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Abstract

With continued CMOS scaling, future shipped hardware will be increasingliyerable to faults and in-
evitably fail in the field for a variety of reasons such as aging or wegrradiation, infant mortality due
to inadequate burn-in, design defects, manufacturing defects, anal. sBusther, this reliability threat is
expected to pervade even the mainstream computing market, making tradibanairs that involve re-
dundancy in space, time, and/or information too expensive to be brogollyyddle. Hence, there is a need
for effective in-field reliability solutions that incur low overheads in apgayer, and performance and handle
multiple sources of errors.

This dissertation proposes a low-cost comprehensive reliability solutiandétacts, diagnoses, and
recovers from in-field errors. Our design is based on the following teyo dbservations. (1) Hardware
reliability solutions only need to handle device faults that manifest in softwgeDespite the growing
reliability problem, the fault-free operation remains the common case and maptibezed.

These insights drive the design of a novel reliability solution that employszeza overhead “always-
on” monitors to detect hardware faults by watching for anomalous softhanavior (called symptoms).
After a detection, a potentially expensive diagnosis algorithm is invoked ¢gmdge the source of the error
and ensure full recovery. While the diagnosis may incur high overhieedonly invoked in the rare case
of a detection. We believe that the very low cost detection coupled with higistrdiagnosis is the right
tradeoff for achieving very low cost reliability solutions.

With these strategies, this dissertation presents a comprehensive reliahilityrsaalledSWAT(SoftWare
AnomalyTreatment), that detects, diagnoses, and recovers from in-field fautsydow cost. For hardware
error detection, SWAT relies on low cost, “always-on” monitors of sofersymptoms. After a detection,
SWAT uses a novel technique called trace based fault diagnosis to idethifyer the symptom detection

is a result of a hardware or software error and to diagnose the faultpanatritectural component in case



of a permanent hardware fault. For recovery, SWAT aims to leveragertditechniques that use hardware
checkpointing for restoring the fault-free execution state coupled with batgnt buffering for preventing
hardware faults from propagating and becoming visible outside of thengsyste

We evaluated the SWAT system with statistical fault injection experiments. Guitseshow that simple
monitors of software symptoms can achieve high hardware fault detectienage for permanent and tran-
sient faults. After a detection, our trace-based microarchitecturedeaghosis correctly identifies most of
the detected permanent hardware faults, facilitating fine-grained rdgmirecovery, although we did not
propose a new recovery scheme, we found that high system rebaigian only be attained by employing
both hardware checkpointing and output buffering mechanisms, andangfidthe overheads for each.

The final contribution of this dissertation is to investigate the accuracy of arichidecture-level fault
modeling. To achieve this goal, we present a novel fault simulation frankegadied SWAT-Sim that can
model gate-level faults accurately while achieving speed comparable toarghitectural simulations. Us-
ing SWAT-Sim, we found that existing microarchitecture-level fault modeffst@xsome inaccuracies when
representing gate-level faults. The SWAT-Sim framework, therefae/es as an important research vehicle
for both SWAT and other ongoing or future research in hardware iktjab

In summary, this dissertation shows, for the first time, that a comprehdaogivaost hardware reliability
solution can be realized by treating the software-level symptoms causeatibpérmanent and transient
hardware faults. The presented work lays the foundation for the S\j#fifoach and paves the way for

future work on low-cost software anomaly based resilient systems.
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Chapter 1

Introduction

1.1 Motivation and Objectives

For decades, the number of transistors integrated on-chip has grittfalfa according to Moore’s Law.
This exponential growth, thanks to the advance of CMOS process tiegiyrtbat allows the ever-decreasing
device size, provides opportunities for chip makers to introduce micrepsocs with higher levels of system
integration that provide increased computing capability. On the other hdnile, wodern computer systems
continue to reap the benefits of continued device scaling, there is a groaitegrn for the reliability of
these systems. As the level of system integration continues to increasp,cataining a growing number
of shrinking devices (e.g., Intel Itanium Tukwila processors contain 2 bitlansistors [28]), statistically, is
expected to experience more device failures. This growing reliability tiseatognized by the industry as
one of the grand challenges for designing future computer systems irténedtional Technology Roadmap
for Semiconductors (ITRS) [1]. In particular, future devices areeetgd to fail in the field for a variety
of reasons such as wear-out or aging, soft errors caused tioad process variation, infant mortality,
design defects, and so on [8]. Hence, it is highly desirable to haveaaerliability solution that detects,
diagnoses, recovers from, and repairs around components thattfa! field for a multitude of reasons.
Since the problem of building fault-tolerant systems is not new, one may dngtitraditional solutions
involving redundancy in space, time, and/or information [48, 68] can lerdged to neutralize this pending
reliability threat. The difference between the traditional reliability problem thedcurrent growing threat
caused by device scaling, however, lies in the affected segments of cogymaikets. Traditionally, hard-
ware reliability mainly concerned high-end niche systems such as transpobicgssing systems for banks
and mission-critical systems for space applications. As the main priority Biguieg these systems is to

meet reliability goals, the budget spent on ensuring reliability is less coredr#tiran mainstream systems



and the use of solutions that involve heavy amount of redundancy,asuttiple modular redundancy, is
acceptable.

On the other hand, the scaling-induced reliability problem is fundamentallgreiff. Most, if not all,
computer systems have taken advantage of the ever-growing systenatimegnade possible by device
scaling and will continue to do so. The reliability problem caused by scalieggttre, will pervade most of
the computing market and hardware reliability will be a concern even for tiestneam computer systems.
In these market segments, because the budget that can be spentlilityétianuch more limited than that
of the high-end systems, an effective solution must incur low overheadiea power, and performance
in order to be broadly deployable; this precludes the use of traditionafiGgmuthat rely on expensive
redundancy. To put it into perspective, an industrial panel in a tegerkshop converged on a 10% area
overhead target to handle all sources of chip errors as a guideliaeddemic researchers [72].

With this pending reliability threat, the research challenge is to derive a lotyyebsffective reliability
solution that can cater to the mass computing market. Driven by this reliability, trecent research has
focused on deriving low-cost reliability solutions (e.g., [4, 13, 45, 64,, 8, 81]. This dissertation also
investigates such a low-cost reliability solution. However, while these pusligroposed schemes have
either focused on low-cost detection mechanisms or detection and recogehanisms for transient faults,
we take a holistic system design approach to derive a complete reliability solntionling detection, di-
agnosis, and recovery that handles both permanent and transikst f@thapter 2 gives a more detailed

comparison of our approach with prior work.)

1.1.1 The SWAT Error Resilient System

The main contribution of this dissertation is the proposal of a novel lowsmstion for hardware reliability.

There are two key observations that motivate our design approach.

e First, a hardware fault is only considered harmful if it affects softveasecution. Hence, an effective
reliability solution only needs to handle hardware errors that propagaiaghrhigh levels of the

system and become observable to the software.

e Second, even though the reliability threat is growing, fault-free operatiimremains the common

case. Therefore, reliability solutions must be optimized for fault-freeaijuear.

2



Based on these observations, we follow a design philosophy that minimizestaheost of the system
by minimizing the overhead of fault-free operation as much as possible, étplease of higher cost paid for
the uncommon case (not unlike Amdahl’s Law). In a fault-tolerant systetheasror detection mechanisms
need to bealways on our design focuses on minimizing the overhead of the detection compontastisT
achieved by allowing hardware errors to propagate to the softwaredadetietecting them through moni-
toring the abnormal software behavior (callegnmptompsusing zero to very low overhead hardware and/or
software monitors. After a detection occurs, the diagnosis algorithm is éavak diagnose the source of
the error. While the potentially long latency of high-level symptom-based ti@tezan make the diagnosis
more complex and expensive, we believe this is the right tradeoff bed#amgeosis is only invoked after a
rare eventof a detection.

These strategies motivate the design of a comprehensive reliability soluitbegd 8WAT (SoftWare
Anomaly Treatment), that detects, diagnoses, recovers from, and repairdigeces (in the case of a per-
manent hardware fault) around failed components in the field. SWAT ralié@aacost symptom monitors,
implemented in either hardware or software, for detecting hardware faatttimifest into the software and
cause anomalous software behaviors. After a detection, the diagnosedpre, controlled by a thin layer
of firmware, exploits repeated rollbacks/replays in the multicore environfoeliagnosing the source of
the error. To recover from an error, SWAT employs a checkpoint/yemlechanism to roll back the faulty
execution to the previous fault-free checkpoint and an output evéfgring mechanism to prevent the ef-
fect of the fault from propagating to the outside world. In case of a disgd permanent fault, the failed
component needs to be repaired for full recovery. SWAT relies onirgibuilt-in redundancy in modern
superscalar processor to reconfigure around (e.g., disabling ¢ine ioteger ALUS) the failed unit.

While SWAT primarily relies on symptom monitors for error detection, the SWABraach naturally
extends to incorporate backup detection techniques (e.g., hardwanecheselective redundancy, online
test) for the cases where the high-level symptom-based detection cevemdetermined to be insufficient;
e.g., for some mission-critical applications or in case of some faults in someéusésichat may not easily
reveal detectable symptoms at the required cost. Compared to any ortechutigue used in isolation, the

SWAT approach has the following advantages (discussed in detail in€gp

e Total system cost is minimized by focusing on optimizing for the common-casedatection mech-



anisms.

e The high-level symptom-based detection mechanism is general and datss toca specific-failure
mode (e.g., soft errors), making it extensible for other failure mechanisves (Ones that are not yet

known).

e Faults that are masked in various levels of the hardware systems ardipatumared by the SWAT
detection mechanisms, avoiding excessive overheads. Further, @ndbmalne faults that are masked

in the application software are correctly ignored, since they do not apgesoftware anomalies.

e As the SWAT system is controlled and coordinated by a thin firmware layeanibe customized to

match different application-specific and system-specific reliability needs.

e By taking a holistic system design approach, novel solutions can beedefor example, diagnosis

can rely on the rollback/replay recovery mechanism to precisely diaghesgmptom-causing errors.

e The symptom based detection mechanisms are essentially detecting softgsrd his presents an
opportunity to explore the use of software bug detection techniques toechartdware reliability,
amortizing the overhead for different system functions. In the long terSYWAT system can evolve

to provide a unified framework for both hardware and software reliability.

While SWAT has many advantages when compared to prior work, it alsodr&srclimitations. We
discuss the limitations and future work of SWAT at the end of this thesis. Henvescent work along
with my colleagues (not reported here) has already addressedIseyapetant issues in SWAT (e.g., [26]);
we briefly discuss this at the end of the thesis. Overall, this thesis providdsuhdation for the SWAT
approach and paves the way for much of the ongoing and future wotkellong term, we believe that the

SWAT approach is key to provide a unified framework for both hardwaacdesoftware reliability.

1.2 Contributions

The following summarizes the contributions of this dissertation in greater detalil.



1.2.1 Detection Using Software-Level Symptoms

We conducted both permanent and transient fault injection experimenengridyed a number of software
anomaly symptom monitors to detect the injected faults [36]. For permandtt, faur results show that
(1) simple symptom detectors that incur zero to little hardware overheadkrdécadetect 98% and 99%
of the unmasked faults in 7 studied microarchitectural structures for SREKo&ads and server workloads,
respectively, (2) a large fraction of detections corrupt OS state fibr BBEC and server workloads, motivat-
ing the needs for OS recovery, and (3) while all of the detections havelaetethat are short enough so that
the pristine execution state can be efficiently restored using hardwackpaieting schemes, full system
recovery still depends on whether I/O activities can be properly dfeos prevent fault propagation to the
outside world. For transient faults, our results show that (1) 96% a#@cdd@he faults are masked for SPEC
and server workloads, respectively, (2) 59% of the unmasked faeltdetiected by our symptom detectors
for both SPEC and server workloads, which is consistent with previguelyosed symptom-based transient
fault detection schemes [61, 81].

We also explored using likely program invariants, a well-known bug deteatiethod, to detect perma-
nent hardware faults [70]. (This work was led by Swarup K. SahodigiMused with the simple symptoms
described above, likely invariants are able to reduce the silent datgptomr{SDC) events by 73% when
compared to a system that uses only the simple symptom monitors.

These results clearly show that monitoring software-level misbehavideiiet in detecting permanent

and transient hardware faults.

1.2.2 Diagnosis of Permanent Faults by Analyzing Instructin Traces

After an error detection, SWAT must diagnose the source of the faultsioreriull recovery. We propose a
diagnosis framework that exploits rollback/replay in a multicore environmefif)tdistinguish among soft-
ware bugs, transient hardware faults, and permanent hardwdtsedad (2) diagnose the microarchitectural
component that contains the permanent fault by comparing and analyeifegitty and fault-free instruction
traces with a technique called trace-based fault diagnosis (TBFD){@5found that TBFD is able to diag-
nose 98% of the faults detected by SWAT and 90% can be exactly diagtwoaedrray entry or a non-array

unit. These results show that hardware permanent faults are highlyodizgie through instruction trace



analysis.

1.2.3 Recovery of Faults through Checkpoint/Replay and Ouygut Event Buffering

For error recovery, we attempt to recover all faults injected into the 1/O $iterserver workloads that are
detected within 10 million instructions. For this purpose, similar to other recerit, we leverage existing
techniques that perform hardware checkpointing [74, 59]. Our ibonion here is in quantitative results that
show that both hardware checkpointing and output buffering mechamissmequired for full recoverability
and in determining the overheads for each, for the detection latenciesAdt. SW find that with long check-
point intervals, the checkpointing mechanism (Revive on multicore) degnagrformance only slightly but
the output buffering mechanism requires somewhat larger storageefBety, with short checkpoint inter-
vals, the storage needed by the buffering mechanism is much smaller, lovetinead of the checkpointing
mechanism increases. Thus, although the overheads with the curfemigtezs are manageable, they are
not as low as for the rest of the SWAT system. These results motivate niiciergfrecovery schemes that
find a lower-overhead sweet spot for both checkpointing and outgtering overheads, possibly enabled

by a further reduction in detection latencies for SWAT. We leave this explor&tituture work.

1.2.4 Accurate System-Level Simulation of Permanent Hardwa Faults

Most of this thesis uses microarchitecture-level fault models to repreaahivare faults. These fault models,
however, are potentially inaccurate as hardware faults occur at a levedr Because there were no other
methods that model hardware faults at a lower level and capture their impaoftware, microarchitecture-
level fault models were used.

To address this issue, our final contribution is SWAT-Sim, a fast andraiechierarchical fault sim-
ulator, for observing how gate-level permanent faults in the combinatiogal propagate to the system
level [34]. SWAT-Sim achieves speed by simulating mostly at the microarthitedéevel and invoking
the gate-level simulation only when the faulty component is used. We foun@&WAT-Sim is 100,000x
faster than gate-level simulations but only 3x slower than microarchitectimallations while maintain-
ing gate-level fault modeling fidelity. We use the results from SWAT-Sim tcewstdnd the accuracy of the

microarchitecture-level fault models for the ALU, AGEN, and Decoded,faund that (1) the accuracy of the



microarchitecture-level stuck-at models, while is dependent on diffsteuctures, is inadequate for some
cases, (2) the activation rates and the bit corruption patterns vary sagnil§i between the microarchitecture-
level and the gate-level fault models, attributing to the different fault\Wers and (3) our attempt to derive
probabilistic microarchitecture-level fault models using data from SWAT-8ingate-level faults remains
unsuccessful. While these results do not change the qualitative findindisef detection, diagnosis, and
recovery modules, they imply that hardware fault injection based studmsgm@nt and future hardware reli-
ability solutions, including SWAT, should consider using techniques like SB#T to attain more accurate

evaluations.

1.3 Organization

The rest of this dissertation is organized as follows. Chapter 2 disctissegork related to the SWAT

detection, diagnosis, and recovery schemes. Chapter 3 presentraiew\wof the SWAT system. Chapter 4
discusses the very low cost symptom-based detection scheme in SWAT awsl thle effectiveness of the
SWAT detection approach through fault injection experiments. Chapteegepts the SWAT diagnosis
algorithm that can effectively isolate the different sources of errndsidentify the diagnosed permanent
hardware faults at the microarchitecture level. Chapter 6 investigates $&avVery. Chapter 8 concludes

this dissertation and discusses future research directions of the S\WATesilient system.



Chapter 2

Related Work

While there have been several recent (relatively) low-cost haedvediability proposals that eschew exces-
sive redundancy, they have dealt with detection, diagnosis, andamcas independent problems and/or
they typically propose fault-specific solutions that may not work for othettftypes. To the best of our
knowledge, SWAT is the first solution that overcomes such shortcomingisling a generic full-system
solution at low cost.

The following sections briefly describe these related studies.

2.1 Fault Detection

As mentioned in Chapter 1, our focus is on low-cost reliability for a broatsket, where some parts of the
market may even be willing to trade off some coverage for cost. Theregrasdubstantial microarchitecture
level work in this context, where redundancy is exploited at a finer michactural granularity. While
much of that work handles transient hardware faults [4, 22, 23, 666&781], recently, there has been a
growing body of work on handling permanent hardware faults. We dissame of these schemes in the
following.

Checker and online-testing based detection.

Austin proposed DIVA, an efficient checker processor that is tightlyptexd with the main processor’s
pipeline to check every committed instruction for errors [4]. While DIVA carubed to provide detection of
hard (and transient) errors, it does not provide mechanisms for diegmorepair. Bower et al. introduced a
hard error diagnosis scheme in the DIVA checker architecture that igesrtifird faults through tallying the
different structures utilized by the faulty instructions [10]. (We desctliteediagnosis algorithm in greater

detail in Section 2.2.)



Shyam et al. recently proposed online testing of certain structures in thepracessor for detecting
hard faults, and recovering the system by both disabling the faulty unitsadlivt back to a hardware
checkpoint [73]. Since these tests are run only when the structuredleye¢he performance overhead is
rather small. Constantinides et al. enhanced this scheme further in [18Hiygehardware support so that
the software can control the online testing process, adding flexibility foosihg test vectors. However, the
performance penalty incurred by software-controlled online testing isfoigteasonable hardware check-
pointing intervals. Furthermore, the continuous testing of hardware catesate the wear-out process.

As part of the Argus reliability scheme, Meixner et al. have proposedaaaimputation checkers (infor-
mation redundancy) to protect the ALUs, multipliers, and dividers fromsteart and permanent hardware
faults in simple cores [45].

All of the above schemes incur significant overhead in area, perfoenpower, and/or wear-out that is
paid almost all the time. Further, these are customized solutions for hardsliatglity. In contrast to the
above, we seek a reliability solution that pays minimal cost in the common case thieee are no errors. In
other words, we seek an “always-on” error detection mechanism déisanimimal cost in area, performance,
and power.

Software-centric detection.

There is a large body of literature on detecting hardware faults throughariag software behavior [22,
51, 54, 61, 65, 67, 79, 81]. The majority of this work focuses on cofibw signatures, crashes, and hangs.
Recent work has also examined value based invariants extracted inanarft], invariants in software
that are extracted ahead-of-time [54], and locality of instruction-levelriants [17] for detecting errors.
These schemes are similar to our more sophisticated software-assistébdeigiteme (to be discussed in
Chapter 4).

Other low-cost hardware-based fault detection schemes have alsplmmsed. Meixner et al. have
proposed the use of data and control flow checkers for transiemieanthnent faults in simple single-issue,
in-order pipelines, with no interrupts [45]. Our proposed symptom-bdsezttors work at a much higher

level — they are largely oblivious to the microarchitecture and requirelitdeyhardware overhead.



2.2 Fault Diagnosis

Online diagnosis of hardware faults is a relatively new research area wampared to the detection and
recovery parts of the fault-tolerant systems. We discuss some of th# proposals here.

The online testing schemes [73, 13] discussed earlier assume both thefrefesr detection and fault
diagnosis. If a particular hardware module fails a particular test, that maduistantly diagnosed as faulty
and can be taken offline. However, these online tests are generagebdragre-specified fault models. New
unknown failure modes may cause a fault to go undetected and undidgfisediagnosis scheme aims to
replicate the same execution environment online so that these faults capebhtedy activated and correctly
diagnosed.

The most related prior work to our diagnosis scheme (discussed in Capseby Bower et al. [11],
proposed in the context of the DIVA architecture [4]. Their schemedisiss a counter for each reconfig-
urable (repairable) microarchitectural resource. As instructions floough the pipeline, it keeps track of
the microarchitectural resources used (e.g., which ALU, etc.) in a bit medtizh is carried along through
the pipeline. When a mismatch between the main processor and the DIVA cliedetected, the counter
corresponding to each resource utilized by the mismatching instruction isriented. Once a resource
counter reaches a certain threshold value, it is diagnosed with a pernferdware fault. Our scheme
differs from that of Bower et. al. in the following ways. First, we incur diagis related overhead only
in the infrequent case when a fault is detected. Their scheme, howewveains always-on monitors (for
diagnosis) that present overheads in power and performance etreéommon fault-free operation. Sec-
ond, although their method works well for faults on the data path, it is not suited to handle faults in
structures that establish or rely on logical to physical register name ttianslaOur scheme diagnoses the

faulty microarchitectural structure even in these scenarios.

2.3 Error Recovery

2.3.1 Hardware-Based Error Recovery

As suggested by its name, the hardware-based error recovery metieooises that have specialized hard-

ware support for recovering detected hardware errors. Haedbased error recovery schemes can be
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broadly classified into forward error recovery and backward egcovery.
Forward error recovery (FER).

These schemes use redundant hardware to detect and correctstatittat forward progress can be
guaranteed. Traditionally, high-end systems employ triple modular redopdéhto mask the detected
fault through voting. More recently, Austin proposed DIVA that usesecker processor to mask faults in
the main processor [4]. Because FER schemes usually involve significemint of redundancy, they are
considered too expensive for the mainstream market and thus not sitabge in SWAT.

Backward error recovery (BER).

These schemes are more commonly known as rollback-and-replay rgcogéhods. They generally
involve some form of checkpointing (taking a snapshot of the state) oirlgggenerating an undo log
to recover the state) to establish checkpoints, to which the system can loklratle after an error detec-
tion. Traditionally, IBM mainframes [75] contain register checkpoint hanmnvand store-through caches
to recover from processor and memory errors. To reduce the ca$teokpoint creation, there have been
various proposals that involve modest enhancements to the process@ssattaching a snooping device for
logging [43] and making enhancements to the cache so that the dirty dag@aocguin the cache triggers
multiprocessor checkpoint establishments [2]. While these schemesaltfdors for early hardware-based
checkpoint/rollback recovery, there is little controllability of the checkpoiterival.

Recently, SafetyNet [74] and ReVive [59] were proposed to progidephisticated method for taking
periodic consistent multiprocessor checkpoints. Because these schenudssely tied to the design of the

SWAT recovery module, we leave this detailed discussion to Chapter 6.

2.3.2 Software-Based Backward Error Recovery

Software-based backward error recovery schemes have alspimgmsed to improve fault tolerance. They
work by periodically establishing checkpoints of the process state so fadéa process can be restarted
from the checkpointed state, instead of the beginning of the execution.

In particular, HP NonStop servers have every process periodicadigkgloint its state on another pro-
cessor [6]; the shadow process can take over once the main prades€inozahy and Zwaenepoel [19]

introduce Manetho that coordinates different processes in the disttibystem to take checkpoints so that
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the domino effect is minimized. Plank et al. [58] introduce diskless checkipgiand explore different ways
to store the checkpoint data in the main memory to reduce the performanteasefFlashback [76] relies
on a shadow process based checkpoint creation mechanism in disidekpainting to provide efficient sup-
port for software debugging. BLCR [5], an ongoing project, is a Limodule developed for checkpointing
the Linux applications. Because the SWAT recovery module can potentiadlyalge software-based error

recovery methods, we discuss some of these schemes in detail in Chapter 6.

2.3.3 Input/Output Event Handling

Besides checkpointing, input/output commit problems need to be propedieukto prevent inconsistencies
in the system that may thwart full recovery. BLCR [5] and Flashback ¢ffér partial solutions for the 1/0

recovery problem (e.g., recovering file 1/0) by checkpointing the I/Ormfition (e.g., file handle) in the
kernel-specific data structures. Nakano et al. propose ReVivelDt¢sbuffer disk and network events
using pseudo device drivers (PDDs) for fault containment. ComparBd @R and Flashback, ReVivel/O
provides a more general solution that is less dependent on the OS kémtile SWAT recovery module

also needs a general mechanism to properly handle I/O events, wesdigeMisel/O in detail in Chapter 6.
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Chapter 3

Overview of the SWAT System

The primary goal of the SWAT system is to provide a very low-cost hareweliability solution for most of

the computing market. To achieve this, the design of the SWAT system is baseo &ey observations.

1. An effective solution only needs to handle hardware faults that gedpanto higher levels of the

system and corrupt the software execution.

2. Even though the future hardware failure rate is projected to incrizagefree operation remains the

common case and hence must be optimized.

Based on these observations, SWAT minimizes common-case cost by usirig zery low overhead hard-
ware and/or software monitors to detect hardware faults that manifest ensottware. SWAT then invokes
a potentially expensive diagnosis routine after a rare case of a detection.

In the rest of the chapter, we first describe the functional operatitimdBWAT system. Then, we take
a closer look at the various components of the SWAT system. After that, wesdishe potential advantages

of SWAT.

3.1 Functional Operation of the SWAT System

Figure 3.1 shows the high-level view of the typical operation of the SWAStesy. For error recovery,

SWAT relies on a form of checkpoint/replay mechanism to roll back the sy&iea pristine state. Hence, in
the figure, the checkpoints are created periodically. Further, betaei$ault-handling operations are non-
trivial, SWAT relies on a thin firmware layer (not shown in the figure) to diwate detection, diagnosis,

recovery, and repair.
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Figure 3.1: Operation of the SWAT system.

The SWAT system operates as follows. From the figure, the softwat@aes to execute after a check-
point is created (shown as the solid wavy line). Some time later, a hardwdirafpears. Because this fault
has not been activated by the software, the execution is still correct. eAsoftware execution continues,
this hardware fault is exercised and an error is introduced to the seftwaom this point on, the software
execution is potentially incorrect. This error then continues to manifest irofh@are execution (shown as
the dotted line). If the underlying fault is a permanent hardware fault, multzulk &ctivations can occur
and result in multiple corruptions in the software execution. Eventually, tiog(gy causes a symptom that
is detected by one of the symptom monitors in SWAT. Now, the hardware fapdisas as a form of software
anomaly and is considered detected.

After a detection, to treat this software anomaly, the SWAT firmware is inve&embordinate all the
fault-handling operations. The first step is to diagnose the cause of teetetk symptom. The SWAT
diagnosis algorithm currently assumes three different fault models: a@ftiugs, transient faults (either
hardware or software), and permanent hardware faults. It alsongssa multicore system. At a high level,
SWAT diagnosis watches for symptom re-occurrence on repeatedakiditoaplays on the same or different
cores to determine the different sources of errors. If there is no symatier a simple rollback/replay on
the original symptom-causing core, a transient fault is diagnosed andlthack/replay naturally recovers
this type of fault. If the symptom is persistent on the original and a differerd in the system, the diagnosis
algorithm identifies a deterministic software bug and SWAT propagates thet@yntp higher levels of
software. However, if the symptom is only persistent on one core buheatthers, a permanent hardware

fault is diagnosed. Since a hardware fault is persistent, it cannotcbgerd through rollback/replay. To
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Figure 3.2: Functional overview of the SWAT system.

prevent further corruptions by the underlying permanent hardveark, {ISWAT diagnhoses the permanent
fault at the microarchitecture level to facilitate fine-grained repair orrégoration, essentially extending
the lifetime of the faulty core. To recover from a detected hardware faittsef transient or permanent),
the SWAT firmware invokes the rollback recovery procedure so thatrikéne execution state is restored

and the correct software execution can be resumed.

3.2 Components of the SWAT System

Figure 3.2 illustrates how the detection, diagnosis, recovery, and repapanents work together in SWAT.

In the following, we briefly discuss the different modules of SWAT.

3.2.1 Detection

As shown in Figure 3.2, the detection mechanism is always on during bdtHfrizel and fault-handling
(during diagnosis) operations. Because the fault-free operation istheaon case, the cost paid in detection
directly impacts the overall system cost. Focusing on minimizing the cost of teetd®& module is the

primary reason why SWAT is able to achieve low overall system cost.
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Based on our previous observations, the sweet spot of handling&adaults is at the level where the
faults have manifested and appeared as some form of software mislrefiaus, to minimize the cost of the
detection module, SWAT relies on very low overhead symptom monitors to deesbftware anomalies
caused by the propagation of hardware faults. As some of these moratggankar zero overheads, the
cost of the detection module is truly minimized. Further, with monitors that detechalous software
behavior, they naturally handle only hardware faults that matter and iginose that do not. For example,
if a hardware fault propagates but has its effect masked by a brangheaiistion induced pipeline flush,
the error is invisible to the software and the symptom monitors. In this work, rateefkperimented with
very low cost hardware-only detectors that do not require assisteoroesoftware. Since SWAT treats the
hardware errors when they appear as software bugs, many techfiigoethe software debugging research
community can potentially leveraged. In particular, we also looked into sadtassisted detectors that rely
on compiler support.

For systems that require higher detection coverage, techniques soaolirestesting, selective redun-
dancy, hardware checkers, etc. can also be incorporated into th& 8@#éction module. The resulting

system will be more expensive but is more reliable.

3.2.2 Diagnosis

Post detection, the first step of the fault-handling operation is to diagnessthice of the error. Because a
detection is typically rare, the invocation of the diagnosis procedure isalsoConsequently, the overheads
paid in this operation can potentially be expensive but still do not affeatbrall system cost significantly.

Because software bugs, transient hardware faults, and permaaremtane faults can all manifest and
lead to symptoms, the diagnosis algorithm has to be made necessarily intelligeatisely diagnose the
source of the error. Towards this end, we assume the SWAT firmwareoisé@ulin controlling the diagnosis
process. We further assume that a single-threaded application is egecntione core in the multicore
system. Then, given SWAT has a checkpoint/replay recovery mechahisifirmware-controlled diagnosis
procedure performs repeated replays of the execution in a multicormemeént to determine the cause of
the symptom.

The procedure goes as follows. After a symptom is detected for the first &mellback/replay is
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triggered on the symptom-causing core and the firmware watches for amgt@y re-occurrence. If no

symptom is found, a transient fault is diagnosed and the execution replayatovers the fault. If the

symptom persists on the same core, the firmware transfers the checkpaimbtteer core in the system
to replay the execution. If the symptom recurs on this new core, SWAT dg&agnthis as a deterministic
software bug (because the symptom persists on all cores) and prepédgeaeffect to the higher levels of
software. However, if the symptom does not occur on this new coranagpent fault is diagnosed (since it
occurs twice on the original core but disappears when the executiorthi®aew core).

In the case of a diagnosed permanent fault, SWAT can choose to decaoomitiesentire faulty core as a
method of repair. But, modern superscalar processors often contiiimlvadundancy that can be exploited
for fine-grained repair. Hence, to facilitate this level of repair or réigonation, SWAT will attempt to
diagnose the location of the fault at the microarchitecture level using aiteehoalled trace based fault
diagnosis. This technique, in essence, synthesizes a dual moduladaedwexecution using two cores
from the multicore system to identify the source of the permanent fault. Ususggeénces between the
executions as clues, the trace based diagnosis algorithm intelligently taekgle source of the hardware
fault from the collected execution trace. After that, the appropriate r@pagedure is invoked to prevent

future activations of the permanent fault.

3.2.3 Repair

As mentioned, in the case of permanent fault, repair or reconfiguratioaeidenl to ensure reliable and
continuous operation. To this end, SWAT relies on built-in microarchitectedndancy, frequency and
voltage scaling, and/or microcode-level reconfiguration in modern psoes to fulfill this task. We believe
that this level of control is typically available for current and future muliécsystems. Thus, this thesis
assumes the necessary support for repair is in place and does ntd gjeeimrmplementation details of the

repair mechanisms.

3.2.4 Recovery

From Figure 3.2, error recovery is active in both fault-free (along Wit¥A® detectors) and fault-handling

operations. Based on our observations, in order to keep SWAT lowthedfault-free overhead incurred by
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the recovery mechanism must be kept low as it is the common case operatioctioRally, the recovery
mechanism must be capable of restoring the system state and preventifigt¢hefehe fault from prop-
agating outside of the sphere of recoverability (to be discussed in CH@ptér this thesis, we assume a
hardware-based checkpoint/replay mechanism as the primary SWAT migthar execution state restora-
tion and an output event buffering mechanism to prevent faults fromagating and becoming visible to
the outside world.

During fault-free operation, the checkpoint/replay mechanism periodicadlgtes checkpoints of the
execution state. The buffering mechanism provides the necessargestorauffer the output events. To
be consistent with the SWAT system design approach, these modules mdasigeed appropriately to
minimize the overheads in performance, area, and power in order not toréage the overall system cost
significantly.

During the fault-handling operation, the SWAT firmware invokes the rollsackvery procedure of the
checkpoint/replay module and discards the potentially faulty output events buffering module. Similar
to diagnosis, these operations can be allowed to incur higher overheadisaty occur infrequently.

In this dissertation, while we do not propose a new recovery schemeyaveify the need for both the
checkpointing and output buffering mechanisms in terms of system rexdwligrand identify the overhead
incurred by these existing schemes. These results are important asheseaan use them to help derive

new lower-cost and more efficient recovery mechanisms.

3.3 Advantages of the SWAT System

The SWAT system is designed as a comprehensive reliability solution frogrdled up. To realize a very
low cost solution, the SWAT approach emphasizes the absolute minimal cbstiysaon error detection by
using a very low cost software-level symptom-based detection mechanigenalDwe believe the SWAT
system has the following advantages over existing techniques. (We sliteuiBmitations of SWAT at the

end of this thesis.)

e Optimizing for the common case. Total system overhead is significantly reduced by emphasizing

minimal detection overhead (which is paid all the time), possibly at the cost béhijagnosis over-
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head (which is paid only in the case of a fault).

Generality. High-level symptom-based detection techniques are largely oblivious ¢dispew-level
failure modes or microarchitectural/circuit details. Thus, in contrast to tietemethods that are
driven by specific device-level fault models (e.g., wear-out detégtaigh-level detection techniques

are more general and extensible to numerous failure mechanisms and olidesdures.

Ignoring masked faults. Previous work has shown that a large number of faults are masked lsrhigh
levels of the system such as circuit, microarchitecture, architecture pgfidation levels [15, 32, 37,
49, 82]. High-level detection techniques naturally ignore faults that askediat any of these levels,

avoiding the corresponding overheads.

Customizability. A firmware controlled system with detection mechanisms driven by softwéi@/be
ior provides a natural way for application-specific and system-speciiommization of the reliability
vs. overhead tradeoff. For example, when a fault is detected in a vig@izaion, the system may
consider dropping the current frame computation rather than recovierikgrther, the approach is

amenable to selective cost-conscious use of different symptom-basdbdekup detection techniques.

Novel solutions result from holistic system designThe holistic system design approach allows us to
experience with and derive novel reliability solutions. In particular, thdligéat diagnosis algorithm

is made possible because the checkpoint/replay recovery mechanisrifablavén another example,
heuristic detection mechanisms that can cause false-positive detectidresuesad in the SWAT detec-
tion module because the SWAT firmware has the capability to determine, thréamgyodis, whether

a false-positive detection has occurred at runtime. This effectively wegrthe coverage and latency

of the SWAT detection module.

Amortizing overhead across other system functionsOur view of monitoring for software symp-
toms of hardware bugs is inspired by work on on-line software bug detel@iq 24, 41, 86, 87, 88].
Our approach can leverage software bug detection techniques fiwdrar fault detection and vice
versa, amortizing overheads for different system functions. In trgetlerm, we believe the SWAT ap-

proach can bring hardware and software reliability solutions togethegaside into a unified frame-
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work that tackles both types of reliability threats, essentially treating them e sggtem reliability

challenge.

3.4 Summary

This chapter gives a brief overview of the inner workings of the SWAStay. Specifically, we have de-
scribed how SWAT detects, diagnoses, recovers, and/or repaiudtya iardware component. By focusing
on faults that are harmful to the software, SWAT can leverage very Iearal effective symptom monitors
to make up the efficient always-on detection scheme. Because the tosteaftection module is minimized,
the common case operation is essentially optimized, resulting in a very low tabitlity solution.

While SWAT's detection scheme is low cost, it is not without tradeoffs. Itigalar, as multiple types of
errors can all manifest as symptoms, the diagnosis process is relativghjeco Nevertheless, we are willing
to have a more complicated and potentially expensive diagnosis mechanism\int®dause diagnosis is a
rare case operation and hence does not have a significant impactaveth# system cost.

Error recovery, on the other hand, is an interesting module as it is invaoKeoth fault-free and faulty
operations. Obviously, the fault-free overhead of the recoverynseli@s to be kept low in order for SWAT
to be deployable to the masses.

Overall, in this chapter, we have given a high level view of the SWAT systarthe rest of this thesis,
we first present the detection module in Chapter 4. Then, we describeaipeodis scheme in detail in

Chapter 5. After that, the recovery module is explored in Chapter 6.
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Chapter 4

SWAT Detection

As the error detection mechanism needs to be always on in all fault-tokyrsteims, its cost has a huge im-
pact on the overall system cost. In order to provide a low-cost reliabditytion, minimizing the overheads
incurred by the detection mechanism is a must.

Taking this fact into account, we make a key observation that a hardeuatésf only considered harmful
if it affects software execution. Hence, hardware error detection amsims only need to handle hardware
errors that propagate through high levels of the system and becomevaliieeto the software. In other
words, one can detect hardware errors after they propagate intofthvae and appear as software bugs.

The SWAT error detection module follows exactly these observations anbtbysng suite of monitors
of anomalous software behavior (called symptom) for hardware ertectien. By using this approach, the
error detection module achieves minimal cost in two ways. First, the symptontatstdny nature, handle
all hardware faults that matter and ignore those that do not. This greatiges@xcessive overhead spent on
handling faults that would have been masked at various hardware tim@solevels. Second, because the
symptom monitors themselves can be designed to catch simple software misb#tehéoe easy to detect,
they can be implemented at extremely low cost.

In this chapter, we start with very simple detectors that can be realized with nhihamdware cost
and no software support [36]. Then, we introduce a softwaretadgietector that leverages a well-known

software bug detection technique for detecting hardware faults [70].

4.1 Hardware-Only Software Anomaly Monitors

To minimize the cost of the error detection module, we started with symptom monitorsatinée imple-

mented with near-zero hardware overhead. In an extreme case, tler detector class that incurs zero
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hardware cost. In the following, we discuss these detectors in more detail.

4.1.1 Fatal Traps

An easily detectable abnormal behavior due to a hardware faullaitmhardware trap in either the appli-
cation or the operating system. A fatal trap is typically not thrown during eecbprogram execution. In
a SWAT system running Solaris, the following traps are denoted as fapal +&ED (Recover Error and
Debug) State Trap (thrown when there are too many nested traps), DegasAException Trap, Division
By Zero Trap, lllegal Instruction Trap, Memory Misaligned Trap, anddNdog Reset Trap (thrown when
no instruction retires in the lagt% ticks). Using these traps as symptoms of hardware faults requires no
additional hardware overhead and such a trap would simply invoke thd Siviidware that performs further

diagnosis and recovery as needed (Chapter 3).

4.1.2 Hangs

Another possible abnormal behavior due to a fault is a hang in the appliaatid®s. Previous work has
proposed hardware support to detect hangs with high fidelity, but witte soea and power overhead [51].
Several optimizations to that work are possible. For example, a detectat bas heuristic can initially be
used (e.g., based on the frequency of branches) — if that heuristitsiteth then a more complex mechanism
involving hardware or software can be invoked. We, however, ahtmenplement a detector with a simpler
heuristic to lower the overheads. In particular, we developed a heuragidoon monitoring all executed
branches and detecting tight loops that have a large number of iteratiamfigying a table of counters.
Figure 4.1 shows this table in greater detail. Each entry of the table constsizeffields: a partial tag of
the PC, an instruction count that identifies when the last instance of thethiratruction retired, and a loop
counter. The tag is for distinguishing among different branches that tevsame index. The instruction
count records when the last branch instruction retired and containgline fvom the performance counter
that tracks retiring instructions (already available in modern processbhg) instruction count field helps
the hang detector determine the size of the loop, in number of instructiondodpeounter keeps track of
the number of iterations of the current invocation of the loop.

With this table, the hang detector operates as follows. Whenever a bratalction retires, a part of
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Figure 4.1: Hardware structure used for hang detection.

its PC is used to index into the table to look up the tag. If the tag does not matchrthatdaranch, a new
loop is identified and the following actions are taken: (1) the tag is updated vattathbits of the current
branch’s PC, (2) the instruction count field is updated with the curramtdoom the performance counter,
and (3) the loop counter is reset to zero. If a tag match occurs, theraanitybranch with the same PC has
retired previously and this branch may be part of the identified loop. Tdifgevhether this is an iteration
of a tight loop, the distance from the last invocation of the branch is compuytedibtracting the current
instruction count (from the performance counter) with the one in the elfititye distance exceeds a preset
range threshold, this is assumed not to be a tight loop. Since the curasrthbmay be the beginning of a
new tight loop, the instruction count field is updated and the loop countesés t@ zero. If the distance is
within the range threshold, a tight loop is identified and the loop counter isntesreed. If the loop counter
exceeds a pre-defined iteration threshold, a potential hang is detected.

We determined the size of the table empirically from our experiments and foahd t28-entry table
with each entry containing an 8-bit tag, an 8-bit instruction count, and dnitl18op count is sufficient.
This hang detector, consisting of a table of counters, a 64-bit rangshtiiceregister, and an 18-bit iteration
threshold register, consumes a total of 555 bytes. While this table is alreadgmably small, further
optimization in size (e.g., using branch frequency to filter out branchesatbabot executed frequently,
allowing the use of a smaller table) is possible but we did not explore fulsahis is a heuristic detector,
false positives are possible but they can be identified and properlydtaimdSWAT. Section 4.3 discusses

how SWAT handles a false-positive detection.
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4.1.3 High-OS Activity

As typical OS invocations, due to traps or interrupts, take 10s or 100ssttigtions, an execution that
spends an excessive amount of time in the OS, without returning to the digpljda a potential symptom
of a fault. Such a detector can be implemented using a simple performanderc(already provided in
modern processors) that counts the number of contiguous privilegeddtiens and invokes the SWAT
firmware if a preset threshold is exceeded. We call this the High-OS detecto

However, we found exceptions to this observation. First, on a timer inteaftgr the allocated time
guantum for the application expires, the OS scheduler may execute forlanger. Second, for system calls
(e.g., 1/0), we observed that the OS may execute for much longemwf 10° instructions) before returning
to the application. Third, there are applications (e.g., servers implementegamds) that voluntarily go
to sleep and let the OS take over; without another runnable processgthdtion stays in the OS. For these
cases, we disable the High-OS detector to avoid false positive detectithes.f@lse positives, nevertheless,

are possible. Section 4.3 discusses how these cases are handled.

4.1.4 Kernel Panic

To ensure system integrity, modern operating systems are developed witlle &axiety of error checking
mechanisms to contain many different errors. While some violations of thes&shre recoverable by the
OS, some of them are critical and can cause the OS kernel to panic. Al kemic, therefore, indicates
a system anomaly. To monitor this symptom, a debug register can be used tofevatdtether the panic
function in the OS is executed. As modern processors already providedfigser for software debugging,
there is no additional hardware cost for detecting this symptom. Howe&support is needed to identify
the kernel panic function.

Similar to High-OS, the Panic detector aims to detect anomalous behavior in thdéo@8ver, while a
High-OS detection may occur in normal software execution due to possibéefdasitives, a Panic is never

thrown by the OS during normal execution.
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4.2 Software-Assisted Software Anomaly Monitors

Since SWAT focuses on hardware faults that propagate to the softwdrevantually appear as software
bugs, we can potentially leverage existing software bug detection technmdetect hardware faults. As
a first step in this approach, we investigate detectors that are basedgramrinvariants, a well-known

method for detecting software bugs [21].

4.2.1 Range-Based Likely Program Invariants

A program invariantat a particular program poin® is a property that is guaranteed to holdraton all
executions of the program. Static analysis is the most common method to extlactcaund invariants. A
combination of offline invariant extraction pass and static analysis, ordheproving techniques, has also
been suggested to extract sound invariants [53]. However, cugembiques are not scalable enough to
generate sound invariants for real programs. Also, they cannot igaigidrithm-specific properties that are
not explicit in the code (e.g., some inputs are always positive).

Likely program invariantsare properties involving program values that hold on many execution on a
observed inputs and are expected to hold on other inputs. Extracting litkagygo invariants is easier than
extracting sound invariants as we do not need expensive static analys@dsi&o prove program properties
and can identify algorithm specific properties. The extraction can be élitimer online or offline. In the
online methods, invariants are extracted and used during programtiexeicLthe production runs. Online
extraction, however, can present unacceptable overheads tapregecution, and may in fact be infeasible
without hardware support. The offline approach, on the other hattidhcts invariants in a separate pass
during program testing or debugging, and these generated invariane esed later during the production
runs. During the testing phases of software development, the extraeawkdi invariants extraction can
be tolerated. This makes offline invariant extraction a powerful methodyialipthe use of more complex
invariant mining techniques that would not be feasible in the online methods. Wftipiter support, this
“training” phase can be done transparently at development time.

Since likely invariants are unsound invariants, they may not hold on somésinfinerefore, during
production runs, false positives can occur. In the presence of pemhdaults, SWAT must be able to

correctly tell apart a false positive invariant violation and an invariatéa®n caused by a permanent
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hardware fault. We discuss how false positives are handled in Section 4.3

While there are many types of likely invariants, we can broadly classify themthiree categoried/alue
basedinvariants specify properties involving only program values, and cansked for a variety of tasks
including software bug detection, program understanding and reifagt@tc. [20, 39, 31, 40, 25 ontrol
flow basednvariants specify properties of the control flow of the program, ane teen used previously
to detect control-flow errors due to transient faults [79, 78, Z2hgram counter baseihvariants specify
program properties involving program counter values, and have firegosed for detecting memaory errors
in programs during debugging [85].

The control flow based and program counter based invariants caet detgrol flow or memory access
errors, which generally result in anomalous software behavior thabeadetected by the hardware-only
detectors in SWAT. For example, an erroneous control flow can resalfatal trap. In contrast, fault-
induced deviations in values that do not cause control flow or memonsaereors are more difficult to
detect with hardware-only detectors and may result in incorrect progratputs. We believe that value
based invariants are effective for detecting these errors that omyptatata, and explore the use of value-
based invariants to detect permanent faults.

As a first step towards using likely program invariants for permaneuiVeare faults, we use a particular
form of value-based invariants known as range-based invariantsangerbased invariant on a program
variable z will be of the form [MIN, MAX], where MIN and MAX are constants infexd from offline
training such tha/ IN < x < M AX is true for all the training runs.

These range-based invariants are suitable for error detection fousaeasons. These types of invariants
can be easily and efficiently generated by monitoring program valuesy diteealso composable — the
invariants can be generated for each training input separately andesabdgltombined together to generate
invariants for the complete training set. These invariants are also much teestigorce within the checking
code compared to other forms of invariants as they are simple and involvgla data value.

The following describes the steps we take to generate invariants for dgteetidware faults. We use

the LLVM compiler framework for the these steps.
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Invariant Generation

The likely range-based invariants are derived by training the targegitations with a variety of inputs.
The data range of each static store instruction is collected for each traipuny iWe decided to monitor only
the store values as checking values stored to memory has the most poterdiahtéacits, as all necessary
computations eventually pass their results to stores. Also, monitoring only tres stelps us keep the
overhead of detection low. We monitor stored values of all integer typek éigned and unsigned) of size
2, 4, and 8 bytes as well as single and double precision floating point. tyffesdo not monitor integer
stores of size 1 byte (character data types), as they represent anllaange of values and hence may be

ineffective to detect faults.

Invariant Insertion

The invariants generated from the previous phase then need to bedngéstthe code to check the values
being stored for hardware fault detection. To accomplish this, we takeethergted invariant ranges and
then insert calls to the invariant checking code at the LLVM byte-codé ter@ugh an instrumentation pass
in the compiler. At this point, the resulting application binary contains checkinlg ¢hat is capable of

detecting invariant violations.

4.3 Handling False Positives

After a symptom is detected, if the diagnosis (described in Chapter 3) det=rthiat the symptom was not
caused by a hardware fault, this symptom is deemed a false positive forebenpe of a hardware fault.
In these cases, fatal traps and kernel panics are essentially sympteofsnaire bugs and will simply be
propagated to the appropriate software layer as usual. The additiogalodia latency in these cases is
acceptable since it is incurred in the case of a fault, albeit in software.

For symptoms such as hangs and high OS activity, the detection mechanismsldesnase prone to
false positives as they are based on heuristics. When the diagnosimidetethat one of these symptoms
is a false positive for the presence of a hardware fault, the executiosimitly continue. In this case, the

diagnosis latency is an overhead for fault-free execution. To evadevbibead in the future, the SWAT
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firmware can increase the thresholds in these detectors to avoid a similarf Kaddeopositive. However,
because higher thresholds potentially lead to higher detection latencie$Viiefildnware can periodically
decrease the threshold if no false positives are detected. In generaljgla tradeoff between the latencies
of these symptom detectors and their false positive rates.

Likely invariants are also prone to false positives because they aretegge hold on most, but not all,
program inputs. After detecting invariant violations, we use the SWAT disignmodule to identify false
positives. A diagnosed false positive means that the particular prograleads to data values that were
never seen during the training runs. Hence, the false positive deteclikelysto occur again in subsequent
execution. Because all SWAT detections invoke the diagnosis module wamidbecexpensive, false positives
can therefore be costly. To limit the overhead incurred by false-pogitiegiant violation detections, SWAT

diagnosis disables the offending invariant check.

4.4 Methodology — Base Environment

The main goal of our experiments is to study the effectiveness of the SWW&Tiibn, diagnosis, and recovery
components when the system has a fault. To achieve this, we conducinfaatton experiments on a
common base environment. In this section, we describe the base simulaticonemsit in Section 4.4.1

and the fault models used in Section 4.4.2.

4.4.1 Base Simulation Environment

Ideally, to evaluate the detection, diagnosis, and recovery componeBSM/A&T, we would like to inject
hardware faults into a real system or a low-level (e.g., gate level) simukdd@rever, modern processors do
not provide enough observability and controllability to perform the mictuggcture-level fault injections
that are of interest to us. We therefore use simulation. Although low-lévellgtors would provide the
ability to use more accurate fault models, they present a trade-off in gpekbthe ability to model long
running workloads with OS activity. Since we need to evaluate the impactrsispent faults on the soft-
ware and need to simulate for long periods (millions of cycles), gate-levelaiom was not feasible. We
therefore conduct our fault injection campaign in a microarchitecturd-$aveilator. (Chapter 7 presents a

new efficient way for simulating gate-level faults with microarchitecturetlsivaulation speeds.)
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Base Processor Parameters
Fetch/Decode/Execute/Retire ratd/cycle

Functional units 2 Int add/mul, 1 Int div, 2 Load, 2 Store, 1 Branch
2 FP add, 1 FP mul, 1 FP div/Sqrt

Integer FU latencies 1 add, 4 mul, 24 divide

FP FU latencies 4 default, 7 mul, 12 divide

Reorder buffer size 128

Register file size 256 integer, 256 FP

Unified Load-Store Queue Size | 64 entries
Base Memory Hierarchy Parameters

Data L1/Instruction L1 16KB each
L1 hit latency 1 cycle

L2 (Unified) 1MB

L2 hit/miss latency 6/80 cycles

Table 4.1: Parameters of the simulated processor.

To simulate a system with faults, we use a full system simulator comprising the N§isdBEMS mi-
croarchitectural and memory timing simulators [42] in conjunction with the Virtutichics full system
simulator [80].

Together, these simulators provide cycle-by-cycle microarchitecturé tievieg simulation of a real
workload running on a real operating system on a modern out-of-grgeerscalar processor and memory
hierarchy (Table 4.1). In particular, we simulated six SpecINT2000 &hzjpc, gzip, mcf, parser, and twolf)
and 4 SpecFP2000 (ammp, art, equake, and mesa) applications on Stig Salaning SPARC V9 ISA
(Figure 4.2(a) shows the simulation environment). We also simulated two sgpkcations, Apache web
server and SSH daemon (described in Table 4.2), on OpenSolaris. seinee workloads are driven by
requests made by client systems, we created an environment in Simics thigtcohtwo separate systems
connected by a simulated network (shown in Figure 4.2(b)).

To inject faults, we leverage the timing-first approach [44] used in the GEMmics infrastructure. In
this approach, an instruction is first executed by the cycle-accurateS2hing simulator. On retirement,
the Simics functional simulator is invoked to execute the same instruction again aodhfare the full
architecture state in GEMS and Simics. This comparison allows GEMS the flexibitityt tilly implement
a small (complex and infrequent) subset of the SPARC ISA — GEMS use®thparison to make its state

consistent with that of Simics in case of a mismatch that would occur with suclstndtion.

29



Injected Fault ~ Simulated System Simulated Simulated

Server System Client System
y 4 A
ot
| Application | £ s
_OS __os
0s ]

\
(X Hardware J \ /
Injected Fault @m@

Simics

(a) (b)

Simics

Figure 4.2: Simulation environment. (a) A single-system environment that 3lEC applications on a
commercial OS. (b) A two-system environment that runs server applisadioone system and client appli-
cations on another system.

We modified this checking mechanism for the purposes of microarchite&ufainjection. We inject a
fault into the timing simulator’s microarchitectural state and track its propagagitredaulty values are read
through the system. When a mismatch in éinehitectural stateof the functional and the timing simulator is
detected, we check if it is due to the injected fault. If not, we read in the vedne $imics to correct GEMS’
architectural state. However, if the mismatch is because of an injected fauttomupt the corresponding
state in Simics (register and memory) with the faulty state from GEMS, ensurih&itinécs continues to
follow GEMS’ execution trace, upholding the timing-first paradigm.

We say an injected fault iactivatedwhen it results in corrupting the architectural state, as above.
the fault is never activated, we say the faularshitecturally maskede.g., a stuck-at-0 fault in a bit that
is already O or a fault in a misspeculated instruction are trivially masked).eSiecknow the privilege
mode of the retiring instruction that corrupts the state, we can determine iftddads to any corruption
in the architectural state of the OS or the application. As discussed later, fiimation has important
implications for recovery.

Although in the fault-free executions of the SPEC workloads, the simulatglicapons are not OS-
intensive & 1% OS activity in our simulated window), we show later that fault injection signitigan
increases OS activity. For server workloads, as the OS activity is glfeigth (50+% in our simulated
window), we observe later that the injected faults are highly likely to cortuptOS. Because hardware

faults can corrupt the OS state for our workloads, it is critical to model tBeafd its interaction with the
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Benchmark Description Fault-free Output

Provides webpages and files at a website to
requesting clients through the HTTP protocol. FqQuEach client thread receives the
Apache worker threads listen to incoming requests from a assigned files that are the samg
synthetic driver with 20 threads, obtained from theas stored on the server.
cURL [14] utility.

Provides files to the clients using the SSH protoc
One daemon thread listens to a synthetic client
system with 8 threads, and spawns threads with
added connections.

OIEach client thread receives the
assigned files that are the same
as stored on the server.

SSH Daemon

Table 4.2: Description of server workloads.

parch structure Fault location
Instruction decoder Input latch of one of the decoders
Integer ALU Output latch of one of the Int ALUs
Register bus Bus on the write port to the Int reg file

Physical integer reg file | A physical reg in the Int reg file
Reorder buffer (ROB) Source/destination register number of instructions in ROB entry
Register alias table (RAT) Logical — physical map of a logical register
Address gen unit (AGEN) Virtual address generated by the unit

FP ALU Output latch of one of the FP ALUs

Table 4.3: Microarchitectural structures in which faults are injected. ¢h ean, either a stuck-at fault is
injected in a random bit or a bridging fault is injected in a pair of adjacent bitsdmyiven structure.

applications in our simulations. Hence, our experiments are run in a fullrsysitaulation environment.

4.4.2 Fault Models

As phenomena such as wear-out or infant mortality due to incomplete b{8ngdn84] become increasingly
important, we would want to model them at the microarchitecture level. Hongwnee precise fault models
for wear-out are still a subject of research [73] and we do not la@eess to all gate-level modules of
a superscalar processor, we use the well established stuck-at-@uakehs1 fault models as well as the
dominant-0 and dominant-1 bridging fault models injected at the microarchiédettel. While the stuck-at
fault models apply to faults that affect a single bit, the bridging fault modelsexm faults that affect adjacent
bits. The dominant-0 bridging fault acts like a logical-AND between the adfdsenthat are marked faulty,

while the dominant-1 bridging fault acts like a logical-OR. Table 4.3 lists the michitactural structures
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and locations where we inject faults.

Fault Injections for SPEC Workloads

For each structure, we inject a fault in each of 40 random points in ggatication (after initialization), one
injection per simulation run. For each application injection point, we performjention for each of the 4
fault models (two stuck-at and two bridging). The injections are perforimadandomly chosen bit in the
given structure for stuck-at faults. For bridging faults, a randomlyseh@air of adjacent bits are injected.
This gives a total of 1600 fault injection simulation runs per microarchitecstmacture (10 applications
40 points per application 4 fault models) and 12,800 total injections across all 8 structures. Thas g
an overall error of 0.4% at a 95% confidence, making our results staltisggnificant.

We also performed a total of 6400 transient fault injections (single bit flipke same microarchitectural
structures. (The number of injections is fewer than for permanent feedtsuse of fewer fault models.) The

error is a low 0.6%, at a 95% confidence.

Fault Injections for Server Workloads

For server workloads, we focus on stuck-at faults because theyedirenown standard fault models. Also,
since profiling our server applications shows that the FPU was neveywsegocus on the other 7 microar-
chitectural structures. Further, because there are only 2 serviicadipms, we deliberately increase the
number of injected faults to achieve statistical significance.

In each run, a stuck-at-0, a stuck-at-1, or a transient fault is injectadr@dmdomly chosen bit in one
of the 7 structures (all except FP ALU) listed in Table 4.3. For each othApand SSH daemon, we pick
4 base injection points (qvhase} spaced sufficiently apart in the execution of the application, to capture
different behaviors of the application. In each phase, for eachtsteyave pick 40 spatially and temporally
random injection points for each of the stuck-at-0 and stuck-at-1 faults,88 spatially and temporally
random injection points for transients (e.g., 40 different physical registach with stuck-at-0, and stuck-
at-1 faults, and 80 different RAT entries, each with a transient fault andaom bit). This gives us a total of
4480 permanent faults (2 applicatiorsA phases< 7 structures< 40 random points 2 fault models) and

4480 transient faults (same as the above, except with 80 random paidtsna fault model). This gives a
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low overall error of 0.2% at a 95% confidence, making our results signific

We inject the fault at the server system only and attempt to detect ancerdaalts at the server without
involving the client.

While the experiments for the SWAT detection, diagnosis, and recovegrsehare based on this envi-
ronment in general, there are a few exceptions (e.g., software-assisednt detection). In the rest of the

thesis, we explicitly point out the exceptions.

4.5 Methodology — Detection

This section focuses on the environment used in SWAT detection experimlengection 4.5.1, we first
describe the parameters used for the SWAT symptom detectors. We tisentoer experimental setup for
capturing the impact of each injected fault in Section 4.5.2. In Section 4.5.3gsegibe the metrics used in

the experiments.

4.5.1 Symptoms Studied

We employ the monitors described in Sections 4.1 and 4.2 to detect the injecitsd féar the software-
assisted invariant detectors, due to the lack of realistic program inputofoe of the applications, we
applied the invariant detectors to five SPEC applications. Since previakshas investigated application-
specific detectors for transient faults [54], our experiments for thevaoé-assisted invariant detection focus

on permanent faults. In the following, the parameters of each of the symptonitors are discussed.

e Fatal Traps. The following fatal traps are monitored — RED (Recover Error and Debtaie trap
(thrown when there are too many nested traps), Data Access Excepfipmtvésion by zero trap,
Illegal instruction trap, Memory misaligned trap, and Watchdog reset trapthwhen no instruction
retires in the lasR!6 ticks). Further, in our experiment, a fault can cause a fatal trap in eiteer th

application or the OS.

e Hangs. For our experiments, we set the range threshold to be 200. For the itetatishold, we use
100,000 for SPEC workloads and 250,000 for server workloads. Wf&ifebd the iteration thresh-

olds through profiling the fault-free executions of the applications. Weiden both hangs in the
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application and the OS.

High-OS activity. We look for a threshold of over 30,000 contiguous OS instructiess|uding

cases where the OS is invoked via a system call, a timer interrupt, or an idle Téop threshold

corresponds to a conservative latency which is 3 times the maximum obsetveduler latency. We
switch off High-OS for the server workloads. While we can tune High-@SHe server applications,
their inherently high OS activities make it difficult to do so. For example, sineesénver daemon
may be blocked (put to sleep) in different parts of the OS, the High-OSteteeeds to be tuned to
ignore these regions of code to prevent false positive detections. Weyekgsnel panic (described

below) in place of High-OS for server workloads.

Kernel Panic. We watch for 11 OS (privileged) instruction addresses of the kermet ffanctions in
OpenSolaris to detect when a panic is thrown. We switch on this symptom in @liatigh-OS for
the server workloads because of the reason given above. Froexperiments, we found that kernel
panic is adequate for detecting many faults in server workloads. We didseothis symptom for
SPEC workloads as we later show that the High-OS detector is sufficierteéotd large fraction of

faults.

Range-Based Likely Invariants. Using the LLVM compiler framework, we generate the invariants
for and insert the invariant checking code into five SpecCPU 2000hmesuks — four Specint bench-
marks (gzip, bzip2, mcf, parser) and one SpecFP benchmark (am):td@$t” and “train” input sets
formed part of our training set. Different techniques were used torgenenore inputs depending
on the benchmarks. For three benchmarks (gzip, bzip2 and parsecliected random inputs from
external sources. For mcf, a script was used to generate randotis,imgle for art, different input
options were used to generate invariants. We did not use other SPEkhmiks because of various
training input collection and compilation issues. Nevertheless, obtaining impllitsot be a prob-
lem in practice as developers test their programs on many inputs during ting {gisase. Invariant

generation and insertion can be easily done during testing through a camy@leass.

After the application binaries are instrumented with invariant checking seel@ject faults while the

applications are running the “ref” inputs (not part of the training input set)
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4.5.2 Fault Simulation Experimental Setup

The main objective of our fault injection experiment is to investigate the effautiss of SWAT’s symptom
detectors in detecting the underlying hardware faults. To achieve this faalt is injected into the desig-
nated microarchitectural structure and simulated in the microarchitectural samfda certain number of
instructions to see if it leads to any symptom. If no symptom is detected in this des@itedation, we
investigate the impact of the fault on the software by functionally simulating thkcation to completion.

The following presents the detailed experimental setup.

Microarchitectural Simulation

During this detailed simulation, after a fault is injected, the simulation runs foast 3 million instructions.
If an injected fault results in a monitored symptom, it is considetetgcted and recoverablélence, this
detection is counted towards part of the coverage and its latency is meddaseribed in Section 4.5.3).
If a fault never corrupts the architectural state 10 million instructions aftirtjection, it is considered
architecturally masked If the fault corrupts the architectural state but does not result in a teympfter
simulating for 10 million instructions since the corruption, we proceed to funatgimulation to investigate

its impact on the system.

Functional Simulation

A fault that corrupts the architectural state may or may not have an a&deffect on the system. To de-
termine the eventual effect of an injected fault, we simulate the application to coonplsing functional
simulation. We did not use microarchitectural simulation because it would takertgoBecause of the lack
of microarchitecture-level details during functional simulation, fault atovawill not occur in this phase
and the injected fault appears as an intermittent fault.

During the functional simulation phase, there are three possible outcorhasfadlt causes the ap-
plication or the system to crash (e.g., panic) or hang (not responsieegjassify this case asdetected
unrecoverable error (DUE)Since we do not know the latencies and they may (or may not) be too long for
recovery, we conservatively consider these faults as unrecdeerat) do not count them towards the detec-

tion coverage of SWAT. If the application finishes execution normally anddkelting output is identical
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Figure 4.3: Outcomes of an injected fault. If the injected fault is not detectinilvd OM instructions, the

fault is removed (no new fault activation, but software state may alreadgolrupted at this point) and
the application is functionally simulated to completion to identify its effect on the afit's outputs or

whether it causes a detected unrecoverable error (DUE).

to that of the fault-free execution, the injected fault is considered tmésked by the applicatiorin this
case, SWAT correctly ignores this benign fault, avoiding the potentiaheeals of diagnosis and recovery.
However, if the resulting output is different from the one produced bydhlt-free execution, we categorize
this case as silent data corruption (SDC)

In Figure 4.3, we show all the possible outcomes of an experiment ashibabove.

45.3 Metrics

The effectiveness of a detection mechanism is typically determinechleyheran injected fault is detected
andhow longthe detection mechanism takes to detect the fault. Hence, we focus on detestvage, rate
of silent data corruptions, and detection latency in our experiments.

Coverage: The coverage of a detection mechanism is the percentage of unmashedt fdetects. While
detecting a fault is essential, the eventual system reliability depends onewxtibéhdetected errors are
recoverable. Here, we focus on the detections that occur within 10 millibruat®ns as they are believed

to be recoverable with existing hardware checkpointing schemes [54wediake a closer look at actual
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system recoverability in Chapter 6). Hence, we define coverage awollo

Number of faults detected within 10M instructions
Number of faults injected — Number of masked faults

Coverage =

where the masked faults are ones that are masked by either the archibe¢he@pplication.

SDC rate: The rate of silent data corruption is defined as the percentage of injectiés fesulting in silent
data corruptions.

Detection latency: We report fault detection latency as the total number of instructions retoetthe first
architecture state corruption (of either OS or application) until the faulttectied. For detections where the
faults do not corrupt the architecture state, we consider them to haveitdeari zero instructions.

For our software-assisted invariant detectors, we measure the abtiesrttee same way as hardware-
only detectors. Since likely invariants may result in false positive detectioadook at the false positive
detection rate when we vary the number of training inputs. High false posdiige would result in frequent
invocations of the diagnosis routine, incurring significant performaneehead during normal (fault-free)
execution. As the invariant checking code inserted into the applicationdsriacurs performance overhead
all the time, this overhead is also measured in real systems. If the detectocs pagarmance substantially,
the overall cost of the SWAT system would be too expensive for commoghtgms. In the following, we
define the false positive rates and overhead of our invariant detectors
False positive rate: The false positive rate of the likely invariant detection mechanism for a péatic
application is the percentage of all static invariants in the application binantribger a false positive
detection. (Once a static invariant triggers a false positive, it is deadibgtéhe diagnosis routine.)

Overhead: The performance overhead of the invariant detection mechanism is ¢attakfollows.

Execution time of application enhanced with invariant checking

Overhead = ( 1) x 100%

FExecution time of original application
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4.6 Results — Hardware-Only Detectors

The bulk of our experiments here focus on permanent hardware fasltsransients) because of the in-
creasing importance of such faults due to phenomena such as weaddosafficient burn-in [8], because
transients have already been the subject of much recent study, angsbgermanent faults pose significant
challenges different from transients. For example, a permanent fayltraaifest to software faster than a
transient (because it lasts longer), but for the same reason, it is lelgsttitee masked and more likely to
corrupt the OS with an irrecoverable system failure (unless intercepieklly). Further, after a permanent
fault is exposed, the system must diagnose its source and repair nfigece around the faulty unit. This is
generally expensive, limiting the number of affordable false positivelk@isome detection techniques for
transients [81]). Nevertheless, we summarize the main experimental refstesiardware-only detectors
for transients.
In the following, we discuss the experimental results of hardware-ortigcts while Section 4.7

presents those of software-assisted detectors.

4.6.1 Detection Coverage

Figures 4.4(a) and (b) show the outcomes of our permanent fault injeetiopaign using SWAT's hardware-
only detectors on SPEC workloads and server workloads, respgctiVe categorize our faults as architec-
turally masked Arch-Mash, application maskedXpp-Mask, detected within 10M instructions and recov-
erable Fatal-Trap, Hang, High-OS Panic) in either the application or the O3 por O, detected but not
recoverable (as detection latency is more than 10 million instructi@ig}, and Silent Data Corruptions
(SDQ. The number on top of each bar shows @@ erage for the particular microarchitectural structure.

The key high-level results are:

e For the cases studied, permanent faults in most structures of the moass&ighly software visible.
98% of faults that are not masked (except for the FPU) are detect&PBC workloads while 99%
of unmasked faults are detected for server workloads using our simtgetidea mechanisms. This
clearly demonstrates the effectiveness of using high-level softwangteyns to detect permanent

hardware faults.
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Figure 4.4: Coverage of SWAT hardware-only detectors for (a) SR&®loads for both stuck-at and bridg-
ing permanent faults and (b) server workloads for stuck-at pernidendis.
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e For the FPU, 73% of the activated faults are not detected, suggestirgjtdraate techniques may be

needed (e.g., redundancy in space, time, or information) for the FPU.

e For SPEC workloads, many of the faults are detected when running thed@S(the FatalTrap-OS,
Hang-OS, and High-OS categories), even though the fault-free apiphisahemselves are not OS
intensive. An even greater fraction of the faults are detected whernngitime OS code for server

workloads, which have higher OS activity than SPEC.

e For SPEC workloads, the FatalTrap and High-OS categories make up thetynajdhe detections
(68% and 30% respectively of all detected faults) while the Hang is the sin@ildy 2.3%). For
server workloads, FatalTrap and Panic detectors make up 58% andf2illdetections, respectively.

Only 5% of the detections are Hangs.

e Only 0.3% of the injected faults result in silent data corruptions of SPEC apiplits and 0.3% of
injections corrupt the server applications silently without being detected.rd@st eventually lead to

application/OS crashes/hangs or are masked by the application.

The rest of this section provides a deeper analysis to understand treralsalts.

Analysis of Masked Faults

For stuck-at faults injected in both SPEC and server workloads, Figud¢a) and (b) show low architec-
tural masking rates for many structures. This is because the injected fapkmsanent fault that potentially
affects every instruction that uses these faulty structures during itstexecServer workloads, in compar-
ison, have significantly lower masking rates than SPEC workloads. 0.6%ecfions in server workloads
are masked while 9.3% of injections (excluding FPU) in SPEC workloads as&eda This is because
server workloads, which generally have higher OS activities, tend to utileenicroarchitectural structures
more rigorously. For example, more nested function calls in server watkicause higher utilization of the
windowed architectural register file in SPARC, making RAT faults less likelyetanlasked.

Exceptions to low architectural masking rates are stuck-at faults injectedhiatimteger register file,
the RAT, the AGEN, and the FPU for SPEC workloads, where the archiggdehasking rate ranges from
8.6% in AGEN to 50% in FPU. On the other hand, for server workloads, R#eninjected faults in the
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integer register file and the RAT are masked architecturally. Architecturskingafor an integer (physical)
register occurs if it is not allocated in the microarchitectural simulation windio®Qamillion instructions.
Similarly, a RAT fault is masked if it affects the physical mapping of a logicgister that is not used in this
window. An AGEN fault is masked if the injected bit does not change througthe execution. The high
FPU masking rate occurs because of the integer applications.

Bridging faults in SPEC workloads also see the above phenomena fateatahal masking. Addition-
ally, most structures on the 64 bit wide data path (INT ALU, register DBusgar register file, and AGEN)
see a significantly higher architectural masking rate for bridging faultsftivestuck-at faults. This differ-
ence stems from faults injected in the upper 32 bits of the 64 bit fields (rougitflyf total fault injections
in those structures). Since many computations only use the lower 32 bits, tiex bigler bits are primarily
sign extensions, with either all Os (for positive numbers) or all 1s (fgatiee numbers). In either case,
since adjacent bits are identical, bridging faults are rarely activateddgbehorder bits, resulting in a higher
masking rate for these faults.

Relative to architectural masking, application masking in SPEC workloads Islmmaignificant (4.7%
of total injections). Many of these cases stem from faults injected in the hagter bits of the 64 bit data
path —in some cases, these appear as architecture state corruptiansé¢ee full 64 bit field is examined),
but are actually masked at the application level due to smaller program ktzesides.

In contrast, there is only one case in server workloads that results licatgm masking. One possible
reason for this low application-level masking rate is because of the digrfegh OS activity. Since the OS
is more control-intensive than applications, an activated fault is more likelgroigt the system state and
cause a visible symptom instead of being masked by the software.

Nevertheless, these faults illustrate a benefit of our symptom-based detgmpimach since these benign

faults are correctly ignored by our detectors.

Analysis of Detected Faults

Unmasked faults in many structures are highly visible. As these faults amgapent in nature, they are
activated many times. As long as one activation affects a program pathiasetgiently leads to a symptom,

the fault will be detected. The only undetected cases where the charthespgrogram paths do not lead to
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symptoms are pure value corruptions. Our results, however, show thé tincommon. In the following,

we analyze the detected cases in greater detail.

1. Large number of detections in the OS for SPEC applicationsSurprisingly, in spite of the low OS
activity for the fault-free runs of the simulated benchmarks, over 65%efittiected faults are de-
tected through symptoms from the OS (FatalTrap-OS, Hang-OS, and FHyhAhough the injected
fault first corrupts the application, a common result of the fault is a memargsado an incorrectly
generated virtual address. Since the address has not been ddogbgepast, it invokes a TLB miss
that would not have otherwise occurred. Because the SPARC TLBtisaef managed, this results
in a trap invoking the OS. As the OS is executing on the same faulty hardwdranageneral, is
more control and memory intensive, the fault often will corrupt the OS stateesult in a detectable

symptom.

As a comparison, server workloads have more than 50% OS activity &d8¢he detections hap-
pen in the OS. In these applications, the OS is more likely to be corrupted siiscievbked more
frequently. After the fault corrupts the OS execution, a symptom detecften occurs in the OS,

instead of returning to the application.

2. Fatal Hardware Traps. 68% of the fault detections in SPEC applications and 58% of the detections
in server applications are from fatal hardware traps. Figures 4.5 &nghdw the distribution of the
different types of these fatal traps. The height of a bar is the pegemthfault injections in the
corresponding structure that causes fatal traps. Fatal traps dayitieel application are shown in the

bottom (hatched portions) and those caused by the OS are shown omtepgtched portions).

An illegal instructiontrap occurs when one or more opcode fields in an instruction is invalid. As
expected, these traps result mostly for decoder faults. However, ticeyiat for<16% (<19%) of

the fatal traps seen on decoder faults for SPEC (server) workIcHuis. is because many injected
faults in the instruction word either do not affect the opcode bits, or whendb affect opcode bits,

they change the instruction into another valid instruction.

The watchdog timer resétap is thrown when no instruction retires for more tt2dh ticks. These

mostly occur in the ROB and RAT, accounting for 90% and 59% of fatal tre@spectively, for SPEC
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Figure 4.5: Distribution of detections by fatal traps for SPEC workloadse Qther category constitutes
Data Access Exception, Protection Violation and Division by Zero trapi&gwiake up<8% of detections
by fatal traps. The total height of a bar is the percentage of the injeaiétd fia the corresponding structure
that caused fatal hardware traps.

workloads, and 80% and 66% of fatal traps for server workloadpedively. Both ROB and RAT
faults may change the source or destination register of an instruction.dbthree is changed to a free
physical register, the instruction waits for data indefinitely. If the destinaiohanged, the dependent
instructions indefinitely wait for their source operand. For example, theigted logical-to-physical
register mapping could result in mapping a non-free physical registep{sg,3). Now thatpregss

is mapped to two logical registers (sayandrs), any subsequent instruction that writes-tdrs) will
free prego3 and instructions that reag, (r2) wait for pregos indefinitely (sincepregos is freed and
markednot ready. Since the ROB is a circular buffer and is heavily used, faults in the R@Righly
intrusive. If either one of the two source operands is mutated to point eeadgister, this trap will
occur. In contrast, a RAT fault induced watchdog reset trap depaméisw often a particular logical
register (in a large set of logical registers in the SPARC architectureptbarsd hence occurs not as

frequently as a ROB fault induced watchdog reset trap.
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Figure 4.6: Distribution of detections by fatal traps for server workloalise Other category constitutes
Data Access Exception, Protection Violation and Division by Zero trapigwiake up<2% of detections

by fatal traps. The total height of a bar is the percentage of the total idjéatéts in the corresponding
structure that caused fatal hardware traps.

Misaligned accessesre common in all structures, accounting for over 44% (SPEC worklcaus)
43% (server workloads) of all the fatal traps thrown. Faults in most strestnaturally affect the
computation of memory addresses (e.g., all cases where a fault maythffetata or identity of a
register used to compute an address). This often results in misalignedsekjreausing a misaligned

access trap (Solaris requires addresses to be word aligned).

Red state exceptiois thrown when there are too many nested traps. The SPARC V9 architecture

throws this exception when a trap at (maximtmap.level - 1) occurs. The simulated processor has a
maximumtrap.level of 5; i.e., at most four nested traps are allowed. This fatal tragiaaes 15% of
the fatal trap detections for SPEC workloads and 14% for server wakId~or a RED state exception
to occur, the injected fault first results in invoking the OS through a ntalti@p (otherwise, the fault
would have been detected). When this trap handler executes, it ratastthe fault and a nested trap

results. As this fault-activating pattern repeats, a RED state exceptiorsaa@ntually.
3. High OS. For SPEC workloads, the High-OS symptom has the next highest deteotierage after
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fatal traps (30%). In the majority of these cases, the application compusestya dddress invoking
the OS on a TLB miss. The persistent hardware fault corrupts the TLBlémesulting in the code

never returning to the application.

This symptom has significant coverage overlap with fatal traps and hang®moving this detector
reduces the total coverage for all structures except FPU by abétt(ibstead of the 30% if there
were no overlap) for SPEC workloads. This is because most of these egentually also lead to fatal
traps and hangs. However, even for these cases, detection usinggth®8 symptom significantly

brings down the detection latency (Section 4.6.3).

. Panics. For server workloads, Kernel Panic detects the highest number lb$ faext to fatal traps
and accounts for 37% of all detections. This symptom shows that moderatom systems are also
very effective in catching hardware faults. As the software activatemjbcted fault, the OS may be
invoked through a non-fatal trap. After that, the fault is activated by tBeefecution and corrupts
some crucial system state, causing a check of the system state to failsaltthgein a kernel panic.
Hence, this result shows that the efficacy of the SWAT detection mechamisrne greatly improved

if the OS can be involved for monitoring some OS-specific anomalies.

. Hangs. Hangs account for less than 3% coverage for SPEC workloads anth&s5% coverage for
server workloads. Comparing the two types of workloads, we find tlzatipally all hangs occur in
the application code for SPEC workloads while nearly all hangs occur i@8or server workloads.
This discrepancy is likely caused by the difference in OS activities for tbemarkloads. Since SPEC
(server) workloads execute mostly application (OS) code, the faults aeelikely to corrupt the loops

in the applications (OS).

An example of a hang is when a loop index variable is computed erroneouwktii@toop termination

condition is never satisfied. While hangs in SPEC (server) workloads ezayt from the OS, the
High-OS (Panic) symptom catches these before the hang detector céifyithem as hangs. Thus,
without the High-OS or Panic detector, hangs would provide higher agegbut at a higher latency).
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Analysis of Detected Unrecoverable Errors

Faults that are unmasked and undetected within the detailed microarchitsatudtion but cause symp-
toms in the functional simulation have detection latencies that may or may not beesiooigh for full
recovery (e.g., by rolling back to a software checkpoint). To be coatiee, we classify these faults as
detected unrecoverable errors. Nevertheless, eventual detectigtteistban letting faults cause silent data
corruptions.

Overall, 0.5% of the detected faults result in DUEs for SPEC workload®9a8%d of the detections are
DUEs for server workloads. Across different structures, for IBREC and server workloads, DUEs account
for less than 1% of the detections for all but AGEN and FPU. For AGEN/108the detections in SPEC
applications and 1.1% of the detections in server applications result in DfMae@hjected FPU faults that
are detected while running SPEC workloads, 14% are DUESs becausaveréetiv detections in FPU to start
with.

Generally, from our results, there are very few faults that are detéctiednrecoverable, showing the
effectiveness of the employed simple symptom monitors. In the future, tHeofjttee SWAT detection is
to derive even better symptoms to eliminate the DUESs (i.e., detecting them at gbodiés) as much as

possible.

Analysis of Silent Data Corruptions

For the unmasked faults that are not detected in the microarchitectural simwuatibalso do not cause
any symptom in the functional simulation, we compare the application output witfatiefree output.
The cases that have different outputs are categorized as silent datptioms (SDCs). (If the functional
simulation yields the same output, the fault is considered to be masked by theatipplias discussed
earlier.)

For SPEC workloads, Figure 4.4(a) shows that only 0.3% of the injectdis f@sult in SDCs for faults
in all structures but the FPU. Server workloads also have a similar 0.3%&B@s shown in Figure 4.4(b).
This is a rather low number given our simple fault detectors, and showsuhaymptom-based detection
techniques are effective for these structures.

For the FPU in the system running SPEC, 9.8% of the injected faults resulids 3&rgely because FPU
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computations rarely affect memory addresses or program controlr{\ahicmost responsible for detectable
symptoms). Thus, our results show that the FPU requires alternate (plbgdngjher overhead) mechanisms
to our simple symptom-based detectors. While the SDC rate shown here is quité ¢ewv be reduced
further. One way is to employ software-assisted invariant detectors.eder, a recent study with my
colleagues investigates the notion of application-aware SDCs and shawhehaue SDC rate is often

lower. We discuss this work in Section 8.2.

4.6.2 Software Components Corrupted

We next focus on understanding which software components (applicati@S) are corrupted before a
fault is detected (within the 10M instruction window of detailed simulation). This d¢laar implications
for recovery. If only the application state is corrupted, it can likely b@vered through application-level
checkpointing (for which there is a rich body of literature). However,dBe corruptions can potentially
be difficult — software-driven OS checkpointing has been proposbdfor a virtual machine approach so
far [18]. On the other hand, hardware checkpointing methods ardleapirecovering both the application
and the OS state; full recovery, however, depends on the detectionyldterbe discussed in Section 4.6.3).

For each structure, Figures 4.7(a) and (b) shows for SPEC woskbradiserver workloads, respectively,
the percentage of fault injections that resulted in only application stateptmmy OS (and possibly appli-
cation) state corruption, and corruption of neither the application nor thél@sheight of each bar is the
percentage of faults injected into the given structure that resulted in aeld&anptom.

Our main result here is that over 65% of detected faults for SPEC workkad over 84% of detections
for server workloads corrupt OS state before detection. As we wb#eat server workloads generally have
high OS activity (50+%), the OS is highly likely to activate the underlying fantt gets corrupted. On the
other hand, while we observe that SPEC workloads have less than 1%i@ty during fault-free execution,

a large fraction of the faults corrupt the OS. In these faulty cases, seradthat the OS is first invoked
through a non-fatal trap after the application activates the underlyitig(ég., a TLB miss in SPARC). As
the injected fault is persistent, the OS execution subsequently activatestremid the OS state is corrupted.
Because our results show that a large number of faults corrupt thefOr® bigey are detected, this motivates

the exploration of techniques that are capable of recovering the OS d&aaltetolerant strategies within the
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We note that whether the application/OS state was corrupted is not nelgessaelated with whether
the fault was detected at an application/OS instruction (discussed in Se@&ith 4 fault could be detected
at an OS instruction, but may have already corrupted the application sitaitary, a fault could be detected
in application code, but meanwhile the application may have invoked the Ol8nigsuia (so far undetected)
corruption in the OS state.

Additionally, there are a few detected fault cases where neither the appliceor the OS state is cor-
rupted (58% of detected faults in the ROB and 2% in the RAT for SPEC waik|and 31% of detections
in the ROB and 8% in the RAT for server workloads). In all of these cabedaults cause watchdog reset
fatal traps to be thrown — the instruction at the head of the ROB never rbggzsise its source physical
register (sayregneqq) NEVEr becomes available. These cases usually involve fairly compleadtiters
involving the ROB and the RAT. For example, consider a fault in the ROB thratipts the destination field
of a prior instruction that was supposed to writeteg,..qs. Because of the fault, the prior instruction writes
to another physical register and never gsetsy;,..q as available. If the corrupted destination was previously
free, then this does not corrupt the architectural state (our implementditiegister renaming records the
corrupted destination name in the retirement RAT (RRAT) when the corrupsddiction retires, thereby

preserving the architectural state).

4.6.3 Detection Latency

Detection latency is a crucial parameter since it affects recovery. Syalyifit affects the recovery strategy:
the checkpointing interval, the amount of state that needs to be presenadteckpoint, and the cost of
buffering for 1/O. Small latencies allow the use of frequent but effickardware checkpoints and fast and
complete recovery for both the application and the OS. Large detectionikgepuatentially require longer
checkpoint intervals that result in longer restart on recovery andeelate the input and output commit
problems. If the I/O commit problems are improperly handled, full recovélhbe thwarted.

For each structure, Figures 4.8 and 4.9 report the histogram data atiatetatencies (defined in Sec-
tion 4.5.3) of all detected faults in SPEC and server workloads, resplictithe detections are categorized

into the different stacks of the bars based on their latencies, ranging Xro00 to more than 1 million
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Figure 4.8: Total number of instructions retired from architectural statelption to detection for SPEC
workloads.

instructions. The height of each bar represents the total number ofidateior the specific faulty structure.
While we are assuming for now that all faults detected within our 10M instrugtindow can be recov-
ered with hardware checkpointing techniques, long detection latency puegamassure on the 1/0 buffering
mechanism. Interestingly, we find that most faults are detected much earhethéhaetailed simulation
window of 10 million instructions, with 87% of all detections occurring within 1@0,@hstructions for both
SPEC and server workloads. This has implications for the type of chetkpthe length of the checkpoint
interval, and the 1/O buffer size of the recovery mechanism. The impaattettion latency on the design

of the recovery module will be explored in Chapter 6.

4.6.4 Transient Faults

From our transient fault injection experiments on SPEC workloads, assind-igure 4.10, over 96% of the
injected transient faults were masked by the architecture or the applicattbnsv@.4% resulting in SDCs.
Of the unmasked faults, 83% were detected by the hardware-only dstector

For server workloads, Figure 4.11 shows that 90% of the faults werketasther at the architecture

level or the application level. 59% of the unmasked faults were detected thyatdevare-only symptom
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monitors. Faults injected into the RAT are particularly visible. This is due to the dtiihation of archi-
tectural registers discussed earlier in Section 4.6.1. On the other handf, #% injected faults result in
SDCs. After a closer inspection, we found that this much higher rate of iS@&used in part by the strin-
gent setup of the workloads. In particular, the client applications arégemad not to retry when an error is
detected during the data transfer session with the server. As a resultetimetfansmission is dropped and
the resulting output differs from the fault-free output.

One may argue that the error is actually detected, albeit at the client systéinis thesis, however, we
assume the sphere of recoverability (the logical extent of the system thHy iecovered by the underlying
recovery method, discussed in Chapter 6) to be the server system dmkg, iT an error is not detected
within the server system, we consider it a silent data corruption. Nevesthele next generation of SWAT
can certainly take advantage of the inherent error-checking mechaatsitms network protocol level and
the software level. For example, allowing retries after an error is detecthd imetwork packet transmission
can let the application mask the fault. We leave the exploration of protocddees tolerance in SWAT for
future work.

From these results, we found that both the very high masking rate andwbrage (i.e., percentage of

51



EmSDC

100% - - 1 1 [ i
05 - -’ £IDUE
on ] —
g 85% — Hang-App
3. 80% 4
£ ElHang-OS
[]
C 75% A
-Fatal-Trap
70% A hop
B -FatalTrap
65% < oS
O App-Mask
60% T T T T T T T T 1
5 2 2 2 g 8 5 g I DOArch-Mask
: = 5 8 z ¢ <
g =z © P 2
& <

Figure 4.10: Coverage of SWAT hardware-only detectors for SPERIpads on transient faults.

unmasked faults that are detected) of the symptom-based detection dstertngith previous findings [69,
81]. We note, however, that we rely on very simple and inexpensive teymgetectors to detect a large
portion of these transient faults. More sophisticated low cost symptomslsame employed to improve
coverage. One such technique is our likely invariant detectors (resuftsronanent faults will be discussed
in the following section). Further, the SDC rate of transient faults is a wellsknproblem. We show later
that the use of invariant detectors can bring down SDCs significantly. r€@memt work of SWAT with my
colleagues (not reported here) also looks into application awaren&3@d [64]. We found that the true
SDC rate is much lower than what is reported here when considering tirensargins that are acceptable in

many applications.

4.7 Results — Software-Assisted Detectors

We applied our invariant based detectors to five SPEC applications amdpent faults (a large body of
application-specific detectors such as [54] has explored transient@tyufew look at permanent faults).
Since likely invariants could result in detections that are false positive,ratepfiesent how the size of the

input training sets affects the false positive rate. Then, the detectionagmeSDC rate, and overheads are
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Figure 4.11: Coverage of SWAT hardware-only detectors for seveekloads on transient faults.

compared between the workloads with invariant checking enabled andutie workloads with invariant
checking disabled. To be consistent, the comparison is done on the samatappbinaries with invariant-
checking code inserted. Hence, the binaries of these applicationsfaremlifrom the previously presented
SPEC workloads. For the sake of convenience, we refer to the SWi€maywith hardware-only detectors

as hSWAT and the SWAT system equipped with invariant detectors as iISWAT.

4.7.1 False Positives

Figure 4.12 shows the variation of false positive rate (as defined in S&ctd) for our five SPEC applica-
tions running on the ref input, as the number of training inputs is increasedZrto 12.

As expected, false positive rate decreases as the number of inpussiesreBy 12 inputs, the rate of
false positives is less than 5% for all applications and 0% for three. Tisis fsitive rate is sufficiently
low for our purpose, motivating us to use 12 training inputs for all of oyreexnents. In previous work
using Siemens benchmarks [20, 54], hundreds of inputs were uséchifing. We find that much fewer
training inputs suffice for permanent fault detection with our approablbs@& other proposed techniques try

to keep the false positive rate as low as possible because these schanwsdetermine a false positive
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12 training sets, motivating the use of 12 inputs for the rest of our expetémen

detection at runtime. If false positive detections repeatedly occur, thievhes is determined to be faulty

and taken offline. On the other hand, because our invariant deteatorslg on the SWAT diagnosis module

to identify false positives at runtime, our techniques is able tolerate morepfadstives.

The maximum number of static invariants in all applications was 231. Assumirgfelse positive
detection has an overhead of 20 million instructions (considering thateadsidue to rollback/replay of 10
million instructions and context migration), the maximum overhead of false pesidtection on any input
will only be 462 million instructions, which is negligible considering applicationcexiens that normally
last for billions or trillions of instructions. In practice, the overhead will re\ee lower due to low false
positive rates yielded from larger training input sets.

Interestingly, Figure 4.12 shows that after just four inputs, only less1B&k of the invariants are false

positives for four applications. These results show that likely invariaeteigated from many inputs will

have sufficiently few false positives, making it usable for permanetitdatection.
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4.7.2 Coverage

As discussed above, we use invariants derived from 12 training inudefecting injected permanent faults.
Figure 4.13 presents the outcomes of the injected faults for hNSWAT and iSW&Tdifferent stacks of each
bar have the same categories as described in Section 4.6.1. The top baeabbws the detection coverage
achieved by the respective scheme.

From the figure, the overall coverage of the iISWAT system is 97.2%, inmmydxom the 96% coverage
of hSWAT. While the coverage increase seems small, there are three sighjimints that can be made
from the results. First, the invariant detectors are catching nearly 5.8k abtal injected faults. Second,
the invariant detection scheme is detecting some faults that are not detec¢tedHaydware-only detectors,
reducing the number of unrecoverable faults (DUEs and SDCs) by 28.fiial, the invariant detectors also
detect some faults (about 5% of total fault injections) that are caughtebgyimptoms in hSWAT, but at a
lower latency. This result leads to a small improvement in detection latencye ahaw in Section 4.7.3.
Analysis of SDCs. Overall, the number of SDCs of the iISWAT system is significantly lower thandhat
hSWAT. The invariant detectors reduce the number of SDC&IBY, from 31to 8. We consider the reduction
in the number of SDCs as the most important contribution of the iISWAT. Thougtv &DCs remain, we

believe that more sophisticated invariants can make the SDC cases negligible.
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4.7.3 Latency

Figure 4.14 shows latency results for the faults detected by hSWAT andTiShidned into various cat-
egories from under 1k instructions to under 10M instructions. In ord@etéorm a fair comparison, the
numbers are presented as a percentage of the total number of faulted aied recoverable by iISWAT (i.e.
detections that happen within 10M instructions).

The number of faults detected at a latency of under 1k instructions shewargfest increase of about 2%
(the rest of the numbers are cumulative). While the improvement seems imtegntieis shows that invari-
ants are able to slightly reduce the detection latency when compared to thatrafrtiware-only detectors.
As these detections have very low latencies, they are amenable to simpleataréaovery mechanisms
(Chapter 6 discusses the SWAT recovery strategy in greater detail). ugjlithihve latency benefits offered
by iISWAT are not substantial so far, using more sophisticated invariantampagve the effectiveness of

iISWAT to reduce the latency.
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4.7.4 Overhead

We evaluate the overhead of using invariants by running the binary (widliamts checking) on fault-free
hardware, using two machines: Sun UltraSPARC-IIli 1.2GHz machine witB lnified L2, and 2GB
RAM, and on an AMD Athlon(TM) dual-core MP 2100+ machine with 256KB &2d 1.5GB RAM. The
Sun machine is referred to &parcmachine, and the AMD one a86 machine in this section.

Figure 4.15 shows the overhead of using invariants checking in thegmsgas a percentage over the
baseline program which has no invariants checking. The geometric mélam @ferheads is also shown for
the two machines.

The Sparc machine exhibits a higher overhead when running the invacagshan the x86 machine,
with the average overheads being 14% and 5% respectively. In partithdaoverhead of the invariant
checking mechanism in mcf is significantly higher in the Sparc machine (26%}tleax86 machine (2%).
The high overhead of the Sparc machine is likely due to its inability to hide theeaagses and branch
mispredictions induced by these extra invariant checks. The x86 mactahédk a more sophisticated
superscalar pipeline is able to hide these latencies better, resulting in logrbeads.

In spite of these differences, the overheads produced by thes@imngachecks are within acceptable

overheads for the increased coverage that they provide, motivatinGWaT system for increased error
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resilience.

4.8 Summary and Discussion

This chapter introduces the key component of the low-cost SWAT ressigsiem — error detection. By
employing monitors of anomalous software behavior, SWAT's symptom deteate able to effectively
detect hardware faults that propagate into the software and appeeaitware bugs. This approach natu-
rally handles all faults that matter and ignores the ones that do not. Sineesyraptom detectors can be
implemented with near-zero hardware overhead, the cost of SWATa&yalhan error detection module is
effectively minimized, optimizing the overall system cost.

Since SWAT takes a holistic approach to resilient system design, we céoydapre aggressive de-
tection mechanisms in SWAT. In particular, we rely on the SWAT diagnosis to igiefatife positives and
auto-tune the system if a false positive is diagnosed. Without involving tlggoss mechanism, it will
be much more difficult to use some of the symptoms described above. Forlexérnghard to determine
whether a detected hang is a false positive at runtime without replaying ¢doaiteon on a fault-free core
to see if the hang occurs again. Hence, by designing the system as a thlaleore aggressive detection
mechanisms can be used and can help the system achieve high reliability.

Similar to other fault tolerant systems, the detection mechanism of SWAT alsenc#s the design
of the recovery mechanism. From our results, we find that permandtg tften corrupt the OS state,
making OS recovery a high priority issue in SWAT recovery. By measuriagl#tection latencies of the
injected faults, we found that a high percentage of faults can be detedtad %00,000 instructions (ap-
proximately 100us on a gigahertz processor), potentially allowing the use of simpler haedwaovery
methods. Nevertheless, to fully recover all faults, sophisticated haedrmetlback recovery mechanisms
along with mechanisms that properly handle the input/output commit problems nmeeded. We discuss
the SWAT recovery strategy in detail in Chapter 6.

As the principle of SWAT detection is to watch for software anomalies, we otenpially leverage soft-
ware reliability techniques for hardware faults. To this end, we took thiestiep in investigating the use of
program invariants, a well-known software debugging method, to dededtvare faults. Our experimental

results show that invariant detectors are very effective in detectirits fdnat mainly corrupt the data val-
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ues of the program, successfully reducing the SDC rate of SWAT thatardg hardware-only detectors.
Furthermore, as we rely on SWAT diagnosis to diagnose false positivednvaetections, more aggressive
invariants (e.g., ones with higher false positive rates) can be used taedrigh detection coverage and low
SDC rate.

Overall, through our experiments, we found that the SWAT detection appris highly effective against
hardware faults. While there is much work to be done to further improve tteetittn mechanism, the
very low cost always-on detectors show great promise to ensureiliglifdr the mass computing market.
A recent work with my colleagues (not reported in this thesis) already tstkieles in this direction by
investigating techniques for improving the detection coverage and latamtgesiving an application-aware
metric for SDC that shows the SWAT system actually has lower SDC rates tiemreported here [64].

As mentioned earlier, the SWAT system is designed as a whole (insteadwhdemarious components
independently). Hence, the diagnosis mechanism invoked post detectgirbeeffective and be able to
cater to the software-level symptom-based detection in SWAT. In the naptat we take an in-depth look

at this SWAT diagnosis mechanism.
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Chapter 5

SWAT Diagnosis

The device scaling induced hardware reliability problem has drivemta@esearch to investigate the use
of high-level detection techniques for deriving low-cost reliability solutiorBesides the software-level
symptom-based detection of SWAT proposed in this thesis, some recentethporary work also inves-
tigates the applicability of high-level detection methods in hardware reliability, (&9, 45, 54, 61, 81]).
Such high-level detection mechanisms can be very effective becaysertivide coverage for a wide range
of fault sources and faulty components.

While many of these proposals focus on transient faults where the detegiibrecovery components
form the complete solution (e.g., a simple pipeline flush can recover from sigrdrerror), emerging per-
manent faults requirdiagnosisin addition to detection. Because permanent faults are persistent, the faulty
component must be diagnosed for repair/reconfiguration so thataudorsteexecutions do not activate the
underlying fault again and become corrupted. Only through a corieghdsis, a system repair operation
can be carried out by disabling the faulty component (such as a faulky AU, or entries in a buffer,
queue, or cache), reducing the frequency of operation of the caanpoor using software to replace the
faulty execution of a specific instruction.

Although there has been significant recent work on high-level detecfionfield faults, there is rela-
tively little work on diagnosing the source of a permanent fault detected imgnys The higher the level
at which a fault is detected, the longer the latency between the actual ¢tvétteon and detection and the
more difficult it is to diagnose its root cause for repair. Therefore,ap the benefits of emerging low-cost
high-level detection techniques, we need to develop effective diagrem$iniques. This chapter concerns
such a diagnosis framework [35].

At a high level, the resulting SWAT diagnosis framework should fulfill twolgokirst, because software

bugs, hardware transient faults, and hardware permanent faultslid@ad to software-level symptoms,
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diagnosis must distinguish the type of fault the system is experiencing gbé¢hadrrect action can be taken.
For example, for a deterministic software bug, the diagnosis should allowrbpagate to the higher levels
of software and become visible to the end user.

Second, in the case of a diagnosed permanent fault, the faulty compouoshte identified to the
granularity of the field-reconfigurable unit to facilitate repair. The simpkgsir solution would be disabling
the faulty core [48]. That can be wasteful especially when modernrscglar processors often contain
built-in redundancy (e.g., multiple decoders) that allows reconfiguringrardailed components. Hence,
the second goal of the diagnosis is to diagnose a permanent fault at thearofitecture level to exploit
this built-in redundancy in modern processors for repair, effectivedpvering the system from permanent
hardware faults.

Before deriving an effective method for achieving these stated goaldirst make the following key

observations.

e Itis acceptable to incur high overhead for the diagnosis procedure siaadiagnosis is invoked only
in the infrequent case after a fault is detected (in contrast, the detectidranism needs to be low

overhead since it must be on all the time).

e The faulty execution is known to cause an error detection. Hence, thisesaroetion can effectively
be used as a fault activating agent to assist the diagnosis process.ig Hot unlike the modern
functional tests for detecting faulty chips after manufacturing. Howehisrtest is known to exercise

the hardware fault.)

e The modern multicore environment provides a natural substrate for daduexecution. Diagnosis

therefore can leverage this platform to intelligently trace the source of titte fa

Since the diagnosis can incur some performance overhead, we camusarg to control the diagnosis
process. The main advantage of this approach is that the firmware camct@more complex, intelligent
analysis that would have been too expensive to implement in hardwarere@sgly diagnose the cause
of a detected error, the diagnosis firmware can observe the invariaats neplaying the symptom-causing
execution on different cores in a multicore system. In particular, ourgsegh diagnosis scheme has the

following properties.
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e Many detection schemes today rely on a checkpoint/restart mechanisectvery [4, 45, 61, 81].
Our diagnosis relies on this mechanism to replay the execution that causgghtpeom detection,

effectively activating any persistent faults to give diagnosis clues.

o We exploit multicore systems by using a fault-free core to compare the exeeuittothe symptom-
causing core for the purpose of fault diagnosis. Effectively, weaplyesynthesize Dual-Modular
Redundancy (DMR) for diagnosis, in contrast to expensive alvoay®MR traditionally used for

detection.

While SWAT diagnosis is proposed in the context of the SWAT system, this d&gframework, in
reality, can work with different kinds of detection mechanisms and can keslttondifferent granularity of
repair. In the rest of this chapter, we first give an overview of therdiaig scheme. Then, we discuss each
of the two major diagnosis steps in greater detail. Since precise diagnosiscial ¢or fully recovering
the system from permanent hardware faults (incorrect diagnosis vatiald this type of faults to continue
to corrupt the system), we show the effectiveness of the microarchiteletvel permanent fault diagnosis,
TBFD, by presenting our experimental results. In the end, we summarifesgans learned from the TBFD

scheme and discuss the potential future work.

5.1 Diagnosis Overview

Our overall diagnosis scheme proceeds as follows. We assume a siregldeti program executing on a
modern out-of-order superscalar core in a multicore system. We furssane a single core fault model,
meaning that only one core is faulty in the system. The presence of the faluét aore is detected through
the low-cost detection methods in the SWAT system as described in Chaptermentioned, this detection
can be triggered through other detection mechanisms [45, 61, 81].) Adteteation, the SWAT firmware
is invoked to perform the first step of the diagnosis, i.e., distinguishing amsoftgzare bugs, transient
hardware faults, and permanent hardware faults. By observing ethgfmptoms re-occur after repeated
rollbacks/replays (provided by the recovery mechanism), the diagnoalideigo identify the source of the
error. If a permanent fault is diaghosed, the diagnosis proceeds tsetlund step, i.e., identifying the

faulty microarchitectural component. In our trace based microarchitelgvweediagnosis scheme, the SWAT
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firmware rolls the faulty core back to a pristine checkpoint and replaysxéeudon on it, while recording
detailed information such as microarchitectural resource usage fortallgtiens. The SWAT firmware also
transfers the checkpoint from the faulty core to a fault-free coregpldys a “golden” execution on the fault-
free core. The firmware then compares the traces from both the fagiluficbfaulty cores, and systematically
analyzes the points of divergence to accurately diagnose the faulty mulitegtural structure.

In the following sections, we discuss each step of the diagnosis in more detail.

5.2 Diagnosing Software Bugs, Transient Hardware Faults, and Permanent

Hardware Faults

While software bugs usually result in symptoms, transient hardware faultggexmanent hardware faults can
also manifest into the software and appear as symptoms. Because the grandtiese faults is different,
the first step of the diagnosis is to distinguish among them so that the coctent ean be taken. For
transient hardware faults (and non-deterministic software bugs), a sioilllack/replay to the last pristine
checkpoint can fully recover the system from the error. For pernidmaware faults, before a rollback
recovery, the diagnosis needs to identify the faulty component for fegmonfiguration in order to prevent
further fault activations, therefore system corruptions, in the futeoe deterministic software bugs, SWAT
lets them propagate to higher levels of software and become visible to thesend\evertheless, in future
generations of SWAT, software reliability techniques such as Rx [60]beansed to handle deterministic
software bugs, improving the overall system reliability.

While these faults may appear similar when they are first detected, the follavaisgyvations help
anchor the SWAT diagnosis strategy. Since transient hardware fadltiscamdeterministic software bugs
only appear temporarily, re-executing from the previous pristine state wslktia errors. On the other hand,
as both permanent faults and deterministic software bugs are persisteng mregecutions will continue
to lead to symptoms, making it difficult to distinguish between the two fault typesiefieless, if the
persistence of a symptom is due to a permanent hardware fault, replagiagre execution on a different
core in the system (as we assume a single core fault model, a core othénéhanlty one is fault-free)

would not result in a symptom. In contrast, a deterministic software bug witirnomto cause a symptom
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Figure 5.1: Diagnosis of a detected symptom. Through repeated replagfiware bug, a transient, or a
permanent hardware fault is diagnosed.

in this new core.

Given the above observations, Figure 5.1 shows how SWAT diagnas®Esiaare bug, a transient hard-
ware fault, or a permanent hardware fault. The high-level idea of SiAgnosis is to watch for the
re-occurrences of symptoms, if any, in repeated rollbacks/replaysaoniae the source of the error. Dur-
ing each replay, the diagnosis enters a phase we calliflant phasethat determines if a symptom is a
re-occurrence. A symptom is considered to re-occur if it is detectadgltire vigilant phase. In Chapter 4,
we have found that most faults can be detected within 10 million instructions. Weeskength of the vig-
ilant phase to be three times of this maximum detection latency, i.e., 30 million instryctibith is often
long enough for permanent faults to be activated and detected agaiertiNgess, this threshold can be
configured to fit different system needs (e.qg., future systems may hanesla shorter maximum detection
latency).

To distinguish different types of errors, after a symptom is detected, TSl rolls back to the previous
pristine checkpoint and replays the execution on the same core. If a yngaies not occur again, the
diagnosis concludes that a transient fault (a transient hardwareofaalhon-deterministic software bug) is
the cause of the previous symptom and resumes normal execution. Weatdatesttollback/replay naturally

recovers the system from the transient error. On the other hand, ifiptegn re-occurs (i.e., detected in the
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vigilant phase), the diagnosis assumes this persistent symptom to be thefreiter a permanent hardware
fault, a deterministic software bug, or a false-positive detection of thedtieudetector (invariants, High-OS,
hang, etc.).

Since a permanent hardware fault is the only error source among ¢iia¢rsauses a symptom when
the re-execution takes place on the same hardware, SWAT diagnosietsathe checkpoint onto another
(fault-free) core and replays the execution. If a symptom does nat edter this change in the hardware
environment (executing on a different core), the diagnosis concthdés permanent fault is present in the
original symptom-causing core. The diagnosis algorithm reaches thitusamt because symptoms have
occurred multiple times on the original core but disappear after the samatiexeis replayed on another
core in the system. As discussed earlier, SWAT diagnosis also exploits #r@imimicroarchitecture-level
redundancy to facilitate repair. Therefore, SWAT’s microarchiteckewel fault diagnosis algorithm, Trace
Based Fault Diagnosis (TBFD), is invoked to identify the faulty componeat afpermanent fault is diag-
nosed in a core. We describe this method in Section 5.3.

On the other hand, a symptom can still re-occur after replaying on anctherin the system. If the
symptom is non-heuristic (e.g., fatal trap, kernel panic, etc.), SWAT disggithis as a deterministic software
bug and lets this symptom propagate to higher levels of the software anté&tible to the end user. If the
symptom is detected by a heuristic hardware-only detector (e.g., High#D§, btc.), the SWAT firmware
considers the detection as a false positive and adjusts the threshold et¢ctod and resumes the normal
execution. For example, if the High-OS symptom persists on both the originalasd another core, the
SWAT firmware suspects that the threshold value is too small. Consequentiréshold is increased in
order to prevent similar false-positive detections in the future. If the tieteis an invariant violation, SWAT
disables the static invariant to prevent future false-positive detecti@hseanomes the execution.

We note that the SWAT firmware’s ability to identify false positives during runtimnessential to the
overall SWAT system. If the SWAT system were not able to identify falséiges online, we would have to
resort to using detectors that are more conservative (e.g., souretibasgd program invariants with larger
ranges, higher High-OS threshold, etc.). Because of the presetitis dfagnosis feature, more aggressive
heuristic detectors can be used to potentially achieve higher detectiomgey&ence higher reliability.

As multithreaded software is increasingly popular for taking advantage tifcone systems, we also
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extended fault diagnosis to handle multicore systems running multithreadé&tbaas in other work (not

reported in this thesis) [26]. We briefly discuss this work at the end of g&<gh

5.3 Diagnosing at the Microarchitecture Level

After a permanent fault is diagnosed in a core, one simple solution foirirggpehe system is to disable the
entire core to avoid further corruptions by the fault. However, becenm#ern processors already contain
inherent redundancy, such as multiple functional units, registers, @od,srepairing at the finer grained
microarchitecture level is possible. This level of repair is not only lesgefidshan disabling the faulty
core, but it also lengthens the lifetime of the faulty core. In order to facilitateqaichitecture-level repair,
a diagnosis mechanism needs to be in place to identify the microarchitectarpboent that contains the
permanent fault.

To this end, SWAT diagnoses at the microarchitecture level using a methedlivigace Based Fault
Diagnosis (TBFD)35]. TBFD is based on the following observations. First, the in-situ soévweaecution
can be used for activating the underlying permanent fault as the feu#lfeady caused symptoms twice in
the last diagnosis step. Second, the activated fault eventually leadsupttams in the execution, which can
be used as clues for diagnosis. Third, the multicore system provided-drésucore that allows diagnosis
to compare the faulty and fault-free execution for detecting corruptions.

The above observations drive the TBFD strategy: at the high level, the/dire-controlled TBFD ex-
ploits checkpoint/replay on the multicore architecture to inexpensively ssizth®MR for identifying di-
vergences between the faulty and fault-free execution that provide @uerecisely locating the faulty
microarchitectural component. Because the diagnosis is allowed to hawr bigdrheads (since it is rarely
invoked), we are able to use a firmware-based approach that praviedsllowing benefits. By using
firmware to conduct trace comparison, TBFD takes full advantage of titecore environment without in-
curring the hardware overhead needed for lock-stepped executi@atitional DMR. Further, the firmware
is capable of handling the more sophisticated trace analysis that is difficult tenirapt in hardware. One
example is TBFD’s capability for diagnosing meta-datapath faults (to be disduis Section 5.3.2).

Now that we presented the TBFD approach, Figure 5.2 depicts how TBétilifies the faulty microar-

chitectural unit X. The two main phases of TBFD are test trace generatbarslysis of the test trace. In
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Figure 5.2: Diagnosis of a permanent hardware fault. By comparing tittieffae and faulty executions and
analyzing the resulting test trace, the faulty microarchitectural unit is dsagho

the following sections, we discuss these phases in greater detail.

5.3.1 Test Trace Generation

As shown in Figure 5.2, TBFD compares the faulty and fault-free exectdigenerate the test trace. The test
trace is essentially the execution trace of the faulty core (faulty trace) talh&nced with microarchitectural
resource usage information in the faulty core for each retired instructiordi&ergence information when
compared to the fault-free execution trace (fault-free trace). In theafimitp we first describe how the faulty

trace is obtained, then discuss how the test trace is generated.

Generating the Detailed Faulty Trace

To generate théaulty trace TBFD rolls the faulty core back to the previous checkpoint and replag's th
execution for a predefined number of instructions. It records a trat®ecexecution with the following

information for each retired instruction:

e Decode Decoded opcode, immediate value, identifiers of source and destinatioal lapisters.

e Data values Values read from the source registers and values written into the destinegjisters.

Virtual memory addresses accessed by loads and stores. Virtualaddyesses of branch instructions.
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¢ Microarchitectural resources used by the instructiofhis category includes the source and desti-
nation physical register identifiers, the specific functional unit used, €& specific information
recorded depends on the reconfigurable units supported in the pooeesl the consequent granular-

ity of diagnosis required.

The decode information and the data value fields are used for comparintheitault-free execution.
If at least one of these fields of the retired instruction in the faulty trace fisrdiit from that of the fault-
free execution, the diagnosis algorithm assumes that the permanentdaliebn activated. Aside from
identifying divergences from the fault-free execution, the hardwsag@ information recorded in the faulty
trace is essential for the overall microarchitecture-level diagnosisiffadly, during the test trace analysis
(Section 5.3.2), the faulty instruction responsible for a divergence isddaiown (as we will discuss later, a
faulty instruction may not result in a divergence immediately at retirement anarthlysis needs to inspect
a trace of instructions) and the algorithm deduces that one of the hardesurces used by this instruction
must be faulty to cause the divergence. Thus, such hardware udagaadtion is needed. Section 5.3.3

describes the hardware support for obtaining and recording the afsfimvmation.

Fault-Free Execution and Test Trace

To obtain thefault-free trace the fault-free core is loaded with the checkpoint of the faulty core and the
execution is replayed. For each instruction in this execution, the TBFD firema@mpares the decode and
data value fields from the corresponding instruction in the faulty trace.ndisgnatches in these fields cause
the firmware to mark the corresponding instruction in the faulty tragaiasatchednd record the field(s)
that causes the mismatch. This event is important because it indicates thadhtan on the faulty core has
somehow activated the underlying permanent fault, which provides adunésatking down the fault at the
microarchitecture level. At this point, since the architectural state of theffagteore is already different
from the faulty core, retiring additional instructions in the fault-free cooelhd lead to more divergences that
are not caused by the activation of the permanent fault. To mitigate this,rthvedie synchronizes (corrupts)
the fault-free core’s state to that of the faulty core. This allows the fagdt-fiore to continue executing a
path similar to the faulty core until the next activation of the fault.

Another possible scenario is when an instruction on the faulty core hartge aead of the reorder
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buffer and never retires because it waits for its source operandigiinitely. The firmware marks such an
instruction in the faulty trace dsung We assume hooks are available to extract information of the hung
instruction even though it does not retire. When a hung instruction is etema, the analysis algorithm
diagnoses the source of the fault by examining the test trace (Section. 5I1B81Rg algorithm does not
terminate after the analysis, both the faulty core and the fault-free corell@ back to generate a new test
trace for further analysis.

We refer to mismatched and hung instructions collectivelyngbehaved instructiondVe refer to the

faulty trace enhanced with the information about misbehaved instructions testhrace.

5.3.2 Test Trace Analysis

The heart of the TBFD algorithm is the analysis of the generated test tradiegonose the fault. This
analysis can be performed after completing building of the test trace. Alii@lyait may be periodically
invoked after generating every instructions of the test trace. The latter strategy may be more efficient if
memory space to store the trace is at a premium. It also allows terminating tegjersration as soon as
the diagnosis is able to uniquely identify the faulty structure.

TBFD divides the processor core into three different parts, on this baghe information and analysis

required to diagnose a fault in these parts:

1. Front-End: A fault in this part of the processor affects which instruction is execuwtih operation

is executed, and the logical source and destination registers accessed.

2. Meta-Datapath: Modern out-of-order processors use register renaming to translatalloggister
names to physical registers. Even if the front-end supplies the corgicalmames, a fault in the
translated name can result in erroneous computation. This type of faultler¢fest source of com-
plexity in TBFD — as we will show later, a corruption in the physical registen@anay not be caught
by analyzing only the mismatched instructions. We use the term meta-datapdtr to the parts of

the core where a fault can corrupt the physical register name.

3. Datapath: This is the conventional data path, including the functional units, busdgsjaa residing

in the physical register files.
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In our work, we inject faults in the following structures as representatifeach of the above categories

(see Table 4.3):
1. Front-end Instruction decoders.

2. Meta-datapathRegister alias table (RAT) entriéssource and destination (physical) register identifier

fields in the reorder buffer (ROB).
3. Datapath: ALU, address generation unit, register data bus, and integer physigsiars.

The TBFD test trace analysis described below assumes faults in only the stoactures. Nevertheless, the
algorithm can be extended to include other microarchitectural structureslias

The analysis algorithm proceeds by using misbehaved instructions in thetesas the starting point of
the diagnosis. On encountering a misbehaved instruction in the trace, thighalgeystematically analyzes
the misbehavior and determines if it can conclusively identify a fault in a emspucture. If so, it success-
fully terminates; otherwise, it updates counters corresponding to the mGbitetural resources used by
the misbehaved instruction in the test trace. The algorithm then proceedalyaeathe next misbehaved
instruction. If at any stage, one of the resource counters reactaseahigher than any other counters, the
algorithm declares that resource as faulty and terminates. If the end thteis reached, the algorithm
identifies the resources with the highest counter values as suspedtgdifats — in this case, it is not able
to uniquely identify a faulty resource.

Next we describe how TBFD systematically analyzes the misbehaved instisittidrack down faults

to the three targeted areas in the processor.

Faults in Front-End

If the misbehaved instruction is a mismatched instruction (i.e., not hung), TBEDsfispects a front-end
fault. (As will be seen later, a hung instruction can only arise from a megpdth fault.) For this, it
simply needs to check if the test trace indicates that the mismatch occurred iedbeedinformation —

such a mismatch indicates that the instruction word was corrupted at theefrdnt-or example, when the

We assume Intel Pentium 4 style register renaming with a distinct retirergistar alias table or RRAT.
2In a real implementation, source register identifier fields would be in the igsaue; however, our simulator models them in
the ROB and our algorithm uses the same terminology.
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faulty instruction uses; as source operand but the fault-free instruction ugess source operand, a fault
is suspected in the front-end. Consequently, counters of the frontvetelused in the faulty execution are
incremented. In this study, since only decoders are accounted for irotiteeind, the first mismatch in the
instruction word makes the decoder used by the mismatching instruction ideasfted unique faulty unit

and successfully terminates the algorithm.

Faults in Meta-Datapath

If no front-end fault is found, TBFD analyzes both the mismatched anduhg mstructions to check for
meta-datapath faults.

This class of faults requires the most sophisticated analysis method. Thisisdee unlike the front-end
and datapath, the first instruction that is affected by such a fault maypetaas a misbehaved instruction;
i.e., it may not affect the fields in the faulty trace that are compared with thteffea execution. Instead, it
may silently corrupt the architectural state of the processor, causingitatdated instructions to misbehave
and obscuring the real source of the fault.

For example, in Figure 5.3,, writes tors which is mapped to physical registes; and I. reads from
rs. Ip writes tor; but is incorrectly mapped tp,3 because of a meta-datapath fault (e.g., the register alias
table had the wrong mapping). Thus, whigrexecutesys is corrupted with the value of;; however, this is
not indicated in any way in the information recorded fgin the test trace. Now wheh retires, it sees the
wrong value. This is caught when the faulty trace is compared with the fadteikecution and. is marked
as a mismatched instruction. Now if TBFD were to blindly attribute this mismatch to thpathtstructures
used byl., the actual meta-datapath fault will never be identified.

In this work, TBFD focuses on meta-datapath faults in the ROB and RAT sntineparticular, TBFD
checks the integrity of the logical-physical register mappings of the misbéhastuction based on the

following two conditions of fault-free executions.

1. A non-free physical register can be mapped to at most one logicateegisany time.

2. If aninstruction reads from physical registgy that is mapped to logical registet,, the last instruc-

tion that writes to logical register,, (the producer) must have written to physical regigigr
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If a fault occurs in the meta-datapath, one or both of the above conditiopsnotahold. The first
condition above handles the case discussed in Figure 5.3, where instrijasotetected as a mismatched
instruction (step 1). To check if condition 2 is violated, TBFD searchekvea in the test trace to verify
the integrity of the mappings df.’s registers. The algorithm first looks for the instruction responsible for
supplying the value ofs to 1. in the software. From this search, is revealed as the producer of register
that maps-3 to physical registep,s (step 2). To verify that condition 1 holds, TBFD searches forwarthfro
1, for the next writer tgpo3 but finds thatl, mapsr; to po3 (step 3) while it is still mapped tos (step 4).
Thus, condition 1 is found to be violated. Since this event does not pingbigre the fault is located, TBFD
increments the counters of the RAT entries for batlandrs and the ROB entry used by. The RAT entry
counters are incremented because a fault in the RAT entry can resulbindoty mapping either; or r3 to
P»3. Also, a fault in the destination register identifier field of the ROB entry ugefi ban map-, to po3 as
well. While the source of the fault cannot immediately be known at this pointtiaddl activations of the
fault will cause the faulty structure to be involved in more violations of the almmnditions. Consequently,
the counter value of the faulty structure will be the highest among otheestespstructures, allowing TBFD
to precisely identify the fault.

Condition 2 is usually violated by a ROB fault. To check if condition 2 holds, DBjees backwards in
the test trace from the misbehaved instruction to the producing instructiovesifids its logical to physical
register mappings. For example, a fault in the destination register numbesdiedds instructioh, to write
to a different physical register than indicated in the RAT. Then, a depemastruction/ 5 reads the mapping
from the RAT and waits indefinitely for a physical register that will nevesbeready byl 4. As a result,
Iz becomes a hung instruction. TBFD then starts tracing backward frgoamd finds/ 4 to be the producer.
Becausel 4, writes to a different physical register than the one used gycondition 2 is violated. As a
result, TBFD increments the counter of the ROB entries of Batandg. The counters for both entries are
incremented since a fault in either the destination physical register idengfiérofi/ ,’'s ROB entry or the
source physical register identifier field Ht's ROB entry can cause this misbehavior. As mentioned earlier,
with more misbehaved instructions, the faulty ROB entry can be uniquely identifie

However, even with techniques described above, RAT faults that areised by speculative instructions

can be hard to diagnose down to the individual RAT entries. The sceth@siribed below illustrates the
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Figure 5.3: An example scenario depicting how a physical register that ipedap more than one logical
register is identified by TBFD.

difficulty. Consider that a logical register is mapped to a physical registgr. Suppose an instructidrthat
writes to logical register, enters the rename stage. Because of a fault in the RAT entggts mapped to
the already live physical registgf. Then,l executes, writes tp;, and wipes out the data iy. Later on,|

is squashed as a result of an exception or a branch misprediction,gausinbe freed and added to the free
list (even though it is supposed to be live and mapperd, Yo Subsequently, when another logical register
is mapped tg; and written by another instruction that retires and becomes architecturabeyis now
shows a corruption in the architectural state as its value is now incorreaetéo, since TBFD never looks
at the intervening speculative instructibfremember that TBFD only tracks retiring instructions), the faulty
RAT entry is not correctly identified. Nevertheless, as the execution eagito utilize the faulty RAT entry,
more misbehaved instructions results. Subsequently, the test trace ashbysssthat the faulty RAT entry

is the direct or indirect cause of these misbehaviors, allowing TBFD teciyridentify the RAT faults.

Faults in Datapath

After TBFD determines that a mismatched instruction (the current TBFD faalyais assumes that a hung
instruction can only be caused by a meta-datapath fault) is unlikely to havechesed by a fault in the
front-end or the meta-datapath, a fault in the datapath is suspected. Abthisthe microarchitectural
structures (the functional unit, the result bus, and the destination physiister) on the datapath that are
used by the mismatched instruction are deemed potentially faulty. As a resulhuthiers of these structures
are incremented. While a single mismatched instruction does not lead to asfutdésgnosis (structures

all have the same counter value), having multiple mismatched instructions caseetke faulty unit fairly
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Figure 5.4: An example Instruction Trace Buffer (ITB). For each ircttom retired by the faulty core during
trace-based diagnosis, the ITB records information pertaining to 1ydedostruction information, 2) some
microarchitectural resources used by the instruction, and 3) the datsvadaed by the instruction.

easily and result in an accurate diagnosis. This is because the faulty inmitliged in all these mismatched

instructions and has the highest counter value.

5.3.3 Implementation
The TBFD algorithm is implemented in firmware. The detection of a fault on a owst result in an
interrupt on another core (possibly through a protected channelewhercontrol transfers to the diagnosis
firmware on that core. A single-core fault model implies that the latter corault-free; otherwise, the
system must provide a protected, possibly simpler, fault-free core fquutgose of permanent hardware
fault diagnosis and recovery. (Analogous support is likely requivediulticore systems that aim to provide
continuous operation in the presence of a non-repairable fault in g core

Additionally, the system must support checkpoint generation for the faaiyand checkpoint migration
to a fault-free core. Several techniques have been proposeddokmbinting for the purpose of recovery
from hardware failures [59, 74], and can be used for TBFD as well.eikample, the ReVive scheme [59]
could be used, with the checkpointed state made accessible to firmware powtee

The most significant hardware support required for TBFD pertainse@#émeration of the test trace.

For this purpose, we propose to use an Instruction Trace Buffer By illlistrated in Figure 5.4. Since
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diagnosis is not performance-critical, the ITB could be implemented entirely maneor in cache. For
better efficiency, we propose an on-chip hardware FIFO buffelishagriodically flushed to memory.

On the faulty core, the ITB is responsible for storing three types of infoomdor each retired instruc-
tion: the decoded instruction information, the microarchitectural resowszss by the retiring instruction,
and the data values of the retiring instruction. The decoded informationcbf iaatruction includes the
instruction opcode, the source operands, and the destination oper@heanicroarchitectural resources
usage information refers to microarchitectural structures (e.g., dedodetional units, source and desti-
nation physical registers, etc.) that were used by the retiring instructibe. data values of the retiring
instruction corresponds to the source register values, destination regikte, the virtual address accessed
by a load or a store, and the virtual target address of a branch. Fguigives an example of an ITB for
a small retirement trace from a faulty core. We discuss various issuésdétathe ITB and the test trace

generation/analysis as follows.

Populating the fields of the ITB

Since the ITB is populated only in the rare event of a fault, we proposepolai@ the ITB with additional
circuitry that taps into current microarchitectural structures for this imédion. An entry in the ITB is
allocated once the instruction is decoded, with decode information from tteelde When the instruction
is allocated a ROB entry, and added to an issue queue, microarchitectelredage information (such as
the physical registers used, ROB entry occupied, ALU used, etc.) eaofulated. When the instruction
writes its result, the data values corresponding to the instruction (destinagjmter value and address) can
be stored. If, however, the instruction is flushed, the corresponditng ftom the ITB must be discarded as
the trace accounts only for retiring instructions.

While the ITB and its upstream and downstream logic would incur area eadrithey are only acti-
vated during diagnosis after a rare event of a detection. During noeukiffee execution, these modules
can be power-gated to minimize the power and performance overheadeishdy the diagnosis module.
This is in contrast to previous methods of obtaining such information by addireg that flow along with
the instructions throughout the pipeline [11], consuming power and impagé&rfigrmance during normal

execution.
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Diagnosis granularity and size of ITB

The granularity at which TBFD can diagnose a faulty microarchitecturilisigoverned by the level of

detail of the information recorded in the ITB. The fields to record in the I'&B be determined based on
the level of repair supported by hardware. For example, if the haedwally supports replacing an entire
array, as opposed to deconfiguring individual entries in the arrayT®@&eeds to only record the fact that
this array was accessed, and not the specific entry in the array thatomassed. Not surprisingly, the
finer the granularity of the repair or reconfiguration mechanism suppbstéhe processor, the larger the
ITB needs to be for storing these detailed information. In our experimemsssume that fine-grained
reconfiguration is supported for the parts of the front-end, meta-dategrad datapath which may contain

faults (Section 5.3.2), and TBFD records their usage information in the ITB.

Test trace generation and analysis

While the ITB can be configured to write the faulty trace into the cache or the nyadirectly, the fault-free
execution trace has to be compared against the faulty trace during tesgaeration. To this end, the
fault-free execution is emulated by the firmware. Specifically, the TBFD fimaviest loads the checkpoint
from the faulty core onto the emulated core and then replays the emulatadierean the fault-free core.
During the emulation, the firmware continuously compares the decode andhtisgdields against the faulty
trace. On a misbehaved instruction, the firmware corrupts the architestatalof the emulated fault-free
core and enhances the in-cache or in-memory faulty trace with bits to indieageuince of the misbehavior,
thereby generating the test trace. These bits are best implemented agestémshe ITB, indicating the
sources of divergences in the test trace. Since the fault-free exetsitdready emulated in software, it is
unlikely to benefit from any acceleration due to hardware FIFO sumbdine ITB. Therefore, the additional
bits above need not be implemented in the hardware FIFO for the ITB, andicgly be maintained in
cache or memory, depending on the particular implementation.

Finally, with the ITB containing the generated test trace, the trace analysisthig (part of the TBFD
firmware) is invoked to diagnose the faulty microarchitectural component. alpgithm, implemented
entirely in software, runs on the fault-free core in the system and cémgdrecise diagnosis by going through

the test trace in the ITB.
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5.3.4 Alternative Strategy for TBFD

The TBFD description above suggests that the fault-free core’s staymébronized to the faulty core’s
bad state when a mismatch occurs between the two executions. Essentiaily,dlagnosis, the execution
on the fault-free core isorruptedwith the state in the faulty core upon an occurrence of a mismatched
instruction. Alternatively, we also considered another method where tittg faore is synchronized to the
fault-free core’s good state when a mismatch is encountered. We refds taltdrnative as theatching
(versuscorrupting) execution.

One possible advantage of the patching execution over the corruptiogtexeis that the faulty execu-
tion is steered, through patching the faulty core with the good state, towardstitect path of the program.
In contrast, the corrupting execution mode potentially steers both the faealafrd the faulty cores to ran-
dom regions of code and data, which may or may not cause fault actisatioing diagnosis. We did,
however, implement the patching method but did not find it achieving a betignal#s coverage than the
corrupting method. This finding implies that the corrupting method is capabletivhting the underlying
fault to enable precise diagnosis. Between these two execution mode®rthpting method is favored
because of the following reasons.

In the corrupting method, we do not have to execute the fault-free atiy faares in synchrony. In
fact, the entire faulty trace can be generated before the fault-freestaote execution. The firmware on the
fault-free core takes care of corrupting the fault-free execution. drpttiching method, this is not possible
because the firmware cannot run on the faulty core. The faulty coreinstisdd run roughly synchronized
with the fault-free core. It must send the results of its instructions to the fismgteore and the fault-free
core must send back any patches if needed. This is clearly much more ganpléencurs higher overhead
than the corrupting version. In addition, it requires the faulty core to piehmegister file with data from
the fault-free core while not knowing whether the path for overwriting gugster file is fault-free.

It is interesting to note that the patching mode closely resembles the schensqudyy Bower et al.
where the DIVA checker is essentially the fault-free core that patcheartitectural state of the faulty
core [11]. While this is feasible in a tightly coupled scenario like DIVA, in agrahmulticore environment,

it requires todight lockstepping of two cores to be widely deployable.
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5.4 Methodology

The goal of our experiments is to show the effectiveness of TBFD omaeent hardware faults. Cor-
rectly diagnosing permanent faults is important because a wrong diagmasid allow a fault to corrupt
subsequent execution, compromising the integrity of the system.

For our experiments, we use the simulation environment described in Segtidn We focus on SPEC
workloads and apply TBFD to identify the components that contain the pembhamiware fault.

In this section, we describe the experimental setup that is specific to fagitasies.

5.4.1 Faults Diagnosed

TBFD is invoked to diagnose the injected permanent faults that are detgdteel BWAT symptom monitors.
In particular, approximately 8500 detected faults in the SPEC workloads @&e unmasked faults) out of
the injected 11,200 stuck-at-0, stuck-at-1, dominant-0 bridging, and datrlnbridging faults (described
in Section 4.4.2) in 7 of the 8 microarchitectural components (all except AP iAlTable 4.3) are subject
to diagnosis using our TBFD algorithm to identify the faulty microarchitectuoahmonent. We did not
diagnose the FP ALU faults because there are only very few of themteétbg the symptom monitors.
More detections in the FP ALU is needed for the results to be significant. tNeless, our reported results

are statistically significant as the overall error at a 95% confidence is .Bi.

5.4.2 Implementation Assumptions

Our evaluation centers on the diagnosability of the TBFD approach. Aftex diagnosis method has not
much value if it does not achieve necessarily high diagnosis coveragevéstigate this aspect, we enhance
the base simulation platform to provide the microarchitecture-level diagngsidbitity. We discuss these
issues below.

Emulating fault-free execution: Since this is the first work that investigates the SWAT approach, we focus
on single-threaded applications and do not simulate a multicore system. To thiet&irecution of a fault-
free core for TBFD, we exploit the inherent dual execution mode of the gj#first simulation paradigm

in our simulation environment, as described in Section 4.4.1. When a fault istetkt¢he faulty core is

rolled back to the previous checkpoint and the execution is replayed inBEMS3iming simulator; this roll-
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back/replay would also happen in a real system. For the fault-free xecwe use the Simics functional
simulator that runs in parallel with the timing simulation. Since the architectural Sttte functional simu-
lator and that of the timing simulators are compared for each retired instructibe timing-first simulation
paradigm, a mismatched instruction can be immediately detected by TBFD duriegretit. Subsequently,
the corrupted state in the timing simulator is copied to the functional simulator fohsymizing the fault-
free and faulty execution. As the comparison and synchronization bettheefaulty and the fault-free
execution can be done whenever an instruction retires, the test traceersigel as well.
Checkpointing: In our simulations, fault-free checkpoints are recorded at the begjrofithe execution,
prior to fault injection. To restore the previous checkpoint, our simulatstésyreloads the previously saved
register state and TLB state, and rolls back (undoes) the changes in theyrstate (similar to ReVive [59]
and SafetyNet [74]). To ensure the execution on both the faulty andatlieffee cores to be the same
when the fault is not activated, we also checkpoint the TLB state sinceltBanlthe SPARC architecture
is software-managed. Otherwise, when re-executing from the samkypciie; the out-of-sync TLB state
could cause one core to drop into the OS to handle a TLB miss but not theletttiéng to a false divergence.
Trace length: We run the faulty and the fault-free executions for up to 30 million instructiom® the
checkpoint. We empirically chose this interval since most permanent faulesreractivated for diagnosis.
For efficiency, we invoke the TBFD analysis every 10,000 instructiohss Buffer size is sufficiently large
for the analysis to track down the faulty component of most injections.
Terminating conditions: After the analysis is invoked, if the algorithm is able find the unique faultyctire
that has the highest counter value than any other units within 30 million instraatioexecution, TBFD
terminates and reports the identified faulty component. For some cases, ifit#zoantinue to have the same
counter value until the end of the simulation, TBFD reports these two susifactiey units. Nevertheless,
the unique faulty unit can easily be diagnosed by deconfiguring one tithenits. On the other hand, due
to the complex manifestation of the meta-datapath fault, there can be scenhesttwee or more units
with the highest counter value are RAT entries. For these cases, TBildes that the RAT array is faulty
(we discuss these cases in greater detail in Section 5.5.4).

Overall, the described simulation environment allows us to evaluate the TBpiDagh quantitatively

on the faults detected by the SWAT symptom monitors. In our experiments, cus fin the diagnosis
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coverage of TBFD, which is defined as the percentage of detected taatitare diagnosable. Diagnosable
faults are ones where TBFD is able identify the unique faulty unit (eithemnaamiay unit such as an ALU,

or an array entry), two potentially faulty units, and the faulty array stredtimstead of the array entry).

5.5 Results

To understand whether TBFD is capable of diagnosing permanent agrdaults at the microarchitecture
level, we investigate the diagnosis coverage of TBFD on the faults detegteek ISWAT detectors. The
results are shown and summarized in Section 5.5.1. From Section 5.5.2 to Sebtlgnwe discuss in
detail the faults that fall into the different diagnosis outcomes. While the digprocedure has less timing
constraint, it should still incur necessarily small performance overheadier not to impact user experience.

Hence, we report the diagnosis latency in Section 5.5.6.

5.5.1 Summary of Diagnosis Coverage

Figure 5.5 presents the results indicating the effectiveness of the diadmoiults in different microarchi-
tectural structures. In each bar, thaique stack represents cases that the diagnosis process correctly and
uniquely diagnoses the faulty non-array structure or the faulty entry wathiarray structure. Th&mong

2 stack represents cases that TBFD diagnoses 2 potentially faulty unitsaraf them is truly faulty. The
Correct Typestack shows the cases where the diagnosis does not diagnose therfayitgrdry (e.g., RAT
entry), but the faulty array structure (e.g., RAT) is correctly diagnodée: Undiagnosedstack represents
cases where no misbehaved instruction is found for 30 million instructionslntlorrectstack shows the
cases where the diagnosis process diagnoses one or more strusttagkyanone of which is the actual
faulty structure. The height of each bar is normalized to all the cases mh Wte diagnosis procedure is
invoked (i.e., all faults detected within 10 million instructions as discussed in &es#4ol).

Of all detected faults, our trace-based diagnosis is able to diagnose fa8&detected faults by iden-
tifying the correct faulty structure or array entry. Further, it correntlyrows 89% of the faults down to a
single non-array structure (e.g., ALU) or a specific entry in an arragtire (e.g., physical register # 15).

In the following sections, we give an in-depth analysis of the faults thainfallthe different categories

and discuss methods for improving TBFD even further.
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Figure 5.5: Effectiveness of microarchitecture-level fault diagno3ise figure shows the ability of the
diagnosis algorithm to accurately diagnose detected faults. Overall, 98% détected faults are accurately
diagnosed as either (1) the correct non-array structure or thect@méy within an array structure (the
Unique stack); or (2) within one of two non-array structures or entri@sray structures (Among 2); or (3)
the correct array structure type but not the correct entry within thetstrei(Correct Type).

5.5.2 Uniquely Diagnosed Faulty Structures

When TBFD correctly narrows a detected fault down to a single unit ayamntry, we categorize the fault
as uniquely diagnosed. While 89% of all detected faults can be uniquelyatiad, from Figure 5.5, we see
that different microarchitectural structures have varying amountsigfiety diagnosed faults.

For 5 out of 7 structures (excluding INT ALU and RAT), over 97% apda100% of the detected faults
are uniquely diagnosed; this shows TBFD is highly effective for diaipgofults in these structures. In
particular, virtually all the faults in Decoder can be uniquely diagnoseds Aigh percentage is likely due
to the specific instruction word check in the first part of the diagnosisigihgor Furthermore, over 99.6% of
the ROB faults are uniquely diagnosed. From the diagnosis of ROB faudtfind the meta-datapath check
is very important since most of these faults exercise this meta-datapathrdhpakt of the TBFD algorithm.

For INT ALU, only 79% of the faults are uniquely diagnosed. The loweceetage is mainly due to the

correlations with other structures (discussed in Section 5.5.3).
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For RAT, however, only 45% of the faults can be uniquely diagnosedleWBFD seems less effective
for diagnosing faults in RAT, we note that without checking for faults in théantatapath, all of the RAT
faults cannot be correctly diagnosed. Also, for array structurdsasithe register file, ROB, and RAT, there
are existing testing techniques such as BIST (Built-In Self-Test) in theepsae. Thus, TBFD may not need
to diagnose the fault down to a single RAT entry, as long as it identifies thedRAlie source of the fault

(discussed in Section 5.5.4).

5.5.3 Non-Uniquely Identified Faulty Structures

Since the diagnosis only analyzes the faulty core’s test trace and dbescoafigure the faulty core, if a
correlation among two structures exists during execution, the diagnosisanlg able to uniquely diagnose
the faulty component. ThA&mong 2category reflects such cases where the diagnosis diagnoses 2isuspec
that are potentially faulty, with one of the suspects being the structure witiadiite f

Overall, only 3% of the diagnosed faults fall into tAenong 2category. Most of them are faults in INT
ALU (18% of INT ALU faults). A closer look at thé\mong 2cases shows that all mismatching instructions
that use ALU 1 always write to their registers using Reg DBus 1. It is thesefirtually impossible to
separate ALU 1 from Reg DBus 1 in our high-level trace-based diagnos

However, by narrowing the faults down to 2 non-array structuresrayantries, the TBFD firmware
can be enhanced to start another round of diagnosis after recamfigiue microarchitecture. In particular, if
the non-faulty components is disabled and TBFD is rerun, the faulty compaileshow up in this second
round of diagnosis and be uniquely identified. On the other hand, if thy feamponent is disabled, this
second round of diagnosis will be non-conclusive and the disabledawenpis ruled faulty. Therefore, for
Among 2cases, the faulty component can always be correctly and uniquelyodiegin the second iteration
of TBFD.

Alternatively, to reduce faults in thAmong 2category, designers can break the correlations among
resources by explicitly changing the scheduling algorithm in the proceBsorexample, Bower et al. im-
plements a round-robin scheduling algorithm in the microarchitecture sodtawhre resource usage is not

always correlated [11]. Nevertheless, this approach likely has anagligible impact on area and power.
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5.5.4 Faults Diagnosed in Higher Granularity

While TBFD is able to narrow down most of the faults correctly to one or twairas/array entries, only
45% of the detected RAT faults fall intdnigueandAmong 2categories. Such low percentage is mainly due
to the reasons discussed in Section 5.3.2.

Although TBFD does not seem to perform well for RAT, we argue that i mat always be necessary
for TBFD to diagnose to the exact RAT entry. As BIST based techniquestéist array structures are
increasingly common in modern processors (for manufacturing testingyigefsil to use TBFD to diagnose
the RAT (instead of a particular RAT entry) as potentially faulty. SubsequeBit§T can be used to track
down the actual faulty RAT entry. Alternatively, since RAT keeps tracthefmappings of all architectural
registers, a well-crafted functional test can also be used to exercidédfdrent RAT entries to diagnose the
fault.

For these cases, TBFD serves as a first-order test to quickly cengerthe faulty RAT array. If we
assume that it is sufficient to diagnose faults at the granularity of an ammagture, TBFD can correctly

diagnose an additional 44% of detected RAT faults.

5.5.5 Undiagnosed and Incorrectly Diagnosed Faults

In the previous sections, we see that TBFD diagnoses most of the fatdtsatbin SWAT. As shown in
Figure 5.5, the rest of these detected faults fall under two categddediagnosedandincorrect In both
these cases, the TBFD algorithm is unable to accurately attribute the locatlmmfalilt that was detected.
Of all detected faults, 2% fall in thelndiagnosedcategory, where the instruction traces of the faulty

and the fault-free cores do not differ. In these cases, the permfaudiis either not activated or activated
but masked by the architecture. Consequently, the architectural state fafulty core is never corrupted.
Because of the lack of divergence between the faulty and the faulestesition, TBFD cannot carry out its
analysis. These faults may be diagnosed by collecting a longer executier(d¢tarently a maximum of 30
million instructions are analyzed) or by using existing deterministic replay schfse83] to re-create the
fault effect that lead to its detection. However, due to non-determinisneahttroarchitecture level (e.g.,
conditions that result in different scheduling, register mapping, etc.hoteethat the permanent fault is not

guaranteed to be re-activated during diagnosis.
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Regardless of the reasons for the lack of fault re-activation, sinc tfaalts would not cause any
symptoms during the vigilant phase, they are diagnosed as transient faths finst step of the SWAT
diagnosis. Because these permanent faults appear as transient faétsyrstem, they can be recovered
through rollback recovery. As they do not affect the software eti@euthe SWAT microarchitecture-level
diagnosis algorithm correctly ignores them, avoiding excessive owérhea

On the other hand, only 0.9% of the detected faults are mis-diagnosed iy {oBfe a fault in fault-free
structures. Further, from Figure 5.5, we see that most of these faelis Hre RAT. We observe that these
RAT faults cause data corruptions and mislead TBFD to diagnose the datapapionents as faulty. This
is mainly due to the problem caused by speculative instructions that actieafRAh fault (described in
Section 5.3.2). While this can lead TBFD to disable the fault-free structuresotiinued execution after
the diagnosis would activate the persistent fault again, triggering anattied of microarchitecture-level
diagnosis. As a result, TBFD would get another chance to diagnose thepent fault, increasing the
likelihood of a correct diagnosis.

While further investigation to evaluate the best techniques to reduce, or dinthase misdiagnosed
faults is necessary to make a fool-proof diagnosis algorithm, even with lingisations, TBFD presents

impressive results for microarchitecture-level fault diagnosis at aleergost.

5.5.6 Diagnosis Latency

Besides the percentage of diagnosable faults, another metric that nestheueéfectiveness of our diagnosis
is the latency. If the latency is too long (e.g., billions or trillions of instructionsg, ghocessors’ (both
the faulty and fault-free cores) down time may make TBFD unattractive wberpared to other simpler
techniques, such as core decommissioning.

Our simulation infrastructure does not have enough detail yet to determg@natémncy in terms of the
execution time of the entire diagnosis module. Instead, as a proxy, we regrerthe latency in terms of
the number of instructions that the faulty core executes between the stant diignosis (i.e., after the core
is rolled back to the previous checkpoint) to the point where the fault is ideshtifrigure 5.6 shows this
latency. The figure includes all the faults in tHaique Among 2 andCorrect Typecategories in Figure 5.5.

Of all the diagnosed faults, 56% take fewer than 1,000 instructions, 78%iagnosed within 10,000
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Figure 5.6: Diagnosis latency in number of instructions executed by the fenlfey between the start of
diagnosis and the point when the fault is diagnosed. The figure showswa90% of the faults can be
diagnosed within 1 million instructions.

instructions, and over 90% take fewer than 1 million instructions to diagnoseiding a 4 GHz processor,

these results show that close to 80% of the diagnoses occur withirs 28d 90% of them terminate in 250

us. While we do not consider the overhead incurred by other aspectseDT®ese overheads show that
SWAT diagnosis can be short enough not to severely impact the sysespanse time.

From Figure 5.6, we see that the latency for faults in different structtagss widely. Over 99% of
faults in Decoder and ROB take fewer than 1M to be diagnosed. The exghimik for front-end faults in
TBFD helps shorten the diagnosis latency for Decoder faults. For RA@IB faéhe short latency is due to the
fact that they usually cause a break in dependency and quickly leaddwdra hangs. This corresponds to
the relatively quick violation in condition 2 discussed in Section 5.3.2.

On the other hand, only 77% of Int Reg faults and 61% of RAT faults argndised within 1 million
instructions. A general observation is that faults in these large arragtstes are more difficult to activate.
The windowed register file in the SPARC architecture makes some RAT faulleri® activate because
the faulty windowed register is rarely used. On the other hand, if theymees® register allocation of an

instruction stream is low, some faulty physical register may be infrequentlpete@hese phenomena tend
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to lead to longer diagnosis latencies.

As we stated earlier in the chapter, the SWAT diagnosis procedure is altovieclir potentially higher
overheads because it is infrequently invoked. From the results onyatbown here, we see that diagnosis
does take some time to identify the faulty unit. Nevertheless, these diagnos@datare sufficiently small
and are not likely to impact the overall system performance significantly.

Overall, in this section, our experimental results show that TBFD is vergldamf intelligently track-
ing down the faulty microarchitectural units. This proves that permanedivaae faults can be precisely
isolated at the microarchitecture level through test trace based analysiagkes use of in-situ software
execution. Further, our results also show that the diagnosis latencyrisasttbnot likely to impact user

experience.

5.6 Summary and Discussion

After a detection occurs in SWAT, the system must diagnose the source efrthr because both hardware
and software faults can appear as symptoms. Further, if a permandwiharfault is diagnosed, full recov-
ery can only be attained by repairing or reconfiguring around the faafbyponent to prevent the same fault
from corrupting subsequent executions. This chapter presents tA€ 8agnosis module to resolve these
issues.

Since diagnosis is only invoked after an infrequent event of a detedian process can potentially
incur higher overhead (in contrast to always-on detection mechanistsitisaincur as little cost as pos-
sible). The SWAT diagnosis framework therefore takes a firmwaredbaseroach that enables intelligent,
possibly complex diagnosis procedures. As the in-situ software exedstioown for activating the possi-
ble persistent fault (if any), SWAT diagnosis exploits the multicore envirarirpg replaying this execution
on different cores to track down the source of the error. FundamenB8MNAT takes a synthesized DMR
approach for the purpose of fault diagnosis, which incurs much loastrtban the traditional DMR that
needs to be always-on for error detection.

In SWAT diagnosis, the first step of the process uses repeated rdlbeyglays on different cores in
the system and watches for symptom re-occurrence, if any, to distingisihg software bugs, transient

faults, and permanent hardware faults. If a permanent hardwaltedaliagnosed in a core, the second
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step of the diagnosis, called Trace Based Fault Diagnosis (TBFD), fooldivergences in the replayed
executions on the faulty core and a fault-free core, and identifies thtg faicroarchitectural component
through execution trace analysis. This process essentially synthesiZasiltly core and a fault-free core in
the multicore system for dual modular redundant execution to enable nubreature-level diagnosis. The
main novelty of TBFD lies in its ability of identifying permanent faults that occur mitteta-datapath. To
the best of our knowledge, no existing functional testing technique @caedy handle this type of faults.

To evaluate our proposed microarchitecture-level diagnosis schemasedeTBFD to diagnose the
permanent faults previously detected by SWAT's symptom detectors and that TBFD is highly effective,
correctly diagnosing 98% of the detected faults down to the microarchitdetaie In particular, the unique
faulty non-array structure or array entry is identified in 89% of the detestidhe rest of the diagnosed
cases belong to the following categories: (1) TBFD identified two units aredi®faulty, and (2) TBFD
is unable to identify the individual array entry but diagnoses the fauliyyastructure. For these cases,
the unique faulty unit can eventually be identified by another iteration of TBRE disabling one of the
suspected units (for case 1) or using functional tests that target tbiéisfaulty array (for case 2). In terms
of performance overhead, TBFD is able to identify 90% of diagnoseltsfaithin 1 million instructions,
which approximately equals to 250us on a 4 GHz processor. We believetthisyds short enough not to
substantially impact the overall system performance, especially when teodia is rarely invoked.

In addition, TBFD is the first work that uses in-situ execution to diagnosksfan the meta-datapath.
From our results, TBFD is able to diagnose a large portion of these fawlts tiothe unique array entry
and most faults at a higher granularity (array structure vs. array)enfityese results are encouraging as
our method remains effective even though the manifestation of meta-dataplshi$ complex. Further, we
believe that there is room for improving the TBFD algorithm to achieve evéerdiagnosis coverage for
faults of this nature.

Overall, this chapter introduces the SWAT diagnosis framework to catrgftective fault diagnosis on
the SWAT system. However, we note that this proposed framework is flexitlecan easily be integrated
with different types of error detection mechanisms. Further, the frankeis@lso tunable to cater to dif-
ferent granularity of repair supported by the system. Since this is theviirgtto investigate the capability

of the SWAT system, we have mainly focused on single-threaded workloaslsnultithreaded software
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and multicore systems are becoming pervasive, recent work with my codleggat reported here) inves-
tigated the diagnosis mechanism for multithreaded applications running on meiligsiems [26]. In that
work, we successfully derived an effective diagnosis strategytfainéng high diagnosability even in this

multithreaded environment.
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Chapter 6

SWAT Recovery

The goal of error recovery is to mask any effect of the detected byroestoring the system to a pristine
state and resuming the execution. Hence, error recovery is vital to ugiteidtegrity and reliability of any
fault-tolerant system, including SWAT. While there has been a wide selectierra recovery proposals
that can be potentially integrated with SWAT, the effective method must beeolaasefully in order not to
compromise the strength of the SWAT system.

Towards proposing a recovery scheme for SWAT, we must considerugaissues. First, the recovery
module should be designed to fit the needs of the other components in the spatmely the detection
and diagnosis modules. For example, since the SWAT symptom monitors héae cketection latencies,
our recovery must be capable of handling the effects of error pedjmegin the time period prior to a
detection. Second, as all recovery methods incur overheads in aveer, pnd/or performance during fault-
free operations, these overheads must be kept low in order not to ithpamterall system cost significantly.
Desirably, the recovery scheme should have a similar cost as the abwassy low overhead hardware-only
detectors of SWAT.

In this chapter, we first give an overview of the design constraints dBWWAT recovery module. Then,
we discuss checkpoint/replay mechanisms and 1/O buffering schemesWiAdt i@covery can leverage.
After that, we explore the potential designs of the recovery module quargliain terms of system recov-
erability for faults previously detected by SWAT’s symptom monitors. Basetthis analysis, we investigate
the overheads involved for designing the recovery scheme that caavatiigh recoverability. While we do
not propose a new recovery method in this thesis, the quantitative and tumkitaalysis presented here can
effectively guide the exploration of new lower-cost and more effectro®very mechanisms for SWAT and

other error resilient systems.
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6.1 Constraints and Requirements of SWAT Recovery Module

The SWAT system is able to achieve very low cost because of the kegvalisa of minimizing the overhead
of the commonfault-free operation. However, as shown in Figure 3.2, error reganeurs overheads in
both fault-free operation and fault-handling operation. Thereforegtodmsistent with the SWAT design
principle, the fault-free operation of error recovery must be kept lost.c

Another important role held by SWAT recovery other than masking the effect is to assist the diag-
nosis process. In SWAT diagnosis, the fault-activating execution istegly replayed in order to correctly
determine the source of the error. Therefore, SWAT’s recovery ameésim must be able to allow the system
to “go back in time” to replay the execution.

Besides the above requirements, we also need to consider how hafauwtrean be contained to ensure
full system recovery. To this end, Reinhardt and Mukherjee introttuesphere of replicationdefined as
the logical extent of redundant execution (in time or space) for protetiimgystem from soft errors [66].
At the boundary of this sphere, outputs are compared before theyneedgsible to the rest of the system.
Similarly, Sorin uses thsphere of recoverabilitio describe the logical extent of the system that is protected
by SafetyNet [74]. To ensure full recovery, output events thassitbe sphere of recoverability are only
made visible to the rest of the system after the checkpoint is validated.

Like other systems, in SWAT, the sphere of recoverability depends omthoged recovery technique,
which in turn is dependent on the error detection latency. If the detectiorciatevery low (e.g., under 100
instructions), processor-level checkpointing along with memory transelotiffering (using the store buffer)
can be used to recover from an error. In this case, the boundarg sptiere of recoverability lies between
the processor and the first-level cache. If the detection latency is vegydoftware-level techniques such as
the ones used in distributed systems may be needed. The sphere ofabiitychence, may cover multiple
systems that are involved in running the distributed application.

In this thesis, based on the detection latency found in Chapter 4, we fodhe sphere of recoverability
that contains both the processor and the main memory. Hence, the input{d@petents that occur during
the software execution must be properly handled until the system is valigabedfault-free. Otherwise, a
faulty output request issued by the processor (e.g., a request sbatrtetwork interface card) may become

visible to the rest of the system before an error is detected. This scénarimblematic as the visibility of
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the erroneous event is irreversible and full system recoverabilityatdrenachieved. Therefore, in general,
output events are buffered and are not made visible to the devices urstidthef the processor and memory
is validated to be fault-free. For input events, some of the requests (glgaatesses) can be regenerated by
the processor without buffering while others would need a mechanisnffer land replay the input events
(e.g., a keystroke from the user) during recovery. In this chaptemamly focus on buffering output events
as faults can effectively be contained this way.

With these requirements, the design of the SWAT recovery scheme cabdigidad into (1) providing
a mechanism for replaying executions that incurs low cost during fagtdperation and (2) employing a
scheme for buffering output events to contain faults. Both of these ismsebto be addressed to ensure full
system recovery.

In the following sections, we first discuss the mechanisms for executitayrapd then investigate issues

in 1/0O buffering.

6.2 Mechanism for Execution Replay

Error recovery can be broadly classified as forward error regqi#=R) and backward error recovery (BER).
(Section 2.3 discusses related work in both FER and BER.) FER recaversoa by moving forward in the

execution because the fault-free state is readily available in the system BER recovers an error by
rewinding the system state backward to a fault-free state for re-executiderms of cost, FER tends to
be higher than BER as it needs mechanisms for keeping a known faulitétee in comparison, this makes
BER more favorable. Also, by definition, BER provides support fotagpg the execution, making it a
suitable candidate for SWAT recovery since this is required for diagnblgiace, in the rest of the chapter,

we focus on potential BER techniques that the SWAT recovery module caraltge.

6.3 Checkpoint and Replay Mechanisms

Checkpoint-and-replay is a well-known backward error recovery atktin these schemes, a checkpoint is
established periodically so that the state of the system can be restoreahadteor detection. While check-

point creation suggests that snapshots of the system state are takem ofmadkpointing schemes often use
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Hardware Checkpointing Software Checkpointing
Hardware Overhead Varies None
Performance Overhead Low High
Checkpointing Frequency High Low
Recovery Overhead Low High

Table 6.1: Comparison of hardware and software checkpointing schemes

a combination of checkpoint-based and log-based mechanisms for dirgakeation. For example, the full
register state of a processor is often saved as a snapshot due to ielsetatiall size while logging is used
to store changes to the memory state of the system. In this thesis, we regardtdtesds collectively as
checkpointing mechanisms. After a checkpoint is established, the systelne called back to the previous
pristine state when an error is detected. The execution is then resumeckaifkith of the detected error is
masked.

Of all the previously proposed checkpointing methods, we broadly categbese methods as software-
based and hardware-based. Based on the requirements abovefarentifadeoffs of the two types of

checkpointing schemes are discussed below. Table 6.1 gives a briedgsanpbetween these methods.

6.3.1 Software Checkpointing

Software checkpointing works by periodically creating checkpoints ofylstem state so that the system can
be rolled back when an error is detected. Software checkpointing cabalsategorized into application-
level and system-level. While future SWAT systems may improve recoverabilityigih application-level
checkpointing, we focus our discussion on system-level checkpoiriticg & is more general and can be
applied to different applications.

System-level software checkpointing typically relies on checkpointingadgssor state and logging of
memory pages through copy-on-write mechanism to establish checkp@n&8376]. At the beginning of
the checkpoint interval, all memory pages are marked read-only. Weeagage is written to, a memory
protection exception is triggered and the checkpointing mechanism makexy afcthe page before it is
written to. Depending on the individual scheme, this copy of the memory pagde stored on a stable
storage such as disk [33] or a volatile medium such as DRAM [58]. Thecatafeof stored memory pages

then forms the undo log of the memory and hence can be used to roll backdetheus checkpoint in the
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presence of a fault.

The main advantage of software checkpointing is that it does not recandsvlre support because the
checkpointing and rollback can be carried out entirely in software. Mewéhe performance overhead for
software to take a checkpoint (copying memory pages) could be quite IBggause of the high check-
pointing latency, the checkpointing frequency is kept relatively low (ergceger 30 minutes) to amortize
the overhead. Consequently, the large checkpoint intervals could catepliee handling of the input/output
commit problems. Furthermore, in system-level software checkpointingea@$his responsible for creat-
ing checkpoints, additional mechanisms for recovering the OS are nasdedtidware faults can corrupt the
OS state. Towards this end, using software-based methods for rieptle OS is non-trivial and has only
been done using virtual machine monitors (VMMs) [18].

Overall, the high overhead in performance during fault-free operatiemgbstacles involved in properly
handling 1/O for very long checkpoint intervals, and the complexity in redog the system software make
software checkpointing unsuitable as the primary recovery mechanissWar. However, in future gener-
ations of SWAT, software checkpointing can be leveraged to improve 3/¥atoverability for some faults

that may have very high detection latencies.

6.3.2 Hardware Checkpointing

Similar to software checkpointing, hardware checkpointing uses a combirmdiiteckpointing and logging
techniques to establish checkpoints where the faulty machine can roll badkai@ware checkpointing
can be further classified as processor-level and processananmbry-level. Processor-level checkpointing
refers to checkpoints that are created within the processor and aspdrant to software. Pipeline flush, the
built-in rollback mechanism in modern processors for handling branch edigions and exceptions, is a
prime example of processor-level rollback recovery to the previouskglmént established. As most, if not
all, processors contain this mechanism, much prior work relies on pipelifefiue recover the processor
state from soft error detection [4, 61, 66, 68, 81]. As mentioned eaiflidre detection latency in SWAT
is sufficiently short, processor-level rollback recovery along with ment@ysaction (loads and stores)
buffering can be employed. However, from the results presented ipt€@hd, the maximum detection

latency of 10 million instructions likely requires a non-trivial buffering metdkm for memory accesses.
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Hence, we investigate processor-and-memory-level checkpointing dgetho

Processor-and-memory-level checkpointing, as the name suggéealdisbes checkpoints for the state
of the processor and the memory. In these schemes, snapshots ofdbssprcstate are periodically taken
and stored in an on-chip buffer (e.g., shadowed register file). On tlee b#nd, checkpointing the entire
memory state is very difficult given the size of today’s system memory. Hemaery of the proposals resort
to use logging for rolling back to the previous checkpoint. The logging igalerused is similar to software
checkpointing; a change in the memory state triggers the old state to be sae@atsy of the undo log.
However, with hardware support, the logging of the memory state is typicatlg dbthe memory block (or
cache line) granularity instead of the memory page granularity becausade coherence protocol usually
operates at the block granularity and can be enhanced for this purfposecover to a previous check-
point, the logged memory blocks are used to patch the memory back to the stat¢helaheckpoint was
taken. Typically, the performance overhead incurred during the comendnffee execution is caused by
the synchronization operations needed for establishing consisterkipctiets and the increased demand on
memory bandwidth for creating the undo logs. Nevertheless, with dedicatdd/are support, checkpoints
can usually be taken very efficiently. Hence, the fault-free performaverhead can be kept low. This
is particularly attractive since SWAT demands very low performance eegrfor common case operation.
Nevertheless, we must investigate the actual performance overhe#tkarwkt of the added hardware sup-
port of the recovery scheme to determine if the method is sound for the Syg#dns. If the common-case
overhead in area, performance, and/or power is significant, the sclieaié greatly increase the overall
cost of SWAT.

Of the different processor-and-memaory-level checkpointing metheedook at two recently proposed
techniques for recovering the state of multiprocessor systems: Safdy#eand ReVive [59]. These
schemes take periodic checkpoints of the processor and memory stateibfitid shared memory systems.
We discuss the use of these techniques for recovering the procagsoeanory state in the SWAT multicore

systems.
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SafetyNet

SafetyNet, proposed by Sorin et al., uses versioned caches amipdmutfers called Checkpoint Log Buffers
(CLBs) to efficiently checkpoint a distributed shared memory system [B4].enhancing the coherence
protocol and using time-stamps on each cache line or the correspondingyr#ouk, SafetyNet is capable
of establishing globally consistent checkpoints without interrupting the rsysteperation.

Specifically, each cache line is marked with a time-stamp to identify the checkpdielongs to; a
service processor periodically sends the current checkpoint nuimieech processor node. With the time-
stamp, the processor can determine if a store issued to a particular cacisehi@dirst modification since
the checkpoint. If so, the pre-modified version of the cache line is loggd iGLB. Collectively, the CLBs
form the undo log of the memory state and hence rollback recovery to thimpsecheckpoint is possible.
From their experiments, with a total CLB size of 512KB, SafetyNet can takeeakpoint every 100,000
cycles and have almost no impact on performance.

In the context of SWAT recovery, the performance aspect of Satstid\certainly attractive. However,
the on-chip buffers incur permanent cost to the system and grow wittetwery interval, which is the
product of the length of the checkpoint interval and the number of stdreckpoints. If the detection latency
of the SWAT detectors is close to 1,000,000 cycles or more, the CLB size witlicly exceed 512KB in
order to avoid significant performance degradation. However, achgnbuffer of this size bears a non-
negligible cost even in modern mainstream systems, especially when this piemelware is used solely
for ensuring reliability. Because of the potentially large area overheadrett by the CLBs (permanent

cost), we use the alternate scheme, ReVive, for our further investigasatescribed below.

ReVive

Contemporary to SafetyNet, Prvulovic et al. proposed ReVive that slightlgifies the directory controller
to (1) checkpoint the memory state by storing the undo logs in the main memorg)ageherate distributed
parity of the memory (including the logs) to recover the system from pernhanesrs in one node [59].
To establish a globally consistent checkpoint, all nodes are synchdothizugh barriers to checkpoint the
processor state and flush the dirty cache lines to memory. Because mogeEmsysually use ECC to

handle errors in memory, we focus on the checkpointing aspect instetheé pfrity protection aspect of
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ReVive.

In this scheme, before the start of a checkpoint interval, all cache Ineesréten back to the memory
(i.e., no dirty cache lines in cache). As the execution continues, prasdssae writes to different cache
lines. Subsequently, the directory controller receiupgradeor get-exclusiveequests and learns that a
cache line is about to be modified for the first time since the last checkpoimicei¢he controller saves
the current version of the cache line in the undo log region of the memogynmiddified memory state and
the undo logs allow the system to be rolled back to the last checkpoint. Retaslirectory controller
creates undo log entries by keeping track of the first writes to the memorysbiic&e the beginning of
the interval, all processors flush the dirty cache lines to the memory (dadedrtosharedstate) before
the start of the next interval. As all processors are synchronizeddieally to take globally consistent
checkpoints in ReVive, the synchronization overhead is always ieduffurther, first writes to any cache
lines since the last checkpoint always result in misses, incurring addifeteacies. To amortize these
overheads and yield lower performance degradation due to checkgpititersystem can be configured to
have longer checkpoint intervals. From the experimental results in thes®eMrk, this method incurs an
average performance overhead of 6% at 10ms checkpoint inter@ls [5

One of the design goals of ReVive is to modify as little hardware as possitietiee directory controller
is enhanced as a result. One may argue that the area overhead oé Re&dtually higher because a part
of the memory is provisioned to store the undo logs, effectively reducingrti®int of available memory
to the running system. However, as shown in the experiments in [59], thelagd only consume 2.5MB
(the sizes of the logs for FFT and Radix are at this maximum) or less of memompge per 10ms interval,
making this overhead negligible when compared to modern systems equippedgaltiitgs of memory.

Overall, as the two main design aspects of ReVive's checkpointing scheimiejizing hardware over-
head and storing logs in memory, seem to align with the SWAT approach oihkettye common-case cost
low, ReVive can likely be leveraged as the viable cost-effective SWadwery method. In our experiments,

we investigate the applicability of ReVive as the SWAT recovery method.
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6.4 Input/Output State Buffering and Recovery

As discussed in Section 6.1, full system recovery depends not onlygllorgrback to the pristine execution
state, but also on proper handling of I1/O events to contain faults. In plticaecause output events are
irreversible once committed, it is crucial to buffer output events until théesystate is validated to be
fault-free. As virtually every piece of software in the system interacts wi@hdevices during its course of
execution, this buffering mechanism is vital to ensure system recoverability

In SafetyNet, it is suggested that 1/O activities can be buffered duriegkgiointing. Hence, after re-
covery, the input events can be replayed to the system and the outpis ea@ be re-generated from the
recovered system. However, the actual design and implementation of fieeifmiimechanisms was un-
known at the time. Recently, researchers presented one outputitgffieethod called ReVivel/O [50] for
buffering disk and network events.

Using a software layer called pseudo device driver (PDD) that resieizgeen the OS kernel and the
device driver, ReVivel/O buffers all disk and network write activitiegisat potentially faulty events cannot
propagate to the rest of the system (or the outside world). On the othdy Ralivel/O does not have a
mechanism for buffering input events because the targeted disk andrkenput events can be naturally
replayed. For disk reads, ReVivel/O relies on the program to rerganthese read requests after a rollback.
For reads of the network packets, the scheme relies on the retransmésgtiarefin TCP/IP and lets the other
machine resend the packets after a failure (a time-out mechanism) to rackieviedgments.

In SWAT, as activated faults will manifest in software, they can causkyfautputs to propagate to
the rest of the system before they are detected. Hence, outputibgfifeparticularly important in SWAT
recovery. While ReVivel/O presents a feasible solution for disk and oré&tactivity, there are issues to be
considered before integrating it with SWAT. First, the design of ReVivai®lves modifying the internals
of the OS, which is non-trivial as the complexity of modern operating systentseies to grow. Second, itis
unclear how the method can be expanded and generalized to other kildswénts. Third, because faults
can manifest in software in SWAT systems, ReVivel/O’s PDD softwarebsanorrupted and send faulty
outputs to the outside world before the error is detected. Given the stasshse we do not consider directly
employing ReVivel/O in SWAT recovery. Nevertheless, this bufferingesce does present an effective

approach for preventing fault propagation.
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While ReVivel/O presents a software approach for output bufferimy,ealize this scheme by assuming
that existing hardware can be enhanced slightly to achieve the same @ukffedurther assume that this
hardware module is highly reliable. This way, not unlike ReVivel/O, ougweints generated from the pro-
cessor will be buffered in the hardware module until the checkpoint isatelitfo be correct. Subsequently,
the buffered requests are sent to the devices in the system. If an edetected, the requests buffered in the
hardware module are discarded to prevent the fault from propagatthg tmitside world. For input events,
we use the similar approach as ReVivel/O and rely on requests beingeratged during re-execution. Hence,
we do not buffer input events for replay. For mainstream desktop togagpmputers, since all I/O events go
through the northbridge (e.g., graphics card access, network cegdsa@tc.), one possible implementation

of this hardware module is to enhance the northbridge with this bufferingodéy.

6.5 Exploration of Checkpoint Recovery and I/0O Buffering Methods

One shortcoming of many existing proposed checkpointing and I/O bujfsdnemes is the lack of quantita-
tive results that show fault propagation can indeed thwart the erroveeg process. That is understandable
as most schemes are introduced as stand-alone solutions. Since weepBMIAT as a complete hardware
reliability solution, it is of high importance to investigate how faults detected by Wa&TSsymptom-based
detectors can be recovered in the system.

To study system recoverability, we explore the following configurationisrtfake use of checkpointing

and/or buffering techniques to recover faults that have been detec®d/AT’s symptom detectors.

e Processor and partial memory state checkpointing.As previously mentioned, the design of Re-
Vive that stresses low area overhead aligns with the SWAT approachceHwe first explore this
hardware-based processor-and-memory-level checkpointingnechin this configuration, to estab-
lish a checkpoint, the processor state is checkpointed with the use ofvshegisters and the undo
log is created for all memory blocks that have been modified by the prac@ase the checkpoint. We
consider the memory state to be partially checkpointed because this methaoabtldes the device-
to-memory requests. (We discuss this issue in the next method.) From thisesalie can understand

whether a full system recovery can be achieved by focusing on hartikninteractions between the
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processor and the main memory. This method, therefore, serves asliaebagstem to show the

efficacy of processor-and-memory-level checkpointing in terms désysecoverability.

e Processor and complete memory state checkpointindn the original ReVive work, the experiments
were conducted on an architectural simulation framework that did not iadudulation details of
transactions to or from the devices (e.g., hard disk drive, network aateidard, etc.). Therefore, the
lack of a full system simulation environment prevented the experiments fapinieng the interactions
between the memory and the different devices in the system. However, immmegd#ems, devices
often interact with memory to transfer data back and forth. Direct Memonesg (DMA) transfers,
which allow large blocks of data to be transferred between the memory amtbvites without the

intervention of the processor, are prime examples of this type of interaction.

Building on the partial memory state checkpointing method, we added suppbe ttheckpointing
scheme to also log interactions between the devices and the memory. This negtfes®nts ReVive
deployed in the realistic full system environment. In the event of a rollbackvery, this method
patches the parts of memory that were previously modified by the deviceddliitioa to recovering
the memory regions modified by the processor. Since all changes made taloeynséate are logged,

we call this scheme the complete memory state checkpointing.

¢ Full system level checkpointing.While the state of the processor and memory can be fully recovered
with the above methods, a fault may still manage to corrupt the system by gafsinlty request to be
sent to the device. One possible way to recover the corrupted systerns $tedgpply checkpointing to
the entire system. That is, the state of each device in the hardware systeogaraof the checkpoint

where the system can roll back to.

This method, although difficult to implement in practice, will allow us to understhedlimit, if
any, of checkpointing in terms of system recoverability. In other words]l ifletected errors can
be masked with this method, then full system recovery is attainable with systesretwtkpointing.
However, if there exist detected cases where the system cannoblenest, additional support beyond

checkpointing for recovery will be needed.
e Processor and complete memory state checkpointing with bufferig of CPU-to-device write re-
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guests. While the above methods focus on checkpointing and aim to restore the pstteeof the
system, a fault can still propagate outside of the system. For example, &dpaebt is sent to the
network interface card as a result of the fault. Subsequently, this lpagstturns out to be a part of
the network packet to be sent to the other designated machine on the ne@vidykafter this event,
the fault is detected and the rollback recovery process is triggeredrtunétely, at this point in time,

the fault has become visible by the other machine and its effect is irreversible

To mitigate situations like this, a buffering mechanism needs to be employedlhndpdhe output
request temporarily until the system state has been verified. As a resudiniveeice the processor
and complete memory state checkpointing with support for output everdringff In this scheme,
all CPU-to-device write requests are buffered until the next checkptfian error detection occurs
during a checkpoint interval, the buffered requests are discardddsthe potential faulty events do
not propagate outside of the faulty system. As discussed in the last seatioise a hardware module

to intercept and buffer the CPU-to-device requests.

Overall, with these proposed methods, we can view the SWAT recoverylemtmoonsist potentially
of two essential sub-modules to enable full system recovery: (1) lgverarocessor-and-memory level
checkpointing for execution state restoration and (2) buffering CPtlktice requests for preventing the
irreversible effect of fault propagation to the outside world. In oureexpent, we aim to find out the

importance of both techniques in terms of system recoverability and theirtigdi@rerheads.

6.6 Methodology

System reliability depends not only on how well a detection mechanism deteetsa, but also on how
capable the recovery mechanism is able to mask the detected errorstiénlaarwe want to understand
whether employing only the checkpointing mechanism would suffice. Hamoar experiments, we first in-
vestigate the system recoverability when the different recovery mettesttsibled in Section 6.5 are applied
to the errors that are detected by the hardware-only detectors (SedijonAdter that, we set up exper-
iments to look into the overheads incurred by the recovery mechanism tteattiply contains hardware

checkpointing and output buffering. We describe these experimentsaih loelow.
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6.6.1 System Recoverability

For systems that employ checkpointing for rollback recovery, systeaveeability may depend not only on
the integrity of architectural state (processor and memory state) but alee proper handling of I/O events.
In SWAT, because faults can manifest in the software before becomiegtdble symptoms, preventing
faults from propagating outside the system before detection is key to foNegy.

To create an environment where /O activities are the norm, we focusrearsgorkloads to gain full
understanding of how SWAT ensures full recovery of the system. titicpéar, we investigate the following
four methods described previously in Section 6.5. The following deschibesthese methods are imple-
mented in our experiments. We apply these methods to only the server systentvimibystem simulation

environment (described in Section 4.4.1) while running the server watkloa

1. Proc+ParMem: Processor and partial memory state checkpointig. In our simulator based on
GEMS, we implemented ReVive to take snapshots of the register state andetatgenndo logs of
the memory state as the execution progresses. For recovery, thegmostde is rolled back and the

memory state is restored through the undo logs.

In our experiments, we take a checkpoint at the beginning of the 10 millioruatstns of detailed
microarchitectural simulation. This corresponds to a checkpoint intefvaD anillion instructions.
After a detection, a rollback recovery process is triggered and the apepficis then functionally

simulated to completion using Simics.

2. Proc+FullMem: Processor and complete memory state checkpointin In our experiments, we
enhance the ReVive mechanism in GEMS to generate undo logs of memokg ket are modified
by the devices in the system. That is, if a device modifies any part of the mehong a checkpoint
interval in our simulation, this mechanism will create an undo log entry for theypdified version
of each memory block before the block is written to for the first time since thekestkpoint. The

rollback recovery and replay are identical to Proc+ParMem.

3. Full _Sys: Full system level checkpointing.To implement this method, we rely on Simics to take a
checkpoint of the state of the processor, memory, and different deofdbe server system (the client

system is not checkpointed) before the 10 million instructions of microart¢hitdcsimulation. After
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a detection, in rollback recovery, the state of the server system is ré$tone the Simics checkpoint.

The replay process is the same as Proc+ParMem.

4. Proc+FullMem+Buffer _Output: Processor and complete memory state checkpointing withtffer-
ing of CPU-to-device write requests. In our simulation, we employed the module described in
Proc+FullMem for checkpointing the state of the processor and memorbuffer output requests,
we implemented a Simics module for storing the processor-to-device writestscared sending the
requests out to the devices at the next checkpoint. We did not limit the diais diuffer so that we can
probe the potential storage overhead needed to implement this bufferitmanign. If a rollback is
triggered due to a detection, the stored requests are discarded b#eguaee suspected to be faulty.

After the rollback, the replay process is the same as Proc+ParMem.

To quantitatively study system recoverability, we apply the above methodisediault injection cam-
paign performed on the server workloads as described in Section 4 #e? tife injected faults are detected
by the SWAT detection mechanism, we assume that the diagnosis procesglgadentifies the faults and
the appropriate repair action is subsequently taken. Hence, the rolemkery process is triggered post-
detection. Then, we functionally simulate the restored state until the applicatiopletes or a symptom
occurs. We note that this re-execution happens on the fault-free &erdw diagnosis and repair has already
been performed.

To determine recoverability, we compare the output of the completed applitatibat of the fault-free
run. If the outputs are identical, we consider the recovery was sdutedshe outputs are different, we
consider the system not properly recovered and classify the casslastadata corruption (SDC). Further,
if the system ends up hanging/crashing, we consider such casescsdetarecoverable errors (DUE).

For each recovery method described above, we define system raloiditieas the percentage of detected
cases that yield identical outputs as the fault-free execution after theargqurocess (i.e., the error effect is
completely masked).

Achieving high system recoverability is certainly the major goal of any regomethod. However,
implementing the method does incur costs in area, power, and performdrarefdre, in the following, we

describe the experiments used for investigating the overheads of theéiglaterovery scheme.
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Base Processor Parameters

Processor Type In-Order 1-wide
Clock speed 2GHz
Number of Cores on chip 16

Base Memory Hierarchy Parameters
Data L1/Instruction L1 16KB each
L1 hit latency 1 cycle
L2 (Shared and Unified) 256KB to 2048KB
L2 hit/miss latency 6/80 cycles
Base Cache Coherence Protocol (between L1 and INMDESI
Memory Size 512MB
Memory Consistency Model Sequential Consistency

Table 6.2: Parameters of the simulated multicore system.

6.6.2 Performance Overhead of Hardware Checkpointing

Hardware checkpointing is essential for restoring the pristine executitmia SWAT. In particular, we fo-
cus on ReVive since it incurs low hardware overhead. On the othel, fa@ original ReVive work shows
that the scheme incurs some performance overhead during fault-feeatiop. Because the original work
focuses on one system configuration and one checkpoint intervalnitlisar how this performance overhead
changes with different system configurations and checkpoint interValksrefore, we set out to investigate
the performance overhead of ReVive for different system settingslfous find the optimal design param-
eters. Here, we emphasize that the optimal design parameter for chdaigaoiay not be optimal for the
entire recovery scheme. For example, if SWAT recovery were to inclugbbuffering, choosing a longer
checkpoint interval will likely reduce the performance overhead of iReYut may require the buffering
mechanism to have a larger storage buffer, incurring higher arebheaebr

To gain insight into the fault-free cost of checkpointing, we evaluate tHeipeance overhead of ReVive
on a 16-core system with varying cache sizes. Table 6.2 shows the dgsténs study. To take advantage
of all the cores, we run four parallel applications from the SPLASH berark suite (FFT, LU, Ocean, and
Radix), including the ones that give high performance overhead inved9v®].

We use the Ruby memory system simulator in the Wisconsin GEMS simulator along intitieeh
Simics to model a full system environment running SPLASH applications om8giaris. (ReVive was

simulated on a microarchitectural simulator that does not simulate the OS.) The iff@iente between
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this setup and the base setup described in Section 4.4.1 is that we do no¢ @eattmicroarchitectural
simulator in GEMS. While using Opal would add accuracy to our experimemtisatsignificantly lengthens
the simulation time. As much of ReVive'’s performance overhead actually cboresthe increased traffic
and latency in the memory system [59], we use only Ruby to study the perfoens&rrhead of ReVive with
simulations that span tens of billions of instructions (this would take a long time ifeve W use Opal).

The ReVive work focuses on checkpoints that are 10 million cycles longinBierstand how the over-
head of ReVive changes with checkpoint intervals, we vary the clogtkimterval from 500,000 cycles to
50 million cycles. We choose 50 million cycles at the high end to see whether énkead reduces sig-
nificantly with even longer intervals. We pick 500,000 cycles at the low endbserve how significant the
performance overhead becomes with frequent checkpoints. Thisahtgemiso close to the 400,000-cycle
(4% 100,000 cycles) validation latency in SafetyNet.

Our experiments also aim to show the impact of different system confignsatidence, we vary the
shared L2 cache size from 256KB to 2048KB. (The ReVive work oefyorts results for 128KB private L2
caches.) We use a very small 256KB L2 cache at the low end to capturédive performs when cache
misses are frequent. For the high end, we use a 2048KB L2 cache to matoketli 2 cache size in ReVive.

To quantify the performance overhead, we calculate the slowdown adtarsyequipped with ReVive
when compared to the baseline system with the same system configuratiosaieg cache sizes) but with

no checkpointing.

6.6.3 Storage Overhead of Output Buffering

The sphere of recoverability defines the system components that averalole by the recovery scheme. At
the boundary of this sphere, events need to be buffered before thavittasin the sphere is validated. After
the state is validated (e.g., no error detection), the events are releasei tiegtieations. Because we use
processor and memory state checkpointing, an output event bufferictygamiem, if necessary, should be in
place to prevent faulty events from propagating beyond the procasdanemory to the system devices.
To determine the potential I/0 events that need to be handled by SWAT rgcaseuse the Simics full-
system simulator to observe the interactions between the CPU and devitése amemory and devices. We

created a module in Simics (much like the Wisconsin GEMS simulator) to intercegaaliwrite requests
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issued by the processor to the devices (e.g., the network interfaceacard)l read/write requests issued by
the devices to the main memory (e.g., DMA transfer from disk to memaory).

While it has been previously shown that server workloads have higBerofivity than SPEC workloads
(Chapter 4), we do not know how they compare in terms of I/O activity quéinéte Intuitively, server
workloads would have more 1/O traffic as they often communicate with the diskiatwork. In our exper-
iments, we compare our two server applications, Apache and SSH daegaimstahe SPEC applications.
For SPEC workloads, we show the results for mcf and parser becayskdte the highest I/0 activity.

In our experiments, we aim to observe the 1/0 activity throughout the lifetintfeecdpplication execution
in order to fully understand the maximum requirement for the buffer stoddgally, we would like to have
a modern processor that runs at a high clock rate (e.g., 2GHz). Howiegdatency of the PCI bus would
be relatively high when compared to the fast processor and we coutsbnfijure the PCI bus speed freely
in Simics. Hence, we chose to use the default Simics configuration, whiomassa 75MHz processor.
We note that the results could potentially be more conservative (e.g., the stiatage requirement may be
higher).

We measured these /O activities in terms of the amount of data that needsufbdsedy which includes
both the address (64-bit) and the data (varies between 1 and 64 bytestéssing a specific device. We
collect this information at different buffering intervals, ranging fromQD to 100 million instructions.
As we already found that many detections happen within 100k instructionsdpt@h4, the low end of
the chosen intervals caters to future detectors that have latencies @hdieisttuctions. At the high end,
an interval of 100 million instructions aims to buffer events for the very feteact®ns that take a long
time to occur. Intuitively, if the buffering interval is shorter, the data buffen be made smaller since the
accumulated amount of data requests is less. However, the bufferingainsegoverned by the maximum
detection latency supported by the checkpointing mechanism. By obtainingtkesary storage overhead
for the buffering mechanism from our experiments, we can design thelmiodBWAT recovery responsible

for handling I/O events accordingly.
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6.7 Results

In this section, we first investigate the recoverability when the system haslta in particular, the ex-
perimental results help us determine whether checkpointing mechanisms edandficient to ensure full
recovery, or event buffering mechanisms are also needed. To theflues knowledge, this is the first work
that quantitatively evaluates the limitation, if any, of the processor-and-nyelexel hardware checkpoint-
ing mechanism.

Based on the results obtained on system recoverability, we discuss tegyfa designing an effective
SWAT recovery solution. After that, we evaluate the potential overhehtteecsubcomponents of SWAT

recovery. At the end of this section, we discuss the potential recoubhgnmse for SWAT.

6.7.1 System Recoverability

As we found that SWAT symptom detectors are able to detect most of the shjgateanent faults within 10
million instructions (Section 4.6.1), let us first investigate the system reduiligrdor the detection latency

of 10 million instructions. This study aims to show if it is sufficient to take promeasd memory state

checkpoints or if full recovery requires additional mechanisms suchtasibevent buffering. To investigate
recoverability, we attempt to recover the permanent faults injected into ttensysnning server workloads
with the methods described in Section 6.6.1.

Figure 6.1 shows the recovery outcome when different methods arefarsegtovering the detected
faults. The different bars represent the results under the differetitods. The different stacks in each bar
show the different outcomes of the detections under these differemtagcmethods Recoveredlenotes
the cases where the applications generated correct outputs after tlaekdald re-executiorDUE repre-
sents the detected cases that end up leading to a detection after re-exe@fdambserve system hangs in
most of these cases.) If the re-executions of the detected casestgatifiesent outputs than the correct
output, we categorize them &OC The number at the top of each bar shows the recoverability as defined in
Section 6.6.1.

Interestingly, from thé’roc+ParMembar in Figure 6.1, more than two-thirds (68.6%) of the detected
errorscan be fully recovered by simply rolling back the processor state and the menmsishthat are

modified by the processor even with 1/O-intensive server workloadsimgn This shows the checkpointing
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Figure 6.1: Recoverability of server workloads

method is very effective for the majority of the detected faults. Neverthetesignificant number of the
detections (31.1%) end up causing the system to crash/hang after raldobplay. These cases essentially
show the faults corrupt the system state and cannot be recoverestdming the processor and memory state.
Further, 0.3% of the detection results in incorrect output, indicating thétsfda propagate outside of the
system, become visible to the client system, and silently corrupt the data ofgleasipns.

By also logging memory blocks that are modified by the devices in the sy&tot+FullMemis able
to improve recoverability slightly to 70.5%. The difference in recoverabilitipeen this method and
Proc+ParMemrepresents the percentage of faults that corrupt the memory blockssaddey the devices
but fail to be recovered biProc+ParMem Hence, if ReVive is to be deployed in real systems, the scheme
has to handle not only interactions between the processor and memolyditiiase between the devices and
memory. Nevertheless, the number of unrecoverable cases remaingaignifiith 29.1% causing system
crash/hang and 0.4% producing faulty output. This shows that pracesdanemory state checkpointing
alone is clearly insufficient to achieve high level of recoverability for ¢h@srkloads.

Through checkpointing the entire system (including the state of the devirestan determine whether
faults can be fully recovered by simply restoring the state of the servdwhae system. From Figure 6.1,

Full_Sysimproves the recoverability marginally, when comparedPtoc+FullMem to 70.8%. Though a
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small number of faults can be recovered this way, these results show thely rleeckpointing the entire
state of the hardware system does not necessarily result in full systsoaery. Specifically, by using
Full_Systo roll back the state of the processor, memory, and various devicesystemsessentially has
no memory of sending out any potentially faulty events to the outside world amatisf-synch with the
client system. As requests arrive at the server system, the serveragippliand the OS detect many errors
(unexpected inputs) and trigger the system to halt (to prevent criticatsefrom corrupting the system
further). Essentially, the server system becomes the node in the distriystedn that has the inconsistent
state. These results therefore motivate the need for support for hguvdictivity.

Proc+FullMem+Buffer Outputenhancefroc+FullMemwith buffering of CPU-to-device write requests.
As shown in Figure 6.1, the number of recoverable faults increases sagrilfi from 70.5% to 99.0%, with
only 1.0% becoming DUEs. These results show that buffering the serstans’s output events is highly
effective in containing a detected fault and preserving the integrity ofyter. This also suggests proces-
sor and memory state checkpointing cannot be deployed as the sole methedofeering detected faults
in SWAT since our experiments show that faults do propagate to the resé aglyftem and become un-
recoverable. In contrast to output buffering, input event bufégreplaying, although very important for
achieving 100% recoverability, seems to play a lesser role in this contextisTdgsause many input events
are regenerated by the CPU (as pointed out by Nakano et al. in [50hgdue-execution. Given the high
system recoverability, buffering output requests is vital to the integrity ®S¥WAT system, at least for the

detections investigated here that have latencies of up to 10 million instructions.

6.7.2 Ensuring Full System Recovery in SWAT

From our experimental results for system recoverability, we see thattbetltheckpointing and output
buffering mechanisms need to be involved for error recovery. Wedisgtiss how the design parameters of
these mechanisms impact system recoverability.

For SWAT and other systems that rely on checkpointing and bufferingieitmverability of a system
depends on theecovery intervallefined by the checkpointing mechanism, which subsequently impacts the
output buffering mechanism. The recovery interval is defined as the maxintarval for rollback recovery,

similar to the definition used in database systems [27]. In checkpointing, thigahte the product of the
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checkpoint interval and the number of stored checkpoints. For exaifiiie,checkpointing scheme has a
checkpoint interval of 5 million cycles and is to keep three checkpoints git@very interval is 15 million
cycles. In order to recover from an error detection, the detection lateas to be strictly shorter than
this recovery interval. In other words, if the recovery interval can bderlanger, more detections can be
recovered and higher system recoverability can be achieved. Hovifethe recovery interval is longer, the
buffering mechanism likely needs to store more events. This is becausgsthensstates are not validated
during this interval. Hence, the buffering mechanism has to preventtitiulty events from leaving the
sphere of recoverability.

In SWAT, since the symptom detectors detect most faults within 10 million instrigtlehus look at
recovery schemes that handle this latency.

To ensure the pristine checkpoint is preserved, the recovery inteeeals to be larger than 10 million
instructions. One simple design choice for checkpointing is to use a chatkpigrval of 10 million in-
structions. In this case, the checkpointing mechanism needs to keep talpohgs. As long as the fault
can corrupt the memory state before it is detected, there can alwayscbeaxie where the fault corrupts
the state right before a checkpoint is taken but gets detected after ttigoi@. Hence, at least two stored
checkpoints are always needed to ensure the restoration of the priateieGonsequently, the recovery in-
terval is 2<10=20 million instructions. Thus, the buffering mechanism needs to buiteuts for 20 million
instructions.

An alternative design is to take checkpoints more frequently, e.g., every 1miiligructions. In this
design, 11 checkpoints are kept to make up a recovery interval of 11 miitigdructions. As a result, the
buffering mechanism will need to buffer for 11 million instructions.

From these two examples, we can see that there is tension between thpodhiog and buffering
mechanisms. For the same targeted detection latency, longer checkpowdlstdten yield longer recov-
ery intervals. Therefore, more events need to be stored by the bgffagchanism, increasing the required
storage overhead. To achieve shorter recovery intervals, chatkpeed to be taken more frequently. How-
ever, in ReVive, shorter checkpoint intervals generally result in megeatiation in performance (discussed
in Section 6.3.2).

Given these tradeoffs of the different design parameters in the chietikgy and buffering mechanisms,
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we question whether a sweet spot can be sought to derive a recmhergne that is low cost in area, per-
formance, and power. Hence, in the following, we first look at the gheiciting overheads in the ReVive
scheme for different checkpoint intervals. We then look at the outpifiedng overhead for different re-

covery intervals. After that, we draw conclusions for an overall recpwscheme for a given amount of

recoverability.

6.7.3 Performance Overhead of Hardware Checkpointing

As the cost of DRAM continues to decrease due to device scaling, R§danay be a more attractive
approach than SafetyNet [74] for implementing processor and memorycsiet&pointing. However, the
performance overhead incurred by ReVive may negate the benefitlofitarea cost. To investigate this
overhead, we implemented the ReVive recovery mechanism in a multicorensgeteéran the benchmarks
that were previously reported to incur high performance overhead iorifi@al ReVive work.

Figures 6.2(a), (b), (c), and (d) show the slowdowns of four SRiABplications caused by hardware
checkpointing during fault-free execution. While the original ReVivekwamly shows the impact of ReVive
for a fixed checkpointing interval (10 million cycles) on one multiprocesgetesn configuration (128 KB
of private L2 cache), we vary the checkpointing interval from 500,080 million, shown on the x-axis,
and the shared L2 cache size from 256 KB to 2048 KB, representecelgifterent lines, in our multicore
system.

From the figures, we see that the checkpointing scheme incurs highermarice overhead as the
checkpoint interval decreases for all four applications (as high a8xaslowdown for Ocean). This is
expected due to two effects: increased synchronization overheagbgratle activity. For the former, while
the time to synchronize different cores is more or less constant, this eekbezomes dominant as the
checkpoint interval decreases. For the latter, the upgrade traffieases and incurs overhead because
the shorter checkpoint intervals force dirty cache lines to be downdréictan modifiedto shared more
frequently. The result of this phenomenon is the increased number of misses after the establishment
of each checkpoint, degrading the performance noticeably. Heregtedhat the reported overhead may be

conservative since we assume a sequentially consistent sysiawertheless, the increased overhead for

!sequential consistency is the natural model in the GEMS simulation infcaste, as also used for the work on the SafetyNet
recovery evaluation [74].
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Figure 6.2: Slowdowns in fault-free execution of (a) LU, (b) FFT, (edi, and (d) Ocean due to hardware
checkpointing.

ReVive when using smaller checkpoint intervals is expected, as mentiofig@]in

Aside from the checkpoint interval, the cache size also impacts the effjc@ithe checkpointing
scheme. The ReVive work projects thsmhallerL2 caches would incur higher overhead when checkpoint-
ing and distributed parity are both enabled (Table 2 in [59]). Interestimdign considering checkpointing
alone, our results show that the checkpointing scheme incurs highéreawkas the L2 cache sizdasger.
In particular, the checkpointing scheme incurs no more than 4% overbkeaskall applications and check-
point intervals in the system equipped with a 256 KB L2 cache. This is mainlyechly the low perfor-
mance of the baseline system (without checkpointing). Since the workirdpse not fit in the L2 cache,
the baseline system needs to replace cache lines more often due to ida&paeity misses. This system

behavior effectively reduces the impact of the checkpointing schenazibe¢1) many dirty lines might have
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already been flushed during each checkpoint and (2) the checkppéetieme hence has a similar cache line
upgrade behavior as the baseline system.

From the ReVive work [59], three applications (FFT, Radix, and Oceame shown to incur over 13%
fault-free performance overhead when distributed parity is enabledenVdistributed parity is disabled
(same as the scheme we implemented), these applications incur between 6%8@adethead. From our
experiments, all applications incur less than 5% overhead for the samiepolidnterval (10 million cy-
cles). This result is comparable to ReVive and the difference is likelyethlong the slightly different system
architectures and the difference in processor architectures. Nama&fjyeRwas deployed in a distributed
shared memory system while the checkpointing scheme shown here is for soneuttystem. Further, Re-
Vive assumes the system to have aggressive 6-issue processaidecajphandling multiple outstanding
loads and stores. Here, we assume single-issue sequentially congistessprs. Despite these differences,
the results shown here are very similar to what is reported in ReVive (elgeckpoint interval of 10 million
cycles).

From Figure 6.2, we see that using checkpoint intervals of 1 million cycleshaiter in this scheme
incurs significant performance overhead, making it unattractive fokISWevertheless, ReVive is favorable
for checkpoint intervals of 5 million cycles or more as the overhead stdgw/686 for all four applications.

Since the detection latency we focus on is within 10 million instructions, checkpartals of 5 and
10 million instructions seem to be the appropriate design choices. With shadsevals, the performance
impact would be too great. With longer intervals, since two checkpoints ameyalneeded, the recovery
interval would be much longer than 10 million instructions, putting pressureebufiering mechanism. To

understand this effect quantitatively, we next investigate the overtféhd output buffering mechanism.

6.7.4 Storage Overhead of Output Buffering

In Section 6.7.1, we found that output buffering is key to achieve higtesysecoverability. To further
our understanding of the overheads involved for deploying a buffariechanism, we investigate the 1/O
activities of Apache web server and SSH daemon, and compare them wiBP#0 INT applications, mcf
and parser. We measure these activities across different buffetergats (which are the same as recovery

intervals). For output requests, this interval is defined as the time peribdititarequests must be buffered
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before they leave the sphere of recoverability and become visible to deWoeinput requests, this interval
is the time period that the requests need to be buffered for replay in cageltifack recovery.

From Section 6.7.3, we found that the smallest checkpoint interval ofiedRat does not significantly
degrade the performance of fault-free operation is 5 million instructions. ®ittaximum detection la-
tency of 10 million instructions, the recovery interval is therefore threelqgt@nt intervals, i.e., 15 million
instructions. Hence, the following discussion focuses on this intervalidongbuffering.

Figures 6.3(a), (b), (c), and (d) show the I/O activities in our applicatimeross different buffering
intervals. In particular, Figure 6.3(a) shows the maximum number of CRi&t@e stores, Figure 6.3(b)
shows the maximum buffer size needed to hold these write requests @ddredata), Figure 6.3(c) shows
the maximum number of CPU-to-device loads, and Figure 6.3(d) shows thienomabuffer size needed to
hold the read requests (address and data).

From Figure 6.3, as expected, longer buffering intervals result in higlmaber of requests and amount
of data to be buffered. Of the four applications, Apache has the mosttidtias, followed by SSH daemon,
then parser, then mcf.

When comparing Apache and parser (the SPEC application with higher tiaties) at a buffering
interval of 15 million instructions, Apache has 13 times the number of CPUAtmelstores (Figure 6.3(a))
and 15 times the amount of data to be buffered for these write requestsgEd(b)). For reads, the
CPU-to-device bandwidth of Apache is 5 times that of parser. From tlesséts, we see that not only the
server applications have more OS activities, they also have high I/O bahdreiguirements than SPEC
applications. Hence, this validates our use of server workloads fasstgethe 1/0 buffering mechanism
and helps us better understand system recoverability.

Besides the differences between SPEC and server workloads, teemaiations between the two server
applications as well. Apache and SSH daemon differ mainly when the byfferiervals become longer.
Specifically, when the interval is 15 million instructions, the CPU-to-device watedwidth (Figure 6.3(b))
of Apache is 10 times that of SSH daemon and the CPU-to-device read ioim@figure 6.3(d)) is 8 times
the bandwidth consumed by SSH daemon. With shorter intervals, the 1/0 elents get accumulated as
much when compared to longer intervals. Hence, the 1/O activities betweevothibads are similar. In

longer intervals, the different behaviors of the applications start to.sBgvinspecting the CPU utilization

113



100,000 +—

1,000,000 -

—+apache | —-apache
-=—sshd / —=sshd /
10,000 4+—— = parser 100,000 4+—— ™ parser
-o-mcf ~&-mcf
3 0
5 e
(% 1,000 A é‘ 10,000 A
5 °
g 100 = 2 1,000
e il
z
z
10 100 =
1 T T T . 10 T T . .
10K 100K 1M 10M 100M 10K 100K M 10M 100M
Buffering Interval (instructions) Buffering Interval (instructions)
(@) (b)
100,000 T o che 1,000,000 T oo
-=-sshd -=-sshd
10,000 4+—— " parser 100,000 4—— ~*— parser
~&-mcf -o-mcf
(2} 12}
3B Q
S 1,000 1 2 10,000 1
-
kS S
@ 9]
-g 100 'g 1,000 A
2 2
10 3 100 <
{ {
1 T T T . 10 T T T .
10K 100K 1M 10M 100M 10K 100K M 10M 100M
Buffering Interval (instructions) Buffering Interval (instructions)
() (d)
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Figure 6.4: Interaction between CPU and specific devices in ApacheS&ddi&emon. (a) and (b) shows the
maximum buffer size for storing device-specific writes and reads, césply, in Apache. (c) and (d) shows
the maximum buffer size for storing device-specific writes and readsecésgely, in SSH daemon.

of the system, we find that SSH daemon is more compute-intensive than Alpaciuese of the encryption
and decryption operations. As aresult, the CPU is busy computing wheimgu8SH daemon and generates
relatively less 1/O traffic than Apache.

To understand the sources of these 1/O activities, we also look into theeggpérific requests in Fig-
ures 6.4(a), (b), (c), and (d). Figures 6.4(a) and (b) show thieelspecific storage requirements for CPU-
to-device write and read requests, respectively, when Apache isxqurffigures 6.4(c) and (d) show similar
data when SSH daemon is running.

From Figures 6.4(a) and (b), the CPU reads 27KB of data and writeB 21ldata from and to the net-

work interface card, respectively, in the 15 million instructions bufferirigriral for Apache. SSH daemon,
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on the other hand, has read and write traffic of under 4KB from and toehgork card as shown in Fig-
ures 6.4(c) and (d). As both Apache and SSH daemon are serveraigplg; the majority of CPU reads and
a large portion of CPU writes come from the network interface card, indigdltia receiving and sending
of packets to and from the connected clients. As mentioned earlier, SShbdas more compute inten-
sive because of the encryption and decryption functions, the 1/O traiffedatively mild when compared to
Apache.

The CPU-to-device write requests are dominated by the DMA controller aoisteto-PCl bridge. From
Figure 6.4(a), at an interval of 15 million instructions, 126KB of data ndedse buffered for Apache.
Figure 6.4(c), however, shows that only 13KB of data needs to beradfffor SSH daemon. These write
activities are mainly for setting up the DMA transfers to move data between thvemrkecard and the mem-
ory. The rest of the 1/O activity belongs to the PCI device that is resplen&bdelivering interrupts from
the network device to the CPU.

As the server applications are under load, there is a significant amolitt ativity within the system.
Consequently, I/O buffering mechanisms with sufficient storage must béaae po prevent faults from
propagating to the devices and the outside world. Once the effect ofulidéromes visible to the rest of
the system, full system recovery is thwarted. For example, from Figu(e)6\8e see that a 110KB storage
is needed to sufficiently buffer output requests for Apache at a eegomterval of 15 million instructions
to attain the high recoverability reported in Section 6.7.1. While this overheadaotagem significant, we
note that the storage is dedicated only for reliability and improves neitherrpaweerformance. Further,
when compared to the near-zero hardware cost SWAT detectors, thimmgo is relatively costly. One
potential cost reduction approach is to offload this buffering overbeadwndividual devices. As shown in
Figure 6.4, a 20KB storage can be added on the network interface chuodffeo write requests if the main
goal of the buffering mechanism is not to send out bad network padkitfier way, as long as the executing
software interacts with other devices in the SWAT system, buffering mechardase needed to stop fault
propagation that affects full system recovery.

Depending on the reliability needs and the available budget, differerdgringfintervals can be chosen.
As we target a checkpoint interval of at least 5 million instructions with theesponding recovery interval

of 15 million instructions, we discuss the possible overall recovery schethe iiollowing section.
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6.7.5 Overall Recovery Scheme

With results presented in Sections 6.7.3 and 6.7.4, we now discuss the possivery scheme for SWAT.
Specifically, since the processor-and-memory checkpointing and duiffating mechanisms are required
to fully recover the system in most of the cases (Section 6.7.1), we foctleequossible overhead of this

scheme.

Handling a Maximum Detection Latency of 10 Million Instructions

We start by looking at the recovery scheme for handling detection latetihgdesre within 10 million in-
structions. As discussed in Section 6.7.2, the recovery interval thereémds to be larger than 10 million
instructions.

One straightforward design choice is to pick a checkpoint interval of 10 millistructions. This way,
the ReVive checkpointing scheme incurs a low performance overhed&air less (with 2MB L2 from
Figure 6.2). As we need to keep two checkpoints, the recovery inter2@lnsllion instructions. As a result,
the buffering mechanism needs to have a 150KB storage (Figure &@(B)puffering interval of 20 million
instructions. In this design, while we chose the checkpoint interval thatsriow performance overhead,
the storage overhead of the buffering mechanism is significant beoftiselong buffering interval.

Alternatively, to relieve pressure on the buffering mechanism, we cactseddorter checkpoint interval
of 5 million instructions. From Figure 6.2, the performance overhead is @&ssra slight increase from the
design above. With a maximum detection latency of 10 million instructions, theegcmterval needs to be
three checkpoint intervals, or 15 million instructions. Thus, from Figuréd, e maximum output buffer
storage needed is about 110KB (for Apache). Compared with the lsigfrdehe size of the buffer storage
is reduced by 40KB while there is a slight increase of performance eadrfor the checkpointing scheme.
Nevertheless, with a buffering mechanism requiring over 100KB of g&gridne area cost is still somewhat
significant, especially when comparing to the very low cost SWAT symptoraebastection mechanism.

Overall, given these two potential configurations for the recoverymeheave find the overheads in
performance and area have room for improvement. In particular, whilpaffermance overhead of the
checkpointing mechanism may be sufficiently low for some systems, the larggestoeeded for the buffer-

ing mechanism, while not exorbitant, is larger than the very low cost alwaydetection mechanism of
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SWAT. Although we could not find a cost-effective recovery schentkispoint, we believe that this analy-

sis prompts future research to focus on even lower cost checkpoimithigudfering mechanisms.

Handling a Maximum Detection Latency of 100,000 Instructions

While the above two schemes aim to handle a maximum detection latency of 10 milliarctisis, future
generations of SWAT may be able to improve this latency significantly. Fromesults in Section 4.6.3,
close to 90% of the detections occur within 100,000 instructions. Assuming thésttee maximum latency
for future SWAT detectors, the checkpointing mechanism needs to hawechpoint interval of 100,000 or
fewer instructions to minimize the recovery interval. This short recoveryiatevill drastically reduce the
output buffering overhead to 2KB as shown in Figure 6.3(b) (100febuf interval for Apache). However,
from Figure 6.2, the ReVive scheme will certainly degrade the performéow much to be useful. One
alternative is to use SafetyNet as the checkpointing scheme. As distefeed, the large CLBs (512KB)
needed would incur too much area overhead.

Overall, when considering the shorter detection latency of 100,000 itismacthe buffering overhead
is likely to be affordable. Nevertheless, there lacks an efficient cludakpg scheme that incurs low over-
head in both area and performance. Therefore, a new low-ovedineattipointing scheme will need to be

developed to achieve this short recovery interval.

Implementing Output Buffering

Besides storage overhead, one design issue for the output buffedalganism is how it should operate.
Because all CPU-to-device communications could potentially have harniédt®fthe buffering mecha-
nism needs to intercept the requests, store these requests, and tireder@spiests (outside of the sphere of
recoverability) when the system is validated to be correct. In modern Rénsysan ample location for this
mechanism may be the northbridge, which handles communications among ¢keegmg the memory, the
video card, and the southbridge (responsible for communicating with otingrherals in the system)To

fulfill the storage requirements, SRAM modules (which continue to get lameériess expensive) may be

2For current and future systems that integrate memory and I/O congroltechip, designers may choose to integrate the buffer-
ing mechanism on-chip as well if the budget allows. Otherwise, the lngfenodule can still reside at the northbridge, as long as
the datapath used by all output events are covered to ensure fauihcoema
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integrated with the northbridge to handle the buffering.

Alternatively, as the lowest level of cache continues to grow in size, tifierfng mechanism can poten-
tially reside on-chip. In this scheme, because the datapath between teegmoand the I/O ports is usually
separated from the datapath of the cache hierarchy, additional cir@uitsed to re-route the 1/0 requests
towards the cache that is reconfigurable for storing these requestn M requests can be released, they
are transferred off-chip from the cache. The disadvantage of tipiaph, however, is the added design
complexity in the memory subsystem and the increased on-chip area cost.

If the detection latency is short enough (e.g., less than 10,000 instructibesg CPU-to-device write
requests can potentially be kept in the store buffer. With this approach,ligatweight checkpointing
mechanisms that can take frequent checkpoints at very low perfornaaiticarea overheads are required.
Another potential strategy is to leverage existing techniques introducednsatttional memory systems,
where the cache is versioned to keep track of speculative states.

Overall, as we explored the possible implementations of the recovery schenfeund that existing
strategies are quite expensive. (We note that this is the case with many e¢&m checkpoint/replay mech-
anisms proposed in the literature, not just SWAT. We, however, quantfigdor the first time.) Therefore,
a search for a new very low cost hardware checkpointing mechanisaqusred for building an effective

SWAT recovery scheme.

6.8 Summary and Discussion

In this chapter, we explore the design of the possible recovery schei8@#I. Given the detection latency
of the SWAT symptom monitors is relatively short, we focus on hardwarekgwnting schemes that are
capable of restoring the state of the processor and memory. In this comtexdjscussion assumes the
sphere of the recoverability to include both the processor and memorye famlts in SWAT can potentially
propagate and cause faulty events to be sent outside of the sphecearability, we also discuss the use
of 1/0O buffering mechanisms.

Through our study of system recoverability using 1/O-intensive sexeekloads, we found that both the
checkpointing mechanism, for restoring pristine execution state, and thet dutffering mechanism, for

preventing faults from propagating outside of the sphere of recoligyaére equally important to guarantee
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high system recoverability.

As ReVive incurs a low area overhead when compared to another camt@mscheme, SafetyNet, we
use ReVive as the checkpointing mechanism of the recovery modulertNeless, ReVive's performance
overhead may be of concern. We then investigate the performanceddggrafor a number of SPLASH
parallel applications and found that ReVive only impacts performance sligiiin the checkpoint interval
is 5 million instructions or longer.

For output buffering, we look into the storage requirements needeafdiniy potentially faulty output
events. Our results show that the size of the buffer storage is signifidaart the checkpoint interval is in
the range of millions of instructions.

With these findings, we discuss the possible recovery schemes and firekigting recovery strate-
gies are quite expensive. Hence, from our experiments that investigatystem recoverability and the
overheads incurred by the checkpointing and the output bufferinganésrhs, we see two important future
directions. First, to improve recoverability and minimize the cost for I/O handtimg detection latencies
need to be reduced. Second, if the detection latency can be reduaethéhe is a need for a rollback re-
covery scheme that can take frequent checkpoints (e.g., every D08dfuctions) while incurring minimal
cost in area, power, and performance. In concurrent work with rigaggues, we have already made signif-
icant strides on the former, reducing latencies by orders of magnitudg lisiter detectors and metrics (not
reported here) [64]. At these latencies (roughly 10’s of thousaitdsy be possible to consider recovery
strategies that only checkpoint the processor state and buffer menuagsas until they are validated (e.qg.,

transactional memory style implementations). We leave this for future work.
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Chapter 7

SWAT-SIim: Fast and Accurate Simulation
of Permanent Hardware Faults

In the previous chapters, the evaluations of the detection, diagnosis@ndry components of SWAT have
been through microarchitecture-level fault injections, which has beeth fas other studies as well [4, 17,
38, 81]. However, because hardware faults occur at the devickedeaot at the microarchitecture level,
it is unclear whether these evaluations are accurate. To answer thee@lpestion, this chapter introduces a
methodology we developed that enables accurate modeling of hardwhsesfithe microarchitecture level.
Leveraging the hierarchical simulation paradigm, our fault simulation infretstre, SWAT-Simis able to
accurately model gate-level faults at speed comparable to microarchilesitmulations [34]. SWAT-Sim
not only allows us to accurately evaluate the SWAT system, but it is also aplelita evaluating other
reliability solutions proposed at abstraction levels higher than the microastthiédevel.

For the rest of the chapter, we first motivate the needs and challengderfeing an efficient fault
simulation methodology. Then, we describe the SWAT-Sim infrastructure tamildeAfter that, we use
SWAT-Sim in our experiments to answer three key questions of microartini¢elevel fault modeling: (1)
Are the existing microarchitecture-level fault models accurate in reptiagegate-level faults? (2) If these
models are inaccurate, what are the reasons? (3) Is it possible te desie accurate microarchitecture-
level fault models without simulating the gate-level faults? At the end of thetehave discuss the potential

value of SWAT-Sim added to the ongoing and future work in both SWAT dhdragesearch in reliability.

7.1 Background

As the hardware reliability problem is expected to be pervasive acrosntive computing market, sev-
eral microarchitecture-levepérch-level) solutions that tolerate hardware failures have been @dpes

cently [4, 13, 17, 36, 38, 45, 73, 81]. The primary evaluation mode feseltproposals has been through
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statistical fault injections in simulations either at the gate level [13, 45, 73]Jeonticroarchitectural state
elements (e.g., output latch of an ALU) [4, 17, 36, 38, 81]. While gatel-Fawst injections can accurately
capture lower level faults, the long simulation time of these schemes prevéaitedevaluation of the prop-
agation of gate-level faults through the hardware and into the softwarehéother hand, thgarch-level
injections are fast and allow observing faults propagated to the softwagke ldowever, while latch-level
injections may be appropriate for array elements within the processor, itisarrwhether modeling faults
in combinational logic at the latch level (e.g., injecting a fault at the output Idtdfed-P unit to represent a
fault in the logic), is accurate. While alternative FPGA-based emulationS@®3] offer higher speed and
model gate-level faults with high fidelity, the limited observability and controllabilityeg less flexibility
than software simulations. Hence, this work focuses on software simulatitvodse

The lack of speed in the gate-level fault simulation paradigm and the possilef fault modeling
fidelity in parch-level fault simulation prompt searching for a solution that can agtttes best of both
worlds. To address this classic tradeoff between speed and acoweaapply the paradigm of hierarchical
simulation, where different parts of the system are simulated at diffebstitegction levels so that required
details are modeled only in the parts of interest, thus incurring reasonafdenpance overheads [3, 11, 12,
29, 47, 57]. The resulting hierarchical simulator, SWAT-Sim, addretbee®llowing criteria for simulating
the system-level effects of gate-level permanent hardware faults.

In the context of fault tolerance, hierarchical simulations have beahtosgudy transient faults in the
processor by using a hierarchy of RTL and lower-level simulators4IR,Since these simulators were used
to study transients, they invoke the lower-level simulator just once to capieiedfect of the fault, following
which simulation happens only in the higher level. Other work has used tincal simulations to generate
fault dictionaries that capture the manifestations from the lower levellittdf-and use them to propagate
fault effects during high-level simulations [29]. This idea of fault dictides has also been used to study
gate-level stuck-at faults in small structures, such as an adder [bifewer, fault dictionaries are specific
to the fault model for which they are generated and cannot be used to wradbétrary fault models (the
dictionary will have to be generated off-line for every such fault modetjing faults particularly present a
challenge. Further, for faults in arbitrarily large structures, the growings of inputs and faults make the

dictionaries intractable, making them hard to use.
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Our focus here is on the increasingly important permanent and intermittdt [, 84] and solutions
for modeling them at the microarchitecture level or higher. In particulagessful solutions must address

the following three critical aspects of fault simulation that prior work dodsaddress in unison.

1. Simulation must be fast enough to capture how software would be affegteardware faults.

2. Unlike transients, where the fault effect can be captoremband propagated to the higher abstraction
level, permanent and intermittent faults have the characteristic that onatietiof a fault could
corrupt the software execution, which influences future activatiotkeofame fault. This feedback

mechanism between the hardware fault and the software must be faithifalliased.

3. The simulator must be flexible enough to model different types of faults.

To meet the stated criteria, we propose a novel fault injection infrastry@WaT-Simthat couples a

microarchitecture-level simulator with a gate-level simulator and has the foldpripperties.

1. To achieve speed close to a microarchitectural simulator and minimize aderS88JAT-Sim only
simulates the component of interest (in our case, the faulty component) degelteccuracy and

invokes a gate-level simulation of the componentdemand

2. To accurately capture the interaction between the hardware fault@sdftvare, SWAT-Sim invokes
the gate-level simulation repeatedly during runtime (interspersedpaitth-level simulations); thus,
if the software activates the gate-level fault, it would be corrupted dedtaffuture activations of the

same fault.

3. To allow fault modeling flexibility, SWAT-Sim employs a gate-level timing simulatbeve different

timing faults can be modeled by changing the delay information within the faulty module.

These design choices of SWAT-Sim allow studying of the impact of gaté-pevenanent faults on soft-
ware at speeds comparableitarch-level simulators. Further, since the fault simulation is performed while
real-world software is executing, the effect of the fault is studied usingtfonal vectors that represent re-

alistic scenarios. SWAT-Sim thus has an advantage over other methodsséhattificially generated test
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vectors (e.g., functional vectors collected from a fault-free executtsiudy the fault effect, as test vectors
may not be representative of real-world faulty behavior.
In the following, we describe our SWAT-Sim infrastructure in detail anolhshow hardware faults can

be modeled accurately and simulated efficiently with the SWAT-Sim approach.

7.2 The SWAT-Sim Infrastructure

SWAT-Sim is fundamentally aarch-level simulator that only simulates the fayligrch-level blocks, such

as a faulty ALU or decoder, at the gate level. This greatly minimizes the gagbdienulation overhead.

7.2.1 Interfacing the Simulators

In SWAT-Sim, a gate-level Verilog module of the faulty unit is simulated only witenunit is utilized by
the parch-level simulator. The inputs to thwarch-level unit are passed as stimuli to the gate-level simulator.
When the gate-level simulation completes, the results are passed backuarthelevel simulator, which
then continues execution.

This communication between the two simulators is achieved using UNIX named pipése parch-
level simulation, each time an instruction utilizing the faulty unit is encounteredstimeilli needed by the
gate-level module are written to a dedicated stimuli pipe. After the gate-levelaiorucompletes, the
computed data is written to a dedicated response pipe from whereatioh-level simulator can read the
response.

While theparch-level simulator can access the named pipes like files, the gate-levitsinmienhanced
with two system tasks, implemented using the Verilog Procedural Interfdel [16], that handle accesses
to/from the pipes: One collects signals from the stimuli pipe and the other wrdagshlts to the response
pipe. The stimuli and response (arguments of the two tasks) are tailoredtarittelevel structures under
fault injection.

Figure 7.1 compares how a single fault inarch-level structure X is simulated in a purelgrch-level
simulator (Figure 7.1(a)) and in SWAT-Sim (Figure 7.1(b)).

In Figure 7.1(a), a single fault in X is modeled as a single-bit corruptioneabtitput latch of X because

the parch-level simulator lacks the gate-level details of X.
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Figure 7.1: Comparison of how a faulparch-level unit X is simulated by (a) a pumarch-level simulator
and (b) by SWAT-Sim.

On the other hand, at the gate-level, a single fault in X is modeled as a faukpndfic gate or net.
Figure 7.1(b) shows the steps of how the SWAT-Sim hierarchical simulmariates the effect of this fault.
(1) An instruction in theuarch-level simulator uses X. SWAT-Sim collects the relevant input veetods
sends them to the stimuli pipe. (2) The Verilog system task reads from thepmmiand sends the stimuli
to the gate-level simulator. (3) The gate-level simulator feeds the stimuli to tifty faodule and obtains
the output after gate-level simulation. (4) The Verilog system task tran#ferresult from the gate-level
simulator to the response pipe. (5) Tharch-level simulator reads the result from the response pipe and
continues simulation. In particular, the figure shows the effect of a siragéelgvel fault propagating into a
multiple-bit corruption at the output latch. In contrast, the fault injected i parch-level simulation only
results in a single-bit corruption (Figure 7.1(a)).

During fault simulation, as long as the faulty unit is rarely utilized in the prame#ise speed of SWAT-
Sim approaches that of a microarchitectural simulator. If the faulty unitasilyeexercised, SWAT-Sim
would spend more time in gate-level simulation and run slower. Neverthelesgate-level simulation of
the faulty unit in the processor will certainly be more efficient than the traditigate-level simulation of
the entire processor.

Besides speed, accurately simulating the behavior of persistent fauits,asupermanent faults and
intermittent faults, is of high importance. To this end, SWAT-Sim invokes the-lgag¢ simulationon-

demand during runtimeWith this setup, SWAT-Sim is capable of capturing the following scenario. At
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the beginning, the software execution activates a persistent hardavdreSubsequently, the fault corrupts
the software execution. Then, some time later, this corrupted executioatastihe fault again and gets
corrupted further. This process can repeat many times during onesfauutation run. Here, we note that
this interaction between the software and the underlying hardware fauibtée easily modeled if the
microarchitectural simulator and the gate-level simulator are two separate®ntitiSWAT-Sim, on the

other hand, this characteristic of persistent faults is correctly captured.

7.2.2 Different Microarchitecture-Level Structures

Given the wide variety of structures within a modern processor and ttereatiifes in the abstraction levels
between a typicalarch-level simulator and its corresponding gate-level counterpadradactors should

be considered when performing such hierarchical simulations.

e Simulating sequential logic: Simulating combinational logic with single- or multi-cycle latency in
SWAT-Sim is straightforward. As long as the outputs are read after thdatguatency, the outputs
are guaranteed to be correct for each invocation. Sequential logieveo, requires state to be main-
tained across invocations. In SWAT-Sim, since the gate-level simulator ikéadv@nd thus clocked)
only when the unit is utilized, state is maintained across multiple invocations, resintaccurate

simulation of sequential circuits.

e Handling gate-level signals that are not modeled at th@arch level: In some cases, due to abstract
modeling in theuarch simulators, not all signals modeled at the gate-level appear aathk level.
If the faulty component contains such signals, tleech-level simulator can be enhanced with those
signals to help propagate faults in these paths, improving its accuracy.ifctlesm absence of these
enhancements, SWAT-Sim would present a more accurate fault modelMiséingeu.arch-level fault

models.

e Simulating large parch-level components that may result in large overheadsSince the primary
aim of SWAT-Sim is being able to study the propagation of gate-level faultsteyhtem level, sim-
ulations must be carried out at reasonable speeds. The componerttglwinshis chapter present

overheads in simulation time of under 3x (discussed in Section 7.4.1), wheraoeap pure:arch-
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level simulations. However, if the overhead becomes exorbitant bettaifauilty module is too large,
the module can be further partitioned so that only the faulty submodule is simalitieel gate level
while the rest is simulated at the higher level. For example, [47] uses swgdpavach in a lower-level

hierarchical simulator.

Overall, by effectively coupling the gate-level apdrch-level simulators, SWAT-Sim is capable of sim-
ulating gate-level faults in differentarch-level components, making it a useful tool for full-system fault

propagation studies with gate-level accuracy.

7.3 Methodology

7.3.1 SWAT-Sim Environment

Since permanent faults are persistent and can propagate througarttelevel to affect the OS and appli-
cation state, SWAT-Sim requires a full-systemyarch-level, and a gate-level timing simulator. Any set of
such simulators may be interfaced for the purposes of fault propagation.

In our implementation, SWAT-Sim consists of three components — the VirtutechSinflicystem func-
tional simulator [80], the Wisconsin GEMS processor and memargh-level timing models [42], and the
Cadence NC-Verilog gate-level simulator. We interfaced the Cadenc¥exildg simulator with GEMS
using system calls implemented in VPI as described in Section 7.2

For the gate-level modules, we obtained the RTL designs of the arithmeticgindifat (ALU) and the
address generation unit (AGEN) from the OpenSPARC T1 architectifleahd built an RTL model of the
SPARC V9 decoder based on the decoder in GEMS. The Decoder masddes one 32-bit instruction
word per cycle and generates the signals modeled byauwh-level simulator. The ALU module is capable
of executing arithmetic (add, sub), logical (and, or, not, xor, and maw, shift (shift-left and shift-right)
instructions. The AGEN module computes the effective virtual addregngive operand values of the
memory (load/store) instruction. Using Synopsys Design Compiler, we sintethese modules at 1GHz
with the UMC 0.13:m standard cell library. Further, this synthesis tool also generates thg&Bndard
Delay Format) file that contains the delay information of each gate and wire whibgynthesized gate-level

module. The Cadence NC-Verilog simulator then performs gate-level timing siondawith information
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provided in this file. For delay faults (described in Section 7.3.2), we modifpdsésynthesis SDF file to

incorporate added delays.

7.3.2 Fault Models

In our experiments, we injected faults according to the following fault modedtitty differences in system-
level effects among faults injected at tharch level and the gate level. In all cases, we inject single bit (or
single wire) faults.

Gate-level stuck-at fault model: The gate-level stuck-at fault model is a standard fault model applied in
manufacturing testing. We inject both stuck-at-0 and stuck-at-1 faultsdoraly chosen wires in the circuit.
Gate-level timing fault model: It has been shown that aging-related faults result in timing errors in the
faulty gate, with increasing delay as the aging worsens [7]. Ideally, wediixe to model this effect using
transition fault models and path delay faults, with different amount of delédese, we experiment with
two delay fault models: (1) We inject a one-clock-cycle delay into the fawdtg guch that timing violations
occur along all paths containing the gate when a transition occurs. (2jaulg gate is injected with a
half-clock-cycle delay, potentially causing a subset of the gate’s outgmé to violate timing.
Microarchitecture-level stuck-at fault model: Due to the absence of more accurate fault models, stuck-at
faults at the input/output latch of a faulyarch-level unit have been used to estimate the effect of gate-level
faults (both stuck-at and timing-related faults). We adopt this fault model,tingeboth stuck-at-0 and
stuck-at-1 faults at the input of the Decoder and the output latch of the &LAGEN.

7.3.3 Parameters of the Fault Injection

Our fault injection campaign is similar to the permanent fault injection experimestsithed in Section 4.4.2
except that faults are injected at 50, instead of 40, random points irapatibation (after initialization) and

3 structures, instead of 8, are studied. For the gate-level stuck-atedanl fault models, the 50 points in a
structure are chosen from the 1853, 2641, and 757 wires of the syzglegate-level representation of the
Decoder, ALU, and AGEN, respectively. For tharch-level faults, these points are randomly chosen from
the 32 bits of the input latch of the Decoder and from the 64 bits of the outichls.of the ALU and AGEN.

Further, since there are multiple decoders, ALUs and AGEN units in o@rscglar processor, one of them
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is chosen randomly for each injection. We also ensure that the sampldsasncso that gate-level stuck-at
and delay faults are injected in the same set of wires to facilitate a fair compamisong the gate-level
faults.

This gives us a total of 2000 simulations per fault model per structuse 10 x 50). Each injection
run whose fault is not masked is a Bernoulli trial for coverage (eithexatked or not). Further, since the
injection experiments are independent of each other, this gives us a loiwnoraxerror of 1.1% for the

reported coverage numbers, at a 95% confidence interval.

7.3.4 Studying System-Level Effects

A key objective of this study is to understand the differences, if any,stesy-level manifestations gfarch-
level and gate-level faults withinarch-level structures. For this purpose, we use the SWAT symptona-base
detection scheme described in Section 4.5.1 because these detectdiallssapture how hardware faults
manifest into the system level and software.

Given the injection outcomes (Figure 4.3), we study the differences betiveerarious permanent fault

models using detection coverage and detection latency of SWAT, as dabicriBection 4.5.3.

7.3.5 Limitations of the Evaluation

While SWAT-Sim is a flexible framework that is fast and accurate, it doge bartain limitations. Here, we

list some of the assumptions and limitations of our evaluation.

e SWAT-Sim assumes that a Verilog description of the module of interest idyeadilable for inter-
facing. This is true for the large fraction of the processor that is typicatlysed from older tape-outs.
However, for modules that are yet to be developed, neither SWAT-Smpun@ gate-level simula-
tors can be used to perform fault injection experiments. As these moddlsoskeacome available,

SWAT-Sim can be incrementally interfaced with them.

e Using SWAT-Sim, we study the propagation of gate-level faults in only threeoauichitecture units
(Decoder, ALU, and AGEN) as we could not find other Verilog modulesecr®ough to the SPARC
architecture modeled by thearch-level simulator (we used the in-order UltraSPARC T1 as our Verilog

source and the out-of-order GEMS as guarch-level source).
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e The timing information generated in the SDF file represents pre-layout timinghwlloes not reflect
accurate post-layout timing for both gate delays and interconnect. ByBrigahis information using
a place-and-route tool, the accuracy of our timing simulations, and thusesults, can be further

improved.

e Although prior work has suggested other statistical delay models for timirits férig., based on
threshold voltage and temperature [55, 71]), we inject fixed and aibjtcdwosen delay that may or
may not represent real-world failure modes. Integrating more accureg¢e-level timing fault models

in SWAT-Sim is a subject of our future work.

In spite of these assumptions and limitations, the results presented in this cepterstrate the impor-
tance of using hierarchical simulators, such as SWAT-Sim, to accuratelglmatk-level faults at thearch

level.

7.4 Results

The hierarchical nature of SWAT-Sim allows us to achieve gate-leveiracg in fault modeling, at speeds
comparable withuarch-level simulators. We first summarize SWAT-Sim'’s performance wberpared to
both theuarch-level simulation and pure gate-level simulation (Section 7.4.1). We getha SWAT-Sim
simulator to first evaluate the accuracy of the previously ysgdh-level stuck-at fault models for represent-
ing gate-level faults (Section 7.4.2). Subsequently, we extensivelyzmntig reasons for the differences in
the manifestations of gate-level faults framrch-level faults (Section 7.4.3). From this detailed analysis,
we derive two candidate probabilistiarch level fault models for modeling gate-level stuck-at and delay

faults (Section 7.4.4).

7.4.1 Performance Overhead

To understand whether SWAT-Sim’s hierarchical simulation infrastrugitoeides performance benefit, we
profile a set of 40 fault-free runs for each structure and each faudemdNVe do not inject a fault in the
desired faulty unit, but force the unit to be simulated at the gate level. Torsepative, we always use the

most utilized unit for this purpose (e.g., ALU 0 for faulty ALU). For delayita, we simulate the chosen unit
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Unit | Fault Model | Maximum | Average]

ALU Gate Stuck-At 2.20 1.56
Gate Delay 2.65 1.93

Gate Stuck-At 1.59 1.26

AGEN Gate Delay 1.89 1.35
Decoder Gate Stuck-At 291 2.12
Gate Delay 5.10 2.91

Table 7.1: Slowdowns of SWAT-Sim when compared to pumech-level simulation.

with SDF timing annotation. Table 7.1 shows the maximum and average slowdd®&W#d-Sim compared
to pureparch-level simulation, when simulating the ALU, the AGEN, and the Decodesadifferent fault
models.

Overall, the worst average-case slowdown of SWAT-Sim, compared tpdahsh-level simulation, is
under 3x, which is an acceptable overhead considering SWAT-Sim'’s atuilityodel gate-level faults. In
particular, Table 7.1 shows that the Decoder incurs the most overhghdwerage slowdowns of gate-level
stuck-at and delay faults being 2.12x and 2.91x respectively. Thageelowdowns of the ALU and the
AGEN are under 2x. The maximum slowdowns observed for the ALU and®&teN are under 2.7x and 2x,
respectively while the overall maximum slowdown of 5.1x is measured for #wo@er. The Decoder incurs
higher overhead than other units because it sits at the processoefrdaind is more utilized than the ALU
and the AGEN.

As expected, the delay fault simulations always incur higher overheadtbastuck-at fault simulations
because simulating delay faults requires timing information which is more competesive.

Since we do not have the corresponding gate-level model of the safmrprocessor we simulate at
the parch level, we derive a rough conservative estimation of the performbaecefit as follows. As-
sume (conservatively) that we need to simulate a fault in a circuit that ceandatimes the number of
gates and is utilized twice as often as the Decoder, the unit that incurs theoweobead. Assume that
the full superscalar processor we wish to simulate has 25 million gates. ASF@WAT-Sim’s worst-case
slowdown is linear to the utilization and the size of the gate-level module and satifuarch simula-
tor simulates at the rate of 17k instr/sec (which is the measured averagkdfpag parch-level simula-
tor), it would take SWAT-SIMIOM instr x —2X2X5:1_ — .7 hy to simulate 10 million instructions in

17k instr/sec

the worst case. On the other hand, conservatively assuming the geltsitaulator simulates 25M gates-
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cycles/sec (more than 1300x the speed reported in [62]) and the exebasoan IPC of 1, it would take

10M instr x 5 mstr/cyclei%fzﬁs_cydes/sec = 2778 hr to simulate 10 million instructions. SWAT-Sim

thus achieves a 417x speedup over traditional gate-level simulation.

7.4.2 Accuracy of Microarchitecture-Level Fault Models

We next investigate the accuracy @édrch-level fault models. If these fault models were accurate enough,
then we can eliminate gate-level simulations entirely, thus eliminating the need #F-Siv and its over-
head. As mentioned in the last section, we focus mainly on the system-lexetisefif the fault models and

use the SWAT detectors’ coverage and latency as grounds for ouracizoips.

Detection Coverage

Figure 7.2 compares the efficacy of the SWAT detectors in detecting ditfexelts injected using different
fault models into the ALU, the AGEN, and the Decoder. The bars représeroutcomes for th@arch-
level stuck-at-1 garch s@1) and stuck-at-Q&rch s@0) models, the gate-level stuck-at-1 and stuck-at-0
models (Gate s@1 and Gate s@0, respectively), and the gate-levdéideyay and 0.5-cycle-delay models
(Delay 1cyc and Delay 0.5cyc, respectively). Each bar shows thedreof fault injections that are microar-
chitecturally maskediarch-MasR, architecturally maskedAfch-Mash, application-maskedXpp-Mashk,
detected within 10M instruction®gtected, detected but unrecoverabl2E), and those that lead to silent
data corruptions§DQ. The number on top of each bar represents the coverage.

Figure 7.2 shows that depending on the structure and the fault modghittie-level fault model may or
may not accurately capture the effect of gate-level faults, as indicgtéuebcoverage. For the AGEN, the
coverage ofuarch stuck-at faults is similar to that of the gate-level stuck-at and 1-dgiésy fault models
(between 94% and 97%). However, the coverage of 0.5-cycle del&N~x@ults is noticeably lower (90%).
For the Decoder and the ALU, the coverage for jifaech-level stuck-at faults is near perfect (99+%) while
the coverage of the gate-level stuck-at faults (94% for the ALU anddmtv®6% and 98% for the Decoder)
and the Decoder delay faults (95%) is slightly more pessimistic. In contrastotieeage of the ALU delay

faults is significantly lower (89% and 85% for 1-cycle and 0.5-cycle dedats, respectivelyd.

1We found the coverage with SWAT-Sim improves significantly (from 89%4@Jor 0.5-cycle delay faults in ALU) when the
undetected cases are run for 50M instructions, showing that SWATEstdes remain effective at this longer latency (which is still
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Figure 7.2: Efficacy of the SWAT fault detection scheme under diffefaanit models for the ALU, AGEN,
and Decoder. Depending on the fault model and the structure,aiod-level fault may or may not capture
the system-level effects of gate-level faults accurately, as indicateceldifferences in coverage.

The following analyzes the faults that do not result in detection in more detail.

Masking: A large source of discrepancy among the different fault models lies in tekintprate (.arch-
level, architectural, and application masking). Tlegch-level stuck-at fault models have very little masking
of all three kinds (on an average, 0.3% for the Decoder, 2% for the,Abd under 9% for the AGEN), while
the gate-level fault models show a much higher rate of masku3§%o for all structures, with 0.5-cycle delay
faults in the AGEN having the highest masking rate of 54%).

The masking rates gfarch-level faults are low mainly because the faults are raraigh-masked when
compared to gate-level faults. Agrch-level faults directly change the latch data, the only case where it
does not result in parch corruption (i.e., izarch-masked) is when the data does not activate the latch fault,
e.g., correct data value of O masks a stuck-at-O fault. At the gate leved, ahetwo scenarios: (1) the fault
at the gate is not activated, and (2) the fault is activated but does opagate due to other signals in the
circuit. Thus, the gate-level faults see much higharch masking rates. Further, tharch-level faults are
hardly masked at the application and architecture levels since the they tesdiidbghe data more severely

and cause symptoms more easily than the gate-level faults.

recoverable [59], given appropriate support for checkpointirgl&D buffering is in place).
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Interestingly, gate-level faults injected into the 3 structures exhibit diftem@asking behaviors. All
structures have higharch-level masking. However, architectural masking is significant amlihie Decoder
(25% to 31%) and application masking is substantial only for the ALU (35% %6)42

Decoder faults are more likely to be masked at the architecture level thanstthetures. For these
cases, we observe that the faults affect a subset of instructionsed tigat are sparingly used and corrupt
only wrong-path instructions. Thus, even though the gate-level fauttsnbe microarchitecturally visible,
they are not activated again after the pipeline flush and thus the faults skedret the architecture level. For
the ALU and AGEN, however, we see relatively few faults that get aigdzanly by speculative instructions.

On the other hand, a significant number of ALU faults are masked by tHeaggn. This is likely due
to the activated faults being logically masked. For example, suppose instruttie 2+ r3 uses the faulty
ALU and the fault causesl to change from 1 to 2. If1 is only used for the branch instructiéag 1,0, L,
the fault effect is masked by the application. This type of masking is relatigedyin other structures. Since
it is more likely for Decoder faults to affect the program control flow aodAGEN faults to change the
addresses of memory accesses, these faults, once activated, usdilly tetectable symptoms (i.e., not
masked).

SDC: Similar to the overall coverage, the SDC rates (percentage of total inje¢kiahsesult in SDC
events) are dependent on the type of fault and the structure in whicauhésfinjected. While the SDC rate
is higher for gate-level faults thamarch-level faults in the ALU (1.8%—4.4% vs. 0%—0.5%, respectively)
and the Decoder (0.4%-1.2% vs. 0.1%-0.2%, respectively), the SDECaftke AGEN faults are nearly
identical (1.6% for 0.5-cycle delay faults and 0.5%—0.8% for others).

The SDC rates are high for the gate-level faults in the ALU because thetis &re rarely activated
and only perturb the data value slightly once activated. In contrastatah-level stuck-at faults are easily
activated and less likely to cause SDCs.

The above differences in manifestations are largely governed by hdauhet the gate level becomes
visible to the microarchitecture (activation rate, which latch bits are corrupted, In Section 7.4.3, we

perform a more in-depth analysis to identify the reasons for the diffeeenc

134



100%
90%
80%
70%
60%
50%
40%
30%
20% -

H<10M
B <1M
W <100k
O<10k
O<1k

Percentage of Detected Faults

10% -
0%
Old|lo|lo old Oldlo]o ofld Old|lo|lo old
oI8|zl2a] 9] |93l I8|e] |9I®|3]a| |98
2 2 E=1 Y] nln 4 B BT 1Y) wnln 2 4 BT 1Y) nln
[} B > cl< o) B > <l< ) B > cl<
HEENEEEREEENE AR EEHE N EE
(O] [0} K] K} S| s (O] [O] ] K] ] K (O] [O] K7 K c| s
olo 3|3 ol 3|3 olo =1 =1
o [a)] o
ALU AGEN Decoder

Figure 7.3: Latency of fault detection in terms of number of instructionswgredrom architectural state
corruption to detection. The differences in the models impact recoverghwprimarily governed by these
latencies.

Latency to Detection

Figure 7.3 gives the total number of instructions executed after the arnchékstate is corrupted, until the
fault is detected, for each unit under each fault model. The detectks e binned into different stacks of
the bar based on their detection latencies (from 1,000 to 10 million instructions).

From Figure 7.3, we see that the percentage of detected faults that teenada less than 10,000 instruc-
tions is different under different fault models for the three structubesections with these short latencies can
potentially be recovered with light-weight hardware techniques (e.g., metisedisin transactional memory
systems). While th@arch-level stuck-at-1 model shows that a larger fraction of cases|atencies under
10,000 instructions than gate-level stuck-at faults, the fractiomaoth-level stuck-at-0 faults that have at
most this latency is lower.

From these differences in system-level manifestations, we infepdrah-level stuck-at faults do not, in
general, accurately represent gate-level stuck-at or delay fatlis miotivates either building more accurate
parch-level fault models, or in their absence, using the SWAT-Sim infretsire to study the system-level

effect of gate-level faults.
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Figure 7.4: Mean fault activation rate for the different fault models asregmtage of the number of instruc-
tions.

7.4.3 Differences Between Fault Models

Before we attempt to derive a more accurasech-level fault model than the existing ones, we investigate
the fundamental reasons for the different behaviors ofitfxeh-level and gate-level fault models. In the
following sections, we try to understand the differences by comparingatiiedctivation rates and the data

corruption patterns at the microarchitectural state across differdhhiadels.

Fault Activation Rates

The fault activation rate of a given faulty run is defined as the percerdhinstructions that get corrupted
by the injected fault among all instructions that utilize the faulty unit. We collecatitiwation rates for
all faulty runs that do not result iparch-masked, calculate the weighted arithmetic mean for each fault
model, and present these numbers in Figure 7.4. Because the diffensnéxecute different numbers of
instructions, we weight the activation rate of each run by the total numbeswiictions executed by the
faulty unit and calculate the weighted mean.

Figure 7.4 shows that thearch-level stuck-at faults present a higher activation rate than fajststea

at the gate-level. For the ALU, thearch-level faults have a&4% activation rate, while the activation
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rates of gate-level faults are at most 1.6%. For the AGEN, the corrdsgpnumbers are-9% and<7%,
respectively. The Decoder faults tend to have higher activation ratesabls in other structures because
decoders are utilized more; the Decoderch-level faults have activation ratesl 9% while the rates of
gate-level faults arec7%. The activation rate for gate-level faults is lower because activatierigvel
faults requires both excitation and propagation to the output latch, whilgaheh-level fault is directly
injected into the latch. Additionally, thearch-level stuck-at-1 fault has a significantly higher activation rate
than the other fault models (36%, 45%, and 47% for the ALU, the AGEN tlamdecoder, respectively).
This high rate is caused by the biases in data values towards zero.

Further, we notice a difference in the activation rates between the galesteck-at and delay faults,
with the delay fault models exhibiting lower rates of activation for all strustuteess than 2% of instruc-
tions activate the 1-cycle delay faults and 0.5-cycle delay faults in all 3tates; with the lowest average
activation rate being 0.6% for 0.5-cycle delay faults in the AGEN. The lowerage activation rate can be
explained with the different excitation conditions for the two models. A stuek-$ault is excited when the
signal at the faulty net iX. Thus, if the probability of having a logic 1 at the faulty nepjshe probability of
exciting the stuck-at-0 fault at that wirepsand that of exciting the stuck-at-1 fault(s-p). A delay fault, on
the other hand, is active only if there is a transition at the faulty wire andehirgcexcitation probability is
p(1-p), which is always smaller than that of the stuck-at faults. This lower piibtyadif excitation generally
results in a lower average activation rate for gate-level delay faultthé&miwhile an activated 1-cycle delay
fault causes all paths from the faulty net to the output latch to miss timing, ay6l&é-delay fault usually
results in fewer errors observed at the output as it can be the cassthatpaths from the faulty net to the
output do not violate timing.

Although the higher activation rates (Figure 7.4)@frch-level stuck-at faults result in higher coverage
(Figure 7.2) for the ALU and Decoder, we do not find such a correldtiothe AGEN. When comparing
gate-level faults of the same structures, stuck-at faults have higheataairates and resultin slightly higher
coverage than delay faults for the ALU and Decoder, but not for thEl@\onetheless, higher activation
rates do not necessarily drive the coverage up. Additionally, we firdireot correlation between activation
rate and latency of detection. Thus, factors other than just activatiomeateto be investigated if we are

to succeed in deriving bette@arch-level fault models. We next look at how activated faults manifetsteat
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ALU
Bits 1 2 4 8 9+
parch 100.0% 0.0% 0.0% 0.0% 0.0%
Gates@1 || 91.1% 4.7% 1.2% 1.1% 1.9%
Gates@0 || 84.4% 4.6% 28% 1.1% 7.1%
Delay 1cyc || 90.4% 3.9% 1.4% 1.1% 3.2%
Delay 0.5cyc|| 75.0% 5.8% 2.2% 3.9% 13.1%
()
AGEN
Bits 1 2 4 8 9+
parch 100.0% 0.0% 0.0% 0.0% 0.0%
Gates@1 | 87.1% 6.8% 5.0% 1.0% 0.1%
Gates@0 | 75.5% 8.4% 8.6% 7.4% 0.0%
Delay 1cyc || 90.5% 4.1% 3.7% 1.5% 0.2%
Delay 0.5cyc|| 83.7% 7.9% 3.1% 2.4% 2.8%
(b)
Decoder
Bits 1 2 4 8 9+
parch 725% 02% 4.8% 8.9% 13.4%
Gates@1 || 66.1% 14.9% 10.5% 6.2% 2.3%
Gates@0 || 60.8% 22.3% 12.2% 2.6% 2.2%
Delay 1cyc || 71.7% 11.1% 125% 1.7% 2.9%
Delay 0.5cyc|| 68.2% 12.8% 4.3% 2.7% 12.0%
(©)

Table 7.2: Percentage of bits incorrect at the output latch.

output latches (i.e., at thearch-level).

Corruption Pattern at the Microarchitectural State
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While an activateq:arch-level fault corrupts only one bit in the microarchitectural state céivetied gate-
level fault may corrupt multiple bits once it becomes visible in the microarchit@icttate.

Table 7.2 shows the number of bits corrupted at the output latch (microantcinakstate) for different
fault models for a fault in the ALU, the AGEN, and the Decoder. For eaah fnodel, it shows the percent-

age of instructions that have different number of bits flipped at the olafmkt. The bits are binned on a log
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Figure 7.5: Probability of corrupting each bit of the ALU output latch, undarch-level s@0, gate level
s@0, and gate level delay models.

Table 7.2 shows that the corruption patterng.afch-level faults for the ALU, AGEN, and Decoder are
quite different from those of the gate-level faults. Whilerch-level ALU and AGEN faults are injected in
the output latches and corrupt at most one bit, the corresponding gatdaelts, though usually corrupt one
bit, can result in multi-bit corruptions (between 9% and 25% across the Ald itee AGEN). However, for
parch-level Decoder faults, although faults are injected at the input fdiemesulting multi-bit corruptions
turn out to be too aggressive (22% of corruptions/darch-level faults are 8+ bits while the corresponding
numbers for gate-level faults are less than 15%). This is because thé oaty of the input (output) latch
of the faulty unit is too large (small) when compared to that of a gate-levéil &ad leads to aggressive
(conservative) bit corruptions at the output latch.

To better understand how the microarchitectural state gets corrupted mjdbed faults, we collect
the probability that bit was flipped, given an instruction activates the underlying fault. Figutearnd 7.6
show the distribution of the probabilities of a given bit in the output latch (nwetb&om bit 0 to bit 63)
to be faulty undep.arch-level stuck-at-0, gate-level stuck-at-0, and gate-level ledeaay models for the
ALU and the AGEN respectively. For brevity, we omit tharch-level stuck-at-1, gate-level stuck-at-1, and
0.5-cycle delay models.

From the figures, we see that the probabilities of bit-flips of;iaech-level model are vastly different

from the gate-level models. Further, the probability of flipping lower ohbitsris higher foruarch-level faults
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Figure 7.6: Probability of corrupting each bit of the AGEN output latch,eungrch-level s@0, gate level
s@0, and gate level delay models.

as the applications we use predominantly perform computations on the losegr3ft-bits. The difference
presented here is another source of discrepancy gfdheh-level model to represent gate-level faults.

When comparing the two gate-level fault models, interestingly, both hayesirailar corruption patterns
even though they differ in terms of coverage, detection latency, activiedtenand number of bit-flips. To
investigate this phenomenon, we studied the differences between caonrpptterns of the gate-level stuck-
at and delay fault injected at the same net and made the following observdiay faults generally yield
more corruption patterns than the stuck-at-0 faults because they cantbausame bit to be corrupted in
both directions, instead of a single direction in stuck-at-0 faults. While thiseshighmber of corruption
patterns may cause delay faults easier to be detected, we note that tlgeaatieation rate of delay faults
is also lower than that of stuck-at faults, as explained in Section 7.4.3, mtieng harder to detect and
causing longer detection latencies.

Overall, our analysis shows that the different activation rates and bitiion patterns paint a clearer
picture in explaining the differences in the coverage (Figure 7.2) anddtextibn latencies (Figure 7.3)
betweenuarch-level and gate-level faults. We found that higher activation iftesrch-level stuck-at-1
faults typically cause higher coverage (and lower detection latenciesttarevel faults, but it is not a
perfect correlation. In some cases, despite significant differencadiiration rates, the coverage of gate-

level andparch-level faults is quite close. This is because once activated, galefdelts cause different
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multi-bit corruption patterns. In some cases, these patterns are moreviattiigh theuarch-level fault
corruptions, boosting the coverage of the gate-level faults despite thveir tate of activation. In other cases,
the higher intrusiveness of the multi-bit corruptions is not enough to cosapeffor the very low activation
rates — this is specifically the case for gate-level delay faults which seevtkstlooverage numbers.

We see that such complex interactions have a push-and-pull effectemieing the system-level out-
come of faults and conclude that simplarch-level stuck-at faults are inaccurate in several cases for mod-
eling gate-level faults because they fail to (1) capture the system-lekiaviog, such as application-level
masking, (2) induce different activation rates, and (3) accurately mateh-level multiple bit corruption
patterns. (Nonetheless, these differences do not impact the quantiéstiles reported in previous chapters
significantly and the previous qualitative results remain valid.) Therefong aacurateuarch-level fault

model for gate-level faults must account for all these factors to atatyreapture their behavior.

7.4.4 Probabilistic Microarchitecture-Level Fault Models

Given the inaccuracy of thearch-level stuck-at fault model, we investigate whether we can ddtemate
parch-level fault models based on our analysis of the manifestation of tedeya! faults (both stuck-at and
delay) at the microarchitecture level. Such a model would be invaluableforately simulating the effect
of the fault at theuarch-level, without invoking a gate-level simulator.

We investigated the behavior of the gate-level stuck-at and delay faultfoand that each gate-level
fault is activated differently and leads to different software-level outes. Hence, in our first-cytarch-
level fault model, we develop probabilistic models on a per-run basis, i.éfeeedt probabilistic model for
each injected gate-level fault. In particular, we profile each SWAT-Smmamnd collect the probabilities of
the number of bits flipped at the output latch, the patterns of the flips, andrdwioins of the flips. Based
on the collected information, we then derive two probabiliggech-level fault models, called tiemode)
and thePD-mode] respectively.

In the P-model, when an instruction uses the faulty unit, we decide on whickoHtfip in the output
latch based on the previously observed probabilities of the different euofkbit-flips for this gate-level
fault injection run (essentially using a table like Table 7.2, but built on a pebasis). We then condition

on this probability to decide on the pattern of the flip (similar to Figures 7.5 ana¥ different numbers of
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Figure 7.7: The accuracy of the derived P- and PD-models for modediteglevel faults in ALU, evaluated
using the coverage of the SWAT detectors.

bit flips, but again on a per-run basis). All the bits indicated by this patterihen flipped. This operation
is done by XORing the output latch data with the collected bit-flip pattern. Fanpbe if the data is 0110
and the corruption pattern is 0011, the corrupted output becomes 01RMROL = 0101.

The PD-model refines the P-model by enforcing the direction of the bitilged on the profiling runs.
That is, if the observed corruption pattern in the profiling run shows bit @ output latch has a one-
to-zero (zero-to-one) corruption, in the PD-model, this bit is corruptdg ib it is an one (a zero). In our
implementation, one word is used to represent the corruption pattern (saheeae used in the P-model)
and another word is used to represent the corruption direction. Usisguthe example above, the PD-model
has the corruption direction word of | |” where | means 1-to-0 corruption, the data is then changed
from 0110 to 0100.

We developed the P-model and the PD-model for both the gate-level at:knd 1-cycle delay faults
for the ALU and the AGEN. Figures 7.7 and 7.8 show the ability of the P-modéltae PD-model in
mimicking the behavior of the corresponding gate-level fault models, eeslusing the coverage (similar
to Figure 7.2). The number on top of each bar gives the coverage oiMA& 8etectors for faults injected
in that fault model. The results for gate-level stuck-at-1 and 0.5-cydss daults are not shown for the sake

of clarity of the figures, and lead to similar conclusions as the other faultisiode
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Figure 7.8: The accuracy of the derived P- and PD-models for modeditegeyel faults in AGEN, evaluated
using the coverage of the SWAT detectors.

From the figures, we see that both the P-model and the PD-model follguatbh-level masking effects
of the gate-level faults more closely than tharch-level stuck-at faults. Nevertheless, the P- and PD-
models for both gate-level stuck-at-0 and 1-cycle delay ALU faults aablerto capture the application-level
masking effect while the two models for gate-level stuck-at-0 AGEN faules-egtimate the.arch-level
masking effect.

In terms of coverage, the P- and PD-models do reasonably well foleyakALU stuck-at-0 fault and
AGEN 1-cycle delay fault with differences less than 5%. However, ferdther fault models, the P- and
PD- models have 9+% differences in coverage.

In spite of extensive analysis and modeling, the probabilistic models do auatadely capture thearch-

level behavior of gate-level faults due to the following reasons.

e The models are oblivious to temporal variation in the corruption rates, i.e.,thetmodels use the
probabilities of injecting k-bit flips as an average rate across all instrigcf@mmnjections on a given

wire.

e The probabilities on which the models pick the number of bits to flip, the patterneobitklips,

and the direction of the bit flips are not conditioned on the fault-free vatuetach the patterns are
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applied. For example, although the pattern says that bit 1 should be flippadafl to a0, if the
original value of the bit is 0, no flips occur. Thus, there are fewer flips tlthat the model expects,

which skews the probabilities.

e The profiling runs consider the output value but overlook the input viflateactivates the fault in the

circuit and produces the corrupted output.

As previously discussed, we derive a different model for each faulyin SWAT-Sim that simulates
a different fault in the gate-level circuit. However, for an abstraetiwtion and accurate prediction, a
unifying model that generalizes the proposed per-run models must beBasied on the stated limitations
of the P- and PD- models, an accurate unifiedch-level model for the gate-level faults may be realizable.
Nonetheless, until such a model is developed, SWAT-Sim remains an mffpdaform for simulating and
observing the system-level effects of gate-level faults.

From these results, we infer thaarch-level stuck-at faults, do not, in some cases, accurately represe
gate-level stuck-at or delay faults. Further, we have attempted to buibdbilistic arch-level fault models
based on the activation rate and corruption patterns of each run. ldowe resulting models are inaccurate,
in general, in representing gate-level faults. Since accurate microatcingédevel fault models have yet
been available, these findings show that simulating faults at gate-levelusa@do capture the accurate
error effects of hardware faults. Because pure gate-level simulatfters take very long time, techniques
like SWAT-Sim are immensely useful to achieve both fault modeling fidelity ant bjgped that enables
researchers to observe the software-level impact of hardware. f&plesifically, more accurate evaluations

of current and future SWAT systems are achievable with the use of SSMAT-

7.5 Summary and Discussion

As researchers realize the scaling-induced hardware reliability probdamy recent fault-tolerant solutions
have been proposed from the microarchitecture level to the softwarkthateoffer high reliability at a

low cost. To evaluate these schemes, many studies rely on statistical faufoimjacthe gate level or the
microarchitecture level. However, fault simulation at the gate level, whilecgerdily accurate, is notoriously

slow. On the other hand, fault injection and simulation at the microarchitecttgkisefast, but the accuracy
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is questionable. In SWAT, because of the lack of efficient simulation toolsémleling the propagation of
gate-level faults to software, we settled for conducting fault injection rexgaits at the microarchitecture
level for evaluating the detection, diagnosis, and recovery modules ATSW

This chapter presents SWAT-Simfgastfault simulation infrastructure thaccuratelycaptures the impact
of hardware gate-level faults on the executing software. SWAT-Simthschierarchical simulation paradigm
to achieve both speed and accuracy. By coupling a microarchitectural simwith a gate-level simulator,
SWAT-Sim does the slow but accurate gate-level simulation only when ttg faicroarchitectural unit is
utilized. This way, SWAT-Sim can achieve speeds close to microarchitésioralation while modeling
faults at the gate-level fidelity. The runtime invocation of gate-level simulatian &lsws SWAT-Sim to
accurately capture the interaction between the software execution anadiaeying persistent fault. To the
best of our knowledge, SWAT-Sim is the first simulation framework thatestgbs this real-life behavior of
faults. By employing a gate-level timing simulator, SWAT-Sim is also flexible to leadifferent kinds of
timing fault models.

By implementing SWAT-Sim, we quantitatively compare the accuracy of micrdaaotbre-level fault
models with gate-level fault models using the SWAT detection coverage dadtida latency as proxies
(since SWAT symptom detectors capture system-level effects of fautis)h€& microarchitectural structures
we studied (Decoder, ALU, and AGEN), we found that microarchiteelkewel fault models are inaccurate
for several cases in our experiments. Through our detailed analysisttvibute this inaccuracy to the
differences in activation rate and bit corruption patterns. Howevéhese differences only impact some of
cases reported in previous chapters, the qualitative results reporlied ieahis thesis continue to hold.

With SWAT-Sim, we took a first step in deriving a potentially more accurategiitistic microarchitecture-
level fault models using data from SWAT-Sim. Our results, however, shibat these complex fault models
are still inaccurate and unable to capture the complex manifestation of gatdalels.

Overall, because accurate microarchitecture-level fault models have geist, we believe that SWAT-
Sim is an essential tool for capturing the software-level impact of haelv¥eallts to help advance future
work in SWAT and other work that needs observability of hardware failtee software level. From the
development of SWAT-Sim, we can see two future research directionst, & much of current research

has focused on investigating the in-field failure behavior of devicese tineglels can be distilled to the gate
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level. Consequently, the fault models can be used inside SWAT-Sim to hedpgsor and system designers
understand the efficacy of new fault-tolerant solutions. Second, the afsvhether it is possible to model
hardware failures at the microarchitecture level is a very interestingnasquestion. In this work, although
we did not derive an accurate microarchitecture-level fault model wste collected from SWAT-Sim, we
did offer a number of ways to improve on the proposed models. In the enbelieve SWAT-Sim provides

a very effective platform for powering hardware reliability reseaarfwrd.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

For along time in the history of computing, CMOS has continued to scale acgdoditoore’s law, allowing
ever-growing system integration and providing continuous performemgevement. On the other hand,
as devices shrink perpetually, hardware failure rates are expectett¢ase due to a wide variety of error
sources such as aging or wear-out, infant mortality induced by insulfioign-in, transient errors caused by
alpha particles from the packaging material and cosmic rays, desigrigjefed others. The pervasiveness of
this growing reliability trend demands a low-cost in-field reliability solution tha¢dis, diagnoses, recovers
from, and/or repairs around failed components.

This thesis proposes a novel low-cost reliability solution that is based doltbeing two key observa-
tions. First, a hardware fault is only considered harmful if it affectésgarie execution. Hence, an effective
reliability solution only needs to handle hardware errors that propagate swftware. Second, even though
the reliability threat is growing, fault-free operation still remains the commoa.c@berefore, reliability
solutions must be optimized for fault-free operation.

Based on this design philosophy, this thesis presBWaT(SoftWare Anomaly Treatment), a low-cost
yet effective hardware reliability framework that minimizes the overall sgatest by employing “always-
on” error detection mechanisms that incur minimal cost in area, performandg@ower. The tradeoff of the
near-zero cost detection mechanism is to invoke a potentially high cosiodiggnechanism to identify the
error source after an infrequent event of an error detection.

In this thesis, we explore the design of the detection, diagnosis, ancergaoechanisms in SWAT and
evaluate them using statistical fault injections. Our key experimental reseltsefollowing.

By employing simple, low-cost hardware-only monitors of software sympttimesSWAT detectors are
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able to achieve very high coverage for permanent faults, detecting 8899326 of the unmasked faults
for SPEC workloads and server workloads, respectively, within 10 miilistructions. For transient faults,
while they are mostly masked, 59% of the unmasked faults for both workload$etected, which is con-
sistent with the previously proposed symptom-based detection schemestidd lonly transient faults.
Further, our detection mechanism also yields a very low SDC rate for bothapent and transient faults.
These results clearly show that the SWAT detection approach is gendrhighly effective while incurring
very low cost.

We also explore the use of likely program invariants for detecting permaaedware faults and the re-
sulting SDC rates improve dramatically by 73%. This shows software reliabiliytgaescanbe leveraged
to ensure hardware reliability, strengthening the case for the SWAT agipro

For the detected faults, we invoke the trace based fault diagnosis algdatbffectively identify the
faulty microarchitectural structure. Our experimental results show tHat &8the faults are correctly di-
agnosed. By merely using one other core in the multicore system and the sofiutare execution, our
diagnosis scheme is able to correctly diagnose most of the detected fadilidirigahe faults in the meta-
datapath that were not addressed by prior work for in-field diagnosis.

For error recovery, to the best of our knowledge, this is the first viloak quantitatively shows that
both checkpointing and output buffering are equally important and sanefor full system recovery. With
both schemes present, 99% of the detections for permanent faults injeciéueimardware system running
I/O intensive server workloads can be fully recovered. In additionalse evaluate the tradeoffs made
among the detection latency, the checkpoint interval of the checkpointivegree; and the buffering interval
of the output buffering method for optimizing the SWAT recovery strategyciMprior work assumes that
hardware checkpointing schemes would work at a reasonably low eosyak on SWAT started with the
same assumption but revealed through a closer analysis that the ovienreaeld could impact the overall
system cost significantly. Our quantification prompts new techniques tloba firetter sweet spot between
the output buffer size and the checkpointing overhead, possiblyrdboiyéower detection latencies in SWAT.
This is a subject of ongoing of work.

The final contribution of this dissertation investigates the accuracy of niahibecture-level fault mod-

eling. We present a novel fast and accurate fault simulation framewaled SWAT-Sim, that is able to

148



capture the effect of gate-level hardware faults on the executinga@ftvirrom our experiments, we found
several cases where the microarchitecture-level faults are inacoura@esenting gate-level faults injected
within the microarchitectural unit. Nevertheless, despite these differenoegjualitative findings on the
detection, diagnosis, and recovery modules remain valid. With SWAT-Sinrefuasearch in SWAT and
other work in reliability will be able to accurately and efficiently capture thévete-level effects of the
underlying gate-level faults.

From the results on detection and diagnosis, we can clearly see that thE &WProach is highly ef-
fective for ensuring hardware reliability while incurring very low costr Fecovery, we leveraged existing
techniques used in other systems. A closer quantitative analysis revealachite the overheads of these
mechanisms are implementable, they are higher than for the rest of SWAGeHéere is still work to be
done in this area. While efforts for developing and implementing the SWAT msystatinue, this thesis
takes the first step to show how this low cost reliability solution can be realimedtidition, this dissertation
also takes the first step in leveraging a well-known software bug detectibnitgie for hardware reliability.
This paves the way for deriving a truly error resilient system wherdwaare faults and software faults are
treated the same in a unified framework. Eventually, we believe that the SpAdach can make reliability

affordable to the masses, ultimately neutralizing the impending reliability problem.

8.2 Limitations and Future Work

While the SWAT system is shown to be very effective to serve as the reliabditgien for mainstream
computing, there are many directions that can be explored in future wbekfollowing discusses a few of

the future research directions of SWAT.

8.2.1 Fundamentals of Symptom-Based Detection and Applican-Aware Metrics for

Evaluation

While the empirical results presented in this dissertation for the SWAT systemramising, there is still
work to be done to understand the fundamental reasons for hardaudte to be detectable by software-
level symptoms. By acquiring this knowledge, we can potentially charactérézéehavior of hardware

faults at the software level. This investigation will likely bring two very importardspects to SWAT error

149



resilient system design. First, by knowing how hardware faults behatle software level, more potent
symptom detectors can be derived. These new detectors would bepettirtent SWAT system by (1)
detecting the previously undetected faults and (2) reducing the detectionydte the currently detected
faults. Second, this characterization can also identify the classes afdnrarfaults that are hard to detect.
To handle these types of faults, SWAT can rely on other low-cost tecasi@rig., checkers embedded in the
microarchitecture [45]) to ensure system reliability.

One way to acquire this knowledge is to investigate when the application statethons result in
detections. In particular, for detection latency, this thesis uses the latemegdn the first architectural
state corruption and the detection. However, this metric can be overlyreatige because the corrupted
architectural state could be masked by the software, as shown in olisresu

Another way to characterize the effect of hardware faults on the sitigato investigate cases that
result in silent data corruptions. In this thesis, we conservatively cjegsifise to be an SDC if the resulting
application output is different from the fault-free output. That is, if a lrgt of the output is different,
it is considered an SDC. However, some applications can tolerate outputsatieaminor errors in them,
as shown in [38]. Future work, therefore, can exploit the idea of gmfiputing for future generations of

SWAT.

8.2.2 Implementation of SWAT

This dissertation shows the efficacy of the SWAT system in protecting fitardware in the simulation
environment. Although we consider the simulated experiments sufficiently adktaiplementing an actual
prototype of SWAT would only strengthen the case of designing resiliestéss with the SWAT approach.
As this process involves sorting out various system engineering issube neal software and hardware
environment, building such a prototyped SWAT system will not be an eaky Navertheless, showing a
real system that detects, diagnoses, and recovers from harcwésasould certainly clear much skepticism
about SWAT.

On the software side, developing the SWAT firmware is very important as ésgonsible for coordi-
nating the different fault-handling operations. For example, post detetitie SWAT firmware is woken up

to diagnose the source of the error and to run the TBFD algorithm if negeds this process, the SWAT
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firmware must be invoked at a non-symptom causing core because iegarropted by the possible per-
sistent faults at the symptom causing core. In addition to this issue, SWednsgesigners need to sort out
the memory address space used by the firmware, the interface provideel lhgrdware to the firmware for
diagnosing and recovering faults, the approach for ensuring reliabie/éire execution, and so on. Further,
to reap the most benefits of symptom-based detection, as shown in ournieiaction scheme, the ap-
plications may need to be modified for SWAT to achieve higher fault covenafgebelieve that cultivating
information from and enhancing both the applications and the operatingvsystegreatly improve our
SWAT implementation as well.

While the SWAT approach emphasizes very low hardware overheadatdevéire platform of SWAT
still contains some hardware support. The following describes some ofatftsvare support needed in
SWAT. In the detection module, symptom monitors such as the hang detectsraeli small hardware
table to keep track of potential infinite loops. After a detection occurs, eéagerdware interrupt needs to
be delivered to another core to facilitate diagnosis. The TBFD algorithm resgliires a hardware buffer for
the ITB to collect resource usage information from the faulty core effilgielRor error recovery, the ReVive
checkpointing mechanism needs shadow architectural registers aadcentent to the cache subsystem.
The output buffering mechanism requires certain amount of buffeagéotio hold potentially faulty events.
As part of the ongoing work towards building the SWAT error resilienteays the SWAT research group
is currently developing an FPGA prototype of SWAT that addresses tieugahardware needs described

above.

8.2.3 Hardware Fault Models

As indicated by our work on SWAT-Sim, the microarchitecture-level fault e®dre in general inaccurate
when compared to gate-level models. Hence, SWAT-Sim provides aiepfflatform for fast and accurate
hardware fault simulations. While the work presented in this thesis only looledaively simple stuck-
at and delay fault models, we do not claim that these models capture theaddlbehavior of in-field
hardware faults. As much current research is focusing on diffénefield failures caused by radiation,
wear-out, process variation, and others, one important future dirasttonncorporate these failure models

into SWAT-Sim so as to accurately evaluate SWAT. Given the hierarchitate of SWAT-Sim, future work
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can extend SWAT-Sim to model failures at the circuit or device level (esipguSPICE simulations). This
way, the effects of various hardware failure can be modeled realisticalthé most accurate evaluation of
SWAT and other fault-tolerant solutions.

Another direction we have explored in the SWAT-Sim work is the possibility dfrahgy accurate microarchitecture-
level fault models. The motivation for deriving one such model is to alloweate evaluations of fault-
tolerant solutions without modeling hardware faults at gate-level andrguffthe performance overhead.
As there is an increasing number of hardware reliability solutions propaistte microarchitecture level
or higher, future investigations of efficiently modeling faults at the micratecture level will provide a
convenient platform to enable accurate evaluations.

In this dissertation, we have focused primarily on in-core hardware fafdtghe current error rate for
this part of the mainstream processor core is not as high as caches oryngmaelatively less protected.
Going forward, the processor core is also relatively vulnerable taseridence, our study concentrates on
the processor core.

On the other hand, with an increasing number of cores integrated on ahigiftitore components (e.g.,
caches, on-chip interconnect, memory controller, etc.) make up a sighjf@dof the processor. Hence, we
believe investigating the efficacy of SWAT in terms of detection, diagnosireeovery on these off-core

faults is an important piece of future work.

8.2.4 Multithreaded Workloads on Multicore Systems

Since this is the first work to show the complete workings of the SWAT systemnasa@me single-threaded
applications running on a multicore system. With the widespread use of multigstenss, many applica-
tions are moving towards multithreaded designs to take advantage of the aalditioms. In multithreaded
workloads, as SWAT detects hardware faults when they propagate anfibstas software symptoms, it is
unclear how fault propagation in the multithreaded execution would impactrdoegses of detection and
diagnosis (note that the recovery mechanism targets multiprocessor spsteiren naturally recover errors
in this environment).

There are a few foreseeable issues that potentially create challen§§Ad. First, while simple symp-

toms are shown to work well for single-threaded execution, it is uncleathehn faults would manifest and
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get detected in the same manner in the multithreaded environment. Secongebdifferent threads of the
multithreaded software may interact with each others, a fault can corripitbad that runs on the faulty
core and propagate to another thread running on a fault-free coigingaa symptom on that fault-free core.
Hence, the SWAT diagnosis process may not rely on the assumption thahtipéosn-causing core is po-
tentially faulty. Third, as different instances of replays of the multithreasdegtution may have different
patterns of thread interleaving, faults may propagate to different conemiitiple replays from the same
checkpoint. This creates additional difficulty in the diagnosis.

Given these challenges, future generations of SWAT must contain effarme effective solutions for
ensuring the reliability of multicore systems running multithreaded workloadsderdo be broadly de-
ployable. Recently, my colleagues and | investigated how to deploy SWAT dticore systems running
multithreaded workloads (not reported in this thesis) [26]. While we fouatlttite SWAT symptom-based
detection mechanism remained effective, we also observed that hartbuits did propagate across cores
and got detected on a fault-free core. To ensure hardware faultbecaorrectly identified in spite of
non-determinism introduced by multithreaded executions and cross-aaltepfopagation, we derived a
novel fault diagnosis algorithm based on isolated (against propagat&e)ministic replay (against non-
determinism). Our results show that this new multicore diagnosis algorithm is atberertly identify the
faulty core in almost all cases. While this work takes the initial step to look into BiWAnultithreaded
multicore environment, we believe future work can further improve the efficd both the detection and

diagnosis mechanisms.

8.2.5 Recovery Mechanisms

For error recovery, this thesis quantitatively investigates the importanbetbfcheckpointing and output
buffering mechanisms. From our analysis on the overheads incurtbésy methods, although the overhead
of current solutions is manageable, it is relatively high when compared teettteof the SWAT system.
Specifically, the current detection latency of SWAT's symptom monitors ddmarong recovery latency.
The resulting storage overhead of the buffering mechanism would theigiécant. As future generations
of SWAT continue to improve in detection latencies, the buffering overhaade reduced. On the other

hand, the recovery latency can only be shortened by the use of sbbekpoint intervals. However, the
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performance overhead of ReVive for frequent checkpointing walutsh be high. While we consider the
current techniques to be largely limited, this finding also presents a grpattapity for finding low-cost
efficient checkpointing and buffering schemes in future work.

As we optimistically project that the detection latency of SWAT detectors corgitaudecrease, check-
point recovery techniques from other fields of architecture reseamtipotentially be leveraged. For exam-
ple, there is a rich body of literature that studies different forms of dptee multithreading and transac-
tional memory systems. Mechanisms proposed in these areas usually cdotainod efficient checkpoint-
ing mechanism that can roll back speculative executions that contain aranradler of instructions. Hence,
one potential checkpointing solution for future SWAT systems would be toamelthese solutions, which
also amortizes the system cost.

While Chapter 6 has taken a close look at the need and the overhead afpbhelwuffering mechanism,
the actual buffering module has yet been modeled in detail. At the high leeadytirhead of this module is
closely related to the detection latency. If the latency is short, there will berfewents and the buffer can
potentially reside on-chip. Further, the buffering mechanism would potigritigpact the throughput of the
system. For future work, we believe it is essential to investigate the destpisahodule so that it can have
minimal impact on area, power, and performance.

In this thesis, we have mainly focused on hardware-based techniquesctwery. Nevertheless, not
unlike other fault-tolerant systems, there are always a small numberlts faat are difficult and take very
long to detect in SWAT. For these types of faults, it may be more advantageoely on system level or even
application level checkpointing. As the software-based checkpointimgnses usually take coarse-grained
checkpoints (e.g., once every hour), these faults may still be recdserBbrther, the executing software
usually has better control over and knowledge of the 1/0 events thamwaesd For some applications, the
system can potentially be fully recovered even from these hard-totdatdts. We leave the investigation
of the hardware-software hybrid recovery mechanism as future.work

In summary, this thesis has investigated the SWAT approach for desigrimg frror resilient systems,
which is to ensure reliability through treating the software anomalies causibe lyderlying faults. While
we have found the SWAT system can offer high resiliency at a very lost, ¢bere is still much work to

be done. Through rigorous research on the areas stated aboimy heliable computer systems for all
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consumers at very low cost may become a reality in the near future.
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