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Abstract

Increased power densities (and resultant temperatures)
and other effects of device scaling are predicted to cause
significant lifetime reliability problems in the near future.
In this paper, we study two techniques that leverage mi-
croarchitectural structural redundancy for lifetime reliabil-
ity enhancement. First, instructural duplication (SD),
redundant microarchitectural structures are added to the
processor and designated as spares. Spare structures can
be turned on when the original structure fails, increasing
the processor’s lifetime. Second,graceful performance
degradation (GPD) is a technique that exploits existing
microarchitectural redundancy for reliability. Redundant
structures that fail are shut down while still maintaining
functionality, thereby increasing the processor’s lifetime,
but at a lower performance.

Our analysis shows that exploiting structural redun-
dancy can provide significant reliability benefits, and we
present guidelines for efficient usage of these techniques
by identifying situations where each is more beneficial. We
show that GPD is the superior technique when only limited
performance or cost resources can be sacrificed for relia-
bility. Specifically, on average for our systems and appli-
cations, GPD increased processor reliability to1.42 times
the base value for less than a5% loss in performance. On
the other hand, for systems where reliability is more impor-
tant than performance or cost, SD is more beneficial. SD
increases reliability to2.53 times the base value for2.25
times the base cost, for our applications. Finally, a combi-
nation of the two techniques (SD+GPD) provides the high-
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est reliability benefit.1

1 Introduction

Lifetime reliability due to wear-out related hard errors
in processor components is emerging as a critical challenge
in modern microprocessors. The steady processor perfor-
mance increases seen over the last twenty years have been
driven by aggressive scaling of CMOS devices. At the same
time, scaling leads to higher temperatures and reduced de-
vice feature sizes which results in lower processor lifetime
reliability [23]. Device, manufacturing, and fabricationre-
searchers have been aware of the lifetime reliability prob-
lem for many years and there exists a large body of research
at the device level. On the other hand, there is a dearth of
architectural lifetime reliability research as microarchitects
have traditionally not viewed the subject as a problem.

As a first step towards addressing this issue, in [22], we
proposed RAMP, a microarchitecture-level model that dy-
namically tracks processor lifetime reliability, accounting
for the behavior of the executing application. In [23], we
integrated device scaling models in RAMP and quantified
the impact of technology scaling on reliability, showing that
scaling has a significant and increasing effect on proces-
sor hard failure rates. For a contemporary superscalar pro-
cessor running Spec2000 applications, our results in [23]
show an average increase of 316% in processor failure rates
when scaling from 180nm to 65nm. In such a reliability-
constrained environment, some performance and/or die area
(and resultant cost) will have to be sacrificed for reliability.
In this paper, we examine efficient usage of these perfor-
mance and cost budgets through structural redundancy for
lifetime enhancement.

1This version of the paper differs slightly from the originalISCA 2005
version due to a correction in the equation for the probability density func-
tion for a lognormal distribution and the method to generatesuch a distri-
bution (Section 3). Although there is a change in some of the quantitative
results, there is no change in the qualitative results or conclusions of the
paper.
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1.1 Exploiting Structural Redundancy for Life-
time Reliability

Redundancy is a commonly used technique for reliabil-
ity enhancement. However, most previous work for lifetime
reliability focused on redundancy at the processor granu-
larity. Due to the large area overheads involved in dupli-
cating entire processors, such redundancy does not provide
a cost-effective reliability solution. Structural redundancy
addresses some of these shortcomings of processor redun-
dancy by incurring less area overhead and allowing run-
time processor reconfiguration for reliability.

We examine two methods by which structural redun-
dancy can be used for reliability enhancement. In the first
case, referred to asstructural duplication (SD), certain re-
dundant microarchitectural structures are added to the pro-
cessor and designated as ”spares.” Spare structures can be
turned on during the processor’s lifetime when the origi-
nal structure fails. Hence, in a situation where a processor
would have normally failed, the spare structure extends the
processor’s lifetime. With SD, the processor fails only in
the case where a structure without a spare fails, or all avail-
able spares have been used. It should be noted that the main
function of the spare units is to increase reliability, and not
performance. As a result, the spare structures are power
gated and not used at the beginning of the processor’s life
(a power gated structure would suffer almost no hard errors
since there would be no gate-oxide breakdown or intercon-
nect wear-out).

Next, we examinegraceful performance degradation
(GPD) which allows the processor to exploit existing mi-
croarchitectural redundancy for reliability. Modern proces-
sors have replicated structures that are used for increasing
performance for some high parallelism applications. How-
ever, the replicated structures are not required for functional
correctness. If a replicated structure fails in the course of a
processor’s lifetime, the processor can shut down the struc-
ture and still maintain functionality, thereby increasinglife-
time. Hence, rather than fail when the first structure on chip
fails, a processor with GPD would fail only when all redun-
dant structures of a type fail. We also examine architectures
that use a combination of SD and GPD.

Both SD and GPD incur overheads while increasing re-
liability. In the case of SD, extra processor die area is re-
quired due to the introduction of spare structures. This area
overhead translates into a cost overhead. However, SD re-
sults in no performance loss relative to the base processor.
Conversely, GPD results in a processor’s performance de-
grading during its lifetime when replicated structures fail.
However, since no extra structures are added to the proces-
sor, this technique comes with no area overhead.

Given a reliability-constrained design situation, some
performance and/or cost will have to be sacrificed for re-
liability. Our analysis shows that structural redundancy can

use this performance or cost tradeoff for significant reliabil-
ity benefit. In addition, we provide guidelines for intelligent
reliability decisions by identifying the superior design tech-
nique for a given performance or cost trade-off. For our
systems and applications, we show that GPD is a superior
technique when only limited performance or area resources
can be sacrificed for reliability. On average, GPD increases
processor reliability to1.42 times the base value for less
than a5% loss in performance. On the other hand, for sys-
tems where reliability is more important than performance
or cost, SD is more beneficial. SD increases reliability to
2.53 times the base value for2.25 times the base cost for
our systems and applications. Finally, a combination of SD
and GPD increases reliability to as much as4.16 times the
base value.

1.2 Enhancements to the Reliability Model

Our reliability modeling methodology is based on
RAMP [22], which represents the current state-of-the-art.
However, to use RAMP to evaluate SD and GPD, we had
to enhance some parts of the model. Currently, RAMP as-
sumes all processors are series failure systems [22]; i.e.,the
first failure anywhere on chip will cause the entire proces-
sor to fail. However, processors that use redundancy for SD
or GPD are series-parallel failure systems. Also, RAMP
assumes all failure mechanisms have an exponential distri-
bution, which implies that they have a constant failure rate
throughout the processor lifetime [22]. This is inaccurate–
a typical wear-out failure mechanism will have a low fail-
ure rate at the beginning of the component’s lifetime and the
value will grow as the component ages. We address this lim-
itation in RAMP by modeling failure mechanisms with log-
normal distributions. Lognormal distributions better model
failure mechanisms than exponential distributions [1], and
allow us to model the dependence on time of the failure
mechanisms. We then use Monte-Carlo simulation methods
in RAMP to calculate total processor reliability for series-
parallel systems with lognormal distributions.

Finally, we incorporate a model for a new failure mech-
anism, negative bias temperature instability (NBTI), into
RAMP. Currently RAMP models four critical mechanisms
– electromigration, stress migration, time dependent dielec-
tric breakdown, and thermal cycling. NBTI has recently
emerged as a critical failure mode, and is expected to grow
in importance with scaling [26].

2 Related Work
Redundancy has been a commonly used technique for

lifetime reliability enhancement in processor design, and
there exists a large body of work on the subject [2, 21].
However, this work has primarily focused on redundancy
at the processor granularity for systems. In particular,
much has been done on systems that require manual ”hot-
swapping” of a new processor when a processor fails [21].



Structural redundancy addresses some of the shortcomings
of processor redundancy by providing a more cost and per-
formance effective solution.

There are some systems that duplicate at a structural
granularity within a processor for soft error detection and
tolerance. Prominent among such systems is the IBM S/390
System [21] and the Compaq NonStop Himalaya Systems
[2]. However, in both systems, all replicated processor units
are concurrently utilized, and the replication is not intended
for hard error tolerance.

Redundancy is also used in microprocessor yield en-
hancement techniques [13, 19]. These are not run-time
techniques and are instead used during processor testing.
They are based on detecting and disabling faulty proces-
sor resources like cache lines [13]. Shivakumar et al.
extend this concept and propose disabling defective re-
dundant microarchitectural structures during testing to im-
prove yield [19], resulting in gracefully degraded proces-
sors. They also suggest that this redundancy can be ex-
ploited to increase useful processor lifetime.

Finally, redundancy is also utilized in array structures for
lifetime enhancement. Many current memory systems uti-
lize built-in self test (BIST) and built-in self repair (BISR)
to detect and disable faulty memory elements. Redundant
spares are then swapped in [10]. Recently, Bower et al. pro-
posed self-repairing array structures (SRAS), a techniqueto
mask hard faults in array structures like the reorder buffer
and branch history table [4]. These techniques are limited to
array structures and replicate at the granularity of individual
array entries.

3 Enhancements to RAMP

3.1 RAMP Overview

As mentioned in Section 1, our reliability modeling
methodology is based on RAMP [22]. RAMP uses indus-
trial strength analytic models for four failure mechanisms,
electromigration, stress migration, time-dependent dielec-
tric breakdown, and thermal cycling, and provides lifetime
estimates based on the executing application. Much like
previous power and temperature models [6, 20], RAMP di-
vides the processor into discrete structures like the func-
tional units and caches, and applies the analytic failure mod-
els to the structure as a whole, in conjunction with a timing
simulator.

The failure models in RAMP provide reliability esti-
mates in terms of mean time to failure (MTTF). RAMP
combines the MTTFs due to each failure mechanism across
all the structures to provide a total processor MTTF for
the given application. This is done using the industry-
standard sum-of-failure-rates (SOFR) model. The SOFR
model makes two assumptions [25]: (1) The processor is a
series failure system – in other words, the first failure of any

structure due to any failure mechanism would cause the en-
tire processor to fail; and (2) each individual failure mech-
anism has a constant failure rate (equivalently, every failure
mechanism has an exponential lifetime distribution). A con-
stant failure rate implies that the probability of failure of a
processor does not vary with its age. Both assumptions limit
RAMP’s applicability. First, many redundant structures on
chip can fail without the entire processor failing. Hence, the
ability to model series-parallel failure systems in addition to
series failure systems is required. Second, wear-out failure
mechanisms do not exhibit constant failure rates. Instead,
wear-out mechanisms have low failure rates at the begin-
ning of the processor’s lifetime and the value will grow as
the processor ages (the probability that a processor will fail
will increase, the older the processor gets).

In order to use RAMP to evaluate structural duplica-
tion and graceful performance degradation, we address the
above two limitations of the SOFR model. We use log-
normal distributions (instead of exponential) for the failure
mechanisms, and we use a Monte-Carlo simulation method
to model series-parallel systems with lognormal distribu-
tions. In Section 3.2, we describe lognormal distributions,
and we explain our Monte-Carlo simulation methodology
for series-parallel systems in Section 3.3. Finally, we add
a model for an emerging critical failure mechanism, NBTI,
to the existing four failure mechanisms in RAMP. This is
discussed in Section 3.4.

3.2 Lognormal Distributions

The lognormal distribution has been found to be a better
model for failure degradation processes common to semi-
conductor failure mechanisms than the exponential distribu-
tion [1, 15, 14]. In most cases, this can be shown using the
multiplicative degradation argument [1], briefly explained
below. For a structure undergoing wear-out due to some
failure mechanism, letx1, x2, ...xn be the amount of degra-
dation seen at successive discrete time intervals. Let us as-
sume that the amount of degradation seen in a time interval
tends to depend on the total amount of degradation already
present. This is known as multiplicative degradation [1]. In
other words, the amount of degradation experienced in the
nth time interval,(xn−xn−1), will be some multiple of the
total degradation already present at the end of the(n− 1)th

time interval,xn−1. Hence,

xn − xn−1 = αnxn−1 =⇒ xn = (1 + αn)xn−1 (1)

whereαn is a small random value. Based on the above, we
can express the total amount of degradation at the end of the
nth time interval,xn, as:

xn = [

n
∏

i=1

(1 + αi)]x0 (2)



wherex0 is the degradation at time0, and is a constant, and
αi are small random values. Taking the natural logarithm of
both sides,

lnxn =
n

∑

i=1

ln(1 + αi) + lnx0 ≈
n

∑

i=1

αi + lnx0 (3)

sinceln(1 + x) ≈ x for small values ofx. Sinceαi are
random, equidistant, independent values, the Central Limit
Theorem [25] implies thatlnxn has a normal distribution.
Hence,xn has a lognormal distribution for anyn (or any
time t). Since failure occurs when the amount of degrada-
tion reaches a critical point, time of failure will be mod-
eled successfully by a lognormal for this type of process.
The multiplicative degradation model has been shown to
be a good fit for chemical reactions, diffusion of ions, and
crack growth and propagation. Most semiconductor failure
models are caused by one of these three degradation pro-
cesses [1]. Hence, the lognormal distribution is a good fit
for wear-out mechanisms.

The probability density function for the lognormal dis-
tribution is given by [12]:

f(x) =
1

xσ
√

2π
e−

(ln x−µ)2

2σ2 (4)

µ andσ are the mean and standard deviation of the under-
lying norrmal distribution [12].µ is related to the MTTF
of the lognormal distribution,MTTF , as MTTF =

eµ+ σ2

2 [12]. As suggested in [3], we useσ = 0.5 which
has been found to model wear-out based failure mechanisms
well.

3.3 Monte Carlo Simulation for Reliability

To obtain the lifetime distribution and MTTF for the pro-
cessor as a whole, we need to combine the effects of the in-
dividual lognormal distributions across all the mechanisms
and structures. Due to the complexity of the lognormal
distribution, and the large cross-product of structures and
mechanisms, calculating processor reliability analytically is
exceedingly difficult.2 To address this problem, we use a
Monte Carlo simulation method to calculate total proces-
sor reliability. A Monte Carlo method is an algorithm that
solves a problem by generating suitable random numbers
and observing the fraction of the numbers that obey some
property or properties. The method is useful for obtaining
numerical solutions to problems that are too complicated to
solve analytically [18].

2If the individual failure distributions were exponential,with the SOFR
model, the total processor MTTF can be easily calculated as the reciprocal
of the sum of the failure rates of the individual structures and mechanisms.

3.3.1 Generating Lognormal Distributions

The Box-Muller transform can be used to generate a log-
normal distribution from a uniform distribution [7]. As dis-
cussed previously, the mean of the underlying normal dis-
tribution,µ, is related to the MTTF of the lognormal distri-
bution,MTTF , by

MTTF = eµ+ σ2

2 (5)

Hence,

µ = ln(MTTF ) − σ2

2
(6)

Also, as described earlier, for a wear-out based failure
mechanism,σ = 0.5.
If rand1 and rand2 are two independent uniformly dis-
tributed random numbers, a normally distributed random
number,randnormal, with mean 0 and standard deviation
1, is given by [7]

randnormal =
√

−2ln(rand1) × sin(2πrand2) (7)

Next, the scaled normally distributed random number,
randscaled−normal, with meanµ and σ, can be obtained
from the normally distributed random number by

randscaled−normal = µ + randnormal × σ (8)

The scaled normal random number can be used to generate
a random lognormal distribution,randlognormal, as

randlognormal = erandscaled−normal (9)

Substituting,

randlognormal = eln(MTTF )− σ2

2 +σ(
√

−2ln(rand1)sin(2πrand2)

(10)
Hence, with Equation 10, two random uniform variables,
rand1 andrand2, can be used to generate a lognormal dis-
tribution with parametersMTTF andσ.

3.3.2 Modeling Systems with the MIN-MAX Method
Next, we need a method to compute the MTTF of series-
parallel failure systems. Unlike a series failure system
where the processor will fail when its first structure fails,
a series parallel system can survive structure failures when
a parallel or redundant unit is available. We use a simple
MIN-MAX analysis to determine the lifetime of such sys-
tems. Consider a single processor that consists of two struc-
tures,A and B, with lifetimes, tA and tB. It should be
noted thattA andtB are not the MTTFs ofA andB, but are
the lifetimes of the structures for asingle random proces-
sor. The average value oftA andtB across many processors
would give the MTTFs ofA andB.



If A and B are in series, failure would occur at
MIN(tA, tB) because the first structure to fail will cause
the processor to fail. On the other hand, ifA andB are
in parallel, failure would occur atMAX(tA, tB) because
both structures have to fail for the processor to fail. If a
structure,C, with lifetime, tC , is added in series toA and
B in parallel, the new lifetime of the processor would be
MIN(MAX(tA, tB), tC). This simple concept can be ex-
tended to any processor represented in a series or series-
parallel fashion to obtain total MTTF.

In any single iteration of the Monte-Carlo experiment,
we use Equation 10 to generate a random lifetime for each
failure mechanism and structure on chip (with MTTF pro-
vided by RAMP as described in Section 3.1). A MIN-MAX
analysis of these lifetimes based on the processor’s config-
uration would give the lifetime of the entire processor for
that iteration. The MTTF of the processor can now be cal-
culated by repeating this process over many iterations and
averaging the processor lifetimes obtained. As in any other
Monte-Carlo experiment, the accuracy of the analysis in-
creases with the number of iterations performed.

Generate random lognormal lifetime 
for each structure and failure mechanism
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Figure 1. Monte Carlo simulation of MTTF
of two processors, P1 and P2. The MIN-MAX
method to determine processor lifetime is il-
lustrated for sample lifetime values for both
processors.

Figure 1 illustrates this method. Consider two proces-
sors, P1 and P2. Both processors have four structures,
A, B, C, andD. P1 is a series failure system whileP2

is a series-parallel failure system. For any single itera-
tion of the Monte-Carlo algorithm, the lifetime ofP1 is
tP1

= MIN(tA, tB, tC , tD), while the lifetime ofP2 is
tP2

= MIN(tA, MAX(tB, tC), tD), wheretA, tB , tC ,
andtD are the randomly generated lifetimes of each struc-
ture. If N iterations are performed, the MTTF of processor
P1 is MTTFP1

=
∑ tP1

N
, and the MTTF of processorP2

is MTTFP2
=

∑ tP2

N
. In our experiments, we use a value

of N = 107.

3.4 Negative Bias Temperature Instability (NBTI)

Currently, RAMP models four critical failure mecha-
nisms – electromigration, stress migration, time dependent
dielectric breakdown, and thermal cycling. We add a model
for another emerging critical failure mechanism, NBTI,
which is an electro-chemical reaction that takes place in
PFETs when the gate is biased negative with respect to
the source and drain. This typically occurs when the in-
put to a gate is low while the output is high, resulting in
an accumulation of positive charges in the gate oxide. This
accumulation causes the threshold voltage of the transistor
to increase. Higher threshold voltages result in gate over-
drive (supply voltage - threshold voltage) decreasing, which
slows down the performance of the gate. This eventually
leads to processor failure due to timing constraints [26].

NBTI has a strong positive temperature and field depen-
dence. As a result, the higher temperatures seen on chip
due to scaling exacerbate this problem. Similarly, thinning
of the gate oxide due to scaling also increases NBTI relia-
bility concerns [26].

The NBTI model we use is based on recent work by Za-
far et al. at IBM, and is a physics-based model verified us-
ing new and published NBTI failure data [26]. The model
shows that MTTF due to NBTI has a large dependence on
temperature. The MTTF due to NBTI at a temperature,T ,
is given by:

MTTF ∝ [(ln(
A

1 + 2e
B

kT

)−ln(
A

1 + 2e
B

kT

−C))× T

e
−D
kT

]
1
β

(11)
whereA, B, C, D, andβ are fitting parameters, andk is
Boltzmann’s constant. Based on the data in [26], the values
we use areA = 1.6328, B = 0.07377, C = 0.01, D =
−0.06852, andβ = 0.3.

4 Structural Redundancy for Lifetime Relia-
bility

In a reliability-constrained scenario, some performance
and/or cost will have to be traded-off for reliability. In this
section, we examine methods by which structural redun-
dancy can be used to enhance the processor so that it may ef-
ficiently exploit this performance and cost overhead. These
enhancements to the processor allow run-time reconfigura-
tion resulting in longer processor lifetimes. Specifically, we
examine three techniques by which structural redundancy
can be beneficial to reliability.
Structural Duplication (SD): In SD, extra structural re-
dundancy is added over and above the required base proces-
sor resources during microarchitectural specification. The
extra structures that are added are designated asspares,
and are power gated and not used at the beginning of the
processor’s lifetime. During the course of the processor’s



life, if a structure with an available spare fails, the pro-
cessor reconfigures and uses the spare structure. This ex-
tends the processor’s life beyond the point when it would
have normally failed, and instead, processor failure occurs
only when a structure without a spare, or all available spares
fail. It is important to note that spare structures are added
over and above the required processor resources for optimal
performance. Most modern high-performance processors
have enough redundancy to exploit all the available paral-
lelism in common applications, resulting in very little per-
formance benefit from the spares. As a result, the spares
would be power gated to prevent any unnecessary wear-out,
and would be powered on only when the original structure
fails.

SD increases processor reliability without any loss of
performance, relative to the base processor. However, due
to increased die area, duplication adds a cost overhead to
the base microarchitecture.
Graceful Performance Degradation (GPD):GPD allows
existing processor redundancy to be leveraged for lifetime
enhancement without the addition of extra units. As men-
tioned, most modern high-performance microprocessors al-
ready use redundancy to exploit available parallelism in
common applications. However, only a subset of these units
is required for functional correctness. If a structure fails at
run-time, a processor with GPD disables the failed structure
and continues to function, thereby extending its lifetime be-
yond its original point of failure. Processor failure then oc-
curs only whenall redundant structures of any type fail.

Unlike SD, GPD does not add an area overhead to the
base processor as no extra units are added. However, dis-
abling redundant structures that fail lowers the processor’s
performance for the latter part of the processor’s lifetime.
Hence, theguaranteedperformance of a processor with
GPD is its performance in the fully degraded state. We
report GPD results for both guaranteed and actual perfor-
mance in Section 6.2.
Structural Duplication + Graceful Performance Degra-
dation (SD+GPD): We also examine architectures that
use a combination of SD and GPD. Such processors can
have spares for structures that arealsoallowed to degrade.
Hence, after all available spares for a structure are used,
the structure is allowed to degrade. Processor failure occurs
only when all available spares failand all available existing
redundancy is used. This technique incurs both a perfor-
mance overhead and a cost overhead. However, the benefits
in reliability are larger.

Figure 2 illustrates the differences between the three
techniques. Consider a base processor with two struc-
tures, A and B. Now, if the lifetimes of structuresA
and B for a random instance of the base processor are
tA and tB, the base processor’s lifetime in that instance
is MIN(tA, tB), as the first structure to fail would cause
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Figure 2. Steps to failure for a base proces-
sor, base processor with SD, with GPD, and
with SD+GPD. The relationship between the
performance (P), area (A), and MTTF of each
of the processors is also given.

the processor to fail. Next, consider the base processor
with SD, where another structureC is added as a spare
to A andB. If the lifetime of C for the same instance of
the processor istC , then the processor’s lifetime would be
MIN((MIN(tA, tB) + tC), MAX(tA, tB)). Since the
spareC is turned on only afterA or B fails, C ’s lifetime
is added toA or B. The processor fails only when either
the spare or the remaining original structure fails.

Next, consider the base processor with GPD. The pro-
cessor continues to function even if one ofA or B were
to fail. Hence, the lifetime of the processor with GPD is
MAX(tA, tB), since both structures have to fail for pro-
cessor failure.

Finally, consider a processor with SD+GPD. A spareC

is added forA andB. In addition, the processor requires
all units to fail before total failure. In this case, the life-
time of the processor would beMAX((MIN(tA, tB) +
tC), MAX(tA, tB)). The spareC is used as soon as one of
the original structures fails. The processor then fails only
when both the spare and the remaining original structure
fail.

4.1 Design Issues

A key requirement for SD, GPD, and SD+GPD is the
ability of the processor to detect and disable structures that
have failed during normal processor operation. Detecting
errors is a critical issue for hard and soft error tolerance,and
there is significant ongoing work on detection techniques.
However, much work still has to be done on the subject –
currently, efficient detection techniques with high coverage
for processor logic do not exist, and a detailed discussion of
such functionality is beyond the scope of this paper. How-
ever, we expect detection and coverage issues to impact SD
and GPD similarly, allowing a relative comparison of the
techniques.



Technology Parameters
Process technology 65 nm
Vdd 1.0 V
Processor frequency 2.0 GHz
Processor size (not including L2) 11.52mm2 (3.6mm x 3.2mm)
Leakage power density at383K 0.60 W/mm2

Base Processor Parameters
Fetch/finish rate 8 per cycle
Retirement rate 1 dispatch-group (=5, max) per cycle
Functional units 2 Int, 2 FP, 2 Load-Store

1 Branch, 1 LCR
Integer FU latencies 1/7/35 add/multiply/divide (pipelined)
FP FU latencies 4 default, 12 div. (pipelined)
Reorder Buffer size 150
Register file size 120 integer, 96 FP
Memory queue size 32 entries

Base Memory Hierarchy Parameters
L1 (Data) 32KB
L1 (Instr) 32KB
L2 (Unified) 2MB

Table 1. Base 65 nm POWER4-like processor.
Some of the buffer and cache sizes are differ-
ent from those in the actual POWER4 proces-
sor.

Also, both SD and GPD require additional hardware for
detection and disabling/enabling of failed units. This extra
hardware and resultant wiring will adversely affect proces-
sor power and performance (due to the larger communica-
tion distance between critical units). Accounting for these
effects requires a detailed design for these techniques which
is beyond the scope of this paper. Therefore, we do not ac-
count for these overheads in the results in this paper.

5 Experimental Methodology

5.1 Base Processor and Performance Simulation

The base processor we use for our simulations is a
65nm, out-of-order, 8-way superscalar processor, concep-
tually similar to a single core POWER4-like processor [24].
The 65 nm processor parameters were derived by scal-
ing down parameters from the 180nm POWER4 proces-
sor [23]. Although we model the performance impact of
the L2 cache, we do not model its reliability as its temper-
ature is much lower than the processor core [24] resulting
in very few L2 cache hard failures. Table 1 summarizes the
base 65nm processor modeled.

Our architectures are modeled using Turandot, a trace-
driven research simulator developed at IBM’s T.J. Watson
Research Center [16]. As described in [17], Turandot was
calibrated against a pre-RTL, detailed, latch-accurate pro-
cessor model. Despite the trace-driven nature of Turandot,
the extensive validation methodology provides high confi-
dence in its results.

5.2 Power, Temperature, and Reliability Models

To estimate processor power dissipation, we use the
PowerTimer toolset developed at IBM’s T.J. Watson Re-
search Center [5]. This toolset, in its default form, is built

around the Turandot cycle-accurate performance simula-
tor referred to in the previous section. The power mod-
els that are built into the Turandot-based PowerTimer are
based on circuit accurate power estimations from the 180nm
POWER4 processor [24]. For our simulations, we use real-
istic clock gating assumptions in PowerTimer, in tune with
actual data available from current generation microproces-
sors.

For temperature simulation, we use the HotSpot
tool [20]. HotSpot models temperature at a structural level
(using power information from PowerTimer). The large
time constant of the processor heat sink prevents significant
heat sink changes from occurring during simulations [20].
As a result, HotSpot has to be initialized with an accurate
heat sink temperature for every simulation. For this pur-
pose, we run everything twice – the first run is used to ob-
tain the average power consumption of the processor which
can be used to initialize the temperature of the heat sink.
Once the heat sink is initialized, the second run produces
accurate temperature results.

We use an area based leakage power model, with a leak-
age power density of 0.60 W/mm2 at 383K. This value is
a rough estimate, based on leakage trends for 65nm pro-
cessors of the type and complexity of the POWER4, and
assumes standard leakage power control techniques like the
use of high-threshold devices in non-critical logic paths and
arrays. We also model the impact of temperature on leak-
age power using the technique in [9]. At a temperature T,
the leakage power,Pleakage(T ), is given byPleakage(T ) =

Pleakage(383K) × eβ(T−383) whereβ is a curve fitting con-
stant with a value of 0.017 [9].

As discussed previously, we use an enhanced version of
RAMP [22] for reliability measurements. For a simulated
application, based on temperature estimates from HotSpot
and power estimates from PowerTimer sampled at a gran-
ularity of 1 µsecond, RAMP calculates an MTTF estimate
for each structure and failure mechanism on the processor.
The Monte-Carlo simulation method is then used to deter-
mine the MTTF of the processor.

5.3 Die Cost Model

In order to evaluate the cost impact of area increases
imposed by structural duplication, we use the Hennessy-
Patterson die cost model [8]. The cost,C, of a die of area,
A is:

C ∝ 1

(
πr2

wafer

A
− 2πrwafer

√

2A
)
× (1 +

DA

α
)α (12)

whererwafer is the wafer radius,D is the defects per unit
area during manufacture of the wafer, andα is a parameter
that corresponds inversely to the number of masking levels.
We assume a300mm wafer process,D = 0.6 per square
centimeter, andα = 4.0 [8]. In our experiments, we nor-



Type Application Max. Temp. (K)
Spec2000 ammp 341.27
Float sixtrack 342.76

applu 343.82
mgrid 345.63
mesa 345.87

facerec 346.52
apsi 348.49

wupwise 348.56
SpecFP average 345.36

Spec2000 vpr 341.40
Int twolf 343.22

bzip2 342.52
gzip 343.49

perlbmk 347.13
gcc 348.22
gap 348.93

crafty 349.55
SpecInt average 345.52

Table 2. Maximum temperature seen for Spec
2000 benchmarks

malize our base processor cost to 1.0 (for a base area of
11.52mm2).

5.4 Workload Description

Our experimental results are based on an evaluation of
16 SPEC2000 benchmarks (8 SpecInt + 8 SpecFP). The
SPEC2000 trace repository used in this study was generated
using the Aria trace facility in the MET toolkit [16], and
was generated using the full reference input set. Sampling
was used to limit the trace length to 100 million instructions
per program. The sampled traces have been validated with
the original full traces for accuracy and correct representa-
tion [11].

5.5 Processor Configurations Evaluated

The base 65nm POWER4-like processor evaluated has a
total area of11.52mm2. The chip is divided into 7 distinct
structures: floating point unit (FPU), fixed point unit (FXU),
instruction decode unit (IDU), instruction scheduling unit
(ISU), load store unit (LSU), instruction fetch unit (IFU),
and branch prediction unit (BXU).

5.5.1 SD Configurations
To limit our configuration space, we do not allow all the
structures on chip to be replicated individually for SD. In-
stead, we clubbed the processor’s structures into 5 logi-
cal groups that can be replicated for spares – FPU, FXU,
BXU+IFU, LSU, IDU+ISU. Table 3 summarizes these
groups and the area overhead imposed on the processor
by replicating each group. With these 5 groups, based on
whether a group is replicated or not in the processor, we
create 32 (25) SD configurations. If more than one group is
replicated, the area overhead for that processor is the sum
of the areas of the replicated groups.

5.5.2 GPD Configurations
Like SD, we limit our configuration space in GPD by not
allowing every structure to degrade individually. Instead,

the structures are grouped into 4 logical groups that can de-
grade – FPU, FXU, BXU+IFU, LSU. Unlike structural du-
plication, we do not allow the IDU+ISU to degrade. Each
group can be in one of two states, full size or degraded to
half size. That is, the group can be fully functional, or if a
failure occurs in a structure, the half of the group that con-
tains the failure would be shut down (although many struc-
tures like the caches can degrade to levels other than half
size, we do not study them to limit the configuration space).
With these 4 groups, based on whether a group is allowed to
degrade to half size or not, 16 (24) configurations including
the base can be created. Table 3 shows the configuration of
the groups before and after degradation.

5.5.3 SD+GPD configurations
SD and GPD can act orthogonally on the processor (a
duplicated structure can also degrade). Hence, the num-
ber of configurations for SD+GPD is the cross product of
the number of SD configurations and GPD configurations
(25 × 24 = 512).
6 Results

6.1 SD Results

Figure 3. Reliability benefit from SD for differ-
ent costs. The vertical axis shows normalized
MTTF, with the MTTF of the application on the
base processor normalized to 1.0 (the bottom
segment of each bar). Each additional seg-
ment in the bars represents the normalized
gain in MTTF from moving to higher costs.

Figure 3 shows the SD reliability benefit for various cost
points for each of our applications, and also the average
for all SpecFP and SpecInt applications. The vertical axis
shows normalized MTTF. The results are presented in a
stacked-bar format. The MTTF of each application on the
base processor (which has a cost of 1.0), is the lowest seg-
ment in each bar, and is normalized to 1.0. Each additional
segment in the bars represents the incremental normalized



Group Units in Group Area (mm2) Original Configuration Degraded Configuration

1 FPU 0.96 2 float units + 96 float regs 1 float unit + 48 float regs
2 FXU 0.96 2 int units + 120 int regs 1 int unit + 60 int regs
3 BXU+IFU 2.56 16K BHT entries + 32KB ICache 8K BHT entries + 16KB ICache
4 LSU 4.0 2 load/store queues + 32KB DCache 1 load/store queue + 16KB ICache
5 IDU+ISU 3.04 N/A N/A

Table 3. Groups replicated in SD and allowed to degrade in GPD . The IDU+ISU is not allowed to
degrade. The areas of each group for SD and the structures in t he original and degraded group for
GPD area also given.

Figure 4. Fraction of applications for which
different groups of structures are chosen for
duplication with SD, for different costs. The
average frequency across all costs is also
given.

MTTF benefit obtained from moving to higher costs. For
each segment, we selected the SD configuration that had
the highest MTTF among the configurations that satisfied
the cost requirement. Figure 4 shows the fraction of appli-
cations for which different groups of structures are chosen
for duplication with SD, for different costs. In addition, the
average frequency across all costs is also shown.

As seen in Figure 3, SD provides significant reliability
benefit, particularly for higher cost values. At a cost of2.25
times the base cost, SD provides an average MTTF2.53
times better than base MTTF. However, at a cost of1.25
times the base cost, the MTTF is only4% greater than base
MTTF. These results can be understood with Figure 4 – for
costs less than1.5 times the base cost, only the FPU and
FXU are chosen for duplication. Although the FPU and
FXU do not provide large reliability benefit, they are the
only structures that have areas small enough to satisfy the
cost limit at1.25 times the base cost (Table 3). As we move
to higher cost points (left to right in Figure 4), larger struc-
tures which have higher failure rates can be duplicated, re-
sulting in significant impact on reliability. At1.5 times the
base cost, the IDU+ISU can be duplicated, and at1.75 times
the base cost, the LSU can be duplicated. For points beyond
1.75 times the base cost, combinations of structures are used
in SD. Finally, from the average bar in Figure 4, we can see
that the FPU and FXU are chosen equally often. This is due

to our equal mix of SpecFP and SpecInt applications.

6.2 GPD Results

(a) Guaranteed Performance

(b) Actual Performance

Figure 5. Reliability benefit from GPD for dif-
ferent (a) guaranteedand (b) actualperformance
levels. The vertical axis shows normalized
MTTF, with the lowest segment in each bar
representing the normalized base MTTF of the
application (performance of 1.0). Each addi-
tional segment shows the incremental MTTF
benefit from moving to lower performance
values.
Figures 5(a) and (b) show the GPD reliability benefit

for various performance levels for each of our applications,



and also the average for all SpecFP and SpecInt applica-
tions. Like Figure 3, the vertical axis represents normalized
MTTF. The MTTF of each application on the base proces-
sor (which has a performance of 1.0), is the lowest segment
in each bar, and is normalized to 1.0. Each additional seg-
ment shows the incremental benefit from moving to lower
performance. Figure 5(a) showsguaranteedperformance
values, while Figure 5(b) showsactual performance val-
ues. Unlike SD, where the cost overhead of a configuration
applies for the entire lifetime of the processor, the perfor-
mance degradation in GPD is not seen for the entire life-
time of the processor. At the beginning of the processor’s
lifetime, it will run at full performance. The degraded per-
formance level is encountered only after one or more struc-
tures on chip fail. Due to the statistical nature of wear-out
failures, for a given processor, no performance greater than
the degraded value can beguaranteed(in a random batch
of processors, some might have structures failing imme-
diately). Figure 5(a) presents GPD results for this lowest
guaranteed performance level. However, most processors
will have a higheractual performance (which is the time-
weighted average of all the IPCs seen during the lifetime
of the processor). These actual performance values are re-
ported in Figure 5(b). For each performance value (guaran-
teed or actual), we identified the GPD configuration which
had the highest MTTF among the configurations which sat-
isfied the performance requirement.

As can be seen, GPD results in significant MTTF bene-
fit, particularly for small performance overheads. A guaran-
teed loss of5% in performance (performance value of0.95
in Figure 5(a)) provides an average MTTF1.42 times bet-
ter than base MTTF. An actual loss of5% in performance
(performance value of0.95 in Figure 5(b)) provides an aver-
age MTTF1.61 times better than base MTTF. As we move
to lower performance values, the incremental MTTF bene-
fit from GPD reduces on average. Also, as expected, much
smaller decreases in actual performance provide the same
reliability benefit as larger decreases in guaranteed perfor-
mance.

The results in Figure 5 show that processor resources in
current high performance microprocessors likely exceed the
requirements for performance and functionality of many ap-
plications. Most applications do not regularly use all the ex-
tra replicated units. As a result, when a failure occurs in one
of these relatively unused structures, the processor can de-
grade to half the structure’s size without a significant lossin
performance, but with large reliability benefit. Once all the
structures that are not used have degraded, further perfor-
mance reductions result in much smaller reliability benefit.

As in Figure 4, Figure 6 shows the fraction of applica-
tions for which different groups of structures are chosen
for degradation with GPD, for different performance levels.
The average frequency across all performance levels is also

Figure 6. Fraction of applications for which
different groups of structures are chosen for
degradation with GPD, for different perfor-
mance levels. The average frequency across
all performance levels is also given.

given. Unlike SD where different structures were chosen
for duplication at different costs, all structures are chosen
with nearly the same frequency for degradation in GPD.
For higher performance values (left side of Figure 6), the
frequencies are similar because different applications inour
workload rely on different processor structures for perfor-
mance. This shows that no structure in the fully functional
state is performance critical for all applications. For lower
performance values (right side of Figure 6), the frequencies
are similar because most applications have reached the fully
degraded state, shutting down half of every structure.

6.3 SD+GPD Results
Figures 7(a) and (b) show the reliability benefit from

combining SD and GPD. The figures show the highest
MTTF possible for each cost and performance constraint,
averaged across all applications. That is, for each point with
cost=C and performance=P, we report the highest MTTF
(averaged across all applications) among all the SD+GPD
configurations with cost≤ C and performance≥ P. Each
MTTF value (represented by the height of the bars) is the
average normalized MTTF across all applications, where
the average MTTF at a performance of 1.0 and a cost of 1.0
(no SD or GPD) is normalized to 1.0. In the figure, when
performance is 1.0, the values show average MTTF using
only SD. When cost is 1.0, the values show average MTTF
using only GPD. Every other point in the figures shows av-
erage MTTF for some degraded performance level and cost
value (SD+GPD). Like Figures 5(a) and (b), Figures 7(a)
and (b) representguaranteedandactual performance lev-
els, respectively.

As can be seen, SD+GPD (points with both a perfor-
mance loss and cost increase) provides larger MTTF ben-



(a) Guaranteed Performance

(b) Actual Performance

Figure 7. Highest SD+GPD MTTF (averaged
across all our applications) possible for each
cost and performance constraint. Each MTTF
value (represented by the height of the bars)
is the average normalized MTTF across all ap-
plications, where the average MTTF at a per-
formance of 1.0 and a cost of 1.0 is normalized
to 1.0

efit than SD or GPD alone. In particular, at the extreme
point, a guaranteed loss of50% or an actual loss of15%
in performance (performance value of0.5 in Figure 7(a)
and 0.85 in Figure 7(b)), coupled with a cost2.25 times
the base cost, provides an average MTTF3.89 times better
than base MTTF. As discussed in Section 6.1, SD provides
low average reliability benefit at very low cost values, but
large benefits at higher cost values, for any given perfor-
mance level. Similarly, as discussed in Section 6.2, GPD
provides a larger incremental reliability benefit for smaller
performance degradations (larger performance values), for

any given cost. Also, the overall increase from SD is higher
than that for GPD. Finally, as expected, much smaller de-
creases in actual performance provide the same reliability
benefit as larger decreases in guaranteed performance. As
explained earlier, this is due to the processor running at full
performance at the beginning of its lifetime.

6.4 Comparison of SD, GPD, and SD+GPD using
Performance/Cost

Figure 8. Average normalized MTTF benefit
versus P

C
for SD, GPD, and SD+GPD across

all applications. For GPD and SD+GPD, both
guaranteedand actual performance values are
given.

In order to understand performance and cost tradeoffs
simultaneously, we use the ratio of performance and cost
(P
C

), a standard industrial metric, to evaluate SD, GPD, and
SD+GPD. The normalizedP

C
for all our applications on the

base processor is 1.0. In SD, cost will increase, leading
to P

C
values lower than 1.0. In GPD, performance will de-

crease, leading toP
C

values lower than 1.0, and in SD+GPD,
both increases in cost and decreases in performance lower
the value ofP

C
. Figure 8 shows the average MTTF benefit

across all our applications from each of the three techniques
for a range ofP

C
values. The vertical axis represents nor-

malized MTTF. The horizontal axis represents differentP
C

design points. For both GPD and SD+GPD, both guaran-
teed and actual performance levels are given.

The results in Figure 8 clearly reflect the trends seen in
Figures 3, 5, and 7. At highP

C
values (low performance or

cost overhead), GPD provides much more benefit than SD.
However, the benefit from GPD tapers off as we move to
lower values ofP

C
. On the other hand, SD provides much

more MTTF benefit at lowerP
C

values, and overtakes GPD.
The combination of both techniques always provides the
highest MTTF benefit. This is intuitive because SD+GPD
can choose any configuration SD or GPD can choose, in ad-
dition to the cross product of the two. However, SD+GPD



chooses the same configurations as GPD chooses at high
values of P

C
. Finally, since processors run at full perfor-

mance at the beginning of their lifetime, the same MTTF
benefit for GPD (Actual) and SD+GPD (Actual) comes
at higher P

C
values than GPD (Guaranteed) and SD+GPD

(Guaranteed).

6.5 Discussion

The above results present some clear guidelines for the
use of structural redundancy for reliability:

• Due to the high level of redundancy already built into
current high-performance processors to exploit appli-
cation parallelism, GPD is an attractive technique for
performance-effective reliability benefit. This is par-
ticularly true for scenarios where only limited perfor-
mance or area resources can be diverted to reliability
because of cost issues. However, the benefit from GPD
is limited – once extra redundant units degrade, the re-
maining units are essential for processor performance
and functionality and cannot degrade further.

• SD is an attractive option when larger performance
or cost overheads are available, because large critical
structures on chip can be duplicated. Unlike GPD, the
benefit from SD does not taper off. Hence, in scenarios
where reliability is more important than cost or perfor-
mance, SD is the more beneficial technique.

• Finally, the combination of SD and GPD, SD+GPD,
always provides the highest reliability increases be-
cause it can exploit the benefits of both SD and GPD.

7 Conclusions
Aggressive scaling of CMOS devices is accelerating the

onset of wear-out related lifetime reliability problems. This
implies that future processors will be designed in reliability-
constrained environments where some processor perfor-
mance or die cost will have to be sacrificed for reliability.
In this paper, we examined the efficient usage of these per-
formance and cost tradeoffs through structural redundancy.

Specifically, we evaluated two techniques, structural
duplication (SD) and graceful performance degradation
(GPD). In SD, extra or spare structures are added to the
processor during microarchitectural definition. Spare struc-
tures can be turned on during the processor’s lifetime when
the original structure fails, thereby extending processorlife-
time. Although SD results in no performance loss relative
to the base processor, the spare structures incur an area and
resultant cost overhead for the processor. GPD, on the other
hand, does not require extra structures to be added to the
base processor. Instead, GPD exploits existing structural
redundancy on chip for reliability. If a redundant struc-
ture fails in a processor with GPD, the structure can be shut

down and the processor would still be functional. This how-
ever, comes at a performance loss to the processor.

Our analysis provides clear guidelines for the use of SD
and GPD for reliability enhancement. If only limited perfor-
mance or area resources can be diverted to reliability, GPD
presents a more attractive option for reliability enhancement
for our systems. On the other hand, in scenarios where re-
liability is more important than performance or cost, SD is
the more beneficial technique. A combination of SD and
GPD (SD+GPD) provides the highest reliability increases
for the lowest performance and cost overheads because it
can exploit the benefits of both techniques.

We also enhance the RAMP reliability model by address-
ing some of its limitations. In particular, we incorporate
time dependence in RAMP’s failure mechanisms by mod-
eling them as lognormal distributions, and use Monte-Carlo
methods to calculate processor lifetimes. We also add a fail-
ure model for a critical emerging failure mechanism, NBTI.

This paper has focused on an analysis of the benefits of
structural redundancy for reliability. For such techniques
to be used in practice, several design issues need to be ad-
dressed. Specifically, techniques to efficiently detect and
disable/enable failed structures need to be developed. Given
that detection techniques are unlikely to offer 100% cover-
age, our model must incorporate the incomplete coverage.
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