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Abstract

With continued CMOS scaling, future shipped hardware will be increasinglyvulnerable to faults and in-

evitably fail in the field for a variety of reasons such as aging or wear-out, radiation, infant mortality due

to inadequate burn-in, design defects, manufacturing defects, and so on. Further, this reliability threat is

expected to pervade even the mainstream computing market, making traditional solutions that involve re-

dundancy in space, time, and/or information too expensive to be broadly deployable. Hence, there is a need

for effective in-field reliability solutions that incur low overheads in area,power, and performance and handle

multiple sources of errors.

This dissertation proposes a low-cost comprehensive reliability solution that detects, diagnoses, and

recovers from in-field errors. Our design is based on the following two key observations. (1) Hardware

reliability solutions only need to handle device faults that manifest in software.(2) Despite the growing

reliability problem, the fault-free operation remains the common case and must beoptimized.

These insights drive the design of a novel reliability solution that employs near zero overhead “always-

on” monitors to detect hardware faults by watching for anomalous softwarebehavior (called symptoms).

After a detection, a potentially expensive diagnosis algorithm is invoked to diagnose the source of the error

and ensure full recovery. While the diagnosis may incur high overhead,it is only invoked in the rare case

of a detection. We believe that the very low cost detection coupled with highercost diagnosis is the right

tradeoff for achieving very low cost reliability solutions.

With these strategies, this dissertation presents a comprehensive reliability solution, calledSWAT(SoftWare

AnomalyTreatment), that detects, diagnoses, and recovers from in-field faults atvery low cost. For hardware

error detection, SWAT relies on low cost, “always-on” monitors of software symptoms. After a detection,

SWAT uses a novel technique called trace based fault diagnosis to identifywhether the symptom detection

is a result of a hardware or software error and to diagnose the faulty microarchitectural component in case
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of a permanent hardware fault. For recovery, SWAT aims to leverage current techniques that use hardware

checkpointing for restoring the fault-free execution state coupled with output event buffering for preventing

hardware faults from propagating and becoming visible outside of the system.

We evaluated the SWAT system with statistical fault injection experiments. Our results show that simple

monitors of software symptoms can achieve high hardware fault detection coverage for permanent and tran-

sient faults. After a detection, our trace-based microarchitecture-leveldiagnosis correctly identifies most of

the detected permanent hardware faults, facilitating fine-grained repair.For recovery, although we did not

propose a new recovery scheme, we found that high system recoverability can only be attained by employing

both hardware checkpointing and output buffering mechanisms, and we identify the overheads for each.

The final contribution of this dissertation is to investigate the accuracy of microarchitecture-level fault

modeling. To achieve this goal, we present a novel fault simulation framework called SWAT-Sim that can

model gate-level faults accurately while achieving speed comparable to microarchitectural simulations. Us-

ing SWAT-Sim, we found that existing microarchitecture-level fault models exhibit some inaccuracies when

representing gate-level faults. The SWAT-Sim framework, therefore,serves as an important research vehicle

for both SWAT and other ongoing or future research in hardware reliability.

In summary, this dissertation shows, for the first time, that a comprehensivelow-cost hardware reliability

solution can be realized by treating the software-level symptoms caused by both permanent and transient

hardware faults. The presented work lays the foundation for the SWAT approach and paves the way for

future work on low-cost software anomaly based resilient systems.

iii



Acknowledgments

Ever wonder why gratitude is neither countable nor measurable? I believe that had gratitude been quantifi-

able, I would be able to repay all the people that had helped me throughout my doctoral study, and I would

not feel so indebted to each and every one of them. This dissertation is dedicated to the many people that

have supported me both directly and indirectly throughout the years.

First and foremost, I would like to express my deepest gratefulness to Prof. Sarita Adve. On that cold

November day, she offered a research opportunity to a young man that had near-zero background in com-

puter architecture research. Throughout the years, I have grown,unknowingly, into a capable independent

researcher because of her generosity, because of her attention to detail, because of her invaluable insight, be-

cause of her commitment to excellence, and because she understands what it is like to be a graduate student.

For this, I wish I could have a way to pay her back.

I am very thankful to my dissertation committee. Prof. Marc Snir’s intriguing comments had sharpened

this work immensely. Prof. Craig Zilles had offered much insight that guided this work in its current form

and selflessly shared his view on the road to academia. Dr. Pradip Bose, Icannot thank you enough for your

guidance on this work since its infancy. This project would have never started without the tremendous effort

by Prof. Yuanyuan Zhou and Prof. Vikram Adve. Prof. Yuanyuan Zhou had discussed patiently with us

on issues related to operating systems and software reliability and offered invaluable advice throughout the

development of SWAT. It is from Prof. Vikram Adve that I have learnedwhy compiler technologies are keys

to the success of hardware-software co-design systems. I cherish allthe discussion, technical or not, with

him.

Many people have offered help throughout my graduate school yearsand I would like to extend my

thanks to them. Dr. Ruchira Sasanka, Dr. Yen-Kuang Chen, and Dr. Eric Debes had been great mentors

that helped me grow quickly when I was a junior graduate student. My internship at Intel remains the best

iv



industry experience I have ever had because of the guidance under Dr. Chris Hughes and Dr. Yen-Kuang

Chen.

Without the many friends in SC-4111, my life as a graduate student would have been much more dull.

I give my many thanks to Pradeep Ramachandran, who co-led various parts of the SWAT project. Over the

years, we have become the dream team in both SWAT and badminton. I am very glad to have a friend like

you. I would also like to thank Siva Hari, who is never short of great research ideas. I enjoyed the various

interesting discussions we have had. I am also glad to know Byn Choi, with whom I always struck good

conversation on different topics. Further, I am also thankful to have known all other members of the RSIM

group: Rakesh Komuravelli and Hyojin Sung.

Lastly, I am forever indebted to my parents, who always supported me in every possible way throughout

my graduate study. Saying thank you is just not enough for my wife, Ting, who has done nothing but cheering

me on ever since the first second we met. Amber, my dearest gem, I cannot tell you how much joy you have

brought me that thrusts this work to completion.

v



Table of Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . x

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . xi

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 1
1.1 Motivation and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 1

1.1.1 The SWAT Error Resilient System . . . . . . . . . . . . . . . . . . . . . . . . .. . 2
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 4

1.2.1 Detection Using Software-Level Symptoms . . . . . . . . . . . . . . . . . . . .. . 5
1.2.2 Diagnosis of Permanent Faults by Analyzing Instruction Traces . . . .. . . . . . . 5
1.2.3 Recovery of Faults through Checkpoint/Replay and Output Event Buffering . . . . . 6
1.2.4 Accurate System-Level Simulation of Permanent Hardware Faults . . . .. . . . . . 6

1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 7

Chapter 2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 8
2.1 Fault Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 8
2.2 Fault Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 10
2.3 Error Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 10

2.3.1 Hardware-Based Error Recovery . . . . . . . . . . . . . . . . . . . . .. . . . . . . 10
2.3.2 Software-Based Backward Error Recovery . . . . . . . . . . . . . .. . . . . . . . 11
2.3.3 Input/Output Event Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 12

Chapter 3 Overview of the SWAT System . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 13
3.1 Functional Operation of the SWAT System . . . . . . . . . . . . . . . . . . . . .. . . . . . 13
3.2 Components of the SWAT System . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 15

3.2.1 Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.2 Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.3 Repair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.4 Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

3.3 Advantages of the SWAT System . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 18
3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20

Chapter 4 SWAT Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 21
4.1 Hardware-Only Software Anomaly Monitors . . . . . . . . . . . . . . . . . . .. . . . . . 21

4.1.1 Fatal Traps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
4.1.2 Hangs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

vi



4.1.3 High-OS Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.1.4 Kernel Panic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24

4.2 Software-Assisted Software Anomaly Monitors . . . . . . . . . . . . . . . . .. . . . . . . 25
4.2.1 Range-Based Likely Program Invariants . . . . . . . . . . . . . . . . . .. . . . . . 25

4.3 Handling False Positives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 27
4.4 Methodology – Base Environment . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 28

4.4.1 Base Simulation Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4.2 Fault Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.5 Methodology – Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 33
4.5.1 Symptoms Studied . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.5.2 Fault Simulation Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.5.3 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.6 Results – Hardware-Only Detectors . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 38
4.6.1 Detection Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 38
4.6.2 Software Components Corrupted . . . . . . . . . . . . . . . . . . . . . . . . .. . . 47
4.6.3 Detection Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.6.4 Transient Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 50

4.7 Results – Software-Assisted Detectors . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 52
4.7.1 False Positives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
4.7.2 Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
4.7.3 Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.7.4 Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57

4.8 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 58

Chapter 5 SWAT Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 60
5.1 Diagnosis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 62
5.2 Diagnosing Software Bugs, Transient Hardware Faults, and Permanent Hardware Faults . . 63
5.3 Diagnosing at the Microarchitecture Level . . . . . . . . . . . . . . . . . . .. . . . . . . . 66

5.3.1 Test Trace Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 67
5.3.2 Test Trace Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 69
5.3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3.4 Alternative Strategy for TBFD . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 77

5.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 78
5.4.1 Faults Diagnosed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78
5.4.2 Implementation Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 80
5.5.1 Summary of Diagnosis Coverage . . . . . . . . . . . . . . . . . . . . . . . . . .. 80
5.5.2 Uniquely Diagnosed Faulty Structures . . . . . . . . . . . . . . . . . . . . . .. . . 81
5.5.3 Non-Uniquely Identified Faulty Structures . . . . . . . . . . . . . . . . . . .. . . . 82
5.5.4 Faults Diagnosed in Higher Granularity . . . . . . . . . . . . . . . . . . . . . .. . 83
5.5.5 Undiagnosed and Incorrectly Diagnosed Faults . . . . . . . . . . . . . .. . . . . . 83
5.5.6 Diagnosis Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84

5.6 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 86

vii



Chapter 6 SWAT Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 89
6.1 Constraints and Requirements of SWAT Recovery Module . . . . . . . . . .. . . . . . . . 90
6.2 Mechanism for Execution Replay . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 91
6.3 Checkpoint and Replay Mechanisms . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 91

6.3.1 Software Checkpointing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 92
6.3.2 Hardware Checkpointing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 93

6.4 Input/Output State Buffering and Recovery . . . . . . . . . . . . . . . . . .. . . . . . . . 97
6.5 Exploration of Checkpoint Recovery and I/O Buffering Methods . . .. . . . . . . . . . . . 98
6.6 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 100

6.6.1 System Recoverability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101
6.6.2 Performance Overhead of Hardware Checkpointing . . . . . . . . . .. . . . . . . 103
6.6.3 Storage Overhead of Output Buffering . . . . . . . . . . . . . . . . . . .. . . . . . 104

6.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 106
6.7.1 System Recoverability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106
6.7.2 Ensuring Full System Recovery in SWAT . . . . . . . . . . . . . . . . . . . .. . . 108
6.7.3 Performance Overhead of Hardware Checkpointing . . . . . . . . . .. . . . . . . . 110
6.7.4 Storage Overhead of Output Buffering . . . . . . . . . . . . . . . . . . .. . . . . . 112
6.7.5 Overall Recovery Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 117

6.8 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 119

Chapter 7 SWAT-Sim: Fast and Accurate Simulation of Permanent Hardware Faults . . . . . 121
7.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 121
7.2 The SWAT-Sim Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 124

7.2.1 Interfacing the Simulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124
7.2.2 Different Microarchitecture-Level Structures . . . . . . . . . . . . .. . . . . . . . 126

7.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 127
7.3.1 SWAT-Sim Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127
7.3.2 Fault Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.3.3 Parameters of the Fault Injection . . . . . . . . . . . . . . . . . . . . . . . . . .. . 128
7.3.4 Studying System-Level Effects . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 129
7.3.5 Limitations of the Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 130
7.4.1 Performance Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 130
7.4.2 Accuracy of Microarchitecture-Level Fault Models . . . . . . . . . .. . . . . . . . 132
7.4.3 Differences Between Fault Models . . . . . . . . . . . . . . . . . . . . . . .. . . . 136
7.4.4 Probabilistic Microarchitecture-Level Fault Models . . . . . . . . . . . .. . . . . . 141

7.5 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 144

Chapter 8 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 147
8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 147
8.2 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 149

8.2.1 Fundamentals of Symptom-Based Detection and Application-Aware Metricsfor Eval-
uation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

8.2.2 Implementation of SWAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
8.2.3 Hardware Fault Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 151
8.2.4 Multithreaded Workloads on Multicore Systems . . . . . . . . . . . . . . . . . .. 152

viii



8.2.5 Recovery Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 153

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 156

Author’s Biography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 162

ix



List of Tables

4.1 Parameters of the simulated processor. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 29
4.2 Description of server workloads. . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 31
4.3 Microarchitectural structures in which faults are injected. In each run, either a stuck-at fault

is injected in a random bit or a bridging fault is injected in a pair of adjacent bitsin the given
structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 31

6.1 Comparison of hardware and software checkpointing schemes. . . . .. . . . . . . . . . . . 92
6.2 Parameters of the simulated multicore system. . . . . . . . . . . . . . . . . . . . . . .. . . 103

7.1 Slowdowns of SWAT-Sim when compared to pureµarch-level simulation. . . . . . . . . . . 131
7.2 Percentage of bits incorrect at the output latch. . . . . . . . . . . . . . . .. . . . . . . . . . 138

x



List of Figures

3.1 Operation of the SWAT system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 14
3.2 Functional overview of the SWAT system. . . . . . . . . . . . . . . . . . . . . .. . . . . . 15

4.1 Hardware structure used for hang detection. . . . . . . . . . . . . . . . .. . . . . . . . . . 23
4.2 Simulation environment. (a) A single-system environment that runs SPEC applications on a

commercial OS. (b) A two-system environment that runs server applications on one system
and client applications on another system. . . . . . . . . . . . . . . . . . . . . . . .. . . . 30

4.3 Outcomes of an injected fault. If the injected fault is not detected within 10M instructions,
the fault is removed (no new fault activation, but software state may already be corrupted at
this point) and the application is functionally simulated to completion to identify its effect
on the application’s outputs or whether it causes a detected unrecoverable error (DUE). . . . 36

4.4 Coverage of SWAT hardware-only detectors for (a) SPEC workloads for both stuck-at and
bridging permanent faults and (b) server workloads for stuck-at permanent faults. . . . . . . 39

4.5 Distribution of detections by fatal traps for SPEC workloads. TheOthercategory constitutes
Data Access Exception, Protection Violation and Division by Zero traps, which make up
<8% of detections by fatal traps. The total height of a bar is the percentageof the injected
faults in the corresponding structure that caused fatal hardware traps. . . . . . . . . . . . . . 43

4.6 Distribution of detections by fatal traps for server workloads. TheOthercategory constitutes
Data Access Exception, Protection Violation and Division by Zero traps, which make up
<2% of detections by fatal traps. The total height of a bar is the percentageof the total
injected faults in the corresponding structure that caused fatal hardware traps. . . . . . . . . 44

4.7 Application and system state integrity for the detected faults in (a) SPEC workloads and (b)
server workloads. The height of each bar gives the percentage of injected faults detected in
that structure. We see that most faults corrupt the system state. . . . . . . .. . . . . . . . . 48

4.8 Total number of instructions retired from architectural state corruptionto detection for SPEC
workloads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 50

4.9 Total number of instructions retired from architectural state corruptionto detection for server
applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 51

4.10 Coverage of SWAT hardware-only detectors for SPEC workloadson transient faults. . . . . 52
4.11 Coverage of SWAT hardware-only detectors for server workloads on transient faults. . . . . 53
4.12 Variation of False positives rate with different number of training inputs. The rate is<5%

with 12 training sets, motivating the use of 12 inputs for the rest of our experiments. . . . . . 54
4.13 Permanent fault coverage of hSWAT and iSWAT. . . . . . . . . . . . . .. . . . . . . . . . 55

xi



4.14 Detection latencies for hSWAT and iSWAT. The percentages are computed using number of
recoverable detections in iSWAT as baseline. The invariants increase the number of faults
detected within 1,000 instructions by 2%. . . . . . . . . . . . . . . . . . . . . . . . . .. . 56

4.15 Overhead of invariants on an UltraSPARC-IIIi (Sparc) machine and an AMD Athlon ma-
chine (x86). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 57

5.1 Diagnosis of a detected symptom. Through repeated replays, a software bug, a transient, or
a permanent hardware fault is diagnosed. . . . . . . . . . . . . . . . . . . . .. . . . . . . 64

5.2 Diagnosis of a permanent hardware fault. By comparing the fault-freeand faulty executions
and analyzing the resulting test trace, the faulty microarchitectural unit is diagnosed. . . . . 67

5.3 An example scenario depicting how a physical register that is mapped to more than one
logical register is identified by TBFD. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 73

5.4 An example Instruction Trace Buffer (ITB). For each instruction retired by the faulty core
during trace-based diagnosis, the ITB records information pertaining to 1) decoded instruc-
tion information, 2) some microarchitectural resources used by the instruction, and 3) the
data values used by the instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 74

5.5 Effectiveness of microarchitecture-level fault diagnosis. The figure shows the ability of the
diagnosis algorithm to accurately diagnose detected faults. Overall, 98% ofthe detected
faults are accurately diagnosed as either (1) the correct non-array structure or the correct en-
try within an array structure (the Unique stack); or (2) within one of two non-array structures
or entries of array structures (Among 2); or (3) the correct array structure type but not the
correct entry within the structure (Correct Type). . . . . . . . . . . . . . .. . . . . . . . . 81

5.6 Diagnosis latency in number of instructions executed by the faulty core between the start of
diagnosis and the point when the fault is diagnosed. The figure shows that over 90% of the
faults can be diagnosed within 1 million instructions. . . . . . . . . . . . . . . . . . . .. . 85

6.1 Recoverability of server workloads . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 107
6.2 Slowdowns in fault-free execution of (a) LU, (b) FFT, (c) Radix, and (d) Ocean due to hard-

ware checkpointing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 111
6.3 Maximum number and size of CPU-to-Device requests. (a) Maximum number of stores is-

sued to the device by the CPU for varying buffering intervals. (b) Maximumbuffer size
for storing the CPU-to-Device write requests (address and data) for different buffering inter-
vals.(c) Maximum number of loads issued to the device by the CPU for varyingbuffering
intervals. (d) Maximum buffer size for storing the CPU-to-Device read requests (address and
data) for different buffering intervals. . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 114

6.4 Interaction between CPU and specific devices in Apache and SSH daemon. (a) and (b)
shows the maximum buffer size for storing device-specific writes and reads, respectively, in
Apache. (c) and (d) shows the maximum buffer size for storing device-specific writes and
reads, respectively, in SSH daemon. . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 115

7.1 Comparison of how a faultyµarch-level unit X is simulated by (a) a pureµarch-level simu-
lator and (b) by SWAT-Sim. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 125

7.2 Efficacy of the SWAT fault detection scheme under different fault models for the ALU,
AGEN, and Decoder. Depending on the fault model and the structure, theµarch-level fault
may or may not capture the system-level effects of gate-level faults accurately, as indicated
by the differences in coverage. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 133

xii



7.3 Latency of fault detection in terms of number of instructions executed from architectural state
corruption to detection. The differences in the models impact recovery, which is primarily
governed by these latencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 135

7.4 Mean fault activation rate for the different fault models as a percentage of the number of
instructions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 136

7.5 Probability of corrupting each bit of the ALU output latch, underµarch-level s@0, gate level
s@0, and gate level delay models. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 139

7.6 Probability of corrupting each bit of the AGEN output latch, underµarch-level s@0, gate
level s@0, and gate level delay models. . . . . . . . . . . . . . . . . . . . . . . . .. . . . 140

7.7 The accuracy of the derived P- and PD-models for modeling gate levelfaults in ALU, eval-
uated using the coverage of the SWAT detectors. . . . . . . . . . . . . . . . . .. . . . . . 142

7.8 The accuracy of the derived P- and PD-models for modeling gate levelfaults in AGEN,
evaluated using the coverage of the SWAT detectors. . . . . . . . . . . . . . .. . . . . . . 143

xiii



Chapter 1

Introduction

1.1 Motivation and Objectives

For decades, the number of transistors integrated on-chip has grown faithfully according to Moore’s Law.

This exponential growth, thanks to the advance of CMOS process technology that allows the ever-decreasing

device size, provides opportunities for chip makers to introduce microprocessors with higher levels of system

integration that provide increased computing capability. On the other hand, while modern computer systems

continue to reap the benefits of continued device scaling, there is a growingconcern for the reliability of

these systems. As the level of system integration continues to increase, a chip containing a growing number

of shrinking devices (e.g., Intel Itanium Tukwila processors contain 2 billion transistors [28]), statistically, is

expected to experience more device failures. This growing reliability threatis recognized by the industry as

one of the grand challenges for designing future computer systems in the International Technology Roadmap

for Semiconductors (ITRS) [1]. In particular, future devices are expected to fail in the field for a variety

of reasons such as wear-out or aging, soft errors caused by radiation, process variation, infant mortality,

design defects, and so on [8]. Hence, it is highly desirable to have a general reliability solution that detects,

diagnoses, recovers from, and repairs around components that fail inthe field for a multitude of reasons.

Since the problem of building fault-tolerant systems is not new, one may argue that traditional solutions

involving redundancy in space, time, and/or information [48, 68] can be leveraged to neutralize this pending

reliability threat. The difference between the traditional reliability problem andthe current growing threat

caused by device scaling, however, lies in the affected segments of computing markets. Traditionally, hard-

ware reliability mainly concerned high-end niche systems such as transactionprocessing systems for banks

and mission-critical systems for space applications. As the main priority for designing these systems is to

meet reliability goals, the budget spent on ensuring reliability is less constrained than mainstream systems
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and the use of solutions that involve heavy amount of redundancy, suchas triple modular redundancy, is

acceptable.

On the other hand, the scaling-induced reliability problem is fundamentally different. Most, if not all,

computer systems have taken advantage of the ever-growing system integration made possible by device

scaling and will continue to do so. The reliability problem caused by scaling, therefore, will pervade most of

the computing market and hardware reliability will be a concern even for the mainstream computer systems.

In these market segments, because the budget that can be spent on reliability is much more limited than that

of the high-end systems, an effective solution must incur low overheads inarea, power, and performance

in order to be broadly deployable; this precludes the use of traditional solutions that rely on expensive

redundancy. To put it into perspective, an industrial panel in a recent workshop converged on a 10% area

overhead target to handle all sources of chip errors as a guideline foracademic researchers [72].

With this pending reliability threat, the research challenge is to derive a low cost yet effective reliability

solution that can cater to the mass computing market. Driven by this reliability trend, recent research has

focused on deriving low-cost reliability solutions (e.g., [4, 13, 45, 61, 54, 73, 81]. This dissertation also

investigates such a low-cost reliability solution. However, while these previously proposed schemes have

either focused on low-cost detection mechanisms or detection and recovery mechanisms for transient faults,

we take a holistic system design approach to derive a complete reliability solutionincluding detection, di-

agnosis, and recovery that handles both permanent and transient faults. (Chapter 2 gives a more detailed

comparison of our approach with prior work.)

1.1.1 The SWAT Error Resilient System

The main contribution of this dissertation is the proposal of a novel low-costsolution for hardware reliability.

There are two key observations that motivate our design approach.

• First, a hardware fault is only considered harmful if it affects softwareexecution. Hence, an effective

reliability solution only needs to handle hardware errors that propagate through high levels of the

system and become observable to the software.

• Second, even though the reliability threat is growing, fault-free operationstill remains the common

case. Therefore, reliability solutions must be optimized for fault-free operation.
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Based on these observations, we follow a design philosophy that minimizes thetotal cost of the system

by minimizing the overhead of fault-free operation as much as possible, at theexpense of higher cost paid for

the uncommon case (not unlike Amdahl’s Law). In a fault-tolerant system, asthe error detection mechanisms

need to bealways on, our design focuses on minimizing the overhead of the detection component. This is

achieved by allowing hardware errors to propagate to the software leveland detecting them through moni-

toring the abnormal software behavior (calledsymptoms) using zero to very low overhead hardware and/or

software monitors. After a detection occurs, the diagnosis algorithm is invoked to diagnose the source of

the error. While the potentially long latency of high-level symptom-based detection can make the diagnosis

more complex and expensive, we believe this is the right tradeoff becausediagnosis is only invoked after a

rare eventof a detection.

These strategies motivate the design of a comprehensive reliability solution, called SWAT(SoftWare

AnomalyTreatment), that detects, diagnoses, recovers from, and repairs/reconfigures (in the case of a per-

manent hardware fault) around failed components in the field. SWAT relies on low-cost symptom monitors,

implemented in either hardware or software, for detecting hardware faults that manifest into the software and

cause anomalous software behaviors. After a detection, the diagnosis procedure, controlled by a thin layer

of firmware, exploits repeated rollbacks/replays in the multicore environmentfor diagnosing the source of

the error. To recover from an error, SWAT employs a checkpoint/replay mechanism to roll back the faulty

execution to the previous fault-free checkpoint and an output event buffering mechanism to prevent the ef-

fect of the fault from propagating to the outside world. In case of a diagnosed permanent fault, the failed

component needs to be repaired for full recovery. SWAT relies on existing built-in redundancy in modern

superscalar processor to reconfigure around (e.g., disabling one ofthe integer ALUs) the failed unit.

While SWAT primarily relies on symptom monitors for error detection, the SWAT approach naturally

extends to incorporate backup detection techniques (e.g., hardware checkers, selective redundancy, online

test) for the cases where the high-level symptom-based detection coverage is determined to be insufficient;

e.g., for some mission-critical applications or in case of some faults in some structures that may not easily

reveal detectable symptoms at the required cost. Compared to any one suchtechnique used in isolation, the

SWAT approach has the following advantages (discussed in detail in Chapter 3).

• Total system cost is minimized by focusing on optimizing for the common-case error detection mech-
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anisms.

• The high-level symptom-based detection mechanism is general and does not tie to a specific-failure

mode (e.g., soft errors), making it extensible for other failure mechanisms (even ones that are not yet

known).

• Faults that are masked in various levels of the hardware systems are naturally ignored by the SWAT

detection mechanisms, avoiding excessive overheads. Further, even hardware faults that are masked

in the application software are correctly ignored, since they do not appear as software anomalies.

• As the SWAT system is controlled and coordinated by a thin firmware layer, it can be customized to

match different application-specific and system-specific reliability needs.

• By taking a holistic system design approach, novel solutions can be derived. For example, diagnosis

can rely on the rollback/replay recovery mechanism to precisely diagnosethe symptom-causing errors.

• The symptom based detection mechanisms are essentially detecting software bugs. This presents an

opportunity to explore the use of software bug detection techniques to ensure hardware reliability,

amortizing the overhead for different system functions. In the long term, the SWAT system can evolve

to provide a unified framework for both hardware and software reliability.

While SWAT has many advantages when compared to prior work, it also has certain limitations. We

discuss the limitations and future work of SWAT at the end of this thesis. However, recent work along

with my colleagues (not reported here) has already addressed several important issues in SWAT (e.g., [26]);

we briefly discuss this at the end of the thesis. Overall, this thesis provides the foundation for the SWAT

approach and paves the way for much of the ongoing and future work. In the long term, we believe that the

SWAT approach is key to provide a unified framework for both hardwareand software reliability.

1.2 Contributions

The following summarizes the contributions of this dissertation in greater detail.
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1.2.1 Detection Using Software-Level Symptoms

We conducted both permanent and transient fault injection experiments andemployed a number of software

anomaly symptom monitors to detect the injected faults [36]. For permanent faults, our results show that

(1) simple symptom detectors that incur zero to little hardware overhead are able to detect 98% and 99%

of the unmasked faults in 7 studied microarchitectural structures for SPEC workloads and server workloads,

respectively, (2) a large fraction of detections corrupt OS state for both SPEC and server workloads, motivat-

ing the needs for OS recovery, and (3) while all of the detections have latencies that are short enough so that

the pristine execution state can be efficiently restored using hardware checkpointing schemes, full system

recovery still depends on whether I/O activities can be properly buffered to prevent fault propagation to the

outside world. For transient faults, our results show that (1) 96% and 90% of the faults are masked for SPEC

and server workloads, respectively, (2) 59% of the unmasked faults are detected by our symptom detectors

for both SPEC and server workloads, which is consistent with previouslyproposed symptom-based transient

fault detection schemes [61, 81].

We also explored using likely program invariants, a well-known bug detection method, to detect perma-

nent hardware faults [70]. (This work was led by Swarup K. Sahoo.) When used with the simple symptoms

described above, likely invariants are able to reduce the silent data corruption (SDC) events by 73% when

compared to a system that uses only the simple symptom monitors.

These results clearly show that monitoring software-level misbehavior is effective in detecting permanent

and transient hardware faults.

1.2.2 Diagnosis of Permanent Faults by Analyzing Instruction Traces

After an error detection, SWAT must diagnose the source of the fault to ensure full recovery. We propose a

diagnosis framework that exploits rollback/replay in a multicore environment to(1) distinguish among soft-

ware bugs, transient hardware faults, and permanent hardware faults and (2) diagnose the microarchitectural

component that contains the permanent fault by comparing and analyzing the faulty and fault-free instruction

traces with a technique called trace-based fault diagnosis (TBFD) [35].We found that TBFD is able to diag-

nose 98% of the faults detected by SWAT and 90% can be exactly diagnosedto an array entry or a non-array

unit. These results show that hardware permanent faults are highly diagnosable through instruction trace
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analysis.

1.2.3 Recovery of Faults through Checkpoint/Replay and Output Event Buffering

For error recovery, we attempt to recover all faults injected into the I/O intensive server workloads that are

detected within 10 million instructions. For this purpose, similar to other recent work, we leverage existing

techniques that perform hardware checkpointing [74, 59]. Our contribution here is in quantitative results that

show that both hardware checkpointing and output buffering mechanismsare required for full recoverability

and in determining the overheads for each, for the detection latencies of SWAT. We find that with long check-

point intervals, the checkpointing mechanism (Revive on multicore) degrades performance only slightly but

the output buffering mechanism requires somewhat larger storage. Conversely, with short checkpoint inter-

vals, the storage needed by the buffering mechanism is much smaller, but theoverhead of the checkpointing

mechanism increases. Thus, although the overheads with the current techniques are manageable, they are

not as low as for the rest of the SWAT system. These results motivate more efficient recovery schemes that

find a lower-overhead sweet spot for both checkpointing and output buffering overheads, possibly enabled

by a further reduction in detection latencies for SWAT. We leave this exploration to future work.

1.2.4 Accurate System-Level Simulation of Permanent Hardware Faults

Most of this thesis uses microarchitecture-level fault models to representhardware faults. These fault models,

however, are potentially inaccurate as hardware faults occur at a lowerlevel. Because there were no other

methods that model hardware faults at a lower level and capture their impacton software, microarchitecture-

level fault models were used.

To address this issue, our final contribution is SWAT-Sim, a fast and accurate hierarchical fault sim-

ulator, for observing how gate-level permanent faults in the combinationallogic propagate to the system

level [34]. SWAT-Sim achieves speed by simulating mostly at the microarchitecture level and invoking

the gate-level simulation only when the faulty component is used. We found that SWAT-Sim is 100,000x

faster than gate-level simulations but only 3x slower than microarchitecturalsimulations while maintain-

ing gate-level fault modeling fidelity. We use the results from SWAT-Sim to understand the accuracy of the

microarchitecture-level fault models for the ALU, AGEN, and Decoder, and found that (1) the accuracy of the
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microarchitecture-level stuck-at models, while is dependent on different structures, is inadequate for some

cases, (2) the activation rates and the bit corruption patterns vary significantly between the microarchitecture-

level and the gate-level fault models, attributing to the different fault behaviors, and (3) our attempt to derive

probabilistic microarchitecture-level fault models using data from SWAT-Simfor gate-level faults remains

unsuccessful. While these results do not change the qualitative findings for the detection, diagnosis, and

recovery modules, they imply that hardware fault injection based studies ofcurrent and future hardware reli-

ability solutions, including SWAT, should consider using techniques like SWAT-Sim to attain more accurate

evaluations.

1.3 Organization

The rest of this dissertation is organized as follows. Chapter 2 discussesthe work related to the SWAT

detection, diagnosis, and recovery schemes. Chapter 3 presents an overview of the SWAT system. Chapter 4

discusses the very low cost symptom-based detection scheme in SWAT and shows the effectiveness of the

SWAT detection approach through fault injection experiments. Chapter 5 presents the SWAT diagnosis

algorithm that can effectively isolate the different sources of errors and identify the diagnosed permanent

hardware faults at the microarchitecture level. Chapter 6 investigates SWATrecovery. Chapter 8 concludes

this dissertation and discusses future research directions of the SWAT error resilient system.

7



Chapter 2

Related Work

While there have been several recent (relatively) low-cost hardware reliability proposals that eschew exces-

sive redundancy, they have dealt with detection, diagnosis, and recovery as independent problems and/or

they typically propose fault-specific solutions that may not work for other fault types. To the best of our

knowledge, SWAT is the first solution that overcomes such shortcomings, yielding a generic full-system

solution at low cost.

The following sections briefly describe these related studies.

2.1 Fault Detection

As mentioned in Chapter 1, our focus is on low-cost reliability for a broadermarket, where some parts of the

market may even be willing to trade off some coverage for cost. There has been substantial microarchitecture

level work in this context, where redundancy is exploited at a finer microarchitectural granularity. While

much of that work handles transient hardware faults [4, 22, 23, 66, 67, 68, 81], recently, there has been a

growing body of work on handling permanent hardware faults. We discuss some of these schemes in the

following.

Checker and online-testing based detection.

Austin proposed DIVA, an efficient checker processor that is tightly coupled with the main processor’s

pipeline to check every committed instruction for errors [4]. While DIVA can be used to provide detection of

hard (and transient) errors, it does not provide mechanisms for diagnosis or repair. Bower et al. introduced a

hard error diagnosis scheme in the DIVA checker architecture that identifies hard faults through tallying the

different structures utilized by the faulty instructions [10]. (We describethe diagnosis algorithm in greater

detail in Section 2.2.)
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Shyam et al. recently proposed online testing of certain structures in the microprocessor for detecting

hard faults, and recovering the system by both disabling the faulty units androlling back to a hardware

checkpoint [73]. Since these tests are run only when the structures areidle, the performance overhead is

rather small. Constantinides et al. enhanced this scheme further in [13] by adding hardware support so that

the software can control the online testing process, adding flexibility for choosing test vectors. However, the

performance penalty incurred by software-controlled online testing is highfor reasonable hardware check-

pointing intervals. Furthermore, the continuous testing of hardware can accelerate the wear-out process.

As part of the Argus reliability scheme, Meixner et al. have proposed to use computation checkers (infor-

mation redundancy) to protect the ALUs, multipliers, and dividers from transient and permanent hardware

faults in simple cores [45].

All of the above schemes incur significant overhead in area, performance, power, and/or wear-out that is

paid almost all the time. Further, these are customized solutions for hardwarereliability. In contrast to the

above, we seek a reliability solution that pays minimal cost in the common case where there are no errors. In

other words, we seek an “always-on” error detection mechanism that has minimal cost in area, performance,

and power.

Software-centric detection.

There is a large body of literature on detecting hardware faults through monitoring software behavior [22,

51, 54, 61, 65, 67, 79, 81]. The majority of this work focuses on control flow signatures, crashes, and hangs.

Recent work has also examined value based invariants extracted in hardware [61], invariants in software

that are extracted ahead-of-time [54], and locality of instruction-level invariants [17] for detecting errors.

These schemes are similar to our more sophisticated software-assisted detection scheme (to be discussed in

Chapter 4).

Other low-cost hardware-based fault detection schemes have also been proposed. Meixner et al. have

proposed the use of data and control flow checkers for transient andpermanent faults in simple single-issue,

in-order pipelines, with no interrupts [45]. Our proposed symptom-baseddetectors work at a much higher

level – they are largely oblivious to the microarchitecture and require verylittle hardware overhead.
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2.2 Fault Diagnosis

Online diagnosis of hardware faults is a relatively new research area when compared to the detection and

recovery parts of the fault-tolerant systems. We discuss some of the recent proposals here.

The online testing schemes [73, 13] discussed earlier assume both the rolesof error detection and fault

diagnosis. If a particular hardware module fails a particular test, that moduleis instantly diagnosed as faulty

and can be taken offline. However, these online tests are generated based on pre-specified fault models. New

unknown failure modes may cause a fault to go undetected and undiagnosed. Our diagnosis scheme aims to

replicate the same execution environment online so that these faults can be repeatedly activated and correctly

diagnosed.

The most related prior work to our diagnosis scheme (discussed in Chapter5) is by Bower et al. [11],

proposed in the context of the DIVA architecture [4]. Their scheme associates a counter for each reconfig-

urable (repairable) microarchitectural resource. As instructions flow through the pipeline, it keeps track of

the microarchitectural resources used (e.g., which ALU, etc.) in a bit vector which is carried along through

the pipeline. When a mismatch between the main processor and the DIVA checker is detected, the counter

corresponding to each resource utilized by the mismatching instruction is incremented. Once a resource

counter reaches a certain threshold value, it is diagnosed with a permanent hardware fault. Our scheme

differs from that of Bower et. al. in the following ways. First, we incur diagnosis related overhead only

in the infrequent case when a fault is detected. Their scheme, however,contains always-on monitors (for

diagnosis) that present overheads in power and performance even inthe common fault-free operation. Sec-

ond, although their method works well for faults on the data path, it is not well-suited to handle faults in

structures that establish or rely on logical to physical register name translations. Our scheme diagnoses the

faulty microarchitectural structure even in these scenarios.

2.3 Error Recovery

2.3.1 Hardware-Based Error Recovery

As suggested by its name, the hardware-based error recovery methodsare ones that have specialized hard-

ware support for recovering detected hardware errors. Hardware-based error recovery schemes can be
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broadly classified into forward error recovery and backward errorrecovery.

Forward error recovery (FER).

These schemes use redundant hardware to detect and correct faultsso that forward progress can be

guaranteed. Traditionally, high-end systems employ triple modular redundancy [6] to mask the detected

fault through voting. More recently, Austin proposed DIVA that uses a checker processor to mask faults in

the main processor [4]. Because FER schemes usually involve significantamount of redundancy, they are

considered too expensive for the mainstream market and thus not suitablefor use in SWAT.

Backward error recovery (BER).

These schemes are more commonly known as rollback-and-replay recovery methods. They generally

involve some form of checkpointing (taking a snapshot of the state) or logging (generating an undo log

to recover the state) to establish checkpoints, to which the system can be rolled back after an error detec-

tion. Traditionally, IBM mainframes [75] contain register checkpoint hardware and store-through caches

to recover from processor and memory errors. To reduce the cost ofcheckpoint creation, there have been

various proposals that involve modest enhancements to the processor such as attaching a snooping device for

logging [43] and making enhancements to the cache so that the dirty data occupancy in the cache triggers

multiprocessor checkpoint establishments [2]. While these schemes offer solutions for early hardware-based

checkpoint/rollback recovery, there is little controllability of the checkpoint interval.

Recently, SafetyNet [74] and ReVive [59] were proposed to providea sophisticated method for taking

periodic consistent multiprocessor checkpoints. Because these schemesare closely tied to the design of the

SWAT recovery module, we leave this detailed discussion to Chapter 6.

2.3.2 Software-Based Backward Error Recovery

Software-based backward error recovery schemes have also beenproposed to improve fault tolerance. They

work by periodically establishing checkpoints of the process state so that afailed process can be restarted

from the checkpointed state, instead of the beginning of the execution.

In particular, HP NonStop servers have every process periodically checkpoint its state on another pro-

cessor [6]; the shadow process can take over once the main process fails. Elnozahy and Zwaenepoel [19]

introduce Manetho that coordinates different processes in the distributed system to take checkpoints so that
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the domino effect is minimized. Plank et al. [58] introduce diskless checkpointing and explore different ways

to store the checkpoint data in the main memory to reduce the performance overhead. Flashback [76] relies

on a shadow process based checkpoint creation mechanism in diskless checkpointing to provide efficient sup-

port for software debugging. BLCR [5], an ongoing project, is a Linuxmodule developed for checkpointing

the Linux applications. Because the SWAT recovery module can potentially leverage software-based error

recovery methods, we discuss some of these schemes in detail in Chapter 6.

2.3.3 Input/Output Event Handling

Besides checkpointing, input/output commit problems need to be properly handled to prevent inconsistencies

in the system that may thwart full recovery. BLCR [5] and Flashback [76] offer partial solutions for the I/O

recovery problem (e.g., recovering file I/O) by checkpointing the I/O information (e.g., file handle) in the

kernel-specific data structures. Nakano et al. propose ReViveI/O [50] to buffer disk and network events

using pseudo device drivers (PDDs) for fault containment. Compared toBLCR and Flashback, ReViveI/O

provides a more general solution that is less dependent on the OS kernel.As the SWAT recovery module

also needs a general mechanism to properly handle I/O events, we discuss ReViveI/O in detail in Chapter 6.
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Chapter 3

Overview of the SWAT System

The primary goal of the SWAT system is to provide a very low-cost hardware reliability solution for most of

the computing market. To achieve this, the design of the SWAT system is based on two key observations.

1. An effective solution only needs to handle hardware faults that propagate into higher levels of the

system and corrupt the software execution.

2. Even though the future hardware failure rate is projected to increase,fault-free operation remains the

common case and hence must be optimized.

Based on these observations, SWAT minimizes common-case cost by using zero to very low overhead hard-

ware and/or software monitors to detect hardware faults that manifest into the software. SWAT then invokes

a potentially expensive diagnosis routine after a rare case of a detection.

In the rest of the chapter, we first describe the functional operation ofthe SWAT system. Then, we take

a closer look at the various components of the SWAT system. After that, we discuss the potential advantages

of SWAT.

3.1 Functional Operation of the SWAT System

Figure 3.1 shows the high-level view of the typical operation of the SWAT system. For error recovery,

SWAT relies on a form of checkpoint/replay mechanism to roll back the system to a pristine state. Hence, in

the figure, the checkpoints are created periodically. Further, becausethe fault-handling operations are non-

trivial, SWAT relies on a thin firmware layer (not shown in the figure) to coordinate detection, diagnosis,

recovery, and repair.
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Figure 3.1: Operation of the SWAT system.

The SWAT system operates as follows. From the figure, the software continues to execute after a check-

point is created (shown as the solid wavy line). Some time later, a hardware fault appears. Because this fault

has not been activated by the software, the execution is still correct. As the software execution continues,

this hardware fault is exercised and an error is introduced to the software. From this point on, the software

execution is potentially incorrect. This error then continues to manifest in the software execution (shown as

the dotted line). If the underlying fault is a permanent hardware fault, multiple fault activations can occur

and result in multiple corruptions in the software execution. Eventually, the error(s) causes a symptom that

is detected by one of the symptom monitors in SWAT. Now, the hardware fault appears as a form of software

anomaly and is considered detected.

After a detection, to treat this software anomaly, the SWAT firmware is invokedto coordinate all the

fault-handling operations. The first step is to diagnose the cause of the detected symptom. The SWAT

diagnosis algorithm currently assumes three different fault models: software bugs, transient faults (either

hardware or software), and permanent hardware faults. It also assumes a multicore system. At a high level,

SWAT diagnosis watches for symptom re-occurrence on repeated rollbacks/replays on the same or different

cores to determine the different sources of errors. If there is no symptom after a simple rollback/replay on

the original symptom-causing core, a transient fault is diagnosed and the rollback/replay naturally recovers

this type of fault. If the symptom is persistent on the original and a differentcore in the system, the diagnosis

algorithm identifies a deterministic software bug and SWAT propagates the symptom to higher levels of

software. However, if the symptom is only persistent on one core but notthe others, a permanent hardware

fault is diagnosed. Since a hardware fault is persistent, it cannot be recovered through rollback/replay. To
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Figure 3.2: Functional overview of the SWAT system.

prevent further corruptions by the underlying permanent hardware fault, SWAT diagnoses the permanent

fault at the microarchitecture level to facilitate fine-grained repair or reconfiguration, essentially extending

the lifetime of the faulty core. To recover from a detected hardware faults (either transient or permanent),

the SWAT firmware invokes the rollback recovery procedure so that the pristine execution state is restored

and the correct software execution can be resumed.

3.2 Components of the SWAT System

Figure 3.2 illustrates how the detection, diagnosis, recovery, and repair components work together in SWAT.

In the following, we briefly discuss the different modules of SWAT.

3.2.1 Detection

As shown in Figure 3.2, the detection mechanism is always on during both fault-free and fault-handling

(during diagnosis) operations. Because the fault-free operation is the common case, the cost paid in detection

directly impacts the overall system cost. Focusing on minimizing the cost of the detection module is the

primary reason why SWAT is able to achieve low overall system cost.
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Based on our previous observations, the sweet spot of handling hardware faults is at the level where the

faults have manifested and appeared as some form of software misbehavior. Thus, to minimize the cost of the

detection module, SWAT relies on very low overhead symptom monitors to detectthe software anomalies

caused by the propagation of hardware faults. As some of these monitors have near zero overheads, the

cost of the detection module is truly minimized. Further, with monitors that detect anomalous software

behavior, they naturally handle only hardware faults that matter and ignorethose that do not. For example,

if a hardware fault propagates but has its effect masked by a branch misprediction induced pipeline flush,

the error is invisible to the software and the symptom monitors. In this work, we first experimented with

very low cost hardware-only detectors that do not require assistancefrom software. Since SWAT treats the

hardware errors when they appear as software bugs, many techniques from the software debugging research

community can potentially leveraged. In particular, we also looked into software-assisted detectors that rely

on compiler support.

For systems that require higher detection coverage, techniques such asonline testing, selective redun-

dancy, hardware checkers, etc. can also be incorporated into the SWAT detection module. The resulting

system will be more expensive but is more reliable.

3.2.2 Diagnosis

Post detection, the first step of the fault-handling operation is to diagnose the source of the error. Because a

detection is typically rare, the invocation of the diagnosis procedure is also rare. Consequently, the overheads

paid in this operation can potentially be expensive but still do not affect theoverall system cost significantly.

Because software bugs, transient hardware faults, and permanent hardware faults can all manifest and

lead to symptoms, the diagnosis algorithm has to be made necessarily intelligent to precisely diagnose the

source of the error. Towards this end, we assume the SWAT firmware is involved in controlling the diagnosis

process. We further assume that a single-threaded application is executing on one core in the multicore

system. Then, given SWAT has a checkpoint/replay recovery mechanism,the firmware-controlled diagnosis

procedure performs repeated replays of the execution in a multicore environment to determine the cause of

the symptom.

The procedure goes as follows. After a symptom is detected for the first time, a rollback/replay is
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triggered on the symptom-causing core and the firmware watches for any symptom re-occurrence. If no

symptom is found, a transient fault is diagnosed and the execution replay duly recovers the fault. If the

symptom persists on the same core, the firmware transfers the checkpoint toanother core in the system

to replay the execution. If the symptom recurs on this new core, SWAT diagnoses this as a deterministic

software bug (because the symptom persists on all cores) and propagates its effect to the higher levels of

software. However, if the symptom does not occur on this new core, a permanent fault is diagnosed (since it

occurs twice on the original core but disappears when the execution is onthe new core).

In the case of a diagnosed permanent fault, SWAT can choose to decommission the entire faulty core as a

method of repair. But, modern superscalar processors often contain built-in redundancy that can be exploited

for fine-grained repair. Hence, to facilitate this level of repair or reconfiguration, SWAT will attempt to

diagnose the location of the fault at the microarchitecture level using a technique called trace based fault

diagnosis. This technique, in essence, synthesizes a dual modular redundant execution using two cores

from the multicore system to identify the source of the permanent fault. Using divergences between the

executions as clues, the trace based diagnosis algorithm intelligently tracks down the source of the hardware

fault from the collected execution trace. After that, the appropriate repairprocedure is invoked to prevent

future activations of the permanent fault.

3.2.3 Repair

As mentioned, in the case of permanent fault, repair or reconfiguration is needed to ensure reliable and

continuous operation. To this end, SWAT relies on built-in microarchitecturalredundancy, frequency and

voltage scaling, and/or microcode-level reconfiguration in modern processors to fulfill this task. We believe

that this level of control is typically available for current and future multicore systems. Thus, this thesis

assumes the necessary support for repair is in place and does not go into the implementation details of the

repair mechanisms.

3.2.4 Recovery

From Figure 3.2, error recovery is active in both fault-free (along with SWAT detectors) and fault-handling

operations. Based on our observations, in order to keep SWAT low cost,the fault-free overhead incurred by

17



the recovery mechanism must be kept low as it is the common case operation. Functionally, the recovery

mechanism must be capable of restoring the system state and preventing the effect of the fault from prop-

agating outside of the sphere of recoverability (to be discussed in Chapter6). In this thesis, we assume a

hardware-based checkpoint/replay mechanism as the primary SWAT mechanism for execution state restora-

tion and an output event buffering mechanism to prevent faults from propagating and becoming visible to

the outside world.

During fault-free operation, the checkpoint/replay mechanism periodicallycreates checkpoints of the

execution state. The buffering mechanism provides the necessary storage to buffer the output events. To

be consistent with the SWAT system design approach, these modules must bedesigned appropriately to

minimize the overheads in performance, area, and power in order not to to increase the overall system cost

significantly.

During the fault-handling operation, the SWAT firmware invokes the rollbackrecovery procedure of the

checkpoint/replay module and discards the potentially faulty output events in the buffering module. Similar

to diagnosis, these operations can be allowed to incur higher overhead since they occur infrequently.

In this dissertation, while we do not propose a new recovery scheme, we quantify the need for both the

checkpointing and output buffering mechanisms in terms of system recoverability and identify the overhead

incurred by these existing schemes. These results are important as researchers can use them to help derive

new lower-cost and more efficient recovery mechanisms.

3.3 Advantages of the SWAT System

The SWAT system is designed as a comprehensive reliability solution from theground up. To realize a very

low cost solution, the SWAT approach emphasizes the absolute minimal cost in always-on error detection by

using a very low cost software-level symptom-based detection mechanism. Overall, we believe the SWAT

system has the following advantages over existing techniques. (We discuss the limitations of SWAT at the

end of this thesis.)

• Optimizing for the common case. Total system overhead is significantly reduced by emphasizing

minimal detection overhead (which is paid all the time), possibly at the cost of higher diagnosis over-
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head (which is paid only in the case of a fault).

• Generality. High-level symptom-based detection techniques are largely oblivious to specific low-level

failure modes or microarchitectural/circuit details. Thus, in contrast to detection methods that are

driven by specific device-level fault models (e.g., wear-out detectors), high-level detection techniques

are more general and extensible to numerous failure mechanisms and microarchitectures.

• Ignoring masked faults. Previous work has shown that a large number of faults are masked by higher

levels of the system such as circuit, microarchitecture, architecture, and application levels [15, 32, 37,

49, 82]. High-level detection techniques naturally ignore faults that are masked at any of these levels,

avoiding the corresponding overheads.

• Customizability. A firmware controlled system with detection mechanisms driven by software behav-

ior provides a natural way for application-specific and system-specific customization of the reliability

vs. overhead tradeoff. For example, when a fault is detected in a video application, the system may

consider dropping the current frame computation rather than recoveringit. Further, the approach is

amenable to selective cost-conscious use of different symptom-based and backup detection techniques.

• Novel solutions result from holistic system design.The holistic system design approach allows us to

experience with and derive novel reliability solutions. In particular, the intelligent diagnosis algorithm

is made possible because the checkpoint/replay recovery mechanism is available. In another example,

heuristic detection mechanisms that can cause false-positive detections canbe used in the SWAT detec-

tion module because the SWAT firmware has the capability to determine, through diagnosis, whether

a false-positive detection has occurred at runtime. This effectively improves the coverage and latency

of the SWAT detection module.

• Amortizing overhead across other system functions.Our view of monitoring for software symp-

toms of hardware bugs is inspired by work on on-line software bug detection [21, 24, 41, 86, 87, 88].

Our approach can leverage software bug detection techniques for hardware fault detection and vice

versa, amortizing overheads for different system functions. In the long term, we believe the SWAT ap-

proach can bring hardware and software reliability solutions together andevolve into a unified frame-
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work that tackles both types of reliability threats, essentially treating them a single system reliability

challenge.

3.4 Summary

This chapter gives a brief overview of the inner workings of the SWAT system. Specifically, we have de-

scribed how SWAT detects, diagnoses, recovers, and/or repairs a faulty hardware component. By focusing

on faults that are harmful to the software, SWAT can leverage very low cost and effective symptom monitors

to make up the efficient always-on detection scheme. Because the cost ofthe detection module is minimized,

the common case operation is essentially optimized, resulting in a very low cost reliability solution.

While SWAT’s detection scheme is low cost, it is not without tradeoffs. In particular, as multiple types of

errors can all manifest as symptoms, the diagnosis process is relatively complex. Nevertheless, we are willing

to have a more complicated and potentially expensive diagnosis mechanism in SWAT because diagnosis is a

rare case operation and hence does not have a significant impact on theoverall system cost.

Error recovery, on the other hand, is an interesting module as it is invokedin both fault-free and faulty

operations. Obviously, the fault-free overhead of the recovery scheme has to be kept low in order for SWAT

to be deployable to the masses.

Overall, in this chapter, we have given a high level view of the SWAT system.In the rest of this thesis,

we first present the detection module in Chapter 4. Then, we describe the diagnosis scheme in detail in

Chapter 5. After that, the recovery module is explored in Chapter 6.
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Chapter 4

SWAT Detection

As the error detection mechanism needs to be always on in all fault-tolerantsystems, its cost has a huge im-

pact on the overall system cost. In order to provide a low-cost reliability solution, minimizing the overheads

incurred by the detection mechanism is a must.

Taking this fact into account, we make a key observation that a hardware fault is only considered harmful

if it affects software execution. Hence, hardware error detection mechanisms only need to handle hardware

errors that propagate through high levels of the system and become observable to the software. In other

words, one can detect hardware errors after they propagate into the software and appear as software bugs.

The SWAT error detection module follows exactly these observations and employs a suite of monitors

of anomalous software behavior (called symptom) for hardware error detection. By using this approach, the

error detection module achieves minimal cost in two ways. First, the symptom detectors, by nature, handle

all hardware faults that matter and ignore those that do not. This greatly reduces excessive overhead spent on

handling faults that would have been masked at various hardware and software levels. Second, because the

symptom monitors themselves can be designed to catch simple software misbehavior that are easy to detect,

they can be implemented at extremely low cost.

In this chapter, we start with very simple detectors that can be realized with minimal hardware cost

and no software support [36]. Then, we introduce a software-assisted detector that leverages a well-known

software bug detection technique for detecting hardware faults [70].

4.1 Hardware-Only Software Anomaly Monitors

To minimize the cost of the error detection module, we started with symptom monitors that can be imple-

mented with near-zero hardware overhead. In an extreme case, there isone detector class that incurs zero
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hardware cost. In the following, we discuss these detectors in more detail.

4.1.1 Fatal Traps

An easily detectable abnormal behavior due to a hardware fault is afatal hardware trap in either the appli-

cation or the operating system. A fatal trap is typically not thrown during a correct program execution. In

a SWAT system running Solaris, the following traps are denoted as fatal traps – RED (Recover Error and

Debug) State Trap (thrown when there are too many nested traps), Data Access Exception Trap, Division

By Zero Trap, Illegal Instruction Trap, Memory Misaligned Trap, and Watchdog Reset Trap (thrown when

no instruction retires in the last216 ticks). Using these traps as symptoms of hardware faults requires no

additional hardware overhead and such a trap would simply invoke the SWAT firmware that performs further

diagnosis and recovery as needed (Chapter 3).

4.1.2 Hangs

Another possible abnormal behavior due to a fault is a hang in the applicationor OS. Previous work has

proposed hardware support to detect hangs with high fidelity, but with some area and power overhead [51].

Several optimizations to that work are possible. For example, a detector based on a heuristic can initially be

used (e.g., based on the frequency of branches) – if that heuristic is satisfied, then a more complex mechanism

involving hardware or software can be invoked. We, however, choose to implement a detector with a simpler

heuristic to lower the overheads. In particular, we developed a heuristic based on monitoring all executed

branches and detecting tight loops that have a large number of iterations byemploying a table of counters.

Figure 4.1 shows this table in greater detail. Each entry of the table consists ofthree fields: a partial tag of

the PC, an instruction count that identifies when the last instance of the branch instruction retired, and a loop

counter. The tag is for distinguishing among different branches that have the same index. The instruction

count records when the last branch instruction retired and contains the value from the performance counter

that tracks retiring instructions (already available in modern processors). The instruction count field helps

the hang detector determine the size of the loop, in number of instructions. Theloop counter keeps track of

the number of iterations of the current invocation of the loop.

With this table, the hang detector operates as follows. Whenever a branch instruction retires, a part of
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Figure 4.1: Hardware structure used for hang detection.

its PC is used to index into the table to look up the tag. If the tag does not match the current branch, a new

loop is identified and the following actions are taken: (1) the tag is updated with the tag bits of the current

branch’s PC, (2) the instruction count field is updated with the current count from the performance counter,

and (3) the loop counter is reset to zero. If a tag match occurs, then a dynamic branch with the same PC has

retired previously and this branch may be part of the identified loop. To identify whether this is an iteration

of a tight loop, the distance from the last invocation of the branch is computedby subtracting the current

instruction count (from the performance counter) with the one in the entry.If the distance exceeds a preset

range threshold, this is assumed not to be a tight loop. Since the current branch may be the beginning of a

new tight loop, the instruction count field is updated and the loop counter is reset to zero. If the distance is

within the range threshold, a tight loop is identified and the loop counter is incremented. If the loop counter

exceeds a pre-defined iteration threshold, a potential hang is detected.

We determined the size of the table empirically from our experiments and found that a 128-entry table

with each entry containing an 8-bit tag, an 8-bit instruction count, and an 18-bit loop count is sufficient.

This hang detector, consisting of a table of counters, a 64-bit range threshold register, and an 18-bit iteration

threshold register, consumes a total of 555 bytes. While this table is already reasonably small, further

optimization in size (e.g., using branch frequency to filter out branches thatare not executed frequently,

allowing the use of a smaller table) is possible but we did not explore further.As this is a heuristic detector,

false positives are possible but they can be identified and properly handled in SWAT. Section 4.3 discusses

how SWAT handles a false-positive detection.
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4.1.3 High-OS Activity

As typical OS invocations, due to traps or interrupts, take 10s or 100s of instructions, an execution that

spends an excessive amount of time in the OS, without returning to the application, is a potential symptom

of a fault. Such a detector can be implemented using a simple performance counter (already provided in

modern processors) that counts the number of contiguous privileged instructions and invokes the SWAT

firmware if a preset threshold is exceeded. We call this the High-OS detector.

However, we found exceptions to this observation. First, on a timer interrupt after the allocated time

quantum for the application expires, the OS scheduler may execute for muchlonger. Second, for system calls

(e.g., I/O), we observed that the OS may execute for much longer (105 or 106 instructions) before returning

to the application. Third, there are applications (e.g., servers implemented as daemons) that voluntarily go

to sleep and let the OS take over; without another runnable process, the execution stays in the OS. For these

cases, we disable the High-OS detector to avoid false positive detections. Other false positives, nevertheless,

are possible. Section 4.3 discusses how these cases are handled.

4.1.4 Kernel Panic

To ensure system integrity, modern operating systems are developed with a wide variety of error checking

mechanisms to contain many different errors. While some violations of these checks are recoverable by the

OS, some of them are critical and can cause the OS kernel to panic. A kernel panic, therefore, indicates

a system anomaly. To monitor this symptom, a debug register can be used to watchfor whether the panic

function in the OS is executed. As modern processors already provide thisregister for software debugging,

there is no additional hardware cost for detecting this symptom. However, OS support is needed to identify

the kernel panic function.

Similar to High-OS, the Panic detector aims to detect anomalous behavior in the OS.However, while a

High-OS detection may occur in normal software execution due to possible false positives, a Panic is never

thrown by the OS during normal execution.
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4.2 Software-Assisted Software Anomaly Monitors

Since SWAT focuses on hardware faults that propagate to the software and eventually appear as software

bugs, we can potentially leverage existing software bug detection techniquesto detect hardware faults. As

a first step in this approach, we investigate detectors that are based on program invariants, a well-known

method for detecting software bugs [21].

4.2.1 Range-Based Likely Program Invariants

A program invariantat a particular program pointP is a property that is guaranteed to hold atP on all

executions of the program. Static analysis is the most common method to extract such sound invariants. A

combination of offline invariant extraction pass and static analysis, or theorem proving techniques, has also

been suggested to extract sound invariants [53]. However, currenttechniques are not scalable enough to

generate sound invariants for real programs. Also, they cannot identify algorithm-specific properties that are

not explicit in the code (e.g., some inputs are always positive).

Likely program invariantsare properties involving program values that hold on many executions on all

observed inputs and are expected to hold on other inputs. Extracting likely program invariants is easier than

extracting sound invariants as we do not need expensive static analysis methods to prove program properties

and can identify algorithm specific properties. The extraction can be doneeither online or offline. In the

online methods, invariants are extracted and used during program execution in the production runs. Online

extraction, however, can present unacceptable overheads to program execution, and may in fact be infeasible

without hardware support. The offline approach, on the other hand, extracts invariants in a separate pass

during program testing or debugging, and these generated invariants can be used later during the production

runs. During the testing phases of software development, the extra overhead of invariants extraction can

be tolerated. This makes offline invariant extraction a powerful method, allowing the use of more complex

invariant mining techniques that would not be feasible in the online methods. With compiler support, this

“training” phase can be done transparently at development time.

Since likely invariants are unsound invariants, they may not hold on some inputs. Therefore, during

production runs, false positives can occur. In the presence of permanent faults, SWAT must be able to

correctly tell apart a false positive invariant violation and an invariant detection caused by a permanent
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hardware fault. We discuss how false positives are handled in Section 4.3.

While there are many types of likely invariants, we can broadly classify them into three categories.Value

basedinvariants specify properties involving only program values, and can beused for a variety of tasks

including software bug detection, program understanding and refactoring, etc. [20, 39, 31, 40, 25].Control

flow basedinvariants specify properties of the control flow of the program, and have been used previously

to detect control-flow errors due to transient faults [79, 78, 22].Program counter basedinvariants specify

program properties involving program counter values, and have beenproposed for detecting memory errors

in programs during debugging [85].

The control flow based and program counter based invariants can detect control flow or memory access

errors, which generally result in anomalous software behavior that canbe detected by the hardware-only

detectors in SWAT. For example, an erroneous control flow can result ina fatal trap. In contrast, fault-

induced deviations in values that do not cause control flow or memory access errors are more difficult to

detect with hardware-only detectors and may result in incorrect program outputs. We believe that value

based invariants are effective for detecting these errors that only corrupt data, and explore the use of value-

based invariants to detect permanent faults.

As a first step towards using likely program invariants for permanent hardware faults, we use a particular

form of value-based invariants known as range-based invariants. A range-based invariant on a program

variablex will be of the form [MIN, MAX], where MIN and MAX are constants inferred from offline

training such thatMIN ≤ x ≤MAX is true for all the training runs.

These range-based invariants are suitable for error detection for various reasons. These types of invariants

can be easily and efficiently generated by monitoring program values. They are also composable – the

invariants can be generated for each training input separately and can then be combined together to generate

invariants for the complete training set. These invariants are also much easierto enforce within the checking

code compared to other forms of invariants as they are simple and involve a single data value.

The following describes the steps we take to generate invariants for detecting hardware faults. We use

the LLVM compiler framework for the these steps.
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Invariant Generation

The likely range-based invariants are derived by training the targeted applications with a variety of inputs.

The data range of each static store instruction is collected for each training input. We decided to monitor only

the store values as checking values stored to memory has the most potential to catch faults, as all necessary

computations eventually pass their results to stores. Also, monitoring only the stores helps us keep the

overhead of detection low. We monitor stored values of all integer types (both signed and unsigned) of size

2, 4, and 8 bytes as well as single and double precision floating point types. We do not monitor integer

stores of size 1 byte (character data types), as they represent only a small range of values and hence may be

ineffective to detect faults.

Invariant Insertion

The invariants generated from the previous phase then need to be inserted into the code to check the values

being stored for hardware fault detection. To accomplish this, we take the generated invariant ranges and

then insert calls to the invariant checking code at the LLVM byte-code level through an instrumentation pass

in the compiler. At this point, the resulting application binary contains checking code that is capable of

detecting invariant violations.

4.3 Handling False Positives

After a symptom is detected, if the diagnosis (described in Chapter 3) determines that the symptom was not

caused by a hardware fault, this symptom is deemed a false positive for the presence of a hardware fault.

In these cases, fatal traps and kernel panics are essentially symptoms ofsoftware bugs and will simply be

propagated to the appropriate software layer as usual. The additional diagnosis latency in these cases is

acceptable since it is incurred in the case of a fault, albeit in software.

For symptoms such as hangs and high OS activity, the detection mechanisms themselves are prone to

false positives as they are based on heuristics. When the diagnosis determines that one of these symptoms

is a false positive for the presence of a hardware fault, the execution willsimply continue. In this case, the

diagnosis latency is an overhead for fault-free execution. To evade thisoverhead in the future, the SWAT
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firmware can increase the thresholds in these detectors to avoid a similar kind of false positive. However,

because higher thresholds potentially lead to higher detection latencies, the SWAT firmware can periodically

decrease the threshold if no false positives are detected. In general, there is a tradeoff between the latencies

of these symptom detectors and their false positive rates.

Likely invariants are also prone to false positives because they are expected to hold on most, but not all,

program inputs. After detecting invariant violations, we use the SWAT diagnosis module to identify false

positives. A diagnosed false positive means that the particular program input leads to data values that were

never seen during the training runs. Hence, the false positive detection islikely to occur again in subsequent

execution. Because all SWAT detections invoke the diagnosis module which can be expensive, false positives

can therefore be costly. To limit the overhead incurred by false-positiveinvariant violation detections, SWAT

diagnosis disables the offending invariant check.

4.4 Methodology – Base Environment

The main goal of our experiments is to study the effectiveness of the SWAT detection, diagnosis, and recovery

components when the system has a fault. To achieve this, we conduct faultinjection experiments on a

common base environment. In this section, we describe the base simulation environment in Section 4.4.1

and the fault models used in Section 4.4.2.

4.4.1 Base Simulation Environment

Ideally, to evaluate the detection, diagnosis, and recovery components ofSWAT, we would like to inject

hardware faults into a real system or a low-level (e.g., gate level) simulator.However, modern processors do

not provide enough observability and controllability to perform the microarchitecture-level fault injections

that are of interest to us. We therefore use simulation. Although low-level simulators would provide the

ability to use more accurate fault models, they present a trade-off in speedand the ability to model long

running workloads with OS activity. Since we need to evaluate the impact of persistent faults on the soft-

ware and need to simulate for long periods (millions of cycles), gate-level simulation was not feasible. We

therefore conduct our fault injection campaign in a microarchitecture-level simulator. (Chapter 7 presents a

new efficient way for simulating gate-level faults with microarchitecture-level simulation speeds.)
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Base Processor Parameters
Fetch/Decode/Execute/Retire rate4/cycle
Functional units 2 Int add/mul, 1 Int div, 2 Load, 2 Store, 1 Branch

2 FP add, 1 FP mul, 1 FP div/Sqrt
Integer FU latencies 1 add, 4 mul, 24 divide
FP FU latencies 4 default, 7 mul, 12 divide
Reorder buffer size 128
Register file size 256 integer, 256 FP
Unified Load-Store Queue Size 64 entries

Base Memory Hierarchy Parameters
Data L1/Instruction L1 16KB each
L1 hit latency 1 cycle
L2 (Unified) 1MB
L2 hit/miss latency 6/80 cycles

Table 4.1: Parameters of the simulated processor.

To simulate a system with faults, we use a full system simulator comprising the Wisconsin GEMS mi-

croarchitectural and memory timing simulators [42] in conjunction with the VirtutechSimics full system

simulator [80].

Together, these simulators provide cycle-by-cycle microarchitecture level timing simulation of a real

workload running on a real operating system on a modern out-of-ordersuperscalar processor and memory

hierarchy (Table 4.1). In particular, we simulated six SpecINT2000 (bzip2, gcc, gzip, mcf, parser, and twolf)

and 4 SpecFP2000 (ammp, art, equake, and mesa) applications on Sun Solaris 9 running SPARC V9 ISA

(Figure 4.2(a) shows the simulation environment). We also simulated two serverapplications, Apache web

server and SSH daemon (described in Table 4.2), on OpenSolaris. Sinceserver workloads are driven by

requests made by client systems, we created an environment in Simics that consists of two separate systems

connected by a simulated network (shown in Figure 4.2(b)).

To inject faults, we leverage the timing-first approach [44] used in the GEMS+Simics infrastructure. In

this approach, an instruction is first executed by the cycle-accurate GEMS timing simulator. On retirement,

the Simics functional simulator is invoked to execute the same instruction again and tocompare the full

architecture state in GEMS and Simics. This comparison allows GEMS the flexibility tonot fully implement

a small (complex and infrequent) subset of the SPARC ISA – GEMS uses thecomparison to make its state

consistent with that of Simics in case of a mismatch that would occur with such an instruction.
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Figure 4.2: Simulation environment. (a) A single-system environment that runs SPEC applications on a
commercial OS. (b) A two-system environment that runs server applications on one system and client appli-
cations on another system.

We modified this checking mechanism for the purposes of microarchitecturalfault injection. We inject a

fault into the timing simulator’s microarchitectural state and track its propagation as the faulty values are read

through the system. When a mismatch in thearchitectural stateof the functional and the timing simulator is

detected, we check if it is due to the injected fault. If not, we read in the value from Simics to correct GEMS’

architectural state. However, if the mismatch is because of an injected fault, we corrupt the corresponding

state in Simics (register and memory) with the faulty state from GEMS, ensuring that Simics continues to

follow GEMS’ execution trace, upholding the timing-first paradigm.

We say an injected fault isactivatedwhen it results in corrupting the architectural state, as above. If

the fault is never activated, we say the fault isarchitecturally masked(e.g., a stuck-at-0 fault in a bit that

is already 0 or a fault in a misspeculated instruction are trivially masked). Since we know the privilege

mode of the retiring instruction that corrupts the state, we can determine if a fault leads to any corruption

in the architectural state of the OS or the application. As discussed later, this information has important

implications for recovery.

Although in the fault-free executions of the SPEC workloads, the simulated applications are not OS-

intensive (< 1% OS activity in our simulated window), we show later that fault injection significantly

increases OS activity. For server workloads, as the OS activity is already high (50+% in our simulated

window), we observe later that the injected faults are highly likely to corruptthe OS. Because hardware

faults can corrupt the OS state for our workloads, it is critical to model the OS and its interaction with the
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Benchmark Description Fault-free Output

Apache

Provides webpages and files at a website to
requesting clients through the HTTP protocol. Four
worker threads listen to incoming requests from a
synthetic driver with 20 threads, obtained from the
cURL [14] utility.

Each client thread receives the
assigned files that are the same
as stored on the server.

SSH Daemon

Provides files to the clients using the SSH protocol.
One daemon thread listens to a synthetic client
system with 8 threads, and spawns threads with
added connections.

Each client thread receives the
assigned files that are the same
as stored on the server.

Table 4.2: Description of server workloads.

µarch structure Fault location
Instruction decoder Input latch of one of the decoders
Integer ALU Output latch of one of the Int ALUs
Register bus Bus on the write port to the Int reg file
Physical integer reg file A physical reg in the Int reg file
Reorder buffer (ROB) Source/destination register number of instructions in ROB entry
Register alias table (RAT) Logical→ physical map of a logical register
Address gen unit (AGEN) Virtual address generated by the unit
FP ALU Output latch of one of the FP ALUs

Table 4.3: Microarchitectural structures in which faults are injected. In each run, either a stuck-at fault is
injected in a random bit or a bridging fault is injected in a pair of adjacent bits inthe given structure.

applications in our simulations. Hence, our experiments are run in a full-system simulation environment.

4.4.2 Fault Models

As phenomena such as wear-out or infant mortality due to incomplete burn-in[8, 9, 84] become increasingly

important, we would want to model them at the microarchitecture level. However, since precise fault models

for wear-out are still a subject of research [73] and we do not haveaccess to all gate-level modules of

a superscalar processor, we use the well established stuck-at-0 and stuck-at-1 fault models as well as the

dominant-0 and dominant-1 bridging fault models injected at the microarchitecture level. While the stuck-at

fault models apply to faults that affect a single bit, the bridging fault models concern faults that affect adjacent

bits. The dominant-0 bridging fault acts like a logical-AND between the adjacent bits that are marked faulty,

while the dominant-1 bridging fault acts like a logical-OR. Table 4.3 lists the microarchitectural structures
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and locations where we inject faults.

Fault Injections for SPEC Workloads

For each structure, we inject a fault in each of 40 random points in each application (after initialization), one

injection per simulation run. For each application injection point, we perform an injection for each of the 4

fault models (two stuck-at and two bridging). The injections are performedin a randomly chosen bit in the

given structure for stuck-at faults. For bridging faults, a randomly chosen pair of adjacent bits are injected.

This gives a total of 1600 fault injection simulation runs per microarchitectural structure (10 applications×

40 points per application× 4 fault models) and 12,800 total injections across all 8 structures. This gives us

an overall error of 0.4% at a 95% confidence, making our results statistically significant.

We also performed a total of 6400 transient fault injections (single bit flips)in the same microarchitectural

structures. (The number of injections is fewer than for permanent faults because of fewer fault models.) The

error is a low 0.6%, at a 95% confidence.

Fault Injections for Server Workloads

For server workloads, we focus on stuck-at faults because they arewell-known standard fault models. Also,

since profiling our server applications shows that the FPU was never used, we focus on the other 7 microar-

chitectural structures. Further, because there are only 2 server applications, we deliberately increase the

number of injected faults to achieve statistical significance.

In each run, a stuck-at-0, a stuck-at-1, or a transient fault is injected ina randomly chosen bit in one

of the 7 structures (all except FP ALU) listed in Table 4.3. For each of Apache and SSH daemon, we pick

4 base injection points (orphases) spaced sufficiently apart in the execution of the application, to capture

different behaviors of the application. In each phase, for each structure, we pick 40 spatially and temporally

random injection points for each of the stuck-at-0 and stuck-at-1 faults, and 80 spatially and temporally

random injection points for transients (e.g., 40 different physical registers, each with stuck-at-0, and stuck-

at-1 faults, and 80 different RAT entries, each with a transient fault in a random bit). This gives us a total of

4480 permanent faults (2 applications× 4 phases× 7 structures× 40 random points× 2 fault models) and

4480 transient faults (same as the above, except with 80 random points, and one fault model). This gives a
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low overall error of 0.2% at a 95% confidence, making our results significant.

We inject the fault at the server system only and attempt to detect and recover faults at the server without

involving the client.

While the experiments for the SWAT detection, diagnosis, and recovery schemes are based on this envi-

ronment in general, there are a few exceptions (e.g., software-assistedinvariant detection). In the rest of the

thesis, we explicitly point out the exceptions.

4.5 Methodology – Detection

This section focuses on the environment used in SWAT detection experiments. In Section 4.5.1, we first

describe the parameters used for the SWAT symptom detectors. We then present our experimental setup for

capturing the impact of each injected fault in Section 4.5.2. In Section 4.5.3, we describe the metrics used in

the experiments.

4.5.1 Symptoms Studied

We employ the monitors described in Sections 4.1 and 4.2 to detect the injected faults. For the software-

assisted invariant detectors, due to the lack of realistic program inputs forsome of the applications, we

applied the invariant detectors to five SPEC applications. Since previous work has investigated application-

specific detectors for transient faults [54], our experiments for the software-assisted invariant detection focus

on permanent faults. In the following, the parameters of each of the symptommonitors are discussed.

• Fatal Traps. The following fatal traps are monitored – RED (Recover Error and Debug) state trap

(thrown when there are too many nested traps), Data Access Exception trap, Division by zero trap,

Illegal instruction trap, Memory misaligned trap, and Watchdog reset trap (thrown when no instruction

retires in the last216 ticks). Further, in our experiment, a fault can cause a fatal trap in either the

application or the OS.

• Hangs.For our experiments, we set the range threshold to be 200. For the iterationthreshold, we use

100,000 for SPEC workloads and 250,000 for server workloads. We identified the iteration thresh-

olds through profiling the fault-free executions of the applications. We consider both hangs in the

33



application and the OS.

• High-OS activity. We look for a threshold of over 30,000 contiguous OS instructions,excluding

cases where the OS is invoked via a system call, a timer interrupt, or an idle loop. This threshold

corresponds to a conservative latency which is 3 times the maximum observedscheduler latency. We

switch off High-OS for the server workloads. While we can tune High-OS for the server applications,

their inherently high OS activities make it difficult to do so. For example, since the server daemon

may be blocked (put to sleep) in different parts of the OS, the High-OS detector needs to be tuned to

ignore these regions of code to prevent false positive detections. We employ kernel panic (described

below) in place of High-OS for server workloads.

• Kernel Panic. We watch for 11 OS (privileged) instruction addresses of the kernel panic functions in

OpenSolaris to detect when a panic is thrown. We switch on this symptom in placeof High-OS for

the server workloads because of the reason given above. From ourexperiments, we found that kernel

panic is adequate for detecting many faults in server workloads. We did notuse this symptom for

SPEC workloads as we later show that the High-OS detector is sufficient to detect a large fraction of

faults.

• Range-Based Likely Invariants. Using the LLVM compiler framework, we generate the invariants

for and insert the invariant checking code into five SpecCPU 2000 benchmarks – four SpecInt bench-

marks (gzip, bzip2, mcf, parser) and one SpecFP benchmark (art). The “test” and “train” input sets

formed part of our training set. Different techniques were used to generate more inputs depending

on the benchmarks. For three benchmarks (gzip, bzip2 and parser), we collected random inputs from

external sources. For mcf, a script was used to generate random inputs, while for art, different input

options were used to generate invariants. We did not use other SPEC benchmarks because of various

training input collection and compilation issues. Nevertheless, obtaining inputswill not be a prob-

lem in practice as developers test their programs on many inputs during the testing phase. Invariant

generation and insertion can be easily done during testing through a compile-time pass.

After the application binaries are instrumented with invariant checking code,we inject faults while the

applications are running the “ref” inputs (not part of the training input set).
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4.5.2 Fault Simulation Experimental Setup

The main objective of our fault injection experiment is to investigate the effectiveness of SWAT’s symptom

detectors in detecting the underlying hardware faults. To achieve this, each fault is injected into the desig-

nated microarchitectural structure and simulated in the microarchitectural simulator for certain number of

instructions to see if it leads to any symptom. If no symptom is detected in this detailedsimulation, we

investigate the impact of the fault on the software by functionally simulating the application to completion.

The following presents the detailed experimental setup.

Microarchitectural Simulation

During this detailed simulation, after a fault is injected, the simulation runs for at least 10 million instructions.

If an injected fault results in a monitored symptom, it is considereddetected and recoverable. Hence, this

detection is counted towards part of the coverage and its latency is measured (described in Section 4.5.3).

If a fault never corrupts the architectural state 10 million instructions after the injection, it is considered

architecturally masked. If the fault corrupts the architectural state but does not result in a symptom after

simulating for 10 million instructions since the corruption, we proceed to functional simulation to investigate

its impact on the system.

Functional Simulation

A fault that corrupts the architectural state may or may not have an adverse effect on the system. To de-

termine the eventual effect of an injected fault, we simulate the application to completion using functional

simulation. We did not use microarchitectural simulation because it would take toolong. Because of the lack

of microarchitecture-level details during functional simulation, fault activation will not occur in this phase

and the injected fault appears as an intermittent fault.

During the functional simulation phase, there are three possible outcomes. If a fault causes the ap-

plication or the system to crash (e.g., panic) or hang (not responsive),we classify this case as adetected

unrecoverable error (DUE).Since we do not know the latencies and they may (or may not) be too long for

recovery, we conservatively consider these faults as unrecoverable and do not count them towards the detec-

tion coverage of SWAT. If the application finishes execution normally and theresulting output is identical
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Figure 4.3: Outcomes of an injected fault. If the injected fault is not detected within 10M instructions, the
fault is removed (no new fault activation, but software state may already be corrupted at this point) and
the application is functionally simulated to completion to identify its effect on the application’s outputs or
whether it causes a detected unrecoverable error (DUE).

to that of the fault-free execution, the injected fault is considered to bemasked by the application. In this

case, SWAT correctly ignores this benign fault, avoiding the potential overheads of diagnosis and recovery.

However, if the resulting output is different from the one produced by the fault-free execution, we categorize

this case as asilent data corruption (SDC).

In Figure 4.3, we show all the possible outcomes of an experiment as described above.

4.5.3 Metrics

The effectiveness of a detection mechanism is typically determined bywhetheran injected fault is detected

andhow longthe detection mechanism takes to detect the fault. Hence, we focus on detection coverage, rate

of silent data corruptions, and detection latency in our experiments.

Coverage: The coverage of a detection mechanism is the percentage of unmasked faults it detects. While

detecting a fault is essential, the eventual system reliability depends on whether the detected errors are

recoverable. Here, we focus on the detections that occur within 10 million instructions as they are believed

to be recoverable with existing hardware checkpointing schemes [59, 74](we take a closer look at actual
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system recoverability in Chapter 6). Hence, we define coverage as follows.

Coverage =
Number of faults detected within 10M instructions

Number of faults injected − Number of masked faults

where the masked faults are ones that are masked by either the architectureor the application.

SDC rate: The rate of silent data corruption is defined as the percentage of injected faults resulting in silent

data corruptions.

Detection latency:We report fault detection latency as the total number of instructions retired from the first

architecture state corruption (of either OS or application) until the fault is detected. For detections where the

faults do not corrupt the architecture state, we consider them to have latencies of zero instructions.

For our software-assisted invariant detectors, we measure the above metrics the same way as hardware-

only detectors. Since likely invariants may result in false positive detections,we look at the false positive

detection rate when we vary the number of training inputs. High false positiverates would result in frequent

invocations of the diagnosis routine, incurring significant performance overhead during normal (fault-free)

execution. As the invariant checking code inserted into the application binaries incurs performance overhead

all the time, this overhead is also measured in real systems. If the detectors impact performance substantially,

the overall cost of the SWAT system would be too expensive for commodity systems. In the following, we

define the false positive rates and overhead of our invariant detectors.

False positive rate: The false positive rate of the likely invariant detection mechanism for a particular

application is the percentage of all static invariants in the application binary thattrigger a false positive

detection. (Once a static invariant triggers a false positive, it is deactivated by the diagnosis routine.)

Overhead: The performance overhead of the invariant detection mechanism is calculated as follows.

Overhead = (
Execution time of application enhanced with invariant checking

Execution time of original application
− 1)× 100%
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4.6 Results – Hardware-Only Detectors

The bulk of our experiments here focus on permanent hardware faults (vs. transients) because of the in-

creasing importance of such faults due to phenomena such as wear-out and insufficient burn-in [8], because

transients have already been the subject of much recent study, and because permanent faults pose significant

challenges different from transients. For example, a permanent fault may manifest to software faster than a

transient (because it lasts longer), but for the same reason, it is less likely to be masked and more likely to

corrupt the OS with an irrecoverable system failure (unless intercepted quickly). Further, after a permanent

fault is exposed, the system must diagnose its source and repair or reconfigure around the faulty unit. This is

generally expensive, limiting the number of affordable false positives (unlike some detection techniques for

transients [81]). Nevertheless, we summarize the main experimental results of the hardware-only detectors

for transients.

In the following, we discuss the experimental results of hardware-only detectors while Section 4.7

presents those of software-assisted detectors.

4.6.1 Detection Coverage

Figures 4.4(a) and (b) show the outcomes of our permanent fault injectioncampaign using SWAT’s hardware-

only detectors on SPEC workloads and server workloads, respectively. We categorize our faults as architec-

turally masked (Arch-Mask), application masked (App-Mask), detected within 10M instructions and recov-

erable (Fatal-Trap, Hang, High-OS, Panic) in either the application or the OS (Appor OS), detected but not

recoverable (as detection latency is more than 10 million instructions) (DUE), and Silent Data Corruptions

(SDC). The number on top of each bar shows theCoverage for the particular microarchitectural structure.

The key high-level results are:

• For the cases studied, permanent faults in most structures of the processor are highly software visible.

98% of faults that are not masked (except for the FPU) are detected forSPEC workloads while 99%

of unmasked faults are detected for server workloads using our simple detection mechanisms. This

clearly demonstrates the effectiveness of using high-level software symptoms to detect permanent

hardware faults.
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Figure 4.4: Coverage of SWAT hardware-only detectors for (a) SPECworkloads for both stuck-at and bridg-
ing permanent faults and (b) server workloads for stuck-at permanent faults.
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• For the FPU, 73% of the activated faults are not detected, suggesting thatalternate techniques may be

needed (e.g., redundancy in space, time, or information) for the FPU.

• For SPEC workloads, many of the faults are detected when running the OS code (the FatalTrap-OS,

Hang-OS, and High-OS categories), even though the fault-free applications themselves are not OS

intensive. An even greater fraction of the faults are detected when running the OS code for server

workloads, which have higher OS activity than SPEC.

• For SPEC workloads, the FatalTrap and High-OS categories make up the majority of the detections

(68% and 30% respectively of all detected faults) while the Hang is the smallest (only 2.3%). For

server workloads, FatalTrap and Panic detectors make up 58% and 37% of all detections, respectively.

Only 5% of the detections are Hangs.

• Only 0.3% of the injected faults result in silent data corruptions of SPEC applications and 0.3% of

injections corrupt the server applications silently without being detected. The rest eventually lead to

application/OS crashes/hangs or are masked by the application.

The rest of this section provides a deeper analysis to understand the above results.

Analysis of Masked Faults

For stuck-at faults injected in both SPEC and server workloads, Figures4.4(a) and (b) show low architec-

tural masking rates for many structures. This is because the injected fault isa permanent fault that potentially

affects every instruction that uses these faulty structures during its execution. Server workloads, in compar-

ison, have significantly lower masking rates than SPEC workloads. 0.6% of injections in server workloads

are masked while 9.3% of injections (excluding FPU) in SPEC workloads are masked. This is because

server workloads, which generally have higher OS activities, tend to utilizethe microarchitectural structures

more rigorously. For example, more nested function calls in server workloads cause higher utilization of the

windowed architectural register file in SPARC, making RAT faults less likely to be masked.

Exceptions to low architectural masking rates are stuck-at faults injected intothe integer register file,

the RAT, the AGEN, and the FPU for SPEC workloads, where the architectural masking rate ranges from

8.6% in AGEN to 50% in FPU. On the other hand, for server workloads, 2% of the injected faults in the
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integer register file and the RAT are masked architecturally. Architectural masking for an integer (physical)

register occurs if it is not allocated in the microarchitectural simulation window of 10 million instructions.

Similarly, a RAT fault is masked if it affects the physical mapping of a logical register that is not used in this

window. An AGEN fault is masked if the injected bit does not change throughout the execution. The high

FPU masking rate occurs because of the integer applications.

Bridging faults in SPEC workloads also see the above phenomena for architectural masking. Addition-

ally, most structures on the 64 bit wide data path (INT ALU, register DBus, integer register file, and AGEN)

see a significantly higher architectural masking rate for bridging faults thanfor stuck-at faults. This differ-

ence stems from faults injected in the upper 32 bits of the 64 bit fields (roughlyhalf of total fault injections

in those structures). Since many computations only use the lower 32 bits, the higher order bits are primarily

sign extensions, with either all 0s (for positive numbers) or all 1s (for negative numbers). In either case,

since adjacent bits are identical, bridging faults are rarely activated for higher order bits, resulting in a higher

masking rate for these faults.

Relative to architectural masking, application masking in SPEC workloads is small but significant (4.7%

of total injections). Many of these cases stem from faults injected in the higher order bits of the 64 bit data

path – in some cases, these appear as architecture state corruptions (because the full 64 bit field is examined),

but are actually masked at the application level due to smaller program level data sizes.

In contrast, there is only one case in server workloads that results in application masking. One possible

reason for this low application-level masking rate is because of the generally high OS activity. Since the OS

is more control-intensive than applications, an activated fault is more likely to corrupt the system state and

cause a visible symptom instead of being masked by the software.

Nevertheless, these faults illustrate a benefit of our symptom-based detection approach since these benign

faults are correctly ignored by our detectors.

Analysis of Detected Faults

Unmasked faults in many structures are highly visible. As these faults are permanent in nature, they are

activated many times. As long as one activation affects a program path and subsequently leads to a symptom,

the fault will be detected. The only undetected cases where the changes inthe program paths do not lead to
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symptoms are pure value corruptions. Our results, however, show that this is uncommon. In the following,

we analyze the detected cases in greater detail.

1. Large number of detections in the OS for SPEC applications.Surprisingly, in spite of the low OS

activity for the fault-free runs of the simulated benchmarks, over 65% of the detected faults are de-

tected through symptoms from the OS (FatalTrap-OS, Hang-OS, and High-OS). Although the injected

fault first corrupts the application, a common result of the fault is a memory access to an incorrectly

generated virtual address. Since the address has not been accessed in the past, it invokes a TLB miss

that would not have otherwise occurred. Because the SPARC TLB is software managed, this results

in a trap invoking the OS. As the OS is executing on the same faulty hardware and, in general, is

more control and memory intensive, the fault often will corrupt the OS state and result in a detectable

symptom.

As a comparison, server workloads have more than 50% OS activity and 89% of the detections hap-

pen in the OS. In these applications, the OS is more likely to be corrupted since itis invoked more

frequently. After the fault corrupts the OS execution, a symptom detection often occurs in the OS,

instead of returning to the application.

2. Fatal Hardware Traps. 68% of the fault detections in SPEC applications and 58% of the detections

in server applications are from fatal hardware traps. Figures 4.5 and 4.6 show the distribution of the

different types of these fatal traps. The height of a bar is the percentage of fault injections in the

corresponding structure that causes fatal traps. Fatal traps causedby the application are shown in the

bottom (hatched portions) and those caused by the OS are shown on top (non-hatched portions).

An illegal instruction trap occurs when one or more opcode fields in an instruction is invalid. As

expected, these traps result mostly for decoder faults. However, they account for<16% (<19%) of

the fatal traps seen on decoder faults for SPEC (server) workloads.This is because many injected

faults in the instruction word either do not affect the opcode bits, or when they do affect opcode bits,

they change the instruction into another valid instruction.

The watchdog timer resettrap is thrown when no instruction retires for more than216 ticks. These

mostly occur in the ROB and RAT, accounting for 90% and 59% of fatal traps, respectively, for SPEC
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workloads, and 80% and 66% of fatal traps for server workloads, respectively. Both ROB and RAT

faults may change the source or destination register of an instruction. If thesource is changed to a free

physical register, the instruction waits for data indefinitely. If the destinationis changed, the dependent

instructions indefinitely wait for their source operand. For example, the corrupted logical-to-physical

register mapping could result in mapping a non-free physical register (say preg23). Now thatpreg23

is mapped to two logical registers (sayr2 andr5), any subsequent instruction that writes tor2 (r5) will

freepreg23 and instructions that readr5 (r2) wait for preg23 indefinitely (sincepreg23 is freed and

markednot ready). Since the ROB is a circular buffer and is heavily used, faults in the ROB are highly

intrusive. If either one of the two source operands is mutated to point to a free register, this trap will

occur. In contrast, a RAT fault induced watchdog reset trap dependson how often a particular logical

register (in a large set of logical registers in the SPARC architecture) is used and hence occurs not as

frequently as a ROB fault induced watchdog reset trap.
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Misaligned accessesare common in all structures, accounting for over 44% (SPEC workloads)and

43% (server workloads) of all the fatal traps thrown. Faults in most structures naturally affect the

computation of memory addresses (e.g., all cases where a fault may affectthe data or identity of a

register used to compute an address). This often results in misaligned addresses, causing a misaligned

access trap (Solaris requires addresses to be word aligned).

Red state exceptionis thrown when there are too many nested traps. The SPARC V9 architecture

throws this exception when a trap at (maximumtrap level - 1) occurs. The simulated processor has a

maximumtrap level of 5; i.e., at most four nested traps are allowed. This fatal trap constitutes 15% of

the fatal trap detections for SPEC workloads and 14% for server workloads. For a RED state exception

to occur, the injected fault first results in invoking the OS through a non-fatal trap (otherwise, the fault

would have been detected). When this trap handler executes, it re-activates the fault and a nested trap

results. As this fault-activating pattern repeats, a RED state exception occurs eventually.

3. High OS. For SPEC workloads, the High-OS symptom has the next highest detection coverage after
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fatal traps (30%). In the majority of these cases, the application computes a faulty address invoking

the OS on a TLB miss. The persistent hardware fault corrupts the TLB handler, resulting in the code

never returning to the application.

This symptom has significant coverage overlap with fatal traps and hangs– removing this detector

reduces the total coverage for all structures except FPU by about 15% (instead of the 30% if there

were no overlap) for SPEC workloads. This is because most of these cases eventually also lead to fatal

traps and hangs. However, even for these cases, detection using the High-OS symptom significantly

brings down the detection latency (Section 4.6.3).

4. Panics. For server workloads, Kernel Panic detects the highest number of faults next to fatal traps

and accounts for 37% of all detections. This symptom shows that modern operating systems are also

very effective in catching hardware faults. As the software activates the injected fault, the OS may be

invoked through a non-fatal trap. After that, the fault is activated by the OS execution and corrupts

some crucial system state, causing a check of the system state to fail and resulting in a kernel panic.

Hence, this result shows that the efficacy of the SWAT detection mechanismcan be greatly improved

if the OS can be involved for monitoring some OS-specific anomalies.

5. Hangs. Hangs account for less than 3% coverage for SPEC workloads and less than 5% coverage for

server workloads. Comparing the two types of workloads, we find that practically all hangs occur in

the application code for SPEC workloads while nearly all hangs occur in theOS for server workloads.

This discrepancy is likely caused by the difference in OS activities for the two workloads. Since SPEC

(server) workloads execute mostly application (OS) code, the faults are more likely to corrupt the loops

in the applications (OS).

An example of a hang is when a loop index variable is computed erroneously and the loop termination

condition is never satisfied. While hangs in SPEC (server) workloads may result from the OS, the

High-OS (Panic) symptom catches these before the hang detector can identify them as hangs. Thus,

without the High-OS or Panic detector, hangs would provide higher coverage (but at a higher latency).
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Analysis of Detected Unrecoverable Errors

Faults that are unmasked and undetected within the detailed microarchitecturalsimulation but cause symp-

toms in the functional simulation have detection latencies that may or may not be short enough for full

recovery (e.g., by rolling back to a software checkpoint). To be conservative, we classify these faults as

detected unrecoverable errors. Nevertheless, eventual detection is better than letting faults cause silent data

corruptions.

Overall, 0.5% of the detected faults result in DUEs for SPEC workloads and0.3% of the detections are

DUEs for server workloads. Across different structures, for bothSPEC and server workloads, DUEs account

for less than 1% of the detections for all but AGEN and FPU. For AGEN, 1.8% of the detections in SPEC

applications and 1.1% of the detections in server applications result in DUE. Of the injected FPU faults that

are detected while running SPEC workloads, 14% are DUEs because we have few detections in FPU to start

with.

Generally, from our results, there are very few faults that are detectedbut unrecoverable, showing the

effectiveness of the employed simple symptom monitors. In the future, the goal of the SWAT detection is

to derive even better symptoms to eliminate the DUEs (i.e., detecting them at short latencies) as much as

possible.

Analysis of Silent Data Corruptions

For the unmasked faults that are not detected in the microarchitectural simulation and also do not cause

any symptom in the functional simulation, we compare the application output with thefault-free output.

The cases that have different outputs are categorized as silent data corruptions (SDCs). (If the functional

simulation yields the same output, the fault is considered to be masked by the application as discussed

earlier.)

For SPEC workloads, Figure 4.4(a) shows that only 0.3% of the injected faults result in SDCs for faults

in all structures but the FPU. Server workloads also have a similar 0.3% SDCrate as shown in Figure 4.4(b).

This is a rather low number given our simple fault detectors, and shows thatour symptom-based detection

techniques are effective for these structures.

For the FPU in the system running SPEC, 9.8% of the injected faults result in SDCs, largely because FPU
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computations rarely affect memory addresses or program control (which are most responsible for detectable

symptoms). Thus, our results show that the FPU requires alternate (potentially higher overhead) mechanisms

to our simple symptom-based detectors. While the SDC rate shown here is quite low, it can be reduced

further. One way is to employ software-assisted invariant detectors. Moreover, a recent study with my

colleagues investigates the notion of application-aware SDCs and shows that the true SDC rate is often

lower. We discuss this work in Section 8.2.

4.6.2 Software Components Corrupted

We next focus on understanding which software components (applicationor OS) are corrupted before a

fault is detected (within the 10M instruction window of detailed simulation). This has clear implications

for recovery. If only the application state is corrupted, it can likely be recovered through application-level

checkpointing (for which there is a rich body of literature). However, OSstate corruptions can potentially

be difficult – software-driven OS checkpointing has been proposed only for a virtual machine approach so

far [18]. On the other hand, hardware checkpointing methods are capable of recovering both the application

and the OS state; full recovery, however, depends on the detection latency (to be discussed in Section 4.6.3).

For each structure, Figures 4.7(a) and (b) shows for SPEC workloads and server workloads, respectively,

the percentage of fault injections that resulted in only application state corruption, OS (and possibly appli-

cation) state corruption, and corruption of neither the application nor the OS. The height of each bar is the

percentage of faults injected into the given structure that resulted in a detected symptom.

Our main result here is that over 65% of detected faults for SPEC workloads and over 84% of detections

for server workloads corrupt OS state before detection. As we observe that server workloads generally have

high OS activity (50+%), the OS is highly likely to activate the underlying fault and gets corrupted. On the

other hand, while we observe that SPEC workloads have less than 1% OS activity during fault-free execution,

a large fraction of the faults corrupt the OS. In these faulty cases, we observe that the OS is first invoked

through a non-fatal trap after the application activates the underlying fault (e.g., a TLB miss in SPARC). As

the injected fault is persistent, the OS execution subsequently activates the fault and the OS state is corrupted.

Because our results show that a large number of faults corrupt the OS before they are detected, this motivates

the exploration of techniques that are capable of recovering the OS and/or fault-tolerant strategies within the
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Figure 4.7: Application and system state integrity for the detected faults in (a) SPEC workloads and (b)
server workloads. The height of each bar gives the percentage of injected faults detected in that structure.
We see that most faults corrupt the system state.
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OS.

We note that whether the application/OS state was corrupted is not necessarily correlated with whether

the fault was detected at an application/OS instruction (discussed in Section 4.6.1). A fault could be detected

at an OS instruction, but may have already corrupted the application state. Similarly, a fault could be detected

in application code, but meanwhile the application may have invoked the OS resulting in a (so far undetected)

corruption in the OS state.

Additionally, there are a few detected fault cases where neither the application nor the OS state is cor-

rupted (58% of detected faults in the ROB and 2% in the RAT for SPEC workloads, and 31% of detections

in the ROB and 8% in the RAT for server workloads). In all of these cases, the faults cause watchdog reset

fatal traps to be thrown – the instruction at the head of the ROB never retiresbecause its source physical

register (saypreghead) never becomes available. These cases usually involve fairly complex interactions

involving the ROB and the RAT. For example, consider a fault in the ROB that corrupts the destination field

of a prior instruction that was supposed to write topreghead. Because of the fault, the prior instruction writes

to another physical register and never setspreghead as available. If the corrupted destination was previously

free, then this does not corrupt the architectural state (our implementation of register renaming records the

corrupted destination name in the retirement RAT (RRAT) when the corruptedinstruction retires, thereby

preserving the architectural state).

4.6.3 Detection Latency

Detection latency is a crucial parameter since it affects recovery. Specifically, it affects the recovery strategy:

the checkpointing interval, the amount of state that needs to be preserved for a checkpoint, and the cost of

buffering for I/O. Small latencies allow the use of frequent but efficienthardware checkpoints and fast and

complete recovery for both the application and the OS. Large detection latencies potentially require longer

checkpoint intervals that result in longer restart on recovery and exacerbate the input and output commit

problems. If the I/O commit problems are improperly handled, full recovery will be thwarted.

For each structure, Figures 4.8 and 4.9 report the histogram data on detection latencies (defined in Sec-

tion 4.5.3) of all detected faults in SPEC and server workloads, respectively. The detections are categorized

into the different stacks of the bars based on their latencies, ranging from 1,000 to more than 1 million
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Figure 4.8: Total number of instructions retired from architectural state corruption to detection for SPEC
workloads.

instructions. The height of each bar represents the total number of detections for the specific faulty structure.

While we are assuming for now that all faults detected within our 10M instructionwindow can be recov-

ered with hardware checkpointing techniques, long detection latency puts more pressure on the I/O buffering

mechanism. Interestingly, we find that most faults are detected much earlier than the detailed simulation

window of 10 million instructions, with 87% of all detections occurring within 100,000 instructions for both

SPEC and server workloads. This has implications for the type of checkpoints, the length of the checkpoint

interval, and the I/O buffer size of the recovery mechanism. The impact of detection latency on the design

of the recovery module will be explored in Chapter 6.

4.6.4 Transient Faults

From our transient fault injection experiments on SPEC workloads, as shown in Figure 4.10, over 96% of the

injected transient faults were masked by the architecture or the application, with < 0.4% resulting in SDCs.

Of the unmasked faults, 83% were detected by the hardware-only detectors.

For server workloads, Figure 4.11 shows that 90% of the faults were masked either at the architecture

level or the application level. 59% of the unmasked faults were detected by thehardware-only symptom
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Figure 4.9: Total number of instructions retired from architectural state corruption to detection for server
applications.

monitors. Faults injected into the RAT are particularly visible. This is due to the highutilization of archi-

tectural registers discussed earlier in Section 4.6.1. On the other hand, 4%of the injected faults result in

SDCs. After a closer inspection, we found that this much higher rate of SDCis caused in part by the strin-

gent setup of the workloads. In particular, the client applications are configured not to retry when an error is

detected during the data transfer session with the server. As a result, the file in transmission is dropped and

the resulting output differs from the fault-free output.

One may argue that the error is actually detected, albeit at the client system. In this thesis, however, we

assume the sphere of recoverability (the logical extent of the system that isfully recovered by the underlying

recovery method, discussed in Chapter 6) to be the server system only. Thus, if an error is not detected

within the server system, we consider it a silent data corruption. Nevertheless, the next generation of SWAT

can certainly take advantage of the inherent error-checking mechanismsat the network protocol level and

the software level. For example, allowing retries after an error is detected inthe network packet transmission

can let the application mask the fault. We leave the exploration of protocol level error tolerance in SWAT for

future work.

From these results, we found that both the very high masking rate and the coverage (i.e., percentage of
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Figure 4.10: Coverage of SWAT hardware-only detectors for SPEC workloads on transient faults.

unmasked faults that are detected) of the symptom-based detection are consistent with previous findings [69,

81]. We note, however, that we rely on very simple and inexpensive symptom detectors to detect a large

portion of these transient faults. More sophisticated low cost symptoms can also be employed to improve

coverage. One such technique is our likely invariant detectors (results on permanent faults will be discussed

in the following section). Further, the SDC rate of transient faults is a well-known problem. We show later

that the use of invariant detectors can bring down SDCs significantly. Onerecent work of SWAT with my

colleagues (not reported here) also looks into application awareness ofSDCs [64]. We found that the true

SDC rate is much lower than what is reported here when considering the error margins that are acceptable in

many applications.

4.7 Results – Software-Assisted Detectors

We applied our invariant based detectors to five SPEC applications and permanent faults (a large body of

application-specific detectors such as [54] has explored transients butvery few look at permanent faults).

Since likely invariants could result in detections that are false positive, we first present how the size of the

input training sets affects the false positive rate. Then, the detection coverage, SDC rate, and overheads are
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Figure 4.11: Coverage of SWAT hardware-only detectors for serverworkloads on transient faults.

compared between the workloads with invariant checking enabled and the same workloads with invariant

checking disabled. To be consistent, the comparison is done on the same application binaries with invariant-

checking code inserted. Hence, the binaries of these applications are different from the previously presented

SPEC workloads. For the sake of convenience, we refer to the SWAT system with hardware-only detectors

as hSWAT and the SWAT system equipped with invariant detectors as iSWAT.

4.7.1 False Positives

Figure 4.12 shows the variation of false positive rate (as defined in Section4.5.3) for our five SPEC applica-

tions running on the ref input, as the number of training inputs is increased from 2 to 12.

As expected, false positive rate decreases as the number of inputs increases. By 12 inputs, the rate of

false positives is less than 5% for all applications and 0% for three. This false positive rate is sufficiently

low for our purpose, motivating us to use 12 training inputs for all of our experiments. In previous work

using Siemens benchmarks [20, 54], hundreds of inputs were used fortraining. We find that much fewer

training inputs suffice for permanent fault detection with our approach. These other proposed techniques try

to keep the false positive rate as low as possible because these schemes cannot determine a false positive
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Figure 4.12: Variation of False positives rate with different number of training inputs. The rate is<5% with
12 training sets, motivating the use of 12 inputs for the rest of our experiments.

detection at runtime. If false positive detections repeatedly occur, the hardware is determined to be faulty

and taken offline. On the other hand, because our invariant detectors can rely on the SWAT diagnosis module

to identify false positives at runtime, our techniques is able tolerate more falsepositives.

The maximum number of static invariants in all applications was 231. Assuming each false positive

detection has an overhead of 20 million instructions (considering that overheads due to rollback/replay of 10

million instructions and context migration), the maximum overhead of false positive detection on any input

will only be 462 million instructions, which is negligible considering application executions that normally

last for billions or trillions of instructions. In practice, the overhead will even be lower due to low false

positive rates yielded from larger training input sets.

Interestingly, Figure 4.12 shows that after just four inputs, only less than10% of the invariants are false

positives for four applications. These results show that likely invariants generated from many inputs will

have sufficiently few false positives, making it usable for permanent fault detection.
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4.7.2 Coverage

As discussed above, we use invariants derived from 12 training inputs for detecting injected permanent faults.

Figure 4.13 presents the outcomes of the injected faults for hSWAT and iSWAT. The different stacks of each

bar have the same categories as described in Section 4.6.1. The top of eachbar shows the detection coverage

achieved by the respective scheme.

From the figure, the overall coverage of the iSWAT system is 97.2%, improving from the 96% coverage

of hSWAT. While the coverage increase seems small, there are three significant points that can be made

from the results. First, the invariant detectors are catching nearly 5.8% ofthe total injected faults. Second,

the invariant detection scheme is detecting some faults that are not detected bythe hardware-only detectors,

reducing the number of unrecoverable faults (DUEs and SDCs) by 28.7%. Third, the invariant detectors also

detect some faults (about 5% of total fault injections) that are caught by the symptoms in hSWAT, but at a

lower latency. This result leads to a small improvement in detection latency, as we show in Section 4.7.3.

Analysis of SDCs. Overall, the number of SDCs of the iSWAT system is significantly lower than thatof

hSWAT. The invariant detectors reduce the number of SDCs by74%, from31 to 8. We consider the reduction

in the number of SDCs as the most important contribution of the iSWAT. Though afew SDCs remain, we

believe that more sophisticated invariants can make the SDC cases negligible.
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recoverable detections in iSWAT as baseline. The invariants increase the number of faults detected within
1,000 instructions by 2%.

4.7.3 Latency

Figure 4.14 shows latency results for the faults detected by hSWAT and iSWAT, binned into various cat-

egories from under 1k instructions to under 10M instructions. In order toperform a fair comparison, the

numbers are presented as a percentage of the total number of faults detected and recoverable by iSWAT (i.e.

detections that happen within 10M instructions).

The number of faults detected at a latency of under 1k instructions shows the largest increase of about 2%

(the rest of the numbers are cumulative). While the improvement seems incremental, this shows that invari-

ants are able to slightly reduce the detection latency when compared to that of the hardware-only detectors.

As these detections have very low latencies, they are amenable to simple hardware recovery mechanisms

(Chapter 6 discusses the SWAT recovery strategy in greater detail). Although the latency benefits offered

by iSWAT are not substantial so far, using more sophisticated invariants mayimprove the effectiveness of

iSWAT to reduce the latency.
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4.7.4 Overhead

We evaluate the overhead of using invariants by running the binary (with invariants checking) on fault-free

hardware, using two machines: Sun UltraSPARC-IIIi 1.2GHz machine with 1MB unified L2, and 2GB

RAM, and on an AMD Athlon(TM) dual-core MP 2100+ machine with 256KB L2and 1.5GB RAM. The

Sun machine is referred to asSparcmachine, and the AMD one asx86machine in this section.

Figure 4.15 shows the overhead of using invariants checking in the programs as a percentage over the

baseline program which has no invariants checking. The geometric mean ofthe overheads is also shown for

the two machines.

The Sparc machine exhibits a higher overhead when running the invariantscode than the x86 machine,

with the average overheads being 14% and 5% respectively. In particular, the overhead of the invariant

checking mechanism in mcf is significantly higher in the Sparc machine (26%) than the x86 machine (2%).

The high overhead of the Sparc machine is likely due to its inability to hide the cache misses and branch

mispredictions induced by these extra invariant checks. The x86 machine that has a more sophisticated

superscalar pipeline is able to hide these latencies better, resulting in lower overheads.

In spite of these differences, the overheads produced by these invariants checks are within acceptable

overheads for the increased coverage that they provide, motivating theiSWAT system for increased error
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resilience.

4.8 Summary and Discussion

This chapter introduces the key component of the low-cost SWAT resilientsystem – error detection. By

employing monitors of anomalous software behavior, SWAT’s symptom detectors are able to effectively

detect hardware faults that propagate into the software and appear as software bugs. This approach natu-

rally handles all faults that matter and ignores the ones that do not. Since these symptom detectors can be

implemented with near-zero hardware overhead, the cost of SWAT’s always-on error detection module is

effectively minimized, optimizing the overall system cost.

Since SWAT takes a holistic approach to resilient system design, we can deploy more aggressive de-

tection mechanisms in SWAT. In particular, we rely on the SWAT diagnosis to identify false positives and

auto-tune the system if a false positive is diagnosed. Without involving the diagnosis mechanism, it will

be much more difficult to use some of the symptoms described above. For example, it is hard to determine

whether a detected hang is a false positive at runtime without replaying the execution on a fault-free core

to see if the hang occurs again. Hence, by designing the system as a whole, the more aggressive detection

mechanisms can be used and can help the system achieve high reliability.

Similar to other fault tolerant systems, the detection mechanism of SWAT also influences the design

of the recovery mechanism. From our results, we find that permanent faults often corrupt the OS state,

making OS recovery a high priority issue in SWAT recovery. By measuring the detection latencies of the

injected faults, we found that a high percentage of faults can be detected within 100,000 instructions (ap-

proximately 100µs on a gigahertz processor), potentially allowing the use of simpler hardware recovery

methods. Nevertheless, to fully recover all faults, sophisticated hardware rollback recovery mechanisms

along with mechanisms that properly handle the input/output commit problems may beneeded. We discuss

the SWAT recovery strategy in detail in Chapter 6.

As the principle of SWAT detection is to watch for software anomalies, we can potentially leverage soft-

ware reliability techniques for hardware faults. To this end, we took the first step in investigating the use of

program invariants, a well-known software debugging method, to detect hardware faults. Our experimental

results show that invariant detectors are very effective in detecting faults that mainly corrupt the data val-

58



ues of the program, successfully reducing the SDC rate of SWAT that uses only hardware-only detectors.

Furthermore, as we rely on SWAT diagnosis to diagnose false positive invariant detections, more aggressive

invariants (e.g., ones with higher false positive rates) can be used to ensure high detection coverage and low

SDC rate.

Overall, through our experiments, we found that the SWAT detection approach is highly effective against

hardware faults. While there is much work to be done to further improve the detection mechanism, the

very low cost always-on detectors show great promise to ensure reliability for the mass computing market.

A recent work with my colleagues (not reported in this thesis) already takesstrides in this direction by

investigating techniques for improving the detection coverage and latency, and deriving an application-aware

metric for SDC that shows the SWAT system actually has lower SDC rates than ones reported here [64].

As mentioned earlier, the SWAT system is designed as a whole (instead of deriving various components

independently). Hence, the diagnosis mechanism invoked post detection must be effective and be able to

cater to the software-level symptom-based detection in SWAT. In the next chapter, we take an in-depth look

at this SWAT diagnosis mechanism.
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Chapter 5

SWAT Diagnosis

The device scaling induced hardware reliability problem has driven recent research to investigate the use

of high-level detection techniques for deriving low-cost reliability solutions. Besides the software-level

symptom-based detection of SWAT proposed in this thesis, some recent and contemporary work also inves-

tigates the applicability of high-level detection methods in hardware reliability (e.g., [17, 45, 54, 61, 81]).

Such high-level detection mechanisms can be very effective because they provide coverage for a wide range

of fault sources and faulty components.

While many of these proposals focus on transient faults where the detectionand recovery components

form the complete solution (e.g., a simple pipeline flush can recover from a transient error), emerging per-

manent faults requirediagnosisin addition to detection. Because permanent faults are persistent, the faulty

component must be diagnosed for repair/reconfiguration so that subsequent executions do not activate the

underlying fault again and become corrupted. Only through a correct diagnosis, a system repair operation

can be carried out by disabling the faulty component (such as a faulty core, ALU, or entries in a buffer,

queue, or cache), reducing the frequency of operation of the component, or using software to replace the

faulty execution of a specific instruction.

Although there has been significant recent work on high-level detectionof in-field faults, there is rela-

tively little work on diagnosing the source of a permanent fault detected in thisway. The higher the level

at which a fault is detected, the longer the latency between the actual fault activation and detection and the

more difficult it is to diagnose its root cause for repair. Therefore, to reap the benefits of emerging low-cost

high-level detection techniques, we need to develop effective diagnosistechniques. This chapter concerns

such a diagnosis framework [35].

At a high level, the resulting SWAT diagnosis framework should fulfill two goals. First, because software

bugs, hardware transient faults, and hardware permanent faults canall lead to software-level symptoms,
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diagnosis must distinguish the type of fault the system is experiencing so thatthe correct action can be taken.

For example, for a deterministic software bug, the diagnosis should allow it to propagate to the higher levels

of software and become visible to the end user.

Second, in the case of a diagnosed permanent fault, the faulty componentmust be identified to the

granularity of the field-reconfigurable unit to facilitate repair. The simplestrepair solution would be disabling

the faulty core [48]. That can be wasteful especially when modern superscalar processors often contain

built-in redundancy (e.g., multiple decoders) that allows reconfiguring around failed components. Hence,

the second goal of the diagnosis is to diagnose a permanent fault at the microarchitecture level to exploit

this built-in redundancy in modern processors for repair, effectively recovering the system from permanent

hardware faults.

Before deriving an effective method for achieving these stated goals, we first make the following key

observations.

• It is acceptable to incur high overhead for the diagnosis procedure since the diagnosis is invoked only

in the infrequent case after a fault is detected (in contrast, the detection mechanism needs to be low

overhead since it must be on all the time).

• The faulty execution is known to cause an error detection. Hence, this sameexecution can effectively

be used as a fault activating agent to assist the diagnosis process. (This is not unlike the modern

functional tests for detecting faulty chips after manufacturing. However,this test is known to exercise

the hardware fault.)

• The modern multicore environment provides a natural substrate for redundant execution. Diagnosis

therefore can leverage this platform to intelligently trace the source of the fault.

Since the diagnosis can incur some performance overhead, we can use firmware to control the diagnosis

process. The main advantage of this approach is that the firmware can conduct a more complex, intelligent

analysis that would have been too expensive to implement in hardware. To precisely diagnose the cause

of a detected error, the diagnosis firmware can observe the invariants when replaying the symptom-causing

execution on different cores in a multicore system. In particular, our proposed diagnosis scheme has the

following properties.
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• Many detection schemes today rely on a checkpoint/restart mechanism for recovery [4, 45, 61, 81].

Our diagnosis relies on this mechanism to replay the execution that caused thesymptom detection,

effectively activating any persistent faults to give diagnosis clues.

• We exploit multicore systems by using a fault-free core to compare the execution with the symptom-

causing core for the purpose of fault diagnosis. Effectively, we cheaply synthesize Dual-Modular

Redundancy (DMR) for diagnosis, in contrast to expensive always-on DMR traditionally used for

detection.

While SWAT diagnosis is proposed in the context of the SWAT system, this diagnosis framework, in

reality, can work with different kinds of detection mechanisms and can be tuned to different granularity of

repair. In the rest of this chapter, we first give an overview of the diagnosis scheme. Then, we discuss each

of the two major diagnosis steps in greater detail. Since precise diagnosis is critical for fully recovering

the system from permanent hardware faults (incorrect diagnosis wouldallow this type of faults to continue

to corrupt the system), we show the effectiveness of the microarchitecture-level permanent fault diagnosis,

TBFD, by presenting our experimental results. In the end, we summarize thelessons learned from the TBFD

scheme and discuss the potential future work.

5.1 Diagnosis Overview

Our overall diagnosis scheme proceeds as follows. We assume a single-threaded program executing on a

modern out-of-order superscalar core in a multicore system. We further assume a single core fault model,

meaning that only one core is faulty in the system. The presence of the fault inthe core is detected through

the low-cost detection methods in the SWAT system as described in Chapter 4.(As mentioned, this detection

can be triggered through other detection mechanisms [45, 61, 81].) After adetection, the SWAT firmware

is invoked to perform the first step of the diagnosis, i.e., distinguishing amongsoftware bugs, transient

hardware faults, and permanent hardware faults. By observing whether symptoms re-occur after repeated

rollbacks/replays (provided by the recovery mechanism), the diagnosis isable to identify the source of the

error. If a permanent fault is diagnosed, the diagnosis proceeds to thesecond step, i.e., identifying the

faulty microarchitectural component. In our trace based microarchitecture-level diagnosis scheme, the SWAT
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firmware rolls the faulty core back to a pristine checkpoint and replays the execution on it, while recording

detailed information such as microarchitectural resource usage for all instructions. The SWAT firmware also

transfers the checkpoint from the faulty core to a fault-free core and replays a “golden” execution on the fault-

free core. The firmware then compares the traces from both the fault-free and faulty cores, and systematically

analyzes the points of divergence to accurately diagnose the faulty microarchitectural structure.

In the following sections, we discuss each step of the diagnosis in more detail.

5.2 Diagnosing Software Bugs, Transient Hardware Faults, and Permanent

Hardware Faults

While software bugs usually result in symptoms, transient hardware faults and permanent hardware faults can

also manifest into the software and appear as symptoms. Because the handling of these faults is different,

the first step of the diagnosis is to distinguish among them so that the correct action can be taken. For

transient hardware faults (and non-deterministic software bugs), a simplerollback/replay to the last pristine

checkpoint can fully recover the system from the error. For permanent hardware faults, before a rollback

recovery, the diagnosis needs to identify the faulty component for repair/reconfiguration in order to prevent

further fault activations, therefore system corruptions, in the future.For deterministic software bugs, SWAT

lets them propagate to higher levels of software and become visible to the end user. Nevertheless, in future

generations of SWAT, software reliability techniques such as Rx [60] canbe used to handle deterministic

software bugs, improving the overall system reliability.

While these faults may appear similar when they are first detected, the followingobservations help

anchor the SWAT diagnosis strategy. Since transient hardware faults and non-deterministic software bugs

only appear temporarily, re-executing from the previous pristine state will mask the errors. On the other hand,

as both permanent faults and deterministic software bugs are persistent, simple re-executions will continue

to lead to symptoms, making it difficult to distinguish between the two fault types. Nevertheless, if the

persistence of a symptom is due to a permanent hardware fault, replaying the same execution on a different

core in the system (as we assume a single core fault model, a core other thanthe faulty one is fault-free)

would not result in a symptom. In contrast, a deterministic software bug will continue to cause a symptom
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Figure 5.1: Diagnosis of a detected symptom. Through repeated replays, asoftware bug, a transient, or a
permanent hardware fault is diagnosed.

in this new core.

Given the above observations, Figure 5.1 shows how SWAT diagnoses asoftware bug, a transient hard-

ware fault, or a permanent hardware fault. The high-level idea of SWATdiagnosis is to watch for the

re-occurrences of symptoms, if any, in repeated rollbacks/replays to determine the source of the error. Dur-

ing each replay, the diagnosis enters a phase we call thevigilant phasethat determines if a symptom is a

re-occurrence. A symptom is considered to re-occur if it is detected during the vigilant phase. In Chapter 4,

we have found that most faults can be detected within 10 million instructions. We set the length of the vig-

ilant phase to be three times of this maximum detection latency, i.e., 30 million instructions, which is often

long enough for permanent faults to be activated and detected again. Nevertheless, this threshold can be

configured to fit different system needs (e.g., future systems may have amuch shorter maximum detection

latency).

To distinguish different types of errors, after a symptom is detected, SWAT first rolls back to the previous

pristine checkpoint and replays the execution on the same core. If a symptom does not occur again, the

diagnosis concludes that a transient fault (a transient hardware faultor a non-deterministic software bug) is

the cause of the previous symptom and resumes normal execution. We note that the rollback/replay naturally

recovers the system from the transient error. On the other hand, if a symptom re-occurs (i.e., detected in the
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vigilant phase), the diagnosis assumes this persistent symptom to be the result of either a permanent hardware

fault, a deterministic software bug, or a false-positive detection of the heuristic detector (invariants, High-OS,

hang, etc.).

Since a permanent hardware fault is the only error source among othersthat causes a symptom when

the re-execution takes place on the same hardware, SWAT diagnosis transfers the checkpoint onto another

(fault-free) core and replays the execution. If a symptom does not recur after this change in the hardware

environment (executing on a different core), the diagnosis concludesthat a permanent fault is present in the

original symptom-causing core. The diagnosis algorithm reaches this conclusion because symptoms have

occurred multiple times on the original core but disappear after the same execution is replayed on another

core in the system. As discussed earlier, SWAT diagnosis also exploits the inherent microarchitecture-level

redundancy to facilitate repair. Therefore, SWAT’s microarchitecture-level fault diagnosis algorithm, Trace

Based Fault Diagnosis (TBFD), is invoked to identify the faulty component after a permanent fault is diag-

nosed in a core. We describe this method in Section 5.3.

On the other hand, a symptom can still re-occur after replaying on anothercore in the system. If the

symptom is non-heuristic (e.g., fatal trap, kernel panic, etc.), SWAT diagnoses this as a deterministic software

bug and lets this symptom propagate to higher levels of the software and become visible to the end user. If the

symptom is detected by a heuristic hardware-only detector (e.g., High-OS, hang, etc.), the SWAT firmware

considers the detection as a false positive and adjusts the threshold of the detector and resumes the normal

execution. For example, if the High-OS symptom persists on both the original core and another core, the

SWAT firmware suspects that the threshold value is too small. Consequently, the threshold is increased in

order to prevent similar false-positive detections in the future. If the detection is an invariant violation, SWAT

disables the static invariant to prevent future false-positive detections and resumes the execution.

We note that the SWAT firmware’s ability to identify false positives during runtimeis essential to the

overall SWAT system. If the SWAT system were not able to identify false positives online, we would have to

resort to using detectors that are more conservative (e.g., sound range-based program invariants with larger

ranges, higher High-OS threshold, etc.). Because of the presence ofthis diagnosis feature, more aggressive

heuristic detectors can be used to potentially achieve higher detection coverage, hence higher reliability.

As multithreaded software is increasingly popular for taking advantage of multicore systems, we also
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extended fault diagnosis to handle multicore systems running multithreaded workloads in other work (not

reported in this thesis) [26]. We briefly discuss this work at the end of the thesis.

5.3 Diagnosing at the Microarchitecture Level

After a permanent fault is diagnosed in a core, one simple solution for repairing the system is to disable the

entire core to avoid further corruptions by the fault. However, becausemodern processors already contain

inherent redundancy, such as multiple functional units, registers, and so on, repairing at the finer grained

microarchitecture level is possible. This level of repair is not only less wasteful than disabling the faulty

core, but it also lengthens the lifetime of the faulty core. In order to facilitate microarchitecture-level repair,

a diagnosis mechanism needs to be in place to identify the microarchitectural component that contains the

permanent fault.

To this end, SWAT diagnoses at the microarchitecture level using a method wecall Trace Based Fault

Diagnosis (TBFD)[35]. TBFD is based on the following observations. First, the in-situ software execution

can be used for activating the underlying permanent fault as the fault has already caused symptoms twice in

the last diagnosis step. Second, the activated fault eventually leads to corruptions in the execution, which can

be used as clues for diagnosis. Third, the multicore system provides a fault-free core that allows diagnosis

to compare the faulty and fault-free execution for detecting corruptions.

The above observations drive the TBFD strategy: at the high level, the firmware-controlled TBFD ex-

ploits checkpoint/replay on the multicore architecture to inexpensively synthesize DMR for identifying di-

vergences between the faulty and fault-free execution that provide clues for precisely locating the faulty

microarchitectural component. Because the diagnosis is allowed to have higher overheads (since it is rarely

invoked), we are able to use a firmware-based approach that providesthe following benefits. By using

firmware to conduct trace comparison, TBFD takes full advantage of the multicore environment without in-

curring the hardware overhead needed for lock-stepped execution intraditional DMR. Further, the firmware

is capable of handling the more sophisticated trace analysis that is difficult to implement in hardware. One

example is TBFD’s capability for diagnosing meta-datapath faults (to be discussed in Section 5.3.2).

Now that we presented the TBFD approach, Figure 5.2 depicts how TBFD identifies the faulty microar-

chitectural unit X. The two main phases of TBFD are test trace generation and analysis of the test trace. In
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Figure 5.2: Diagnosis of a permanent hardware fault. By comparing the fault-free and faulty executions and
analyzing the resulting test trace, the faulty microarchitectural unit is diagnosed.

the following sections, we discuss these phases in greater detail.

5.3.1 Test Trace Generation

As shown in Figure 5.2, TBFD compares the faulty and fault-free executionto generate the test trace. The test

trace is essentially the execution trace of the faulty core (faulty trace) that isenhanced with microarchitectural

resource usage information in the faulty core for each retired instruction and divergence information when

compared to the fault-free execution trace (fault-free trace). In the following, we first describe how the faulty

trace is obtained, then discuss how the test trace is generated.

Generating the Detailed Faulty Trace

To generate thefaulty trace, TBFD rolls the faulty core back to the previous checkpoint and replays the

execution for a predefined number of instructions. It records a trace of the execution with the following

information for each retired instruction:

• Decode: Decoded opcode, immediate value, identifiers of source and destination logical registers.

• Data values: Values read from the source registers and values written into the destination registers.

Virtual memory addresses accessed by loads and stores. Virtual targetaddresses of branch instructions.
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• Microarchitectural resources used by the instruction:This category includes the source and desti-

nation physical register identifiers, the specific functional unit used, etc. The specific information

recorded depends on the reconfigurable units supported in the processor and the consequent granular-

ity of diagnosis required.

The decode information and the data value fields are used for comparing withthe fault-free execution.

If at least one of these fields of the retired instruction in the faulty trace is different from that of the fault-

free execution, the diagnosis algorithm assumes that the permanent fault has been activated. Aside from

identifying divergences from the fault-free execution, the hardware usage information recorded in the faulty

trace is essential for the overall microarchitecture-level diagnosis. Specifically, during the test trace analysis

(Section 5.3.2), the faulty instruction responsible for a divergence is tracked down (as we will discuss later, a

faulty instruction may not result in a divergence immediately at retirement and the analysis needs to inspect

a trace of instructions) and the algorithm deduces that one of the hardware resources used by this instruction

must be faulty to cause the divergence. Thus, such hardware usage information is needed. Section 5.3.3

describes the hardware support for obtaining and recording the above information.

Fault-Free Execution and Test Trace

To obtain thefault-free trace, the fault-free core is loaded with the checkpoint of the faulty core and the

execution is replayed. For each instruction in this execution, the TBFD firmware compares the decode and

data value fields from the corresponding instruction in the faulty trace. Anymismatches in these fields cause

the firmware to mark the corresponding instruction in the faulty trace asmismatchedand record the field(s)

that causes the mismatch. This event is important because it indicates that the execution on the faulty core has

somehow activated the underlying permanent fault, which provides clues for tracking down the fault at the

microarchitecture level. At this point, since the architectural state of the fault-free core is already different

from the faulty core, retiring additional instructions in the fault-free core would lead to more divergences that

are not caused by the activation of the permanent fault. To mitigate this, the firmware synchronizes (corrupts)

the fault-free core’s state to that of the faulty core. This allows the fault-free core to continue executing a

path similar to the faulty core until the next activation of the fault.

Another possible scenario is when an instruction on the faulty core hangs at the head of the reorder
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buffer and never retires because it waits for its source operand(s) indefinitely. The firmware marks such an

instruction in the faulty trace ashung. We assume hooks are available to extract information of the hung

instruction even though it does not retire. When a hung instruction is encountered, the analysis algorithm

diagnoses the source of the fault by examining the test trace (Section 5.3.2). If the algorithm does not

terminate after the analysis, both the faulty core and the fault-free core arerolled back to generate a new test

trace for further analysis.

We refer to mismatched and hung instructions collectively asmisbehaved instructions. We refer to the

faulty trace enhanced with the information about misbehaved instructions as the test trace.

5.3.2 Test Trace Analysis

The heart of the TBFD algorithm is the analysis of the generated test trace todiagnose the fault. This

analysis can be performed after completing building of the test trace. Alternatively, it may be periodically

invoked after generating everyN instructions of the test trace. The latter strategy may be more efficient if

memory space to store the trace is at a premium. It also allows terminating test tracegeneration as soon as

the diagnosis is able to uniquely identify the faulty structure.

TBFD divides the processor core into three different parts, on the basis of the information and analysis

required to diagnose a fault in these parts:

1. Front-End: A fault in this part of the processor affects which instruction is executed,which operation

is executed, and the logical source and destination registers accessed.

2. Meta-Datapath: Modern out-of-order processors use register renaming to translate logical register

names to physical registers. Even if the front-end supplies the correct logical names, a fault in the

translated name can result in erroneous computation. This type of fault is thelargest source of com-

plexity in TBFD – as we will show later, a corruption in the physical register name may not be caught

by analyzing only the mismatched instructions. We use the term meta-datapath to refer to the parts of

the core where a fault can corrupt the physical register name.

3. Datapath: This is the conventional data path, including the functional units, buses, and data residing

in the physical register files.
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In our work, we inject faults in the following structures as representatives of each of the above categories

(see Table 4.3):

1. Front-end: Instruction decoders.

2. Meta-datapath:Register alias table (RAT) entries;1 source and destination (physical) register identifier

fields in the reorder buffer (ROB).2

3. Datapath:ALU, address generation unit, register data bus, and integer physical registers.

The TBFD test trace analysis described below assumes faults in only the above structures. Nevertheless, the

algorithm can be extended to include other microarchitectural structures aswell.

The analysis algorithm proceeds by using misbehaved instructions in the testtrace as the starting point of

the diagnosis. On encountering a misbehaved instruction in the trace, the algorithm systematically analyzes

the misbehavior and determines if it can conclusively identify a fault in a unique structure. If so, it success-

fully terminates; otherwise, it updates counters corresponding to the microarchitectural resources used by

the misbehaved instruction in the test trace. The algorithm then proceeds to analyze the next misbehaved

instruction. If at any stage, one of the resource counters reaches a value higher than any other counters, the

algorithm declares that resource as faulty and terminates. If the end of thetrace is reached, the algorithm

identifies the resources with the highest counter values as suspected faulty units – in this case, it is not able

to uniquely identify a faulty resource.

Next we describe how TBFD systematically analyzes the misbehaved instructions to track down faults

to the three targeted areas in the processor.

Faults in Front-End

If the misbehaved instruction is a mismatched instruction (i.e., not hung), TBFD first suspects a front-end

fault. (As will be seen later, a hung instruction can only arise from a meta-datapath fault.) For this, it

simply needs to check if the test trace indicates that the mismatch occurred in the decode information –

such a mismatch indicates that the instruction word was corrupted at the front-end. For example, when the

1We assume Intel Pentium 4 style register renaming with a distinct retirement register alias table or RRAT.
2In a real implementation, source register identifier fields would be in the issue queue; however, our simulator models them in

the ROB and our algorithm uses the same terminology.

70



faulty instruction usesr1 as source operand but the fault-free instruction usesr3 as source operand, a fault

is suspected in the front-end. Consequently, counters of the front-endunits used in the faulty execution are

incremented. In this study, since only decoders are accounted for in the front-end, the first mismatch in the

instruction word makes the decoder used by the mismatching instruction identifiedas the unique faulty unit

and successfully terminates the algorithm.

Faults in Meta-Datapath

If no front-end fault is found, TBFD analyzes both the mismatched and the hung instructions to check for

meta-datapath faults.

This class of faults requires the most sophisticated analysis method. This is because, unlike the front-end

and datapath, the first instruction that is affected by such a fault may not appear as a misbehaved instruction;

i.e., it may not affect the fields in the faulty trace that are compared with the fault-free execution. Instead, it

may silently corrupt the architectural state of the processor, causing laterunrelated instructions to misbehave

and obscuring the real source of the fault.

For example, in Figure 5.3,Ia writes tor3 which is mapped to physical registerp23 andIc reads from

r3. Ib writes tor1 but is incorrectly mapped top23 because of a meta-datapath fault (e.g., the register alias

table had the wrong mapping). Thus, whenIb executes,r3 is corrupted with the value ofr1; however, this is

not indicated in any way in the information recorded forIb in the test trace. Now whenIc retires, it sees the

wrong value. This is caught when the faulty trace is compared with the fault-free execution andIc is marked

as a mismatched instruction. Now if TBFD were to blindly attribute this mismatch to the datapath structures

used byIc, the actual meta-datapath fault will never be identified.

In this work, TBFD focuses on meta-datapath faults in the ROB and RAT entries. In particular, TBFD

checks the integrity of the logical-physical register mappings of the misbehaved instruction based on the

following two conditions of fault-free executions.

1. A non-free physical register can be mapped to at most one logical register at any time.

2. If an instruction reads from physical registerpx that is mapped to logical registerry, the last instruc-

tion that writes to logical registerry (the producer) must have written to physical registerpx.
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If a fault occurs in the meta-datapath, one or both of the above conditions may not hold. The first

condition above handles the case discussed in Figure 5.3, where instructionIc is detected as a mismatched

instruction (step 1). To check if condition 2 is violated, TBFD searches backward in the test trace to verify

the integrity of the mappings ofIc’s registers. The algorithm first looks for the instruction responsible for

supplying the value ofr3 to Ic in the software. From this search,Ia is revealed as the producer of registerr3

that mapsr3 to physical registerp23 (step 2). To verify that condition 1 holds, TBFD searches forward from

Ia for the next writer top23 but finds thatIb mapsr1 to p23 (step 3) while it is still mapped tor3 (step 4).

Thus, condition 1 is found to be violated. Since this event does not pinpointwhere the fault is located, TBFD

increments the counters of the RAT entries for bothr1 andr3 and the ROB entry used byIb. The RAT entry

counters are incremented because a fault in the RAT entry can result in incorrectly mapping eitherr1 or r3 to

P23. Also, a fault in the destination register identifier field of the ROB entry used by Ib can mapr1 to p23 as

well. While the source of the fault cannot immediately be known at this point, additional activations of the

fault will cause the faulty structure to be involved in more violations of the above conditions. Consequently,

the counter value of the faulty structure will be the highest among other suspected structures, allowing TBFD

to precisely identify the fault.

Condition 2 is usually violated by a ROB fault. To check if condition 2 holds, TBFD goes backwards in

the test trace from the misbehaved instruction to the producing instruction andverifies its logical to physical

register mappings. For example, a fault in the destination register number fieldcauses instructionIA to write

to a different physical register than indicated in the RAT. Then, a dependent instructionIB reads the mapping

from the RAT and waits indefinitely for a physical register that will never beset ready byIA. As a result,

IB becomes a hung instruction. TBFD then starts tracing backward fromIB and findsIA to be the producer.

BecauseIA writes to a different physical register than the one used byIB, condition 2 is violated. As a

result, TBFD increments the counter of the ROB entries of bothIA andIB. The counters for both entries are

incremented since a fault in either the destination physical register identifier field of IA’s ROB entry or the

source physical register identifier field ofIB ’s ROB entry can cause this misbehavior. As mentioned earlier,

with more misbehaved instructions, the faulty ROB entry can be uniquely identified.

However, even with techniques described above, RAT faults that are exercised by speculative instructions

can be hard to diagnose down to the individual RAT entries. The scenariodescribed below illustrates the
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Figure 5.3: An example scenario depicting how a physical register that is mapped to more than one logical
register is identified by TBFD.

difficulty. Consider that a logical registerr1 is mapped to a physical registerp1. Suppose an instructionI that

writes to logical registerr2 enters the rename stage. Because of a fault in the RAT entry,r2 gets mapped to

the already live physical registerp1. Then,I executes, writes top1, and wipes out the data inr1. Later on,I

is squashed as a result of an exception or a branch misprediction, causing p1 to be freed and added to the free

list (even though it is supposed to be live and mapped tor1). Subsequently, when another logical register

is mapped top1 and written by another instruction that retires and becomes architecturally visible, r1 now

shows a corruption in the architectural state as its value is now incorrect. However, since TBFD never looks

at the intervening speculative instructionI (remember that TBFD only tracks retiring instructions), the faulty

RAT entry is not correctly identified. Nevertheless, as the execution continues to utilize the faulty RAT entry,

more misbehaved instructions results. Subsequently, the test trace analysisshows that the faulty RAT entry

is the direct or indirect cause of these misbehaviors, allowing TBFD to correctly identify the RAT faults.

Faults in Datapath

After TBFD determines that a mismatched instruction (the current TBFD fault analysis assumes that a hung

instruction can only be caused by a meta-datapath fault) is unlikely to have been caused by a fault in the

front-end or the meta-datapath, a fault in the datapath is suspected. At this point, the microarchitectural

structures (the functional unit, the result bus, and the destination physical register) on the datapath that are

used by the mismatched instruction are deemed potentially faulty. As a result, the counters of these structures

are incremented. While a single mismatched instruction does not lead to a successful diagnosis (structures

all have the same counter value), having multiple mismatched instructions can expose the faulty unit fairly
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Figure 5.4: An example Instruction Trace Buffer (ITB). For each instruction retired by the faulty core during
trace-based diagnosis, the ITB records information pertaining to 1) decoded instruction information, 2) some
microarchitectural resources used by the instruction, and 3) the data values used by the instruction.

easily and result in an accurate diagnosis. This is because the faulty unit isinvolved in all these mismatched

instructions and has the highest counter value.

5.3.3 Implementation

The TBFD algorithm is implemented in firmware. The detection of a fault on a coremust result in an

interrupt on another core (possibly through a protected channel) where the control transfers to the diagnosis

firmware on that core. A single-core fault model implies that the latter core is fault-free; otherwise, the

system must provide a protected, possibly simpler, fault-free core for thepurpose of permanent hardware

fault diagnosis and recovery. (Analogous support is likely required for multicore systems that aim to provide

continuous operation in the presence of a non-repairable fault in a core.)

Additionally, the system must support checkpoint generation for the faultycore and checkpoint migration

to a fault-free core. Several techniques have been proposed for checkpointing for the purpose of recovery

from hardware failures [59, 74], and can be used for TBFD as well. For example, the ReVive scheme [59]

could be used, with the checkpointed state made accessible to firmware on other cores.

The most significant hardware support required for TBFD pertains to the generation of the test trace.

For this purpose, we propose to use an Instruction Trace Buffer or ITB, illustrated in Figure 5.4. Since
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diagnosis is not performance-critical, the ITB could be implemented entirely in memory or in cache. For

better efficiency, we propose an on-chip hardware FIFO buffer thatis periodically flushed to memory.

On the faulty core, the ITB is responsible for storing three types of information for each retired instruc-

tion: the decoded instruction information, the microarchitectural resourcesused by the retiring instruction,

and the data values of the retiring instruction. The decoded information of each instruction includes the

instruction opcode, the source operands, and the destination operands. The microarchitectural resources

usage information refers to microarchitectural structures (e.g., decoder, functional units, source and desti-

nation physical registers, etc.) that were used by the retiring instruction. The data values of the retiring

instruction corresponds to the source register values, destination register value, the virtual address accessed

by a load or a store, and the virtual target address of a branch. Figure5.4 gives an example of an ITB for

a small retirement trace from a faulty core. We discuss various issues related to the ITB and the test trace

generation/analysis as follows.

Populating the fields of the ITB

Since the ITB is populated only in the rare event of a fault, we propose to populate the ITB with additional

circuitry that taps into current microarchitectural structures for this information. An entry in the ITB is

allocated once the instruction is decoded, with decode information from the decoder. When the instruction

is allocated a ROB entry, and added to an issue queue, microarchitecture-level usage information (such as

the physical registers used, ROB entry occupied, ALU used, etc.) can be populated. When the instruction

writes its result, the data values corresponding to the instruction (destination register value and address) can

be stored. If, however, the instruction is flushed, the corresponding entry from the ITB must be discarded as

the trace accounts only for retiring instructions.

While the ITB and its upstream and downstream logic would incur area overhead, they are only acti-

vated during diagnosis after a rare event of a detection. During normal fault-free execution, these modules

can be power-gated to minimize the power and performance overhead incurred by the diagnosis module.

This is in contrast to previous methods of obtaining such information by addingwires that flow along with

the instructions throughout the pipeline [11], consuming power and impactingperformance during normal

execution.
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Diagnosis granularity and size of ITB

The granularity at which TBFD can diagnose a faulty microarchitectural unit is governed by the level of

detail of the information recorded in the ITB. The fields to record in the ITB can be determined based on

the level of repair supported by hardware. For example, if the hardware only supports replacing an entire

array, as opposed to deconfiguring individual entries in the array, theITB needs to only record the fact that

this array was accessed, and not the specific entry in the array that wasaccessed. Not surprisingly, the

finer the granularity of the repair or reconfiguration mechanism supported by the processor, the larger the

ITB needs to be for storing these detailed information. In our experiments, we assume that fine-grained

reconfiguration is supported for the parts of the front-end, meta-datapath, and datapath which may contain

faults (Section 5.3.2), and TBFD records their usage information in the ITB.

Test trace generation and analysis

While the ITB can be configured to write the faulty trace into the cache or the memory directly, the fault-free

execution trace has to be compared against the faulty trace during test trace generation. To this end, the

fault-free execution is emulated by the firmware. Specifically, the TBFD firmware first loads the checkpoint

from the faulty core onto the emulated core and then replays the emulated execution on the fault-free core.

During the emulation, the firmware continuously compares the decode and datavalue fields against the faulty

trace. On a misbehaved instruction, the firmware corrupts the architecturalstate of the emulated fault-free

core and enhances the in-cache or in-memory faulty trace with bits to indicate the source of the misbehavior,

thereby generating the test trace. These bits are best implemented as extensions to the ITB, indicating the

sources of divergences in the test trace. Since the fault-free execution is already emulated in software, it is

unlikely to benefit from any acceleration due to hardware FIFO supportof the ITB. Therefore, the additional

bits above need not be implemented in the hardware FIFO for the ITB, and can simply be maintained in

cache or memory, depending on the particular implementation.

Finally, with the ITB containing the generated test trace, the trace analysis algorithm (part of the TBFD

firmware) is invoked to diagnose the faulty microarchitectural component. Thisalgorithm, implemented

entirely in software, runs on the fault-free core in the system and conducts precise diagnosis by going through

the test trace in the ITB.
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5.3.4 Alternative Strategy for TBFD

The TBFD description above suggests that the fault-free core’s state is synchronized to the faulty core’s

bad state when a mismatch occurs between the two executions. Essentially, during diagnosis, the execution

on the fault-free core iscorruptedwith the state in the faulty core upon an occurrence of a mismatched

instruction. Alternatively, we also considered another method where the faulty core is synchronized to the

fault-free core’s good state when a mismatch is encountered. We refer to this alternative as thepatching

(versuscorrupting) execution.

One possible advantage of the patching execution over the corrupting execution is that the faulty execu-

tion is steered, through patching the faulty core with the good state, towards the correct path of the program.

In contrast, the corrupting execution mode potentially steers both the fault-free and the faulty cores to ran-

dom regions of code and data, which may or may not cause fault activations during diagnosis. We did,

however, implement the patching method but did not find it achieving a better diagnosis coverage than the

corrupting method. This finding implies that the corrupting method is capable of activating the underlying

fault to enable precise diagnosis. Between these two execution modes, the corrupting method is favored

because of the following reasons.

In the corrupting method, we do not have to execute the fault-free and faulty cores in synchrony. In

fact, the entire faulty trace can be generated before the fault-free corestarts execution. The firmware on the

fault-free core takes care of corrupting the fault-free execution. In the patching method, this is not possible

because the firmware cannot run on the faulty core. The faulty core mustinstead run roughly synchronized

with the fault-free core. It must send the results of its instructions to the fault-free core and the fault-free

core must send back any patches if needed. This is clearly much more complex and incurs higher overhead

than the corrupting version. In addition, it requires the faulty core to patchthe register file with data from

the fault-free core while not knowing whether the path for overwriting the register file is fault-free.

It is interesting to note that the patching mode closely resembles the scheme proposed by Bower et al.

where the DIVA checker is essentially the fault-free core that patches thearchitectural state of the faulty

core [11]. While this is feasible in a tightly coupled scenario like DIVA, in a general multicore environment,

it requires tootight lockstepping of two cores to be widely deployable.
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5.4 Methodology

The goal of our experiments is to show the effectiveness of TBFD on permanent hardware faults. Cor-

rectly diagnosing permanent faults is important because a wrong diagnosiswould allow a fault to corrupt

subsequent execution, compromising the integrity of the system.

For our experiments, we use the simulation environment described in Section 4.4.1. We focus on SPEC

workloads and apply TBFD to identify the components that contain the permanent hardware fault.

In this section, we describe the experimental setup that is specific to fault diagnosis.

5.4.1 Faults Diagnosed

TBFD is invoked to diagnose the injected permanent faults that are detected by the SWAT symptom monitors.

In particular, approximately 8500 detected faults in the SPEC workloads (98% of the unmasked faults) out of

the injected 11,200 stuck-at-0, stuck-at-1, dominant-0 bridging, and dominant-1 bridging faults (described

in Section 4.4.2) in 7 of the 8 microarchitectural components (all except FP ALU in Table 4.3) are subject

to diagnosis using our TBFD algorithm to identify the faulty microarchitectural component. We did not

diagnose the FP ALU faults because there are only very few of them detected by the symptom monitors.

More detections in the FP ALU is needed for the results to be significant. Nonetheless, our reported results

are statistically significant as the overall error at a 95% confidence is a low0.3%.

5.4.2 Implementation Assumptions

Our evaluation centers on the diagnosability of the TBFD approach. After all, a diagnosis method has not

much value if it does not achieve necessarily high diagnosis coverage. To investigate this aspect, we enhance

the base simulation platform to provide the microarchitecture-level diagnosis capability. We discuss these

issues below.

Emulating fault-free execution: Since this is the first work that investigates the SWAT approach, we focus

on single-threaded applications and do not simulate a multicore system. To obtainthe execution of a fault-

free core for TBFD, we exploit the inherent dual execution mode of the timing-first simulation paradigm

in our simulation environment, as described in Section 4.4.1. When a fault is detected, the faulty core is

rolled back to the previous checkpoint and the execution is replayed in the GEMS timing simulator; this roll-
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back/replay would also happen in a real system. For the fault-free execution, we use the Simics functional

simulator that runs in parallel with the timing simulation. Since the architectural state of the functional simu-

lator and that of the timing simulators are compared for each retired instruction inthe timing-first simulation

paradigm, a mismatched instruction can be immediately detected by TBFD during retirement. Subsequently,

the corrupted state in the timing simulator is copied to the functional simulator for synchronizing the fault-

free and faulty execution. As the comparison and synchronization between the faulty and the fault-free

execution can be done whenever an instruction retires, the test trace is generated as well.

Checkpointing: In our simulations, fault-free checkpoints are recorded at the beginning of the execution,

prior to fault injection. To restore the previous checkpoint, our simulated system reloads the previously saved

register state and TLB state, and rolls back (undoes) the changes in the memory state (similar to ReVive [59]

and SafetyNet [74]). To ensure the execution on both the faulty and the fault-free cores to be the same

when the fault is not activated, we also checkpoint the TLB state since the TLB in the SPARC architecture

is software-managed. Otherwise, when re-executing from the same checkpoint, the out-of-sync TLB state

could cause one core to drop into the OS to handle a TLB miss but not the other, leading to a false divergence.

Trace length: We run the faulty and the fault-free executions for up to 30 million instructionsfrom the

checkpoint. We empirically chose this interval since most permanent faults were re-activated for diagnosis.

For efficiency, we invoke the TBFD analysis every 10,000 instructions. This buffer size is sufficiently large

for the analysis to track down the faulty component of most injections.

Terminating conditions: After the analysis is invoked, if the algorithm is able find the unique faulty structure

that has the highest counter value than any other units within 30 million instructions of execution, TBFD

terminates and reports the identified faulty component. For some cases, if two units continue to have the same

counter value until the end of the simulation, TBFD reports these two suspected faulty units. Nevertheless,

the unique faulty unit can easily be diagnosed by deconfiguring one of thetwo units. On the other hand, due

to the complex manifestation of the meta-datapath fault, there can be scenarios where three or more units

with the highest counter value are RAT entries. For these cases, TBFD concludes that the RAT array is faulty

(we discuss these cases in greater detail in Section 5.5.4).

Overall, the described simulation environment allows us to evaluate the TBFD approach quantitatively

on the faults detected by the SWAT symptom monitors. In our experiments, we focus on the diagnosis
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coverage of TBFD, which is defined as the percentage of detected faultsthat are diagnosable. Diagnosable

faults are ones where TBFD is able identify the unique faulty unit (either a non-array unit such as an ALU,

or an array entry), two potentially faulty units, and the faulty array structure (instead of the array entry).

5.5 Results

To understand whether TBFD is capable of diagnosing permanent hardware faults at the microarchitecture

level, we investigate the diagnosis coverage of TBFD on the faults detected by the SWAT detectors. The

results are shown and summarized in Section 5.5.1. From Section 5.5.2 to Section5.5.5, we discuss in

detail the faults that fall into the different diagnosis outcomes. While the diagnosis procedure has less timing

constraint, it should still incur necessarily small performance overhead inorder not to impact user experience.

Hence, we report the diagnosis latency in Section 5.5.6.

5.5.1 Summary of Diagnosis Coverage

Figure 5.5 presents the results indicating the effectiveness of the diagnosis for faults in different microarchi-

tectural structures. In each bar, theUniquestack represents cases that the diagnosis process correctly and

uniquely diagnoses the faulty non-array structure or the faulty entry withinan array structure. TheAmong

2 stack represents cases that TBFD diagnoses 2 potentially faulty units and one of them is truly faulty. The

Correct Typestack shows the cases where the diagnosis does not diagnose the faulty array entry (e.g., RAT

entry), but the faulty array structure (e.g., RAT) is correctly diagnosed. TheUndiagnosedstack represents

cases where no misbehaved instruction is found for 30 million instructions. The Incorrectstack shows the

cases where the diagnosis process diagnoses one or more structures as faulty, none of which is the actual

faulty structure. The height of each bar is normalized to all the cases on which the diagnosis procedure is

invoked (i.e., all faults detected within 10 million instructions as discussed in Section 5.4.1).

Of all detected faults, our trace-based diagnosis is able to diagnose 98% of the detected faults by iden-

tifying the correct faulty structure or array entry. Further, it correctlynarrows 89% of the faults down to a

single non-array structure (e.g., ALU) or a specific entry in an array structure (e.g., physical register # 15).

In the following sections, we give an in-depth analysis of the faults that fallinto the different categories

and discuss methods for improving TBFD even further.

80



0% 

10% 

20% 

30% 

40% 

50% 

60% 

70% 

80% 

90% 

100% 

Decoder INT ALU Reg Dbus Int Reg ROB RAT AGEN Overall 

P
e
rc
e
n
ta
g
e
 o
f 
D
e
te
c
te
d
 F
a
u
lt
s
 

Incorrect 

Undiagnosed 

Correct Type 

Among 2 

Unique 

Figure 5.5: Effectiveness of microarchitecture-level fault diagnosis.The figure shows the ability of the
diagnosis algorithm to accurately diagnose detected faults. Overall, 98% ofthe detected faults are accurately
diagnosed as either (1) the correct non-array structure or the correct entry within an array structure (the
Unique stack); or (2) within one of two non-array structures or entries of array structures (Among 2); or (3)
the correct array structure type but not the correct entry within the structure (Correct Type).

5.5.2 Uniquely Diagnosed Faulty Structures

When TBFD correctly narrows a detected fault down to a single unit or array entry, we categorize the fault

as uniquely diagnosed. While 89% of all detected faults can be uniquely diagnosed, from Figure 5.5, we see

that different microarchitectural structures have varying amounts of uniquely diagnosed faults.

For 5 out of 7 structures (excluding INT ALU and RAT), over 97% and up to 100% of the detected faults

are uniquely diagnosed; this shows TBFD is highly effective for diagnosing faults in these structures. In

particular, virtually all the faults in Decoder can be uniquely diagnosed. This high percentage is likely due

to the specific instruction word check in the first part of the diagnosis algorithm. Furthermore, over 99.6% of

the ROB faults are uniquely diagnosed. From the diagnosis of ROB faults, we find the meta-datapath check

is very important since most of these faults exercise this meta-datapath checking part of the TBFD algorithm.

For INT ALU, only 79% of the faults are uniquely diagnosed. The lower percentage is mainly due to the

correlations with other structures (discussed in Section 5.5.3).
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For RAT, however, only 45% of the faults can be uniquely diagnosed. While TBFD seems less effective

for diagnosing faults in RAT, we note that without checking for faults in the meta-datapath, all of the RAT

faults cannot be correctly diagnosed. Also, for array structures such as the register file, ROB, and RAT, there

are existing testing techniques such as BIST (Built-In Self-Test) in the processor. Thus, TBFD may not need

to diagnose the fault down to a single RAT entry, as long as it identifies the RATas the source of the fault

(discussed in Section 5.5.4).

5.5.3 Non-Uniquely Identified Faulty Structures

Since the diagnosis only analyzes the faulty core’s test trace and does not reconfigure the faulty core, if a

correlation among two structures exists during execution, the diagnosis may not be able to uniquely diagnose

the faulty component. TheAmong 2category reflects such cases where the diagnosis diagnoses 2 suspects

that are potentially faulty, with one of the suspects being the structure with the fault.

Overall, only 3% of the diagnosed faults fall into theAmong 2category. Most of them are faults in INT

ALU (18% of INT ALU faults). A closer look at theAmong 2cases shows that all mismatching instructions

that use ALU 1 always write to their registers using Reg DBus 1. It is therefore virtually impossible to

separate ALU 1 from Reg DBus 1 in our high-level trace-based diagnosis.

However, by narrowing the faults down to 2 non-array structures or array entries, the TBFD firmware

can be enhanced to start another round of diagnosis after reconfiguring the microarchitecture. In particular, if

the non-faulty components is disabled and TBFD is rerun, the faulty component will show up in this second

round of diagnosis and be uniquely identified. On the other hand, if the faulty component is disabled, this

second round of diagnosis will be non-conclusive and the disabled component is ruled faulty. Therefore, for

Among 2cases, the faulty component can always be correctly and uniquely diagnosed in the second iteration

of TBFD.

Alternatively, to reduce faults in theAmong 2category, designers can break the correlations among

resources by explicitly changing the scheduling algorithm in the processor. For example, Bower et al. im-

plements a round-robin scheduling algorithm in the microarchitecture so that hardware resource usage is not

always correlated [11]. Nevertheless, this approach likely has a non-negligible impact on area and power.
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5.5.4 Faults Diagnosed in Higher Granularity

While TBFD is able to narrow down most of the faults correctly to one or two structures/array entries, only

45% of the detected RAT faults fall intoUniqueandAmong 2categories. Such low percentage is mainly due

to the reasons discussed in Section 5.3.2.

Although TBFD does not seem to perform well for RAT, we argue that it may not always be necessary

for TBFD to diagnose to the exact RAT entry. As BIST based techniques that test array structures are

increasingly common in modern processors (for manufacturing testing), it isuseful to use TBFD to diagnose

the RAT (instead of a particular RAT entry) as potentially faulty. Subsequently, BIST can be used to track

down the actual faulty RAT entry. Alternatively, since RAT keeps track ofthe mappings of all architectural

registers, a well-crafted functional test can also be used to exercise thedifferent RAT entries to diagnose the

fault.

For these cases, TBFD serves as a first-order test to quickly converge on the faulty RAT array. If we

assume that it is sufficient to diagnose faults at the granularity of an arraystructure, TBFD can correctly

diagnose an additional 44% of detected RAT faults.

5.5.5 Undiagnosed and Incorrectly Diagnosed Faults

In the previous sections, we see that TBFD diagnoses most of the faults detected in SWAT. As shown in

Figure 5.5, the rest of these detected faults fall under two categories -UndiagnosedandIncorrect. In both

these cases, the TBFD algorithm is unable to accurately attribute the location ofthe fault that was detected.

Of all detected faults, 2% fall in theUndiagnosedcategory, where the instruction traces of the faulty

and the fault-free cores do not differ. In these cases, the permanentfault is either not activated or activated

but masked by the architecture. Consequently, the architectural state of the faulty core is never corrupted.

Because of the lack of divergence between the faulty and the fault-freeexecution, TBFD cannot carry out its

analysis. These faults may be diagnosed by collecting a longer execution trace (currently a maximum of 30

million instructions are analyzed) or by using existing deterministic replay schemes [52, 83] to re-create the

fault effect that lead to its detection. However, due to non-determinism at the microarchitecture level (e.g.,

conditions that result in different scheduling, register mapping, etc.), wenote that the permanent fault is not

guaranteed to be re-activated during diagnosis.
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Regardless of the reasons for the lack of fault re-activation, since these faults would not cause any

symptoms during the vigilant phase, they are diagnosed as transient faults inthe first step of the SWAT

diagnosis. Because these permanent faults appear as transient faults inthe system, they can be recovered

through rollback recovery. As they do not affect the software execution, the SWAT microarchitecture-level

diagnosis algorithm correctly ignores them, avoiding excessive overhead.

On the other hand, only 0.9% of the detected faults are mis-diagnosed by TBFD to be a fault in fault-free

structures. Further, from Figure 5.5, we see that most of these faults are in the RAT. We observe that these

RAT faults cause data corruptions and mislead TBFD to diagnose the datapathcomponents as faulty. This

is mainly due to the problem caused by speculative instructions that activate the RAT fault (described in

Section 5.3.2). While this can lead TBFD to disable the fault-free structure, thecontinued execution after

the diagnosis would activate the persistent fault again, triggering anotherround of microarchitecture-level

diagnosis. As a result, TBFD would get another chance to diagnose the permanent fault, increasing the

likelihood of a correct diagnosis.

While further investigation to evaluate the best techniques to reduce, or eliminate, these misdiagnosed

faults is necessary to make a fool-proof diagnosis algorithm, even with theselimitations, TBFD presents

impressive results for microarchitecture-level fault diagnosis at a verylow cost.

5.5.6 Diagnosis Latency

Besides the percentage of diagnosable faults, another metric that measures the effectiveness of our diagnosis

is the latency. If the latency is too long (e.g., billions or trillions of instructions), the processors’ (both

the faulty and fault-free cores) down time may make TBFD unattractive when compared to other simpler

techniques, such as core decommissioning.

Our simulation infrastructure does not have enough detail yet to determine the latency in terms of the

execution time of the entire diagnosis module. Instead, as a proxy, we report here the latency in terms of

the number of instructions that the faulty core executes between the start ofour diagnosis (i.e., after the core

is rolled back to the previous checkpoint) to the point where the fault is identified. Figure 5.6 shows this

latency. The figure includes all the faults in theUnique, Among 2, andCorrect Typecategories in Figure 5.5.

Of all the diagnosed faults, 56% take fewer than 1,000 instructions, 78% are diagnosed within 10,000
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Figure 5.6: Diagnosis latency in number of instructions executed by the faultycore between the start of
diagnosis and the point when the fault is diagnosed. The figure shows that over 90% of the faults can be
diagnosed within 1 million instructions.

instructions, and over 90% take fewer than 1 million instructions to diagnose. Assuming a 4 GHz processor,

these results show that close to 80% of the diagnoses occur within 2.5µs and 90% of them terminate in 250

µs. While we do not consider the overhead incurred by other aspects of TBFD, these overheads show that

SWAT diagnosis can be short enough not to severely impact the system’s response time.

From Figure 5.6, we see that the latency for faults in different structuresvaries widely. Over 99% of

faults in Decoder and ROB take fewer than 1M to be diagnosed. The explicitcheck for front-end faults in

TBFD helps shorten the diagnosis latency for Decoder faults. For ROB faults, the short latency is due to the

fact that they usually cause a break in dependency and quickly lead to hardware hangs. This corresponds to

the relatively quick violation in condition 2 discussed in Section 5.3.2.

On the other hand, only 77% of Int Reg faults and 61% of RAT faults are diagnosed within 1 million

instructions. A general observation is that faults in these large array structures are more difficult to activate.

The windowed register file in the SPARC architecture makes some RAT faults harder to activate because

the faulty windowed register is rarely used. On the other hand, if the pressure on register allocation of an

instruction stream is low, some faulty physical register may be infrequently mapped. These phenomena tend
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to lead to longer diagnosis latencies.

As we stated earlier in the chapter, the SWAT diagnosis procedure is allowedto incur potentially higher

overheads because it is infrequently invoked. From the results on latency shown here, we see that diagnosis

does take some time to identify the faulty unit. Nevertheless, these diagnosis latencies are sufficiently small

and are not likely to impact the overall system performance significantly.

Overall, in this section, our experimental results show that TBFD is very capable of intelligently track-

ing down the faulty microarchitectural units. This proves that permanent hardware faults can be precisely

isolated at the microarchitecture level through test trace based analysis that makes use of in-situ software

execution. Further, our results also show that the diagnosis latency is short and not likely to impact user

experience.

5.6 Summary and Discussion

After a detection occurs in SWAT, the system must diagnose the source of the error because both hardware

and software faults can appear as symptoms. Further, if a permanent hardware fault is diagnosed, full recov-

ery can only be attained by repairing or reconfiguring around the faulty component to prevent the same fault

from corrupting subsequent executions. This chapter presents the SWAT diagnosis module to resolve these

issues.

Since diagnosis is only invoked after an infrequent event of a detection,such process can potentially

incur higher overhead (in contrast to always-on detection mechanisms that must incur as little cost as pos-

sible). The SWAT diagnosis framework therefore takes a firmware-based approach that enables intelligent,

possibly complex diagnosis procedures. As the in-situ software executionis known for activating the possi-

ble persistent fault (if any), SWAT diagnosis exploits the multicore environment by replaying this execution

on different cores to track down the source of the error. Fundamentally, SWAT takes a synthesized DMR

approach for the purpose of fault diagnosis, which incurs much lower cost than the traditional DMR that

needs to be always-on for error detection.

In SWAT diagnosis, the first step of the process uses repeated rollbacks/replays on different cores in

the system and watches for symptom re-occurrence, if any, to distinguishamong software bugs, transient

faults, and permanent hardware faults. If a permanent hardware fault is diagnosed in a core, the second
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step of the diagnosis, called Trace Based Fault Diagnosis (TBFD), looksfor divergences in the replayed

executions on the faulty core and a fault-free core, and identifies the faulty microarchitectural component

through execution trace analysis. This process essentially synthesizes the faulty core and a fault-free core in

the multicore system for dual modular redundant execution to enable microarchitecture-level diagnosis. The

main novelty of TBFD lies in its ability of identifying permanent faults that occur in the meta-datapath. To

the best of our knowledge, no existing functional testing technique can properly handle this type of faults.

To evaluate our proposed microarchitecture-level diagnosis scheme, weused TBFD to diagnose the

permanent faults previously detected by SWAT’s symptom detectors and found that TBFD is highly effective,

correctly diagnosing 98% of the detected faults down to the microarchitecturelevel. In particular, the unique

faulty non-array structure or array entry is identified in 89% of the detections. The rest of the diagnosed

cases belong to the following categories: (1) TBFD identified two units and one is faulty, and (2) TBFD

is unable to identify the individual array entry but diagnoses the faulty array structure. For these cases,

the unique faulty unit can eventually be identified by another iteration of TBFDafter disabling one of the

suspected units (for case 1) or using functional tests that target the specific faulty array (for case 2). In terms

of performance overhead, TBFD is able to identify 90% of diagnosed faults within 1 million instructions,

which approximately equals to 250us on a 4 GHz processor. We believe this latency is short enough not to

substantially impact the overall system performance, especially when the diagnosis is rarely invoked.

In addition, TBFD is the first work that uses in-situ execution to diagnose faults in the meta-datapath.

From our results, TBFD is able to diagnose a large portion of these faults down to the unique array entry

and most faults at a higher granularity (array structure vs. array entry). These results are encouraging as

our method remains effective even though the manifestation of meta-datapath faults is complex. Further, we

believe that there is room for improving the TBFD algorithm to achieve even better diagnosis coverage for

faults of this nature.

Overall, this chapter introduces the SWAT diagnosis framework to carry out effective fault diagnosis on

the SWAT system. However, we note that this proposed framework is flexibleand can easily be integrated

with different types of error detection mechanisms. Further, the framework is also tunable to cater to dif-

ferent granularity of repair supported by the system. Since this is the firstwork to investigate the capability

of the SWAT system, we have mainly focused on single-threaded workloads. As multithreaded software
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and multicore systems are becoming pervasive, recent work with my colleagues (not reported here) inves-

tigated the diagnosis mechanism for multithreaded applications running on multicore systems [26]. In that

work, we successfully derived an effective diagnosis strategy for attaining high diagnosability even in this

multithreaded environment.
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Chapter 6

SWAT Recovery

The goal of error recovery is to mask any effect of the detected errorby restoring the system to a pristine

state and resuming the execution. Hence, error recovery is vital to upholdthe integrity and reliability of any

fault-tolerant system, including SWAT. While there has been a wide selection of error recovery proposals

that can be potentially integrated with SWAT, the effective method must be chosen carefully in order not to

compromise the strength of the SWAT system.

Towards proposing a recovery scheme for SWAT, we must consider various issues. First, the recovery

module should be designed to fit the needs of the other components in the system, namely the detection

and diagnosis modules. For example, since the SWAT symptom monitors have certain detection latencies,

our recovery must be capable of handling the effects of error propagation in the time period prior to a

detection. Second, as all recovery methods incur overheads in area, power, and/or performance during fault-

free operations, these overheads must be kept low in order not to impactthe overall system cost significantly.

Desirably, the recovery scheme should have a similar cost as the always-on very low overhead hardware-only

detectors of SWAT.

In this chapter, we first give an overview of the design constraints of theSWAT recovery module. Then,

we discuss checkpoint/replay mechanisms and I/O buffering schemes that SWAT recovery can leverage.

After that, we explore the potential designs of the recovery module quantitatively in terms of system recov-

erability for faults previously detected by SWAT’s symptom monitors. Based on this analysis, we investigate

the overheads involved for designing the recovery scheme that can achieve high recoverability. While we do

not propose a new recovery method in this thesis, the quantitative and qualitative analysis presented here can

effectively guide the exploration of new lower-cost and more effectiverecovery mechanisms for SWAT and

other error resilient systems.
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6.1 Constraints and Requirements of SWAT Recovery Module

The SWAT system is able to achieve very low cost because of the key observation of minimizing the overhead

of the commonfault-free operation. However, as shown in Figure 3.2, error recovery incurs overheads in

both fault-free operation and fault-handling operation. Therefore, to be consistent with the SWAT design

principle, the fault-free operation of error recovery must be kept low cost.

Another important role held by SWAT recovery other than masking the erroreffect is to assist the diag-

nosis process. In SWAT diagnosis, the fault-activating execution is repeatedly replayed in order to correctly

determine the source of the error. Therefore, SWAT’s recovery mechanism must be able to allow the system

to “go back in time” to replay the execution.

Besides the above requirements, we also need to consider how hardwarefaults can be contained to ensure

full system recovery. To this end, Reinhardt and Mukherjee introducethesphere of replication, defined as

the logical extent of redundant execution (in time or space) for protectingthe system from soft errors [66].

At the boundary of this sphere, outputs are compared before they become visible to the rest of the system.

Similarly, Sorin uses thesphere of recoverabilityto describe the logical extent of the system that is protected

by SafetyNet [74]. To ensure full recovery, output events that cross the sphere of recoverability are only

made visible to the rest of the system after the checkpoint is validated.

Like other systems, in SWAT, the sphere of recoverability depends on the employed recovery technique,

which in turn is dependent on the error detection latency. If the detection latency is very low (e.g., under 100

instructions), processor-level checkpointing along with memory transaction buffering (using the store buffer)

can be used to recover from an error. In this case, the boundary of the sphere of recoverability lies between

the processor and the first-level cache. If the detection latency is very long, software-level techniques such as

the ones used in distributed systems may be needed. The sphere of recoverability, hence, may cover multiple

systems that are involved in running the distributed application.

In this thesis, based on the detection latency found in Chapter 4, we focus on the sphere of recoverability

that contains both the processor and the main memory. Hence, the input/output(I/O) events that occur during

the software execution must be properly handled until the system is validatedto be fault-free. Otherwise, a

faulty output request issued by the processor (e.g., a request sent tothe network interface card) may become

visible to the rest of the system before an error is detected. This scenariois problematic as the visibility of
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the erroneous event is irreversible and full system recoverability cannot be achieved. Therefore, in general,

output events are buffered and are not made visible to the devices until thestate of the processor and memory

is validated to be fault-free. For input events, some of the requests (e.g., disk accesses) can be regenerated by

the processor without buffering while others would need a mechanism to buffer and replay the input events

(e.g., a keystroke from the user) during recovery. In this chapter, wemainly focus on buffering output events

as faults can effectively be contained this way.

With these requirements, the design of the SWAT recovery scheme can be subdivided into (1) providing

a mechanism for replaying executions that incurs low cost during fault-free operation and (2) employing a

scheme for buffering output events to contain faults. Both of these issuesneed to be addressed to ensure full

system recovery.

In the following sections, we first discuss the mechanisms for execution replay and then investigate issues

in I/O buffering.

6.2 Mechanism for Execution Replay

Error recovery can be broadly classified as forward error recovery (FER) and backward error recovery (BER).

(Section 2.3 discusses related work in both FER and BER.) FER recovers an error by moving forward in the

execution because the fault-free state is readily available in the system [46]. BER recovers an error by

rewinding the system state backward to a fault-free state for re-execution. In terms of cost, FER tends to

be higher than BER as it needs mechanisms for keeping a known fault-freestate; in comparison, this makes

BER more favorable. Also, by definition, BER provides support for replaying the execution, making it a

suitable candidate for SWAT recovery since this is required for diagnosis. Hence, in the rest of the chapter,

we focus on potential BER techniques that the SWAT recovery module can leverage.

6.3 Checkpoint and Replay Mechanisms

Checkpoint-and-replay is a well-known backward error recovery method. In these schemes, a checkpoint is

established periodically so that the state of the system can be restored afteran error detection. While check-

point creation suggests that snapshots of the system state are taken, modern checkpointing schemes often use
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Hardware Checkpointing Software Checkpointing
Hardware Overhead Varies None

Performance Overhead Low High
Checkpointing Frequency High Low

Recovery Overhead Low High

Table 6.1: Comparison of hardware and software checkpointing schemes.

a combination of checkpoint-based and log-based mechanisms for checkpoint creation. For example, the full

register state of a processor is often saved as a snapshot due to its relatively small size while logging is used

to store changes to the memory state of the system. In this thesis, we regard these methods collectively as

checkpointing mechanisms. After a checkpoint is established, the system can be rolled back to the previous

pristine state when an error is detected. The execution is then resumed and the effect of the detected error is

masked.

Of all the previously proposed checkpointing methods, we broadly categorize these methods as software-

based and hardware-based. Based on the requirements above, the different tradeoffs of the two types of

checkpointing schemes are discussed below. Table 6.1 gives a brief comparison between these methods.

6.3.1 Software Checkpointing

Software checkpointing works by periodically creating checkpoints of thesystem state so that the system can

be rolled back when an error is detected. Software checkpointing can also be categorized into application-

level and system-level. While future SWAT systems may improve recoverability through application-level

checkpointing, we focus our discussion on system-level checkpointing since it is more general and can be

applied to different applications.

System-level software checkpointing typically relies on checkpointing of processor state and logging of

memory pages through copy-on-write mechanism to establish checkpoints [33, 58, 76]. At the beginning of

the checkpoint interval, all memory pages are marked read-only. Whenever a page is written to, a memory

protection exception is triggered and the checkpointing mechanism makes a copy of the page before it is

written to. Depending on the individual scheme, this copy of the memory page can be stored on a stable

storage such as disk [33] or a volatile medium such as DRAM [58]. The collection of stored memory pages

then forms the undo log of the memory and hence can be used to roll back to theprevious checkpoint in the
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presence of a fault.

The main advantage of software checkpointing is that it does not require hardware support because the

checkpointing and rollback can be carried out entirely in software. However, the performance overhead for

software to take a checkpoint (copying memory pages) could be quite large. Because of the high check-

pointing latency, the checkpointing frequency is kept relatively low (e.g., once per 30 minutes) to amortize

the overhead. Consequently, the large checkpoint intervals could complicate the handling of the input/output

commit problems. Furthermore, in system-level software checkpointing, as the OS is responsible for creat-

ing checkpoints, additional mechanisms for recovering the OS are neededas hardware faults can corrupt the

OS state. Towards this end, using software-based methods for recovering the OS is non-trivial and has only

been done using virtual machine monitors (VMMs) [18].

Overall, the high overhead in performance during fault-free operation,the obstacles involved in properly

handling I/O for very long checkpoint intervals, and the complexity in recovering the system software make

software checkpointing unsuitable as the primary recovery mechanism forSWAT. However, in future gener-

ations of SWAT, software checkpointing can be leveraged to improve SWAT’s recoverability for some faults

that may have very high detection latencies.

6.3.2 Hardware Checkpointing

Similar to software checkpointing, hardware checkpointing uses a combination of checkpointing and logging

techniques to establish checkpoints where the faulty machine can roll back to. Hardware checkpointing

can be further classified as processor-level and processor-and-memory-level. Processor-level checkpointing

refers to checkpoints that are created within the processor and are transparent to software. Pipeline flush, the

built-in rollback mechanism in modern processors for handling branch mispredictions and exceptions, is a

prime example of processor-level rollback recovery to the previous checkpoint established. As most, if not

all, processors contain this mechanism, much prior work relies on pipeline flushes to recover the processor

state from soft error detection [4, 61, 66, 68, 81]. As mentioned earlier, if the detection latency in SWAT

is sufficiently short, processor-level rollback recovery along with memorytransaction (loads and stores)

buffering can be employed. However, from the results presented in Chapter 4, the maximum detection

latency of 10 million instructions likely requires a non-trivial buffering mechanism for memory accesses.
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Hence, we investigate processor-and-memory-level checkpointing methods.

Processor-and-memory-level checkpointing, as the name suggests, establishes checkpoints for the state

of the processor and the memory. In these schemes, snapshots of the processor state are periodically taken

and stored in an on-chip buffer (e.g., shadowed register file). On the other hand, checkpointing the entire

memory state is very difficult given the size of today’s system memory. Hence, many of the proposals resort

to use logging for rolling back to the previous checkpoint. The logging technique used is similar to software

checkpointing; a change in the memory state triggers the old state to be saved asan entry of the undo log.

However, with hardware support, the logging of the memory state is typically done at the memory block (or

cache line) granularity instead of the memory page granularity because the cache coherence protocol usually

operates at the block granularity and can be enhanced for this purpose. To recover to a previous check-

point, the logged memory blocks are used to patch the memory back to the state when the checkpoint was

taken. Typically, the performance overhead incurred during the common fault-free execution is caused by

the synchronization operations needed for establishing consistent checkpoints and the increased demand on

memory bandwidth for creating the undo logs. Nevertheless, with dedicated hardware support, checkpoints

can usually be taken very efficiently. Hence, the fault-free performance overhead can be kept low. This

is particularly attractive since SWAT demands very low performance overhead for common case operation.

Nevertheless, we must investigate the actual performance overhead andthe cost of the added hardware sup-

port of the recovery scheme to determine if the method is sound for the SWAT system. If the common-case

overhead in area, performance, and/or power is significant, the schemewould greatly increase the overall

cost of SWAT.

Of the different processor-and-memory-level checkpointing methods,we look at two recently proposed

techniques for recovering the state of multiprocessor systems: SafetyNet[74] and ReVive [59]. These

schemes take periodic checkpoints of the processor and memory state of distributed shared memory systems.

We discuss the use of these techniques for recovering the processor and memory state in the SWAT multicore

systems.
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SafetyNet

SafetyNet, proposed by Sorin et al., uses versioned caches and on-chip buffers called Checkpoint Log Buffers

(CLBs) to efficiently checkpoint a distributed shared memory system [74].By enhancing the coherence

protocol and using time-stamps on each cache line or the corresponding memory block, SafetyNet is capable

of establishing globally consistent checkpoints without interrupting the system’s operation.

Specifically, each cache line is marked with a time-stamp to identify the checkpointit belongs to; a

service processor periodically sends the current checkpoint numberto each processor node. With the time-

stamp, the processor can determine if a store issued to a particular cache lineis the first modification since

the checkpoint. If so, the pre-modified version of the cache line is logged inthe CLB. Collectively, the CLBs

form the undo log of the memory state and hence rollback recovery to the previous checkpoint is possible.

From their experiments, with a total CLB size of 512KB, SafetyNet can take acheckpoint every 100,000

cycles and have almost no impact on performance.

In the context of SWAT recovery, the performance aspect of SafetyNet is certainly attractive. However,

the on-chip buffers incur permanent cost to the system and grow with the recovery interval, which is the

product of the length of the checkpoint interval and the number of storedcheckpoints. If the detection latency

of the SWAT detectors is close to 1,000,000 cycles or more, the CLB size will certainly exceed 512KB in

order to avoid significant performance degradation. However, an on-chip buffer of this size bears a non-

negligible cost even in modern mainstream systems, especially when this piece of hardware is used solely

for ensuring reliability. Because of the potentially large area overhead incurred by the CLBs (permanent

cost), we use the alternate scheme, ReVive, for our further investigation, as described below.

ReVive

Contemporary to SafetyNet, Prvulovic et al. proposed ReVive that slightlymodifies the directory controller

to (1) checkpoint the memory state by storing the undo logs in the main memory and (2) generate distributed

parity of the memory (including the logs) to recover the system from permanent errors in one node [59].

To establish a globally consistent checkpoint, all nodes are synchronized through barriers to checkpoint the

processor state and flush the dirty cache lines to memory. Because modern systems usually use ECC to

handle errors in memory, we focus on the checkpointing aspect instead ofthe parity protection aspect of
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ReVive.

In this scheme, before the start of a checkpoint interval, all cache lines are written back to the memory

(i.e., no dirty cache lines in cache). As the execution continues, processors issue writes to different cache

lines. Subsequently, the directory controller receivesupgradeor get-exclusiverequests and learns that a

cache line is about to be modified for the first time since the last checkpoint. Hence, the controller saves

the current version of the cache line in the undo log region of the memory. The modified memory state and

the undo logs allow the system to be rolled back to the last checkpoint. Because the directory controller

creates undo log entries by keeping track of the first writes to the memory blocks since the beginning of

the interval, all processors flush the dirty cache lines to the memory (downgraded tosharedstate) before

the start of the next interval. As all processors are synchronized periodically to take globally consistent

checkpoints in ReVive, the synchronization overhead is always incurred. Further, first writes to any cache

lines since the last checkpoint always result in misses, incurring additional latencies. To amortize these

overheads and yield lower performance degradation due to checkpointing, the system can be configured to

have longer checkpoint intervals. From the experimental results in the ReVive work, this method incurs an

average performance overhead of 6% at 10ms checkpoint intervals [59].

One of the design goals of ReVive is to modify as little hardware as possible; only the directory controller

is enhanced as a result. One may argue that the area overhead of ReVive is actually higher because a part

of the memory is provisioned to store the undo logs, effectively reducing theamount of available memory

to the running system. However, as shown in the experiments in [59], the undo logs only consume 2.5MB

(the sizes of the logs for FFT and Radix are at this maximum) or less of memory per node per 10ms interval,

making this overhead negligible when compared to modern systems equipped with gigabytes of memory.

Overall, as the two main design aspects of ReVive’s checkpointing scheme,minimizing hardware over-

head and storing logs in memory, seem to align with the SWAT approach of keeping the common-case cost

low, ReVive can likely be leveraged as the viable cost-effective SWAT recovery method. In our experiments,

we investigate the applicability of ReVive as the SWAT recovery method.

96



6.4 Input/Output State Buffering and Recovery

As discussed in Section 6.1, full system recovery depends not only on rolling back to the pristine execution

state, but also on proper handling of I/O events to contain faults. In particular, because output events are

irreversible once committed, it is crucial to buffer output events until the system state is validated to be

fault-free. As virtually every piece of software in the system interacts with I/O devices during its course of

execution, this buffering mechanism is vital to ensure system recoverability.

In SafetyNet, it is suggested that I/O activities can be buffered during checkpointing. Hence, after re-

covery, the input events can be replayed to the system and the output events can be re-generated from the

recovered system. However, the actual design and implementation of the buffering mechanisms was un-

known at the time. Recently, researchers presented one output buffering method called ReViveI/O [50] for

buffering disk and network events.

Using a software layer called pseudo device driver (PDD) that residesbetween the OS kernel and the

device driver, ReViveI/O buffers all disk and network write activities so that potentially faulty events cannot

propagate to the rest of the system (or the outside world). On the other hand, ReViveI/O does not have a

mechanism for buffering input events because the targeted disk and network input events can be naturally

replayed. For disk reads, ReViveI/O relies on the program to re-generate these read requests after a rollback.

For reads of the network packets, the scheme relies on the retransmission feature in TCP/IP and lets the other

machine resend the packets after a failure (a time-out mechanism) to receiveacknowledgments.

In SWAT, as activated faults will manifest in software, they can cause faulty outputs to propagate to

the rest of the system before they are detected. Hence, output buffering is particularly important in SWAT

recovery. While ReViveI/O presents a feasible solution for disk and network activity, there are issues to be

considered before integrating it with SWAT. First, the design of ReViveI/Oinvolves modifying the internals

of the OS, which is non-trivial as the complexity of modern operating systems continues to grow. Second, it is

unclear how the method can be expanded and generalized to other kinds ofI/O events. Third, because faults

can manifest in software in SWAT systems, ReViveI/O’s PDD software canbe corrupted and send faulty

outputs to the outside world before the error is detected. Given the stated reasons, we do not consider directly

employing ReViveI/O in SWAT recovery. Nevertheless, this buffering scheme does present an effective

approach for preventing fault propagation.
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While ReViveI/O presents a software approach for output buffering,we realize this scheme by assuming

that existing hardware can be enhanced slightly to achieve the same purpose. We further assume that this

hardware module is highly reliable. This way, not unlike ReViveI/O, outputevents generated from the pro-

cessor will be buffered in the hardware module until the checkpoint is validated to be correct. Subsequently,

the buffered requests are sent to the devices in the system. If an error isdetected, the requests buffered in the

hardware module are discarded to prevent the fault from propagating tothe outside world. For input events,

we use the similar approach as ReViveI/O and rely on requests being regenerated during re-execution. Hence,

we do not buffer input events for replay. For mainstream desktop or laptop computers, since all I/O events go

through the northbridge (e.g., graphics card access, network card access, etc.), one possible implementation

of this hardware module is to enhance the northbridge with this buffering capability.

6.5 Exploration of Checkpoint Recovery and I/O Buffering Methods

One shortcoming of many existing proposed checkpointing and I/O buffering schemes is the lack of quantita-

tive results that show fault propagation can indeed thwart the error recovery process. That is understandable

as most schemes are introduced as stand-alone solutions. Since we propose SWAT as a complete hardware

reliability solution, it is of high importance to investigate how faults detected by the SWAT symptom-based

detectors can be recovered in the system.

To study system recoverability, we explore the following configurations that make use of checkpointing

and/or buffering techniques to recover faults that have been detected by SWAT’s symptom detectors.

• Processor and partial memory state checkpointing.As previously mentioned, the design of Re-

Vive that stresses low area overhead aligns with the SWAT approach. Hence, we first explore this

hardware-based processor-and-memory-level checkpointing scheme. In this configuration, to estab-

lish a checkpoint, the processor state is checkpointed with the use of shadow registers and the undo

log is created for all memory blocks that have been modified by the processor since the checkpoint. We

consider the memory state to be partially checkpointed because this method doesnot log the device-

to-memory requests. (We discuss this issue in the next method.) From this scheme, we can understand

whether a full system recovery can be achieved by focusing on handling the interactions between the
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processor and the main memory. This method, therefore, serves as a baseline system to show the

efficacy of processor-and-memory-level checkpointing in terms of system recoverability.

• Processor and complete memory state checkpointing.In the original ReVive work, the experiments

were conducted on an architectural simulation framework that did not include simulation details of

transactions to or from the devices (e.g., hard disk drive, network interface card, etc.). Therefore, the

lack of a full system simulation environment prevented the experiments from capturing the interactions

between the memory and the different devices in the system. However, in modern systems, devices

often interact with memory to transfer data back and forth. Direct Memory Access (DMA) transfers,

which allow large blocks of data to be transferred between the memory and thedevices without the

intervention of the processor, are prime examples of this type of interaction.

Building on the partial memory state checkpointing method, we added support tothe checkpointing

scheme to also log interactions between the devices and the memory. This method represents ReVive

deployed in the realistic full system environment. In the event of a rollback recovery, this method

patches the parts of memory that were previously modified by the devices, in addition to recovering

the memory regions modified by the processor. Since all changes made to the memory state are logged,

we call this scheme the complete memory state checkpointing.

• Full system level checkpointing.While the state of the processor and memory can be fully recovered

with the above methods, a fault may still manage to corrupt the system by causing a faulty request to be

sent to the device. One possible way to recover the corrupted system stateis to apply checkpointing to

the entire system. That is, the state of each device in the hardware system is also part of the checkpoint

where the system can roll back to.

This method, although difficult to implement in practice, will allow us to understandthe limit, if

any, of checkpointing in terms of system recoverability. In other words, ifall detected errors can

be masked with this method, then full system recovery is attainable with system-wide checkpointing.

However, if there exist detected cases where the system cannot be recovered, additional support beyond

checkpointing for recovery will be needed.

• Processor and complete memory state checkpointing with buffering of CPU-to-device write re-
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quests. While the above methods focus on checkpointing and aim to restore the pristinestate of the

system, a fault can still propagate outside of the system. For example, a bad request is sent to the

network interface card as a result of the fault. Subsequently, this bad request turns out to be a part of

the network packet to be sent to the other designated machine on the network. Only after this event,

the fault is detected and the rollback recovery process is triggered. Unfortunately, at this point in time,

the fault has become visible by the other machine and its effect is irreversible.

To mitigate situations like this, a buffering mechanism needs to be employed for holding the output

request temporarily until the system state has been verified. As a result, weenhance the processor

and complete memory state checkpointing with support for output event buffering. In this scheme,

all CPU-to-device write requests are buffered until the next checkpoint. If an error detection occurs

during a checkpoint interval, the buffered requests are discarded sothat the potential faulty events do

not propagate outside of the faulty system. As discussed in the last section,we use a hardware module

to intercept and buffer the CPU-to-device requests.

Overall, with these proposed methods, we can view the SWAT recovery module to consist potentially

of two essential sub-modules to enable full system recovery: (1) leveraging processor-and-memory level

checkpointing for execution state restoration and (2) buffering CPU-to-device requests for preventing the

irreversible effect of fault propagation to the outside world. In our experiment, we aim to find out the

importance of both techniques in terms of system recoverability and their potential overheads.

6.6 Methodology

System reliability depends not only on how well a detection mechanism detects an error, but also on how

capable the recovery mechanism is able to mask the detected errors. In particular, we want to understand

whether employing only the checkpointing mechanism would suffice. Hence,in our experiments, we first in-

vestigate the system recoverability when the different recovery methods described in Section 6.5 are applied

to the errors that are detected by the hardware-only detectors (Section 4.6). After that, we set up exper-

iments to look into the overheads incurred by the recovery mechanism that potentially contains hardware

checkpointing and output buffering. We describe these experiments in detail below.
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6.6.1 System Recoverability

For systems that employ checkpointing for rollback recovery, system recoverability may depend not only on

the integrity of architectural state (processor and memory state) but also onthe proper handling of I/O events.

In SWAT, because faults can manifest in the software before becoming detectable symptoms, preventing

faults from propagating outside the system before detection is key to full recovery.

To create an environment where I/O activities are the norm, we focus on server workloads to gain full

understanding of how SWAT ensures full recovery of the system. In particular, we investigate the following

four methods described previously in Section 6.5. The following describeshow these methods are imple-

mented in our experiments. We apply these methods to only the server system in the two-system simulation

environment (described in Section 4.4.1) while running the server workloads.

1. Proc+ParMem: Processor and partial memory state checkpointing. In our simulator based on

GEMS, we implemented ReVive to take snapshots of the register state and to generate undo logs of

the memory state as the execution progresses. For recovery, the processor state is rolled back and the

memory state is restored through the undo logs.

In our experiments, we take a checkpoint at the beginning of the 10 million instructions of detailed

microarchitectural simulation. This corresponds to a checkpoint interval of 10 million instructions.

After a detection, a rollback recovery process is triggered and the application is then functionally

simulated to completion using Simics.

2. Proc+FullMem: Processor and complete memory state checkpointing. In our experiments, we

enhance the ReVive mechanism in GEMS to generate undo logs of memory blocks that are modified

by the devices in the system. That is, if a device modifies any part of the memoryduring a checkpoint

interval in our simulation, this mechanism will create an undo log entry for the pre-modified version

of each memory block before the block is written to for the first time since the lastcheckpoint. The

rollback recovery and replay are identical to Proc+ParMem.

3. Full Sys: Full system level checkpointing.To implement this method, we rely on Simics to take a

checkpoint of the state of the processor, memory, and different devices of the server system (the client

system is not checkpointed) before the 10 million instructions of microarchitectural simulation. After
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a detection, in rollback recovery, the state of the server system is restored from the Simics checkpoint.

The replay process is the same as Proc+ParMem.

4. Proc+FullMem+Buffer Output: Processor and complete memory state checkpointing with buffer-

ing of CPU-to-device write requests. In our simulation, we employed the module described in

Proc+FullMem for checkpointing the state of the processor and memory. Tobuffer output requests,

we implemented a Simics module for storing the processor-to-device write requests and sending the

requests out to the devices at the next checkpoint. We did not limit the size ofthis buffer so that we can

probe the potential storage overhead needed to implement this buffering mechanism. If a rollback is

triggered due to a detection, the stored requests are discarded becausethey are suspected to be faulty.

After the rollback, the replay process is the same as Proc+ParMem.

To quantitatively study system recoverability, we apply the above methods onthe fault injection cam-

paign performed on the server workloads as described in Section 4.4.2. After the injected faults are detected

by the SWAT detection mechanism, we assume that the diagnosis process correctly identifies the faults and

the appropriate repair action is subsequently taken. Hence, the rollback recovery process is triggered post-

detection. Then, we functionally simulate the restored state until the application completes or a symptom

occurs. We note that this re-execution happens on the fault-free hardware as diagnosis and repair has already

been performed.

To determine recoverability, we compare the output of the completed applicationto that of the fault-free

run. If the outputs are identical, we consider the recovery was successful. If the outputs are different, we

consider the system not properly recovered and classify the case as asilent data corruption (SDC). Further,

if the system ends up hanging/crashing, we consider such cases as detected unrecoverable errors (DUE).

For each recovery method described above, we define system recoverability as the percentage of detected

cases that yield identical outputs as the fault-free execution after the recovery process (i.e., the error effect is

completely masked).

Achieving high system recoverability is certainly the major goal of any recovery method. However,

implementing the method does incur costs in area, power, and performance. Therefore, in the following, we

describe the experiments used for investigating the overheads of the potential recovery scheme.
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Base Processor Parameters
Processor Type In-Order 1-wide
Clock speed 2GHz
Number of Cores on chip 16

Base Memory Hierarchy Parameters
Data L1/Instruction L1 16KB each
L1 hit latency 1 cycle
L2 (Shared and Unified) 256KB to 2048KB
L2 hit/miss latency 6/80 cycles
Base Cache Coherence Protocol (between L1 and L2)MOESI
Memory Size 512MB
Memory Consistency Model Sequential Consistency

Table 6.2: Parameters of the simulated multicore system.

6.6.2 Performance Overhead of Hardware Checkpointing

Hardware checkpointing is essential for restoring the pristine execution state in SWAT. In particular, we fo-

cus on ReVive since it incurs low hardware overhead. On the other hand, the original ReVive work shows

that the scheme incurs some performance overhead during fault-free operation. Because the original work

focuses on one system configuration and one checkpoint interval, it is unclear how this performance overhead

changes with different system configurations and checkpoint intervals. Therefore, we set out to investigate

the performance overhead of ReVive for different system settings to help us find the optimal design param-

eters. Here, we emphasize that the optimal design parameter for checkpointing may not be optimal for the

entire recovery scheme. For example, if SWAT recovery were to include output buffering, choosing a longer

checkpoint interval will likely reduce the performance overhead of ReVive but may require the buffering

mechanism to have a larger storage buffer, incurring higher area overhead.

To gain insight into the fault-free cost of checkpointing, we evaluate the performance overhead of ReVive

on a 16-core system with varying cache sizes. Table 6.2 shows the systemfor this study. To take advantage

of all the cores, we run four parallel applications from the SPLASH benchmark suite (FFT, LU, Ocean, and

Radix), including the ones that give high performance overhead in ReVive [59].

We use the Ruby memory system simulator in the Wisconsin GEMS simulator along with Virtutech

Simics to model a full system environment running SPLASH applications on OpenSolaris. (ReVive was

simulated on a microarchitectural simulator that does not simulate the OS.) The main difference between
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this setup and the base setup described in Section 4.4.1 is that we do not use the Opal microarchitectural

simulator in GEMS. While using Opal would add accuracy to our experiments, italso significantly lengthens

the simulation time. As much of ReVive’s performance overhead actually comesfrom the increased traffic

and latency in the memory system [59], we use only Ruby to study the performance overhead of ReVive with

simulations that span tens of billions of instructions (this would take a long time if we were to use Opal).

The ReVive work focuses on checkpoints that are 10 million cycles long. To understand how the over-

head of ReVive changes with checkpoint intervals, we vary the checkpoint interval from 500,000 cycles to

50 million cycles. We choose 50 million cycles at the high end to see whether the overhead reduces sig-

nificantly with even longer intervals. We pick 500,000 cycles at the low end to observe how significant the

performance overhead becomes with frequent checkpoints. This interval is also close to the 400,000-cycle

(4×100,000 cycles) validation latency in SafetyNet.

Our experiments also aim to show the impact of different system configurations. Hence, we vary the

shared L2 cache size from 256KB to 2048KB. (The ReVive work only reports results for 128KB private L2

caches.) We use a very small 256KB L2 cache at the low end to capture howReVive performs when cache

misses are frequent. For the high end, we use a 2048KB L2 cache to match the total L2 cache size in ReVive.

To quantify the performance overhead, we calculate the slowdown of a system equipped with ReVive

when compared to the baseline system with the same system configuration (e.g.,same cache sizes) but with

no checkpointing.

6.6.3 Storage Overhead of Output Buffering

The sphere of recoverability defines the system components that are recoverable by the recovery scheme. At

the boundary of this sphere, events need to be buffered before the state within the sphere is validated. After

the state is validated (e.g., no error detection), the events are released to their destinations. Because we use

processor and memory state checkpointing, an output event buffering mechanism, if necessary, should be in

place to prevent faulty events from propagating beyond the processorand memory to the system devices.

To determine the potential I/O events that need to be handled by SWAT recovery, we use the Simics full-

system simulator to observe the interactions between the CPU and devices, and the memory and devices. We

created a module in Simics (much like the Wisconsin GEMS simulator) to intercept all read/write requests
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issued by the processor to the devices (e.g., the network interface card)and all read/write requests issued by

the devices to the main memory (e.g., DMA transfer from disk to memory).

While it has been previously shown that server workloads have higher OS activity than SPEC workloads

(Chapter 4), we do not know how they compare in terms of I/O activity quantitatively. Intuitively, server

workloads would have more I/O traffic as they often communicate with the disk and network. In our exper-

iments, we compare our two server applications, Apache and SSH daemon, against the SPEC applications.

For SPEC workloads, we show the results for mcf and parser because they have the highest I/O activity.

In our experiments, we aim to observe the I/O activity throughout the lifetime ofthe application execution

in order to fully understand the maximum requirement for the buffer storage. Ideally, we would like to have

a modern processor that runs at a high clock rate (e.g., 2GHz). However, the latency of the PCI bus would

be relatively high when compared to the fast processor and we could notconfigure the PCI bus speed freely

in Simics. Hence, we chose to use the default Simics configuration, which assumes a 75MHz processor.

We note that the results could potentially be more conservative (e.g., the statedstorage requirement may be

higher).

We measured these I/O activities in terms of the amount of data that needs to be buffered, which includes

both the address (64-bit) and the data (varies between 1 and 64 bytes) for accessing a specific device. We

collect this information at different buffering intervals, ranging from 10,000 to 100 million instructions.

As we already found that many detections happen within 100k instructions in Chapter 4, the low end of

the chosen intervals caters to future detectors that have latencies under 10k instructions. At the high end,

an interval of 100 million instructions aims to buffer events for the very few detections that take a long

time to occur. Intuitively, if the buffering interval is shorter, the data buffer can be made smaller since the

accumulated amount of data requests is less. However, the buffering interval is governed by the maximum

detection latency supported by the checkpointing mechanism. By obtaining the necessary storage overhead

for the buffering mechanism from our experiments, we can design the module in SWAT recovery responsible

for handling I/O events accordingly.
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6.7 Results

In this section, we first investigate the recoverability when the system has a fault. In particular, the ex-

perimental results help us determine whether checkpointing mechanisms alone are sufficient to ensure full

recovery, or event buffering mechanisms are also needed. To the best of our knowledge, this is the first work

that quantitatively evaluates the limitation, if any, of the processor-and-memory-level hardware checkpoint-

ing mechanism.

Based on the results obtained on system recoverability, we discuss the strategy for designing an effective

SWAT recovery solution. After that, we evaluate the potential overheads of the subcomponents of SWAT

recovery. At the end of this section, we discuss the potential recovery scheme for SWAT.

6.7.1 System Recoverability

As we found that SWAT symptom detectors are able to detect most of the injected permanent faults within 10

million instructions (Section 4.6.1), let us first investigate the system recoverability for the detection latency

of 10 million instructions. This study aims to show if it is sufficient to take processor and memory state

checkpoints or if full recovery requires additional mechanisms such as output event buffering. To investigate

recoverability, we attempt to recover the permanent faults injected into the system running server workloads

with the methods described in Section 6.6.1.

Figure 6.1 shows the recovery outcome when different methods are usedfor recovering the detected

faults. The different bars represent the results under the differentmethods. The different stacks in each bar

show the different outcomes of the detections under these different recovery methods.Recovereddenotes

the cases where the applications generated correct outputs after the rollback and re-execution.DUE repre-

sents the detected cases that end up leading to a detection after re-execution. (We observe system hangs in

most of these cases.) If the re-executions of the detected cases generate different outputs than the correct

output, we categorize them asSDC. The number at the top of each bar shows the recoverability as defined in

Section 6.6.1.

Interestingly, from theProc+ParMembar in Figure 6.1, more than two-thirds (68.6%) of the detected

errorscan be fully recovered by simply rolling back the processor state and the memory blocks that are

modified by the processor even with I/O-intensive server workloads running. This shows the checkpointing
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Figure 6.1: Recoverability of server workloads

method is very effective for the majority of the detected faults. Nevertheless, a significant number of the

detections (31.1%) end up causing the system to crash/hang after rollbackand replay. These cases essentially

show the faults corrupt the system state and cannot be recovered by restoring the processor and memory state.

Further, 0.3% of the detection results in incorrect output, indicating that faults do propagate outside of the

system, become visible to the client system, and silently corrupt the data of the applications.

By also logging memory blocks that are modified by the devices in the system,Proc+FullMem is able

to improve recoverability slightly to 70.5%. The difference in recoverability between this method and

Proc+ParMemrepresents the percentage of faults that corrupt the memory blocks accessed by the devices

but fail to be recovered byProc+ParMem. Hence, if ReVive is to be deployed in real systems, the scheme

has to handle not only interactions between the processor and memory but also those between the devices and

memory. Nevertheless, the number of unrecoverable cases remains significant, with 29.1% causing system

crash/hang and 0.4% producing faulty output. This shows that processor and memory state checkpointing

alone is clearly insufficient to achieve high level of recoverability for these workloads.

Through checkpointing the entire system (including the state of the devices), one can determine whether

faults can be fully recovered by simply restoring the state of the server hardware system. From Figure 6.1,

Full Sysimproves the recoverability marginally, when compared toProc+FullMem, to 70.8%. Though a
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small number of faults can be recovered this way, these results show that merely checkpointing the entire

state of the hardware system does not necessarily result in full system recovery. Specifically, by using

Full Systo roll back the state of the processor, memory, and various devices, the system essentially has

no memory of sending out any potentially faulty events to the outside world and isout-of-synch with the

client system. As requests arrive at the server system, the server application and the OS detect many errors

(unexpected inputs) and trigger the system to halt (to prevent critical errors from corrupting the system

further). Essentially, the server system becomes the node in the distributedsystem that has the inconsistent

state. These results therefore motivate the need for support for handling I/O activity.

Proc+FullMem+BufferOutputenhancesProc+FullMemwith buffering of CPU-to-device write requests.

As shown in Figure 6.1, the number of recoverable faults increases significantly from 70.5% to 99.0%, with

only 1.0% becoming DUEs. These results show that buffering the server system’s output events is highly

effective in containing a detected fault and preserving the integrity of the system. This also suggests proces-

sor and memory state checkpointing cannot be deployed as the sole method forrecovering detected faults

in SWAT since our experiments show that faults do propagate to the rest of the system and become un-

recoverable. In contrast to output buffering, input event buffering/replaying, although very important for

achieving 100% recoverability, seems to play a lesser role in this context. Thisis because many input events

are regenerated by the CPU (as pointed out by Nakano et al. in [50]) during re-execution. Given the high

system recoverability, buffering output requests is vital to the integrity of the SWAT system, at least for the

detections investigated here that have latencies of up to 10 million instructions.

6.7.2 Ensuring Full System Recovery in SWAT

From our experimental results for system recoverability, we see that boththe checkpointing and output

buffering mechanisms need to be involved for error recovery. We nextdiscuss how the design parameters of

these mechanisms impact system recoverability.

For SWAT and other systems that rely on checkpointing and buffering, therecoverability of a system

depends on therecovery intervaldefined by the checkpointing mechanism, which subsequently impacts the

output buffering mechanism. The recovery interval is defined as the maximum interval for rollback recovery,

similar to the definition used in database systems [27]. In checkpointing, this interval is the product of the
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checkpoint interval and the number of stored checkpoints. For example,if the checkpointing scheme has a

checkpoint interval of 5 million cycles and is to keep three checkpoints, the recovery interval is 15 million

cycles. In order to recover from an error detection, the detection latency has to be strictly shorter than

this recovery interval. In other words, if the recovery interval can be made longer, more detections can be

recovered and higher system recoverability can be achieved. However, if the recovery interval is longer, the

buffering mechanism likely needs to store more events. This is because the system states are not validated

during this interval. Hence, the buffering mechanism has to prevent potential faulty events from leaving the

sphere of recoverability.

In SWAT, since the symptom detectors detect most faults within 10 million instructions, let us look at

recovery schemes that handle this latency.

To ensure the pristine checkpoint is preserved, the recovery intervalneeds to be larger than 10 million

instructions. One simple design choice for checkpointing is to use a checkpoint interval of 10 million in-

structions. In this case, the checkpointing mechanism needs to keep two checkpoints. As long as the fault

can corrupt the memory state before it is detected, there can always be a scenario where the fault corrupts

the state right before a checkpoint is taken but gets detected after the checkpoint. Hence, at least two stored

checkpoints are always needed to ensure the restoration of the pristine state. Consequently, the recovery in-

terval is 2×10=20 million instructions. Thus, the buffering mechanism needs to buffer outputs for 20 million

instructions.

An alternative design is to take checkpoints more frequently, e.g., every 1 million instructions. In this

design, 11 checkpoints are kept to make up a recovery interval of 11 millioninstructions. As a result, the

buffering mechanism will need to buffer for 11 million instructions.

From these two examples, we can see that there is tension between the checkpointing and buffering

mechanisms. For the same targeted detection latency, longer checkpoint intervals often yield longer recov-

ery intervals. Therefore, more events need to be stored by the buffering mechanism, increasing the required

storage overhead. To achieve shorter recovery intervals, checkpoints need to be taken more frequently. How-

ever, in ReVive, shorter checkpoint intervals generally result in more degradation in performance (discussed

in Section 6.3.2).

Given these tradeoffs of the different design parameters in the checkpointing and buffering mechanisms,
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we question whether a sweet spot can be sought to derive a recoveryscheme that is low cost in area, per-

formance, and power. Hence, in the following, we first look at the checkpointing overheads in the ReVive

scheme for different checkpoint intervals. We then look at the output buffering overhead for different re-

covery intervals. After that, we draw conclusions for an overall recovery scheme for a given amount of

recoverability.

6.7.3 Performance Overhead of Hardware Checkpointing

As the cost of DRAM continues to decrease due to device scaling, ReVive[59] may be a more attractive

approach than SafetyNet [74] for implementing processor and memory statecheckpointing. However, the

performance overhead incurred by ReVive may negate the benefit of itslow area cost. To investigate this

overhead, we implemented the ReVive recovery mechanism in a multicore system and ran the benchmarks

that were previously reported to incur high performance overhead in theoriginal ReVive work.

Figures 6.2(a), (b), (c), and (d) show the slowdowns of four SPLASH applications caused by hardware

checkpointing during fault-free execution. While the original ReVive work only shows the impact of ReVive

for a fixed checkpointing interval (10 million cycles) on one multiprocessor system configuration (128 KB

of private L2 cache), we vary the checkpointing interval from 500,000to 50 million, shown on the x-axis,

and the shared L2 cache size from 256 KB to 2048 KB, represented by the different lines, in our multicore

system.

From the figures, we see that the checkpointing scheme incurs higher performance overhead as the

checkpoint interval decreases for all four applications (as high as a 1.3x slowdown for Ocean). This is

expected due to two effects: increased synchronization overhead andupgrade activity. For the former, while

the time to synchronize different cores is more or less constant, this overhead becomes dominant as the

checkpoint interval decreases. For the latter, the upgrade traffic increases and incurs overhead because

the shorter checkpoint intervals force dirty cache lines to be downgraded (from modifiedto shared) more

frequently. The result of this phenomenon is the increased number of writemisses after the establishment

of each checkpoint, degrading the performance noticeably. Here, we note that the reported overhead may be

conservative since we assume a sequentially consistent system.1 Nevertheless, the increased overhead for

1Sequential consistency is the natural model in the GEMS simulation infrastructure, as also used for the work on the SafetyNet
recovery evaluation [74].
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Figure 6.2: Slowdowns in fault-free execution of (a) LU, (b) FFT, (c) Radix, and (d) Ocean due to hardware
checkpointing.

ReVive when using smaller checkpoint intervals is expected, as mentioned in[59].

Aside from the checkpoint interval, the cache size also impacts the efficiency of the checkpointing

scheme. The ReVive work projects thatsmallerL2 caches would incur higher overhead when checkpoint-

ing and distributed parity are both enabled (Table 2 in [59]). Interestingly,when considering checkpointing

alone, our results show that the checkpointing scheme incurs higher overhead as the L2 cache size islarger.

In particular, the checkpointing scheme incurs no more than 4% overhead across all applications and check-

point intervals in the system equipped with a 256 KB L2 cache. This is mainly caused by the low perfor-

mance of the baseline system (without checkpointing). Since the working set does not fit in the L2 cache,

the baseline system needs to replace cache lines more often due to increased capacity misses. This system

behavior effectively reduces the impact of the checkpointing scheme because (1) many dirty lines might have
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already been flushed during each checkpoint and (2) the checkpointing scheme hence has a similar cache line

upgrade behavior as the baseline system.

From the ReVive work [59], three applications (FFT, Radix, and Ocean) were shown to incur over 13%

fault-free performance overhead when distributed parity is enabled. When distributed parity is disabled

(same as the scheme we implemented), these applications incur between 6% and 13% overhead. From our

experiments, all applications incur less than 5% overhead for the same checkpoint interval (10 million cy-

cles). This result is comparable to ReVive and the difference is likely caused by the slightly different system

architectures and the difference in processor architectures. Namely, ReVive was deployed in a distributed

shared memory system while the checkpointing scheme shown here is for a multicore system. Further, Re-

Vive assumes the system to have aggressive 6-issue processors capable of handling multiple outstanding

loads and stores. Here, we assume single-issue sequentially consistent processors. Despite these differences,

the results shown here are very similar to what is reported in ReVive (e.g., acheckpoint interval of 10 million

cycles).

From Figure 6.2, we see that using checkpoint intervals of 1 million cycles orshorter in this scheme

incurs significant performance overhead, making it unattractive for SWAT. Nevertheless, ReVive is favorable

for checkpoint intervals of 5 million cycles or more as the overhead stays below 6% for all four applications.

Since the detection latency we focus on is within 10 million instructions, checkpointintervals of 5 and

10 million instructions seem to be the appropriate design choices. With shorter intervals, the performance

impact would be too great. With longer intervals, since two checkpoints are always needed, the recovery

interval would be much longer than 10 million instructions, putting pressure on the buffering mechanism. To

understand this effect quantitatively, we next investigate the overhead of the output buffering mechanism.

6.7.4 Storage Overhead of Output Buffering

In Section 6.7.1, we found that output buffering is key to achieve high system recoverability. To further

our understanding of the overheads involved for deploying a buffering mechanism, we investigate the I/O

activities of Apache web server and SSH daemon, and compare them with twoSPEC INT applications, mcf

and parser. We measure these activities across different buffering intervals (which are the same as recovery

intervals). For output requests, this interval is defined as the time period that write requests must be buffered
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before they leave the sphere of recoverability and become visible to devices. For input requests, this interval

is the time period that the requests need to be buffered for replay in case ofa rollback recovery.

From Section 6.7.3, we found that the smallest checkpoint interval of ReVive that does not significantly

degrade the performance of fault-free operation is 5 million instructions. Witha maximum detection la-

tency of 10 million instructions, the recovery interval is therefore three checkpoint intervals, i.e., 15 million

instructions. Hence, the following discussion focuses on this interval length for buffering.

Figures 6.3(a), (b), (c), and (d) show the I/O activities in our applications across different buffering

intervals. In particular, Figure 6.3(a) shows the maximum number of CPU-to-device stores, Figure 6.3(b)

shows the maximum buffer size needed to hold these write requests (address and data), Figure 6.3(c) shows

the maximum number of CPU-to-device loads, and Figure 6.3(d) shows the maximum buffer size needed to

hold the read requests (address and data).

From Figure 6.3, as expected, longer buffering intervals result in higher number of requests and amount

of data to be buffered. Of the four applications, Apache has the most I/O activities, followed by SSH daemon,

then parser, then mcf.

When comparing Apache and parser (the SPEC application with higher I/O activities) at a buffering

interval of 15 million instructions, Apache has 13 times the number of CPU-to-device stores (Figure 6.3(a))

and 15 times the amount of data to be buffered for these write requests (Figure 6.3(b)). For reads, the

CPU-to-device bandwidth of Apache is 5 times that of parser. From these results, we see that not only the

server applications have more OS activities, they also have high I/O bandwidth requirements than SPEC

applications. Hence, this validates our use of server workloads for stressing the I/O buffering mechanism

and helps us better understand system recoverability.

Besides the differences between SPEC and server workloads, there are variations between the two server

applications as well. Apache and SSH daemon differ mainly when the buffering intervals become longer.

Specifically, when the interval is 15 million instructions, the CPU-to-device writebandwidth (Figure 6.3(b))

of Apache is 10 times that of SSH daemon and the CPU-to-device read bandwidth (Figure 6.3(d)) is 8 times

the bandwidth consumed by SSH daemon. With shorter intervals, the I/O eventsdo not get accumulated as

much when compared to longer intervals. Hence, the I/O activities between theworkloads are similar. In

longer intervals, the different behaviors of the applications start to show. By inspecting the CPU utilization
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Figure 6.3: Maximum number and size of CPU-to-Device requests. (a) Maximum number of stores issued
to the device by the CPU for varying buffering intervals. (b) Maximum buffer size for storing the CPU-
to-Device write requests (address and data) for different bufferingintervals.(c) Maximum number of loads
issued to the device by the CPU for varying buffering intervals. (d) Maximum buffer size for storing the
CPU-to-Device read requests (address and data) for different buffering intervals.
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Figure 6.4: Interaction between CPU and specific devices in Apache and SSH daemon. (a) and (b) shows the
maximum buffer size for storing device-specific writes and reads, respectively, in Apache. (c) and (d) shows
the maximum buffer size for storing device-specific writes and reads, respectively, in SSH daemon.

of the system, we find that SSH daemon is more compute-intensive than Apachebecause of the encryption

and decryption operations. As a result, the CPU is busy computing when running SSH daemon and generates

relatively less I/O traffic than Apache.

To understand the sources of these I/O activities, we also look into the device-specific requests in Fig-

ures 6.4(a), (b), (c), and (d). Figures 6.4(a) and (b) show the device-specific storage requirements for CPU-

to-device write and read requests, respectively, when Apache is running. Figures 6.4(c) and (d) show similar

data when SSH daemon is running.

From Figures 6.4(a) and (b), the CPU reads 27KB of data and writes 21KB of data from and to the net-

work interface card, respectively, in the 15 million instructions buffering interval for Apache. SSH daemon,
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on the other hand, has read and write traffic of under 4KB from and to thenetwork card as shown in Fig-

ures 6.4(c) and (d). As both Apache and SSH daemon are server applications, the majority of CPU reads and

a large portion of CPU writes come from the network interface card, indicating the receiving and sending

of packets to and from the connected clients. As mentioned earlier, SSH daemon is more compute inten-

sive because of the encryption and decryption functions, the I/O trafficis relatively mild when compared to

Apache.

The CPU-to-device write requests are dominated by the DMA controller at thehost-to-PCI bridge. From

Figure 6.4(a), at an interval of 15 million instructions, 126KB of data needsto be buffered for Apache.

Figure 6.4(c), however, shows that only 13KB of data needs to be buffered for SSH daemon. These write

activities are mainly for setting up the DMA transfers to move data between the network card and the mem-

ory. The rest of the I/O activity belongs to the PCI device that is responsible for delivering interrupts from

the network device to the CPU.

As the server applications are under load, there is a significant amount ofI/O activity within the system.

Consequently, I/O buffering mechanisms with sufficient storage must be in place to prevent faults from

propagating to the devices and the outside world. Once the effect of the fault becomes visible to the rest of

the system, full system recovery is thwarted. For example, from Figure 6.3(b), we see that a 110KB storage

is needed to sufficiently buffer output requests for Apache at a recovery interval of 15 million instructions

to attain the high recoverability reported in Section 6.7.1. While this overhead maynot seem significant, we

note that the storage is dedicated only for reliability and improves neither power nor performance. Further,

when compared to the near-zero hardware cost SWAT detectors, this mechanism is relatively costly. One

potential cost reduction approach is to offload this buffering overheadto individual devices. As shown in

Figure 6.4, a 20KB storage can be added on the network interface card tobuffer write requests if the main

goal of the buffering mechanism is not to send out bad network packets.Either way, as long as the executing

software interacts with other devices in the SWAT system, buffering mechanisms are needed to stop fault

propagation that affects full system recovery.

Depending on the reliability needs and the available budget, different buffering intervals can be chosen.

As we target a checkpoint interval of at least 5 million instructions with the corresponding recovery interval

of 15 million instructions, we discuss the possible overall recovery scheme inthe following section.
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6.7.5 Overall Recovery Scheme

With results presented in Sections 6.7.3 and 6.7.4, we now discuss the possiblerecovery scheme for SWAT.

Specifically, since the processor-and-memory checkpointing and outputbuffering mechanisms are required

to fully recover the system in most of the cases (Section 6.7.1), we focus onthe possible overhead of this

scheme.

Handling a Maximum Detection Latency of 10 Million Instructions

We start by looking at the recovery scheme for handling detection latenciesthat are within 10 million in-

structions. As discussed in Section 6.7.2, the recovery interval therefore needs to be larger than 10 million

instructions.

One straightforward design choice is to pick a checkpoint interval of 10 million instructions. This way,

the ReVive checkpointing scheme incurs a low performance overhead of4% or less (with 2MB L2 from

Figure 6.2). As we need to keep two checkpoints, the recovery interval is20 million instructions. As a result,

the buffering mechanism needs to have a 150KB storage (Figure 6.3(b))for a buffering interval of 20 million

instructions. In this design, while we chose the checkpoint interval that incurs low performance overhead,

the storage overhead of the buffering mechanism is significant becauseof the long buffering interval.

Alternatively, to relieve pressure on the buffering mechanism, we can select a shorter checkpoint interval

of 5 million instructions. From Figure 6.2, the performance overhead is 6% orless, a slight increase from the

design above. With a maximum detection latency of 10 million instructions, the recovery interval needs to be

three checkpoint intervals, or 15 million instructions. Thus, from Figure 6.3(b), the maximum output buffer

storage needed is about 110KB (for Apache). Compared with the last design, the size of the buffer storage

is reduced by 40KB while there is a slight increase of performance overhead for the checkpointing scheme.

Nevertheless, with a buffering mechanism requiring over 100KB of storage, the area cost is still somewhat

significant, especially when comparing to the very low cost SWAT symptom-based detection mechanism.

Overall, given these two potential configurations for the recovery scheme, we find the overheads in

performance and area have room for improvement. In particular, while theperformance overhead of the

checkpointing mechanism may be sufficiently low for some systems, the large storage needed for the buffer-

ing mechanism, while not exorbitant, is larger than the very low cost always-on detection mechanism of
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SWAT. Although we could not find a cost-effective recovery scheme atthis point, we believe that this analy-

sis prompts future research to focus on even lower cost checkpointing and buffering mechanisms.

Handling a Maximum Detection Latency of 100,000 Instructions

While the above two schemes aim to handle a maximum detection latency of 10 million instructions, future

generations of SWAT may be able to improve this latency significantly. From ourresults in Section 4.6.3,

close to 90% of the detections occur within 100,000 instructions. Assuming this tobe the maximum latency

for future SWAT detectors, the checkpointing mechanism needs to have a checkpoint interval of 100,000 or

fewer instructions to minimize the recovery interval. This short recovery interval will drastically reduce the

output buffering overhead to 2KB as shown in Figure 6.3(b) (100k buffering interval for Apache). However,

from Figure 6.2, the ReVive scheme will certainly degrade the performance too much to be useful. One

alternative is to use SafetyNet as the checkpointing scheme. As discussedbefore, the large CLBs (512KB)

needed would incur too much area overhead.

Overall, when considering the shorter detection latency of 100,000 instructions, the buffering overhead

is likely to be affordable. Nevertheless, there lacks an efficient checkpointing scheme that incurs low over-

head in both area and performance. Therefore, a new low-overheadcheckpointing scheme will need to be

developed to achieve this short recovery interval.

Implementing Output Buffering

Besides storage overhead, one design issue for the output bufferingmechanism is how it should operate.

Because all CPU-to-device communications could potentially have harmful effects, the buffering mecha-

nism needs to intercept the requests, store these requests, and releasethe requests (outside of the sphere of

recoverability) when the system is validated to be correct. In modern PC systems, an ample location for this

mechanism may be the northbridge, which handles communications among the processor, the memory, the

video card, and the southbridge (responsible for communicating with other peripherals in the system).2 To

fulfill the storage requirements, SRAM modules (which continue to get largerand less expensive) may be

2For current and future systems that integrate memory and I/O controllers on-chip, designers may choose to integrate the buffer-
ing mechanism on-chip as well if the budget allows. Otherwise, the buffering module can still reside at the northbridge, as long as
the datapath used by all output events are covered to ensure fault containment.
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integrated with the northbridge to handle the buffering.

Alternatively, as the lowest level of cache continues to grow in size, this buffering mechanism can poten-

tially reside on-chip. In this scheme, because the datapath between the processor and the I/O ports is usually

separated from the datapath of the cache hierarchy, additional circuitryis used to re-route the I/O requests

towards the cache that is reconfigurable for storing these requests. When the requests can be released, they

are transferred off-chip from the cache. The disadvantage of this approach, however, is the added design

complexity in the memory subsystem and the increased on-chip area cost.

If the detection latency is short enough (e.g., less than 10,000 instructions), these CPU-to-device write

requests can potentially be kept in the store buffer. With this approach, very lightweight checkpointing

mechanisms that can take frequent checkpoints at very low performanceand area overheads are required.

Another potential strategy is to leverage existing techniques introduced in transactional memory systems,

where the cache is versioned to keep track of speculative states.

Overall, as we explored the possible implementations of the recovery scheme,we found that existing

strategies are quite expensive. (We note that this is the case with many of the recent checkpoint/replay mech-

anisms proposed in the literature, not just SWAT. We, however, quantifiedthis for the first time.) Therefore,

a search for a new very low cost hardware checkpointing mechanism is required for building an effective

SWAT recovery scheme.

6.8 Summary and Discussion

In this chapter, we explore the design of the possible recovery scheme for SWAT. Given the detection latency

of the SWAT symptom monitors is relatively short, we focus on hardware checkpointing schemes that are

capable of restoring the state of the processor and memory. In this context,our discussion assumes the

sphere of the recoverability to include both the processor and memory. Since faults in SWAT can potentially

propagate and cause faulty events to be sent outside of the sphere of recoverability, we also discuss the use

of I/O buffering mechanisms.

Through our study of system recoverability using I/O-intensive serverworkloads, we found that both the

checkpointing mechanism, for restoring pristine execution state, and the output buffering mechanism, for

preventing faults from propagating outside of the sphere of recoverability, are equally important to guarantee
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high system recoverability.

As ReVive incurs a low area overhead when compared to another contemporary scheme, SafetyNet, we

use ReVive as the checkpointing mechanism of the recovery module. Nevertheless, ReVive’s performance

overhead may be of concern. We then investigate the performance degradation for a number of SPLASH

parallel applications and found that ReVive only impacts performance slightlywhen the checkpoint interval

is 5 million instructions or longer.

For output buffering, we look into the storage requirements needed for holding potentially faulty output

events. Our results show that the size of the buffer storage is significantwhen the checkpoint interval is in

the range of millions of instructions.

With these findings, we discuss the possible recovery schemes and find that existing recovery strate-

gies are quite expensive. Hence, from our experiments that investigate the system recoverability and the

overheads incurred by the checkpointing and the output buffering mechanisms, we see two important future

directions. First, to improve recoverability and minimize the cost for I/O handling, the detection latencies

need to be reduced. Second, if the detection latency can be reduced, then there is a need for a rollback re-

covery scheme that can take frequent checkpoints (e.g., every 100,000 instructions) while incurring minimal

cost in area, power, and performance. In concurrent work with my colleagues, we have already made signif-

icant strides on the former, reducing latencies by orders of magnitude using better detectors and metrics (not

reported here) [64]. At these latencies (roughly 10’s of thousands), it may be possible to consider recovery

strategies that only checkpoint the processor state and buffer memory accesses until they are validated (e.g.,

transactional memory style implementations). We leave this for future work.
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Chapter 7

SWAT-Sim: Fast and Accurate Simulation
of Permanent Hardware Faults

In the previous chapters, the evaluations of the detection, diagnosis, andrecovery components of SWAT have

been through microarchitecture-level fault injections, which has been used for other studies as well [4, 17,

38, 81]. However, because hardware faults occur at the device level but not at the microarchitecture level,

it is unclear whether these evaluations are accurate. To answer the above question, this chapter introduces a

methodology we developed that enables accurate modeling of hardware faults at the microarchitecture level.

Leveraging the hierarchical simulation paradigm, our fault simulation infrastructure,SWAT-Sim, is able to

accurately model gate-level faults at speed comparable to microarchitectural simulations [34]. SWAT-Sim

not only allows us to accurately evaluate the SWAT system, but it is also applicable for evaluating other

reliability solutions proposed at abstraction levels higher than the microarchitecture level.

For the rest of the chapter, we first motivate the needs and challenges for deriving an efficient fault

simulation methodology. Then, we describe the SWAT-Sim infrastructure in detail. After that, we use

SWAT-Sim in our experiments to answer three key questions of microarchitecture-level fault modeling: (1)

Are the existing microarchitecture-level fault models accurate in representing gate-level faults? (2) If these

models are inaccurate, what are the reasons? (3) Is it possible to derive more accurate microarchitecture-

level fault models without simulating the gate-level faults? At the end of the chapter, we discuss the potential

value of SWAT-Sim added to the ongoing and future work in both SWAT and other research in reliability.

7.1 Background

As the hardware reliability problem is expected to be pervasive across theentire computing market, sev-

eral microarchitecture-level (µarch-level) solutions that tolerate hardware failures have been proposed re-

cently [4, 13, 17, 36, 38, 45, 73, 81]. The primary evaluation mode for these proposals has been through
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statistical fault injections in simulations either at the gate level [13, 45, 73] or the microarchitectural state

elements (e.g., output latch of an ALU) [4, 17, 36, 38, 81]. While gate-level fault injections can accurately

capture lower level faults, the long simulation time of these schemes prevents detailed evaluation of the prop-

agation of gate-level faults through the hardware and into the software. On the other hand, theµarch-level

injections are fast and allow observing faults propagated to the software level. However, while latch-level

injections may be appropriate for array elements within the processor, it is unclear whether modeling faults

in combinational logic at the latch level (e.g., injecting a fault at the output latch of the FP unit to represent a

fault in the logic), is accurate. While alternative FPGA-based emulations [30, 56, 63] offer higher speed and

model gate-level faults with high fidelity, the limited observability and controllability gives less flexibility

than software simulations. Hence, this work focuses on software simulation methods.

The lack of speed in the gate-level fault simulation paradigm and the possiblelack of fault modeling

fidelity in µarch-level fault simulation prompt searching for a solution that can achieve the best of both

worlds. To address this classic tradeoff between speed and accuracy, we apply the paradigm of hierarchical

simulation, where different parts of the system are simulated at different abstraction levels so that required

details are modeled only in the parts of interest, thus incurring reasonable performance overheads [3, 11, 12,

29, 47, 57]. The resulting hierarchical simulator, SWAT-Sim, addressesthe following criteria for simulating

the system-level effects of gate-level permanent hardware faults.

In the context of fault tolerance, hierarchical simulations have been used to study transient faults in the

processor by using a hierarchy of RTL and lower-level simulators [12,47]. Since these simulators were used

to study transients, they invoke the lower-level simulator just once to capturethe effect of the fault, following

which simulation happens only in the higher level. Other work has used hierarchical simulations to generate

fault dictionaries that capture the manifestations from the lower level “off-line” and use them to propagate

fault effects during high-level simulations [29]. This idea of fault dictionaries has also been used to study

gate-level stuck-at faults in small structures, such as an adder [11]. However, fault dictionaries are specific

to the fault model for which they are generated and cannot be used to simulate arbitrary fault models (the

dictionary will have to be generated off-line for every such fault model);timing faults particularly present a

challenge. Further, for faults in arbitrarily large structures, the growingsizes of inputs and faults make the

dictionaries intractable, making them hard to use.
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Our focus here is on the increasingly important permanent and intermittent faults [9, 84] and solutions

for modeling them at the microarchitecture level or higher. In particular, successful solutions must address

the following three critical aspects of fault simulation that prior work does not address in unison.

1. Simulation must be fast enough to capture how software would be affected by hardware faults.

2. Unlike transients, where the fault effect can be capturedonceand propagated to the higher abstraction

level, permanent and intermittent faults have the characteristic that one activation of a fault could

corrupt the software execution, which influences future activations ofthe same fault. This feedback

mechanism between the hardware fault and the software must be faithfully simulated.

3. The simulator must be flexible enough to model different types of faults.

To meet the stated criteria, we propose a novel fault injection infrastructure, SWAT-Sim, that couples a

microarchitecture-level simulator with a gate-level simulator and has the following properties.

1. To achieve speed close to a microarchitectural simulator and minimize overhead, SWAT-Sim only

simulates the component of interest (in our case, the faulty component) at gate-level accuracy and

invokes a gate-level simulation of the componenton-demand.

2. To accurately capture the interaction between the hardware fault and the software, SWAT-Sim invokes

the gate-level simulation repeatedly during runtime (interspersed withµarch-level simulations); thus,

if the software activates the gate-level fault, it would be corrupted and affects future activations of the

same fault.

3. To allow fault modeling flexibility, SWAT-Sim employs a gate-level timing simulator where different

timing faults can be modeled by changing the delay information within the faulty module.

These design choices of SWAT-Sim allow studying of the impact of gate-level permanent faults on soft-

ware at speeds comparable toµarch-level simulators. Further, since the fault simulation is performed while

real-world software is executing, the effect of the fault is studied using functional vectors that represent re-

alistic scenarios. SWAT-Sim thus has an advantage over other methods thatuse artificially generated test
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vectors (e.g., functional vectors collected from a fault-free execution)to study the fault effect, as test vectors

may not be representative of real-world faulty behavior.

In the following, we describe our SWAT-Sim infrastructure in detail and show how hardware faults can

be modeled accurately and simulated efficiently with the SWAT-Sim approach.

7.2 The SWAT-Sim Infrastructure

SWAT-Sim is fundamentally aµarch-level simulator that only simulates the faultyµarch-level blocks, such

as a faulty ALU or decoder, at the gate level. This greatly minimizes the gate-level simulation overhead.

7.2.1 Interfacing the Simulators

In SWAT-Sim, a gate-level Verilog module of the faulty unit is simulated only whenthe unit is utilized by

theµarch-level simulator. The inputs to theµarch-level unit are passed as stimuli to the gate-level simulator.

When the gate-level simulation completes, the results are passed back to theµarch-level simulator, which

then continues execution.

This communication between the two simulators is achieved using UNIX named pipes. In theµarch-

level simulation, each time an instruction utilizing the faulty unit is encountered, thestimuli needed by the

gate-level module are written to a dedicated stimuli pipe. After the gate-level simulation completes, the

computed data is written to a dedicated response pipe from where theµarch-level simulator can read the

response.

While theµarch-level simulator can access the named pipes like files, the gate-level simulator is enhanced

with two system tasks, implemented using the Verilog Procedural Interface (VPI) [16], that handle accesses

to/from the pipes: One collects signals from the stimuli pipe and the other writes the results to the response

pipe. The stimuli and response (arguments of the two tasks) are tailored to theµarch-level structures under

fault injection.

Figure 7.1 compares how a single fault in aµarch-level structure X is simulated in a purelyµarch-level

simulator (Figure 7.1(a)) and in SWAT-Sim (Figure 7.1(b)).

In Figure 7.1(a), a single fault in X is modeled as a single-bit corruption at the output latch of X because

theµarch-level simulator lacks the gate-level details of X.
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Figure 7.1: Comparison of how a faultyµarch-level unit X is simulated by (a) a pureµarch-level simulator
and (b) by SWAT-Sim.

On the other hand, at the gate-level, a single fault in X is modeled as a fault in aspecific gate or net.

Figure 7.1(b) shows the steps of how the SWAT-Sim hierarchical simulator simulates the effect of this fault.

(1) An instruction in theµarch-level simulator uses X. SWAT-Sim collects the relevant input vectorsand

sends them to the stimuli pipe. (2) The Verilog system task reads from the input pipe and sends the stimuli

to the gate-level simulator. (3) The gate-level simulator feeds the stimuli to the faulty module and obtains

the output after gate-level simulation. (4) The Verilog system task transfers the result from the gate-level

simulator to the response pipe. (5) Theµarch-level simulator reads the result from the response pipe and

continues simulation. In particular, the figure shows the effect of a single gate-level fault propagating into a

multiple-bit corruption at the output latch. In contrast, the fault injected in pureµarch-level simulation only

results in a single-bit corruption (Figure 7.1(a)).

During fault simulation, as long as the faulty unit is rarely utilized in the processor, the speed of SWAT-

Sim approaches that of a microarchitectural simulator. If the faulty unit is heavily exercised, SWAT-Sim

would spend more time in gate-level simulation and run slower. Nevertheless, the gate-level simulation of

the faulty unit in the processor will certainly be more efficient than the traditional gate-level simulation of

the entire processor.

Besides speed, accurately simulating the behavior of persistent faults, such as permanent faults and

intermittent faults, is of high importance. To this end, SWAT-Sim invokes the gate-level simulationon-

demand during runtime.With this setup, SWAT-Sim is capable of capturing the following scenario. At

125



the beginning, the software execution activates a persistent hardware fault. Subsequently, the fault corrupts

the software execution. Then, some time later, this corrupted execution activates the fault again and gets

corrupted further. This process can repeat many times during one faultsimulation run. Here, we note that

this interaction between the software and the underlying hardware fault cannot be easily modeled if the

microarchitectural simulator and the gate-level simulator are two separate entities. In SWAT-Sim, on the

other hand, this characteristic of persistent faults is correctly captured.

7.2.2 Different Microarchitecture-Level Structures

Given the wide variety of structures within a modern processor and the differences in the abstraction levels

between a typicalµarch-level simulator and its corresponding gate-level counterpart, several factors should

be considered when performing such hierarchical simulations.

• Simulating sequential logic: Simulating combinational logic with single- or multi-cycle latency in

SWAT-Sim is straightforward. As long as the outputs are read after the stipulated latency, the outputs

are guaranteed to be correct for each invocation. Sequential logic, however, requires state to be main-

tained across invocations. In SWAT-Sim, since the gate-level simulator is invoked (and thus clocked)

only when the unit is utilized, state is maintained across multiple invocations, resulting in accurate

simulation of sequential circuits.

• Handling gate-level signals that are not modeled at theµarch level: In some cases, due to abstract

modeling in theµarch simulators, not all signals modeled at the gate-level appear at theµarch level.

If the faulty component contains such signals, theµarch-level simulator can be enhanced with those

signals to help propagate faults in these paths, improving its accuracy. Evenin the absence of these

enhancements, SWAT-Sim would present a more accurate fault model than existing µarch-level fault

models.

• Simulating large µarch-level components that may result in large overheads:Since the primary

aim of SWAT-Sim is being able to study the propagation of gate-level faults to the system level, sim-

ulations must be carried out at reasonable speeds. The components we study in this chapter present

overheads in simulation time of under 3x (discussed in Section 7.4.1), when compared to pureµarch-
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level simulations. However, if the overhead becomes exorbitant becausethe faulty module is too large,

the module can be further partitioned so that only the faulty submodule is simulatedat the gate level

while the rest is simulated at the higher level. For example, [47] uses such anapproach in a lower-level

hierarchical simulator.

Overall, by effectively coupling the gate-level andµarch-level simulators, SWAT-Sim is capable of sim-

ulating gate-level faults in differentµarch-level components, making it a useful tool for full-system fault

propagation studies with gate-level accuracy.

7.3 Methodology

7.3.1 SWAT-Sim Environment

Since permanent faults are persistent and can propagate through theµarch-level to affect the OS and appli-

cation state, SWAT-Sim requires a full-system, aµarch-level, and a gate-level timing simulator. Any set of

such simulators may be interfaced for the purposes of fault propagation.

In our implementation, SWAT-Sim consists of three components – the Virtutech Simics full-system func-

tional simulator [80], the Wisconsin GEMS processor and memoryµarch-level timing models [42], and the

Cadence NC-Verilog gate-level simulator. We interfaced the Cadence NC-Verilog simulator with GEMS

using system calls implemented in VPI as described in Section 7.2

For the gate-level modules, we obtained the RTL designs of the arithmetic and logic unit (ALU) and the

address generation unit (AGEN) from the OpenSPARC T1 architecture [77] and built an RTL model of the

SPARC V9 decoder based on the decoder in GEMS. The Decoder module decodes one 32-bit instruction

word per cycle and generates the signals modeled by ourµarch-level simulator. The ALU module is capable

of executing arithmetic (add, sub), logical (and, or, not, xor, and mov),and shift (shift-left and shift-right)

instructions. The AGEN module computes the effective virtual address given the operand values of the

memory (load/store) instruction. Using Synopsys Design Compiler, we synthesized these modules at 1GHz

with the UMC 0.13µm standard cell library. Further, this synthesis tool also generates the SDF (Standard

Delay Format) file that contains the delay information of each gate and wire withinthe synthesized gate-level

module. The Cadence NC-Verilog simulator then performs gate-level timing simulations with information
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provided in this file. For delay faults (described in Section 7.3.2), we modify thepost-synthesis SDF file to

incorporate added delays.

7.3.2 Fault Models

In our experiments, we injected faults according to the following fault models tostudy differences in system-

level effects among faults injected at theµarch level and the gate level. In all cases, we inject single bit (or

single wire) faults.

Gate-level stuck-at fault model: The gate-level stuck-at fault model is a standard fault model applied in

manufacturing testing. We inject both stuck-at-0 and stuck-at-1 faults in randomly chosen wires in the circuit.

Gate-level timing fault model: It has been shown that aging-related faults result in timing errors in the

faulty gate, with increasing delay as the aging worsens [7]. Ideally, we would like to model this effect using

transition fault models and path delay faults, with different amount of delays. Here, we experiment with

two delay fault models: (1) We inject a one-clock-cycle delay into the faulty gate such that timing violations

occur along all paths containing the gate when a transition occurs. (2) Thefaulty gate is injected with a

half-clock-cycle delay, potentially causing a subset of the gate’s outputcone to violate timing.

Microarchitecture-level stuck-at fault model: Due to the absence of more accurate fault models, stuck-at

faults at the input/output latch of a faultyµarch-level unit have been used to estimate the effect of gate-level

faults (both stuck-at and timing-related faults). We adopt this fault model, injecting both stuck-at-0 and

stuck-at-1 faults at the input of the Decoder and the output latch of the ALUor AGEN.

7.3.3 Parameters of the Fault Injection

Our fault injection campaign is similar to the permanent fault injection experiments described in Section 4.4.2

except that faults are injected at 50, instead of 40, random points in eachapplication (after initialization) and

3 structures, instead of 8, are studied. For the gate-level stuck-at anddelay fault models, the 50 points in a

structure are chosen from the 1853, 2641, and 757 wires of the synthesized gate-level representation of the

Decoder, ALU, and AGEN, respectively. For theµarch-level faults, these points are randomly chosen from

the 32 bits of the input latch of the Decoder and from the 64 bits of the output latches of the ALU and AGEN.

Further, since there are multiple decoders, ALUs and AGEN units in our superscalar processor, one of them
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is chosen randomly for each injection. We also ensure that the samples are chosen so that gate-level stuck-at

and delay faults are injected in the same set of wires to facilitate a fair comparison among the gate-level

faults.

This gives us a total of 2000 simulations per fault model per structure (4 × 10 × 50). Each injection

run whose fault is not masked is a Bernoulli trial for coverage (either detected or not). Further, since the

injection experiments are independent of each other, this gives us a low maximum error of 1.1% for the

reported coverage numbers, at a 95% confidence interval.

7.3.4 Studying System-Level Effects

A key objective of this study is to understand the differences, if any, in system-level manifestations ofµarch-

level and gate-level faults withinµarch-level structures. For this purpose, we use the SWAT symptom-based

detection scheme described in Section 4.5.1 because these detectors essentially capture how hardware faults

manifest into the system level and software.

Given the injection outcomes (Figure 4.3), we study the differences between the various permanent fault

models using detection coverage and detection latency of SWAT, as described in Section 4.5.3.

7.3.5 Limitations of the Evaluation

While SWAT-Sim is a flexible framework that is fast and accurate, it does have certain limitations. Here, we

list some of the assumptions and limitations of our evaluation.

• SWAT-Sim assumes that a Verilog description of the module of interest is readily available for inter-

facing. This is true for the large fraction of the processor that is typically re-used from older tape-outs.

However, for modules that are yet to be developed, neither SWAT-Sim nor pure gate-level simula-

tors can be used to perform fault injection experiments. As these models start to become available,

SWAT-Sim can be incrementally interfaced with them.

• Using SWAT-Sim, we study the propagation of gate-level faults in only three microarchitecture units

(Decoder, ALU, and AGEN) as we could not find other Verilog modules close enough to the SPARC

architecture modeled by theµarch-level simulator (we used the in-order UltraSPARC T1 as our Verilog

source and the out-of-order GEMS as ourµarch-level source).
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• The timing information generated in the SDF file represents pre-layout timing, which does not reflect

accurate post-layout timing for both gate delays and interconnect. By extracting this information using

a place-and-route tool, the accuracy of our timing simulations, and thus our results, can be further

improved.

• Although prior work has suggested other statistical delay models for timing faults (e.g., based on

threshold voltage and temperature [55, 71]), we inject fixed and arbitrarily chosen delay that may or

may not represent real-world failure modes. Integrating more accurate lower-level timing fault models

in SWAT-Sim is a subject of our future work.

In spite of these assumptions and limitations, the results presented in this chapterdemonstrate the impor-

tance of using hierarchical simulators, such as SWAT-Sim, to accurately model gate-level faults at theµarch

level.

7.4 Results

The hierarchical nature of SWAT-Sim allows us to achieve gate-level accuracy in fault modeling, at speeds

comparable withµarch-level simulators. We first summarize SWAT-Sim’s performance when compared to

both theµarch-level simulation and pure gate-level simulation (Section 7.4.1). We then use the SWAT-Sim

simulator to first evaluate the accuracy of the previously usedµarch-level stuck-at fault models for represent-

ing gate-level faults (Section 7.4.2). Subsequently, we extensively analyze the reasons for the differences in

the manifestations of gate-level faults fromµarch-level faults (Section 7.4.3). From this detailed analysis,

we derive two candidate probabilisticµarch level fault models for modeling gate-level stuck-at and delay

faults (Section 7.4.4).

7.4.1 Performance Overhead

To understand whether SWAT-Sim’s hierarchical simulation infrastructureprovides performance benefit, we

profile a set of 40 fault-free runs for each structure and each fault model. We do not inject a fault in the

desired faulty unit, but force the unit to be simulated at the gate level. To be conservative, we always use the

most utilized unit for this purpose (e.g., ALU 0 for faulty ALU). For delay faults, we simulate the chosen unit
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Unit Fault Model Maximum Average

ALU
Gate Stuck-At 2.20 1.56

Gate Delay 2.65 1.93

AGEN
Gate Stuck-At 1.59 1.26

Gate Delay 1.89 1.35

Decoder
Gate Stuck-At 2.91 2.12

Gate Delay 5.10 2.91

Table 7.1: Slowdowns of SWAT-Sim when compared to pureµarch-level simulation.

with SDF timing annotation. Table 7.1 shows the maximum and average slowdowns of SWAT-Sim compared

to pureµarch-level simulation, when simulating the ALU, the AGEN, and the Decoder across different fault

models.

Overall, the worst average-case slowdown of SWAT-Sim, compared to theµarch-level simulation, is

under 3x, which is an acceptable overhead considering SWAT-Sim’s abilityto model gate-level faults. In

particular, Table 7.1 shows that the Decoder incurs the most overhead, with average slowdowns of gate-level

stuck-at and delay faults being 2.12x and 2.91x respectively. The average slowdowns of the ALU and the

AGEN are under 2x. The maximum slowdowns observed for the ALU and theAGEN are under 2.7x and 2x,

respectively while the overall maximum slowdown of 5.1x is measured for the Decoder. The Decoder incurs

higher overhead than other units because it sits at the processor front-end and is more utilized than the ALU

and the AGEN.

As expected, the delay fault simulations always incur higher overhead than the stuck-at fault simulations

because simulating delay faults requires timing information which is more compute-intensive.

Since we do not have the corresponding gate-level model of the superscalar processor we simulate at

the µarch level, we derive a rough conservative estimation of the performancebenefit as follows. As-

sume (conservatively) that we need to simulate a fault in a circuit that contains 4 times the number of

gates and is utilized twice as often as the Decoder, the unit that incurs the mostoverhead. Assume that

the full superscalar processor we wish to simulate has 25 million gates. Assuming SWAT-Sim’s worst-case

slowdown is linear to the utilization and the size of the gate-level module and the baselineµarch simula-

tor simulates at the rate of 17k instr/sec (which is the measured average speed of our µarch-level simula-

tor), it would take SWAT-Sim10M instr × 4×2×5.1
17k instr/sec = 6.7 hr to simulate 10 million instructions in

the worst case. On the other hand, conservatively assuming the gate-level simulator simulates 25M gates-
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cycles/sec (more than 1300x the speed reported in [62]) and the execution has an IPC of 1, it would take

10M instr × 25M gates
1 instr/cycle×25M gates−cycles/sec = 2778 hr to simulate 10 million instructions. SWAT-Sim

thus achieves a 417x speedup over traditional gate-level simulation.

7.4.2 Accuracy of Microarchitecture-Level Fault Models

We next investigate the accuracy ofµarch-level fault models. If these fault models were accurate enough,

then we can eliminate gate-level simulations entirely, thus eliminating the need for SWAT-Sim and its over-

head. As mentioned in the last section, we focus mainly on the system-level effects of the fault models and

use the SWAT detectors’ coverage and latency as grounds for our comparisons.

Detection Coverage

Figure 7.2 compares the efficacy of the SWAT detectors in detecting different faults injected using different

fault models into the ALU, the AGEN, and the Decoder. The bars represent the outcomes for theµarch-

level stuck-at-1 (µarch s@1) and stuck-at-0 (µarch s@0) models, the gate-level stuck-at-1 and stuck-at-0

models (Gate s@1 and Gate s@0, respectively), and the gate-level 1-cycle-delay and 0.5-cycle-delay models

(Delay 1cyc and Delay 0.5cyc, respectively). Each bar shows the fraction of fault injections that are microar-

chitecturally masked (µarch-Mask), architecturally masked (Arch-Mask), application-masked (App-Mask),

detected within 10M instructions (Detected), detected but unrecoverable (DUE), and those that lead to silent

data corruptions (SDC). The number on top of each bar represents the coverage.

Figure 7.2 shows that depending on the structure and the fault model, theµarch-level fault model may or

may not accurately capture the effect of gate-level faults, as indicated by the coverage. For the AGEN, the

coverage ofµarch stuck-at faults is similar to that of the gate-level stuck-at and 1-cycledelay fault models

(between 94% and 97%). However, the coverage of 0.5-cycle delay AGEN faults is noticeably lower (90%).

For the Decoder and the ALU, the coverage for theµarch-level stuck-at faults is near perfect (99+%) while

the coverage of the gate-level stuck-at faults (94% for the ALU and between 96% and 98% for the Decoder)

and the Decoder delay faults (95%) is slightly more pessimistic. In contrast, thecoverage of the ALU delay

faults is significantly lower (89% and 85% for 1-cycle and 0.5-cycle delay faults, respectively).1

1We found the coverage with SWAT-Sim improves significantly (from 89% to 94% for 0.5-cycle delay faults in ALU) when the
undetected cases are run for 50M instructions, showing that SWAT’s detectors remain effective at this longer latency (which is still
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Figure 7.2: Efficacy of the SWAT fault detection scheme under differentfault models for the ALU, AGEN,
and Decoder. Depending on the fault model and the structure, theµarch-level fault may or may not capture
the system-level effects of gate-level faults accurately, as indicated by the differences in coverage.

The following analyzes the faults that do not result in detection in more detail.

Masking: A large source of discrepancy among the different fault models lies in the masking rate (µarch-

level, architectural, and application masking). Theµarch-level stuck-at fault models have very little masking

of all three kinds (on an average, 0.3% for the Decoder, 2% for the ALU, and under 9% for the AGEN), while

the gate-level fault models show a much higher rate of masking (>30% for all structures, with 0.5-cycle delay

faults in the AGEN having the highest masking rate of 54%).

The masking rates ofµarch-level faults are low mainly because the faults are rarelyµarch-masked when

compared to gate-level faults. Asµarch-level faults directly change the latch data, the only case where it

does not result in aµarch corruption (i.e., isµarch-masked) is when the data does not activate the latch fault,

e.g., correct data value of 0 masks a stuck-at-0 fault. At the gate level, there are two scenarios: (1) the fault

at the gate is not activated, and (2) the fault is activated but does not propagate due to other signals in the

circuit. Thus, the gate-level faults see much higherµarch masking rates. Further, theµarch-level faults are

hardly masked at the application and architecture levels since the they tend to perturb the data more severely

and cause symptoms more easily than the gate-level faults.

recoverable [59], given appropriate support for checkpointing and I/O buffering is in place).
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Interestingly, gate-level faults injected into the 3 structures exhibit different masking behaviors. All

structures have highµarch-level masking. However, architectural masking is significant only for the Decoder

(25% to 31%) and application masking is substantial only for the ALU (35% to 42%).

Decoder faults are more likely to be masked at the architecture level than other structures. For these

cases, we observe that the faults affect a subset of instructions of types that are sparingly used and corrupt

only wrong-path instructions. Thus, even though the gate-level faults become microarchitecturally visible,

they are not activated again after the pipeline flush and thus the faults are masked at the architecture level. For

the ALU and AGEN, however, we see relatively few faults that get activated only by speculative instructions.

On the other hand, a significant number of ALU faults are masked by the application. This is likely due

to the activated faults being logically masked. For example, suppose instruction r1← r2+r3 uses the faulty

ALU and the fault causesr1 to change from 1 to 2. Ifr1 is only used for the branch instructionbeq r1, 0, L,

the fault effect is masked by the application. This type of masking is relativelyrare in other structures. Since

it is more likely for Decoder faults to affect the program control flow and for AGEN faults to change the

addresses of memory accesses, these faults, once activated, usually lead to detectable symptoms (i.e., not

masked).

SDC: Similar to the overall coverage, the SDC rates (percentage of total injectionsthat result in SDC

events) are dependent on the type of fault and the structure in which the fault is injected. While the SDC rate

is higher for gate-level faults thanµarch-level faults in the ALU (1.8%–4.4% vs. 0%–0.5%, respectively)

and the Decoder (0.4%–1.2% vs. 0.1%–0.2%, respectively), the SDC rates of the AGEN faults are nearly

identical (1.6% for 0.5-cycle delay faults and 0.5%–0.8% for others).

The SDC rates are high for the gate-level faults in the ALU because these faults are rarely activated

and only perturb the data value slightly once activated. In contrast, theµarch-level stuck-at faults are easily

activated and less likely to cause SDCs.

The above differences in manifestations are largely governed by how thefault at the gate level becomes

visible to the microarchitecture (activation rate, which latch bits are corrupted,etc.). In Section 7.4.3, we

perform a more in-depth analysis to identify the reasons for the differences.
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Figure 7.3: Latency of fault detection in terms of number of instructions executed from architectural state
corruption to detection. The differences in the models impact recovery, which is primarily governed by these
latencies.

Latency to Detection

Figure 7.3 gives the total number of instructions executed after the architectural state is corrupted, until the

fault is detected, for each unit under each fault model. The detected faults are binned into different stacks of

the bar based on their detection latencies (from 1,000 to 10 million instructions).

From Figure 7.3, we see that the percentage of detected faults that have latencies less than 10,000 instruc-

tions is different under different fault models for the three structures.Detections with these short latencies can

potentially be recovered with light-weight hardware techniques (e.g., methodsused in transactional memory

systems). While theµarch-level stuck-at-1 model shows that a larger fraction of cases have latencies under

10,000 instructions than gate-level stuck-at faults, the fraction ofµarch-level stuck-at-0 faults that have at

most this latency is lower.

From these differences in system-level manifestations, we infer thatµarch-level stuck-at faults do not, in

general, accurately represent gate-level stuck-at or delay faults. This motivates either building more accurate

µarch-level fault models, or in their absence, using the SWAT-Sim infrastructure to study the system-level

effect of gate-level faults.
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Figure 7.4: Mean fault activation rate for the different fault models as a percentage of the number of instruc-
tions.

7.4.3 Differences Between Fault Models

Before we attempt to derive a more accurateµarch-level fault model than the existing ones, we investigate

the fundamental reasons for the different behaviors of theµarch-level and gate-level fault models. In the

following sections, we try to understand the differences by comparing the fault activation rates and the data

corruption patterns at the microarchitectural state across different fault models.

Fault Activation Rates

The fault activation rate of a given faulty run is defined as the percentage of instructions that get corrupted

by the injected fault among all instructions that utilize the faulty unit. We collect theactivation rates for

all faulty runs that do not result inµarch-masked, calculate the weighted arithmetic mean for each fault

model, and present these numbers in Figure 7.4. Because the different runs execute different numbers of

instructions, we weight the activation rate of each run by the total number ofinstructions executed by the

faulty unit and calculate the weighted mean.

Figure 7.4 shows that theµarch-level stuck-at faults present a higher activation rate than faults injected

at the gate-level. For the ALU, theµarch-level faults have a>4% activation rate, while the activation
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rates of gate-level faults are at most 1.6%. For the AGEN, the corresponding numbers are>9% and<7%,

respectively. The Decoder faults tend to have higher activation rates than faults in other structures because

decoders are utilized more; the Decoderµarch-level faults have activation rates>19% while the rates of

gate-level faults are<7%. The activation rate for gate-level faults is lower because activating gate-level

faults requires both excitation and propagation to the output latch, while theµarch-level fault is directly

injected into the latch. Additionally, theµarch-level stuck-at-1 fault has a significantly higher activation rate

than the other fault models (36%, 45%, and 47% for the ALU, the AGEN, andthe Decoder, respectively).

This high rate is caused by the biases in data values towards zero.

Further, we notice a difference in the activation rates between the gate-level stuck-at and delay faults,

with the delay fault models exhibiting lower rates of activation for all structures. Less than 2% of instruc-

tions activate the 1-cycle delay faults and 0.5-cycle delay faults in all 3 structures, with the lowest average

activation rate being 0.6% for 0.5-cycle delay faults in the AGEN. The lower average activation rate can be

explained with the different excitation conditions for the two models. A stuck-at-X fault is excited when the

signal at the faulty net isX. Thus, if the probability of having a logic 1 at the faulty net isp, the probability of

exciting the stuck-at-0 fault at that wire isp and that of exciting the stuck-at-1 fault is(1-p). A delay fault, on

the other hand, is active only if there is a transition at the faulty wire and hence the excitation probability is

p(1-p), which is always smaller than that of the stuck-at faults. This lower probability of excitation generally

results in a lower average activation rate for gate-level delay faults. Further, while an activated 1-cycle delay

fault causes all paths from the faulty net to the output latch to miss timing, a 0.5-cycle delay fault usually

results in fewer errors observed at the output as it can be the case thatsome paths from the faulty net to the

output do not violate timing.

Although the higher activation rates (Figure 7.4) ofµarch-level stuck-at faults result in higher coverage

(Figure 7.2) for the ALU and Decoder, we do not find such a correlationfor the AGEN. When comparing

gate-level faults of the same structures, stuck-at faults have higher activation rates and result in slightly higher

coverage than delay faults for the ALU and Decoder, but not for the AGEN. Nonetheless, higher activation

rates do not necessarily drive the coverage up. Additionally, we find nodirect correlation between activation

rate and latency of detection. Thus, factors other than just activation rateneed to be investigated if we are

to succeed in deriving betterµarch-level fault models. We next look at how activated faults manifest atthe
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ALU
Bits 1 2 4 8 9+
µarch 100.0% 0.0% 0.0% 0.0% 0.0%

Gate s@1 91.1% 4.7% 1.2% 1.1% 1.9%
Gate s@0 84.4% 4.6% 2.8% 1.1% 7.1%

Delay 1cyc 90.4% 3.9% 1.4% 1.1% 3.2%
Delay 0.5cyc 75.0% 5.8% 2.2% 3.9% 13.1%

(a)

AGEN
Bits 1 2 4 8 9+
µarch 100.0% 0.0% 0.0% 0.0% 0.0%

Gate s@1 87.1% 6.8% 5.0% 1.0% 0.1%
Gate s@0 75.5% 8.4% 8.6% 7.4% 0.0%

Delay 1cyc 90.5% 4.1% 3.7% 1.5% 0.2%
Delay 0.5cyc 83.7% 7.9% 3.1% 2.4% 2.8%

(b)

Decoder
Bits 1 2 4 8 9+
µarch 72.5% 0.2% 4.8% 8.9% 13.4%

Gate s@1 66.1% 14.9% 10.5% 6.2% 2.3%
Gate s@0 60.8% 22.3% 12.2% 2.6% 2.2%

Delay 1cyc 71.7% 11.1% 12.5% 1.7% 2.9%
Delay 0.5cyc 68.2% 12.8% 4.3% 2.7% 12.0%

(c)

Table 7.2: Percentage of bits incorrect at the output latch.

output latches (i.e., at theµarch-level).

Corruption Pattern at the Microarchitectural State

While an activatedµarch-level fault corrupts only one bit in the microarchitectural state, an activated gate-

level fault may corrupt multiple bits once it becomes visible in the microarchitectural state.

Table 7.2 shows the number of bits corrupted at the output latch (microarchitectural state) for different

fault models for a fault in the ALU, the AGEN, and the Decoder. For each fault model, it shows the percent-

age of instructions that have different number of bits flipped at the outputlatch. The bits are binned on a log

scale.
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Figure 7.5: Probability of corrupting each bit of the ALU output latch, under µarch-level s@0, gate level
s@0, and gate level delay models.

Table 7.2 shows that the corruption patterns ofµarch-level faults for the ALU, AGEN, and Decoder are

quite different from those of the gate-level faults. Whileµarch-level ALU and AGEN faults are injected in

the output latches and corrupt at most one bit, the corresponding gate-level faults, though usually corrupt one

bit, can result in multi-bit corruptions (between 9% and 25% across the ALU and the AGEN). However, for

µarch-level Decoder faults, although faults are injected at the input latch,the resulting multi-bit corruptions

turn out to be too aggressive (22% of corruptions forµarch-level faults are 8+ bits while the corresponding

numbers for gate-level faults are less than 15%). This is because the output cone of the input (output) latch

of the faulty unit is too large (small) when compared to that of a gate-level fault and leads to aggressive

(conservative) bit corruptions at the output latch.

To better understand how the microarchitectural state gets corrupted by theinjected faults, we collect

the probability that biti was flipped, given an instruction activates the underlying fault. Figures 7.5 and 7.6

show the distribution of the probabilities of a given bit in the output latch (numbered from bit 0 to bit 63)

to be faulty underµarch-level stuck-at-0, gate-level stuck-at-0, and gate-level 1-cycle delay models for the

ALU and the AGEN respectively. For brevity, we omit theµarch-level stuck-at-1, gate-level stuck-at-1, and

0.5-cycle delay models.

From the figures, we see that the probabilities of bit-flips of theµarch-level model are vastly different

from the gate-level models. Further, the probability of flipping lower orderbits is higher forµarch-level faults
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Figure 7.6: Probability of corrupting each bit of the AGEN output latch, under µarch-level s@0, gate level
s@0, and gate level delay models.

as the applications we use predominantly perform computations on the lower order 32-bits. The difference

presented here is another source of discrepancy of theµarch-level model to represent gate-level faults.

When comparing the two gate-level fault models, interestingly, both have very similar corruption patterns

even though they differ in terms of coverage, detection latency, activationrate, and number of bit-flips. To

investigate this phenomenon, we studied the differences between corruption patterns of the gate-level stuck-

at and delay fault injected at the same net and made the following observation: delay faults generally yield

more corruption patterns than the stuck-at-0 faults because they can cause the same bit to be corrupted in

both directions, instead of a single direction in stuck-at-0 faults. While this higher number of corruption

patterns may cause delay faults easier to be detected, we note that the average activation rate of delay faults

is also lower than that of stuck-at faults, as explained in Section 7.4.3, makingthem harder to detect and

causing longer detection latencies.

Overall, our analysis shows that the different activation rates and bit corruption patterns paint a clearer

picture in explaining the differences in the coverage (Figure 7.2) and the detection latencies (Figure 7.3)

betweenµarch-level and gate-level faults. We found that higher activation ratesof µarch-level stuck-at-1

faults typically cause higher coverage (and lower detection latencies) thangate-level faults, but it is not a

perfect correlation. In some cases, despite significant differences inactivation rates, the coverage of gate-

level andµarch-level faults is quite close. This is because once activated, gate-level faults cause different
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multi-bit corruption patterns. In some cases, these patterns are more intrusive than theµarch-level fault

corruptions, boosting the coverage of the gate-level faults despite their lower rate of activation. In other cases,

the higher intrusiveness of the multi-bit corruptions is not enough to compensate for the very low activation

rates – this is specifically the case for gate-level delay faults which see the lowest coverage numbers.

We see that such complex interactions have a push-and-pull effect in determining the system-level out-

come of faults and conclude that simpleµarch-level stuck-at faults are inaccurate in several cases for mod-

eling gate-level faults because they fail to (1) capture the system-level behavior, such as application-level

masking, (2) induce different activation rates, and (3) accurately model µarch-level multiple bit corruption

patterns. (Nonetheless, these differences do not impact the quantitativeresults reported in previous chapters

significantly and the previous qualitative results remain valid.) Therefore, any accurateµarch-level fault

model for gate-level faults must account for all these factors to accurately capture their behavior.

7.4.4 Probabilistic Microarchitecture-Level Fault Models

Given the inaccuracy of theµarch-level stuck-at fault model, we investigate whether we can derive alternate

µarch-level fault models based on our analysis of the manifestation of the gate-level faults (both stuck-at and

delay) at the microarchitecture level. Such a model would be invaluable for accurately simulating the effect

of the fault at theµarch-level, without invoking a gate-level simulator.

We investigated the behavior of the gate-level stuck-at and delay faults and found that each gate-level

fault is activated differently and leads to different software-level outcomes. Hence, in our first-cutµarch-

level fault model, we develop probabilistic models on a per-run basis, i.e., a different probabilistic model for

each injected gate-level fault. In particular, we profile each SWAT-Sim run and collect the probabilities of

the number of bits flipped at the output latch, the patterns of the flips, and the directions of the flips. Based

on the collected information, we then derive two probabilisticµarch-level fault models, called theP-model,

and thePD-model, respectively.

In the P-model, when an instruction uses the faulty unit, we decide on which bitsto flip in the output

latch based on the previously observed probabilities of the different number of bit-flips for this gate-level

fault injection run (essentially using a table like Table 7.2, but built on a per-run basis). We then condition

on this probability to decide on the pattern of the flip (similar to Figures 7.5 and 7.6 for different numbers of
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Figure 7.7: The accuracy of the derived P- and PD-models for modeling gate level faults in ALU, evaluated
using the coverage of the SWAT detectors.

bit flips, but again on a per-run basis). All the bits indicated by this pattern are then flipped. This operation

is done by XORing the output latch data with the collected bit-flip pattern. For example, if the data is 0110

and the corruption pattern is 0011, the corrupted output becomes 0110 XOR 0011 = 0101.

The PD-model refines the P-model by enforcing the direction of the bit-flipsbased on the profiling runs.

That is, if the observed corruption pattern in the profiling run shows bit 3 of the output latch has a one-

to-zero (zero-to-one) corruption, in the PD-model, this bit is corrupted only if it is an one (a zero). In our

implementation, one word is used to represent the corruption pattern (same asthe one used in the P-model)

and another word is used to represent the corruption direction. Using thesame example above, the PD-model

has the corruption direction word of “−− ↓↓” where ↓ means 1-to-0 corruption, the data is then changed

from 0110 to 0100.

We developed the P-model and the PD-model for both the gate-level stuck-at-0 and 1-cycle delay faults

for the ALU and the AGEN. Figures 7.7 and 7.8 show the ability of the P-model and the PD-model in

mimicking the behavior of the corresponding gate-level fault models, evaluated using the coverage (similar

to Figure 7.2). The number on top of each bar gives the coverage of the SWAT detectors for faults injected

in that fault model. The results for gate-level stuck-at-1 and 0.5-cycle delay faults are not shown for the sake

of clarity of the figures, and lead to similar conclusions as the other fault models.
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Figure 7.8: The accuracy of the derived P- and PD-models for modeling gate level faults in AGEN, evaluated
using the coverage of the SWAT detectors.

From the figures, we see that both the P-model and the PD-model follow theµarch-level masking effects

of the gate-level faults more closely than theµarch-level stuck-at faults. Nevertheless, the P- and PD-

models for both gate-level stuck-at-0 and 1-cycle delay ALU faults are unable to capture the application-level

masking effect while the two models for gate-level stuck-at-0 AGEN faults over-estimate theµarch-level

masking effect.

In terms of coverage, the P- and PD-models do reasonably well for gate-level ALU stuck-at-0 fault and

AGEN 1-cycle delay fault with differences less than 5%. However, for the other fault models, the P- and

PD- models have 9+% differences in coverage.

In spite of extensive analysis and modeling, the probabilistic models do not accurately capture theµarch-

level behavior of gate-level faults due to the following reasons.

• The models are oblivious to temporal variation in the corruption rates, i.e., boththe models use the

probabilities of injecting k-bit flips as an average rate across all instructions for injections on a given

wire.

• The probabilities on which the models pick the number of bits to flip, the pattern of the bit-flips,

and the direction of the bit flips are not conditioned on the fault-free value on which the patterns are
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applied. For example, although the pattern says that bit 1 should be flipped from a1 to a 0, if the

original value of the bit is 0, no flips occur. Thus, there are fewer flips than what the model expects,

which skews the probabilities.

• The profiling runs consider the output value but overlook the input valuethat activates the fault in the

circuit and produces the corrupted output.

As previously discussed, we derive a different model for each faultyrun in SWAT-Sim that simulates

a different fault in the gate-level circuit. However, for an abstract evaluation and accurate prediction, a

unifying model that generalizes the proposed per-run models must be built.Based on the stated limitations

of the P- and PD- models, an accurate unifiedµarch-level model for the gate-level faults may be realizable.

Nonetheless, until such a model is developed, SWAT-Sim remains an efficient platform for simulating and

observing the system-level effects of gate-level faults.

From these results, we infer thatµarch-level stuck-at faults, do not, in some cases, accurately represent

gate-level stuck-at or delay faults. Further, we have attempted to build probabilisticµarch-level fault models

based on the activation rate and corruption patterns of each run. However, the resulting models are inaccurate,

in general, in representing gate-level faults. Since accurate microarchitecture-level fault models have yet

been available, these findings show that simulating faults at gate-level is required to capture the accurate

error effects of hardware faults. Because pure gate-level simulationsoften take very long time, techniques

like SWAT-Sim are immensely useful to achieve both fault modeling fidelity and high speed that enables

researchers to observe the software-level impact of hardware faults. Specifically, more accurate evaluations

of current and future SWAT systems are achievable with the use of SWAT-Sim.

7.5 Summary and Discussion

As researchers realize the scaling-induced hardware reliability problem,many recent fault-tolerant solutions

have been proposed from the microarchitecture level to the software level that offer high reliability at a

low cost. To evaluate these schemes, many studies rely on statistical fault injection at the gate level or the

microarchitecture level. However, fault simulation at the gate level, while sufficiently accurate, is notoriously

slow. On the other hand, fault injection and simulation at the microarchitecture level is fast, but the accuracy
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is questionable. In SWAT, because of the lack of efficient simulation tools for modeling the propagation of

gate-level faults to software, we settled for conducting fault injection experiments at the microarchitecture

level for evaluating the detection, diagnosis, and recovery modules of SWAT.

This chapter presents SWAT-Sim, afastfault simulation infrastructure thataccuratelycaptures the impact

of hardware gate-level faults on the executing software. SWAT-Sim uses the hierarchical simulation paradigm

to achieve both speed and accuracy. By coupling a microarchitectural simulator with a gate-level simulator,

SWAT-Sim does the slow but accurate gate-level simulation only when the faulty microarchitectural unit is

utilized. This way, SWAT-Sim can achieve speeds close to microarchitectural simulation while modeling

faults at the gate-level fidelity. The runtime invocation of gate-level simulation also allows SWAT-Sim to

accurately capture the interaction between the software execution and the underlying persistent fault. To the

best of our knowledge, SWAT-Sim is the first simulation framework that addresses this real-life behavior of

faults. By employing a gate-level timing simulator, SWAT-Sim is also flexible to handle different kinds of

timing fault models.

By implementing SWAT-Sim, we quantitatively compare the accuracy of microarchitecture-level fault

models with gate-level fault models using the SWAT detection coverage and detection latency as proxies

(since SWAT symptom detectors capture system-level effects of faults). For the microarchitectural structures

we studied (Decoder, ALU, and AGEN), we found that microarchitecture-level fault models are inaccurate

for several cases in our experiments. Through our detailed analysis, we attribute this inaccuracy to the

differences in activation rate and bit corruption patterns. However, asthese differences only impact some of

cases reported in previous chapters, the qualitative results reported earlier in this thesis continue to hold.

With SWAT-Sim, we took a first step in deriving a potentially more accurate probabilistic microarchitecture-

level fault models using data from SWAT-Sim. Our results, however, shows that these complex fault models

are still inaccurate and unable to capture the complex manifestation of gate-level faults.

Overall, because accurate microarchitecture-level fault models have yet to exist, we believe that SWAT-

Sim is an essential tool for capturing the software-level impact of hardware faults to help advance future

work in SWAT and other work that needs observability of hardware faultsat the software level. From the

development of SWAT-Sim, we can see two future research directions. First, as much of current research

has focused on investigating the in-field failure behavior of devices, these models can be distilled to the gate
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level. Consequently, the fault models can be used inside SWAT-Sim to help processor and system designers

understand the efficacy of new fault-tolerant solutions. Second, the issue of whether it is possible to model

hardware failures at the microarchitecture level is a very interesting research question. In this work, although

we did not derive an accurate microarchitecture-level fault model usingdata collected from SWAT-Sim, we

did offer a number of ways to improve on the proposed models. In the end, we believe SWAT-Sim provides

a very effective platform for powering hardware reliability research forward.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

For a long time in the history of computing, CMOS has continued to scale according to Moore’s law, allowing

ever-growing system integration and providing continuous performanceimprovement. On the other hand,

as devices shrink perpetually, hardware failure rates are expected to increase due to a wide variety of error

sources such as aging or wear-out, infant mortality induced by insufficient burn-in, transient errors caused by

alpha particles from the packaging material and cosmic rays, design defects, and others. The pervasiveness of

this growing reliability trend demands a low-cost in-field reliability solution that detects, diagnoses, recovers

from, and/or repairs around failed components.

This thesis proposes a novel low-cost reliability solution that is based on thefollowing two key observa-

tions. First, a hardware fault is only considered harmful if it affects software execution. Hence, an effective

reliability solution only needs to handle hardware errors that propagate to the software. Second, even though

the reliability threat is growing, fault-free operation still remains the common case. Therefore, reliability

solutions must be optimized for fault-free operation.

Based on this design philosophy, this thesis presentsSWAT(SoftWareAnomalyTreatment), a low-cost

yet effective hardware reliability framework that minimizes the overall system cost by employing “always-

on” error detection mechanisms that incur minimal cost in area, performance, and power. The tradeoff of the

near-zero cost detection mechanism is to invoke a potentially high cost diagnosis mechanism to identify the

error source after an infrequent event of an error detection.

In this thesis, we explore the design of the detection, diagnosis, and recovery mechanisms in SWAT and

evaluate them using statistical fault injections. Our key experimental results are the following.

By employing simple, low-cost hardware-only monitors of software symptoms,the SWAT detectors are
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able to achieve very high coverage for permanent faults, detecting 98% and 99% of the unmasked faults

for SPEC workloads and server workloads, respectively, within 10 millioninstructions. For transient faults,

while they are mostly masked, 59% of the unmasked faults for both workloads are detected, which is con-

sistent with the previously proposed symptom-based detection schemes that handle only transient faults.

Further, our detection mechanism also yields a very low SDC rate for both permanent and transient faults.

These results clearly show that the SWAT detection approach is general and highly effective while incurring

very low cost.

We also explore the use of likely program invariants for detecting permanent hardware faults and the re-

sulting SDC rates improve dramatically by 73%. This shows software reliability techniquescanbe leveraged

to ensure hardware reliability, strengthening the case for the SWAT approach.

For the detected faults, we invoke the trace based fault diagnosis algorithmto effectively identify the

faulty microarchitectural structure. Our experimental results show that 98% of the faults are correctly di-

agnosed. By merely using one other core in the multicore system and the in-situsoftware execution, our

diagnosis scheme is able to correctly diagnose most of the detected faults, including the faults in the meta-

datapath that were not addressed by prior work for in-field diagnosis.

For error recovery, to the best of our knowledge, this is the first workthat quantitatively shows that

both checkpointing and output buffering are equally important and necessary for full system recovery. With

both schemes present, 99% of the detections for permanent faults injected into the hardware system running

I/O intensive server workloads can be fully recovered. In addition, wealso evaluate the tradeoffs made

among the detection latency, the checkpoint interval of the checkpointing scheme, and the buffering interval

of the output buffering method for optimizing the SWAT recovery strategy. Much prior work assumes that

hardware checkpointing schemes would work at a reasonably low cost; our work on SWAT started with the

same assumption but revealed through a closer analysis that the overheadinvolved could impact the overall

system cost significantly. Our quantification prompts new techniques that find a better sweet spot between

the output buffer size and the checkpointing overhead, possibly driven by lower detection latencies in SWAT.

This is a subject of ongoing of work.

The final contribution of this dissertation investigates the accuracy of microarchitecture-level fault mod-

eling. We present a novel fast and accurate fault simulation framework,called SWAT-Sim, that is able to
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capture the effect of gate-level hardware faults on the executing software. From our experiments, we found

several cases where the microarchitecture-level faults are inaccuratein representing gate-level faults injected

within the microarchitectural unit. Nevertheless, despite these differences, our qualitative findings on the

detection, diagnosis, and recovery modules remain valid. With SWAT-Sim, future research in SWAT and

other work in reliability will be able to accurately and efficiently capture the software-level effects of the

underlying gate-level faults.

From the results on detection and diagnosis, we can clearly see that the SWAT approach is highly ef-

fective for ensuring hardware reliability while incurring very low cost. For recovery, we leveraged existing

techniques used in other systems. A closer quantitative analysis revealed that while the overheads of these

mechanisms are implementable, they are higher than for the rest of SWAT. Hence, there is still work to be

done in this area. While efforts for developing and implementing the SWAT system continue, this thesis

takes the first step to show how this low cost reliability solution can be realized.In addition, this dissertation

also takes the first step in leveraging a well-known software bug detection technique for hardware reliability.

This paves the way for deriving a truly error resilient system where hardware faults and software faults are

treated the same in a unified framework. Eventually, we believe that the SWAT approach can make reliability

affordable to the masses, ultimately neutralizing the impending reliability problem.

8.2 Limitations and Future Work

While the SWAT system is shown to be very effective to serve as the reliability solution for mainstream

computing, there are many directions that can be explored in future work. The following discusses a few of

the future research directions of SWAT.

8.2.1 Fundamentals of Symptom-Based Detection and Application-Aware Metrics for

Evaluation

While the empirical results presented in this dissertation for the SWAT system are promising, there is still

work to be done to understand the fundamental reasons for hardware faults to be detectable by software-

level symptoms. By acquiring this knowledge, we can potentially characterizethe behavior of hardware

faults at the software level. This investigation will likely bring two very importantprospects to SWAT error
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resilient system design. First, by knowing how hardware faults behave at the software level, more potent

symptom detectors can be derived. These new detectors would benefit the current SWAT system by (1)

detecting the previously undetected faults and (2) reducing the detection latency for the currently detected

faults. Second, this characterization can also identify the classes of hardware faults that are hard to detect.

To handle these types of faults, SWAT can rely on other low-cost techniques (e.g., checkers embedded in the

microarchitecture [45]) to ensure system reliability.

One way to acquire this knowledge is to investigate when the application state corruptions result in

detections. In particular, for detection latency, this thesis uses the latency between the first architectural

state corruption and the detection. However, this metric can be overly conservative because the corrupted

architectural state could be masked by the software, as shown in our results.

Another way to characterize the effect of hardware faults on the software is to investigate cases that

result in silent data corruptions. In this thesis, we conservatively classify a case to be an SDC if the resulting

application output is different from the fault-free output. That is, if a single bit of the output is different,

it is considered an SDC. However, some applications can tolerate outputs that have minor errors in them,

as shown in [38]. Future work, therefore, can exploit the idea of softcomputing for future generations of

SWAT.

8.2.2 Implementation of SWAT

This dissertation shows the efficacy of the SWAT system in protecting futurehardware in the simulation

environment. Although we consider the simulated experiments sufficiently detailed, implementing an actual

prototype of SWAT would only strengthen the case of designing resilient systems with the SWAT approach.

As this process involves sorting out various system engineering issues inthe real software and hardware

environment, building such a prototyped SWAT system will not be an easy task. Nevertheless, showing a

real system that detects, diagnoses, and recovers from hardware faults would certainly clear much skepticism

about SWAT.

On the software side, developing the SWAT firmware is very important as it is responsible for coordi-

nating the different fault-handling operations. For example, post detection, the SWAT firmware is woken up

to diagnose the source of the error and to run the TBFD algorithm if necessary. In this process, the SWAT
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firmware must be invoked at a non-symptom causing core because it can be corrupted by the possible per-

sistent faults at the symptom causing core. In addition to this issue, SWAT system designers need to sort out

the memory address space used by the firmware, the interface provided bythe hardware to the firmware for

diagnosing and recovering faults, the approach for ensuring reliable firmware execution, and so on. Further,

to reap the most benefits of symptom-based detection, as shown in our invariant detection scheme, the ap-

plications may need to be modified for SWAT to achieve higher fault coverage. We believe that cultivating

information from and enhancing both the applications and the operating system will greatly improve our

SWAT implementation as well.

While the SWAT approach emphasizes very low hardware overhead, the hardware platform of SWAT

still contains some hardware support. The following describes some of the hardware support needed in

SWAT. In the detection module, symptom monitors such as the hang detector relies on a small hardware

table to keep track of potential infinite loops. After a detection occurs, a special hardware interrupt needs to

be delivered to another core to facilitate diagnosis. The TBFD algorithm itselfrequires a hardware buffer for

the ITB to collect resource usage information from the faulty core efficiently. For error recovery, the ReVive

checkpointing mechanism needs shadow architectural registers and enhancement to the cache subsystem.

The output buffering mechanism requires certain amount of buffer storage to hold potentially faulty events.

As part of the ongoing work towards building the SWAT error resilient system, the SWAT research group

is currently developing an FPGA prototype of SWAT that addresses the various hardware needs described

above.

8.2.3 Hardware Fault Models

As indicated by our work on SWAT-Sim, the microarchitecture-level fault models are in general inaccurate

when compared to gate-level models. Hence, SWAT-Sim provides an efficient platform for fast and accurate

hardware fault simulations. While the work presented in this thesis only looks at relatively simple stuck-

at and delay fault models, we do not claim that these models capture the real-world behavior of in-field

hardware faults. As much current research is focusing on differentin-field failures caused by radiation,

wear-out, process variation, and others, one important future directionis to incorporate these failure models

into SWAT-Sim so as to accurately evaluate SWAT. Given the hierarchical nature of SWAT-Sim, future work

151



can extend SWAT-Sim to model failures at the circuit or device level (e.g., using SPICE simulations). This

way, the effects of various hardware failure can be modeled realistically for the most accurate evaluation of

SWAT and other fault-tolerant solutions.

Another direction we have explored in the SWAT-Sim work is the possibility of deriving accurate microarchitecture-

level fault models. The motivation for deriving one such model is to allow accurate evaluations of fault-

tolerant solutions without modeling hardware faults at gate-level and suffering the performance overhead.

As there is an increasing number of hardware reliability solutions proposedat the microarchitecture level

or higher, future investigations of efficiently modeling faults at the microarchitecture level will provide a

convenient platform to enable accurate evaluations.

In this dissertation, we have focused primarily on in-core hardware faults. As the current error rate for

this part of the mainstream processor core is not as high as caches or memory, it is relatively less protected.

Going forward, the processor core is also relatively vulnerable to errors. Hence, our study concentrates on

the processor core.

On the other hand, with an increasing number of cores integrated on chip, the off-core components (e.g.,

caches, on-chip interconnect, memory controller, etc.) make up a significant part of the processor. Hence, we

believe investigating the efficacy of SWAT in terms of detection, diagnosis, and recovery on these off-core

faults is an important piece of future work.

8.2.4 Multithreaded Workloads on Multicore Systems

Since this is the first work to show the complete workings of the SWAT system, weassume single-threaded

applications running on a multicore system. With the widespread use of multicore systems, many applica-

tions are moving towards multithreaded designs to take advantage of the additional cores. In multithreaded

workloads, as SWAT detects hardware faults when they propagate and manifest as software symptoms, it is

unclear how fault propagation in the multithreaded execution would impact the processes of detection and

diagnosis (note that the recovery mechanism targets multiprocessor systemsand can naturally recover errors

in this environment).

There are a few foreseeable issues that potentially create challenges for SWAT. First, while simple symp-

toms are shown to work well for single-threaded execution, it is unclear whether faults would manifest and
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get detected in the same manner in the multithreaded environment. Second, because different threads of the

multithreaded software may interact with each others, a fault can corrupt the thread that runs on the faulty

core and propagate to another thread running on a fault-free core, causing a symptom on that fault-free core.

Hence, the SWAT diagnosis process may not rely on the assumption that the symptom-causing core is po-

tentially faulty. Third, as different instances of replays of the multithreadedexecution may have different

patterns of thread interleaving, faults may propagate to different cores inmultiple replays from the same

checkpoint. This creates additional difficulty in the diagnosis.

Given these challenges, future generations of SWAT must contain efficient and effective solutions for

ensuring the reliability of multicore systems running multithreaded workloads in order to be broadly de-

ployable. Recently, my colleagues and I investigated how to deploy SWAT on multicore systems running

multithreaded workloads (not reported in this thesis) [26]. While we found that the SWAT symptom-based

detection mechanism remained effective, we also observed that hardware faults did propagate across cores

and got detected on a fault-free core. To ensure hardware faults canbe correctly identified in spite of

non-determinism introduced by multithreaded executions and cross-core fault propagation, we derived a

novel fault diagnosis algorithm based on isolated (against propagation)deterministic replay (against non-

determinism). Our results show that this new multicore diagnosis algorithm is able tocorrectly identify the

faulty core in almost all cases. While this work takes the initial step to look into SWAT in multithreaded

multicore environment, we believe future work can further improve the efficacy of both the detection and

diagnosis mechanisms.

8.2.5 Recovery Mechanisms

For error recovery, this thesis quantitatively investigates the importance ofboth checkpointing and output

buffering mechanisms. From our analysis on the overheads incurred bythese methods, although the overhead

of current solutions is manageable, it is relatively high when compared to therest of the SWAT system.

Specifically, the current detection latency of SWAT’s symptom monitors demands a long recovery latency.

The resulting storage overhead of the buffering mechanism would then besignificant. As future generations

of SWAT continue to improve in detection latencies, the buffering overhead can be reduced. On the other

hand, the recovery latency can only be shortened by the use of shortercheckpoint intervals. However, the
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performance overhead of ReVive for frequent checkpointing wouldthen be high. While we consider the

current techniques to be largely limited, this finding also presents a great opportunity for finding low-cost

efficient checkpointing and buffering schemes in future work.

As we optimistically project that the detection latency of SWAT detectors continues to decrease, check-

point recovery techniques from other fields of architecture researchcan potentially be leveraged. For exam-

ple, there is a rich body of literature that studies different forms of speculative multithreading and transac-

tional memory systems. Mechanisms proposed in these areas usually contain aform of efficient checkpoint-

ing mechanism that can roll back speculative executions that contain a smallnumber of instructions. Hence,

one potential checkpointing solution for future SWAT systems would be to relyon these solutions, which

also amortizes the system cost.

While Chapter 6 has taken a close look at the need and the overhead of the output buffering mechanism,

the actual buffering module has yet been modeled in detail. At the high level, the overhead of this module is

closely related to the detection latency. If the latency is short, there will be fewer events and the buffer can

potentially reside on-chip. Further, the buffering mechanism would potentially impact the throughput of the

system. For future work, we believe it is essential to investigate the design ofthis module so that it can have

minimal impact on area, power, and performance.

In this thesis, we have mainly focused on hardware-based techniques for recovery. Nevertheless, not

unlike other fault-tolerant systems, there are always a small number of faults that are difficult and take very

long to detect in SWAT. For these types of faults, it may be more advantageous to rely on system level or even

application level checkpointing. As the software-based checkpointing schemes usually take coarse-grained

checkpoints (e.g., once every hour), these faults may still be recoverable. Further, the executing software

usually has better control over and knowledge of the I/O events than hardware. For some applications, the

system can potentially be fully recovered even from these hard-to-detect faults. We leave the investigation

of the hardware-software hybrid recovery mechanism as future work.

In summary, this thesis has investigated the SWAT approach for designing future error resilient systems,

which is to ensure reliability through treating the software anomalies caused bythe underlying faults. While

we have found the SWAT system can offer high resiliency at a very low cost, there is still much work to

be done. Through rigorous research on the areas stated above, having reliable computer systems for all
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consumers at very low cost may become a reality in the near future.
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