
PREFETCHING LINKED DATA STRUCTURES

IN SYSTEMS WITH MERGED DRAM-LOGIC

BY

CHRISTOPHER JUSTIN HUGHES

B.A., Rice University, 1998

B.S., Rice University, 1998

THESIS

Submitted in partial ful�llment of the requirements

for the degree of Master of Science in Computer Science

in the Graduate College of the

University of Illinois at Urbana-Champaign, 2000

Urbana, Illinois

Abstract

Recent advances in integrating logic and DRAM on the same chip potentially open up new avenues

for addressing the long-standing problem of tolerating memory latency. This thesis exploits merged

DRAM-logic technology to hide latency incurred by inherently serial accesses to linked data struc-

tures (LDS). We propose a programmable prefetch engine that sits close to memory and traverses

LDS independently from the processor. The prefetch engine can run ahead of the processor because

of its low latency, high bandwidth path to memory. This allows the prefetch engine to initiate data

transfers much earlier than the processor and pipeline multiple such transfers over the network.

We evaluate the proposed memory-side prefetching scheme for the pointer-intensive Olden bench-

mark suite, comparing both to a system without any prefetching and to a system with a state-of-

the-art processor-side software prefetching scheme for LDS. For the six benchmarks where LDS

memory stall time is signi�cant, the proposed memory-side scheme reduces execution time by an

average of 27% (range of 0% to 62%) compared to a system without any prefetching. Compared to

processor-side prefetching, the memory-side scheme reduces execution time in the range of 20% to

50% for three of the six applications, is about the same for two applications, and is worse by 18%

for one application. We conclude that memory-side prefetching is e�ective, but a combination of

processor-side and memory-side prefetching is best and provide a qualitative framework to determine

when either scheme should be used.

iii

Acknowledgments

I would like to thank my advisor, Sarita Adve, for her guidance without which this work would not

have been possible. She gave me the freedom to pursue a problem in my own way while keeping me

on track, and her enthusiasm gave me great encouragement. I would also like to thank my parents.

They were a constant source of encouragement. Finally, I would like to thank my friends, both at

Rice and at Illinois, who make graduate school a fun experience.

iv

Contents

1 Introduction : 1

2 A Memory-Side LDS Prefetch Engine on a PIM : : : : : : : : : : : : : : : : : : : 3
2.1 Base Architecture . 3
2.2 Conveying LDS Traversal Information to the Prefetch Engine 3
2.3 LDS Types and Traversals Supported . 4
2.4 Executing a Traversal . 5
2.5 Command Migration { Dealing with Data Distributed on Multiple PIMs 6
2.6 Cache-Coherence Issues . 6
2.7 Coalescing Demand Requests with Prefetches . 7
2.8 Support for Address Translation . 8
2.9 Support to Mitigate E�ects of Early and Useless Prefetches 8

3 Experimental Methodology : 10
3.1 Evaluation Environment and Architecture Modeled 10
3.2 Evaluation Workload . 11
3.3 Evaluation Metrics . 13

4 Results : 14
4.1 Impact of Memory-Side Prefetching on the Base Architecture 14

4.1.1 Overall Results . 14
4.1.2 Understanding the Bene�ts and Limitations of Memory-Side Prefetching . . . 14
4.1.3 Evaluation of Features of the Prefetching Hardware 18

4.2 Comparison of Memory-Side and Processor-Side LDS Prefetching 19
4.2.1 Background on Jump-Pointer Prefetching . 20
4.2.2 Qualitative Analysis of Processor-Side vs. Memory-Side Prefetching 22
4.2.3 Results . 25
4.2.4 Alternative Jump-Pointer Prefetching Implementations 27
4.2.5 Comparison with Prefetch Arrays . 28

5 Related Work : 31

6 Conclusions and Future Work : 34

References : 35

Appendix A: A Prefetch Command for Memory-Side LDS Prefetching : : : : : : : 37

v

List of Tables

Table

1 Parameters for the base system . 11
2 Benchmark characteristics . 11
3 Prefetch coverage . 16
4 Prefetching statistics . 16
5 Characterization and comparison of memory-side prefetching and processor-side prefetch-

ing . 26
6 Jump-pointer prefetching idiom implemented for each benchmark 26

vi

List of Figures

Figure

1 A single PIM with a prefetching engine . 4
2 Supported LDS and traversal types . 5
3 Normalized execution times . 15
4 The four jump-pointer prefetching idioms . 21
5 The format of a prefetch command . 37

vii

1 Introduction

There has been signi�cant progress in integrating DRAM and logic on the same chip. Several

commercial products that integrate the processor and memory (and in some cases, the entire system)

on a single chip are becoming available. This technology is often referred to as PIM (processor-

in-memory) or IRAM (intelligent RAM) [15]. For applications whose memory requirements are

met within a PIM or IRAM chip, this technology e�ectively addresses the long-standing memory

latency and bandwidth problem. As chip sizes increase and feature sizes decrease, the application

space that can exploit such chips will grow larger, and PIM chips are likely to become widespread

commodity products. At the same time, there is also a large class of important applications whose

memory requirements will far exceed the amount that can be put on a single PIM chip in the

foreseeable future. For such applications, multiple PIM chips could be used as building blocks

for larger systems. Such a system, however, reintroduces the problem of o�-chip memory latency

and bandwidth. Solutions that have been used to address these problems in the past for both

uniprocessors and multiprocessors are applicable in the merged DRAM-logic domain as well. The

ability to implement intelligent structures very close to memory, however, potentially provides new

opportunities to address the memory bottleneck. This thesis explores one such opportunity.

We focus on latency hiding for linked data structures (LDS) in systems built out of multiple

PIM chips. LDS are increasing in importance because of the widespread use of object-oriented

programming and application domains that involve large dynamic data structures. At the same

time, hiding the latency incurred in traversals of such data structures is notoriously diÆcult. Such

traversals involve a chain of dependent loads that makes them inherently serial { the next address

to be accessed is not known until the data from the previous load returns to the processor.

We propose a prefetch engine close to memory that can speculate on data that remote (or local)

processors may need from that memory. In our current scheme, the speculation is aided by a

software command from the processor that needs the data. Each command encodes a summary of

the LDS and the path through it that is expected to be traversed. The prefetch engine uses this

summary to independently perform the traversal, requesting the memory to send the traversed data

to the processor. Although the prefetch engine's traversal is also serialized, its proximity to the

memory results in much faster service than requests initiated at the processor. This potentially

allows the prefetch engine to run ahead of the processor, initiating data transfers much earlier than

the processor and pipelining multiple such transfers over the network.

The memory-side prefetching approach proposed in this thesis is in contrast to several recent

1

studies that have proposed prefetching LDS where all prefetches are initiated at the processor [17,

25, 26, 29, 13]. We evaluate the memory-side scheme for the Olden suite of pointer-intensive bench-

marks [5]. We compare the scheme both to a system without any prefetching and to a system with

a state-of-the-art processor-side software prefetching scheme for LDS based on jump pointers [17,

26]. For the six applications where LDS memory stall time is signi�cant, the proposed memory-side

scheme reduces execution time by an average of 27% (range of 0% to 62%) compared to a system

without any prefetching. Compared to processor-side prefetching, the memory-side scheme reduces

execution time in the range of 20% to 50% for three of the six applications, is the same for two

applications, and is worse by 18% for one application. We conclude that memory-side prefetching

is e�ective, but a combination of processor-side and memory-side prefetching is best and provide a

qualitative framework to determine when either scheme should be used.

2

2 A Memory-Side LDS Prefetch Engine on a PIM

This section discusses our proposal for a memory-side LDS prefetch engine on a PIM.

2.1 Base Architecture

Figure 1 illustrates the architecture of a PIM node in the system we consider. Since the focus of

this thesis is not to suggest an optimal hardware organization for a PIM, for simplicity, we use a

common model of a multiprocessor node, but place all of the components on the same chip. This

integration provides a high speed connection between the cache, memory, and the network interface.

We assume that multiple PIM nodes are connected to each other via a conventional multiprocessor

network in a directory-based, cache-coherent, release consistent shared-memory organization. The

novel feature of our system, and our focus, is the prefetch engine on each PIM node. The engine

sits next to the directory and memory, and communicates only through them.

2.2 Conveying LDS Traversal Information to the Prefetch Engine

The goal of the prefetch engine is to traverse an LDS ahead of the processor and send the accessed

data to the processor before its corresponding demand access. This goal requires the engine to have

knowledge of the LDS structure and the traversal path. A general way to convey this information

is for the processor to download to the prefetch engine code that can be executed to traverse the

LDS, and for the prefetch engine to have the ability to execute such code. In practice, we found

that for most of the benchmarks we evaluated, the LDS traversal path is known a priori, depending

primarily on the structure of the LDS. Further, this structure and traversal path can be encoded

concisely in a few bytes. In cases where the exact traversal path is not known prior to the traversal,

often the path depends on the results of simple comparisons involving the data within the LDS.

Instructions for performing such comparisons can also be encoded in a compact manner. Therefore,

in this initial study, we assume special prefetch commands that encode both the LDS structure and

the traversal path, and require the programmer or compiler to insert such commands in the code

before an LDS traversal. We leave the exploration of a more general determination of traversal paths

in the prefetch engine to future work.

3

Directory/DRAM

Network
Interface

L1

Engine
Prefetch

Processor

Bus

Figure 1 A single PIM with a prefetching engine

2.3 LDS Types and Traversals Supported

We support three common LDS types { linked lists, trees, and \backbone and rib" structures { as

discussed below. Figure 2 illustrates supported traversals for these LDS. The dashed arrows and

numbers indicate the order of traversal. The other arrows indicate pointers in the data structures.

A list traversal consists of a simple walk down the list (Figure 2(a)). In this case, the prefetch

command simply needs to provide the o�set into a node for the \next" pointer. The prefetch engine

can then easily extract this pointer, dereference it, and continue the traversal. The command can

specify that the traversal continue until a null pointer is reached or until a certain number of nodes

are traversed. Some non-deterministic (input dependent) traversals are also captured. Speci�cally,

there is support to end a traversal on satisfying a simple comparison operator on data in the traversed

node and/or a speci�ed constant (elaborated in Appendix A).

Tree traversals are more varied. In the benchmarks we examined, all deterministic traversal paths

for trees are depth-�rst. Figure 2(b) illustrates a depth-�rst traversal. The prefetch engine needs

to know the o�sets into a node for the child pointers, which can be easily encoded in the prefetch

command. The engine maintains a small hardware stack to order the nodes in the tree appropriately.

This stack has to be only as large as the height of the tallest tree we wish to handle. When a node

is read from memory, its child pointers are pushed on the stack and the last one is dereferenced to

continue the traversal. The prefetch engine can also perform breadth-�rst traversals by con�guring

the hardware stack as a queue. As with lists, some non-deterministic traversals can be speci�ed

by using simple comparison operators on node data and/or constants to determine which successor

pointers to follow.

Backbone-and-ribs structures are LDS with one or more data pointers inside each node [26]. The

LDS is the \backbone" and the data to which the nodes point are \ribs" (Figure 2(c)). Although

4

1 2 3

1

2

3

4

6

7

5
r

r

2

2

1

node

2

r

3

node

r
3

3

r

node

r

(a)A linked list traversal (b)A DFS tree traversal (c)A \backbone-and-ribs"
traversal { the nodes
with r's are the ribs

Figure 2 Supported LDS and traversal types. The dashed arrows with numbers
indicate the order of traversal. The other arrows are pointers in the data structures.

the ribs are not an LDS, their traversal is dependent upon the traversal of the backbone. Therefore,

prefetching the ribs in parallel with the backbone LDS would be bene�cial. For the prefetch com-

mand, simple information about the o�sets into a node for the \next" backbone pointer and for the

ribs can be speci�ed analogous to lists.

We implemented a prefetch command that encodes the above options in two words. Appendix

A describes the prefetch command format. Our prefetch command could also be used to prefetch

arrays. We did not use the prefetch commands for arrays in our benchmarks since arrays reads are

not the primary cause of memory stall time for them.

2.4 Executing a Traversal

A processor issuing a prefetch command sends it to the directory of the node that contains the �rst

element of the LDS to be traversed. The directory forwards the command to its prefetch engine. The

prefetch engine issues a prefetch to the directory for the �rst address associated with the request.

The prefetch is given lower priority than demand requests, but is otherwise treated like a demand

until the data is retrieved from the DRAM. Then, in addition to sending a prefetch reply to the

requesting processor, a copy of the data is sent to the prefetch engine. When the last line for a

node returns, the prefetch engine translates any successor or rib pointers from virtual to physical

addresses and places them on the stack (of which simple list traversals will only use a single entry).

If required, comparisons are �rst performed to determine the correct successor pointer to follow.

The address translation is fast because the prefetch engine has access to the TLB on its PIM chip,

as discussed further in Section 2.8. The engine then issues a prefetch for the next node by grabbing

its address from the stack. Any ribs associated with the last node prefetched can also be prefetched

at this time (in the same manner), concurrently with the next node. When the traversal is complete

5

(as determined from the prefetch command), the prefetch engine requests the directory to send a

reply to the requesting processor to inform it of the completion.

2.5 Command Migration { Dealing with Data Distributed on Multiple

PIMs

The entire LDS to be traversed is not guaranteed to be present in a single PIM's memory. It is

possible that the nodes in an LDS are scattered throughout the system, making it critical to have the

ability to run the prefetch command on di�erent PIMs. For a list, this is relatively straightforward.

If the next node in a list is on a di�erent PIM, then we can migrate the prefetch request to that

PIM. The requesting processor does not have to know that its request has been moved.

Migrating a request for a tree traversal is more complex. Recall that a tree traversal requires

some state information to order the nodes. There are multiple possible policies regarding when a

command with state should migrate. Tree traversals requiring migrations are not critical for any

of the applications studied. Therefore, we implemented a simple policy. We migrate requests only

when there is no remaining state; otherwise, the request for a cache line on another PIM is discarded.

2.6 Cache-Coherence Issues

Memory-initiated communication can introduce new race conditions in a cache-coherence protocol.

To simplify a number of cases, we pursued only read prefetching. Many LDS traversals in the

benchmarks are read-only. Further, nodes that are modi�ed are rarely being shared at the time

of modi�cation. We use a MESI cache coherence protocol; therefore, such nodes are returned in

exclusive state even with a read prefetch. This allows the processor to write to such nodes without

sending out upgrade requests.

The key new race condition introduced is when a directory receives a request for data that

it believes is already at the requesting processor. This situation is not a new case for coherence

hardware, per se, but rather it can be caused by some new conditions that require di�erent handling.

The two new conditions that can cause it are a prefetch arriving for data that has already been read

by another prefetch or demand access by the same processor, and a demand access arriving for data

that has just been prefetched by the same processor.

In the �rst case, the prefetch can simply be squashed. The prefetch engine still needs access to

the data in order to continue the traversal, but the data is not returned to the processor. Since the

6

processor does not notify the directory on eviction of a shared line, this could lead to unnecessary

squashing of prefetches and reduced prefetch coverage. However, we observed that the increase in

network traÆc due to sending the unnecessary data outweighs the bene�ts of higher coverage. This

is true for the benchmarks examined primarily because much of the LDS data is not reused.

In the second case (i.e., the directory receives a demand request for a line it believes to already

be in the requesting processor's cache in an acceptable coherence state), there are two options. The

request can wait at the directory in case it overtook a writeback from its processor for that line, or

it can go back to its origin and determine if it is still necessary. It is possible that a prefetch for the

requested line occurred too late to prevent the demand request from going out and so the demand

is unnecessary. In our system, we send all such demands back to the cache to check if they were

unnecessary. This technique will increase the response time for demands that overtake writebacks,

but that is typically an infrequent occurrence.

2.7 Coalescing Demand Requests with Prefetches

Traditional prefetches (to individual cache lines [20]) that are sent to memory occupy miss status

handling registers (MSHRs), or an equivalent resource, in the processor's cache. If a traditional

prefetch is late (returns after the processor requests the data), then any demand access to the same

line by the processor will coalesce with the prefetch in the MSHR. This prevents redundant demands

from being sent to memory and enables the prefetch to overlap part of the latency that would have

been seen by the demand. In our system as described thus far, if a prefetch is late, a redundant

demand will be sent out. This is because the cache does not know which lines are being prefetched.

We add the following hardware to the cache to allow it to predict which lines are being prefetched

so that it can avoid sending redundant demands to the directory.

We expand the MSHRs to have space for holding information about prefetch commands. We

reserve an MSHR for each outgoing prefetch command and we use a unique identi�er to match

prefetch responses with MSHRs when they return. We place address generation hardware analogous

to the prefetching engine's hardware next to the MSHRs. The hardware uses the node data returned

by the prefetching engine to predict which line is going to be sent next by the prefetch engine. This

prediction is used to coalesce a subsequent demand request for the predicted line with the prefetch

command in the MSHR. If a demand request coalesces with a prefetch command and the next line

returned is not the same as the predicted one or the traversal is completed (for reasons explained

below), then the cache recognizes that it mispredicted. In that case, it sends the coalesced demand

7

request down, albeit delayed.

We are not guaranteed that the above hardware will predict correctly because the prefetch engine

will not return a line if the directory's state shows it as already being in the processor's cache (as

discussed in Section 2.6). Since the hardware at the cache does not know with which lines this

will occur, it conservatively assumes that all of the nodes will be returned. A possible way to

improve prediction accuracy is for the hardware to lookup a node in the cache to see if it is already

present. If so, the prefetch engine de�nitely will not return that node. However, this would create

more contention for the cache ports. We henceforth refer to the above hardware as the prefetch

predictor.1

2.8 Support for Address Translation

The prefetch engine and the address generation hardware at the cache dereference pointers, which

requires a virtual to physical address translation. We propose to use the processor data TLB on

the same PIM for this purpose. The processor is always given priority when accessing the DTLB.

Our implementation assumes a hardware DTLB miss handler similar to that in Intel's Pentium

family of processors [10]. We do not increase the size or the number of ports on the DTLB for our

scheme. Thus, its use by the prefetch hardware could increase contention and misses; both e�ects

are modeled in our simulations and their impact is discussed in Section 4.1.3.

2.9 Support to Mitigate E�ects of Early and Useless Prefetches

The prefetch engine could potentially hurt performance by causing cache pollution in at least two

ways. First, the prefetch engine's traversal may get too far ahead of the processor. In that case,

the prefetched data could arrive too early and replace a useful line that will be accessed before

the prefetched data. Second, for some traversal paths that cannot be captured exactly by our

prefetch command, the prefetch engine may continue to traverse the LDS even after the processor

has terminated its traversal or may traverse incorrect paths. In this case, the prefetch engine may

cause cache pollution by sending useless data to the processor. One method to avoid such pollution is

to support a prefetch bu�er (that is exposed to the cache-coherence protocol), and deposit prefetched

1An alternate scheme to avoid using prediction hardware is for the cache to interpret a prefetch response as a
response to any outstanding demand request to the same line. The reply to the demand request would need to be
discarded. No prediction would be used, which could increase the ratio of useful prefetch transfers. However, a useless
demand request would be generated for each late prefetch. This creates extra contention in the network and at the
DRAM. We found that this contention overcomes the bene�ts of this scheme.

8

data into this bu�er rather than the cache. For the case where the processor terminates the LDS

traversal before the prefetch engine, a stop command could be sent to the prefetch engine. We did

not include support for any such hardware to handle early or useless prefetches, and justify this

decision in Section 4.1.3.

9

3 Experimental Methodology

3.1 Evaluation Environment and Architecture Modeled

We modi�ed the RSIM simulator [23] to model the base architecture with and without memory-

side prefetching, as discussed in Section 2. The processor-side schemes we simulated do not require

any hardware support except for a conventional prefetch instruction, and are discussed further in

Section 4.2. RSIM models a state-of-the-art superscalar out-of-order processor, memory system, and

network in detail, including contention at all resources.

Table 1 summarizes the system parameters for the base architecture simulated. Since the instruc-

tion footprint of our benchmarks is small, we assume that all instructions hit in the instruction cache

and in the instruction TLB (with a single cycle hit time). The data cache size chosen is suÆcient to

hold the �rst-level working sets for all benchmarks, but not large enough to hold their second-level

working sets. This follows the methodology of Woo et al. [27] which suggests scaling down the data

cache sizes based on application input sizes (which are typically scaled down for simulation).

Since main memory latency is greatly reduced on a PIM, the gap between main memory latency

and second-level cache latency is narrowed considerably. This reduces the performance bene�ts seen

from a second-level cache on a PIM, and may make such a large structure no longer cost-e�ective.

Therefore, our simulated base architecture reported here contains only a single level of cache. We,

however, also performed our experiments on an identical architecture with a second-level cache. The

results from these were similar to those with a single-level cache.2

To determine the sensitivity of our results to memory latency, we also performed experiments

with a processor that is twice as fast as the processor in the base architecture, keeping all the

latencies in the memory hierarchy the same (in ns). The results were qualitatively the same as those

with the base latencies.3

2Processor-side prefetching is capable of hiding second-level cache hit latency. Our memory-side scheme cannot
since it only prefetches data from main memory. Therefore, it was possible that the processor-side scheme could have
seen a signi�cant improvement for a system with a second-level cache. However, the benchmarks used have little data
reuse, and the out-of-order processors are able to hide much of the second-level cache latency.

3Quantitatively, we found that for all benchmarks except for treeadd, there is very little change (< 6%) in the rel-
ative performance di�erence among all systems evaluated. For treeadd, which is the only benchmark where processor-
side prefetching signi�cantly outperforms memory-side prefetching, the di�erence in the two schemes widened further
(from 18% to 36%).

10

Memory Hierarchy and Network Parameters ILP Processor

L1 cache (on-chip) 64K, 2-way associative, Processor Speed 600MHz
64B line, 2 ports, 8 MSHRs Fetch/Retire Rate 4 per cycle

Bus (on-chip) 600 MHz, 128 bits, split trans. Functional Units 2 Int, 2 FP, 2 Add. gen.
Memory (on-chip) 4-way Interleaved, 30ns FU Latencies 1/3/9 int. add/mult./div.

access, 16B/cycle 3/4/10 FP add/mult./div.
Network 2D mesh, 64 bits, Instruction window 64 entries

4 cycle it delay per hop (reorder bu�er) size
PIMs in system 16 Memory queue size 32 entries
DTLB 128 entries, fully associative, Contentionless Memory Latencies

hardware-managed, L1 hit time (on-chip) 1 cycle
2 ports, 30 cycle miss penalty Local Memory (on-chip) 26 cycles

Remote Memory 90-170 cycles
Cache-to-cache transfer 108-201 cycles

Table 1 Parameters for the base system

3.2 Evaluation Workload

To evaluate memory-side prefetching, we use the Olden benchmark suite, which is a collection of

pointer-intensive codes [5]. We present results for seven of the ten Olden benchmarks; the other

three either have very small memory stall time (< 10% for barnes and power) or are dominated

by dereferencing of computed addresses rather than pointers (in voronoi). Table 2 provides a brief

description of the benchmarks studied and the input parameters used.

The Olden suite was written to be compiled by an automatically parallelizing compiler. The

benchmark source codes include hints to the compiler on how they can be parallelized. We manually

parallelized four of them, em3d, health, perimeter, and treeadd, faithfully following the parallelization

technique suggested to the compiler. If possible, LDS nodes are placed on the PIM that is most likely

to traverse them. (This may not always be possible since in the simulated system, data placement

is done at the granularity of a page.) The other three benchmarks, bisort, mst, and tsp, do not scale

well on a multiprocessor, so we chose to leave them as uniprocessor programs but examine their

Benchmark Description LDS prefetched Input data size

bisort Performs ascending and Dynamic binary tree 64K nodes
descending bitonic sorts

em3d Simulates propagation of EM Static linked list with ribs 4K H nodes
waves in a 3D body 4K E nodes

health Simulation of the Columbian Dynamic linked lists level=5
health care system time=300

mst Builds a minimum spanning tree Static linked lists 1024 nodes
perimeter Computes the perimeter of Static four-way tree 1K x 1K image

regions in images
treeadd Sums the values in a tree Static binary tree 1M nodes
tsp Traveling salesman problem Dynamic linked lists 64K nodes

Table 2 Benchmark characteristics

11

behavior when their data is (randomly) distributed amongst multiple PIMs at page granularity (this

would be the case if the data set were too large to �t in a single PIM's memory).

The prefetch commands for memory-side prefetching were inserted by hand. In general, we

attempted to minimize the number of useless prefetches issued. At times, this forced us to place the

instructions very close to the �rst access to the LDS. For the benchmarks studied, health, mst, and

tsp use list traversal prefetch commands, bisort, perimeter, and treeadd use tree traversal commands,

and em3d uses a list traversal with ribs command. Both mst and tsp issue commands that use the

prefetch engine's comparison hardware. In mst, the engine performs traversals of hash table buckets,

where it stops the traversal if a node with the matching key is found. For tsp, the engine traverses

circularly linked lists, and it stops once the �rst node in the list is reached again.

For all of the benchmarks except bisort and perimeter, we attempt to prefetch the primary LDS

every time it is accessed. These benchmarks make a single pass through the LDS, or the passes are

far enough apart (for health) or the LDS is large enough (for tsp) that most of the nodes are not in

the cache when we begin prefetching again. Bisort and perimeter make multiple passes through their

primary LDS, and they traverse only part of the LDS each time. Their LDS traversals cannot be

exactly captured by our prefetch command. Bisort uses comparisons involving data from multiple

nodes to determine traversal paths. Perimeter traverses up and down an unbalanced binary tree,

where the traversal path is dependent upon the shape of the tree. While it is possible to attempt

to prefetch along all possible paths for these two benchmarks (as in [13]), bandwidth can become

a limitation and degrade performance. Therefore, we issue prefetches for only a very small number

of the LDS node accesses. The methodology used for processor-side prefetching is discussed in

Section 4.2.3.

All benchmarks except health contain large initialization phases where the data structures are

built (health builds only a small structure on initialization). We only report results for the computa-

tion phase of each benchmark since this phase would be repeated many times in realistic executions

of the applications, making the initialization a negligible part of the overall execution time. For

health, the primary linked data structures are linked lists that start o� empty. Therefore, we begin

recording results after 250 iterations in the computation phase have passed, to allow the benchmark

time to grow the lists to a more \steady state" con�guration.

The multiprocessor benchmarks (em3d, health, perimeter, and treeadd) are run on sixteen pro-

cessors. The uniprocessor benchmarks (bisort, mst, and tsp) are run on one processor, but have the

nodes in their critical LDS randomly allocated across sixteen PIMs.

12

3.3 Evaluation Metrics

The primary metric used in our evaluation is execution time. For further insight, execution time is

divided into six components { busy time, functional unit stall time, local memory stall time (stall

time for memory accesses resolved within the local PIM, either at the L1 cache or local DRAM),

remote memory stall time (stall time due to remote memory accesses and cache-to-cache transfers),

TLB miss stall time (stall time waiting for the TLB miss handler to complete), and synchronization

stall time. The busy and stall times are calculated as follows, similar to previous work [22]. For

each cycle, we calculate the ratio of instructions that are retired to the maximum retire rate and

record this as busy time. The remaining fraction of that cycle is charged as stall time for the �rst

instruction in the instruction window unable to retire; however, if the �rst instruction is waiting

for a TLB miss to be resolved, the time is charged as TLB stall time. We also collect a variety of

statistics about prefetches, as explained in Section 4.

13

4 Results

This section presents our results. For each benchmark, Figure 3 shows the normalized execution

times for the base system without prefetching (Base), the base system with memory-side prefetching

(MPF), and the base system with processor-side prefetching (PPF). The bars are normalized to the

time for Base for the corresponding benchmark. Each bar is split into the busy and stall components

of execution time as described in Section 3.3. Section 4.1 discusses the impact of memory-side

prefetching on the base architecture, focusing on the Base and MPF bars in Figure 3. Section 4.2

describes the processor-side prefetching schemes evaluated and compares memory-side prefetching

with processor-side prefetching, focusing on the MPF and PPF bars in Figure 3.

4.1 Impact of Memory-Side Prefetching on the Base Architecture

4.1.1 Overall Results

Figure 3 shows that �ve of the benchmarks incur signi�cant improvements in performance from

memory-side prefetching (19% to 62%), while the other two, bisort and perimeter, see an insigni�cant

change. The average reduction in execution time over the six benchmarks with signi�cant LDS stall

time (i.e., excluding perimeter) is 27%.

As discussed in Section 3.2, the �ve benchmarks where we see signi�cant improvements have

traversal paths that can be captured by the implemented prefetch command (Section 2.3 and Ap-

pendix A). To e�ectively prefetch LDS for applications with more complex traversal paths (such

as bisort and perimeter), more general-purpose prefetch engine hardware is required as discussed in

Section 2.2. We leave the exploration of such hardware to future work.

The next few sections analyze the above results in more detail, discussing the causes for the ben-

e�ts and limitations of the memory-side prefetching scheme for the benchmarks where our prefetch

command was applicable. We do not discuss bisort and perimeter any more since very few prefetches

were used for these benchmarks and they did not have a signi�cant impact.

4.1.2 Understanding the Bene�ts and Limitations of Memory-Side Prefetching

To understand the bene�ts and limitations of memory-side prefetching, we examine prefetch coverage

(Table 3) and the fraction of prefetch data transfers (as opposed to aggregate prefetch commands)

that are useful, late, and damaging (Table 4(a)). (These terms are explained below.) Additionally,

14

||0

|20

|40

|60

|80

|100

 N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Base

bisort

100

MPF

100

PPF

100

Base

em3d

100

MPF

71

PPF

89

Base

health

100

MPF

72

PPF

89

Base

mst

100

MPF

38

PPF

76

Base

perimeter

100

MPF

100

PPF

97

Base

treeadd

100

MPF

74

PPF

61

Base

tsp

100

MPF

81

PPF

84
Synchronization

TLB
Remote Memory

Local Memory
FU Stall

CPU

Figure 3 Normalized execution times. Results for base system (Base), memory-side
prefetching (MPF), and processor-side (jump-pointer) prefetching (PPF).

Table 4(b) provides supplemental data to explain some of the above prefetch statistics. Finally, we

also discuss the impact on bandwidth.

Prefetch Coverage

We measure prefetch coverage as the reduction in demand read miss requests. Although we only

prefetch LDS accesses, the prefetch coverage measures the read misses reduced as a fraction of all

(including non-LDS) read misses. For the prefetching scheme to be e�ective, it must have high

prefetch coverage. Table 3 gives the reduction in demand read miss requests, as well as a breakdown

of these requests into local and remote reads. We see that all �ve benchmarks have large reductions

in the number of demand read misses, indicating high prefetch coverage (over 50% for all of the

benchmarks). Further, the prefetch engine is able to reduce demand reads from both local and

remote memories; its behavior is not specialized to a speci�c memory latency. The reason that the

coverage is not higher for these benchmarks is that there are a signi�cant number of non-LDS read

misses. (They could potentially be prefetched with more conventional prefetching [20].) Also, for

health and treeadd, sometimes the prefetch predictor mispredicts, making some prefetches useless

and reducing the coverage, as elaborated next.

Useful and Useless Prefetch Data Transfers

A prefetch data transfer (as opposed to an aggregate prefetch command) is useful if the data

it returns is used by the processor before being evicted. However, if the prefetch predictor at the

cache mispredicts and sends a demand request for a line for which a prefetch is already on its way

back from memory, then the corresponding prefetch data transfer is not counted as useful. Prefetch

transfers that are not useful (called useless prefetches) are wasteful of resource bandwidth, and so

can reduce performance.

Table 4(a) shows that the fraction of prefetch data transfers that are useful is large for all �ve

benchmarks, and over 95% for em3d, mst, and tsp. The reason for the relatively lower number of

15

Benchmark Prefetch coverage Local Remote
(% Reduction in demand read misses) % Base % Reduction % Base % Reduction

em3d 84.3 94.5 88.5 5.5 11.9
health 53.5 37.4 15.0 62.6 76.5
mst 57.0 45.9 7.4 54.1 99.0
treeadd 67.9 100.0 67.9 0.0 N/A
tsp 70.1 7.5 68.7 92.5 70.2

Table 3 Prefetch coverage

Benchmark % Useful % Late % Damaging
prefetch prefetch prefetch
transfers transfers transfers

em3d 96.9 4.9 2.1
health 89.1 71.0 4.3
mst 99.9 61.5 0.0
treeadd 73.5 0.2 0.2
tsp 97.6 96.2 1.6

Benchmark % Missed LDS Nodes Migrations/
Coalesce Traversed/ LDS Node

Command Traversed

em3d 1.0 256.0 0.0
health 8.5 57.4 0.89
mst 0.0 3.0 0.96
treeadd 26.5 65535.0 0.0
tsp 0.2 668.0 0.11

(a) (b)

Table 4 Prefetching statistics. (a)Useful, late, and damaging prefetches.
(b)Supplemental data to explain useful, late, and damaging prefetches.

useful prefetches for health and treeadd is explained by the data in the �rst column of Table 4(b).

This column contains the fraction of prefetch data transfers that could have had a corresponding

demand request coalesce with their prefetch command, but did not because of a misprediction

by the prefetching predictor. In these cases the data transferred by the prefetch is not used. The

health and treeadd benchmarks have a signi�cant number of missed coalesce opportunities, explaining

the lower fraction of useful prefetch transfers (and relatively lower prefetch coverage). For health,

mispredictions are caused by data reuse. For treeadd, they arise because the prefetch engine runs too

slowly. The processor can potentially send out multiple requests in parallel when traversing leaves of

the tree. If the prefetch engine keeps ahead of the processor then this will not happen. However, the

prefetch engine is too slow (for reasons explained below), and the processor does send out multiple

LDS node requests concurrently. Since the prefetch predictor assumes a completely serial traversal,

this creates mispredictions.

Late Prefetch Data Transfers

A late prefetch data transfer is a useful prefetch, but one that does not arrive early enough to

avoid exposing memory stall time. A late prefetch is unable to hide the entire memory latency, but

still improves performance by hiding some latency. Note that late prefetches always have a demand

read coalesced with them, and would not occur if the cache did not have prediction hardware to

allow coalescing with prefetch commands. Without such hardware, a prefetch considered late here

would be useless since the corresponding demand miss would always be sent out for the data no

16

matter how close the prefetch is to arriving at the cache.

Table 4(a) shows a signi�cant number of late prefetch data transfers for health, mst, and tsp.

These occur due to two factors, as explained below.

First, a late prefetch data transfer can occur if there is too little computation per LDS node and

the corresponding prefetch command is not issued early enough (relative to the length of the LDS).

The prefetch engine traverses the LDS one node at a time, serialized by the DRAM access time.

If this serialization time is larger than the computation time per LDS node at the processor, then

the processor could run ahead of the prefetch engine and incur late prefetches. This e�ect could be

mitigated, however, if the prefetch command is sent out well before the processor begins its LDS

traversal and the LDS is short enough that most prefetched data arrives before the corresponding

demand access. Health and mst have small computation time per node, but are able to send prefetch

commands early and have short LDS as seen from the second column of Table 4(b) (more so for

mst). Tsp has a moderate amount of work per node, but not quite enough to cover the memory

latency. It is unable to send out prefetch commands early enough for its long LDS, and therefore

sees late prefetches.

Another cause for late prefetches is prefetch command migrations (third column of Table 4(b)).

A migration delays the LDS traversal process, increasing the chance of a prefetch transfer being late.

All three of the aforementioned benchmarks have signi�cant migration rates, especially health and

mst.

Damaging Prefetch Data Transfers

A prefetch data transfer is damaging if it replaces a line that is needed by a subsequent demand

access. Overall, the number of damaging prefetches is very low for all �ve benchmarks (less than

5%).

The number of damaging prefetches is largely dependent on the number of prefetch transfers that

return too early or that are not useful. The early prefetches result from two factors { the placement

of the prefetch commands in the code and the amount of work done by the processor per node. First,

if a prefetch command is issued well before any use of the LDS data, then prefetch transfers may

return too early and cause the eviction of useful data. This is the cause of the 4% damaging prefetch

data transfers in health. There is a balance in health between prefetching some data too early and

placing the prefetch command too late; the implementation used provided optimal performance.

Second, if a processor performs a lot of work on some nodes, then the prefetch engine may get too

far ahead of it and return some data too early. This is the case in em3d and tsp. (Mst and treeadd

17

have negligible damaging prefetches.) Nevertheless, in all cases, the number of damaging prefetches

is low enough to not have any signi�cant impact on performance.

Network, memory, and directory bandwidth

The memory-side prefetching scheme issues a single prefetch command for multiple LDS node

requests, potentially reducing the network bandwidth requirement. However, missed coalescing op-

portunities and useless prefetches can increase network, memory, and directory bandwidth require-

ments, and migrations of unnecessary prefetches can increase the network bandwidth requirement.

For the architecture and benchmarks studied here, however, bandwidth at these resources did not

turn out to be a performance limitation (e.g., request network utilization is under 10% for all cases

except for health with prefetching; in the latter case it was 14% due to migrations.

Summary

In summary, our prefetch command is able to capture most LDS traversals in our benchmark

suite. For the benchmarks with such traversals, the memory-side prefetching scheme is e�ective at

reducing both local and remote memory stall time. The prefetch coverage is fairly high, and the

number of useless prefetches issued is relatively small since there is little speculation involved. The

performance bene�ts are primarily limited by the DRAM latency and migration rate relative to the

work done per node. This is manifested as late prefetches for health, mst, and tsp. For treeadd, this

is instead manifested as useless prefetches. Note that in em3d and health synchronization stall time

is also reduced, due to a reduction in load imbalance. In all benchmarks, some of the remaining

latency is due to non-LDS accesses, as they were not addressed in this paper. Finally, damaging or

early prefetches were not a limiting factor in our benchmarks.

We note that memory-side prefetching is bene�cial even for the uniprocessor benchmarks, mst

and tsp. The system considered in this paper has a processor in every memory chip. However,

these results show that merged-DRAM logic chips with only the proposed prefetch engine in place

of conventional DRAM can also exploit the bene�ts of memory-side prefetching.

4.1.3 Evaluation of Features of the Prefetching Hardware

This section examines some of the speci�c design decisions made for the prefetching hardware.

Support for prefetch command migration. Table 4(b) shows that health, mst, and tsp have

a relatively large number of prefetch command migrations. This is because the traversals in these

benchmarks are of linked lists with nodes scattered throughout the system. These migrations slow

the LDS traversal and incur late prefetches; however, without the migrations the traversal would

18

terminate, reducing prefetch coverage and the bene�ts from prefetching. The larger the LDS and

the larger the migration rate, the more important migrations become for high prefetch coverage.

For mst, only 33% of the nodes would be prefetched without migration, but the number drops to

2% for health and is even smaller for tsp. Migration can also be important for applications with

very low migration rates; in such cases many subsequent nodes may otherwise be left untraversed

by the prefetch engine. This is the case for em3d, where almost 50% of the performance bene�t is

lost without migrations. Thus, support for migration of prefetch commands is critical.

Support for coalescing demand misses with prefetch commands. Another critical feature of

the prefetching hardware is the ability to coalesce demands with prefetch commands. The importance

of this feature is illustrated by the high fraction of late prefetch data transfers for many of the

benchmarks (Table 4(a)). Although the late prefetch transfers are able to hide only part of the

memory latency, they would be useless if a demand was not coalesced with them (and potentially

reduce performance by unnecessarily increasing traÆc).

Lack of support for early and useless prefetches. The fraction of damaging prefetches is quite

small for all benchmarks (Table 4(a)), showing that, in general, there is little cache pollution due to

early or useless prefetches. This shows that our decision to not include hardware to handle such a

case (as described in Section 2.9) was justi�ed, at least for the benchmarks studied. It is possible,

however, that for other applications, such hardware may be needed.

DTLB hardware. The results in Figure 3 show that our decision to use the processor data TLB for

the prefetch engine (without any increase in its size or number of ports) was justi�ed. All benchmarks

other than bisort, health, and mst have an insigni�cant DTLB stall time. Our prefetching scheme

does not impact bisort. For health, the DTLB miss rate increases, but the resulting impact on

execution time is small. For mst, there is no increase in DTLB miss rate or stall time. None of the

benchmarks sees any signi�cant DTLB contention.

4.2 Comparison of Memory-Side and Processor-Side LDS Prefetching

This section compares the e�ectiveness of memory-side LDS prefetching proposed in this paper

to processor-side LDS prefetching proposed in previous work. The most promising processor-side

LDS prefetching techniques use jump-pointers [17, 26]. While these techniques were developed for

uniprocessor systems, they can be applied to multiprocessors as well. We use software jump-pointer

prefetching techniques as proposed by Roth and Sohi [26] to represent processor-side prefetching

for the bulk of our analysis. Section 4.2.1 provides background on these techniques. Section 4.2.2

19

provides a qualitative analysis of when they can be expected to be outperformed by memory-side

prefetching and vice versa, and Section 4.2.3 presents quantitative results. Section 4.2.4 analyzes

alternative jump-pointer prefetching implementations. Section 4.2.5 provides a comparison with

another processor-side technique called prefetch arrays [13].

4.2.1 Background on Jump-Pointer Prefetching

Jump-pointer prefetching augments each data structure with additional pointers that are not orig-

inally present in the application. These jump-pointers are set to point to LDS nodes that will be

accessed multiple iterations or recursive calls in the future. When an LDS node is visited, prefetches

are issued for the locations pointed by the jump-pointers in the node. Prefetching nodes multiple

iterations or recursive calls before their demand use enables their access latency to be hidden. Cre-

ating and updating the jump-pointers, however, can involve signi�cant overhead for applications

using dynamic structures. Dynamic structures are those that are updated during the computation

phase. Static structures incur the overhead only once, and generally in the initialization phase of

the application.

Roth and Sohi propose four di�erent idioms for jump-pointer prefetching { queue jumping, full

jumping, chain jumping, and root jumping [26], as described below.

Queue jumping. This is the simplest idiom of jump-pointer prefetching. Each LDS node has

a jump-pointer that points to another node in the same LDS that is likely to be accessed in the

near future (Figure 4(a)). Just before beginning work on a node, a prefetch is issued for the node

pointed by its jump-pointer. The distance between a node and the node pointed by its jump-pointer

is called the jump interval. As long as the jump interval is large enough, the prefetch will complete

before its corresponding demand access. Further, multiple jump-pointers from di�erent nodes may

be outstanding at a time, achieving some parallelism in the memory system. The �rst few nodes of

an LDS, however, have no jump-pointers pointing to them, and so are not prefetched. The processor

will access these nodes sequentially, and will most likely stall waiting for the loads for these nodes

to complete. We call this the startup period. During the startup period, jump-pointers for later

nodes are prefetched. The startup period ends after one jump interval, leading to a steady state

in which prefetches are expected to complete before the corresponding demand accesses. For small

LDS (relative to the jump interval), the startup period can dominate, reducing the potential bene�ts

from queue jumping.

Full jumping. This is a variant of queue jumping for backbone-and-rib structures. Here each node

20

LDS pointer
dereference

Rib pointer
dereference

Jump-pointer
prefetch

Chained
prefetch

Legend

node node node node

node

r

node nodenode

r r r

node

r

node

r

node

r

node

r

nodenodeLDS

(a)

(c)

(b)

(d)

Figure 4 The four jump-pointer prefetching idioms. (a) Queue jumping. (b) Full
jumping. (c) Chain jumping. (d) Root jumping.

has additional jump-pointers to rib structures of another node (Figure 4(b)). This technique allows

rib structures to be prefetched in parallel to the backbone of an LDS, and has the same potential

bene�ts and limitations as queue jumping.

Chain jumping. A di�erent method of prefetching rib structures that does not require jump-

pointers for ribs is chain jumping. The backbone of the LDS is prefetched using queue jumping, but

the ribs are prefetched using built-in (natural) pointers of the original data structure (Figure 4(c)).

The rib prefetches are called chained prefetches. Generally, the processor issues chained prefetches

from a node in the same iteration that it issues the jump-pointer prefetch for the node. In that

case, if the jump-pointer prefetch does not complete by the end of the iteration, the processor will

stall because of the address dependency for the chained prefetch. A solution to this is to double

the jump interval and stagger the jump-pointer and chained prefetches for a particular node and

its ribs. With the same technique used to create jump-pointers, the processor can issue the chained

prefetches midway through the new jump interval, eliminating the stalls. We call this staggered chain

jumping.4 A longer jump interval, however, increases the chances of the jump-pointer prefetches

being too early or damaging, and also increases the number of nodes at the beginning of the structure

that are not prefetched at all.

Root jumping. This idiom is a variant of chained prefetching. It is applicable to short LDS

where most of the LDS is accessed in the startup period and to dynamic LDS where updating jump

pointers creates considerable overhead. In root jumping, an entire LDS has a single jump-pointer to

the next LDS to be accessed. When an LDS traversal is begun, the jump pointer is used to prefetch

the �rst node of the next LDS. Subsequently, the natural pointers of the second LDS are used to

4This method is not explicitly mentioned in [26], but was used in the prefetch codes we obtained from Roth.

21

issue prefetches to its nodes in lockstep with the traversal of the nodes of the �rst LDS. The use

of the natural pointers is like chained prefetching and incurs serialization e�ects similar to chained

prefetching.

Roth and Sohi described three di�erent ways of implementing the above idioms { software,

cooperative, and hardware. The software method uses a software queue structure to create jump

pointers. The queue holds pointers to LDS nodes, and its size is the same as the jump interval. When

an LDS node is traversed, a pointer to it is added to the queue. The head of the queue was accessed

\jump-interval" iterations before this node, so the head of the queue is removed and its jump-pointer

is set to point to the current node. The software method also inserts explicit software prefetch

instructions for each jump-pointer and chained prefetch. In this paper we quantitatively evaluate

the software method. The cooperative and hardware approaches are discussed in Section 4.2.4.

4.2.2 Qualitative Analysis of Processor-Side vs. Memory-Side Prefetching

We identify four factors that determine the performance di�erences between processor-side (repre-

sented by software jump-pointer prefetching) and memory-side schemes:

Instruction overhead

The processor-side schemes require the creation and possibly updating of jump-pointers. We can

ignore the creation overhead since it is performed in the initialization phase of the application, but

the overhead of updating the pointers for dynamic structures can be considerable. Staggered chain

jumping also incurs such overhead because delaying the chained prefetches requires actions similar to

updating jump-pointers. Finally, while the memory-side scheme requires a single prefetch command

to be executed for each LDS, the processor-side schemes require a prefetch instruction to be executed

for each LDS node that is not within the startup period. Thus, overall, the memory-side scheme has

lower instruction overhead.

Unoverlapped latency in the startup period

As mentioned in Section 4.2.1, the processor-side schemes require a startup period where the initial

LDS nodes are not prefetched. During this period, the LDS node accesses have their latency fully

exposed. Therefore, for all processor-side schemes other than root jumping, the startup time is a

function of the computation per node and the memory latency. For root jumping, we consider the

startup period to be when the entire �rst LDS is worked on (since none of its nodes are prefetched);

therefore, the startup time is also a function of the LDS length. The memory-side scheme's startup

period is typically much smaller. If the prefetch command is issued just before the LDS traversal,

22

then accessing the very �rst node will require waiting for a round trip time to memory. Subsequent

node accesses are part of the steady state which is analyzed later. If the prefetch command can be

issued suÆciently early, then even the �rst node of the LDS will not incur stall time.

To better quantify the di�erence between the schemes, we present a simple \�rst-order" analytical

model of the memory stall time incurred during the startup period. Let l be the average memory

latency, L be the length of the LDS, c be the computation performed per node, and e be the time

between when a prefetch command is issued and when the �rst LDS node is accessed (denoting how

early the command is issued). Based on the above discussion, we get the following expressions.

For queue, full, and chain jumping, Startup stall time � jump interval � l;where

jump interval = d l

c
e for queue; full; and regular chain jumping

= d 2l
c
e for staggered chain jumping

For root jumping, Startup stall time � L� l

For memory-side prefetching, Startup stall time � maxf0; l � eg

The above equations show that for processor-side prefetching, the startup cost can be considerable

(it is a function of the square of the memory latency for all but root jumping). In contrast, for the

memory-side scheme it is at most equal to the memory latency and can be zero if the prefetch

command can be issued early enough.

Steady state prefetch behavior

After their startup periods, both prefetching techniques enter a kind of steady state, where the

processor may spend a certain amount of time waiting for a node to load and then works on the

node. For the processor-side prefetching scheme, with queue, full, and staggered chain jumping, the

jump interval can be adjusted to match the amount of work done per LDS node such that there is

no memory stall time per node. Root jumping does not have this advantage because it prefetches

nodes without using a jump interval. Instead, the next LDS to be accessed is always prefetched in

lockstep with the current one, allowing overlap with the work for only a single node. An analogous

observation applies to regular chain jumping as well. Thus,

For queue, full, and staggered chain jumping: Average steady state stall time per node � 0

For root and regular chain jumping: Average steady state stall time per node � maxf0; l � cg

In the memory-side scheme, the prefetch engine traverses the LDS one node at a time, with a

delay of one DRAM access time between two prefetches. Assuming the DRAM access time (say d)

23

is the longest stage in the entire path between the processor and memory and there are no prefetch

command migrations, prefetched data will appear at the processor every d cycles. If a prefetch

command needs to migrate, however, then the average time a prefetch command spends migrating

per node, say m, needs to be added to this delay. If the computation time per node, c, is more

than d+m, there is no memory stall time in the steady state. Otherwise, the steady state behavior

depends on how early the prefetch command was issued. If the prefetch command was issued early

enough, then the post-startup period may consist of two phases.5 First, some nodes at the beginning

of the LDS may have been prefetched before their demand accesses. But since the processor performs

less work per node relative to the time between prefetch arrivals, it will eventually catch up to the

prefetch engine and begin the second phase where each node sees a delay. This delay is the di�erence

between the time between prefetch arrivals (d+m) and the computation time per node (c). Thus,

for memory-side prefetching,

if c � d+m, Average steady state stall time per node � 0

if c < d+m,

Average steady state stall time per node � 0 for a few nodes at the beginning of the LDS

� d+m� c for the remaining nodes

In summary, for the steady state, full, queue, and staggered chain jumping do not see stall time.

Root and regular chain jumping see stall time unless computation time per node is more than round-

trip memory latency. Memory-side prefetching sees no stall time if the computation time per node

is more than the sum of the DRAM access time and average per-node prefetch command migration

time. Otherwise, it could see some stall time unless the prefetch command is issued early enough.

Prefetch commands are more likely to be issued early enough to eliminate the stall time if the LDS

is small.

Network, memory, and directory bandwidth

The processor-side scheme issues memory requests for every prefetch that misses in the cache. Most

of these requests are sent instead of requests that the processor would normally send when accessing

the LDS nodes. Some of these prefetches, however, are useless; therefore, the overall network,

memory, and directory bandwidth requirement increases slightly for the processor-side scheme. The

bandwidth requirement for the memory-side scheme could be higher or lower than for the base

5For simplicity, we continue to refer to this two phase period also as the \steady state."

24

case, depending on the number of LDS nodes traversed per prefetch command, missed coalescing

opportunities, prefetch command migrations, and useless prefetches, as discussed in Section 4.1.2.

Summary

Table 5 summarizes the above analysis. Memory-side prefetching is expected to be better when

the LDS being accessed are small (relative to the jump interval required), while processor-side

prefetching is better when the LDS accessed are large and have little work done per node (relative

to the DRAM latency and command migration overhead). For large LDS with a reasonably large

amount of work done per node, the startup and steady state e�ects are negligible for both schemes.

However, the instruction overhead of the processor-side scheme makes memory-side prefetching more

attractive, especially if the LDS is dynamic or requires many prefetches per node (e.g., backbone

and ribs structure). Also, if memory bandwidth is a limitation then memory-side prefetching could

further improve application performance by reducing the system's bandwidth usage as long as the

prefetch command migration rate is not too large. Processor-side prefetching does not reduce band-

width usage, and generally increases it.

4.2.3 Results

We evaluate software jump-pointer prefetching for all of the benchmarks studied. To ensure a

fair comparison, we obtained the code used in [26] to determine where to insert prefetches. (The

prefetches used in the memory-side scheme are analogous.) For benchmarks where multiple jump-

pointer prefetching idioms were applicable, we selected the idiom that provided the best performance

on our architecture for each benchmark as summarized in Table 6. We also adjusted the jump

intervals to achieve maximum performance. We did not add a prefetch bu�er to the system as

in [26] because the benchmarks exhibit little cache pollution. Also, the bu�er would need to be

visible to the coherence mechanism since this is a multiprocessor system. Note that the system

in [26] is a uniprocessor system where this extra complexity is not required.

Comparing the MPF and PPF bars in Figure 3, we see that memory-side prefetching performs

signi�cantly better than processor-side prefetching for em3d, health, and mst, with a reduction in

execution time of 20%, 20%, and 50% respectively. Processor-side prefetching performs signi�cantly

better than memory-side prefetching for treeadd with a reduction in execution time of 18%. Both

schemes perform similarly for bisort, perimeter, and tsp (within 4%). The following uses the analysis

from the previous section to explain these results.

As before, we do not discuss bisort or perimeter further since neither technique works well for

25

Scheme Advantages Where is it the best scheme?

Memory-side prefetching (1)Lower instruction overhead (1) Small LDS
(2)Shorter startup time (2) Large LDS with lot of work
(3)Possibly reduced bandwidth per node, where LDS is

dynamic or requires many
prefetches per node

Processor-side prefetching (1) Shorter steady state stall Large LDS with little work
(Software jump- time, except for root or regular per node (unless system is
pointer prefetching chain jumping bandwidth bound)

Table 5 Characterization and comparison of memory-side prefetching and
processor-side prefetching

App. Idiom App. Idiom App. Idiom App. Idiom

bisort queue health full perimeter queue tsp queue
em3d staggered chain mst root treeadd queue

Table 6 Jump-pointer prefetching idiom implemented for each benchmark

the non-deterministic traversals in these benchmarks.

For em3d, the LDS are of moderate size, with a large amount of work done per node, so neither

technique has signi�cant steady state stall time. The memory-side scheme performs better here be-

cause processor-side prefetching incurs large instruction overhead from the staggered chain jumping

technique, and also because the startup period has a negative e�ect.

The LDS used in health are dynamic, relatively small, and the amount of work done per node

is also small. The primary reasons for the performance di�erence between the two schemes are the

very signi�cant startup period for the processor-side scheme, and also its overhead of maintaining

the jump-pointers for the dynamic LDS. The memory-side scheme does su�er from some steady

state stall time due to the small amount of work done per node, but prefetch commands for the LDS

can be issued early, hiding most of it. Therefore, the memory-side scheme eliminates more of the

memory stall time and outperforms the processor-side scheme for health.

Mst accesses many hash table buckets, so the LDS are very small and very little work is done

per node. The structures are static and root jumping is used for the processor-side scheme, so

instruction overhead and startup e�ects are negligible. However, root jumping su�ers from steady

state stall time, while the prefetch commands in the memory-side scheme can instead be sent out

quite early, largely eliminating this. This allows the memory-side scheme to perform much better

than the processor-side scheme for this benchmark.

For treeadd, the LDS accessed are very large, static binary trees which have little work performed

26

per node. The startup period and instruction overhead e�ects are quite small for the processor-side

scheme, and it uses queue jumping which ideally has no steady state stall time. The memory-side

scheme has signi�cant steady state stall time because of the little work done on each node and the

large size of the LDS. Therefore, the processor-side scheme outperforms the memory-side scheme for

treeadd.

Finally, tsp's LDS are large, static, and have a moderate amount of work done per node. Both

prefetching techniques therefore perform similarly and reasonably well.

In summary, we �nd that memory-side prefetching is e�ective, but a combination of processor-

side and memory-side prefetching is best. The third column of Table 5 can be used to decide which

scheme to use for a speci�c LDS traversal.

4.2.4 Alternative Jump-Pointer Prefetching Implementations

Cooperative and hardware jump-pointer prefetching schemes augment the processor with hardware

to overcome some of the problems with software jump-pointer prefetching. The cooperative scheme

uses a hardware engine as described in [25] to perform the root jumping accesses and to perform

chained prefetches (including generating the addresses of these prefetches). The engine views an

LDS node read as producing a result that is consumed by the chained prefetch. It captures the

producer-consumer relationship, and watches for values loaded by the producer. Upon seeing such a

value, it speculates that the consumer will be executed and so issues a corresponding prefetch. This

engine requires two tables and a queue to hold prefetch requests. One table holds information used to

identify chained prefetches and the other holds the information necessary to speculatively generate

the address for the chained prefetch. The pure hardware scheme augments the cooperative scheme

with hardware that creates and updates jump-pointers and performs jump-pointer prefetches. The

new hardware added for this scheme is a queue used for jump-pointer creation (analogous to the

software queue described in Section 4.2.1) and a special register to hold the address of a node to

prefetch. It also requires new avors of load instructions to be used for the recurrent LDS node

accesses. These special loads inform the hardware about the location of any extra space in each

LDS node for the automatic placement of the jump-pointers.

We next qualitatively discuss the impact of the cooperative and hardware schemes. The cooper-

ative approach only enhances the performance of root jumping and regular chain jumping; i.e., only

mst in our benchmark suite. It has the same startup time as in the software case, but improves the

steady state stall time. Since hardware performs the chained prefetches, the processor is not forced

27

to stall for the address generation of these prefetches (which are dependent on previous accesses).

These prefetches themselves, however, are still sent in serial fashion, but are in parallel with the rest

of the processor activity.

The following develops an analytical expression for steady state stall time for mst with the coop-

erative implementation (the only benchmark where the cooperative approach is applicable). Once

the jump-pointer pointing to a list is prefetched, the hardware will traverse the list without interrup-

tion. It can overlap this traversal with computation and memory stall time for the entire predecessor

LDS (since this is root jumping), plus the computation time for the LDS being prefetched. The last

nodes in the LDS will incur more stall time than the �rst nodes, but we can still derive an expression

for the average steady state stall time incurred per node. The total steady state stall time will be the

time to traverse the list minus the time that is overlapped, as mentioned previously. The traversal

time is the length of the LDS times the memory latency (L� l). The computation and memory stall

time for the previous LDS is the length of an LDS times the average computation per node plus

the average memory stall time per node (L� (c+ stall time per node)). The computation time for

the current LDS is its length times the computation per node (L � c). Finally, we combine these

expressions, divide by the LDS length (to obtain the per node stall time), and simplify. We �nd

that the average steady state memory stall time per node is � l

2
� c. Thus, the average memory

stall time per node is still a function of the round trip memory latency. We therefore expect that

memory-side prefetching will continue to outperform even a cooperative approach for mst (although

the gap may be reduced).

The hardware jump-pointer prefetching scheme does not have any further e�ect on the startup

times or steady state memory stall times. Instead, it eliminates instruction overhead, which could

reduce the performance gap between memory-side and processor-side prefetching for em3d and health.

However, it will not eliminate the gap due to the startup stall time e�ect.

Overall, memory-side prefetching is expected to continue to outperform even the cooperative and

hardware versions for some applications; however, the decision to implement any of these schemes

must also consider relative hardware complexity.

4.2.5 Comparison with Prefetch Arrays

Recently, Karlsson et al. proposed a technique to reduce the startup stall time for jump-pointer

prefetching [13]. This technique creates an array of pointers, called the prefetch array, pointing

to the �rst few nodes in an LDS that do not have jump-pointers. Just before accessing the LDS,

28

prefetches are issued to all nodes pointed by the prefetch array, potentially hiding some latency for

those nodes as well. Prefetch arrays are also used to allow more e�ective prefetching of trees with

input-dependent traversals. Each node contains a prefetch array which holds pointers to all nodes

at a distance equal to the jump interval, instead of a jump-pointer. When a node is traversed,

prefetches for all elements indicated by its prefetch array are issued. The actual traversal path will

be prefetched (since all possible traversal paths within the jump interval are prefetched), but a lot

of nodes are prefetched unnecessarily. Finally, to reduce prefetch instruction overhead, a hardware

block prefetch instruction is proposed that can trigger multiple prefetches in hardware.

We implemented prefetch arrays for em3d, health, mst, and tsp, the list-based benchmarks. The

only benchmark sped up signi�cantly by prefetch arrays is health, where memory stall time from the

startup period is reduced. The execution time reduction over Base for health with prefetch arrays

is 20% instead of the 11% when prefetch arrays are not used. (Memory-side prefetching shows a

reduction of 29%.) For em3d, the large number of prefetches issued from the prefetch array interfere

with the work performed on the �rst nodes in the list, degrading execution time relative to jump-

pointer prefetching by 3%. For tsp, the LDS are large, and the additional overhead of maintaining

the prefetch arrays is larger than the bene�t of prefetching the extra nodes, so again execution time

degrades by 3% (relative to jump-pointer prefetching). Finally, for mst, accessing a prefetch array

often causes an additional cache miss. Also, many of the prefetch array accesses miss in the TLB,

partially serializing the prefetches. These combine to limit the execution time reduction over the

root jumping implementation to 4%.6

We did not implement prefetch arrays for the tree-based benchmarks, bisort, perimeter, and

treeadd for the following reasons. For treeadd, the startup time is insigni�cant due to the large LDS

and the traversal is deterministic; therefore, no signi�cant additional bene�t would be derived from

prefetch arrays. The other two benchmarks have input-dependent traversals. However, the trees

used in bisort are highly dynamic; updating the prefetch arrays would be impractical and incur a

very large overhead. The trees in perimeter are quad-trees, and Karlsson et al. found that too many

unnecessary prefetches are issued for perimeter to receive any signi�cant performance bene�ts.

We also did not implement the hardware block prefetch instruction, but do not expect that to

make a di�erence to the above results.

In summary, we �nd that prefetch arrays did not give consistent bene�ts over the jump-pointer

6Karlsson et al. indicate a signi�cant performance bene�t over jump-pointer prefetching for mst. We believe this
di�erence in our results arises because they performed their comparison with queue jumping rather than root jumping.

29

prefetching schemes of Roth and Sohi (only one benchmark showed a somewhat signi�cant gain of

10% but half of the benchmarks showed or are expected to show a degradation). Nevertheless, the

technique does have potential for hiding jump-pointer prefetching startup time for some cases. A

more detailed characterization of those cases and a combined approach with memory-side prefetching

is a promising direction for future work, but outside the scope of this thesis.

30

5 Related Work

There has been much speculation about the future of merged DRAM-logic. Burger et al. developed

the DataScalar architecture [3], a multiprocessor PIM system for running uniprocessor applications.

The PIMs in the system all run the full application on the entire input data set, but they act as

very intelligent prefetch engines for one another by sending local data to the other processors as it

is needed. While this generates excellent prefetching characteristics, it appears to be an ineÆcient

use of the hardware because of the large amount of redundant computation.

The Berkeley IRAM group has proposed integrating a vector processor with DRAM. Their Vector

IRAM architecture [14] is targeted towards media processing applications and other applications that

operate on streams of data. Their work is not focusing on LDS or on systems with multiple IRAM

chips.

The Active Pages [21] and FlexRAM [12] projects seek to e�ectively integrate a number of

simple processing elements onto a DRAM chip. The processor can instruct the processing elements

to perform a set of parallel functions on data on the chip. These projects are targeted to applications

with a large amount of data parallelism, whereas LDS traversal discussed in this paper is inherently

a serial operation.

Impulse is an intelligent memory controller capable of remapping physical addresses to improve

performance of applications with irregular data access patterns [6]. Impulse is capable of prefetching

data, but only implements next-line prefetching. Also, it does not send the data to the processor,

but rather bu�ers it at the memory controller.

In the area of prefetching, there has been a large amount of work done, both for hardware and

software prefetching techniques. The traditional work in this area has focused on prefetching of

regular data structures such as arrays [7, 8, 24, 20].

More recently, a number of prefetching techniques for LDS have been proposed. We have already

discussed the work in [26, 13] in Section 4. SPAID [16] was an attempt to tackle pointer prefetching by

issuing prefetches for pointers that are passed as arguments to functions. The prefetch is overlapped

with the function call to hide some latency. However, this provides little coverage for LDS based

applications since functions called on an LDS will have only a single node prefetched.

Zhang et al. discuss a multiprocessor system where a coprocessor sends LDS prefetch requests on

behalf of the main processor [29], but they do not show much gain (average of 8%) from the scheme.

Luk et al. proposed greedy prefetching, where the processor prefetches all successor pointers of

the current LDS node [17]. However, the prefetches can be overlapped with the work for only a single

31

node. They also proposed LDS linearization, which involves allocating LDS nodes in a contiguous

region of memory so that address prediction for LDS nodes is extremely easy and accurate. However,

this only applies in a limited number of applications. Luk et al. extend this work in [18], where

dynamic data movement is supported to make linearization applicable in more cases, but truly

dynamic LDS still remain a problem. Other research has been performed on placement of data

with regard to improving spatial locality (but not with respect to enhancing prefetching). Calder

et al. provide a detailed algorithm for data placement in order to reduce all classes of cache misses

for regular applications [4]. Chilimbi et al. focus on trees, and introduce an allocator and dynamic

update function to pack multiple nodes from subtrees into a single cache line [9].

Luk et al. also proposed using jump-pointers [17], which were further developed by Roth et

al. [26] and discussed in Section 4. Roth et al. �rst proposed dependence-based prediction [25], a

more general-purpose version of a scheme developed by Mehrotra et al. [19]. The dependence-based

prediction scheme is the same as the hardware part of cooperative jump pointer prefetching described

in Section 4.2.4. This scheme can result in prefetches issued ahead of the processor's demand accesses,

but the prefetches are all serialized. The later work by Roth and Sohi [26] supersedes dependence-

based prefetching.

Another class of schemes use past access patterns to predict future accesses, including LDS

accesses. These are known as correlation-based schemes. Alexander et al. use an SRAM bu�er

in DRAM chips to hold blocks of prefetched data [1]. The prefetches are based upon previous

accesses to DRAM. For a given cache line, the address of the next request made to the DRAM is

recorded in a table. When a line is accessed, the mechanism prefetches a limited number of previous

successors. Joseph et al. propose a similar scheme, but place the prefetching hardware between the

�rst and second level caches [11]. Finally, Bekerman et al. propose improvements to these schemes

by introducing con�dence mechanisms to improve the accuracy of predictions, and by introducing

pollution reduction structures [2]. All of these schemes are limited in that large structures cannot

be represented. The processor-side schemes also increase bandwidth requirements signi�cantly since

multiple prefetches may be issued for each line accessed. Finally, these schemes do not attempt to

get far enough ahead of the processor to hide all of the memory latency.

Concurrently with our work, Yang et al. have developed a memory-side prefetching scheme

similar to ours, but for a uniprocessor system [28]. They propose a prefetch engine at each level of the

memory hierarchy that can only handle simple linked lists. They compare the results of their scheme

to the dependence-based prediction scheme of Roth et al. [25], but not the more e�ective jump-pointer

32

schemes that we have examined. They �nd that memory-side prefetching always outperforms their

processor-side scheme for their applications. Their analysis with a microbenchmark indicates that

memory-side prefetching is better with less computation per node. We see di�erent results since we

compare with more aggressive processor-side schemes, and we give a qualitative framework for when

the processor-side schemes or the memory-side schemes should be used for best performance.

33

6 Conclusions and Future Work

As merged DRAM-logic technology matures, PIM (processor-in-memory) chips are expected to

become widespread. Applications whose memory segments do not �t within one such chip can take

advantage of the technology by building systems out of multiple such chips. We have examined one

way to exploit added intelligence to the DRAM in a multiprocessor PIM system. Our focus was

speeding up applications which use linked data structures, an important but traditionally diÆcult set

of applications to accelerate. We propose a prefetch engine close to memory. The engine attempts

to perform a traversal of the LDS before its use at the remote or local processor, thereby prefetching

the data for the processor. Applications with �xed traversal paths for their LDS, or traversal paths

with limited dependence upon the contents of the LDS nodes, are sped up substantially by this

technique (reduction in execution time of 19% to 62%).

We compared the proposed memory-side prefetching scheme to a state-of-the-art processor-side

prefetching scheme. We found that the memory-side scheme outperforms the processor-side scheme

for two classes of applications: (1) where the LDS are small compared to the round-trip memory

latency (these incur high startup time for processor-side prefetching), and (2) where the LDS is dy-

namic or requires many prefetches per node (these incur high instruction overhead for processor-side

prefetching). A technique for overcoming the high startup overhead with processor-side prefetching,

prefetch arrays, is only able to signi�cantly help in one of the applications studied and degrades per-

formance slightly in some cases. The processor-side scheme outperforms the memory-side scheme

for large LDS with little work per node. This is because the rate of prefetch transfers for the

memory-side scheme is limited by DRAM latency and prefetch command migration frequency; if

this rate is low relative to the work done per LDS node, then memory-side prefetching sees stall

times in the steady state. Thus, we conclude that a combination of memory-side and processor-side

schemes would prove most e�ective as a general technique; our characterization can aid in choosing

the appropriate scheme for a speci�c LDS.

For future work, we will explore a more general prefetch engine that can traverse LDS that have

non-deterministic paths that were not captured by the prefetch command implemented in this thesis.

34

References

[1] Thomas Alexander and Gershon Kedem. Distributed Prefetch-bu�er/Cache Design for High
Performance Memory Systems. In Proceedings of the 2nd International Symposium on High-
Performance Computer Architecture, 1996.

[2] Michael Bekerman et al. Correlated Load-Address Predictors. In Proceedings of the 26th Annual
International Symposium on Computer Architecture, 1999.

[3] Doug Burger, Stefanos Kaxiras, and James R. Goodman. DataScalar Architectures. In Pro-
ceedings of the 24th Annual International Symposium on Computer Architecture, 1997.

[4] Brad Calder, Chandra Krintz, Simmi John, and Todd Austin. Cache-Concious Data Placement.
In Proceedings of the 8th International Conference on Architectural Support for Programming
Languages and Operating Systems, 1998.

[5] Martin C. Carlisle and Anne Rogers. Software Caching and Computation Migration in Olden.
In Proceedings of the 6th Principles and Practice of Parallel Programming, 1995.

[6] John Carter, Wilson Hsieh, Leigh Stoller, Mark Swanson, and Lixin Zhang. Impulse: Building
a Smarter Memory Controller. In Proceedings of the 5th International Symposium on High-
Performance Computer Architecture, 1999.

[7] Tien-Fu Chen. An E�ective Programmable Prefetch Engine for On-Chip Caches. In Proceedings
of the 28th Annual International Symposium on Microarchitecture, 1995.

[8] Tien-Fu Chen and Jean-Loup Baer. E�ective Hardware-Based Data Prefetching for High-
Performance Processors. IEEE Transactions on Computers, 1995.

[9] Trishul M. Chilimbi, Mark D. Hill, and James R. Larus. Cache-Concious Structure Layout. In
Proceedings of the SIGPLAN'99 Conference on Programming Language Design and Implemen-
tation, 1999.

[10] Bruce L. Jacob and Trevor N. Mudge. A Look at Several Memory Management Units, TLB-
Re�ll Mechanisms, and Page Table Organizations. In Proceedings of the 8th International
Conference on Architectural Support for Programming Languages and Operating Systems, 1998.

[11] Doug Joseph and Dirk Grunwald. Prefetching using Markov Predictors. In Proceedings of the
24th Annual International Symposium on Computer Architecture, 1997.

[12] Yi Kang et al. FlexRAM: Toward an Advanced Intelligent Memory System. In Proceedings of
the 1999 International Conference on Computer Design, 1999.

[13] Magnus Karlsson, Fredrik Dahlgren, and Per Stenstr�om. A Prefetching Technique for Irregular
Accesses to Linked Data Structures. In Proceedings of the 6th International Symposium on
High-Performance Computer Architecture, 2000.

[14] Christoforos E. Kozyrakis and David Patterson. A New Direction for Computer Architecture
Research. IEEE Computer, November 1998.

[15] Christoforos E. Kozyrakis, Stylianos Perissakis, David Patterson, Thomas Anderson, Krste
Asanovi�c, Neal Cardwell, Richard Fromm, Jason Golbus, Benjamin Gribstad, Kimberly Kee-
ton, Randi Thomas, Noah Treuhaft, and Katherine Yelick. Scalable Processors in the Billion-
Transistor Era: IRAM. IEEE Computer, September 1997.

[16] Mikko H. Lipasti, William J. Schmidt, Steven R. Kunkel, and Robert R. Roediger. SPAID:
Software Prefetching in Pointer- and Call-Intesive Environments. In Proceedings of the 28th
Annual International Symposium on Microarchitecture, 1995.

35

[17] Chi-Keung Luk and Todd C. Mowry. Compiler-Based Prefetching for Recursive Data Structures.
In Proceedings of the 7th International Conference on Architectural Support for Programming
Languages and Operating Systems, 1996.

[18] Chi-Keung Luk and Todd C. Mowry. Memory Forwarding: Enabling Aggressive Layout Op-
timizations by Guranteeing the Safety of Data Relocation. In Proceedings of the 26th Annual
International Symposium on Computer Architecture, 1999.

[19] Sharad Mehrotra and Luddy Harrison. Examination of a Memory Access Classi�cation Scheme
for Pointer-Intensive and Numeric Programs. In Proceedings of the 10th International Confer-
ence on Supercomputing, 1996.

[20] Todd C. Mowry, Monica S. Lam, and Anoop Gupta. Design and Evaluation of a Compiler
Algorithm for Prefetching. In Proceedings of the 5th International Conference on Architectural
Support for Programming Languages and Operating Systems, 1992.

[21] Mark Oskin, Frederic T. Chong, and Timothy Sherwood. Active Pages: A Computation Model
for Intelligent Memory. In Proceedings of the 25th Annual International Symposium on Com-
puter Architecture, 1998.

[22] V. S. Pai, P. Ranganathan, H. Abdel-Sha�, and S. Adve. The Impact of Exploiting Instruction-
Level Parallelism on Shared-Memory Multiprocessors. IEEE Transactions on Computers, spe-
cial issue on caches, February 1999.

[23] Vijay S. Pai, Parthasarathy Ranganathan, and Sarita V. Adve. RSIM Reference Manual. Rice
University.

[24] Shlomit S. Pinter and Adi Yoaz. Tango: a Hardware-based Data Prefetching Technique for
Superscalar Processors. In Proceedings of the 29th Annual International Symposium on Mi-
croarchitecture, 1996.

[25] Amir Roth, Andreas Moshovos, and Gurindar S. Sohi. Dependence Based Prefetching for Linked
Data Structures. In Proceedings of the 8th International Conference on Architectural Support
for Programming Languages and Operating Systems, 1998.

[26] Amir Roth and Gurindar S. Sohi. E�ective Jump-Pointer Prefetching for Linked Data Struc-
tures. In Proceedings of the 26th Annual International Symposium on Computer Architecture,
1999.

[27] Steven Cameron Woo et al. The SPLASH-2 Programs: Characterization and Methodological
Considerations. In Proc. 22nd Intl. Symp. on Computer Architecture, pages 24{36, June 1995.

[28] Chia-Lin Yang and Alvin R. Lebeck. Push vs. Pull: Data Movement for Linked Data Structures.
To appear in Proceedings of the 2000 International Conference on Supercomputing, May 2000.

[29] Zheng Zhang and Josep Torrellas. Speeding up Irregular Applications in Shared-Memory Mul-
tiprocessors: Memory Binding and Group Prefetching. In Proceedings of the 22th Annual
International Symposium on Computer Architecture, 1995.

36

Appendix A: A Prefetch Command for Memory-Side LDS

Prefetching

In our implementation of memory-side prefetching, the prefetch command consists of the op code

and the address of the �rst node of the LDS to be traversed (as in conventional software prefetching).

Additionally, the command is augmented with a two word (64 bits)7 description of the LDS and

traversal path; options are described in Section 2.3. This appendix describes an encoding for these

options. As discussed in Section 2.2, these options and encoding are not intended to be universally

applicable, but are general enough for most of the studied benchmarks, which represent a wide range

of LDS algorithms. There are two types of prefetch commands, one for deterministic traversal paths

(Figure 5(a)), and one for paths with a limited dependence on the data in the LDS (Figure 5(b)).

For both types of commands, the size of a node, in words, is included to allow support for prefetching

large nodes.

The format for deterministic traversals includes pointer and rib �elds, which are the o�sets into a

node for the successor pointers and rib pointers. For a list, a single successor pointer is used, and for

trees multiple successor pointers are used. The command also holds the number of valid successor

and rib pointers in each node (maximum of �ve successors and three ribs). Note that although the

prefetch engine is targeted at LDS prefetching, it also supports a zero successor pointer count. This

could be used to prefetch arrays or to perform other block data transfer prefetches.

Value

Initial Counter

101

0

(a)

(in words)

node size

8

ptrs
#

3

ptr 4ptr 0

6

ptr 2ptr 1 ptr 3

5 5 5 5

#

2

rbs
rib 0

4

rib 1

4

rib 2

4 1 1

Stop flag: 0 - use counter, 1 - stop on NULL
0 - DFS, 1 - BFS

Constant
node size

(in words)

32444491

1

(b)

2 2 2

0 - =, 1 - >, 2 - <, 3 - !=
Compare type: Ops: 0 - op0&op1, 1 - op 0&const.,

Action: 0 - Stop, 1 - Follow target 0, 2 - Follow target 1

2 - Const. & both ops (OR the results),
3 - Range check const. (op1<const.<op2)

Tgt 1Tgt 0Op 1Op 0

Figure 5 The format of a prefetch command. (a) Format for deterministic
traversals. (b) Format for input-dependent traversals. The numbers above each �eld

denote the number of bits in that �eld.

7We model a 32-bit architecture. A 64-bit architecture would provide the exibility to encode even more options.

37

For this type of command, the order of traversal, depth-�rst (DFS) or breadth-�rst (BFS), is

indicated by a single bit �eld. For lists, this �eld is irrelevant since there is only one possible path

of traversal. Finally, the stop ag instructs the prefetch engine on when to end a traversal. When

one, the traversal will not stop until the entire LDS has been prefetched. When the stop ag is zero,

the traversal will stop when a given number of nodes have been traversed. This number is placed in

the initial counter value �eld.

The other type of prefetch command is one that uses the result of one or two comparisons

involving LDS data to determine the traversal path. The comparisons performed are governed by

the compare command �elds, compare type, action, and operands. The compare type �eld speci�es

the simple arithmetic comparison to perform, the action �eld speci�es the action to perform on

a successful comparison, and the operand �eld speci�es the operands to compare (from two �elds

from the current LDS node and a 32-bit constant). The possible actions to perform after doing a

comparison are to stop the traversal or to continue the traversal by following one of the possible

successor pointers. The default action (i.e., the action to perform on an unsuccessful comparison)

is to follow the �rst target pointer. The operand and target �elds are o�sets into the current LDS

node and specify the comparison operands and possible successor pointers (targets), respectively.

The constant �eld holds a full 32-bit constant for use in comparisons. Using 32-bits allows pointer

comparisons which are useful when searching for speci�c nodes in an LDS.

38

