1

1�1

1�1

2�2

2�2

2�2

2�2

2�2

2�2

2�2

3

3

3

3

3

3

3

3

3

3

3

3

4

4

4

4

4

4

4

4

4

4

4

4

5

56

6

7

7

7

7

7

7

7

7

8

8

8

8

8

8

8

9

9

9

9

9

9

:

:

:

:

:

:

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

=�=

=�= >�>

>�>

>�>

?

? @�@

@�@

@�@

@�@

@�@

@�@

A

A

A

A

A

A

B�B

B�B C

C

D�D

D�D

E�E

E�E F

F

G

G H

H

H

H

H

H

H

I

I

I

I

I

I

I

J

J

J

J

J

J

K

K

K

K

K

K

L

L

L

L

L

M

M

M

M

M

N

N

N

N

N

O

O

O

O

O

P

P

P

P

P

P

P

P

P

Q

Q

Q

Q

Q

Q

Q

Q

Q

R�R

R�R

R�R

R�R

S�S

S�S

S�S

S�S

T�T

T�T

T�T

U�U

U�U

U�U

V

VW

W

0.4

0.3

0.2

0.1

0

iq re
g

fx
u

fp
u iq re
g

fx
u

fp
u iq re
g

fx
u

fp
u iq re
g

fx
u

fp
u iq re
g

fx
u

fp
u iq re
g

fx
u

fp
u iq re
g

fx
u

fp
u iq re
g

fx
u

fp
u iq re
g

fx
u

fp
u iq re
g

fx
u

fp
u iq re
g

fx
u

fp
u

ammp art bzip2 equake facerec lucas mesa perlbmksixtrack swim wupwise

Average_AVF_ValueAverage_Prediction_Error

Figure 4.5 The relativ e error of the predicted AVF using a simple predictor. The
predictor assumes the AVF of the next in terv al is equal to that of the previous in terv al.

Detailed results.

The detailed plots in Figures 4.4 reveal several interesting observations that are not seenin the

aggregatestatistics. First, the absolute value of the AVF stays within 0.2 for most of the cases

examinedhere, but it often also goesas high as 0.5. Our method is able to track this entire range

of AVFs.

Second,many of the applications show signi�cant changesin the AVF through the courseof

the execution. Our method is able to track all such changesvery closely. The utilization-based

method also tracks the changes{ periods of high utilization correlate well with periods of high real

AVF; however, often a signi�cant gap remains betweenthe absolutevaluesof the utilization-based

method and the real AVF.

Overall, these results show that our method is not only accurate on average, but also robust

acrossa variety of scenarios.Further, for structures wherea simple utilization-based method can be

constructed, our results show that such a method has signi�cantly lower �delit y than our method.

Prediction errors.

We have studied the accuracyof our schemewhen usedto estimate AVF. The AVF estimation

is obtained at the end of each interval. However, for the AVF value to be useful for any dynamic

control or adaptation scheme, we need to predict the AVF value for the next interval. Detailed

AVF prediction schemesare beyond the scope of this work. In this dissertation, we simply illustrate

that with our AVF estimation method and a simple predictor, we can quite e�ectiv ely predict the

AVF value for the next interval.

68

Such a simplepredictor would work asfollows. At the endof each estimation interval, it predicts

the AVF of the next interval to be equal to the AVF of the past interval which is estimated using

our scheme. The underlying assumption behind this simple prediction is that the AVF behavior

acrossconsecutive estimation intervals for the sameapplication is stable or changesvery slowly.

In order to evaluate the quality of our AVF prediction, for each estimation interval, we calculate

the absolute error in the prediction as the absolute value of the di�erence between the predicted

AVF and the real AVF. Figure 4.5 reports this absoluteprediction error and the real AVF, averaged

acrossall intervals for each application.

The results show that the absolute prediction error is quite small in all cases(less than 0.05

with two exceptions). The relative prediction error (as a percentage of the real AVF) is lessthan

30% of the real AVF with a few exceptionswhen the absolute value of the AVF is small.

The prediction errors arise from two sources.

The �rst is the predictabilit y of the AVF itself acrossdi�eren t intervals of the application. If

the application AVF is unrelated acrossdi�eren t intervals and changesabruptly and frequently, any

predictor will fail to producereasonablepredictions. This is regardlessof the accuracyof the online

AVF estimation method for the current interval. The predictabilit y of the AVF acrossdi�eren t

estimation intervals is a topic beyond the scope of this dissertation. Based on our observation,

however, the AVF of most applications is stable acrossconsecutive intervals, although there are

a few exceptionswhere AVF behavior changesfrequently and is harder to predict. Fu et al. [25]

show that AVF exhibits phasebehavior similar to the performanceand power domain. They show

that the AVF behavior is mostly related to the program code-structure and run-time events. Thus,

the stable AVF behavior acrossmultiple intervals might be explained by the the underlying similar

code-structure such as code running in the sameloop. Similarly, a sudden change of AVF might

indicate that the program has entered a new phase.

The secondsourceof error in the prediction is the error in our online AVF estimation method

for the current interval. If the AVF estimation for the current interval has large errors, then even

if the AVF is stable across all intervals, the prediction for the next interval will contain large

errors. Overall, the results show that our estimation scheme combined with a simple predictor

gives reasonableAVF predictions.

69

4.5 Summary

In this chapter, we have proposedand studied a novel technique to estimate architectural vulnera-

bilit y factors for soft errors in real-time. We have described the AVF estimation algorithm and the

simple hardware modi�cations to the processorfor e�ectiv ely estimating the AVF. Our method is

generaland applies to both logic and storagestructures in a microprocessor.We test our method

with a widely used simulator from industry, for four processorstructures running SPEC bench-

marks. The results show that our method provides acceptably accurate run-time AVF estimates

under a wide variety of scenarios,compared to a detailed (and complex) o�ine AVF estimation

tool.

70

Chapter 5

Related work

We classify related soft error work into three main categories:soft error modeling, AVF estimation,

and soft error protection solutions. The �rst classof work models and investigatesthe soft error

behavior of a processorat the architecture level. The secondclassestimatesand predicts the AVF

for a running application. The third classproposesnew solutions to protect the processorsfrom

soft errors.

In Section 5.1 to 5.3, we describe each of the three categories. In Section 5.4, we discussother

related work that bearssimilarit y to our online AVF method.

5.1 Soft error mo deling

There have beentwo broad approaches to architecture level modeling of the impact of soft errors.

The �rst involves fault injection in a simulator to determine whether an injected error is exposed

at the architecture level [26, 27, 3]. For example, Wang et al. perform fault injection experiments

on a latch-accurateVerilog model of a modern Alpha processor(about 25,000experiments for each

benchmark). This kind of approach is accurate, but slow. The typical simulation is limited to the

order of 10,000cyclesfor an application's execution.

Mukherjee et al. proposethe AVF method to calculatethe MTTF of a processor[8]. The average

fraction of bits in a structure that will a�ect the program outcome is termed as the architecture

vulnerabilit y factor (or AVF) for that structure (equivalent to the derating factor). The product of

AVF and the raw SER for a structure gives its architectural failure rate. Biswas et al. [9] extends

the method to cover address-basedstructures as well.

To our knowledge,there has beenno prior attempt to understand the basic assumptionsof the

71

AVF+SOFR method and parameter value ranges that bound its validit y (or accuracy), when it

comesto reliabilit y modeling at the (micro)architecture level.

5.2 AVF estimation

There have been several studies on estimating the AVF [8, 6, 28, 22, 21]. They can be classi�ed

into two categories.

The �rst category is the o�ine method which estimates AVF with complex simulators [8, 6,

28]. This o�ine estimation is a complex process,requiring many resourcesto track values and

instructions as they travel through a processor. Normally only a limited number of instructions

can be analyzed in a reasonableamount of time. These methods are therefore not suitable for

online real-time AVF estimation.

The secondcategory is the online method which estimatesthe AVF in real time [21, 22]. Walcott

et al. [22] apply statistical analysis using a detailed simulator to analyze the AVF behavior. Then

they use regressionto explore the relationship between AVF and various micro-architecture level

variables such as structure occupancy, number of instructions executed, etc. After running the

regressiono�ine for certain workloads, the correlation coe�cien ts between AVF and each micro-

architecture variable areestablished.Sincethe micro-architecture variablesareobservable, the AVF

value can be estimated through them. This method can potentially be implemented to estimate the

AVF online; however, it requires heavy o�ine simulation and calibration for di�eren t workloads.

What is more important is that the parameters are dependent on the workload as mentioned in

the paper. It is not clear that the parameterscalibrated for one set of workloads will give accurate

estimation for another set. Compared to Walcott et al., our online AVF estimation approach

requires little o�ine analysis. It only requires two parameters for any structure compared to �v e

to ten parameters in Walcott et al. The parameters in our method can also be chosento achieve

the best trade-o� betweenthe estimation precision and estimation time. Soundararajan et al. [21]

proposea method to estimate AVF for the reorder bu�er (ROB) in the processor. This method

determinesthe AVF by estimating the occupancy of the instruction queue. The occupancyof the

instruction queueis in turn estimated by counting the number of instructions that are dispatched or

retired. This method can be implemented online, but is limited to a single structure. For example,

72

it is hard to extend the samemethod to estimate the AVF for the register �le.

5.3 Soft error protection schemes

There hasbeena rich body of work in the soft error �eld on soft error protection schemes.Here we

will focus on someof the key schemesthat addressthe soft error problem from the software level

and architecture level.

On the software level, the compiler or operating systemcan help introduceredundancy into the

program to check program control
o w, memory access,and control signals. For example,Ohlsson

et al. [29] proposethat the compiler automatically generatesomecode for a watchdog processor

to check the protected processor.Along with the recent popularit y of SMT and CMP processors,

there have beenseveral papersdealingwith soft error protection using redundant threads. SMT and

CMP are able to executetwo threads simultaneously, which createsan opportunit y for thread level

redundancy. There have beenseveral papers on the implementation of redundant multi-threading.

Depending on the platform (SMT vs. CMP), detection or recovery, di�eren t schemeshave been

proposed.Someexamplesare: AR-SMT [30], SRT [31], CRT, Slip-stream, SRTR, CRTR, etc. The

basic idea is very simple { to run two copiesof the samethread and check with each other before

the result can be committed to the architecture state. All the proposed schemesrequire small

amount of modi�cation to the original SMT or CMT processor.Oh et al. [32] proposea technique

called EDDI whereall instructions are duplicated and appropriate "check" instructions are inserted

for error checking. There are other variants of the scheme, such as control-
o w checking scheme

(CFSCC) where each control transfer generatesa run-time signature that is validated by error

checking code generatedby the compiler for each block. Reis et al. [33] proposea software based

technique called SWIFT. SWIFT is a single-threadedsoftware-basederror detection approach and

improved versionof EDDI. It usesmore optimization to cover more kinds of errors and reducesthe

overheadof the simple EDDI scheme.

On the micro-architecture and architecture level, redundancy can alsobe introduced to protect

the processor. Austin et al. [34] proposeDIVA. The idea is to use a simple and reliable checker

processorat the commit stageof the main core to verify its result. Sincethe checker sits at commit

stage,it's an in-order coreand can be madevery reliable becauseof its simplicit y. Ernst et al. [35],

73

propose Razor, a special latch to protect the data path. The idea is to use a shadow latch to

redundantly latch the data and compare with the main latch. When timing error happens, the

shadow latch will latch in data di�eren t from the main latch, thus errors can be detected. Not

only can the Razor latch detect timing errors, it can also provide a mechanism to recover from the

timing errors. Recovery can be achieved using methods including clock gating.

Wang et al. [36] proposea scheme called ReStore to detect symptoms of soft errors and use

existing recovery abilit y for branch mispredictions in the processor. Racunas et al. [37] detect

soft errors by monitoring for departures from expected program behavior. The SWAT system

detects a variety of faults by monitoring for high level symptoms, including software invariant

violations [38, 39].

5.4 Other related work

Our AVF prediction scheme has some similarit y to the work by Fields et al. on critical-path

prediction [40]. Like the AVF prediction, �nding the critical-path in the instruction dependence

graph is a very complex task even for o�ine processing.It is even harder to �nd the critical paths

in hardware online. Fields et al. proposean online critical-path predictor that passestokens to

explicitly track dependencechains. Instead of seekingsomeheuristic events in the pipeline that are

correlated with the instruction criticalit y [41], Fields et al. directly observe and track dependence

chains in hardware. Using a probabilistic approach, Fields et al. avoided the complex tracking and

analysis. They are able to predict the critical-path in real time with more than 80%accuracyusing

a hardware predictor. Our work on the AVF prediction is similar in that we alsousea probabilistic

approach. Instead of tracking all the values in the processor,we use a simple error injection and

counting processto estimate the AVF.

There have beenat least two major studies that use bits similar to the error bits used in our

online AVF estimation scheme, but for di�eren t purposes. First, Weaver et al. [4] proposethe �

bit to addressfalsedetectederrors. Every instruction and register entry is associated with a single

� bit. When an error is detected (e.g., via parit y), the a�ected instruction's � bit is set by the

instruction queueand the instruction is allowed to progressdown the pipeline. When the a�ected

instruction reachesthe commit point, if it is determined to contribute to correct program outcome,

74

a machine check error is raised; otherwise the set � bit is ignored. Second, the poison bit [42]

and the analogousNaT bit of the Itanium architecture [43] are used to track deferred speculative

exceptions. Our use of the error bits is di�eren t { we use them to estimate the AVF due to soft

errors. Nevertheless,the hardware support required for all of thesetechniquesis likely to besimilar.

75

Chapter 6

Conclusions and future directions

This chapter summarizesthe analysisand insights of this dissertation and discussesfuture directions

for research motivated by the results of this dissertation.

6.1 Conclusions

The continuous scaling of CMOS technology brought tremendous improvement in processorper-

formance. However, soft errors are becomingan increasingconcernfor processorreliabilit y. In this

dissertation, we addresssoft error reliabilit y issuesfrom an architectural perspective.

We �rst analyze the current state-of-the-art in soft error modeling and analysis techniques {

the AVF+SOFR methodology. Our results show that both the AVF step and the SOFR step make

signi�cant assumptions. We then use both mathematical and experimental techniques to check

the validit y of the above method acrossa large design space. We �nd that the above method is

valid for most casesunder the current raw error rates. However, our results show that for some

combinations of large systems, long running workloads with large phases,and/or high raw error

rates, the MTTF calculated using the AVF+SOFR method shows signi�cant discrepanciesfrom

that using �rst principles.

To �nd an alternative model that is not subject to such limitations, we proposea model and

tool called SoftArch that does not make the above AVF+SOFR assumptions. SoftArch is based

on a probabilistic model of error generation and propagation processin a processor. We show

that SoftArch doesnot show the discrepanciesshown by the AVF+SOFR method. We also apply

SoftArch to analyze the e�ect of technology scaling on the processorsoft error rate. We scalea

processorover four technology generationsand identify the trend of the processorFIT rate taking

76

the architecture level masking e�ect into consideration.

By using the SoftArch tool, we observe that there is much architecture level masking and that

the degreeof such masking can vary signi�cantly acrossworkloads, individual units, and workload

phases. Thus, it is natural to consider the architecture level solutions to take advantage of such

variations. To do that, onewould needan reasonablyaccurateestimatesof the amount of masking

e�ect in real time. We have shown in our analysis that for most current systems(that are the

focus of our study), AVF proves an accurate abstraction of the architecture masking e�ect. In

this dissertation, we put forward a novel way of estimating AVF in real time. We proposesome

simple hardware modi�cations for the processorand usean algorithm to e�ectiv ely estimate AVF.

It is a generalmethod that applies to both logic and storageunits on the processor.Compared to

previous methods for estimating AVF, our method doesnot require any o�ine simulation, nor does

it require any calibration for di�eren t workloads. We test our method with a widely usedsimulator

from industry for SPEC benchmarks. The results show that our method provides accurate run-

time AVF estimates. The absolute error rarely exceeds0.08 acrossall application intervals for all

structures, and the meanabsoluteerror for a given application and structure combination is always

within 0.05.

6.2 Future directions

This dissertation lays the foundation for architecture level analysis of soft errors and provides

new tools and techniques to handle this critical emergingtechnology challenge. There exist many

potential avenues for future work. Below we will highlight two possibledirections.

6.2.1 Arc hitecture level solution for soft errors

The ultimate goal of the architecture level soft error study is to designe�ectiv e architecture level

solutions to help mitigate the problem. Our results in both Section 3.4 and Section 4.4 show

that the AVF for di�eren t processorstructures changesover time during the program execution.

Depending on the AVF, the optimal protection schemefor thesestructures also changesover time.

This provides opportunities to dynamically adapt the processorto achieve the best protection in a

cost e�ectiv e way.

77

A good prediction of AVF is important for such adaptation. The AVF prediction has to be real

time in order for the processorto react to application behavior changesquickly. In this dissertation,

we have proposedan e�ectiv e online AVF prediction method. This could lead to a classof real

time AVF adaptation and optimization solutions for processors.

6.2.2 Uni�ed system wide adaptation framew ork

Many di�eren t adaptation schemeshavebeenproposedfor power, temperature, energy, and reliabil-

it y in the past years. Although the power, temperature, energyand reliabilit y problems are highly

related inherently, the schemeshave been proposed independently for each �eld so far. Power,

temperature, energyand reliabilit y are all important requirements for a computer system and the

adaptation for any of them could potentially have an impact on the performance. Considering

only one and ignoring the others could potentially causeproblems. For example, most soft error

protection schemesusesomeform of redundancy to detect and correct errors which will lead to an

increasein the power and energyconsumption. This might causethe power and energyconstraints

to be violated even though the soft error designspeci�cations are met. Similarly, many power and

energy reduction techniques such as dynamic voltage scaling will increasethe processorsoft error

rate dramatically which may result in a non-reliable system.

Most previous adaptation schemeshave been proposedfor a single component of the system

to achieve the component's optimal con�guration. It would be bene�cial, however, to adapt all

the components jointly to achieve global optimal adaptation. For example,Li et al. [44] study the

energymanagement problem for the memory consideringthe performanceconstraint. Li et al. [45]

take one step further and study the joint adaptation problem for both processorand memory. The

work shows that by jointly adapting di�eren t components of the system, more energy savings can

be achieved.

As such, weshouldconsiderthe adaptation problem asa multiple dimensionproblem with multi-

ple tradeo�s and requirements in terms of performance,power, temperature, energyand reliabilit y.

We needto study and better understand the relations betweendi�eren t dimensions. We also need

to better understand the interaction between adaptation for di�eren t components of the system.

A uni�ed framework for performance, power, temperature, energy, and reliabilit y would poten-

78

tially have a huge bene�t, leading to optimal performance/power/temp erature/energy/reliabilit y

tradeo�s basedon the requirements of the target system.

79

References

[1] T. J. O'Gorman et al., \Field Testing for CosmicRay Soft Errors in SemiconductorMemories,"
IBM Journal of Research and Development, vol. 40, no. 1, pp. 41{50, 1996.

[2] J. F. Ziegler, \T errestrial Cosmic Rays," IBM Journal of Research and Development, vol. 40,
no. 1, pp. 19{39, 1996.

[3] N. Wang, T. Rafacz, J. Quek, and S. J. Patel, \Characterizing the E�ects of Transient Faults
on a Modern High-PerformanceProcessorPipeline," in Proceedings of the International Con-
ference on DependableSystemsand Networks, 2004.

[4] C. Weaver et al., \T echniquesto Reducethe Soft Error Rate of a High-PerformanceMicropro-
cessor,"in Proceedings of the 31st annual international symposium on Computer architecture,
2004.

[5] X. Li, S. Adve, P. Bose,and J. A. Rivers, \Arc hitecture-Level Soft Error Analysis: Examin-
ing the Limits of Common Assumptions," in Proceedings of the International Conference on
DependableSystemsand Networks, 2007.

[6] X. Li, S. Adve, P. Bose,and J. A. Rivers, \SoftArc h: an Architectural Level Tool for Modeling
and Analyzing Soft Errors," in Proceedings of the International Conference on Dependable
Systemsand Networks, 2005.

[7] X. Li, S. Adve, P. Bose, and J. A. Rivers, \Online Estimation of Architectural Vulnerabil-
it y Factor for Soft Errors," in Proceedings of the 35th Annual International Symposium on
Computer Architecture, 2008.

[8] S. S. Mukherjee et al., \A Systematic Methodology to Compute the Architectural Vulnera-
bilit y Factors for a High-Performance Microprocessor," in Proc. of the 36th Intl. Symp. on
Micr oarch., 2003.

[9] A. Biswas,P. Racunas,R. Cheveresan,J. Emer, S. S. Mukherjee, and R. Rangan, \Computing
the Architectural Vunerabilit y Factor for Address-BasedStructures," in Proceedings of the 29th
Annual International Symposium on Computer Architecture, 2005.

[10] K. Trivedi, Probability and Statistics with Reliability, Queueing,and Computer Science Appli-
cations. Prentice Hall, 1982.

[11] S. Ross,A First Course in Probability. Prentice Hall, 2001.

[12] X. Li et al., \Arc hitecture-Level Soft Error Analysis: Examining the Limits of Common As-
simptions (extendedversion)," Tech. Rep. UIUCDCS-R-2007-2833,UIUC, March 2007.Avail-
able at http://rsim.cs.uiuc.edu/Pubs/07dsn-tr.p df.

80

[13] M. Moudgill et al., \V alidation of Turandot, a Fast ProcessorModel for Microarchitecture
Evaluation," in International Performance, Computing and Communication Conference, 1999.

[14] P. Shivakumar et al., \Mo deling the E�ect of Technology Trends on the Soft Error Rate of
Combinational Logic," in Proceedings of the 2002 International Conference on Dependable
Systemsand Networks, pp. 389{398, June 2002.

[15] C. Moore, \The POWER4 SystemMicroarchitecture," in Micr oprocessor Forum, 2000.

[16] F. Irom, F. F. Farmamesh,A. H. Johnson, G. M. Swift, and D. G. Millw ard, \Single-Event
Upset in Commercial Silicon-on-Insulator PowerPC Microprocessors,"IEEE Transactions on
Nuclear Science, vol. 49, pp. 3148{3155,Dec. 2002.

[17] G. M. Swift et al., \Single-Event Upset in the PowerPC750 Microprocessor," IEEE Transac-
tions on Nuclear Science, vol. 48, pp. 1822{1827,Dec. 2001.

[18] T. Karnik, P. Hazucha, and J. Patel, \Characterization of Soft Errors Causedby SingleEvent
Upsetsin CMOS Processes,"IEEE Transactionson Dependableand Secure Computing, vol. 1,
pp. 128{143, June 2004.

[19] V. Iyengar, L. H. Trevillyan, and P. Bose, \Representativ e Tracesfor ProcessorModels with
In�nite Cache," in Proc. of the 2nd Intl. Symp. on High-Perf. Comp. Architecture, 1996.

[20] T. Sherwood et al., \Phase Tracking and Prediction," in Proceedings of the 30th Annual In-
ternational Symposium on Computer Architecture, 2003.

[21] N. Soundararajan, A. Parashar, and A. Sivasubramaniam,\Mechanismsfor bounding vulner-
abilities of processorstructures," in Proceedings of the International Symposium on Computer
Architecture, June 2007.

[22] K. Walcott, G. Humphreys, and S. Gurumurthi, \Dynamic Prediction of Architectural Vul-
nerabilit y From Microarchitectural State," in Proceedings of the International Symposium on
Computer Architecture, 2007.

[23] S. W. Golomb, Shift Register Sequences (Revised edition) . AegeanPark Pr, 1981.

[24] M. Moudgill et al., \En vironment for PowerPC Microarchitectural Exploration," in IEEE
Micr o, 1999.

[25] X. Fu, J. Poe, T. Li, and J. A. B. Fortes, \Characterizing microarchitecture soft error vulnera-
bilit y phasebehavior," in Proceedings of the 14th IEEE International Symposium on Modeling,
Analysis, and Simulation, 2006.

[26] E. W. Czeck and D. Siewiorek, \E�ects of Transient Gate-level Faults on Program Behavior,"
in Proceedings of the 1990 International Symposium on Fault-Tolerant Computing, pp. 236{
243, June 1990.

[27] S.Kim and A. K. Somani,\Soft Error Sensitivity Characterization for MicroprocessorDepend-
abilit y Enhancement Strategy," in Proceedings of the International Conference on Dependable
Systemsand Networks, pp. 416{425, Sept. 2002.

[28] N. Wang et al., \Examining ACE Analysis Reliabilit y Estimates Using Fault Injection," in
Proceedings of the International Symposium on Computer Architecture, 2007.

81

[29] J. Ohlsson, M. Rimin, and U. Gunne
o, \A Study of the E�ects of Transient Fault Injec-
tion into a 32-bit RISC with Built-in Watchdog," in Proceedings of the 1992 International
Symposium on Fault-Tolerant Computing, June 1992.

[30] E. Rotenberg, \AR-SMT: A microarchitectural approach to fault tolerance in microproces-
sors," in Proceedings of Fault-Tolerant Computing Systems, pp. 84{91, June 1999.

[31] S. S. Mukherjee, M. Kontz, and S. K. Reinhardt, \Detailed designand evaluation of redundant
multithreading alternatives," in Proceedings of the 29th Annual International Symposium on
Computer Architecture, pp. 99{110, May 2002.

[32] N. Oh et al., \Error detection by duplicated instructions in super-scalar processors,"IEEE
Transactions on Reliability , vol. 51, no. 1, pp. 63{75, 2002.

[33] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August, \SWIFT: Software
implemented fault tolerance," in Proceedings of the 3rd International Symposium on Code
Generation and Optimization, March 2005.

[34] T. M. Austin, \Div a: a reliable substrate for deep submicron microarchitecture design," in
Proceedings of the 32nd annual ACM/IEEE international symposium on Micr oarchitecture,
pp. 196{207, 1999.

[35] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler, D. Blaauw, T. Austin,
K. Flautner, and T. Mudge, \Razor: A low-power pipeline basedon circuit-level timing specu-
lation," in Proceedings of the 36th Annual IEEE/A CM International Symposium on Micr oar-
chitecture, 2003.

[36] N. Wang, , and S. J. Patel, \ReStore: Symptom BasedSoft Error Detection in Microproces-
sors," in Proceedings of the International Conference on DependableSystemsand Networks,
2005.

[37] P. Racunas, K. Constantinides, S. Manne, and S. S. Mukherjee, \P erturbation-Based Fault
Screening," in Proceedings of the 13th International Symposium on High-Performance Com-
puter Architecture, 2007.

[38] M.-L. Li, P. Ramachandran, S.K. Sahoo, S.V. Adve, V. S.Adve, and Y. Zhou, \Understanding
the propagation of hard errors to software and implications for resilient system design," in
ASPLOS XIII: Proceedings of the 13th international conference on Architectural support for
programming languagesand operating systems, 2008.

[39] S. Sahoo, M.-L. Li, P. Ramachandran, S. Adve, V. Adve, and Y. Zhou, \Using likely pro-
gram invariants to detect hardware errors," in Proceedings of the International Conference on
DependableSystemsand Networks (DSN), June 2008.

[40] B. Fields, S. Rubin, and R. Bodk, \F ocusing processorpolicies via critical-path prediction,"
in Proceedings of the 28th Annual International Symposium on Computer Architecture, 2001.

[41] E. Tune, D. Liang, D. M. Tullsen, and B. Calder, \Dynamic prediction of critical path instruc-
tions," in Proceedings of the 7th International Symposium on High-Performance Computer
Architecture, 2001.

82

[42] A. Rogers and K. Li, \Soft ware support for speculative loads," in Proceedings of the 5th
International Conference on Architectural Support For Programming Languagesand Operating
Systems, 1992.

[43] H. Sharangpani and K. Arora, \Itanium processormicroarchitecture," IEEE Micr o, vol. 20,
no. 5, 2000.

[44] X. Li, Z. Li, Y. Zhou, and S. Adve, \P erformance directed energy management for main
memory and disks," ACM Trans. Storage, vol. 1, no. 3, 2005.

[45] X. Li, R. Gupta, S. V. Adve, and Y. Zhou, \Cross-component energy management: Joint
adaptation of processorand memory," ACM Trans. Archit. Code Optim., vol. 4, no. 3, 2007.

83

Author's Biograph y

Xiaodong Li was born in Henan, China. He received his Bachelor degreein Electrical Engineering
from the University of Scienceand Technology of Beijing in May of 1997,and the Master of Science
degree in Electrical Engineering from the Purdue University in 2002. He joined the computer
scienceprogram at University of Illinois at Urbana-Champaign in August 2002. His main research
interest is in computer systemsand architecture.

84

