¢ 2008 Xiaodong Li

SOFT ERROR MODELING AND ANALYSIS FOR MICROPROCESSORS

BY

XIAODONG LI

B.Eng., University of Scienceand Tednology of Beijing, 1997
M.Eng., Institute of Automation, ChineseAcadeny of Sciences2000
M.S., Purdue University, 2002

DISSERTATION

Submitted in partial ful llmen t of the requiremerts
for the degreeof Doctor of Philosophy in Computer Science
in the Graduate College of the
University of lllinois at Urbana-Champaign, 2008

Urbana, lllinois

Doctoral Committee:

ProfessorSarita V. Adve, Chair
ProfessorJosephTorrellas
Asscciate ProfessorYuanyuan Zhou
Assistant ProfessorCraig Zillas
Doctor Jude Rivers, IBM Researt

Abstract

Soft errors are a growing concernfor processorreliability. Recen work has motivated architecture
level studies of soft errors sincethe architecture level can mask many raw errors and architectural
solutions can exploit workload knowledge. My dissertation focuseson the modeling and analysis of
soft error issuesat the architecture level.

We start with the widely usedmethod for estimating the architecture level meantime to failure
(MTTF) due to soft errors. The method rst calculatesthe failure rate for an architecture level
componert as the product of its raw error rate and an architecture vulnerability factor (AVF).
Next, the method calculates the system failure rate as the sum of the failure rates (SOFR) of
all componerts, and the system MTTF as the reciprocal of this failure rate. Both steps make
signi cant assumptions. We analyzethe validity of the two stepsusing both mathematical analysis
and experiments. We nd that although the AVF+SOFR method is valid for most current systems
under current raw error rates, for somecasesit can lead to signi cant discrepancies. We explore
scenariosin which sud discrepanciescould occur in practice.

To nd an alternative model that is not subject to sud limitations, we proposea model and
tool called SoftArch that doesnot make the above AVF+SOFR assumptions. SoftArch is basedon
a probabilistic model of error generation and propagation processin a processor.Our experimens
shaw that SoftArch doesnot exhibit the discrepanciegshe AVF+SOFR su ered. We apply SoftArch
to an out-of-order processorrunning SPEC2000bendcimarks. Our results motivate selective and
dynamic architecture level soft error protection schemes. Next, asanother application, we quartify
the impact of technology scaling on the processorsoft error rate, taking the architecture level
masking and workload characteristics into consideration.

By using the SoftArch tool, we obsene that there is much architecture level masking and that

the degreeof such masking can vary signi cantly acrossworkloads, individual units, and workload

phases. Thus, it is natural to considerthe architecture level solutions to take advantage of sud
variations. In order to do that, one would need reasonably accurate estimate of the amount of
masking e ect in real time. For most current systems, AVF is an accurate abstraction of the
architecture level masking e ect. Existing solutions for estimating AVF are often basedon o ine
simulators and usually hard to implemert in real processors. In this dissertation, we propose a
novel way of estimating AVF online, using simple modi cations to the processor. Our method
appliesto both logic and storage structures on the processorand doesnot require complex o ine
calibration for di erent workloads. We test our method with a widely usedsimulator from industry
for SPEC bendimarks. The results show that the method provides reasonably accurate run-time
AVF estimates.

To sum up, this dissertation studies the architecture level soft error modeling and analysis
problems. It provides new techniquesto examineand take advantage of architecture level soft error
behavior. We apply our tool to investigate the impact of technology scaling on soft errors. We also

proposean e cien t online AVF estimation algorithm.

Ac knowledgemen ts

This dissertation would not have beenpossiblewithout the support of many people.

First, 1 would like to expressmy deepgratitude to my thesisadvisor, Prof. Sarita Adve, for her
constart guidanceand invaluable support through my graduate study. Her insights and attention
to detail were instrumental in helping me achieve my academicgoals. | also want to thank Dr.
Pradip Boseand Dr. Jude Riversfrom IBM researti, whom | have beenfortunate enoughto work
with during my Ph.D. resear@t. They provided vital industrial perspectives for all my researh
work.

I am alsoindebted to the members of my dissertation committee, Prof. JosephTorrellas, Prof.
Craig Zilles, Prof. Yuanyuan Zhou and Dr. Jude Rivers for their critical feedbad, especially at
my preliminary exam and thesis defense.

I would like to thank the members of the RSIM group, especially Alex Li, and Pradeep Ra-
machandran, for their important feedbad& during my practice talks for the prelim and thesisdefense.

Finally, | would like to extend my thankfulnessto my family for their support throughout all
theseyears. | thank my wife, Jing Liu, for her patienceand love that helped me survive the hardest

time.

Table of Contents

Chapter

1.1
1.2

1.3

Chapter

2.1

2.2

2.3

2.4

Chapter

3.1
3.2

3.3

3.4

1 Introduction e 1
Motivation andgoal e 1
Contributions 1
1.2.1 Limitations of AVF+SOFR 2
1.2.2 SoftArch. 2
1.2.3 Online AVF estimation 3
Organization e e e e e 4

2 Assumptions and limitations of the AVF+SOFR method 5
AVF+SOFR method and assumptions 7
211 The AVF step. o e e e 7
21.2 The SOFRstep. e e e e 7
2.1.3 AVF+SOFR assumptions ittt 8
AVF+SOFR limitations: an analytical view 9
2.2.1 The AVF step: MTTF for an isolated functional or storageunit 10
2.2.2 The SOFR step: MTTF for multiple functional and/or storageunits 13
2.2.3 Summary of implications 15
AVF+SOFR limitations: an experimental view 16
2.3.1 Experimental methodology, 16
2.3.2 Results 21
SUMMANY e e e e e e e e e e 24

3 SoftArc h model 26
Introduction L 26
SoftArch details: a model for architecture level MTTF 27
3.2.1 Error generationmodel 28
3.2.2 Error propagationmodel. 29
3.2.3 Program failure andtime to failure 32
3.2.4 Determining meantime to failure (MTTF) 32
Implementation of the SoftArchmodel 34
3.3.1 Integration with timing simulation 34
3.3.2 Estimation of 35
3.3.3 Estimation of €ggic 36
3.3.4 Tracking basicerror setE; forvaluev; 37
3.3.5 Identifying valuesfor program failure 37
Experiments andresults e 38
3.4.1 Compare SoftArch to the Monte-Carlo method 38

3.4.2 A casestudy with SoftArch 38

3.4.3 Another application of SoftArch: architecture level scalinganalysis. 44

3.5 Summary ... e e e e e e 50
Chapter 4 Online estimation of the AVF 51
4.1 Introduction 51
4.2 AVF estimation algorithm e 54
4.2.1 Overviewofthe algorithm 54

4.2.2 Determining potential failure 56

4.2.3 Determining N { the number of error injection samplesneeded 57

4.2.4 Determining M { the interval betweensuccessie error injections 59

4.2.5 Hardwaresupport andoverhead 61

4.2.6 Limitations 62

4.3 Experimental methodology 63
4.4 Results. e e 64
45 SUMMAIY . . . o e e e e e e e 70
Chapter 5 Related work e 71
5.1 Softerrormodeling. e 71
5.2 AVF estimation 72
5.3 Soft error protection schemes e 73
5.4 Otherrelatedwork e 74
Chapter 6 Conclusions and future directions 76
6.1 Conclusions e e 76
6.2 Future directions e 77
6.2.1 Architecture level solution for softerrors. 77

6.2.2 Unied systemwide adaptation framework 78
References e 80
Author's Biograph y e 84

Vi

Chapter 1

In tro duction

1.1 Motiv ation and goal

CMOS technology scaling has brought tremendousimprovemert in performancefor semiconductor
devices. As we move to sub-100nm lithographies, however, soft errors are emerging as a new
challengein processordesign. Soft errors or single evert upsetsare transient errors causedby high
energy particle strikessucd as neutrons from cosmicrays [1, 2] and alpha particles from padaging
material. Such strikescan ip the bit storedin a storagecell and changethe value being computed
by alogic elemen. Although a consensusn exact soft error rates is still lacking, there is a growing
concernabout the phenomenon.

Recen work has shown that many of the raw errors that occur at the device and circuit level
may be masked at the architecture level, potentially motivating lower cost protection mecanisms.
For example, Wang et al. report that about 85% of the raw errors are masked at the architecture
level [3]. By consideringsolutions at the architecture level, knowledge of workload behavior can be
exploited, leadingto potertially more e cien t protection solutions (e.g., [3, 4]). Theseobsenations
motivate the needfor comprehensie models and tools to study soft errors at the architecture level
and solutions at the architecture level to remedy the problem.

In this dissertation, we focus on the architecture level modeling and analysis of the soft error

problem.

1.2 Contributions

This dissertation makesthree key cortributions.

1. Analyzesthe assumptionsand limitations of the AVF+SOFR method [5].

2. ProposesSoftArch, a new architecture level model and tool for modeling and analyzing soft

errors at the architecture level [6].

3. Proposesa novel method for online estimation of AVF for soft errors [7].

We now discussead of the cortributions in more detail.

1.2.1 Limitations of AVF+SOFR

The rst contribution of this dissertation is a detailed analysis of the limitations of the widely
used method for estimating MTTF due to soft error { the AVF+SOFR method. First, our work
builds a fundamental understanding of the AVF+SOFR method at the architecture level. It explic-
itly identi es somefundamenal assumptionsin the AVF+SOFR approac and shows that these
assumptionsdepend on three parameters. We then useboth mathematical and experimental tech-
niques to ched the validity of the above method acrossa large design space. We nd that the
above method is valid for most of the realistic casesunder current raw error rates. Howewer, for
some conbinations of large systems, long running workloads with large phases,and/or high raw

error rates, the AVF+SOFR method can lead to signi cant discrepancies.

1.2.2 SoftArc h

In seart for an alternative model, we propose SoftArch, to enable analysis of soft errors at the
architecture level in modern processors.SoftArch is basedon a probabilistic model of error gener-
ation and propagation processin a processor.Comparedto prior architecture level tools, SoftArch
is more comprehensie or faster. What is more important, our experiments show that SoftArch
doesnot needto make the sameassumptionthat AVF+SOFR method does. The MTTF computed
by SoftArch haslessthan 2% error relative to the MTTF value calculated using the Monte-Carlo
method for the whole wide design spacewe have studied.

We also use SoftArch to quarntify the MTTF of a modern out-of-order processorand the con-
tribution of dierent structures to the failure rate, for various SPEC bendimarks. Our results

are consistert with previous studies. We show that not only is there signi cant architecture level

masking e ects, there is substartial inter- and intra-application variation in MTTF or failure rate
and substartial application-dependert variation that contributes to the failure rate from di erent
structures. Theseresults motivate selective protection of only the most vulnerable structures and
dynamic, application-aware protection schemes.

As another application, we apply SoftArch to quartify the impact of technology scaling on the
processorsoft error rate, taking the architecture level masking e ects and workload characteristics
into consideration. For our evaluation, we use SoftArch to study the AVF and soft error rate
(SER) for dierent structures in a modern superscalar processorrunning SPEC2000bencdmarks.
We compare the SERs acrossfour di erent technologiesranging from 180nm to 65nm with the
same microarchitecture. We nd that with scaling, the AVF for logic structures often decrease,
the AVF for storage elemers remains roughly unchanged, and the MTTF for the full processor
roughly follows the trend for the raw SER of storage structures (i.e., the MTTF decreasedrom
180nmto 90nm and increasesfrom 90nmto 65nm.) This study assumeshe number of transistors

on the chip stays the same.

1.2.3 Online AVF estimation

Using SoftArch, we nd that there is much architecture level masking and that the degreeof sud
masking can vary signi cantly acrossworkloads and also individual workload phases. This pro-
vides opportunities for an architecture level solution to take advantage of the application behavior
variation. For that to happen, it is important to be able to accurately estimate the masking e ect
which is captured by the architecture vulnerability factor (AVF) for most current systems. Existing
solutions for estimating AVF are often basedon o -line simulators and are usually hard to imple-
mert in real processors.This dissertation proposesa novel way of estimating AVF on-line while the
program is running. We proposesomesimple hardware modi cations for the processorand usean
algorithm to e ectiv ely estimate AVF. It is a generalmethod that appliesto both logic and storage
units on the processor.Comparedto previous methods for estimating AVF, our method does not
require oine simulation with simulators, nor doesit require calibration for di erent workloads.
We test our method with SoftArch coupledto a widely used simulator from industry and SPEC

benchmarks. The results shav that our method provides accurate run-time AVF estimates.

1.3 Organization

The rest of the dissertation are organizedasfollows. Chapter 2 analyzesthe current state-of-the-art
AVF+SOFR soft error modeling method. Chapter 3 proposesSoftArch, an architecture level model
and tool to analyze soft errors at the architecture level. Chapter 4 proposesa new e cien t on-line
AVF estimation method. Chapter 5 discussegelated work and Chapter 6 preseris the conclusions

of this dissertation and possibleavenues of future work.

Chapter 2

Assumptions and limitations of the
AVF+SOFR metho d

The AVF+SOFR method hasbeenwidely usedin estimating processoMTTF values. The method-
ology computesMTTF using two simple steps|8], illustrated in Figure 2.1. The AVF step calcu-
lates the failure rate of ead individual processorcomponent (e.g., ALU, register le, issuequeue)
as the product of its raw failure rate and a factor that accouris for architecture level masking
e ect. Mukherjee et al. formalize the notion of the architecture level masking e ect as the ar-
chitectural vulnerability factor (AVF) [8] and shov how to calculate it for various architectural
componerts [9, 8]. The SOFR step calculatesthe failure rate of the ertire processor(or any
system) asthe Sum Of the Failure Rates (SOFR) of the individual componerts of the processoror
system (as calculated in the AVF step). It calculatesthe MTTF of the processor(or system) as

the reciprocal of its failure rate.

‘ Processor failure rate

Component failure rate
]
AVF, 4%% AVF, ;é AVF, %TB

Component 1 Component 2 Component 3
raw error rate raw error rate raw error rate

Figure 2.1 The AVF and SOFR steps for MTTF.

Both the AVF and SOFR stepsimplicitly make certain assumptionsabout the statistical prop-
erties of the underlying error process.While theseassumptions,described below, may hold for the

raw error process,it is unclear whether they hold for the architecturally masked process.Our goal

is to examinethe validity of theseassumptionsunderlying the mathematical basisof the AVF and
SOFR steps, and the implications of these assumptionsfor evaluating soft error MTTF for real
systems.

Next, we will analyze the assumptionsthrough mathematical analysis and experimens. Our
rigorous mathematical methods analyze the limits and value rangesof various parameters within
which the AVF+SOFR assumptionshold true. In order to validate the conclusionsand quartify
the limits, we designsimulation-based experiments to explore a wide designspace.

We nd that the impact of the above assumptionson the MTTF calculation dependson three
parametersrelated to the environment, system, and the workload respectively: (1) the raw error
rate of the individual componerts, (2) the number of componerts in the system on which SOFR
is applied, and (3) the length of the full execution or the longest repeated phase of the workload.

Speci cally, our evaluations shaw the following.

1. For systemswhere the individual componerts have small raw error rates, the total humber
of componerts is small, and where the workload consists of repeated executions of a short
program, the AVF+SOFR assumptionsintro duce negligible error. To our knowledge, previ-
ously published work using the AVF+SOFR methodology considerssystemsand workloads
that obey the above constraints. This result is by itself signi cant sinceit, for the rst time,

validates the mathematical basisfor using the AVF+SOFR methodology.

2. Our results shav that the AVF+SOFR method canresult in large discrepanciesn MTTF (up
to 100%)for individual componertis that have large raw error rates (e.g., aswould bethe case
in spaceor in acceleratedtests or with componerts consisting of many millions of bits) and/or
systemsthat have many componerts (e.g., large clusters of thousands of processors)and/or
long-running workloadswith di erent utilization characteristics over largetime windows (e.g.,
serner workloadsthat run at high utilization in the day but low utilization in the night). This
problematic part of the design spaceis certainly much smaller and lesscommon than the
spaceover which AVF+SOFR is valid; howewer, it is not negligible and represens seeral
realistic systems. Our results give a note of caution against blind use of the AVF+SOFR

method for suc systems.
We discussthe AVF+SOFR method and their assumptionsin detail in Section2.1. Section2.2

6

and Section 2.3 provide an analytical and an experimental view.

2.1 AVF+SOFR metho d and assumptions

2.1.1 The AVF step

In a given cycle, only a fraction of the bits in a processorstorage componert and only some of
the logic componerts will a ect the nal program output. A raw error event that doesnot a ect
thesecritical bits or logic componerts hasno adversee ect on the program outcome. Mukherjee et
al. usedthe term architecture vulnerability factor (AVF) to expressthe probability that a visible
error (failure) will occur, given a raw error event in a componert [8]. The AVF for a hardware
componert can be calculated as the percertage of time the componert contains Architecturally
Correct Execution (ACE) bits (i.e., the bits that aect the nal program output). Thus, for a
storage cell, the AVF is the percertage of cyclesthat this cell contains ACE bits. For a logic
structure, the AVF is the perceriage of cyclesthat it processesACE bits or instructions.

Mukherjee et al. calculate the FIT rate of a processorcomponert as the product of the com-
ponert's AVF and its raw FIT rate (i.e., the FIT rate of the componert if every bit were ACE).
Denoting the raw FIT rate of the component as . (also called the raw soft error rate or raw SER)
and its AVF as AV F¢, they derive the MTTF of the componert as:

1

MTTFe= —— 2.1
¢ ¢ AV F, (1)

We show in Section2.2.1that an assumptionunderlying the above equation is that the time to
failure for a program is uniformly distributed over the program. We explore the caseswhere this

assumptionis and is not true to assesghe validity of the AVF step.

2.1.2 The SOFR step

Sum of failure rates (SOFR) is an industry standard model for conmbining failure rates of individual
processor(or system) componerts to give the failure rate and MTTF of the ertire processor(or
system). Let the system corntain k componerts with failure rate of componert i as F ail ur eRate;

(which is assumedto be the reciprocal of the MTTF of componert i or /M TTF;). The SOFR

model calculatesthe failure rate (F ail ureRatesys) and the MTTF (M TTFgys) of the systemas:

X 1

F ail ur eRategys = F ail ureRate; = —
sys ' _, MTTF,

i=1

2.2)

1
F ail ur eRatesys

MTTFgys = (2.3)

The SOFR model makestwo major assumptions[10]. First, it assumeghat eath componert has
a constart failure rate (i.e., exponertially distributed time to failure) and the failures for di erent
componerts are independert of ead other. Section 2.2.2 shaws that architectural masking may
violate this assumptionin somecases.Second,the SOFR model assumes seriesfailure system;i.e.,
the rst instance of a componert failure causesthe entire processorto fail. This assumption holds
if there is no redundancy in the system. Since our focus is on the impact of program-dependert
architectural masking on the statistical properties of the failure process,we continue to make this

assumption aswell and focusonly on the rst assumption.

2.1.3 AVF+SOFR assumptions

A key assumption behind the AVF step is that the probability of failure due to a soft error in a
given componert is uniform acrossa program's execution. This allows a single AVF value to be
usedto derate the raw error rate of a componert. The uniformity assumptionis reasonablefor raw
error everts sincethe probability of a high energy particle strike is no dierent at di erent points
in the program's execution for most realistic scenarios.Howewer, it is unclear that the assumption
holds after incorporating architectural masking. Similarly, a well-documerted assumption for the
SOFR step is that the time to failure for a given componert follows an exponertial distribution.
Again, the assumptionis reasonableand widely acceptedfor raw error everts, but it is unclearthat
it holds for failures after architectural masking.

Thus, both the AVF and SOFR steps make assumptionsabout the error processthat may be
consideredquestionable,oncearchitectural maskinge ects aretakeninto account. The questionwe
addressis: Under what conditions (if any) doesthe violation of the above AVF+SOFR assumptions

introduce signi cant errors in the calculation of the MTTF?

2.2 AVF+SOFR Iimitations: an analytical view

This sectionusesmathematical analysisto understand the limits of the basic assumptionsunderly-
ing the AVF+SOFR methodology for estimating MTTF for soft errors. Later sectionsbadk these
results with detailed Monte-Carlo simulations for actual workloads.

Our analysis makestwo assumptionsthat are also made by the AVF+SOFR methodology.

(1) Inter-arrival times for raw errors in a component are independent and expnentially dis-
tributed with density function e !. It is reasonableto assumethat the time to the next high
energy particle strike is independent of the previous strike and is exponertially distributed (the
processis memoryless). In practice, there is somedevice- and circuit-level masking, which could
possibly render the raw error processthat is subject to architectural masking as non-exponertial.
In our experiments, however, we do not have this low-level masking information available; we there-
fore assumethe best casefor the AVF+SOFR methodology { that the inter-arrival time for raw
errors beforeany architectural masking is an exponertial processwith density function e '. We
referto asthe raw error rate.

(2) The workload runs in an in nite loop with similar iterations of length L. This work considers
the e ect of real application workloads. For a workload that runs for a nite time, there is a
possibility that no failure occurs during its execution. For a meaningful interpretation of MTTF
for a systemrunning sudc a workload, we assumethat the workload runs repeatedly in a loop until
the rst failure. All iterations of this loop are identical and ead represens a single invocation of
the original workload. We refer to the sizeof this loop iteration asL. Workloads that are naturally
in nite alsorun in a loop. We assumethat such a workload also consists of identical iterations,
eah of sizeL. This assumption is trivially satis ed sinceL can potentially be in nite. (All the
prior work on AVF+SOFR has beenin the context of nite workloads.)

We additionally assumethat program failure occurs if a raw error is not masked. Although
the time to failure and the time to the next raw error evernt are cortinuous random variables, for
convenience,we often considertime in units of processorcyclesbelow (for architectural masking,

for a given cycle, all raw error events during any part of the cycle are either masked or not masked).

Time to failure X

masked masked Failure
1, | t, 5 1 Time

0 Error 1 Error 2 Error 3

Figure 2.2 Sequence of raw error events. t; is the time between two raw error events
and is exponentially distributed. X is a random variable representing the time to the
rst raw error event that is not masked and leads to program failure. The gure shows
a case where X = t; + t, + ts.

2.21 The AVF step: MTTF for an isolated functional or storage unit

The AVF step computesthe MTTF of a single componert of the processorusing equation 2.1. We
examinethe validity of this step by deriving the MTTF of a given componert from rst principles.

Figure 2.2 illustrates a sequenceof raw error events with inter-arrival times of tq;to;::;th; .
Each of thesetimes is an instance of a random variable, say T, with exponertial density function
e '. Each raw error has someprobability of being masked. Failure occurs at the rst raw error
that is not masked.

Let X be the random variable that denotesthe time to failure. Then X = t; + to+ 1+ t if
the rst k 1 raw errors are masked and the kth raw error is not masked. Thus, X = P iK=1 ti,
whereK is a random variable suc that K = k denotesthe ewvernt that the rst k 1 raw errors are
masked and the kth raw error is not masked.

Now the MTTF of the componert is simply the expectedvalue of X, E(X). Using a standard
result for the expectation of a sum of random variables [11]], it follows that: MTTF = E(X) =
E(K)E(T). We know that E(T) = 1 (this would be the MTTF if there were no architectural

masking and every raw error resulted in failure). Thus,

MTTF = E(K)E (2.4)

Comparing with equation 2.1, to validate the AVF step, we would needto shaw that E(K) =
ﬁ for all cases.Howewer, E(K) dependson the workload characteristics and the raw error rate
, and, in general,cannot be analytically derived. Nevertheless,with certain assumptions,we show
that we can derive E(K) to be 1/AVF, validating the AVF step for caseswhere the assumptions

hold. Wethen show counter-exampleswheretheseassumptionsdo not hold, and the MTTF derived

10

from rst principles is signi cantly dierent from the MTTF derived from the AVF equation 2.1.

AVF is valid when L 10

We rst show that if the product of the raw error rate and the program loop sizeis very small,
then E(K) = ﬁ (and sothe AVF equation holds). Below we shaw that in this case,any of the
L cyclesin the program loop are equally vulnerable to a raw error event occurrence. From this,
it will follow that the expected value of K (i.e., the court of the rst raw error event that is not
masked) is the sameas 1/AVF.

Let T be the cycle count at which the next raw error event occurs. Then, without loss of
generality, T mod L is the cycle court for this event relative to the start of the loop iteration.
Appendix A of an extended version technical report [12] shows that if L ! 0, the random
variable T mod L follows a uniform distribution over [0;L]. In other words, for very small L
any of the L cyclesof program execution are equally vulnerable to a raw error evernt occurrence.

Thus, the probability that the next raw error event occurs at cyclei (relative to the start of
the loop iteration) is 1=L. Let p; be the probability that a raw error event that occurs at cycle i
(relative to the start of the loop iteration) is masked (p; is O or 1 for a given program execution).
Therefore, the probability that the next raw error evernt is masked is P !-:1 % pi. This valueis a
constart that we denoteby M.

Now to calculate E(K), we rst calculate Pf K=k g. This is the probability that the rst k 1
raw error everts are masked and the kth raw error evert is not masked. Sinceraw error events are
independert, it follows that PfK=k g= Mk (1 M). That is, K is a geometrically distributed
random variable and soE(K) = 1=(1 M). Thus, we just needto shav that 1 M is the sameas
the AVF.

(1 M) canbe expresseobsp !;1 1|_—p' 1 p isthe probability that araw error evernt at cycle
i will not be masked and will causefailure. 1 M is therefore the averageof this probability over
the ertire program length. This is exactly the de nition of AVF. Thus, we have shavn that the

AVF equation 2.1lisvalid whenL ! O.

11

AVF is not valid for some values of and L

In this section, we construct a simple (synthetic) program that servesasa courter-exampleto shaov
that the assumptionsbehind the AVF step do not always hold.

Considera program with an in nite loop with iteration sizelL, such that the consideredsystem
componert is active for the rst A cyclesand is idle for the remaining A + 1 to L cyclesof the
iteration. As before,let X be the random variable denoting the time to failure for the componert
running the above program. Let T be the random variable denoting the time to the rst raw error
evert. If T isin cycles[0;A];[L; L + A];:::, then the componert is active and the time to failure is
simply the value of T. Otherwise, the raw error occursin an idle period, sa, of iteration k, and
it is masked. Further, any raw errors until the next active period (i.e., until cycle kL) will alsobe
masked.

As seenat cycle kL, the distribution for the time to the next raw error event (starting from kL)
is the sameasthat starting from time 0. This is due to the memorylessproperty of the exponertial
distribution. * Further, as seenfrom kL, the masking processis also the sameas at time 0, since
all iterations are identical. Thus, given that there is no failure until cycle kL, the expectedtime to
failure from cycle kL is again E(X).

It follows that given that the rst raw error event occursin the idle period of the kth iter-
ation, the expected time to failure is kL + E(X). Now using a standard result for conditional

expectation [11], we get the following:

. R
E(X) = E(E(X|T)) = 4 Exjr(t) fr(t)dt
= 5, e 'tdt+ y e '(L+ E(X))dt+
R R
SAhe twdt+ Ay e (2L + E(X))dt:

The above equation has the following closedform solution (Appendix A of [12]), giving the

MTTF of the componert from rst principles:

L L A L A

E(X)= i g A ((1Lee L)2 L(?_ e?.)z (1Aee L)+
11 e) e A el
Taemtlaetye)

t (1+4I))

!Recall that for an exponertial distribution, P(T < t+ 4 tjT>1t)= & ¢ =1 e *' Thatis, given

that a raw error has not occurred at time t, the probabilit y that the error WI|| occur within sometime 4t after t is
the sameasthat of it occurring within 4 t after time 0.

12

Synthesized Loop

Relative Error in AVF Method

50
30 Lambda
10 (Errors/Year)

L (days) 16

Figure 2.3 The relativ e error in the AVF step applied to alarge 100MB cache running
a loop with iteration size of L days with each iteration busy for L=2 days and idle
for the rest. Lambda is the raw error rate of the entire cache (the smallest value
represents 0.001 FIT per bit).

The AVF for our program is f_—\; therefore, the MTTF accordingto the AVF method is:
Eave(X)=§ 1%

Now we can calculate the relative di erence betweenthe MTTF from rst principles and from

the AVF method as:

JEavr(X) E(X)]
E(X)

When L is very small, we can show that the two MTTFs corvergeto the samevalue. For
other cases,there can be a signi cant di erence. Figure 2.3 shows the di erence betweenthe two
MTTF valuesfor a 100MB cace for dierent valuesof L and . We vary L from 1 to 16 days,
setting A as L=2 in ead case. We start with at 10 8 errors/year per bit (0.001 FIT/bit) [6]
which translates to 10 errors/year for the full cache. We additionally show resultsfor of 3and5
times this value to represen changesin technology and altitude. Although the errors are small for
the baseline(smallest) value of , they can be signi cant for higher values. Later sectionsperform

a more systematic experimental exploration of the full parameter space.

2.2.2 The SOFR step: MTTF for multiple functional and/or storage units

The SOFR step derivesthe MTTF of a systemusing the MTTFs of its individual componerts, as

shawvn in equations2.2 and 2.3. As discussedin Section2.1.2,it assumeghat for ead componen,

13

the time to failure follows an exponertial distribution with a constart failure rate (in conjunction
with the AVF step, this rate is the product of the componert's raw error rate and AVF). We next
explore the validity of this assumption, given that ead componert seessigni cant architectural
masking.
Again, the validity of the assumption dependson the valuesof the componert's raw error rate
and the program loop sizeL. Sections2.2.2 and 2.2.2 respectively discusscasesfor which the

assumptionis and is not valid.

SOFR is valid when L 10

We shaw that if L I 0 for a componert, then the time to failure, X, for that componert is
exponertially distributed with rate parameter AV F.

Section 2.2.1 showed that in this case,X = P iK=1 t;, where K follows a geometric distribution
with mean 1/AV F and the t;'s are exponertially distributed with rate . We can calculate the

density function of X as follows:

— 5 P(x<X <x +4 x)
f xX)= lim ==~~~ "%
x (X) 4x! 0 4x
= lim 1 P(Xx<X <x+4 xjK=i)P(K=i)
4xt o 7L 4x

. P
whereP(x < X < x+ 4xjK = k) = P(x< [tj < X+ 4x).
J!(=l tj is the sum of seweral independert exponertially distributed random variableswith rate
Such a sum follows the Erlang-n distribution which has the probability density function of

XN e * [10]. Thus,

P . i1
fx(x)= L (1 AVF) YAVF)- e

P i1
(AVF)e X ilzl%

(AVF)e (WVF)X

This is an exponertial distribution with rate AV F. This validates the assumption for the

SOFR step for the casewhen L is small.

The general case for and L values

In general,it is dicult to analytically characterize the time to failure distribution function for

real (or even synthetic) programs after architectural masking. In this section, to demonstrate a

14

mathematical basis, we choosea distribution that is \close" to exponertial (and mathematically
tractable) and determine the validity of using SOFR on that distribution.
We choosethe following probability density function for the time to failure (after architectural

masking) for a componern.

2

x2[0;1]

8
2 pLe X
fx(x) =

70

elsewhere

The cumulativ e distribution function (CDF) of X is Fx (x) = #& R(;‘ e Ydt, x 2 [0;1].

It follows that the MTTF of the componert is E(X) = #%& Rol xe X“dx = pL.

Assume a systemwith N sud identical componerts where X; denotesthe time to failure for
componert i. Sincewe assumeseriesfailure, it follows that the time to failure of the system, Y, is
min(Xq; Xo; 5 XN).

The CDF of Y isFy(y) =1 (1 Fx(y)N.

The PDF isfy(y)= g =N (1 Fx()M * fx(¥)

The MTTE of the systemis E(Y) = Rol fv (y)ydy

The aboveintegration cannot be calculated analytically. We solveit humerically usinga software
padkageto derive the real MTTF for N from 2 to 32.

The SOFR step calculatesthe MTTF of the system using Equations 2.2 and 2.3. For the

componert MTTFs usedin the equations, we usethe real MTTF derived above (pL):

1
MTTFsofr: PN p_:
i=1 N

ol

Figure 2.4 shavs the error in M TTFgy¢, relative to the MTTF derived from rst principles. We
seethat the error grows from 15% for a systemwith two componerts to about 32% for a system
with 32 componerts.

2.2.3 Summary of implications
Our mathematical analysissofar provides intuition for whenthe AVF+SOFR method works. The

AVF step averagesthe \utilization" of a componernt over the whole program. It therefore makes

15

I
S
>

n w
S N
o~ N

Relative Error of SOFR Method
2
X

S
R

2 4 8 16 32
Number of Components

Figure 2.4 The relativ e error intro duced by the SOFR step for a synthesized example.

the implicit assumptionthat every point of the program will have uniform probability of being hit
by a soft error. The SOFR step assumesthat the time to failure for ead individual componert
follows the exponertial distribution. Our analysisshaws that the above assumptionsare valid when

L ! 0. Howewer, in the generalcase,theseassumptionsmay not hold. We shav mathematically
tractable synthetic examplesto illustrate a few sudth cases. The next sections provide a more
systematic experimental exploration of the parameter spaceto assesshe extent of the errors due

to theseassumptions.

2.3 AVF+SOFR Iimitations: an experimental view

In this section, we show that signi cant discrepanciescan arise in many realistic scenariosusing

experiments with SPEC bendimarks.

2.3.1 Exp erimental metho dology

This section describes the methodology for our experimental analysis of the assumptions of the
AVF and SOFR steps. For eat step, we rst ewvaluate the assumptionsfor single processorsystems
common today running SPEC CPU2000 applications, and using detailed simulation to determine
architectural masking. We then take a broader view, and evaluate the assumptionsfor a large
designspace,including large clusters of processorsand a broader range of (synthesized) workloads,
but with lessdetailed simulation of architectural masking.

For both cases,we rst generatea maskingtrace that indicates, for eatr system componert,

whether a raw error in a given cycle would be masked for the evaluated system and workload.

16

Base Pro cessor Parameters
Pro cessor frequency 2.0 GHz
Fetch/ nish rate 8 per cycle
Retirement rate 1 dispatch-group (=5, max) per cycle
Functional units 2 integer, 2 FP, 2 load-store, 1 branch
Integer FU latencies 1/4/35 add/m ultiply/divide
FP FU latencies 5 default, 28 divide (pip elined)
Reorder bu er size 150 entries
Register le size 256 entries (80 integer, 72 FP, and various control)
Memory queue size 32 entries
iTLB 128 entries
dTLB 128 entries

Base Memory Hierarc hy Parameters
L1 Dcache 32KB, 2-way, 128-byte line
L1 Icache 64KB, 1-way, 128-byte line
L2 (Unied) 1MB, 4-way, 128-byte line
Base Con ten tionless Memory Latencies

L1 Latency 1 cycles
L2 Latency 10 cycles
Main memory Latency | 77 cycles

Table 2.1 Base POWER4-lik e pro cessor con guration.

To calculate the real MTTF of the system (without the AVF+SOFR assumptions), we use the
Monte Carlo technique to model the raw error process,apply the maskingtrace to the process,and

determine the MTTF of the modeled system.

Today's unipro cessors running SPEC

To determine the impact of architectural masking in a modern processor,we study an out-of-
order 8-way superscalarprocessor(Table 2.1) running programs from the SPEC CPU2000 suite (9
integerand 12 oating point benchmarks). To generatethe masking trace, we use Turandot [13], a
detailed trace-driven microarchitecture level timing simulator. We simulate an instruction trace of
100 million instructions for eady SPEC bendimark running on the above processorcon guration.
We choosefour processorcomponerts to study the impact of architecture masking: the integer,
oating point, and instruction decale units, and the 256 entry register le, with raw error rates
of 223 10°% 45 10° 33 106 and 1.0 10 “ errors/year respectively (10 8 errors/year
= 0.001FIT). Li et al. [6] derived these error rates using published device error rates for current
technology [14] and estimatesof the number of devicesof di erent typesin di erent componerts [6].
For the integer, oating point, and instruction decale units, we assumethat a raw error is
masked in a cycle if the unit is not processingan instruction in that cycle (i.e., the unit is not

busy). If the unit is busy processingan instruction, then for simplicity, we consenatively assume

17

that the error is not masked and will lead to failure. For the register le, we assumethat the raw
error strikeshappen on ead register with equal probability and error in a given register is masked
if the register contains a value that will never be read in the future. If the register's value will be
read, we consenatively assumethe error is not masked and will lead to failure. Our assumptions
of when an error is not masked are consenative sinceit is possiblethat an error in an active unit
or in aregister value that will be read may not a ect the eventual result of the program. We did
not perform a more sophisticated analysis to more precisely determine when an error is masked
becausesuc an analysisis orthogonal to the point of this dissertation and beyond the scope of
this work.

Our detailed Turandot simulation producesa masking trace for ead simulated SPEC applica-
tion. The trace cortains information on whether a raw error in a given cycle in one of the four

consideredprocessorcomponerts will or will not be masked.

Broader design space exploration

We alsoexplore a broad designspacefor the AVF and SOFR steps. We considera variety of systems
consisting of various numbers of componerts, operating in various ervironments, with di erent raw
error rates, and running di erent workloads. We usethe term systemto include a single processor
(either a full processoror only a part of it) or a large cluster of thousands of processors. A
component of a systemis the smallestgranularity at which the analysisfor architectural maskingis
applied. Speci cally, the AVF is calculated at the granularity of a componert; the SOFR step then
aggregatesthe information from the di erent componerts to give the MTTF for the entire system.
In our SOFR experiments, we use componert MTTFs obtained from the Monte Carlo method;
therefore, the error reported is only that causedby the SOFR step.

Based on our analysisin Section 2.2, the key parameters a ecting the AVF and SOFR steps
are the raw error rate of the dierent componers of the processor(or system), the number of
componerts in the system (only for SOFR), and the program loop size or workload. The following
discusseghe spacewe explore for ead of theseimportant parameters. Table 2.2 summarizesthis
space.

Comp onent raw error rate. The componert raw error rate dependson the number of devices

18

Dimension Value

N 100 10° 10’ 10° 10°

S 1 5 100 | 2000 5000

C 2 8 5000 | 50000| 500000
Workload | SPECfp | SPECint | day | week | combined

Table 2.2 The design space explored. N = number of elements (e.g., bits) in a com-
ponent; S = scaling factor for the baseline raw error rate of an element (dep ends
on technology and altitude); and C = number of components in the system (e.g.,
pro cessors in a cluster).

or elemerts (bits of on-chip storageor logic elemerns suc as gates)in the componert and the raw
error rate per elemen. We denote the number of elemers in a componert asN. N can be as
large as 10° for large cade structures or if we considerthe ertire processoras one componert in
a large cluster of multiple processors.To keepthe designspaceexploration tractable, without loss
of generality, we assumethat all N elemeris have the sameraw error rate.

We also explore di erent valuesfor the raw error rate per elemern. Under current technology;
the terrestrial raw error rate per bit for on-chip storageis about 10 8 errors/year (0.001 FIT),
which we refer to asthe baselineraw error rate. To accourt for changesin the raw error rate due
to technology scaling and at high altitudes, we introduce a parameter S that we useto scalethe
above baselinerate. We usescalingfactors of 1, 5, 100, 2,000,and 5,000in our analysis. The larger
factors correspond to systemsrunning in airplanes ying at a high altitude and for systemsin outer
spacebecauseof strong radiation at those heights [2]. Test systemsusing acceleratedconditions
are also subject to high raw error rates.

The raw error rate for a given componert is determined asthe product of N, S, and the above
baselineraw error rate (Table 2.2).

Num ber of comp onents: We denote the number of componerts in the systemas C. We study
a wide range of values for C, ranging from 2 to 500 000. The larger numbers represen large
cluster systemswith C componerts (eac of which may be a full processoror a microarchitectural
componert within a processor,depending on the granularity at which AVF is collected).

Workload and generation of the masking traces: We evaluate all systemsin the broad
designspacewith the SPEC CPU2000bendmarks menrtioned in Section2.3.1. However, theseare
short programs (small loop iteration sizelL). Many real world workloads show large di erences in

behavior over long time scales(large L) that are di cult to capture with the SPEC bendmarks.

19

In an attempt to simulate some of the behaviors of real world applications, we construct three
synthetic applications. The rst (called day) is a continuous loop where the loop iteration sizeis
set to 24 hours. The loop is busy during the day (half the time) and idle at night. The second
(called weeK) is a loop with iteration sizeone week. It is busy during the v e businessdays of the
week and idle for the weelend. The third (called combined) concatenatestwo SPEC bendimarks
in a loop with iteration sizeof 24 hours. The rst half of the iteration runs onebendimark and the
secondhalf runs the other bendimark.

For a systemwith multiple processorswe assumeall processorgun the sameworkload. Addi-
tionally, for the synthesizedworkloads, we assumethat a componert is a full processor;e.g., C=2
implies a 2 processorsystem. We assumethat ead processommasksraw errors only during the idle
portion of the workload (e.g., night time for the day workload). For the SPEC workloads, we again
assumethat ead componert is a full processor(running the samebendmark). For the masking
trace, we use the SPEC masking traces for three units in ead processor(integer, oating point,
and instruction decale) { we apply thesethree tracesto the corresponding units simultaneously to

determine whether there is a processor-leel failure.

Mon te carlo simulation

To calculate the real MTTF, we perform Monte Carlo simulation where we do the following for
ead trial. For eat componert in the modeled system, we generatea value from an exponertial
distribution with rate speci ed by the modeled system (Table 2.2). This value gives the arrival
time of the next raw error evert for the componert. We usethe masking trace of the workload to
determine whether a raw error at that time would be masked. If it is masked, we generatea new
raw error event from an independert exponertial distribution for that componert and repeat. If it
is not masked, we considerthe componert failed. The componert that is earliest to fail givesthe
time to failure of the systemfor this trial. We run atotal of 1,000,000trials and report the average

of the time to failure asthe MTTF of the modeled system/workload con guration.

20

Day workload Week workload
100% 100%
80% 80%
60% 60%

40% 40%

20% H 20% ’_‘
o / o]
o -t T T T T T | o -t T T T T T

1.0E6 1.0E7 1.0E8 1.0E9 1.0E10 1.0E11 1.0E6 1.0E7 1.0E8 1.0E9 1.0E10 1.0E11
N*S N*S
Combined (ammp/gzip) workload

Relative Error in the AVF Step
Relative Error in the AVF Step

o
B3

o
B3

52 O © O
S I 8 8
s & &

n
IS
B

Relative Error in the AVF Step

.

1.0E6 1.0E7 1.0E8 1.0E9 1.0E10 1.0E11
N*S

o
B

Figure 2.5 Error in MTTF from the AVF step relativ e to the Mon te Carlo metho d for
the synthesized workloads for representativ e values of N S (# bits in the comp onent
scaling factor for baseline raw error rate).

2.3.2 Results
AVF and SOFR with Today's Unipro cessors Running SPEC

We rst ewvaluated the discrepancybetweenthe Monte Carlo MTTF and the MTTF using the AVF
and SOFR stepsfor today's uniprocessorgunning SPEC (as described in Section2.3.1). We found
that the MTTF from the AVF step matched the Monte Carlo MTTF very well for ead of the
four processorcomponerts and ead bendimark (< 0.5% discrepancyfor all cases).Similarly, the
processorMTTF calculated using the SOFR step also matched the Monte Carlo MTTF very well.

Thus, for single processorsystemswith a small number of small componerts running SPEC
benchmarks, the AVF+SOFR method works very well. We note that in prior work, the method
has been applied primarily in this context. These results are consistert with our mathematical
analysis. The loop sizeL for the SPEC bendimarks and the componert raw error rates usedhere
are small; therefore, from Sections2.2.1and 2.2.2, we expect that the AVF and SOFR assumptions

would be valid.

21

AVF:. A Broad Design Space View

For the designspacedescribed in Table 2.2, we computed the componert MTTF using the Monte
Carlo and AVF methods as described in Section 2.3.1. Note that sincethe AVF step is applicable
to only a singlecomponert, C = 1 for all experiments in this section. Further, for a given workload,
sinceonly the product of N and S matters, we report relative error in the AVF step as a function
of dierent valuesof N S.

We found that for eadh SPEC bendimark, the AVF step works well for all N and S values
studied (relative error < 0.5%). Howewer, for the longer running synthesizedworkloads, we obsene
signi cant discrepancywhen N S is large (i.e., componert raw error rate is large). Figure 2.5
shows the error in the AVF MTTF relative to the Monte Carlo MTTF for represenativ e values of
N S for the three synthesizedworkloads. In all three casesfor N S 10°, the AVF step sees
signi cant errors (up to 90%). This high value of N S may occur when the AVF step is applied
to either large componerts (e.g., a 125MB cace with N = 10° bits), or whenthe componert sizeis
moderate but the raw error rate per elemeri (bit) is high (e.g., S = 1000becauseof high radiation
at high altitudes).

Our experiments show both positive and negative errors, depending on the workload. Thus,
AV F may either over- or under-estimate MTTF in practice.

Again, the above obsenations match well with our theoretical analysisin Section2.2.1. Thus,
for SPEC like benchmarks that run for a short time, it is safeto usethe AVF stepto calculate the
MTTF of a componert. Howewer, the AVF step must be applied carefully when using a workload
with large variations over large time scalescoupled with either a large componert or a large per-

elemert raw error rate for the componert.

SOFR: A Broad Design Space View

Figures 2.6(a) and (b) report the error in the SOFR step relative to the Monte Carlo method for
three represettative SPEC bendhmarks and the three synthesized benchmarks respectively. For
ead case,the error is reported for represenativ e valuesof C and N S covered by the design
spacein Table 2.2.

Focusing on the SPEC workloads (Figure 2.6(a)), we seethat the SOFR step is accurate for

22

mcf ammp

Relative Error
3
=

Relative Error

x
. 3 2.0E10
2010 50810 20811 g ey © 68 ¢ 50E10 20E11 5044 ©
NS - 20E12 5op1p & N'S : 20E12 50E12
gzip
100]
80%- 4‘
-
o
= 60%
w
3
2
s
T 40%
4
20%
0%+ ¢
20B10 50610 5 gg1q 5.0E11]
N'S 20E12 5op1p ™
Day workload Week workload

Relative Error
Relative Error

1055 1086 10g7 | on
N*S

100 ‘

80%- 4‘

40%-

Relative Error

20%-

0%+

5K

1.0E5 1 0E6 1.0E7 4 0E8
N*S

©
10E9 40p10 ™

(b) Synthesizedbendmarks

Figure 2.6 Error in MTTF from the SOFR step relativ e to the Monte Carlo metho d
for represen tativ e values of C (# components) and N S (bits per comp onent scaling
factor for baseline raw error rate) for (a) SPEC and (b) synthesized benchmarks.

23

systemswith a small number of componerts (C = 2 or 8) for all studied valuesof N S. When
systemsizegrows to 5,000componerts or larger, we seesigni cant errors, but only with very large
valuesof N S. For example, for a cluster of 5,000 processorswith ead processorcortaining
N = 10° bits of on-chip storage, the baselineraw error rate would needto scale 2,000 times or
more to seea signi cant error. In practice, terrestrial systemswill likely fall into the part of the
designspacewherethe SOFR step doesnot introduce any signi cant error for SPEC applications.

Focusingon the synthesizedworkloads (Figure 2.6(b)), for the day workload, we seea signi cant
error usingthe SOFR stepwhenN S 108 andC 5,000. The error increasesastheseparameters
increase. For example,with 12.5MB of storagefor ead processor(N = 10°) and baselineraw error
rate (S = 1), a5,000processorcluster seesan error in MTTF of 11%. For a similar cluster of 50,000
processorsthe error jumps to 50%. While large, such a cluster is not unrealistic. For the week
workload, sincethe loop sizeis larger than the day workload, the MTTF errors are correspondingly
larger. Thus, the 5,000 and 50,000 processorsystems mertioned above respectively see MTTF
errors of 32% and 80% for this workload. With larger processors(more storage bits) or larger
systems, the error can grow to 90% or more. Thus, for these workloads, the SOFR step incurs
signi cant errors for realistic systems.

Finally, the combined workload (with two SPEC applications) shows a relative error smaller
than for the day or weekworkload, but there is still a signi cant error for somecases.

In summary, for SPEC benchmarks under current technology and on the ground, the SOFR
step givesaccurate MTTF estimates. Howewer, in general,for larger scaleworkloads, care must be
taken to examinethe workload behavior, number of system componertis (e.g., processors)and the
raw error rate for the componerts (governed by componert sizeand per-bit or per-elemen error

rate) beforeapplying SOFR.

2.4 Summary

We have examinedkey assumptionsbehind the AVF+SOFR method for estimating the architecture
level processoMTTF dueto soft errors. We userigorous theoretical analysisbadked by simulation-
basedexperiments to systematically explore the applicability of the AVF and SOFR stepsacross

a wide designspace. Our analysis and experiments show that while both stepsare valid under the

24

terrestrial raw soft error rate values of today's technology for standard workloads (e.g., SPEC),
there are casesin the design spacewhere the assumptions of the AVF and SOFR steps do not
hold. In particular, for long running workloads with large componen-level utilization variations
over large time scalesthe assumptionsare violated for systemswith a large number of componerts
and/or with high componert-level raw error rate (i.e., large componert sizeand/or large per-bit or
per-elemen raw error rate). Under theseconditions, the projected MTTF of the modeled systemor
chip could show large errors. In general,our work builds a better understanding of the conditions
under which the standard AVF+SOFR method may be usedto project MTTF accurately, and
alerts usersto the risks of using the model blindly in conditions where the foundational axioms of

the model break down.

25

Chapter 3

SoftArc h model

As we have shown in Section 2.3.2,the AVF+SOFR method is basedon signi cant assumptions.
The assumptionsbecomequestionable for somesystemsin the design space. In this section, we
propose a model called SoftArch which can provide fast and accurate analysis of soft errors at
the architecture level. We will shav in Section 3.4.1 that SoftArch does not needto make the
same assumptionsas the AVF+SOFR method. In Section 3.4.2, We apply SoftArch to evaluate
the MTTF of a processor. In Section 3.4.3, we examine the e ect of technology scaling on the

architecture level soft error rate taking the architecture level masking e ect into consideration.

3.1 Intro duction

SoftArch works with a high-level architecture timing simulator to track the raw probability of error
in the value of ead bit (instruction or data) communicated or computed by any pipeline stagein
the processor. A value may be erroneouseither because(i) it is physically struck by a particle
during its residencetime in a structure, or (ii) it is the result of a communication of an erroneous
value, or (iii) it is computed using one or more erroneousinput values. We refer to the rst case
as error geneation and to the secondand third casesas error propagation. To model the error
generation probability, we use a combination of residencetime and raw SER numbers for storage
structures, and a simple abstraction for logic. For error propagation probability, we apply simple
probability theory on the error probabilities of the sourcesof the propagation.

During program execution, SoftArch identi es the valuesthat could a ect program outcome.
For eat sudh value, it usesthe tracked errors for the value and the simulator timing data to

determine the probability of failure and time to failure due to that value. This enablesdetermining

26

the meantime to failure using basic probability theory. SoftArch also keepsenoughinformation on
the microarchitectural structures occupiedby ead value to determine the cortribution of di erent
structures to the overall MTTF.

SoftArch is basedon the rst principle of the MTTF calculation, thusit doesnot needto make
the AVF+SOFR assumptions. We perform the same set of experiments for the same designed
spaceas described in Section2.3. We nd that for every point in the designspace,the error in the
MTTF computed by SoftArch is lessthan 1% for a single componert and 2% for the full system.
Thus, SoftArch doesnot exhibit the discrepanciesshavn by AVF+SOFR.

Next, we use SoftArch to quantify the MTTF of a modern out-of-order processorand the con-
tribution of dierent structures to the failure rate, for various SPEC bendmarks. Our results
(consistert with, but more comprehensie than, previous studies) are asfollows: (1) there is signif-
icant architecture level masking of soft errors, (2) there is substartial inter- and intra-application
variation in MTTF or failure rate, and (3) there is substartial application-dependert variation in
the cortribution to the failure rate from di erent structures. Theseresults motivate selective pro-
tection of only the most vulnerable structures and dynamic, application-aware protection schemes.

Finally, as another application, we apply SoftArch to quartify the impact of technology scaling
on the architecture level processorsoft error rate, taking the architecture level masking e ects and
workload characteristics into consideration. We scalethe same design with the same number of
transistors over four technology generations. We nd that with scaling, the derating factors for
logic structures often decreasethe derating factors for storageelemerts remain roughly unchanged,

and the FIT for the full processorroughly follows the trend for the raw SER of storagestructures.

3.2 SoftArc h details: a model for architecture level MTTF

The SoftArch model consistsof the following componerts, covered in Sections3.2.1{ 3.2.4 respec-
tively. (1) A probabilistic model for soft error geneation in valuesresiding in storage structures
or passingthrough logic. (2) A model for soft error propagation, which results in the propagation
of generated errors to other values. (3) A de nition of when an erroneousvalue contributes to
processor failure. (4) A model for calculating mean time to failure (MTTF) for a processorfor a

given workload.

27

3.2.1 Error generation model
Error generation in storage elements

Current processorsinclude seweral storage structures suc as cades, register les, queues,TLBs,
and latches. A soft error in a storagestructure occurswhen a high energy particle strikesa device
in the structure, and the resulting charge collected exceedsthe critical charge (Q¢rjt) required to
ip the stored bit value. We call this a raw soft error.

We seekto determine the probability that a value v; residingin a (possibly multiple bit) storage
location for time T incurs a raw soft error during T. We assumethat if an error occurs, the value
is corrupted; i.e., we ignore the low probability that multiple errors could correct the value. It
is widely acceptedthat raw soft errors for storage follow a constart failure rate or exponertial
time-to-failure distribution model. Let denote the raw failure rate, also referred to as the raw
soft error rate or SER, for the storagelocation considered. Then the probability that the value v;
will incur a raw soft error in time T, denotede;,is1 e T. In practice, both and T are small
enoughthat we can approximate e T as1 T. This givesg = T.

Thus, the probability that an error is generatedfor a value v; in a storage location depends
on the raw SER for that location, , and the residencetime of the value in the location, T.
is determined by circuit layout, technology, and ervironmental parameters (e.g., the amount of
charge stored, charge collection e ciency, and particle ux). There has been extensive work on
determining the value of using circuit level simulation or measuremen (Section 3.3.2). Residence
time T dependson the program and the processorarchitecture, and can be determined through

architecture level timing simulation (Section 3.3.1).

Error generation in logic elements

Combinational logic elemers are used for computation and control within a pipeline stage. A
high energy particle strike on a device in a logic circuit may create a current pulse that may
a ect the value producedby the circuit. This transient e ect becomesvisible only if it is captured
by the subsequeh latch. Instead, the transient e ect could be masked due to electrical masking
(the current pulse attenuates as it goes through the gatesin the circuit), logical masking (the

current pulse a ects parts of the circuit that do not a ect the output value), or latch window

28

masking (the corrupted result is not latched becauseit doesnot arrive within the required timing

window for the latch). Logic SER hasbeenignored in most prior architectural studies becausethe
above masking makesthe e ective SER much smaller than that of storagestructures. Howewer, as
technology scales,thesemasking e ects are diminishing and the logic SER is projected to increase
signi cantly [14].

For our architecture level model, it is desirableto include the above circuit-level masking e ects
within the raw logic SER value. Becausethese masking e ects depend on the circuit layout and
inputs, the desiredraw logic SER will di er for di erent logic circuits and even for di erent inputs.
In general,it is hard to abstract all of thesee ects. We therefore usea simple abstraction consisting
of one parameter called g4 corresponding to ead type of logic circuit (e.g., ey for the ALU
or e py for the FPU). eqgc is de ned to be the probability that, given correct inputs, the result
produced by the corresponding circuit at the end of the computation is incorrect becauseof soft
errors. €ogc can be estimated using circuit level SER analysis tools, basedon the layout of that
logic circuit and technology parameters. In our implementation, we usea simple estimation based

on prior work [14] and the gate and latch counts for the logic circuit (Section 3.3.3).

3.2.2 Error propagation model

In a processor,valuesare read from storagelocations, possibly processedand the original or newly
computed values are stored elsewhere. (We considerthe values stored in the new locations to be
new values,evenif they are identical to the original ones.) During this processerrorsin the original
valueswill propagateto the new values. For example, if the value, v1, in register r1 is corrupted
and later usedto generatea result r3 = r1+ r2, the error in v1 will propagate to the new value
stored in r3.

Conceptually, we would like to track how errors are propagated to new values and determine
the probability that a new value is erroneous. These probabilities will then allow us to determine
the probability of failure and the meantime to failure (depending respectively on which erroneous
values cause failure and when). The probability of error in a newly generated value (say v3)
depends on the probability of error in the input values (say vi and v,) usedto generatevs. In

general,denoting V; to meanthe event that valuev; hasan error, denoting P(V;) asthe probability

29

e {el, e2,e3}
lell+le2l-le11le2] Q e le2l+le31-le2%e3|
{el, e2} {e2,e3})

el e2 e3

Figure 3.1 An example for error propagation.

of Vi, and assumingthat any error in either vy or v, will causean error in vs, the probability of
error in vz can be given by P(V3) = P(VlS Vo) = P(V1) + P(V2) P(V1 Vo), whereV; Vs isthe
ewen that v; and v» both have errors.

If the errorsin vi and v, are independert, then P(V1 V) is simply P(V1)P(V2). On the other
hand, if the errors are perfectly correlated (e.qg., if vo wasjust generatedby copying v to another
location), then P(V1 V,) = P(V1) = P(V2). In general, howeer, the errors in two valuescould be
partially correlated and estimating P(V1 V) is more di cult. Accounting for the correlation and
determining the resultant probability requires keepingtrack of the raw errors that were originally
responsible for the errorsin vi and v».

For example, Figure 3.1 shows a data o w graph wherevaluesvl, v2, and v3 incur errorsel, €2,
and e3 with probability jelj, je2j, and je3j respectively. Assuming el, e2, and €3 are independert
of ead other, the probability of error for value v4 is jeij + jeoj jei] jeo] and that for v5 is
jeoj + jes) jeo] jesj. The errorsin v4 and v5 are correlated sincethey sharethe sameerror from
v2 { if v2 hasan error, both v4 and v5 will have errors. Therefore, to calculate the probability of
error in v6, the correlation betweenthe errors in v4 and v5 needsto be taken into accourt. We do
this by tracking the original independert raw error events that causeerrors in di erent values.

For our model, we do not needto calculate the probability of error for a value immediately
upon its generation{ we only needprobability calculations for valuesthat eventually causefailure
asde ned in the next section. Therefore, for purp osesof determining how errors propagate among
values, we simply keep track of the set of all the raw error events that can causean error in a
value, and propagate this entire set when a value is usedto generatea new value. For example,in

Figure 3.1, the error setfor v4 is fel; e2g and for v5 is fe2; €3g. Thus, the error set for v6 should

30

befel; e2; e3g. We can now easily calculate the error probability for v6, sinceel, €2, and €3 are
independert.

More generally considera value v; residing in a storage location. Let t; be the time interval
betweentwo successie readsof v; (or betweenthe rst write and read of v;). We refer to the event
that v; incurs a raw soft error over time t; asa basic storageerror event If v; wasgeneratedthrough
computation logic, then we refer to the event that v; incurred a logic error (after consideringcircuit
level masking e ects) during this computation as a hasic logic error event We refer to a basic
storageor basiclogic error event asa hasic error eventor simply a basic error. All basicerrors are
independent of ead other, with probabilities given by the error generation modelsin Section3.2.1.

The error propagation model requires determining the basic errors that needto be propagated
to a new value. For ead value vj, we assaiate a basic error set denoted E;. This is the set of
basic errors directly incurred by or propagatedto v;.> Thus, for a new value v; created at time t;,
the propagation model seeksto determine v;'s E; at t;.

First, we handle the simple casewherev; is generatedby reading an old value vo from a storage
location and writing it to another storagelocation. In this case,the error setE; is simply the error
set for vp at time t;.2

Next, we handlethe casewherey; is createdthrough somecomputation op(in 1;in ;:::iiny), where
k 1,inj's are input operands, and op is any operation. The creation of v; involves a possible
basiclogic error evert, say by, with probability esp. Then E;j is simply Ein, [Ein,[[Ein, [fho.

Thus, we can generatethe basicerror set for a newly createdvalue. Sinceall the error everts in
this set are independert, the probability of error in the new value can be calculated as a function
of the probabilities of the errors in its basic error set (which are known from Section 3.2.1). For
example,in Figure 3.1, the probability of error for v6 is jelj + je2j + je3] jelj je2] je2j jeJ

jelj jegj+ jelj je2j jeg).

!Note that for v; in a storage location, each time it is read, a new basic error event is added to E; (to indicate an
error occurrence in the interval sinceit was last read).

2We assumethe processof moving a value from one location to another acrosswires does not induce any errors.
Currently, wires do not appear to have soft error problems. However, in the future, soft errors from wires could be
easily incorporated by adding another basic error due to the wires to the set E;.

31

3.2.3 Program failure and time to failure

Not all erroneousvalues cause program failure. For example, an error that occurs in a dead
value doesnot causefailure sincethe value is not usedagain. Similarly, an error in a speculative
instruction that is later squasheddoesnot causeprogram failure. We say an erroneousvalue results
in program failure if the error is obsenable by an external obsener. Broadly, this includes(1) values
that are written to an output device, (2) valuesthat a ect program control ow (e.g., the value of
a branch target), (3) the value of an instruction opcode (an error could make the opcode illegal,
causing a program crash), (4) any value represening an addressof a memory location (an error
could causeaccesso prohibited locations, causinga crash), (5) and a destination register eld of
an instruction (an error could result in the corruption of an unknown and undesirableregister).

Depending on the systemmodeledand the implemenrtation, the preciseset of valueswhereerrors
may causeprogram failure will vary (e.g., in a processorwith speculation, an errror in the opcode
of a misspeculated instruction will not causeprogram failure). Further, a speci ¢ implementation
of the model may chooseto consenatively assumethat errorsin a supersetof the above valueswill
causefailure. Section 3.3.5describesthe set of valueswhere errors are consideredto causefailure
in our implemenrtation.

We call the above de ned set of values where errors would lead to program failures as the
failure set, denotedby VE = fv;q;Vvio;::ig. Additionally , our model also requires determining the
time, t;;, at which a failure due to v¢; occurs. This is determined through the architectural timing
(performance) simulator. We assumethat the failure set fv; 1; Vi 0;:::g is ordered such that t;; <

ty; fori<j.

3.2.4 Determining mean time to failure (MTTF)

We next derive meantime to failure (MTTF) for a processomrunning a given workload. Our model
so far provides: (1) the valuesthat can causefailure: fvsq;Vso;::0, (2) the corresponding times
for thesefailures: ft;q;ts2;:::0, (3) for ead value, v¢i, the set of independert basic errors E¢; =
feri 1,6 2;:::9 that can produce an error in v¢i, and (4) the probability for ead independen
basic error.

Innite programs. First, considera workload that runs forever. Its MTTF is the sum of the

32

tsi's, ead weighted by the probability that v;; is erroneousand no previous value in the failure set

is erroneous. Denoting the number of elemerts in the failure setasN (N could be 1), we have:
MTTF = ., tr; (Probability that v;; hasan error and none of v 1;::;; vfi 1 havean error)

Given the basic error sets E;; and the probabilities of the constituent errors, we use basic
probability theory to determinethe probability of the everts in the above summation. For example,
let Ef, = fer;exgand Efo = fey; e30. Then the probability that vi, hasan error and v¢ 1 doesnot
have an error is the probability that at least one of the errorsin (E¢» - Ef1) occurs and none of
the errorsin Ef, occurs. This isjesj (1 jei) (1 jej), denoting probability of e by jgj.
Finite programs. Most of our workloads, however, are nite programs that run for a relatively
short amourt of time. To determine MTTF in a meaningful way for a processorrunning suc a
program, we assumethat the program runs repeatedly in a loop forever. If a failure always occurs
in the rst run of the program, then the MTTF for the nite program, denoted MTTF ©C can also
be represerted by the above equation for in nite programs. If there is no failure in the rst run,
then we needto expand the equation to include possiblefailures in subsequeh runs.

Let Texec be the execution time of onerun of the program. Then the time to failure due to vg;
in the kth run of the program is (kK 1)Texec + tfj. This time to failure must be weighted by the
probability that none of the prior k 1 (independert) runs fail, v¢; is erroneousin the kth run,
and none of the valuesprior to v¢; in the failure setare erroneousin the kth run. That is,

P P
MTTF = ., N f(k 1)Texec+ trig (Protmbility that none of the prior k-1 runs fail) ~(Probability
that v¢; hasan error and none of vs 1;::3;v¢i 1 havean error)

To simplify the above equation, we de ne Fail ureProl® as the probability that a given run of

the program will seea failure. That is,
. PN o
FailureProtf = izy (Probability that v¢; hasan error and none of v¢1;::;;v¢; 1 havean error)

Thus, in the MTTF equation, the term Prolability that none of the prior k-1 runs fail can be

represeried as (1 FailurePro®)* 1. The MTTF equation then becomes:

Pi1 Py . K 1 o
MTTF = . 5f(k DTexec*trig (1 FailureProl (Prolability that vi; hasan error and

none of v¢ 1; 35 v¢i 1 havean error)

33

Rearranging the terms slightly,

Py - k1PN o
MTTF= (1 Fail ureProlf) iz F(k DTexec + trig (Prohability that v¢; hasan error and

none of v¢ 1;:::;v¢i 1 havean error)
Now applying the de nition of M TTF? we get:

P
MTTFE = i:l (1 FailurePro®)k * f(k 1)Texec FailureProP+ MTTFY

P P
Texec FailurePro |_ (k 1) (1 FailurePro)* 1+ MTTF® | (1 FailureProf)k 1

. P P . . .
Using o xK 1= 5 and o (k 1xk 1= %, to simplify the equation, we get

_ Texee (1 Failur eProb?) MTTE®
MTTF = F ailur eProh? + F ailur eProb?

— Texec *+MTTE? T
F ailur eProbP exec

Note that we can derive the cortribution to MTTF from a specic processorstructure by

assumingzero probability for errors generatedin other structures.

3.3 Implemen tation of the SoftArc h model

We have implemented the SoftArch model in the SoftArch tool. There are v e key componerts to
the implementation: (1) integration with an architecture level timing (i.e., performance)simulator,
(2) estimation of , (3) estimation of e 4, (4) implementation of the basic error set corresponding
to ead value and the operations on thesesets,and (5) identifying the valuesin the failure set. The

following sectionsdiscussead of these componerts.

3.3.1 Integration with timing simulation

The SoftArch model provides MTTF for a speci c program running on a processor. It requires
integration with a performance (or timing) simulator that runs the program, and provides to the
SoftArch model timing information about the valuesread/written/computed in dierent parts of
the processor. This work also usesthe Turandot simulator as described in Section 2.3.1 with the
sameparametersthat were chosento roughly correspond to the POWER4 microarchitecture [15].

We track soft errors using the SoftArch model for most of the important structures in the

34

processor,including the instruction buer (IBUF), instruction decae unit (IDU), integer and
oating point register les (REG), integer functional units (FXU), oating point units (FPU),
instruction TLB (iTLB), data TLB (dTLB), andinstruction queues(lQ). We assumethe load/store
gueue,cadies,and memory are protected using ECC, and do not considera soft error rate for them.
We also do not model soft errors for the branch prediction unit sincethesedo not causeprocessor

failures.

3.3.2 Estimation of

Irom et al. [16] and Swift et al. [17] report measuredvaluesof raw SER crosssection for the TLB
and oating point registersfor PowerPC processors.The raw SER crosssectionis de ned asthe

number of errors per particle in uence and is related to the raw SER as follows [2]:

Raw SER for a storagestructure = (SER crosssection for the structure)(nucleon ux)(# bits in the structure)

From [16], the raw proton SER cross section for the TLB structure in a 200nm PowerPC
processoris about 5 10 4cm?2=bit for proton energylarger than 20Mev. From [17], the raw proton
SER crosssection for the oating point register structure in a PowerPC 750 processoris about
the samevalue. Sinceprotons and neutrons have similar characteristics at higher energyrange, we
usethe proton crosssectionto roughly estimate the raw neutron SER of di erent structures. We
do not model the alpha particle SER since Karnik et al. [18] shaw that in deviceswhere Qi is
large, neutron SER dominates. This is the casefor the array structures we study here. Further,
the detailed estimation of raw SERsis not the focus of this dissertation.

According to Ziegler[2], neutron ux with su cien t energy(>20Mev) at sealevel is 10°particl es=cn?
yr. Using the above equation, we can derive the raw SER for the register le in 200nm technology
as5:7 10 # FIT/bit (1 FIT is one failure every 10° hours). Sincewe model a processorin 90nm
technology, we scalethe raw SER rate using scaling data by Karnik et al. [18]. Karnik et al. show
that neutron SER in SRAM increasesabout 30% from 200nmto 90nm technology. Thus, we as-
sumethat the raw SER for the register le in 90nm technology is 7:42 10 # FIT/bit. Assuming
a 64 bit register and a 2 GHz processor,we can derive that ~ for a register value is 6:60 10 24

errors/cycle.

35

Although Irom et al. [16] and Swift et al. [17] do not report data for the instruction bu er,
instruction queueand integer register le, we assumethe SER crosssection value for theseto be
similar to the reported results for TLB and oating point registers (we could not nd any other
sourcesof measureddata for these structures either). Using an approacd similar to the above, we
get for an instruction bu er entry as6:60 10 2* errors/cycle and for an instruction queueand a

TLB entry as1:13 10 23 errors/cycle.

3.3.3 Estimation of eggc

At 100nm, Shivakumar et al. [14] shaved the raw SER for a latch to be 3:5 10 ° FIT and for
a 16FO4 logic chain to be 5 10 © FIT (after circuit level electrical and latch window masking).
Basedon the gate and latch counts for a logic circuit, we can therefore estimate the raw SER for
that circuit at 100nm (we use the same value for 90nm). (This is consenative since it ignores
circuit-level logical masking which dependson the inputs and the exact logic function.)

Speci cally, let #L ogicChains and #L atchesbe the number of logic chains and latches respec-

tively in a logic circuit (e.g., FPU, FXU, or IDU). Then for our 2 GHz processor,

~ _ (# LogicChains 510 ®+# Latches 3:510 °)
Qogc = 10° 36002 109

We estimated the gate/latch court information for our simulated processorasfollows.® We rst
estimated the relative areasof ead modeled structure from published o orplans of the POWERA4.
Sincethe total transistor count for the processolis known, we could then assignarea-basedstimates
of transistor counts for ead modeled structure. Reasonableassumptionsabout transistor density
di erences betweenSRAM and logic dominated structures were also factored in. We estimate 10K
latches and 70K gatesfor the FXU (integer ALU), 14K latchesand 100K gatesfor the FPU, and
7K latchesand 50K gatesfor the IDU. (Our implemenation assumesall FXU operations have the
sameeggc and all FPU operations have the sameeqgc). It follows that €4 for the IDU, FXU,

and FPU is 5:16 10 23, 7:23 10 23, and 3:67 10 23 respectively.

SAlthough our microarchitectural parameters were chosento be closeto the POWERA4, structure-wise gate/latc h
count information for such commercial processorsis not available. We acknowledge that our estimates of these counts
may not be closeto actual values.

36

3.3.4 Tracking basic error set E; for value v;

The error propagation model requirestracking basicerror sets,using setcopy and union operations.
Thesesetscan potentially be unbounded. To reducespaceand dynamic memory managemenm over-
head,we usea xed sizeFIF O table to store the basicerrorsin a set (one table per set, 100 entries
per table in our implementation). To further reducespace,the table entry only storesa sequence
number that identi es the error. A commoncertral table storesthe pertinent information for eadh
sequencenumber, including probability of the corresponding error and where it is generated. In
caseof over ow of a basicerror table (i.e., > 100basicerror sourcescortribute to the corresponding
value), the oldest ertry in the table is discarded. This losesinformation about an error sourcefor
the value. We consenatively assumethat the value causesfailure due to the dropped error with
probability of that error and at the time the error is dropped. In our experiments, over ow rarely

OocCcurs.

3.3.5 Identifying values for program failure

Basedon Section 3.2.3, our implementation makesthe following assumptionsabout valuesthat can
lead to processorfailures and the times at which sud failures occur.
Values to output devices: Our program traces are at the user-lewel and do not corntain output
instructions. We consenatively assumethat values that are stored in memory are obsenable
externally, and errors in them causeprogram failure. We assumethat the failure occurs when the
store instruction retires and is issuedto memory.
Fields of an instruction: Errors in all elds of loads, stores,and instructions that changecortrol
ow (branches and jumps) are propagated to the retirement queue. These errors are assumedto
causefailure when the instruction retires. This is becausethese errors can change the op code,
program cortrol ow, memory addresses,or the value stored in memory, which are assumedto
be obsenable externally. Waiting until retirement to ag a failure ensuresthat misspeculated
instructions do not ag failures.

For instructions other than the above, we do not considererrors in elds that specify source
registersto causefailures. Instead, we propagate the errors in these elds into the value in the

destination register. Errors in all other elds are consideredto causefailure at retirement (similar

37

to loads, stores, and branch instructions).
Fields in iTLB and dTLB: Any errorsin the TLBs are propagatedto the retirement queueentry
of the corresponding instruction, and consideredto causefailure on retirement of that instruction.

This is becausean error in these structures can lead to memory addressrelated failures.

3.4 Experiments and results

In this section,we rst apply SoftArch to calculate MTTF and comparewith the MTTF calculated
with Monte-Carlo methods. Next, we use SoftArch to study the workload behavior for soft errors.
Finally, asan application of SoftArch, we use SoftArch to study the e ect of technology scaling on

the soft error rate at the architecture level.

3.4.1 Compare SoftArc h to the Mon te-Carlo metho d

We have shown in Section2.3.2that the AVF+SOFR method leadsto signi cant amount of relative
error for certain parts of the designspace.

SoftArch's probabilistic approad doesnot require the AVF and SOFR assumptions;it is there-
fore useful to explore whether SoftArch can be applied to the parts of the design spacewhere
AVF+SOFR shows signi cant discrepanciesfrom the Monte Carlo method. We used SoftArch to
estimate MTTF for the entire designspacestudied in Section 2.3. We found that for every point
in this space,the error in MTTF computed by SoftArch relative to the Monte Carlo MTTF is less
than 1% for a single componert and lessthan 2% for the full system. Thus, SoftArch does not
exhibit the discrepanciesshovn by AVF+SOFR. Theseresults are not meart to provide a complete
validation of SoftArch or a complete comparisonbetweenSoftArch and AVF+SOFR (such an anal-
ysisis outside the scope of this work). Rather, theseresults suggestalternative methodologiesand
motivate future work combining the best of existing methodologiesfor the most accurate MTTF

projections acrossthe widest designspace.

3.4.2 A case study with SoftArc h

In this section,we showv what we canget from SoftArch by applying SoftArch to the modeledproces-

sorand SPEC CPU2000bendmarks (9 integerand 12 oating point). For eah benchmark, we use

38

457 42
401
351
301
251
201
151
101

HibufdJidu Mreg Oiq MdtbOitlb Ofxu Dfpu\ o/Mibuf Oidu mMreg Oig MWdtb Oitb Ofxu Ofpu \
{e]

FIT Rate
FIT Rate
FIT Rate

0,
: QS S &
% S & S R

@) (b)

Figure 3.2 FIT rates (a) for raw errors, (b) with architectural masking for SPECin t
benchmarks, and (c) with architectural masking for SPECfp benchmarks.

sampledtraces with 100 million instructions that were validated for acceptablerepresenativ eness

against the full trace [19].

Metrics

Our experiments report MTTF for an application (Section 3.2.3). We alsocompute MTTF for indi-
vidual structures, assumingzeroraw SER for other structures. An alternative method of reporting
reliability is in terms of FITs. For failure mecanismswith constart failure rate (i.e., exponertial
distribution for time between failures), FIT rate = 1/MTTF and the FITs of individual system
componerts can be addedto give the FITs of the entire system accordingto the SOFR method.
This additive property is corveniert when attempting to understand the relative contribution of
failure rate and importance of dierent system componerts. In Chapter 2, we have shovn that
although the constart failure rate assumption for raw soft errors is reasonable,the assumption
might not hold after the errors are architecturally masked. Nevertheless,we have shavn that for
SPEC bendimark under current terrestrial raw soft error rate, the SOFR method is valid and the
additive property of FIT rate holds well. Our results from SoftArch con rms that the FIT rates
acrosscomponerts are indeed additive in this case. Therefore, for convenienceand following other
literature (e.g., [8]), we report our results in terms of FITs (= 1/MTTF) for the entire systemand
for eadh componen.

Giventhe FIT rate and the raw FIT rate of a componert, we are able to estimate the amount

of architecture level masking e ect. We denote the amourt of architecture level masking using use

39

_ |Mibuf Oidu Mreg Oig Mdtlb Oitb Ofxu Ofpu
9
4.4

FIT Rate

SPECint SPECfp

Figure 3.3 FIT rate for each structure, averaged across SPECin t and SPECfp bench-
marks.

FIT

the term derating factor which is de ned as ;-

Derating factor is the sameas AVF. In this

paper, we use AVF and derating factor interchangeably

Overall results

Our results are presered in Figures 3.2{ 3.5. Figure 3.2 shows the FIT rate for an entire applica-
tion. Figure 3.2(a) shaws the raw processorFIT rate, which is calculated assumingthat ead raw
error causesa program failure. Figures 3.2(b) and (c) show the FIT rates for our SPECint and
SPECfp bendhmarks respectively, with the rightmost bars shawing the average. Each bar in these
gures is further divided to show the cortribution to the FIT rates from the di erent structures {

instruction buer (IBUF), instruction decale unit (IDU), register le (REG), instruction queues
(IQ), data TLB (dTLB), instruction TLB (iTLB), integerfunctional unit (FXU), and oating point

unit (FPU).

Figure 3.3 summarizesthe structure-wise information by showing the average FIT rate for
eadh structure acrossthe SPECint and SPECfp bendimarks. Figures 3.4(a) and (b) show the
architectural derating factors for ead structure and the entire processorfor SPECint and SPECTp
respectively (again, the rightmost bars are the average).

Finally, to understand dynamic application behavior, Figure 3.5 reports the time variation in
processorand per-structure FIT rate for two represenativ e applications. We divide eat applica-
tion's execution into intervals of 64K instructions, and plot the FIT rate (Y-axis) for ead suc
interval (X-axis), for ead structure and the full processor.

The above data shows the following high level results (these are consistert with prior work,

40

W ibuf O idu B reg 0 iq W dib Oithb 0 fxu O fpu O chip \

5 80%
S 70%
L‘E 60%7
= 50%! g g
£ 40% ©
© 30%: o &
o 20%
0 10%; H

0)

bzip crafty gap gcc gzip mcf perlbmk vpr twolf AVG
(a)

B ibuf O idu B reg iq W dtlb O itlb O fxu 0 fpu 0 chip \

60% -
<

%é%%mmmmmmmmm %

ammp art applu apsi facerec equake lucas mesa mgrid sixtrack swim wupwise AVG

(b)

13

Derating Factor

1

Figure 3.4 Arc hitectural derating factor for each structure (a) for SPECint and (b)
for SPECfp benchmarks. Note that the scales on the two graphs are dieren t.

but they are more comprehensie since they cover more structures on chip than [8] and longer
application runs than [3]):

Arc hitectural derating. Architectural masking has a large impact on the overall processorFIT
rate (Figures 3.2 and 3.4). While the raw failure rate is 42 FITs, the averagearchitecturally masked
rate for SPECint and SPECfp is 10 and 6 FITs respectively.* Thus, on average,only 21%and 13%
of the raw errors causeprogram failure for the SPECint and SPECfp bendimarks respectively.
Variation across workloads. Dierent bencdhmarks exhibit signi cant di erences in FIT rates,
with a range of 2.6 for art to 16 for perlomk (Figure 3.2). In general, SPECfp applications have a
lower FIT rate than SPECint.

Variation across structures. Dierent structures cortribute in dierent proportions to the
overall FIT rate (Figures 3.2 and 3.3). Although there are workload-speci ¢ variations, we can
identify generaltrends. For SPECint applications, the major contributor to the FIT rate is the
dTLB followed by the iTLB and instruction buer. For SPECfp, the major cortributors are
the instruction bu er, register les, and dTLB, closely followed by iTLB. The logic elemers are

insigni cant and the instruction queuesare not a strong cortributor to the SPECfp applications.

4The absolute FITs may appear low; however, these are for only one processor,at 90nm, for soft errors only due
to neutrons, and assumesigni cant protection overheadin the cacdes.

41

(o311 T 11 W oo 7 L e Tvvmewowamoo I LS BT

fou @ e 1 [
fxu I e T e T T T e tories S W W |
1L T | I 1 | LN [M
dtb [L0 | 11, A LK 0 P |

0 Cadria G T A]
reg Wwwwﬂ
idu [T F T P 7 [P T

ibuf P T W T ‘ WA

0 200 400 600 800 1000

(a) facerec

chip Et E— = T
fou [— |
Bu | y - L |
it T] [[T] I 11 |
dtlb [feleddly e Gl N p !
a9 E rn —
eg 1 I 1 |
idu T Lt i
ibuf f \ = z : T u
0 500 1000 1500 2000
(b) wupwise

Figure 3.5 Intra-application variation in FIT rate for interv als of 64K instructions.

Further, Figures 3.2(a) and 3.4 show that the di erence in contribution from the structures come
both from a di erence in the raw SER and in the architectural derating.

In tra-application variation is signi cant for the overall and per-structure FITs (Figure 3.5).

Analysis

We next describe the reasonsfor our results. The architectural FIT rate for a structure for a given
application is determined by the following three factors for the structure:

Raw FIT rate: This dependson the structure size and the raw SER per bit or logic chain for the
technology.

Base utilization: For logic, this is the fraction of time that the structure is used. For storage,this is

the fraction of valuesthat are live;i.e., valuesthat will be read before being overwritten or before

42

program termination.

E e ctive utilization: This is the fraction of valuesthat are read or computed from the structure
that cortribute to program outcome. For example, if the instruction queuesare always full, then
their base utilization is high. Howewer, if most of these instructions will be squashed,then the
e ectiv e utilization is low. The product of the baseand e ectiv e utilization is the architectural
derating factor.

The above factors explain the di erences in cortributions to architectural FIT rates from the
di erent structures asfollows. The instruction bu er and instruction queueshave relatively low raw
FIT rates dueto their small size(relative to the register les and TLBs). Howewer, the instruction
bu er has a high derating factor due to its high baseand e ectiv e utilization; therefore, it is one
of the three largest cortributors to the architectural FIT rate on average. The instruction queues,
on the other hand, have a more modest derating factor, and hencea modest to low contribution to
the architectural FIT rate.

For the register le, the raw FIT rate is amongthe highest. For SPECint, howeer, its architec-
tural FIT rate is much lower than that of the TLBs becausehe baseutilization of the oating point
register le is negligible. For SPECTp, the register le is one of the three largest FIT cortributors.

The raw FIT rate of the dTLB andiTLB are the same;however, the dTLB's FIT rate is larger
than that of the iTLB for SPECint, and is larger for SPECint than for SPECfp. We considerany
erroneousvalue read from the TLBs to causeprogram failure; therefore, the above di erences occur
from the baseuutilization. Thus, the fraction of valuesthat are live appearshigher for the dTLB
than for the iTLB for SPECint (likely becauseof smaller footprint for instructions), and higher
for the dTLB for SPECint than for SPECfp (partially corroborated with prior data cade lifetime
results).

For the IDU, FXU, and FPU, the main reasonfor the low cortribution to the overall FIT rate
is the low raw FIT rate of logic and latchesrelative to array structures. Somepredictions expect
this trend to reversefor future technologies[14], in which casethe logic elemeris can be expected
to cortribute more to the overall SER.

Similar analysis explain the di erences between and within workloads. For example, consider

mcf with its low FIT rate. It is well-known that it spendsmost of its execution stalled for memory.

43

Thus, most structures exhibit a small FIT rate becauseof low base utilization. The instruction
bu er and queues,howewer, contain live instructions stalled for memory, and so shaw higher der-

ating.

Implications and limitations

The above results have at least three broad implications. First, they motivate selective protection,
and can be used to determine which parts of the processorare most cost-e ective to protect.
Second,they motivate application-aware protection. As shown, di erent applications have di erent
behavior, both in absolute FIT rate and in the structures that cortribute most to the FIT rate.
Third, alongthe samelines, our results show signi cant variations in FIT rate and in the structures
contributing to FIT rate within an application. This is similar to the phasebehavior noted in prior
studies for other metrics (e.g., IPC, cahe miss rate) [20]. These results motivate consideration
of dynamic adaptation sthemesfor managing soft errors, much like adaptation for energy and
temperature managemen

SoftArch has at least two limitations. First, it depends on architectural timing simulation.
Typically, such simulators do not include all microarchitectural and circuit-level details, intro ducing
inaccuracies(e.g., useof eqgc and latch/gate court estimates). Second,SoftArch doesnot simulate
changesto the execution path after an error; therefore, it cannot model e ects such as application-

level masking. Pleasenote that the AVF+SOFR method also has the sameset of limitations.

3.4.3 Another application of SoftArc h: architecture level scaling analysis

With the SoftArch tool, we are now able to analyzethe soft error rate of the processortaking into
consideration both the raw error rate and the architecture level masking e ect.

The e ect of technology scaling on raw error rates for di erent type of circuits has been ex-
tensively studied. Howewer, there has beenno previous work examining the e ect of scaling on
processorSER considering architectural derating e ects. In this section, we apply SoftArch to
quantify the impact of technology scaling on the architecture level processorsoft error rate, taking
the architecture level masking e ects and workload characteristics into consideration.

In our experimens, we scalethe samedesignwith the same number of transistors over four

44

Tech Freq Vvdd O-c hip Lat (FIT/bit) FPU epqic FXU epgic IDU epgic

180nm | 1.1GHz | 1.8V | 77 cycles 57 10 ¢ 1:45 10 22| 1:06 10 2 | 761 10 =
130nm | 1.35GHz | 1.5V | 94 cycles 6:0 10 4 996 10 % | 7:34 10 2 | 525 10 %3
90nm | 1.65GHz | 1.2V | 115cycles 74 10 * 5:97 10 2 | 440 10 2 | 3115 10 =
65nm | 2.0GHz | 0.9V | 140cycles 71 10 ¢ 326 10 2 | 2240 10 2 | 1.73 10 =

Table 3.1 Scaling parameters for the simulated pro cessor.

technology generations ranging from 180nm to 65nm. We nd that with scaling, the derating
factors for logic structures often decreasethe derating factors for storage elemerts remain roughly
unchanged,and the FIT for the full processorroughly follows the trend for the raw SER of storage
structures (i.e., the FIT rate increasesfrom 180nmto 90nm and decreasefrom 90nm to 65nm.)
Pleasenote that this result is valid only when the transistor number is constart during the scaling
process.In reality, we expect the transistor court to increaseand the overall FIT rate per chip to

increase.

Scaling Metho dology

The parameters of the base processorwe simulate are the sameas in Table 2.1. We study the
architecture level FIT rate for the modeled processorfor four technology generations,ranging from
180nmto 65nm. We assumethat there are no modi cations to the processormicro-architectural
pipeline with scaling. E ectiv ely, we scalethe samechip from 180nmto 65nm technologies.

Table 3.1 summarizesthe parametersthat change with scaling. Although with ideal scaling,
the best base frequency scaling per generation should be about 43%, it is hard to achieve the
ideal frequency boosts without signi cantly re-tuning all the circuit delay paths in the processor.
Therefore, we consenatively assume22%frequencyscalingper generation. Sinceeverything on chip
is scaled,we assumethat the on-chip storage structures sud as register les, instruction queues,
TLBs, and cades scalelinearly with the transistors and their accesstimes in terms of processor
cycles stay the same. For the o-chip L3 cadce, we assumethat the absoluteaccesstime stays
the sameand therefore, its accesstime in terms of processorcyclesincreasesabout 22% for eat
generation.

Table 3.1 also gives the scaledvalues for the raw SER for storage structures (denoted as)

and logic circuit (denoted as eqgc). The basecase(180nm) parameters have been estimated in

45

(2]
S
D
2

Oidu _Oibuf Ofpu Ofxu__ mith _Odtlb_ ©ig ~ mreg |
5

IT Rat
B
q

FIT Rate
= = N
2 9 2

Ra
BN
g9
9
[11T
I
I 1
I 0]
I [
[Wl
I
[T |
[|
[
[W
[W]
[W]
[T W1

EEEE

&
& ‘O/DQ "2}6 %oo ‘*\Q < QQ§°

Oidu Oibuf Ofpu Ofxu @it Odtlb Dig mreg |

(@) ()

Figure 3.6 FIT rates (a) for raw errors, (b) with architecture masking for SPECin t
benchmarks, and (c) with architecture masking for SPECfp benchmarks.

Section 3.3. For storage structures, we then scalethe raw SER for di erent technologiesusing the
scaling curve provided by Karnik et al. [18]. As showvn in Table 3.1 the raw SER () of storage
elemerts increasesas technology scalesdown from 180nmto 90nm and then decreaseslightly from
90nmto 65nm. For logic structures, we usethe samemethodology as described in Section 3.3.3t0
determine the raw SER for ead technology generation. The raw logic SER (€jqgic) decreaseswith
scaling. This is becauselogic error rate is dominated the SER by latchesand the SER for latches
will decreasewith future technology scaling.

Below we report experimental results for 12 SPEC CPU2000 bendimarks including 6 integer

benchmarks and 6 oating point bendimarks.

Results

Our results are presened in Figures 3.6 and 3.7. Figure 3.6 shaws the FIT rate for the processor.
Figure 3.6(a) shows the raw processor-IT rates which are calculated assumingthat ead raw error
causesa program failure for the four technology generations. Figures 3.6(b) and (c) show the FIT
rates for our SPECint and SPECfp bendmarks respectively. Each group consistsof four bars which
are for four technology generationsstarting from 180nmto 65nm. Each bar is further divided to

show the cortribution to the FIT rates from the di erent structures.

46

Figures 3.7 (a) and (b) show the architectural derating factors for ead structure and the ertire
processolifor the SPECint and SPECfp bencdhmarks respectively for the four technology generations.

In view of the inaccuraciesin our method of estimating the raw SER values(T able 3.1), the focus
of the results preseried here is not on absolute FIT rates which are almost certainly inaccurate.
Instead, the goal of the ensuinganalysisis to show the trends with scaling. We believe thesetrends
are reasonablyaccurate.

Our high level results are the following:
FIT rate scaling: The FIT rate of the whole processorincreasesastechnology scalesfrom 180nm
to 90nm and decreasesslightly from 90nm to 65nm. The reasonis that the dominating sourceof
the FIT rate is the storagestructures. The logic FIT rate is insigni cant comparedto the storage
element FIT rate. From 180nmto 90nm, the FIT rate of storagestructures increases.From 90nm
to 65nm, the FIT rate of storage structures decreaseslightly.
Derating factor scaling: (1) The derating factor of logic structures (FPU, FXU, IDU) decreases
astechnology scalesdown. (2) The derating factor of storage elemens doesnot change much with
technology scaling and increasingmemory latency. This is the casefor both SPECint and SPECfp

applications.

Analysis

To help explain the results, we use a simple model to analyze the FIT rate and derating factor
scaling trends. As discussedin Section 3.4.2, the FIT rate for a given structure is determined
by three factors: raw FIT rate for the structure, base utilization of the structure, and e ective
utilization of the structure. The derating factor is only determined by the latter two factors. The
raw FIT rate factor dependson the technology. For storage structures, the baseutilization is the
fraction of valuesthat are alive. For logic structures, the baseutilization is the fraction of time the
structure is used. The e ectiv e utilization of a structure is the fraction of valuesthat are read or
computed from the structure that a ect the program outcome.

The scaling of raw FIT rate has beensummarizedin Section 3.4.3. Next we will analyze the
scaling trend of the base utilization factor. It can be expressedas Thusy=Texec. Here Texec is the

total executiontime of the program. For logic structures, Tpysy is the time the structure is used.

a7

H reg 0 iq O dtlb | itlb 0O fxu O fpu O chip
80%
~ 70%;
o
S 60%;
]
L 50%: g
£ 20%
= 0
S 30%; &
5] N
0O 20%;
10%
O_
bzip crafty gap gcce gzip mcf perlbmk vpr twolf AVG
= 700 HMgzip Mgzip Mgzip MWgzip Cmcf Cmcf Omcf Omcf lperlbmlﬂperlbmlﬂperlbmlﬂperlbnﬁk
5 R
g 60%
L. 50%
g 40%
= 30%
5 20%;
O 10%r
0- T
reg iq dtlb itlb fxu fpu ibuf idu chip
(a) SPEC int
H reg O iq O dtlb | itlb O fxu O fpu O core
40%
S
© 30%
]
L
2 20%
i =
E —
O 10%;q
O_
ammp art applu apsi facerec equake lucas mesa mgrid sixtrack swim wupwise AVG
= 600 Hequakdllequakdllequakellequake Imesa [Imesa [Imesa [Imesa Emgrid Bimgrid [Omgrid [Imgird
o
% 50%
L; 40%
£ 30% -~
S 20%; m |
3 oy i
O_ T T T T T
reg iq dtlb itlb fxu fpu ibuf idu chip
(b) SPEC fp

Figure 3.7 Arc hitectural derating factor for each structure (a) for SPECin t and (b)
for SPECfp benchmarks. Note that the scales on the two graphs are dieren t. For
each application, the four bars in a graph represent the four technology generations,
going from 180nm to 65nm.

48

For storage elemerts, Tpysy is the time that the elemen holds live values. This is equivalert to
Cyclesysy=Cycleseyec. Here Cycleseyec is the number of cyclesfor program execution. Cyclesyysy
for a logic structure is the number of cyclesthe structure is busy. Cyclesysy for a storageelemert
is the number of cyclesthe elemen haslive data.

From 180nmto 65nm, the processorfrequency increases22% every generation. If there is no
memory accessthe value of Cyclessec Would stay the same. But for real applications, CycleSexec
typically increasesbecausethe increasing memory latency would delay the program execution.
Figure 3.8 shaws the increasein number of cyclesfor ead application when the memory latency
increasesfrom 77 to 140 cycles. From Figure 3.8, the execution time of most integer applications
is not very sensitive to the memory latency (except mcf), while the executiontime of most oating
point applications is more sensitive.

The scaling of the Cycles,,sy value is more complex. Next, we will discussthe scaling for logic
and storage structures separately

For logic structures (FPU, FXU, IDU), although the processorfrequencychanges,the number of
committed instructions and the instruction sequencestays the same. Thusthe number of operations
that are critical to the outcome of the program will not change. For example, for eah technology
generation, there would be the same number of FPU operations and FXU operations that are
critical to the program outcome. Thus, the value of Cyclesy,sy would be the samefor logic. As a
result of the increaseof Cyclesexec, the derating factor of logic would decrease.

For storageelemerts (reg, IQ, TLB, IBUF), Cyclesysy is the number of cyclesdata is livein the
elemert. It tendsto increasewith technology scaling becausethe memory latency gets larger from
180nmto 65nm. According to our experimerts, the rate of increaseof Cyclesy,sy and Cycleseyec is
similar. Therefore, the increasesroughly cancelout with ead other and the derating factor stays

the same.

Scaling summary

Based on on the scaling trend of the above factors, we explain the scaling trend of the derating
factor and the FIT rate asfollows:

Scaling trend of the derating factor: The derating factor dependson the utilization factor.

49

W 180nm_1.1GHz O 130nm_1.35GHz O 90nm_1.65GHz ® 65nm_2.0GHz |

Number of Cycles

Figure 3.8 Cyclessec for each application for dieren t frequencies (tec hnologies)

As the technology scalesdown from 180nmto 65nm, the derating factor of the storage elemeris
stays roughly the same,while for logic, the derating factor gets smaller.

Scaling trend of the FIT rate: The processorFIT rate dependson the raw FIT rates and the
derating factors. For the processorand the technologieswe modeled, storage elemens FIT rate
dominatesand the logic FIT rate is insiginifant. Sincethe derating factor for storageelemerts does
not change, the FIT rate of the whole processorfollows the sametrend asthe raw FIT rate. It

increasesfrom 180nmto 90nm and decreaseslightly from 90nm to 65nm.

3.5 Summary

In this section, we have preseried SoftArch, a model and tool for studying and analyzing archi-
tecture level soft error behavior of modern processors.SoftArch can be integrated into high-level
performance simulators and usedto (1) determine the architecture level soft error MTTF of a
processorrunning a speci ed workload, (2) identify the soft error corntributions from various mi-
croarchitectural structures, and (3) study the soft error cortributions of dierent phasesof an
application. We rst show that SoftArch doesnot needto make the assumptionsthat AVF+SOFR

does,thus doesnot exhibit the discrepanciesshovn by AVF+SOFR. Then we demonstrate the use
of SoftArch by applying it to a modern out-of-order processorrunning SPEC2000benchmarks. We
use SoftArch to study workload behavior and show signi cant architecture level derating and large
variations of soft error failure rate acrossworkloads, processorstructures, and within the same
workload. Finally, as another application, we apply SoftArch to quantify the impact of technology
scaling on the architecture level processorsoft error rate, taking the architecture level masking

e ects and workload characteristics into consideration.

50

Chapter 4

Online estimation of the AVF

4.1 Intro duction

As we have mentioned in Chapter 2, the AVF of a structure is de ned asthe probability that avisible
error (failure) will occur, given a raw error evert in the structure. AVF is a simple abstraction for
the amount of architecture level masking in the processorand can be usedto estimate the MTTF.
We have shawvn in Chapter 2 that although the AVF method has strong assumptions,for a large
classof systemsand workloads, including thosethat will be studied in this section,the AVF method
is accurate and AVF value of a structure directly determinesits meantime to failure (MTTF) [5]
{ the smaller the AVF, the larger the MTTF and vice versa. It is therefore important to be able
to estimate the AVF in the designstageto meet the reliability goal of the system.

Many soft error protection schemeshave signi cant space, performance, and/or energy over-
heads;e.g., ECC, redundant units, etc. Designing a processorwithout accurate knowledge of the
AVF risks over- or under-design. An AVF-oblivious design must considerthe worst case,and so
could incur unnecessaryoverhead. Conversely a designthat under-estimatesthe AVF would not
meet the desiredreliability goal.

Furthermore, the results in Section 3.4.2 show signi cant intra-application variation in the
AVF, which motivate the needto estimate AVF at runtime as well. Depending on the workload,
the processormay be more or lessvulnerable at dierent times. This obsenation createsnew
opportunities to reduce the soft error protection overhead while meeting the MTTF goal. If we
are able to estimate AVF in real-time accurately, we can adjust the protection scheme basedon

the current AVF value. We can have more protection during highly vulnerable periods and less

51

protection during lessvulnerable periods, minimizing performance and/or energy overhead. For
example, Soundarargan et al. [21] proposeto usethe AVF input to cortrol instruction throttling
and selective redundancy sdhemes. They show that using AVF-controlled selective redundancy
scdheme, the AVF of the re-order bu er can often be reduced by more than half (which means
that the MTTF more than doubles) with a relative small performancedegradation. In this case,
a real-time online AVF estimation is a must since a slowv oine method will not be able to give
timely input to the control logic.

There are someprevious studiesthat provides online AVF estimation; however, they are either
dependert on extensive oine workload analysis [22] or targeted to a single structure [21] (see
Section5.2). In general,estimating AVF online is a challenging task sincethe complex computation
usedin oine analysisis not feasiblein real-time. The AVF for many structures dependson many
factors that are hard to measureand obsene. For example, the AVF of the oating point unit
dependsnot only on its utilization, but alsoon variables such asthe percertage of dead valuesand
speculative instructions. For storage structures, AVF estimation is even more di cult. It may be
intuitiv e to think that the number of reads/writes to a storage structure may be correlated with
the AVF of this structure. Howewer, it is easyto construct two read/write sequenceshat have the
samenumber of readsand writes, but very di erent AVF values.

In this dissertation, we describe a general online method to estimate AVF for a variety of
structures (including logic and storage structures) without the needfor extensive o ine workload
analysis. Our approad is motivated by o ine (complex) AVF estimation approadies. Speci cally,
a commonmethod for o ine estimation is to inject an error in a low-level simulator and determine
whether it resultsin program failure. Many sud injections are performed, and the AVF is calculated
asthe fraction of sudch injections that leadto failure. Our online estimation method e ectiv ely seeks
to perform error injection while the program is running in production mode and usesthe program
executionto determine whether the error will result in failure. Of course,we cannot actually inject
an error into a production run. We therefore introduce some additional error bits through the
processorpipeline that can emulate the generation and propagation of an error.

To estimate the AVF of a structure, we emulate the injection of an error in the structure by

setting its error bit to 1. An instruction touching this structure then propagatesthe injected error

52

to its destination and so on. In this way, an error is propagated by the executing program. Our
algorithm waits a xed number of cyclesto determine if the error could (potertially) result in
program failure. Multiple sud injections are done and aswith o ine error injection, the fraction
that is determinedto potentially result in failure provides an estimate of the AVF of the structure.
Our method dependson two key parametersto get an accurate estimate of AVF: (1) how many
times to inject an error, and (2) after injecting an error, how long to wait to seeif the error will
causea program failure. Setting these parameterstoo high can result in an estimation procedure
that lasts too long and doesnot adequately track the AVF changesin the program. Setting them
too low can result in lessaccurate estimates. The parametersshould be set basedon the required
estimation precision. The neededaccuracy of the AVF estimation dependson how the AVF value
will be used. For example, Walcott et al. [22] proposeto usethe AVF estimation to enable/disable
the redundant multithreading protection stcheme. In this case,the AVF is usedto make a binary
decision. As long asthe AVF estimation is below or above a certain threshold, the decisionwill be
the same. Thus, there is no needfor a very high precision estimation. However, for the instruction
throttling sdeme proposedby Soundarargan et al., since the throttling amount is a cortinuous
variable that can take any value between 0 and 100%, even a small error in the AVF will cause
the throttling amourt to change. The required AVF precision in this caseis higher. Our AVF
estimation schemeis exible and can be con gured basedon the neededprecision. In Section4.2,
we will show how we useanalytical and experimental methods to determine thesetwo parameters.
To evaluate our method, we implemernt it in a simulator and perform experiments to estimate
the AVF for both logic and storage structures (integer ALU, FPU, instruction queue,and register
le) for 100to 200intervals in ead of eleven SPEC bendimarks. In order to validate our results,
we compare them with the results SoftArch, which is a more detailed (but complex) oine AVF
estimation method (see Section 5.2). The results shav that our method generatesvery similar
results to SoftArch. The absolute di erence in AVF estimated by the two methods rarely exceeds
0.08 acrossall application intervals and structures studied. The mean absolute di erence is less
than 0.05for any given application and structure. Further, we also comparewith an intuitiv e and
simple AVF estimation method that usesthe utilization of logic structures as a proxy for their

AVF (an analogousextension of such a method for storage structures is not clear). We show that

53

comparedto our method, this simple method shows signi cant inaccuraciesrelative to SoftArch,
providing evidencefor the need for the hardware support required by our method. Overall, our
results show that our novel method for online estimation of AVF is both accurate and robust in a

variety of situations.

4.2 AVF estimation algorithm

This section describes our online AVF estimation algorithm. We rst give an overview of the
algorithm and then describe the details, including the hardware support needed, overhead, and

limitations.

4.2.1 Overview of the algorithm

The main ideaof the algorithm is to assaiate error bits with structures, inject an error by setting an
error bit to 1, usethe program executionto propagatethe error, determine if the error (potenrtially)
causesfailure, and repeat another injection. The percenage of injections that causefailure is the
estimated AVF. We rst illustrate the working of the algorithm with an example small program

segmen below.

1. rit +r2 =13
2. rit -r2 =r4
3. r2 +r4 =13

4, r3 +r4 =15

5. store r5 to address r4

6. load r5 from address r4

7. 5 +r6 =17
8. Branch if r7 =0

54

First, let us assumethat we want to measurethe AVF of the register le. Supposeat some
cycle after completing line 1 but beforeexecuting line 3, we inject an error in registerr3 by setting
its error bit to 1. When line 3 is executed, the value of r3 is overwritten. Thus, its error bit is
overwritten aswell by an\or" of r2's and r4's error bits. Sinceneither of those sourceregistershas
an error, r3 no longer has an error, and sothe injected error bit hasdisappeared. After waiting for
a pre-determined number of cycles,say M, we seeno processorfailure. This examplein particular
shavs how our stheme correctly handles dead values. Next, assumethat at some cycle before
executing line 4, we inject an error into r4. This error bit will propagateto the result registerr5.
Next we seea store writing an erroneousvalue (r5). As discussedater, we assumeerrorsin retiring
stores can causeprogram failure; therefore, when that store retires, we update a failure courter.
So far, we have injected two errors and one of them causesprogram failure. If we calculate AVF
at this time, it would be 50%.

Next, let us examine how our scheme measuresthe AVF for a functional unit like the integer
ALU. Supposeat the cycle when the load instruction at line 6 is executed,we inject an error into
the ALU by setting its error bit. Sincethe ALU is not usedduring that cycle, the error bit will
not propagateto other structures. Thus, the error is masked. Next, assumewe inject an error into
the ALU at the cycle when line 7 is executed. The ALU is usedduring the cycle to calculate r7.
Thus, by our approad, the injected error propagatesinto r7. Now r7 hasits error bit setto 1
which later propagatesto the branch instruction. When instruction 8 is executed, we note that
it is an erroneousbranch. As discussednext, we assumeerroneousbranchescan potentially cause
program failure and update a failure courter when this branch hits retirement.

Our algorithm tracks only one error at a time; injecting multiple errors simultaneously will
make the algorithm too complex for at least two reasons. First, di erent errors could merge and
this could obscurethe true nature of the structure's vulnerability information. For example,when
two valuesx1, x2 are added up together, two separateerrorsin x1 and in X2 could combine into one
new error and the original error information is lost. Second,one error could propagateinto seeral
valuesand they might all lead to program failures. We should count them asjust onefailure since
they are all causedby the sameerror source. Tracking suc information requirescomplex hardware

and logic. Thus, we only inject one error at a time and clear all current errors beforeinjecting the

55

next error.

Algorithm 1 Algorithm to estimate AVF for a structure

1. Setthe courters inj ectionCount = 0 and f ailureCount = 0

2: while inj ectionCount < N (N is a predeterminedthreshold) do

3: Inject an error into the structure by setting its error bit to be 1. For a storagestructure that
contains many entries, randomly chooseoneto inject an error.

4: For the next M cycles (M is predetermined), propagate the error bits according to the
execution. If a bit propagatesto certain prede ned failure points, set the processorfailure
bit.

5. If the processorfailure bit is set, f ail ureCount = f ailureCount + 1.

6: Clear all error bits in the processor.

7. inj ectionCount = inj ectionCount + 1.
8

9

. end while
. _ failureCount
: AVF = inj ectionC ount

The full algorithm is summarized as Algorithm 1 and subsequeh sectionselaborate on the
details. We rst discussthe caseswhere we assumethe injected error results in program error.
Then we discussthe two predetermined variables N and M that are usedto cortrol how many
times to inject errors and how long to wait after ead error injection (to determine potential failure)
respectively. We then discussthe hardware support required and the other overheads,and nally

the limitations of our method.

4.2.2 Determining potential failure

In reality, an error causesprogram failure only if it propagatesto the program output. Unfortu-
nately, similar to SoftArch, we cannot perform this ideal assessmenof failure for two reasons.First,
waiting for propagation to the output could take too long for our technique. That is, it would limit
the number of error injections we could monitor in a reasonableamount of time. Second,sinceour
method doesnot disturb the actual program execution, any changesthat would occur in the cortrol
ow of the program due to the injected errors are not seen. For these reasons,we consenatively
consideran error to potertially causefailure if it propagatesto the somepre-de ned failure points.

In this study, we have usethe samefailure points aswe have de ned in Section 3.3.5.

56

4.2.3 Determining N { the number of error injection samples needed

In this section, we show that Algorithm 1 gives an unbiased estimation of the AVF and, more
importantly, we derive an equation to determine the number of samplesneededto get an accurate
estimation.
Algorithm 1 gives an unbiased estimator.

An error injected in a structure is either masked or not masked with probability AVF and 1-
AVF respectively. We introduce a random variable X to model this process:X = 1 if the error is

not masked and X = 0 if the error is masked. X hasthe following probability massfunction:
Pr(X =1)= AVF; Pr(X=0)=1 AVF

Our algorithm seeksto estimate AVF which is the expectation of X or E(X). It doesthis by
determining the outcome of N error injections or by generatingN samplesof X, denoted X 1, X,
., Xn. The algorithm estimates AVF as the mean of these samplesdenoted X = X1*X2f=tXn
If the N samplesare independert and identically distributed (i.i.d.), then it can be showvn using
simple probability theory that X is an unbiasedestimator for E(X) sinceE(X) = E(X) [11].

Independenceof the samplescan be ensuredusing random sampling; i.e., by using a random
number generatorto determinethe error injection time. Many hardware random number generators
are very complex. There are somesimpler pseudo-randomnumber generatorssuc as the linear
feedba& shift register(LFSR) [23]. LFSR can generate a pseudo-randomnumber in between 0
and 2". In our case,if we needa random number between 0 and any m, we will still needsome
more hardware to transform the original random number. In our experimerts, we injected errors
at xed length intervals. Although we expect that small time-scale variations in the workload
behavior will e ectiv ely intro duce enough randomization, this is an approximation and potential
sourceof inaccuracyin our estimation. In the following, we assumethat the samplesare identically
distributed for simplicity, but relax this assumption at the end of the section.

Determining N for an accurate estimation.

To ensurethat X is an accurate enoughestimator of AVF, we analyze and bound the standard

deviation of X, denoted , asfollows. It is well-known that the standard deviation = pX- if

57

2500

—+-sigma=0.01
-=-sigma=0.015
— sigma=0.02

2000 ~

1500 +

1000 -

500 -

Number of Samples Required

O T T T T T T T T T T T T T T T T T T
0 0.2 0.4 0.6 0.8 1
AVF value

Figure 4.1 The number of samples N needed for dieren t values of AVF and estimation
precision of .

all X; arei.i.d. [11]. Thus, we can x the number of samples,N, depending on the desiredvalue of

x (i.e., the desiredaccuracy of the AVF estimate). Basedon the above equation, we have

(4.1)

Z
I
XN‘XN

From the distribution of X, we know that x = P AVF(1 AVF), whereAVF 2 [0;1]. Thus,
we can plot the desiredvalue of N as a function of the AVF, given a desired precision (standard
deviation) of the estimator. Figure 4.1 shows sud plots for di erent valuesof . In practice, the
AVF value is unknown beforethe estimation, so we cannot directly usethe plots to determine N.
Instead, we note that the maximum possiblevalue of x is 0.5 corresponding to an AVF of 0.5. We
substitute this value in equation 4.1 to derive a consenative upper bound for N. For example, for
the estimation standard deviation to be lessthan 0.01, we needN = 0:52=0:01% = 2500 samples.
Similarly, for < 0:02, we need0:5°=0:02° = 625samples.In general,N can be chosenbasedon
the neededprecision. In this work, we chooseN = 1000sincewe empirically nd it to be a good
balance betweenthe estimation precision and the simulation time.

Storage structures with multiple entries.

So far, our analysis of the AVF estimation of a componert implicitly treats the componert
as a single entity. For a storage structure that cortains many ertries, we can view ead entry as
a (sub-)componert and sample ead entry. Assuming the structure has K entries, we de ne one
random variable for eat of the K entries and denotethem asX ', i in 1, 2,..K. The AVF of the

K _
. o E(X
structure iIs '=1K ().

58

Suppose we sample the ertire structure N times. Ideally, for eadh sample, we would like
to choosethe entry to sample using a random number generator; howewer, that might be very
expensiwe in hardware. As an approximation, we chooseto samplethe di erent ertries in a round-
robin fashion, resulting in N=K samplesfor ead erntry or eath X '. Our AVF estimator, X, is the
averageof theseN samples. This is an unbiasedestimator for the AVF of the structure sinceE (X)
is the AVF.

Assuming the samplesare independen and that all samplesfor an entry arei.i.d., we can shav

that [11] r
— it ot 2y
X = N K

In this formula, if we consenatively assumethat all the i are the maximum value of 0.5, it
follows that y < 0:5:p N. Thus, evenin this case,the bound for N is the sameas for the single
structure.

Relaxing the identical distribution assumption.

Above we also assumethat all the samplesare identically distributed. Howewver, we know that
workload behavior may change signi cantly over long intervals of time. If the estimation interval
includes sud large-scalechanges,then we can think of the interval as consisting of multiple phases
(each with its own AVF) and the AVF for the entire estimation interval to be the average AVF
acrossall the phases.

P N
i1 Xi

: o P
Now the expectation of our estimation becomesE (X) = E(—§j—) = L iN=1 E(X;), where

N
E(X;) may bedierent for dierent i. If our samplesare spreadevenly over the ertire estimation
interval, then it follows that E(X) is the AVF of the ertire estimation interval. To achieve even

sampling, we inject a new error every xed time interval M over the ertire estimation interval.

q
The standard deviation of the estimation now is y = & %, + %,+:u+ 3 . x, may
be dierent for dierent i. By consenatively assumingthat x, takesits maximum value, y <
P . : : . :
0:5= N. This is exactly the sameequation aswith the i.i.d. assumption.

4.2.4 Determining M { the interv al between successive error injections

Each time we inject an error, we needto wait to seeif it can causeprocessorfailure. The interval

M that we needto wait is an important parameter in our algorithm. If we wait too long, it will

59

100% 100%

80% 80%

60% - 60% -

Percentage
Percentage

40%

40%

20% 20%

0% 0%

0 100 200 300 400 500 600 700 800 0 10 20 30 40 50 60 70 80 90
Cycles Cycles
(a) register le (b) FXU

Figure 4.2 The cumulativ e distribution for the time tak en by an error to propagate to
points of potential failure (dened in Section 4.2.2) for bzip2.

take a long time for us to have a reasonableestimate for AVF. Howewer, if the wait time is too
short, a potentially unmasked error might not have propagated as a failure yet. Thus, we needto
chooseM sothat it is large enoughthat most of the unmasked errors propagate as a failure (as
de ned above) during that period.

We empirically determine the appropriate injection interval length M using the error propaga-
tion time distribution in the processor. We inject errors into ead structure of the processorand
measurethe time it takesfor the errors to propagate to our prede ned failure points. Figure 4.2
shows the cumulativ e distribution of these propagation times for the register le and FXU units
for application bzip2

Depending on the various latency parametersof the modeled processorand the workload char-
acteristics, the distribution curveswill change. For example, for the issuequeue,an error injected
into one of the entries may, in the caseof a long latency cahe miss, remain "live" for a duration
that is at least aslong as the worst-casemiss latency in the system. Di erent structures may also
have di erent distribution curves. For example, we can seethat the register le and the FXU have
di erent distribution curvesin Figure 4.2. Thus, the optimal choiceof M dependson the structure,
workload, and processor.Estimating the optimal M is therefore a complex process.

For our simulations, we chooseM to be consenative sothat the value covers all the workloads
and the structures we study here, namely register le, instruction queue, FXU, and FPU. Based

on the distributions obsened for these structures, we chooseM = 1000. We could have used a

60

smaller M for someof our structures; however, even with M = 1000,we needonly 1 million cycles
to estimate the AVF (givenN = 1000). Thus, for simplicity, we useM = 1000for all the structures

and workloads we study. Other structures may require larger valuesof M .

4.2.5 Hardw are support and overhead

The processorcortains storage and logic structures. For ead storage entry such as a register in
a register le or an issuequeueertry, an error bit needsto be attached. For the bus, one extra
line is neededto carry over the error bit when a value is transferred over the bus. For ead logic
structure like the FXU or FPU, an error bit will is required.

The stheme also needsthe necessaryhardware logic support to set and clear ead error bit.
We emulate the injection of an error to a given structure by setting its error bit to one. When the
structure is used,its error bit needsto be propagated down the pipeline. For example, if the error
bit of a storagecell is set to one, when the value in the cell is read, the error needsto propagate
together with the value. If the value is overwritten, the error bit needsto be overwritten as well.
If the error bit of a logic structure is set to one and this structure is active, the error bit will be
attached to the output value. If the structure is idle, the error bit will not propagate further and
is masked. If a logic structure takes more than oneinput, such asthe ALU, \or" gatesare needed
to mergethe error bits from ead input.

Besidesthe error bits, the schemealso needsbasic hardware courters to track the total number
of errors injected and the number that (potentially) leadto processorfailure.

The overhead of the scheme mainly comesfrom the setting and clearing of the error bits. The
error bits require extra hardware. We needone bit for every 32-or 64-bit value; hence,the space
overhead for storage entries is about 1-3%. For a logic structure however, we only need one bit
for a given structure. We also needthe necessarylogic to keeptrack of how many failures have
occurred and how many errors have beeninjected. This can be done using seeral basic courters.
In addition, we needa counter to keeptrack of which storageertry or logic structure to inject next.

During program execution, the error bits propagate together with the values and should not
causeany extra slowdown for the processor.Oncein every M N instructions or so, the processor

needsto do the accouriing and calculate the AVF. Given that this is done typically once every

61

(seweral) million instructions, the time overheadshould be negligible.

426 Limitations

Our method also has seweral limitations. A major assumption of our method is that an error in the
processorwill propagate and causeprogram failure in a short period of time, currently lessthan
seweral thousand instructions. Otherwise, the time it takesto estimate AVF will be much longer
since M will needto be set to be a large humber. Since we consenatively assumethat values
stored in memory are obsenable externally and thus can causeprogram failure, this assumption
appearssatisfactory for the structures we study. However, if we wereto setthe output instructions
as failure monitoring points, then we may needto wait for longer periods, meaning that we may
not be able to sampleenoughpoints. The downside of this is that we have to be very consenative
in estimating when an error leadsto failure.

Also, our method only dependson onerun of the program and we are not able to simulate and
track execution along incorrect paths invoked due to an error. Without this ability, we are left to
de ning the points of failure very consenatively.

Under the current stcheme, we attach one bit for ead value or instruction in the processor.
Thus, our error injection granularity is limited to the full value or instruction. This meansthat
we cannot distinguish betweenerrors in di erent elds of a structure and cannot track which part
of the instruction has error. This could be addressedby supporting multiple error bits per value
or instruction, allowing errors to be injected at a ner granularity. Similarly, since we do not
di erentiate between bits constituting a given value, we consenatively assumethat the value is
wrong onceany of its bits has an error. This prevernts us from modeling detailed masking e ects
like logical masking.

Finally, the goal of this work is to dewelop an online AVF estimation algorithm. Our algorithm
estimates the AVF for the past interval. Many processoradaptive cortrol algorithms need the
AVF for the future interval asthe input. In order for our approad to be useful for controlling any
processoradaptation, we needto integrate our method with an interval or phaseprediction method.
There hasbeenmuch work on phaseprediction. Our work can simply be combined with any phase

prediction algorithm. For example,we could usea simple predictor which always predicts the next

62

interval's AVF to be the sameasthe past interval.

4.3 Exp erimen tal metho dology

To evaluate the accuracyof our AVF estimation method, we again usethe Turandot simulator [13].
The parametersfor the processorare chosento correspond to the POWER4 microarchitecture and
were the sameasin Table 2.1.

We implemented our AVF estimation algorithm in Turandot as described in Section 4.2 to
estimate the AVF of the instruction queue(lQ), register le (REG), integeror xed point functional
units (FXU), and oating point units (FPU). 1

We evaluated our algorithm with eleven SPEC CPU2000 benchmarks. We used traces from
the trace repository generatedusing the Aria trace facility in the MET toolkit [24], using the full
referenceinput set. Sampling wasusedto limit the trace length to 100-200million instructions per
program. The sampled traces have been validated with the original full traces for accuracy and
correct represetiation [19].

The value of the parameters M and N depend on the processorand compiler and should
be carefully chosen. In our experiments, as we have mertioned in previous sections, we choose
M = N = 1;000. Thus, we estimate an AVF value at the granularity of elery M N = 1 million
cyclesof an application. We refer to this as the estimation interval below. This givesus 100-200
AVF estimates (one for ead distinct 1M cycle interval) for ead application and ead processor
structure.

To validate the accuracy of our AVF estimates, we compare against the AVF reported by the
SoftArch method [6]. As mentioned, SoftArch is a detailed soft error model that estimatesthe AVF
oine with alot of analysis. We use SoftArch sinceit is the best AVF estimation we have access
to.

Additionally , to justify the full complexity of our method, we alsocomparedits accuracyto that
of a simpler, intuitiv e method. Speci cally, for logic structures, it is intuitiv e to considerutilization

asan estimation for the AVF (the higher the utilization, the higher the vulnerability to soft errors).

1Wwe were not able to collect data for TLBs since a reasonableM value required for e ectiv ely exercising them is
closeto 1 million cycles. Thus, to generateone AVF estimation requires a billion cycles of simulation, which made it
dicult to collect a full set of results.

63

The utilization of a logic structure can be easily estimated in hardware by counting the number
of cyclesit is busy out of all cycles. It is natural to usethe utilization as a proxy for AVF since
errors in the structure will be masked if the structure is idle and errors may not be masked when
the structure is busy. An analogousconceptis harder to extend to storage structures. We are
not aware of any other general, workload-independert algorithm for online estimation of AVF of
storagestructures. Thus, in this study, we usea simple alternativ e (utilization-based) method only

to estimate AVF for logic structures.

4.4 Results

Figures 4.3(a), (b), (c), and (d) shov aggregatestatistics to demonstrate the accuracy of our AVF
estimation algorithm relative to SoftArch for the instruction queue, register le, FXU, and FPU
respectively. The FXU and FPU gures also show the accuracy of the simple utilization-based
estimation method relative to SoftArch (right bar for ead application).

Below, by absoluteerror of an estimation method for a given application interval that cortains 1
million cycles,wereferto the absolutedi erence betweenthe AVFs reported by that method and by

: - : jE stimated AV F Sof tAr chAV Fj
SoftArch. By relative error of an estimation method, we refer to SoftAr ch AV E 100.

Also, we often refer to the SoftArch AVF asthe real AVF.

The charts on the left side of Figure 4.3 give three statistics for the absoluteerrors. For ead bar,
the lowest (shaded) stack givesthe meanabsolute error (referred to as Mean) for the corresponding
estimation method and application (averagedacrossthe di erent 1M cycle estimation intervals for
that application). The full height of the bar is the maximum absolute error, ignoring the top four
errors to exclude unrepresenativ e outliers (referred to as Max). The middle stad is the standard
deviation of the absolute error (referred to as Standard_Deviation).

Since AVF values can range only from 0 to 1, it is most meaningful to compare the absolute
errors. Small absolute errors may be acceptableeven if the relative error is large; e.g., an estimate
of AVF=0.12 for a real AVF of 0.1 re ects a 20% relative error; howewer, it is unclear if this
di erence of 0.02 absolute error is practically signi cant. Nevertheless,the charts on the right side
of Figure 4.3 provide the relative errors for reference.

For a more detailed look, we take two applications as examplesand plot AVF valuesfor them

64

Absolute Error of AVF

Absolute Error of AVF Absolute Error of AVF

Absolute Error of AVF

Figure 4.3 Error
instruction

of the application.

0.10 B Mean [0 Standard_Deviaton HE Max
s
0.08 <
-
S)
0.061 S
w
4)
’ =
ks
(]
24
v @Q NS 'Qq/ Q’S‘. 42;@ c?a) AR @Q & @6
»
& T & ¢ & & FH &
(a) Instruction
B Mean [0 Standard_Deviation HE Max
0.08
0.06

0.04

Relative Error of AVF

(b) Register

B Mean [0 Standard_Deviation HE Max

Relative Error of AVF

B Mean [0 Standard_Deviation HE Max

queue, (b) register le,

Relative Error of AVF

H Mean

[0 Standard_Deviaton HE Max

B Mean

[0 Standard_Deviation HE Max

le
B Mean g O Standard_Deviation E Max

& =

5

4

37

N - 0 -

. 5

o
oOuU OuU ou OUQ/OUOOU ou OU‘_OL{A_ ou OU?’

©

& & & & &P q?’b R
& T Q;Q\} & ¥ & QQ:‘\ ;9\"\5 & Q\QQ

.| W Mean [0 Standard_Deviation HE Max

9

25—

o | —

15— =

) _ m o

1

O.EﬁH

o
oOuU OuU ou OUQ/OU ouU ou OU‘_OL{A_ ou OU?’

©

& & & F S ¥ q?’b & & &
£ T ¢ & E S S8

in AVF estimation when compared to the SoftArc h reference for (a)
(c) FXU, and (d) FPU. The left charts show abso-
lute error - mean, standard deviation and maxim um - across all estimation
The right charts show relative error.

interv als
The errors are shown for

AVF estimates using our online metho d (denoted O) and the simple utilization-based
metho d (denote U, for parts (c) and (d) only).

65

0.6 T T T T T

Instruction Queue AVF for mesa

"Real AVF ——
Estimated AVF -~

Instruction Queue AVF for ammp

0O 10 20 30 40 50 60 70 80 90 100
instruction queue

0.6 T T T T T T T T T
Real AVF ——
Estimated AVF -
05]
g
£
= a
5 04] 5
< w
>
< 03¢ 1 <>t
= 2
% 0.2 1 g
¢ i3
T 01] 4
0 . . . h
0O 10 20 30 40 50 60 70 80 90 100
register le
0.6 T T T T T T T T T
Real AVF
Estimated AVF - -
05 Utilization based AVF - 1
2 g
£ 1 =
£ a
s 5
< 1 w
>
< 2
2 1 o)
E z
0O 10 20 30 40 50 60 70 80 90 100
0.6 T T T T T T T T T
Real AVF ——
Estimated AVF -
05 Utilization based AVF - 1
« a
3 04r | £
£ a
8 5
w 03¢] o
>
< 2
2 r 1)
0.2
: E
0.1r]
IS S A ey /U_/«_
o ANV ARRSRERERE VAN
0O 10 20 30 40 50 60 70 80 90 100

Figure 4.4 AVFs of instruction

gueue, register

66

06

"Real AVF ——
Estimated AVF -~

0.6

20 40 60 80 100 120 140 160 180 200

05

0.1

"Real AVF — —
Estimated AVF -~

0.6

20 40 60 80 100 120 140 160 180 200

05

04

0.2

0.1

" Real AVF
Estimated AVF - -
Utilization based AVF - 1

0.6

20 40 60 80 100 120 140 160 180 200

05

04

03

"Real AVF — —
Estimated AVF -~
Utilization based AVF - |

le,
SoftArc h, our online metho d, and the utilization-based
only), for applications mesa (left side) and ammp (righ t side). AVFs are reported for
1M cycle interv als.

20 40 60 80 100 120 140 160 180 200

FXU,

and FPU, as reported by

metho d (for FXU and FPU

for eadh 1M cycle estimation interval for ead structure in Figure 4.4. For ead application, we
show the AVF value calculated by SoftArch and the AVF value estimated by our method. For both
the FPU and FXU, we also shawv the AVF calculated by the utilization-based method.

We make the following obsenations from the gures.

Absolute errors.

Comparing absolute errors (left charts in Figure 4.3), we nd that our method showvs low mean
absolute errors{ for all but 3 casesthe meanis lessthan 0.04 acrossall four structures and eleven
applications. Even the Max absolute error for our method is lessthan 0.08 for all the structures
and applications. The standard deviation for the absolute error is lessthan 0.05for all cases.

In contrast, the utilization-based method hassigni cantly larger meanabsolute error in seweral
cases.For example, for the FXU, the mean absolute error is over 0.16 for perlomk and almost 0.1
for mesaand wupwise The maximum errors are even higher.

In all cases,our estimation method shows better or almost the same absolute error as the
utilization-based method. The main reasonthat our method shows lower error is that it is able to
accourt for more sourcesof masking (e.g., masking due to dead valuesand instructions) than the
utilization-based method. In four cases,the utilization-based method shaws slightly lower mean
absolute error becauseour method does make some statistical errors. Speci cally, we useonly a
nite number of samples. Further, we assumethat the samplesare independert and, for the caseof
structures with multiple ertries, an entry in a structure is not randomly selectedfor fault injection.

Relativ e errors.

Comparing relative errors (right charts in Figure 4.3), we nd that in most cases,the mean
relative error for our method is lessthan 20%, but in somecases,it can be as high as 65% (for
FPU running facerec). The utilization-based method hasa much higher meanrelative error in most
cases,up to over 300%for FXU running equake and 130%for FXU running wupwise.

We examine the caseswhere our method has a relative error larger than 20%. We nd that in
all these cases,the real AVF is lessthan 0.2. This small absolute value implies that even a small
absolute error is in ated as a large relative error. At these small AVF values, the modestly large
relative errors of our method are unlikely to a ect design choices, given that the absolute errors

are sosmall.

67

| Average_Prediction_Error] Average_AVF_Value

0.1 I : nponfl ool op . |
OJJJﬂJJ.E.:JJI ﬂJ.:.:JJiIJJﬂ.DJJIiJJI ﬂJﬂi...mm-ﬂrﬂ
D)5 S DS S D5 S D5 S D)5 S D35 S D S (@] > D3 S D5 S D5 S
o o (=3 o o (=3 (=3 o (=2 (=3 o
= = TR RS i O e e N e R It = R CR g = GRS =

@ fpu

]
X
perlbmksixtrack swim wupwise

=

ammp art bzip2 equakefacerec lucas mes

Figure 4.5 The relativ e error of the predicted AVF using a simple predictor. The
predictor assumes the AVF of the next interv al is equal to that of the previous interv al.

Detailed results.

The detailed plots in Figures 4.4 reveal se\eral interesting obsenations that are not seenin the
aggregatestatistics. First, the absolute value of the AVF stays within 0.2 for most of the cases
examined here, but it often also goesas high as 0.5. Our method is able to track this ertire range
of AVFs.

Second,many of the applications showv signi cant changesin the AVF through the course of
the execution. Our method is able to track all such changesvery closely The utilization-based
method alsotracks the changes{ periods of high utilization correlate well with periods of high real
AVF; howewer, often a signi cant gap remains betweenthe absolute valuesof the utilization-based
method and the real AVF.

Overall, these results show that our method is not only accurate on average, but also robust
acrossa variety of scenarios.Further, for structures wherea simple utilization-based method canbe
constructed, our results show that sudh a method has signi cantly lower delit y than our method.

Prediction errors.

We have studied the accuracy of our shemewhen usedto estimate AVF. The AVF estimation
is obtained at the end of ead interval. Howewer, for the AVF value to be useful for any dynamic
control or adaptation scheme, we needto predict the AVF value for the next interval. Detailed
AVF prediction schemesare beyond the scope of this work. In this dissertation, we simply illustrate
that with our AVF estimation method and a simple predictor, we can quite e ectiv ely predict the

AVF value for the next interval.

68

Sudch a simple predictor would work asfollows. At the end of ead estimation interval, it predicts
the AVF of the next interval to be equalto the AVF of the past interval which is estimated using
our scheme. The underlying assumption behind this simple prediction is that the AVF behavior
acrossconsecutie estimation intervals for the sameapplication is stable or changesvery slowly.

In order to evaluate the quality of our AVF prediction, for ead estimation interval, we calculate
the absolute error in the prediction as the absolute value of the di erence betweenthe predicted
AVF and the real AVF. Figure 4.5 reports this absolute prediction error and the real AVF, averaged
acrossall intervals for ead application.

The results show that the absolute prediction error is quite small in all cases(lessthan 0.05
with two exceptions). The relative prediction error (as a percertage of the real AVF) is lessthan
30% of the real AVF with a few exceptionswhen the absolute value of the AVF is small.

The prediction errors arise from two sources.

The rst is the predictability of the AVF itself acrossdi erent intervals of the application. If
the application AVF is unrelated acrossdi erent intervals and changesabruptly and frequertly, any
predictor will fail to producereasonablepredictions. This is regardlessof the accuracy of the online
AVF estimation method for the current interval. The predictability of the AVF acrossdierent
estimation intervals is a topic beyond the scope of this dissertation. Based on our obsenation,
howewer, the AVF of most applications is stable acrossconsecutiwe intervals, although there are
a few exceptionswhere AVF behavior changesfrequertly and is harder to predict. Fu et al. [25]
show that AVF exhibits phasebehavior similar to the performanceand power domain. They show
that the AVF behavior is mostly related to the program code-structure and run-time events. Thus,
the stable AVF behavior acrossmultiple intervals might be explained by the the underlying similar
code-structure such as code running in the sameloop. Similarly, a sudden change of AVF might
indicate that the program has entered a new phase.

The secondsourceof error in the prediction is the error in our online AVF estimation method
for the current interval. If the AVF estimation for the current interval has large errors, then even
if the AVF is stable acrossall intervals, the prediction for the next interval will contain large
errors. Overall, the results show that our estimation scheme conmbined with a simple predictor

givesreasonableAVF predictions.

69

4.5 Summary

In this chapter, we have proposedand studied a novel technique to estimate architectural vulnera-
bilit y factors for soft errors in real-time. We have described the AVF estimation algorithm and the
simple hardware modi cations to the processorfor e ectiv ely estimating the AVF. Our method is
generaland appliesto both logic and storage structures in a microprocessor. We test our method
with a widely used simulator from industry, for four processorstructures running SPEC bend-
marks. The results showv that our method provides acceptably accurate run-time AVF estimates
under a wide variety of scenarios,comparedto a detailed (and complex) oine AVF estimation

tool.

70

Chapter 5

Related work

We classify related soft error work into three main categories:soft error modeling, AVF estimation,
and soft error protection solutions. The rst classof work models and investigatesthe soft error
behavior of a processorat the architecture level. The secondclassestimatesand predicts the AVF
for a running application. The third classproposesnew solutions to protect the processorsfrom
soft errors.

In Section5.1to 5.3, we describe ead of the three categories. In Section 5.4, we discussother

related work that bearssimilarity to our online AVF method.

5.1 Soft error modeling

There have beentwo broad approacesto architecture level modeling of the impact of soft errors.
The rst involvesfault injection in a simulator to determine whether an injected error is exposed
at the architecture level [26, 27, 3]. For example, Wang et al. perform fault injection experimens
on a latch-accurate Verilog model of a modern Alpha processor(about 25,000experimerts for eah
bencdhmark). This kind of approad is accurate, but slow. The typical simulation is limited to the
order of 10,000cyclesfor an application's execution.

Mukherjee et al. proposethe AVF method to calculatethe MTTF of aprocessof8]. The average
fraction of bits in a structure that will a ect the program outcome is termed as the architecture
vulnerability factor (or AVF) for that structure (equivalert to the derating factor). The product of
AVF and the raw SER for a structure givesits architectural failure rate. Biswas et al. [9] extends
the method to cover address-basedstructures as well.

To our knowledge, there has beenno prior attempt to understand the basic assumptionsof the

71

AVF+SOFR method and parameter value rangesthat bound its validity (or accuracy), when it

comesto reliability modeling at the (micro)architecture level.

5.2 AVF estimation

There have beense\eral studies on estimating the AVF [8, 6, 28, 22, 21]. They can be classi ed
into two categories.

The rst category is the oine method which estimates AVF with complex simulators [8, 6,
28]. This oine estimation is a complex process,requiring many resourcesto track values and
instructions as they travel through a processor. Normally only a limited number of instructions
can be analyzed in a reasonableamount of time. These methods are therefore not suitable for
online real-time AVF estimation.

The secondcategoryis the online method which estimatesthe AVF in real time [21, 22]. Walcott
et al. [22] apply statistical analysis using a detailed simulator to analyzethe AVF behavior. Then
they useregressionto explore the relationship between AVF and various micro-architecture level
variables suc as structure occupancy number of instructions executed, etc. After running the
regressiono ine for certain workloads, the correlation coe cien ts between AVF and ead micro-
architecture variable are established. Sincethe micro-architecture variablesare obsenable, the AVF
value can be estimated through them. This method can potentially be implemented to estimate the
AVF online; howewer, it requires heavy oine simulation and calibration for di erent workloads.
What is more important is that the parameters are dependent on the workload as mertioned in
the paper. It is not clear that the parameterscalibrated for one set of workloads will give accurate
estimation for another set. Compared to Walcott et al., our online AVF estimation approad
requireslittle oine analysis. It only requirestwo parametersfor any structure comparedto v e
to ten parametersin Walcott et al. The parametersin our method can also be chosento achieve
the besttrade-o betweenthe estimation precision and estimation time. Soundarargan et al. [21]
proposea method to estimate AVF for the reorder bu er (ROB) in the processor. This method
determinesthe AVF by estimating the occupancy of the instruction queue. The occupancy of the
instruction queueisin turn estimated by cournting the number of instructions that are dispatched or

retired. This method can be implemented online, but is limited to a single structure. For example,

72

it is hard to extend the samemethod to estimate the AVF for the register le.

5.3 Soft error protection schemes

There hasbeena rich body of work in the soft error eld on soft error protection schemes. Here we
will focus on someof the key schemesthat addressthe soft error problem from the software level
and architecture level.

On the software level, the compiler or operating system can help intro duce redundancyinto the
program to chedk program cortrol ow, memory accessand control signals. For example, Ohlsson
et al. [29] proposethat the compiler automatically generatesome code for a watchdog processor
to chek the protected processor. Along with the recert popularity of SMT and CMP processors,
there have beenseeral papersdealingwith soft error protection using redundant threads. SMT and
CMP are ableto executetwo threads simultaneously, which createsan opportunity for thread level
redundancy. There have beenseeral papers on the implementation of redundant multi-threading.
Depending on the platform (SMT vs. CMP), detection or recovery, dierent schemeshave been
proposed. Someexamplesare: AR-SMT [30], SRT [31], CRT, Slip-stream, SRTR, CRTR, etc. The
basicideais very simple { to run two copiesof the samethread and chedk with ead other before
the result can be committed to the architecture state. All the proposedshemesrequire small
amount of modi cation to the original SMT or CMT processor.Oh et al. [32] proposea technique
called EDDI whereall instructions are duplicated and appropriate "ched" instructions are inserted
for error cheking. There are other variants of the scheme, such as cortrol- o0 w chedking scheme
(CFSCC) where eat cortrol transfer generatesa run-time signature that is validated by error
cheking code generatedby the compiler for ead block. Reis et al. [33] proposea software based
technique called SWIFT. SWIFT is a single-threadedsoftware-basederror detection approac and
improved version of EDDI. It usesmore optimization to cover more kinds of errors and reducesthe
overhead of the simple EDDI scheme.

On the micro-architecture and architecture level, redundancy can also be introducedto protect
the processor. Austin et al. [34] proposeDIVA. The idea is to use a simple and reliable cheder
processorat the commit stage of the main coreto verify its result. Sincethe cheder sits at commit

stage,it's an in-order core and can be made very reliable becauseof its simplicity. Ernst et al. [35],

73

propose Razor, a special latch to protect the data path. The idea is to use a shadav latch to
redundartly latch the data and compare with the main latch. When timing error happens, the
shadav latch will latch in data dierent from the main latch, thus errors can be detected. Not
only can the Razor latch detect timing errors, it can also provide a medanism to recover from the
timing errors. Recovery can be achieved using methods including clock gating.

Wang et al. [36] proposea sdheme called ReStore to detect symptoms of soft errors and use
existing recovery ability for branch mispredictions in the processor. Racunaset al. [37] detect
soft errors by monitoring for departures from expected program behavior. The SWAT system
detects a variety of faults by monitoring for high level symptoms, including software invariant

violations [38, 39].

5.4 Other related work

Our AVF prediction scheme has some similarity to the work by Fields et al. on critical-path

prediction [40]. Like the AVF prediction, nding the critical-path in the instruction dependence
graph is a very complextask even for o ine processing.lt is even harderto nd the critical paths
in hardware online. Fields et al. proposean online critical-path predictor that passestokensto

explicitly track dependencechains. Instead of seekingsomeheuristic everts in the pipelinethat are
correlated with the instruction criticalit y [41], Fields et al. directly obsene and track dependence
chains in hardware. Using a probabilistic approad, Fields et al. avoided the complextracking and
analysis. They are able to predict the critical-path in real time with more than 80% accuracyusing
a hardware predictor. Our work on the AVF prediction is similar in that we alsousea probabilistic

approad. Instead of tracking all the valuesin the processor,we usea simple error injection and
courting processto estimate the AVF.

There have beenat least two major studiesthat use bits similar to the error bits usedin our
online AVF estimation scheme, but for dierent purposes. First, Weaver et al. [4] proposethe
bit to addressfalse detected errors. Every instruction and register entry is assaiated with a single

bit. When an error is detected (e.g., via parity), the a ected instruction's bit is set by the
instruction queueand the instruction is allowed to progressdown the pipeline. When the a ected

instruction reachesthe commit point, if it is determined to cortribute to correct program outcome,

74

a machine ched error is raised; otherwise the set bit is ignored. Second,the poison bit [42]
and the analogousNaT bit of the Itanium architecture [43] are usedto track deferred speculative
exceptions. Our use of the error bits is di erent { we usethem to estimate the AVF due to soft

errors. Nevertheless,the hardware support required for all of thesetechniquesis likely to be similar.

75

Chapter 6

Conclusions and future directions

This chapter summarizesthe analysisand insights of this dissertation and discusseguture directions

for researtt motivated by the results of this dissertation.

6.1 Conclusions

The cortinuous scaling of CMOS technology brought tremendous improvemert in processorper-
formance. However, soft errors are becomingan increasingconcernfor processorreliability. In this
dissertation, we addresssoft error reliabilit y issuesfrom an architectural perspective.

We rst analyze the current state-of-the-art in soft error modeling and analysis techniques {
the AVF+SOFR methodology. Our results shav that both the AVF step and the SOFR step make
signi cant assumptions. We then use both mathematical and experimertal techniques to chedk
the validity of the above method acrossa large design space. We nd that the above method is
valid for most casesunder the current raw error rates. Howewer, our results show that for some
combinations of large systems,long running workloads with large phases,and/or high raw error
rates, the MTTF calculated using the AVF+SOFR method shows signi cant discrepanciesfrom
that using rst principles.

To nd an alternative model that is not subject to sud limitations, we proposea model and
tool called SoftArch that doesnot make the above AVF+SOFR assumptions. SoftArch is based
on a probabilistic model of error generation and propagation processin a processor. We show
that SoftArch doesnot show the discrepanciesshovn by the AVF+SOFR method. We also apply
SoftArch to analyzethe e ect of technology scaling on the processorsoft error rate. We scalea

processorover four technology generationsand identify the trend of the processorFIT rate taking

76

the architecture level masking e ect into consideration.

By using the SoftArch tool, we obsene that there is much architecture level masking and that
the degreeof such masking can vary signi cantly acrossworkloads, individual units, and workload
phases. Thus, it is natural to considerthe architecture level solutions to take advantage of sud
variations. To do that, onewould needan reasonablyaccurate estimatesof the amount of masking
e ect in real time. We have shown in our analysis that for most current systems (that are the
focus of our study), AVF proves an accurate abstraction of the architecture masking e ect. In
this dissertation, we put forward a novel way of estimating AVF in real time. We proposesome
simple hardware modi cations for the processorand usean algorithm to e ectiv ely estimate AVF.
It is a generalmethod that appliesto both logic and storage units on the processor.Compared to
previous methods for estimating AVF, our method doesnot require any o ine simulation, nor does
it require any calibration for di erent workloads. We test our method with a widely usedsimulator
from industry for SPEC bendimarks. The results show that our method provides accurate run-
time AVF estimates. The absolute error rarely exceeds0.08 acrossall application intervals for all
structures, and the meanabsolute error for a given application and structure combination is always

within 0.05.

6.2 Future directions

This dissertation lays the foundation for architecture level analysis of soft errors and provides
new tools and techniquesto handle this critical emergingtechnology challenge. There exist many

potential avenuesfor future work. Below we will highlight two possibledirections.

6.2.1 Arc hitecture level solution for soft errors

The ultimate goal of the architecture level soft error study is to design e ectiv e architecture level
solutions to help mitigate the problem. Our results in both Section 3.4 and Section 4.4 show
that the AVF for di erent processorstructures changesover time during the program execution.
Depending on the AVF, the optimal protection schemefor thesestructures also changesover time.
This provides opportunities to dynamically adapt the processorto achieve the best protection in a

cost e ectiv e way.

e

A good prediction of AVF is important for such adaptation. The AVF prediction hasto be real
time in order for the processorto react to application behavior changesquickly. In this dissertation,
we have proposedan e ective online AVF prediction method. This could lead to a classof real

time AVF adaptation and optimization solutions for processors.

6.2.2 Unied system wide adaptation framew ork

Many di erent adaptation schemeshave beenproposedfor power, temperature, energy and reliabil-
ity in the past years. Although the power, temperature, energy and reliability problemsare highly
related inherently, the schemeshave been proposedindependerly for ead eld so far. Power,
temperature, energy and reliability are all important requiremerts for a computer systemand the
adaptation for any of them could potentially have an impact on the performance. Considering
only one and ignoring the others could potenrtially causeproblems. For example, most soft error
protection schemesuse someform of redundancy to detect and correct errors which will leadto an
increasein the power and energy consumption. This might causethe power and energy constraints
to be violated even though the soft error designspeci cations are met. Similarly, many power and
energy reduction techniques such as dynamic voltage scaling will increasethe processorsoft error
rate dramatically which may result in a non-reliable system.

Most previous adaptation schemeshave been proposedfor a single componert of the system
to adhieve the componert's optimal con guration. It would be bene cial, howewer, to adapt all
the componerts jointly to achieve global optimal adaptation. For example, Li et al. [44] study the
energy managemen problem for the memory consideringthe performanceconstraint. Li et al. [45]
take one step further and study the joint adaptation problem for both processorand memory. The
work shaws that by jointly adapting di erent componerts of the system, more energy savings can
be achieved.

As sud, we should considerthe adaptation problem asa multiple dimensionproblem with multi-
ple tradeo s and requiremerts in terms of performance,power, temperature, energyand reliabilit y.
We needto study and better understand the relations betweendi erent dimensions. We also need
to better understand the interaction between adaptation for di erent componerts of the system.

A unied framework for performance, power, temperature, energy and reliability would poten-

78

tially have a huge benet, leading to optimal performance/power/temp erature/energy/reliabilit y

tradeo s basedon the requiremerts of the target system.

79

References

[1] T. J. O'Gorman et al., \Field Testingfor CosmicRay Soft Errors in SemiconductorMemories,"
IBM Journal of Resarch and Development vol. 40, no. 1, pp. 41{50, 1996.

[2] J. F. Ziegler, \T errestrial Cosmic Rays," IBM Journal of Resarch and Development vol. 40,
no. 1, pp. 19{39, 1996.

[3] N. Wang, T. Rafacz,J. Quek, and S. J. Patel, \Characterizing the E ects of Transient Faults
on a Modern High-PerformanceProcessorPipeline," in Proceedings of the International Con-
ference on DependableSystemsand Networks 2004.

[4] C. Weaver et al., \T edhniquesto Reducethe Soft Error Rate of a High-PerformanceMicropro-
cessor,"in Proceedings of the 31st annual international symmsium on Computer architecture,
2004.

[5] X. Li, S. Adve, P. Bose,and J. A. Rivers, \Arc hitecture-Level Soft Error Analysis: Examin-
ing the Limits of Common Assumptions," in Proceedings of the International Conferena on
DependableSystemsand Networks 2007.

[6] X. Li, S.Adve, P. Bose,and J. A. Rivers,\SoftArc h: an Architectural Level Tool for Modeling
and Analyzing Soft Errors,” in Proceadings of the International Conference on Dependable
Systemsand Networks 2005.

[7] X. Li, S. Adve, P. Bose, and J. A. Rivers, \Online Estimation of Architectural Vulnerabil-
ity Factor for Soft Errors,” in Proceadings of the 35th Annual International Symmsium on
Computer Architecture, 2008.

[8] S. S. Mukherjee et al., \A Systematic Methodology to Compute the Architectural Vulnera-
bility Factors for a High-Performance Microprocessor,”in Proc. of the 36th Intl. Symp. on
Micr oarch., 2003.

[9] A. Biswas, P. Racunas,R. Cheweresan,J. Emer, S. S. Mukherjee, and R. Rangan,\Computing
the Architectural Vunerability Factor for Address-BasedStructures," in Proceedings of the 29th
Annual International Sympsium on Computer Architecture, 2005.

[10] K. Trivedi, Prolability and Statistics with Reliability, Queueing,and Computer Sciene Appli-
cations. Prentice Hall, 1982.

[11] S. Ross,A First Coursein Protability. Prentice Hall, 2001.

[12] X. Li et al., \Arc hitecture-Level Soft Error Analysis: Examining the Limits of Common As-
simptions (extended version),” Ted. Rep. UIUCDCS-R-2007-2833,UIUC, March 2007. Avail-
able at http://rsim.cs.uiuc.edu/Pubs/07dsn-tr.p df.

80

[13] M. Moudgill et al., \V alidation of Turandot, a Fast ProcessorModel for Microarchitecture
Evaluation,” in International Performance, Computing and Communication Conference, 1999.

[14] P. Shivakumar et al., \Mo deling the E ect of Tedinology Trends on the Soft Error Rate of
Combinational Logic,” in Proceedings of the 2002 International Conferene on Dependable
Systemsand Networks pp. 389{398, June 2002.

[15] C. Moore,\The POWER4 System Microarchitecture,” in Microprocessor Forum, 2000.

[16] F. Irom, F. F. Farmamesh,A. H. Johnson, G. M. Swift, and D. G. Millw ard, \Single-Evert
Upset in Commercial Silicon-on-Insulator PowerPC Microprocessors,"IEEE Transactionson
Nuclear Sciene, vol. 49, pp. 3148{3155,Dec. 2002.

[17] G. M. Swift et al., \Single-Event Upset in the PowerPC750 Microprocess