
DEMOCRATIZING ERROR-EFFICIENT COMPUTING

BY

RADHA VENKATAGIRI

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2020

Urbana, Illinois

Doctoral Committee:

Professor Sarita V. Adve, Chair
Professor Darko Marinov
Assistant Professor Sasa Misailovic
Assistant Professor Christopher W. Fletcher
Professor David Brooks, Harvard University
Dr. Pradip Bose, IBM Research

ABSTRACT

We live in a world where errors in computing are becoming ubiquitous and come from a

wide variety of sources – from unintentional bit flips in devices to deliberate approximations

and malicious attacks. Future systems must be built to extract maximum computational

efficiency while operating with heterogeneous sources of errors. The paradigm of Error-

Efficient Computing offers a promising solution by designing efficient computing systems

that conserve resources (e.g., time, energy, cost) by allowing the system to make controlled

errors.

Despite its promise, the widespread adoption of error-efficiency has been thwarted by (1)

a lack of principled and unified methodologies to assess and exploit error-efficiency opportu-

nities in a given system and (2) excessive programmer burden. This dissertation addresses

these limitations by developing methodologies that enable systematic, principled and scalable

application of error-efficiency with minimal programmer input.

Starting from first principles, the first contribution of this work is the development of

automated application-level error analysis tools and techniques that can automatically de-

termine, with high speed and accuracy, the output that a given program will produce for each

of the billions of errors that the program might encounter in its computation and data. Using

automated error analysis, a comprehensive view of the application’s error characteristics, or

in other words its error profile, is derived without the need for programmer expertise. To

demonstrate the versatility of this approach, the next contribution of this work is to show

how the automatically generated application error profiles can be used to devise different

(hardware- and software-based) error efficiency solutions – from low-cost resiliency to ap-

proximate computing – that can be customized to the application and/or user requirements

and output quality targets. Finally, using the novel insight that analyzing a piece of software

for (hardware) errors should be similar to testing it for software bugs, concepts from software

testing are systematically adapted to significantly improve the speed and scalability of auto-

mated error analyses ; while the improvements in speed and scalability makes error analysis

more practical within a computing stack, the methodology used lays the foundation for a

principled integration of (hardware) error analysis into the software development work-flow.

Overall, the contributions of this dissertation further the goal of enabling the adoption of

error-efficiency as a first-class design principal by developing systematic methodologies that

allow a principled, unified, and yet, customizable way of exploiting error-efficiency.

ii

To Appa and Amma, for teaching me to fly.

To Sibin, for being the wind beneath my wings.

iii

ACKNOWLEDGMENTS

A Ph.D. is a journey. When one starts on it, there is an idea of what a destination may look

like, but rarely is the path visible. I am eternally grateful to my advisor, Prof. Sarita Adve,

for shining the light on the path, mentoring me on how to walk it, enabling me with the tools

and skills to discover parts of it on my own and cheering me on as I reach the destination.

The number of hours spent in technical discussions with her have been enlightening and I

am lucky to have had the chance to learn closely from a world class researcher and educator.

In addition, Sarita has been extremely supportive and understanding when I faced difficult

times and I am grateful to have her as a mentor who has gone to bat for me on so many

occasions.

The work described in this document was not conducted in isolation. I want to thank the

many collaborators and co-authors on this work whose support and intellectual contributions

have helped realize and improve the work presented here. I want to thank my committee

(and frequent collaborators) Prof. Darko Marinov, Prof. Sasa Misailovic, Prof. Christopher

W. Fletcher, Dr. Pradip Bose and Prof. David Brooks. Their advice and feedback has made

this work what it is and, in the process, I have had the opportunity to learn much from

them.

I consider myself lucky to have had a chance to work closely with the following amazing

researchers over the years: Siva Kumar Hari Sastry (NVIDIA), Abdulrahman Mahmoud

(UIUC), Khalique Ahmed (AMD), Alper Buyuktosunoglu (IBM) and Karthik Swaminathan

(IBM). Thank you for your patience and for teaching me so much. I am also grateful for the

friendship and support of my wonderful lab-mates – Rakesh, Hyojin, Matt, John, Huzaifa,

Gio, Adel, Sam and Wes.

The work presented in this thesis has been supported by the generous grants from the fol-

lowing funding agencies: (1) National Science Foundation (under Grants Nos. CCF-0811693,

CCF-1320941, CCF-1421503, CCF-1703637, and CCF-1725734), (2) Defense Advanced Re-

search Projects Agency (DARPA), (3) Center for Future Architectures Research (C-FAR),

one of the six centers of STARnet, a Semiconductor Research Corporation program spon-

sored by MARCO and DARPA and (4) Applications Driving Architectures (ADA) center,

a JUMP center co-sponsored by SRC and DARPA.

I am lucky to have made many friends during my years in Urbana-Champaign, all of

whom have enriched my life in multiple ways. Without the many evenings spent in coffee

shops, playing board-games, cooking meals, discussing books/movies and planning commu-

iv

nity theatre, this thesis would have been completed earlier but the journey would have been

infinitely less fun.

I am also grateful to my extended family, both in the U.S and in India, for being a constant

source of love and support. A special thank-you to my in-laws, B.M.C Kumar and Shobhana

for instantly making me a part of their family. Their warm affection and encouragement has

been invaluable in this journey.

Words are insufficient to express the debt of gratitude I owe to my parents for ensuring

I did not want for anything and encouraging me to march to the beat of my own drum. I

am beholden to my father, K. S. Venkatagiri, for encouraging me to pursue my passions and

teaching me the value of curiosity and perseverance. My sister and I are extremely lucky to

have had such an exemplary role model. He was my biggest cheerleader on this journey and

although he is not here to see me complete it, I know that he is looking down on me with

a big smile. My mother, Usha Venkatagiri, has helped shaped my life in so many positive

ways with her unwavering love and dedication. Her warmth, childlike enthusiasm, grace in

the face of adversities and dedication to family inspire me everyday. Thank you for teaching

me what is important in life and for always celebrating my achievements as if they were your

own personal victories.

Rupa Venkatagiri, my sister, has been my partner in crime and getaway car driver from

the time I was born. My happiest memories are those that involve her. Thank you for

constantly being a sounding board and for your unique perspectives that have made me

wiser over the years. I am forever grateful for having known and spent many laughter-filled

hours in the company of my wonderful brother-in-law Manu Prakash Cherubal, who was

taken from us too soon. Their son, Reyansh, is the bundle of joy who has brightened our

lives and brought magic to it.

I have often been told that choosing a spouse is the most important decision I will make

in life. I am extremely fortunate and blessed to have chosen so very well. Sibin Mohan, my

husband, is the sunshine that instantly brightens even my darkest days. Thank you for your

love, friendship, humour and wisdom. Thank you for always pushing me to do better and

for believing in me on days when I didn’t believe in myself. This Ph.D. is a testament to

your love and your support of my dreams.

v

TABLE OF CONTENTS

Chapter 1 INTRODUCTION . 1
1.1 Motivation and Research Vision . 1
1.2 Summary Of Contributions and Impact . 2
1.3 Brief Overview of Research . 3

Chapter 2 ERROR-EFFICIENCY FOR EMERGING DOMAINS 8
2.1 Background . 11
2.2 Video Summarization Algorithm . 13
2.3 Approximate Video Summarization Algorithms 15
2.4 Methodology . 19
2.5 Results . 24
2.6 Discussion on SDC Quality Metric . 31
2.7 Conclusion . 32

Chapter 3 AUTOMATED APPLICATION-LEVEL ERROR ANALYSIS 33
3.1 Motivation for High-Level Design Choices 35
3.2 Motivation for Hybrid Error Analysis . 37
3.3 Common Concepts and Methodology for Automated Error Analysis Tool Suite 45
3.4 Approxilyzer . 66
3.5 gem5-Approxilyzer . 71
3.6 DataApproxilyzer . 78
3.7 Conclusion . 89

Chapter 4 AUTOMATED ERROR ANALYSIS TO CUSTOMIZED ERROR-
EFFICIENCY . 90
4.1 Methodology to Identify Error-Efficiency Opportunities 91
4.2 Exploring First-Order Error-Efficiency Opportunities 94
4.3 Customized Low-Cost Resiliency Using the Application Error Profile 101
4.4 Customized Approximate Computing Using the Application Error Profile . . 106
4.5 Conclusion . 114

Chapter 5 IMPROVING SPEED AND SCALABILITY OF ERROR ANALYSIS . . 116
5.1 Background . 119
5.2 Minotaur . 122
5.3 Methodology . 127
5.4 Results . 131
5.5 Minotaur Extensions . 142
5.6 Conclusion and Future Work . 143

vi

Chapter 6 RELATED WORK . 145
6.1 Automated Error Analysis . 145
6.2 Automated Error Analysis to Customized Error Efficiency 147
6.3 Minotaur . 148
6.4 Error-Efficiency For Video Summarization Application 150

Chapter 7 CONCLUSION AND FUTURE WORK 152
7.1 Error-Efficiency at Scale for Emerging Cognitive Applications 153
7.2 Error-Efficiency for Performance, Energy and Beyond 153
7.3 Error-Efficiency Across the Computing Stack 154
7.4 System Wide Error-Efficiency over Heterogeneous Sources of Errors 154

BIBLIOGRAPHY . 156

vii

Chapter 1: INTRODUCTION

1.1 MOTIVATION AND RESEARCH VISION

We face an urgent need to improve compute efficiency due to the following trends: (1)

diminishing benefits (in performance and power) of CMOS technology scaling, (2) increased

computational demand due to the explosive growth of data and (3) increasing susceptibility

of hardware to errors – from faulty devices to malicious attacks. The intersection of these

trends makes it extremely expensive to guarantee perfect functionality across a range of

computing systems – from high performance computing systems to low-power edge devices.

Fortunately, the workloads that are driving this demand for computing (learning, recognition,

mining and search, among others) also provide opportunities since their primary goal is not

a precise, numerically correct answer. Rather, their ‘correctness’ lies in producing results

that are good enough, or of sufficient quality, to produce an acceptable user experience.

The paradigm of Error-Efficient Computing [1] exploits this forgiving nature of appli-

cations by allowing the computing system to make controlled errors. Such systems can be

considered as being error-efficient: they only prevent as many errors as they need to for an

acceptable user experience. The definition of what constitutes an error varies across sys-

tem components and which errors are acceptable depends on the application and/or user

expectations. Allowing the system to make errors can conserve resources. The resources

conserved could be time, energy, bandwidth or more abstract quantities such as reliable

operation, manufacturing costs, etc. Some examples of error-efficient techniques include

(1) approximate computing [2, 3, 4, 5, 6, 7, 8, 9, 10, 11] which deliberately introduces er-

rors in computation for improved performance or energy, and (2) ultra-low cost hardware

resiliency [12, 13, 14, 15, 16] which allows some unintentional hardware errors to escape

as user-tolerable output corruptions (rather than incurring high overheads to prevent all

errors).

Error-efficient computing can revolutionize the way we design hardware and software to

exploit significant new opportunities for compute efficiency. Error-efficiency has the poten-

tial to be a key enabler for many emerging application domains – Autonomous Vehicles,

Industrial Robotics, Virtual Reality etc. – with strict power, performance and/or reliabil-

ity requirements. Despite its promise, the widespread adoption of error-efficiency has been

thwarted by (1) a lack of principled and unified methodologies and (2) excessive programmer

burden.

The overarching vision of this thesis is to (1) enable the adoption of error-efficiency as a

1

first-class design principle by a variety of users, regardless of expertise, using (2) methodolo-

gies that allow a principled, unified and yet, customizable way of computing efficiently with

heterogeneous sources of errors.

1.2 SUMMARY OF CONTRIBUTIONS AND IMPACT

In order to fulfill the research vision outlined above, this work starts from first principles

by asking one of the most fundamental questions for error-efficient computing – how do errors

in a program’s execution affect its output? Today we rely on program or domain experts

to have a deep understanding of how errors (perturbations in program execution) affect

program output and articulate them via error specifications [3, 4, 5, 17, 18, 19] which are

then used to devise error-efficient solutions. The undue burden placed on the programmer is

very limiting for the adoption of error-efficiency since such expertise is sparse and can take

years to develop for a given domain [20, 21, 22].

This work addresses these limitations by developing methodologies that enable sys-

tematic, principled and scalable application of error-efficiency without the need

for programmer expertise. This thesis makes the following key contributions:

(1) It demonstrates, through a motivational study, the effectiveness of error-efficient tech-

niques in meeting the strict performance, energy and resiliency requirements of emerging

edge computing domains. This is the first study (in collaboration with IBM research) to

show that software approximations can be applied to improve the computational efficiency

of a state-of-the-art vision analytics workflow on-board Unmanned Aerial Vehicles (UAVs)

without degrading system resiliency [22, 23].

(2) It develops automated error analysis techniques and tools that determine the im-

pact of billions of errors on program output with high speed and accuracy. The automated

error analysis tools developed in this work – Approxilyzer [24], gem5-Approxilyzer [25] and

DataApproxilyzer [26] – are the first-of-their-kind to quantify output quality for virtually all

errors (for a given hardware error model) in program instruction and data. The application

error profiles they generate provide a comprehensive view of the application’s error char-

acteristics with absolute minimal programmer intervention. Two tools have been publicly

released [27, 28] with a third release planned shortly.

(3) It demonstrates the versatility of the automated error analysis approach, by showing

how the automatically generated application error profiles can be used to devise different

(hardware and software) error-efficiency solutions – from low-cost resiliency to approximate

computing – that can be customized to the application and user requirements [24, 26].

(4) It builds a framework called Minotaur [29] that shows a principled adaptation of

2

9

Customized Error-Efficiency Solutions

Automated Application-Level Error Analysis

Software Testing à Scalable Error Analyses

Application Input

Unmodified
Program

Application’s Comprehensive Error Profile

Figure 1.1: Summary of the contributions made by this work.

software testing techniques to significantly improve the speed and scalability of error analysis.

Minotaur lays the foundation for systematically integrating (hardware) error analyses into

the software development workflow.

Figure 1.1 shows a pictorial view of the contributions of this work along with the associated

publications and open-source tool releases [22, 23, 24, 25, 26, 27, 28, 29, 30]. Overall,

this work democratizes error-efficient computing by broadening the reach of error-efficient

computing to novice programmers and new domains.

1.3 BRIEF OVERVIEW OF RESEARCH

1.3.1 Error-Efficiency for Emerging Domains

Error-efficient computing can enable emerging domains, such as edge-computing (UAVs,

connected cars, industrial robotics, etc.), to meet strict performance and energy require-

ments. However, the strict reliability requirements of some mission-critical (high impact of

failure/disruption) applications in this domain have traditionally not allowed inexact com-

putations. For example, edge computing platforms on UAVs (Unmanned Aerial Vehicles),

that are engaged in rescue and recovery operations, must not only meet strict real-time

3

performance, energy and bandwidth requirements, they must also be resilient while operat-

ing in harsh environments subject to sharp variations in temperature, altitude and weather

conditions, and tolerate glitches in input and output. Hence, any error-efficiency solutions

applied to such systems (to improve, say, performance and energy) must not degrade the

system resiliency.

In a collaborative study with IBM Research [22], we demonstrate the resiliency and ef-

fectiveness of error-efficiency techniques for edge-computing applications used in Unmanned

Aerial Vehicles or UAVs (the concepts are relevant to other applications as well). The

workload studied is a state-of-the-art Video Summarization (VS) application (developed at

IBM Research) that constitutes key end-to-end video and image analytics performed aboard

UAVs. This first-of-a-kind work that studies the effect of approximations on system perfor-

mance, energy and resiliency, shows that software approximations yield significant energy

and performance (up to 68%) benefits for the end-to-end VS work-flow without degrading

the overall resiliency of the system. This study serves as motivation for the rest of the work

in this thesis.

1.3.2 Tool-Suite for Automated Application-Level Error Analysis

For any error-efficiency solution, we first need a fundamental understanding of how errors

in a program affect its resultant output quality. Techniques today rely on program/domain

experts for this knowledge which is severely limiting.

To mitigate this limitation, this work develops a suite of automated application-level error

analysis tools (henceforth referred to as the AEA tools) [25, 26, 31] that can automatically

extract the error characteristics of applications. In this work, an error is defined as a pertur-

bation in program state (computation or data) caused by an underlying fault in hardware.

Using a hybrid technique [32, 33] of program analysis and some error injections, these tools

comprehensively analyze billions of possible errors that can impact a program’s execution

with high accuracy (>95% on average) and at low-cost (requiring up to five orders of mag-

nitude fewer error injections than näıve techniques). Furthermore, they can precisely (at

fine granularity and within low error margins) quantify the output quality produced in the

presence of each of the errors they analyze.

The AEA tools impose minimum burden on the programmer and only require the user

to provide an unmodified program, a (domain-specific) quality metric and, optionally, a

quality threshold. The error analyses techniques developed in this line of work are general

and can be used to analyze different general-purpose computations and error models (single-

and multi-bit error models spanning instructions and data are studied in this work). To

4

the best of our knowledge, these are the first application-level error analysis tools that

satisfy the requirements of automation (minimal programmer burden), accuracy, precision,

comprehensiveness, low-cost and generality. The output of automated error analyses are

comprehensive application error profiles that list the errors that can affect the program’s

execution along with the corresponding output quality expected for each of the errors. The

application error profiles can then be used by programmers or systems to understand the

application’s error characteristics.

While Chapter 3 provides the details about the automated error analysis techniques, a

brief description of the tools developed as part of it this work are provided below.

Automated Analysis of Errors in Program Instructions (Compute):

Approxilyzer [31] is the first automated error analysis tool to quantify the impact of

virtually all errors (for a given error model) in program instructions on the program’s output

quality with high accuracy and speed. The error model used in Approxilyzer is single-bit

transient errors in register operands of dynamic instructions. Approxilyzer’s output is the

application’s comprehensive instruction error profile. In order to enable researchers to easily

use and extend Approxilyzer concepts, we build a fully open-source error analysis toolkit

called gem5-Approxilyzer [25]. gem5-Approxilyzer uses the open-source gem5 simulator

and is designed to enable researchers to adapt and extend it to different instruction set

architectures (ISAs).

Automated Analysis of Errors in Program Data (Storage):

Errors in instructions (compute) and data (storage) propagate differently through the

program and, hence, require different analysis techniques. We build a tool called DataAp-

proxilyzer [26] to automatically analyze and quantify the impact of errors in program data

on output quality. DataApproxilyzer accurately and comprehensively analyzes many, and

in some cases all errors (for a given error model) in program data. The error model used

in DataApproxilyzer is multi-bit (1-bit, 2-bit, 4-bit and 8-bit) transient errors in system

memory. The output of DataApproxilyzer is the application’s comprehensive data error

profile.

5

1.3.3 Automated Error Analysis to Customized Error-Efficiency

An application’s error profile can be used to understand its error characteristics, which can

inform customized error-efficiency. For example, this work demonstrates how an applica-

tion’s instruction error profile is used for error-efficiency solutions targeted towards ultra-low

cost resiliency to hardware errors [31]. It shows that large resiliency overhead reductions

(up to 55%) are possible if the user is willing to tolerate a very small loss in output accuracy

(1%) while still providing high (99%) resiliency coverage [31]. In another example, the ap-

plication’s error profile is used to identify promising subsets of instructions and/or data for

approximate computing across different quality thresholds and approximation targets. An

illustrative end-to-end workflow demonstrates the automatic identification and mapping of

non-critical (approximate) data (for given user quality targets) to be stored in approximate

DRAM with low refresh rates (which saves energy but incurs modest errors), without pro-

grammer intervention [26]; prior techniques required the programmer to identify non-critical

data with annotations.

The error profiles of applications are also used to gain insights that can motivate further

research. For example, Chapter 4 shows that error profiles for the same application, compiled

to different ISAs (SPARC vs. x86), can vary widely [25]; motivating the need for customized

error-efficiency for different architectures.

1.3.4 Leveraging Software Testing Techniques for Efficient and Scalable Error Analyses

This work introduces a framework called Minotaur [29] that significantly improves the

speed and scalability (across multiple inputs and workloads) of error analysis techniques.

Minotaur uses the insight that analyzing an application for (hardware) errors has many

conceptual similarities to analyzing it for software bugs ; therefore, adapting techniques from

the rich software testing literature can lead to principled and significant improvements in

error analyses. Minotaur is the first work to suggest leveraging software testing methodologies

for comprehensive error analysis ; thereby, laying the foundation for a principled integration

of hardware error analysis into the software development work-flow.

Minotaur identifies and adapts four concepts from software testing to: (a) introduce the

concept of input quality criteria for error analysis and suggest a simple but effective criterion

(statement coverage at the object-code level); (b) develop a methodology to create high

quality (fast) minimized inputs from (slow) standard benchmark inputs; (c) prioritize the

analysis of specific program locations for a given error analysis objective and terminate

analysis early when the objective is met; and (d) show scalable error analysis over multiple

6

inputs by progressively prioritizing analysis over fast (but potentially inaccurate) inputs first.

Minotaur improves the speed of comprehensive error analysis by 4x, on average, over state-

of-the-art tools like Approxilyzer. These gains go up to 39x (or 55x) when the error analysis

is targeted to specific techniques like hardware resiliency (or approximate computing).

7

Chapter 2: ERROR-EFFICIENCY FOR EMERGING DOMAINS

Real time edge computing [34, 35] is a rapidly growing field where real time data processing

and other compute services are pushed away from centralized points to the logical extremes

or edge of a network. This reduces the communication bandwidth needed between edge

devices (e.g., sensors) and the central data center by performing analytics and knowledge

generation at or near the source of the data. One of the key enablers of this trend is the

presence of simultaneously high-performance and energy-efficient embedded systems that

can be used to do computing in devices that are at the edge of the network. Real time edge

computing has many applications such as Unmanned Aerial Vehicles (UAV), connected cars,

industrial robotics, etc.

Figure 2.1: Co-operative swarm of UAVs engaging in computation for real-time applications.

Figure 2.1 illustrates a real-life application of edge computing. Here, a swarm of UAVs,

supported by a terrestrial server at the back-end, carry out tasks such as surveillance of hos-

tile targets or rescue and recovery in the event of natural disasters. The UAVs communicate

data and other analytics with the ground servers through wireless connections whose band-

width, security and reliability might vary depending on physical and environmental factors.

Hence, for real-time critical tasks, it is increasingly becoming essential that each UAV be

8

equipped as a highly efficient mobile embedded system that can locally perform essential

real-time computing tasks. One such task that is often performed locally aboard the UAV

is Video Summarization [36]. This task involves extracting concrete context from the input

video stream – captured by the many cameras on the moving UAV surveying a wide area

– and summarizing it, usually in the form of a panoramic image. The panoramic image

can then be transfered to a central ground server for further processing, for say, tracking or

identifying rescue targets.

Edge computing platforms, such as that described above, are often deployed in rugged

terrains with harsh environmental conditions and must satisfy the following requirements:

a) ensure high performance to meet real time deadlines, particularly for mission-critical

applications, b) be energy efficient to enable long range computing, and c) be resilient while

operating in harsh environments subject to sharp variations in temperature, altitude and

weather conditions, and tolerate glitches in input and output [37].

Error-efficient techniques such a Approximate Computing [7, 38] are increasingly gaining

traction as a viable approach for high performance and energy efficiency. Approximate com-

puting environments allow deliberate, but controlled, relaxation of correctness and trade-off

computational accuracy for improvements in performance and energy. Many edge comput-

ing applications involve processing sensory signals (image, audio, etc.) which can inherently

tolerate inaccuracies in data and/or computation without compromising overall mission tar-

gets and goals. This presents an opportunity to redesign these algorithms to incorporate

approximate computing with the goal of meeting stringent performance and energy targets

(requirements (a) and (b) from above) under specified constraints.

However, while most approximate computing techniques have in-built metrics and tech-

niques to guarantee a certain output quality, it is not clear how they work in the face of

sources of vulnerability in the processor, such as soft errors, voltage noise and aging phenom-

ena. Further, these effects can be exacerbated (increased probability of radiation strikes at

high altitudes in UAVs) when the approximate computing paradigm is adapted to the harsh

conditions that these systems encounter during their operation. For successful deployment

in edge computing environments, it is critical to ensure that the application of approximate

computing techniques which yield performance and energy improvements not degrade the

overall system resiliency (requirement (c) from above).

This work focuses on studying the interaction between software approximation and the

application’s resiliency to soft errors (henceforth referred to as application resiliency or

simply resiliency) and to my knowledge is the first work to do so. To demonstrate this

interaction a state-of-the-art end-to-end video summarization application [36] is analyzed

which represents a typical and key vision analytics workflow executed by embedded systems

9

on-board UAVs.

In particular, this work makes the following contributions:

• The application resiliency of an end-to-end video summarization application (hence-

forth termed as VS for brevity) is studied. The VS application serves as a represen-

tative workload for on-board UAV processing. Specifically, we study the application’s

resilience to radiation-induced soft (transient) errors, by performing runtime architec-

tural fault injection experiments. All analyses are performed across two distinct inputs

that realistically portray the different types of input video stream captured by cameras

on the UAV.

• Performing resiliency analysis on a full, long-running end-to-end workflow is more ex-

pensive (in time and compute) than analyzing individual smaller kernels that together

constitute the larger work-flow. This trade-off is examined by estimating the resiliency

of individual representative kernels or hot functions in the VS application. It is shown

that the hot functions are sub-optimal at capturing the behavior of the full applica-

tion, thus motivating the need to develop and evaluate realistic applications with a full

end-to-end workflow.

• This work characterizes the performance and energy of three different software approxi-

mation techniques applied to the VS algorithm. It shows that the approximations yield

significant speedup and energy savings (up to 68%) without compromising the quality

of the panoramic image output.

• The resiliency of approximate VS algorithms are examined. It is found that the ap-

proximations yield similar resiliency profiles to the baseline (precise) algorithm and in

the worst case lead to a slight increase in Silent Data Corruption (SDC) rates (up to

2%). To the best of my knowledge, this is the first work that examines the effect of

software approximations on application resiliency.

• Furthermore, the SDCs caused by the approximate algorithms are examined using a

novel quality metric suitable to the domain of UAV image analytics. The results show

that most of the SDCs generated by the applied approximations have small quality

degradations and can potentially be tolerated by the application.

In summary, this work shows that error-efficiency techniques such a software approx-

imation can be utilized to achieve significant gains in performance and energy without

affecting application resiliency. This work does not claim to cover all possible types of

error-efficiency techniques (or even the best ones) or comment on the general resilience of

10

different techniques. Instead, the intent of this study is to encourage a comprehensive evalu-

ation (performance, power, resilience) of system optimizations and show that highly effective

and resiliency-aware error-efficient techniques are possible in enabling emerging application

domains such as edge computing.

2.1 BACKGROUND

2.1.1 Video Summarization

UAVs are increasingly being used to perform tasks such as surveillance of hostile tar-

gets and rescue and recovery in the event of natural disasters. For decisive action in all

these scenarios, it is essential to first extract and summarize the concrete context from the

input video stream captured by the moving UAV. This operation is termed as Video Sum-

marization. A sophisticated video summarization work-flow requires application of several

Computer Vision techniques.

Figure 2.2: Video summarization for UAV videos.

One such example of an end-to-end application flow is described in Viguier et al. [36],

where the UAV multimedia processing pipeline focuses on summarizing videos captured by

the camera on-board the UAV. The framework for achieving this is shown in Figure 2.2. In

order to achieve large data reduction without significant loss of events of interest, two types of

summarizations are included: coverage and event summarization. Coverage summarization

involves a complete panorama generation which describes the entire video with a single image

that represents the entire spatial coverage area of the camera. The coverage summarization

relies on spatially relating different video frames from the cameras, projecting them into

a common view space, and stitching them together to build a single panorama. Event

summarization comprises of tasks such as detection, recognition and tracking of moving

11

objects such as vehicles and pedestrians. Finally, both intermediate results are integrated

by overlaying the tracks (of moving objects) on the panorama to create a comprehensive and

concise summarization of a whole UAV video.

This work focuses on coverage summarization. In particular, the focus is on algorithms

that perform the task of generating video panoramas of the landscape covered by the cameras

on a UAV and on energy-efficient and reliable implementations of the same.

2.1.2 Approximate Computing Techniques

Approximate computing is a fast growing trend that allows controlled relaxation of cor-

rectness for better performance and energy. Many techniques have been proposed that

leverage approximate computing at the software [39, 40, 41, 42, 43, 44], programming lan-

guage [2, 3, 4, 5, 17, 19, 45] and hardware [6, 7, 8, 9, 18, 46] level for improved performance,

energy or reliability. Since application level resilience is measured in this work, the anal-

ysis is focused to software approximations. In particular, three broad classes of software

approximations are studied.

(1) Input sampling: In this class of approximation, computation is only performed

over a subset of the input. This class of approximation is especially popular in big data

analytics [47] where the amount of data over which the computation needs to be performed

is prohibitive in time and resources.

(2) Selective Computation: Another popular class of approximations are those in

which only a fraction of the work is performed compared to the precise program. While

the underlying algorithm remains unchanged, selective computations are simply skipped or

dropped [39].

(3) Algorithmic Transformation: These approximations transform the code and re-

place precise but expensive computation with cheap but imprecise computation.

The selection of which approximations to apply depends on the application/domain and

the end goal. For example, approximations skipping certain loop iterations [39] and ap-

proximations dropping some synchronizations [41] in the program both belong to the broad

category of selective computation and either, both or neither might be an appropriate ap-

proximation for a given application. Section 2.2 describes approximations belonging to each

of the categories described above that are specific to the application studied.

12

Key	
 point	
 detec,on	
 and	
 matching	
 between	
 adjacent	
 frames	

Find	
 Homography	
 parameter	
 using	
 RANSAC	

Solu,on?	
 Find	
 Affine	
 parameter	
 using	
 RANSAC	

Calculate	
 size	
 of	
 panorama	
 and	
 global	
 transforma,on	
 for	
 each	
 frame	

Finish	
 itera,on	

Update	
 panorama	
 frame	
 by	
 frame	

Yes	

No	

Yes	

No	

Determine	
 video	
 segments	
 for	
 crea,ng	
 separated	
 panorama	
 	
 	

Figure 2.3: Flowchart describing the key tasks that comprise the Video Summarization
Algorithm.

2.2 VIDEO SUMMARIZATION ALGORITHM

The system architecture of interest in this work is a model where a swarm of UAVs is

engaged in image scanning, analysis and stitching with the end goal of creating a global

panorama of the observed landscape. Towards this goal, we describe in this section a video

(image) stitching algorithm that has been developed and implemented in our experimental

evaluation platforms (in collaboration with IBM research). This application (henceforth

referred to as the Video Summarization (VS) algorithm) takes input videos captured by

moving cameras and generates panoramas that provide a global view of the landscape. Since

the input video is a concatenation of images captured by (various) moving cameras, it can

contain various segments with dissimilar viewing angles and settings. Each of these segments

are summarized by mini-panoramas and are stitched into a global panorama (simply referred

to as panorama) at a later stage. In this work, we restrict the analysis to the generation of

a panorama from video captured by a single camera on-board a single UAV.

2.2.1 Functional Overview

While a full detailed description of the algorithm is provided in [48], we describe the key

capabilities of the algorithm [49] in the following paragraphs. A representative flow of the

algorithm is shown in Figure 2.3.

13

Figure 2.4: Simple example of stitching two images.

One of the fundamental functions performed by the VS algorithm is the comparison,

transformation and stitching of two images from the input video. The algorithm first iden-

tifies key regions of interest (key points) within each image and then looks for matching key

points within the images to identify potential common areas. It then applies transforma-

tions to the two images so that they are aligned correctly and have the same scale, lighting,

perspective etc., before proceeding to stitch them together. Figure 2.4 shows this process

using two sample images. We utilize FAST (Features from Accelerated Segment Test) de-

tectors [50, 51] and ORB (Oriented FAST and Rotated BRIEF) descriptors [52] to achieve

efficient and accurate feature point detection and matching. RANSAC (RANdom SAmple

Consensus) [53] is used to compute the homography transformation between the two images.

Using the technique described above, successive frames of the input are pair-wise compared

in the initial pass of the algorithm. However, not every pair of adjacent frames has enough

matching key points to compute the homography transformation. In this case, we estimate

a simpler affine transformation which requires fewer matching points. If sufficient number

of matching points cannot be found even for the affine transformation, the corresponding

frame is discarded. To generate the overall output panorama we align every frame to the

first by transforming all the frames to have the same coordinate system as the first frame

by using the homography transformations described above.

There are various other sophisticated elements of the stitching algorithm that are used

to improve the rendered quality of the output panorama. The mathematical details of the

transformations and corrective actions (e.g., to avoid blurs and distortions) are omitted here

for brevity. Depending on the quality and number of the input video clips (collected by

14

the moving cameras), the amount of computation performed by the video summarization

procedure can vary.

2.2.2 Inputs to the Video Summarization Algorithm

I evaluate the VS application using two aerial videos from the VIRAT (Video and Image

Retrieval and Analysis Tool) dataset [54] – 09152008flight2tape1 2 (hereby referred to as

Input 1) and 09152008flight2tape2 4 (hereby referred to as Input 2). We use an input size

of 1000 frames for both inputs.

The VIRAT dataset was chosen for the evaluation to represent realistic scenarios of videos

captured during aerial surveillance with variations in resolution, diversity in scenes, changes

in scale, focus and camera angles. The two inputs that we profiled vary significantly in

these aspects as well as in the nature with which these parameters vary in the video stream.

For instance, the number of changes that occur in Input 1 are much higher than Input 2,

leading to a much larger number of mini-panoramas generated in the first input set. These

videos were sampled at periodic intervals to yield around 3000 frames across the duration of

the entire video. In addition, we further downsampled the video by a factor of 3 to enable

a statistically significant number of error injection experiments to run within a reasonable

amount of time without perceivable loss in information or image quality.

2.3 APPROXIMATE VIDEO SUMMARIZATION ALGORITHMS

As described in Section 2.2, the Video Summarization (VS) application is capable of

effectively capturing several hours of video in single stitched image frames. However, given

the constraints on power efficiency (of the on-board device) as well as real-time requirements

of the mission, a complete and exact implementation of the algorithm may not be possible.

In [37] and [55], the authors examine techniques to mitigate this limitation by dynamic

adjustments of the link bandwidth and processor voltage/frequency.

In this paper, we consider software approximation, to the VS algorithm, as a means

to realize performance and energy targets. Since computations involving images can be

inherently tolerant to inaccuracies in data and/or compute, approximations to the the VS

workflow have the potential to yield significant benefits without unduly compromising the

quality of the final panorama image output.

We study three different approximations (belonging to the three broad classes described

in Section 2.1.2 and presented in the same order). The details of the approximate algorithms

are described below:

15

(1) Random Frame Dropping (VS RFD): In this algorithm, we randomly drop

frames from the input stream. Apart from improving the effective frame rate, this input

approximation aims to leverage redundancies in consecutive images captured by a moving

camera without substantial degradation in output image quality. In this work, we demon-

strate results with up to 10% of the input frames being dropped.

(2) Key Point Down Sampling (VS KDS): The VS algorithm described in Sec-

tion 2.2 involves the computation of feature (key) points and attempts to match them across

frames in order to be able to stitch the frames together. We propose an approximation in

which matching is only performed on a fraction (one-third) of the key points as compared

to the precise algorithm. This significantly reduces the computation time, which varies as

O(n2) with the number of key points. In this algorithm, the source of error could be due to

some frames being dropped on account of having insufficient matching key points. In such

cases, it is hoped that the redundancy of the image will still enable complete coverage of the

input video in our summarized output.

(3) Simple Matching (VS SM): In the default algorithm, each key point in the current

frame is compared with all key points in the incoming frame and the two nearest neighbors

are determined for each key point. The key point is included in the list of good matches only

if the ratio of the distance between the nearest and 2nd nearest neighbor is above a certain

threshold; i.e., the nearest match is sufficiently closer than the 2nd nearest. This reduces the

probability of a false positive, i.e., the probability that the key point in a frame incorrectly

maps to a point in the subsequent frame, even if, in reality, there is no matching object.

In case of VS SM, the algorithm is altered to determine only the single nearest neighbor

for each key point. In addition, we place an upper bound on the actual distance value and

consider only those matches whose nearest neighbor is within a fixed distance of the key

point. Hence, only those key points in the incoming frame which match almost perfectly

with those in the original frame would be considered. Note that this technique still leaves

room for some errors, for example, when there are two identical objects in the image. In

such cases, both nearest neighbor distances could fall within the threshold and the mapping

could happen to the incorrect object.

2.3.1 Effectiveness of the Approximate Implementations

An approximate algorithm has to produce acceptable quality outputs while enabling some

system benefit (e.g. improved performance or energy efficiency). Hence, the three approx-

imate algorithms are examined from the point of view of both system benefits and output

quality to determine if they are good candidates for further study.

16

System benefits of approximation: We carried out an experimental evaluation of these

algorithms on an IBM POWER-based server class machine. Figure 2.5 shows the Instructions

Per Cycle (IPC), execution time and energy, normalized to the baseline VS algorithm. We

observe that VS RFD provides the maximum reduction in execution time (68%) for Input

1 by just dropping 10% of the total frames. On the other hand, VS KDS yields the highest

performance improvement of 18% in case of Input 2. Since the IPC (and hence, the power)

remains relatively constant across the default and approximate implementations, the energy

profile across the exact and approximate implementations varies similarly to that of the

execution time.

0

0.2

0.4

0.6

0.8

1

1.2

VS VS_RFD VS_KDS VS_SM VS VS_RFD VS_KDS VS_SM

Norm. IPC Norm exec time Norm energy

INPUT 1 INPUT 2

Figure 2.5: Comparison of IPC, execution time and energy of the proposed approximate
algorithms (VS RFD, VS KDS, VS SM) for Input 1 and Input 2, with the values normalized
to the corresponding baseline (VS) for each respective input.

Comparison of output quality: Figure 2.6 compares the output images generated by

the baseline VS algorithm and the three approximations described for the two inputs. Visual

inspection shows that the approximate algorithms generate output images of acceptable

quality. Even in the approximate output image with the worst quality (VS RFD for Input

17

1), the quality degradation is due to image perspective and all the pertinent information in

the final panorama is retained.

Tradeoffs between performance and output quality: The difference between the

two inputs is evident from the tradeoffs between performance and output image quality for

each approximation. For instance, a visual inspection of the output panoramas generated

by the baseline VS algorithm and the three approximations (Figure 2.6) show that Input

2 is more robust to the proposed approximation techniques as compared to Input 1. On

the other hand, the performance benefits due to approximation are clearly greater in case of

Input 1.

This difference in the impact of approximation on the two inputs can be attributed to

the fact that the variation between consecutive frames is much more pronounced in Input

1 than in Input 2. The execution time improvement is primarily due to the polynomial

complexity of the algorithm in terms of number of frames that are processed. In addition

to the frames dropped by the approximate implementation, the algorithm also discards

additional frames without stitching them to the overall panorama, when sufficient matching

points are not found. Consequently, the proposed approximation techniques result in several

frames of Input 1 being discarded. While this reduces the number of computations, resulting

in greater performance and energy benefits as compared to Input 2, it also adversely affects

the output quality to a greater extent. The differences between the output images can be

further analyzed quantitatively by means of our proposed metric, described in further detail

in Section 2.4.4.

Figure 2.6: Comparison of the output panoramas obtained from baseline VS algorithm (a)
and various approximation techniques (b,c,d) for the two input image sets.

18

2.4 METHODOLOGY

This section describes the design methodology and the evaluation environment used to

measure the resiliency of the VS algorithm as well as its approximate versions. In sec-

tion 2.4.3 a small case-study is described to understand the trade-offs of performing re-

siliency analysis on a full end-to-end application (such as the VS algorithm) vs. constituent

small kernels. Section 2.4.4 defines a metric to calculate the quality of the corrupted output

produced by the application when perturbed by errors. This metric is later used to analyze

the quality of the corrupted outputs produced by the approximate VS algorithms.

2.4.1 Measuring Resiliency of Video Summarization Algorithm

Error injection is a widely used error analysis technique where an error is injected (typically

one at a time) in a real or simulated machine and the outcome (impact of the error) is

studied [56, 57, 58, 59, 60, 61]. My goal is to evaluate the application-level resiliency of the

VS algorithm and its different approximate versions in the presence of hardware transient

errors. The error model studied in this work assumes the occurrence of single bit errors in

the architectural register file. The impact of an error on a program can be described by the

following four outcomes:

(1) Mask: The error is masked by consecutive execution such that the application pro-

duces the correct output. This can happen if the error affects dead state or if the corrupted

state is overwritten before being used.

(2) Crash: The error catastrophically affects the program state and results in the program

crashing. For example, an error that leads to an out of bounds memory access.

(3) Silent Data Corruption (SDC): The error propagates through the program ex-

ecution and corrupts the output. This is called a Silent Data Corruption because there is

no obvious symptom of the error till the execution completes and the output is found to be

corrupted.

(4) Hang: The error corrupts the internal state of the program such that neither com-

pletes nor crashes but hangs.

Comprehensively injecting errors in each potential error site in the program execution is

prohibitively time consuming. For instance, in this study, each bit in every architectural

register at every single execution cycle is a potential candidate for error injection. For most

applications, the number of error sites is prohibitively large. Hence, we rely on statistical

error injection in randomly selected error sites in the execution. This technique provides

statistical summaries of the impact of errors on the application by estimating average rates

19

for Mask, Crash, SDC and Hangs. Alternate, more comprehensive and higher precision

techniques such as Relyzer [62] could be applied but are left to future work.

For accurately estimating the application resiliency, it is essential to perform error injec-

tions in a significant number of error sites that are uniformly distributed over the program

execution. We use the term error-site coverage (or simply coverage) to indicate the relative

robustness in the number and distribution of error sites picked for error injections.

We estimate the minimum number of error injection experiments needed to get an adequate

statistical sample by observing the different rates of Mask, Crash, SDC and Hang over many

error injections and the point at which these rates stabilize. In other words, the minimum

number of error injections required are at the knee of the trend curves for the Mask, Crash,

SDC and Hang rates. Beyond the knee of the curves, increasing the number of error injections

should only change the outcome rates trivially.

2.4.2 Error Injection Environment

Error injection experiments are conducted on the IBM POWER-based machine, running

Linux RHEL 6.5 operating system. The Application Fault Injection (AFI) [37] tool is used

to perform error injections and evaluate the application’s resiliency. Figure 2.7 shows the

main components of AFI.

AFI is composed of two modules. The first module, Fault Injector takes the un-modified

application binary, and injects error bits into the application’s architectural state. Users can

change the injection configurations to specify where to inject errors and how many errors to

inject per run. For this study, AFI is configured to inject one single bit error (bit flip) in a

general purpose register (GPR) or a floating point register (FPR). The execution cycle at

which the error is injected is random. Once the program execution is continued after the

error injection, the second module, the Fault Monitor, will check the application’s running

state and capture a potential hang or crash. If the application finishes normally, the Fault

Monitor invokes a result checking procedure to determine if the outcome of the error injection

is an SDC or Masked result.

Separate experiments are performed for error injections in GPRs and FPRs to enable

separate examination of the vulnerability of these two register types to single bit flips.

2.4.3 Studying full end-to-end workflow vs. small (hot) kernels

An optimized statically compiled binary (using GCC 4.8.2 and OpenCV version 2.4.9)

of the VS algorithm spans ∼1.5 million lines of assembly instructions. Error injection

20

Application
Application

Derating

User input parameters: injection
configuration, result checking, etc.

Hardware

 AFI

Read architected
state

Modify and write
new faulty state

 Fault Injector

State Detection
(Hang or Crash)

Result Checking
(SDC or Masked)

Fault Monitor

Figure 2.7: Overview of the Application Fault Injection framework.

experiments on a large application like the VS algorithm, that run to completion, are time

consuming and therefore limit the number of error injections that can be performed.

Since the application is a composition of many program and library functions, the question

arises – can one simply carry out a resiliency study of some representative hot functions

(functions that account for a significant fraction of the application execution time) and use

the results to reason about the resiliency of the VS algorithm? If so, can one then study the

resiliency of just those functions? This can lead to either reduced overhead (less number of

error injections) or increased coverage (error injections take lesser time to run to completion

and hence we can potentially do more of them).

To investigate further, we undertake a case study to perform resiliency analysis on a

hot kernel taken from the VS application to see if the resiliency profile of the kernel is

representative of the full end-to-end application. We show in Section 2.5.3 that this is not

the case and the result of such an analysis is sub-optimal. This further motivates the need to

develop and analyze full end-to-end applications that realistically simulate the full workflow,

as opposed to studying just small kernel benchmarks that perform individual tasks.

Fig 2.8 shows the execution time distribution (by function) for the VS algorithm extracted

using the Linux utility tool Perf [63]. Approximately 68% of the execution time is spent in

OpenCV libraries [64]. 54.4% of the total execution time is consumed by just one OpenCV

function – WarpPerspectiveInvoker, which is called from the WarpPerspective function, that

applies a perspective transformation to an image according to a transformation matrix.

Thus, we choose WarpPerspective as the hot function whose resiliency profile is studied.

We design a toy benchmark called WP that takes an image and a matrix as inputs and

21

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Functional Components of VS Application

%
 o

f E
xe

cu
tio

n
Ti

m
e

Other

lrint (GLIBC)

cv::computeDescriptors

memcpy (libc)

llrint (GLIBC)

cvflann::KDTreeIndex

cv::remapBilinear

cv::warpPerspectiveInvoker

Figure 2.8: Execution profile of the VS application

calls the OpenCV function WarpPerspective on them and returns the transformed image as

the output. Essentially, WP is equivalent to having a stand-alone WarpPerspective function

and the output of WP is the return value of the function as seen by the VS application.

The function WarpPerspective in turn calls two other functions: warpPerspectiveInvoker

and remapBilinear. We study the outcomes from error injections in GPRs in these two

functions for VS and WP. The error injection framework, AFI, affords the ability to control

where the errors are injected and for this experiment we only consider the error injection

experiments that inject errors in the functions of interest and observe the outcome at the

end of the program (either VS or WP).

2.4.4 Defining SDC quality

As described in Section 2.4.1, any deviation in the application output due to an error is

defined as a Silent Data Corruption or SDC. SDCs are the least desirable outcome of errors

since they are very hard to detect until the application execution is completed and the

22

corrupted output is generated. At that time it is too late for recovery techniques to correct

the error. Crashes, on the other hand, can be detected using low cost symptom-based

detectors [57] and hence protecting error sites that produce crashes incurs low overhead.

Since SDCs do not produce any easily detectable software symptoms, protection against

SDCs is normally done through techniques like redundancy that have high overhead. In

order to reduce the resiliency overhead, we aim to quantify the egregiousness or severity of

the SDCs produced so we can identify tolerable or benign SDC error sites that do not need

to be protected.

Since the VS application produces an image (mini panorama) as the output, the check

to determine if an SDC was produced is an image comparison between the error-free ap-

plication’s output (henceforth referred to as the golden output) and the corrupted output

produced by the application execution injected with an error (henceforth referred to as the

faulty output). To determine if there is an SDC, AFI’s result checking procedure simply

compares the error-free output, known a priori, with the output produced by the erroneous

execution, and classifies the outcome as an SDC if there is any difference between the two

images.

In addition to knowing how many error injection experiments result in SDCs, we am

interested in quantifying the quality of the SDCs produced; i.e., the deviation between the

golden and the faulty output. To do this, we define a quality metric which is calculated as

follows:

Given a golden image g img and a faulty image f img, some global transformations are

applied first to ensure that differences due to perspective, lighting, camera angle etc. are

removed. This is done because, in the given system, the end purpose is to use the output

image of the VS application for identification, tracking and/or surveillance. Hence the

content of the image is of greater concern and minor cosmetic disturbances in the final

image can be tolerated. The two transformed image matrices obtained after this corrective

step are g img tr and f img tr. The pixel by pixel difference of these two images is given by

the matrix pixel diff img, such that

pixel diff img = g img tr− f img tr (2.1)

Since in the scenario of interest, the final panorama is going to be viewed by a human

being, some errors in the color gradation of individual pixels can be tolerated. Thus, we

only wish to capture those differences in the image where the pixel coloration is significantly

modified. For this purpose, another matrix pixel 128 diff img is defined where values from

pixel diff img are stored only if the difference value is greater than 128, i.e. over half the range

23

for an 8 bit pixel which can assume values between 0 and 255. Then, the relative l2 norm,

which estimates the deviation of the faulty output image from the golden output image (in

percentage) is described as,

relative l2 norm =
||pixel 128 diff img||2

||g img tr||2
∗ 100 (2.2)

where, for an image X having n pixels x1, x2, . . . , xn

||X||2 =
√
x2

1 + x2
2 + . . .+ x2

n (2.3)

Once the relative l2 norm of a faulty image has been calculated, that SDC is assigned an

integer number called the Egregiousness Degree (ED) which corresponds to the floor of its

relative l2 norm value. The higher the ED, the worst the quality of the corrupted output

image. For example, if an SDC output has a relative l2 norm of 10.25%, it is assigned an

ED of 10. Any SDC that has a relative l2 norm of greater than 100%, is not assigned an

ED and is automatically categorized as an egregious SDC that must be protected.

2.5 RESULTS

2.5.1 Resiliency Profile of Video Summarization Algorithm

As described in Section 2.4.1, the minimum number of error injections needed are deter-

mined by studying the trend curves of the Mask, Crash, SDC and Hang rates with increasing

number of error injections. As seen in Fig 2.9(a), the trend curves for the different rates start

stabilizing after 1000 error injections and only vary slightly with increasing error injections.

Thus, we conclude that a minimum of 1000 error injections is required to provide a statistical

summary of the VS algorithm. Unless otherwise specified, all the experiments in this study

use 1000 error injections (for each type of register; combined GPR and FPR is 2000 error

injections).

The random error injections also provide good coverage in terms of the registers and bits

in which the errors are injected. A representative histogram is presented in Fig 2.9(b).

It shows that the errors are uniformly distributed among the 32 GPRs (for both inputs).

We similarly confirm that the errors are uniformly distributed among 64 bits within the

registers. For brevity, we have shown the coverage data (minimum error injections required

and register coverage) for error injections in GPRs. Error injection experiments for all the

different algorithms (GPR and FPR) show similar trends.

24

0
10
20
30
40
50
60

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30N
um

be
r o

f I
nj

ec
tio

ns

Register Number

INPUT 1 INPUT 2

0

20

40

60

80

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000%
 To

ta
l E

rr
or

 In
je

ct
io

ns

Number of Error Injections

Crash Hang Mask SDC

(a)

(b)

Figure 2.9: Graphs to show Coverage of error injection experiments. (a) Different error
injection outcome rates with increasing number of error injection experiments for VS al-
gorithm. The knee of the curve stabilizes at 1000 error injections. (b) Number of errors
injected in different GPRs across 1000 experiments show a uniform distribution.

Figure 2.10 shows the different error injection outcome rates for 1000 error injections each

in GPRs and FPRs for the VS algorithm. The resiliency profile looks very different for

injections in the GPR and the FPR registers and we will explore these differences in the

following paragraphs.

Error Injections in GPRs: Instructions that use GPRs form the bulk of the application

and are heavily used in memory and control instructions and hence errors in them lead

to the large Crash rate (40.16%). Analyzing the Crash outcomes further, the majority of

the crashes can be attributed to the following two causes: 1) Segmentation Faults that

generally occur due to memory access violations (92%), and 2) Abort signals raised by the

application/library when it encounters internal constraint violations (8%). Analyzing the

Crash causing error sites further, no clear trend is seen that corruption of certain registers or

25

0

10

20

30

40

50

60

70

80

90

100

GPR FPR GPR FPR

%
 o

f T
ot

al
 E

rr
or

 In
je

ct
io

ns

SDC Hang Crash Masked

INPUT 1 INPUT 2

Figure 2.10: Resiliency Profile for the VS algorithm. Different error outcome rates for errors
injected in GPR and FPR registers for the two different inputs are shown.

bit positions in the registers are more likely to result in a Crash. This is primarily because

all the GPR registers are used heavily in control (corruption of any bit can cause a Crash)

and memory (higher order bits more likely to cause a Crash) operations and, hence, are

vulnerable to catastrophic outcomes when corrupted.

Error Injections in FPRs: Errors injected in the FPRs of the VS application are Masked

99.7% of the time. This is due to the way FPRs are used in the application. The VS algo-

rithm operates on images which are stored as 8-bit integer pixels. Floating point operations

are only used when some manipulation of the pixels is required. To do this, the integer

pixels are converted to floating point, some transformation is applied and then they are

converted back to integer using a saturation algorithm. The saturation algorithm causes

many potentially SDC causing errors to become masked.

26

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

VS VS_RFD VS_KDS VS_SM VS VS_RFD VS_KDS VS_SM

%
 o

f T
ot

al
 E

rr
or

 In
je

ct
io

ns

Masked Crash Hang SDC

INPUT 1 INPUT 2

Figure 2.11: Resiliency Profile for the VS algorithm and its approximate versions. Different
error outcome rates, for errors injected in GPR register for the two different inputs, are
shown.

2.5.2 Resilience of Approximate VS Algorithms

Figure 2.11 shows the error injection results for 1000 error injection experiments in the

GPRs of the different approximation algorithms compared with the baseline VS application

for both the inputs. Similar to the baseline VS algorithm, FPR error injections in the

approximate algorithms are masked > 99.5% of the time and hence we do not show them

here. The Crash, Mask and Hang rates of the approximate algorithms is very similar to the

baseline VS algorithm. This is not surprising since the execution profiles of the approximate

algorithms are very similar to the baseline VS algorithm. For Input1, the SDC rates increase

from 1% (VS) to 3% and 2.5% for VS RFD and VS KDS respectively. In both these

approximate algorithms, the errors that may have been masked in the final image (due to

overlap by similar frames in the stitching process) are now exposed as SDC due to a reduction

in redundancy; precipitated by dropping frames from input in VS RFD or due to insufficient

matching key-points in VS KDS.

27

2.5.3 Trade-offs of studying an end-to-end workflow

SDC Hang Crash Masked

0

10

20

30

40

50

60

70

80

90

100

VS WP VS WP

%
 o

f T
ot

al
 E

rr
or

 In
je

ct
io

ns

warpPerspectiveInvoker remapBilinear

Figure 2.12: Comparison of the Masked, SDC and Crash rates for error injections in two hot
functions for VS application and the stand-alone toy application WP.

As discussed in Section 2.4.3, we ask the following question: can one estimate the re-

siliency of the VS application by studying the resiliency of the representative stand-alone

WP application? The results of the error injection experiments for both VS and WP are

shown in Figure 2.12.

The Crash, Mask and SDC profiles of the standalone WP is different from that of an

end-to-end workflow like the VS. In the VS application, the output of the WarpPerspective

function would then be used to perform some other computation further down the workflow

and, hence, there is a compositional effect where multiple computations flow into each other.

This causes the effects of an error to manifest differently than if the workflow ended at the

output of the hot function. In our case, the compositional effect leads to higher masking as

the SDCs that are generated by errors in the WarpPerspective function are masked later in

the workflow (for example, an adjacent image could later be stitched over the area corrupted

by the function output).

28

Hence, we conclude that it is essential to analyze an entire end-to-end workflow, instead

of just studying hot kernels/functions, to get an accurate understanding about the resiliency

behavior of an application.

2.5.4 SDC quality

0

20

40

60

80

100

0 20 40 60 80 100

%
 o

f T
ot

al
 S

DC
s

0

20

40

60

80

100

0 20 40 60 80 100

0

20

40

60

80

100

0 20 40 60 80 100

%
 o

f T
ot

al
 S

DC
s

SDC Egregiousness degree

0

20

40

60

80

100

0 20 40 60 80 100
SDC Egregiousness degree

(a) (b)

(c) (d)

VS VS_RFD VS_SM VS_KDS

Figure 2.13: Quality of SDCs generated by GPR error injections in different video summa-
rization algorithms. Each point on a given curve represents the percentage of SDCs (Y axis)
generated that have an ED less than or equal to the ED represented on the X axis. (a)
and (b) - The ED of the SDC is calculated by comparing against VS golden for Input1 and
Input2 respectively. (c) and (d) - The ED of the SDC is calculated by comparing against
the corresponding Approx golden for Input1 and Input2 respectively. Some of the curves do
not reach 100% on the Y axis due to a very small fraction of SDCs that are classified as
needing protection and not assigned an ED.

Figure 2.13 classifies SDCs according to their ED. In order to study a statistically sig-

29

nificant number of SDCs, we perform 5000 GPR error injections per input and analyze the

resulting SDCs. To calculate the ED of an SDC output image, it is compared to a base-

line golden image. For the SDCs produced by the VS algorithm, this is straightforward as

the golden image is the output of the error-free execution of the VS algorithm. For SDCs

produced by the approximate algorithms, there are two potential golden images to compare

against – the golden VS output (VS golden) or the golden output of the corresponding

approximate algorithm (Approx golden). For example, ED of an SDC produced by error

injection in VS RFD can be calculated by either comparing it to VS golden or by compar-

ing it to VS RFD golden. We show the distribution of SDC egregiousness using both these

methods.

Figure 2.13(a) and Figure 2.13(b) show the ED of the SDCs when compared against

VS golden for Input1 and Input2 respectively. The degradation in SDC quality in the

approximate algorithms, as evidenced by the larger fraction of SDCs having higher EDs,

is particularly sharp for Input1 (Figure 2.13(a)). On further analysis we observe that this

is because the deviation between Approx golden and VS golden calculated using the metric

specified in Section 2.4.4 is large. Even though it is verified by visual inspection that the

approximate algorithm outputs are acceptable (Section 2.3.1), the metric assigns them a

large ED. This may imply that the metric used is very conservative and we undertake a

discussion about this in Section 2.6. For example, the ED of the VS SM golden for Input 1

when compared to VS golden is 37. It thus follows that all subsequent SDCs produced by

VS SM will have an ED greater than or equal to 37. This is the reason for the shift in the

ED curves of VS SM with respect to the baseline VS in Figure 2.13(a).

Thus, to get a true understanding of the quality of the SDCs produced by the approxi-

mate algorithms, their egregiousness is estimated by comparing them to their corresponding

Approx golden output (Figure 2.13(c) and Figure 2.13(d)). The graphs show that the over-

all trend for the SDC quality for the VS and its approximate algorithms are very similar.

The approximations do not fundamentally change the quality of the SDCs produced. For

Input 2 (Figure 2.13(d)), the SDCs from VS KDS have slightly worse quality (80% of SDCs

produced by VS have ED less than 6 as opposed to ED of 14 for VS KDS). This follows

the trend seen in Section 2.3.1, where for Input 2, VS KDS shows the most energy gains

from less computation as a result of dropped frames. This in turn leads to a degradation of

output quality. Another trend seen is that overall, the SDCs produced are relatively benign

(even with our conservative metric). For example, for Input 2, 87%, 87%, 90% and 73% of

the SDCs for VS, VS RFD,VS SM and VS KDS respectively have an ED of less than 10.

Thus, a large majority of the SDC causing error-sites need not be protected if an error of

10% is acceptable.

30

Figure 2.14: a) Default output (VS) b) Approximate output (VS SM) c) Absolute pixel dif-
ference between default and approximate outputs d) Thresholded difference between default
and approximate outputs.

Hence, although approximating the VS application minimally changes its resiliency profile

by slightly increasing the number of SDCs generated, this is offset by the fact that a large

percentage of these SDCs may be tolerable and hence the cost of protecting them is low.

Thus, it is possible to realize safe, yet efficient approximations for this state of the art Video

Summarization algorithm from the point of view of performance, power and reliability.

2.6 DISCUSSION ON SDC QUALITY METRIC

Gauging if an approximate algorithm is good enough or if an SDC is tolerable in image

processing applications like the VS algorithm is heavily dependent on the image comparison

algorithm that calculates how closely the approximated image or the faulty image matches

the original image. While manual inspection is still the best way to determine if the quality

of an image is acceptable, this is impractical in cases where a large number of such images

are generated or when an automated decision has to be made based on the error seen in

the output. In Section 2.4.4, I outline an algorithm and metric to estimate the error in

the output image, but this algorithm can produce false positives and can label some SDCs

as more egregious than they actually are. For the outputs of the VS SM algorithm the

relative l2 norm generated by the image comparison algorithm is approximately 37% and

8% for Input1 and Input2 respectively. This is because as can be seen in Figure 2.14(c),

31

the pixel difference of the two images is considerable as the pixels in the faulty image have

slightly shifted when compared to the default image. But to a human viewing these two

images, there is no perceivable difference. Another factor to consider is that two images

having the same relative l2 norm may not be equally egregious depending on the final usage

of the output. For example, even if 30% of a faulty image is blacked out, it may still be

useful for surveillance or tracking if the remaining 70% had useful information that can be

deciphered by a human being. Estimating an automated metric to compare images used for

such domains remains an open problem.

2.7 CONCLUSION

In this work we study an end-to-end video summarization VS application that serves as a

representative emerging workload for the domain of Real Time Edge Computing. We charac-

terize the workflow of the application and examine three different approximation techniques

to improve the power and performance efficiency of the workload while maintaining sufficient

output integrity. We undertake a detailed resiliency study of the application as well as its

approximate versions and show that the approximations do not degrade the resiliency of

the baseline algorithm. We further introduce metrics to quantify the error introduced in

an output image and use them to understand the behavior of SDCs in the different Video

Summarization algorithms. We show that many of the SDCs produced by the application

can be tolerable to the end user and hence can reduce the cost of protecting the appli-

cation against transient faults. Thus, we conclude that error-efficient techniques such as

software approximations are not only effective but also safe for emerging edge-computing

applications.

32

Chapter 3: AUTOMATED APPLICATION-LEVEL ERROR ANALYSIS

Error-efficient computing techniques redefine “correctness” as producing results that are

good enough or of sufficient quality to be acceptable to the user. Hence, one of the fun-

damental requirements for achieving safe and effective error-efficiency is to understand how

errors (perturbations in computation and data) encountered during a program’s execution

affect the quality of the program output. With such knowledge, the system or end-user

would have the ability to precisely make the desirable trade-offs in quality, resiliency, perfor-

mance, and resource usage. The process of determining the output (quality) produced by a

program in the presence of (given) errors is referred to as error analysis. The “holy grail” of

error analysis is that it must be: (1) Accurate; it should provide the guaranteed impact of a

given error on the end-to-end output quality, (2) Precise; it should determine the impact on

output quality at fine granularity, (3) Comprehensive; it should provide the output quality

impact for virtually all errors for a given error model, (4) Automatic; it should impose the

absolute minimal programmer burden, (5) General ; it should be applicable for general error

models and applications, and (6) Low-cost ; it should perform comprehensive error analysis

across billions of errors in a program’s execution in an inexpensive fashion.

Error analysis techniques that satisfy all six of the above requirements pose a significant

research challenge and have thus-far remained elusive. Researchers have made significant

progress by relaxing some of these requirements. For example, one class of techniques rely on

empirically introducing a small (statistically determined) sample of errors during a program’s

execution (referred to as error injection) and observing the resultant behaviour [22, 65, 66,

67, 68, 69, 70, 71, 72, 73, 74]. These techniques aim to provide statistical averages or

probabilistic bounds of program behaviour under errors; they cannot comprehensively and

accurately guarantee impact on output quality for the large majority of errors that are left out

during sampling. Another class of techniques leverage program analysis to understand how

errors in data may propagate to affect program output [15, 75, 76, 77, 78, 79, 80, 81, 82].

While fast (low-cost), such techniques cannot accurately and precisely model an error’s

impact on execution since they use information from an error-free execution.

In the absence of systematic and general-purpose error analysis methodologies, a large

majority of error-efficient techniques today rely on program or domain experts to understand

the error tolerance characteristics of their program and articulate it via custom annotations,

data-types, error-bounds on function parameters etc. [3, 4, 5, 17, 18, 19] . This has been very

limiting since such expertise is sparse and can take years to develop for specific domains [20,

21, 22]. To mitigate this limitation, this work develops a suite of automated application-level

33

error analysis tools [25, 26, 31] that can automatically extract the error characteristics of

applications.

The error analysis tools developed as part of this work can accurately (>95% on average,

up to 99.9%) quantify the impact of virtually all errors (for a given error model) in a pro-

gram’s computation and data on its final output quality at very fine granularities (within a

2% error margin). Using a hybrid approach (built upon prior work [33]) of program analysis

and relatively few (up to five orders of magnitude less) error injections, these tools can com-

prehensively analyze billions of possible errors that can impact a program’s execution at low

cost. They impose the absolute minimal programmer burden by only requiring the user to

provide an unmodified program (along with relevant program inputs), a (domain-specific)

quality metric and optionally a quality threshold. These tools are general and can be used

to analyze any general-purpose application and have been evaluated for five different error

models. To the best of our knowledge, these are the first application-level error analysis

tools that satisfy all six requirements of automation, accuracy, precision, comprehensiveness,

(relatively) low-cost and generality. The output of automated error analyses are compre-

hensive application error profiles that list the errors that can affect the program’s execution

along with the corresponding output quality expected for each of the errors. The application

error profiles can be used by programmers or systems to understand the application’s error

characteristics.

The suite of tools described in this work have been systematically developed to enable

errors analysis in both instructions (compute) and data (storage). In this work, an error is

defined as a perturbation in program state (instructions or data) caused by an underlying

fault in hardware. We focus on transient errors in this work. Specifically, we develop the

following three automated error analysis tools:

1. Approxilyzer: Approxilyzer performs analysis of errors in program instructions (com-

pute). Approxilyzer [31] is the first automated error analysis tool to quantify the im-

pact, of virtually all errors (for a given error model) in program instructions, on the

program’s output quality with high accuracy, precision and (relatively) low-cost. The

error model used in Approxilyzer is single-bit transient errors in register operands of

dynamic instructions. Approxilyzer’s output is the application’s comprehensive in-

struction error profile. We have open-sourced and publicly released Approxilyzer [27].

2. gem5-Approxilyzer: To address the limitations in usability imposed by the pro-

prietary simulator (Simics) and ISA (SPARC) used in the original implementation,

we developed a fully open-source re-implementation of Approxilyzer, called gem5-

Approxilyzer [25]. gem5-Approxilyzer has been built using the open-source gem5

34

simulator [83] and designed in a modular fashion to enable extensions to different

ISAs, starting with X86 in this work. We have open-sourced and publicly released

gem5-Approxilyzer [28].

3. DataApproxilyzer: Errors in instructions (compute) and data (storage) propagate

differently through the program and, hence, require different analysis techniques.

While Approxilyzer and gem5-Approxilyzer analyze errors in program instructions, we

developed DataApproxilyzer to analyze errors in program data. DataApproxilyzer [26]

is the first automated error analysis tool to quantify the impact, of virtually all errors

(for a given error model) in program data, on the program’s output quality with high

accuracy, precision and (relatively) low-cost. The error model used in DataApproxi-

lyzer is multi-bit (1-bit, 2-bit, 4-bit and 8-bit) transient errors in system memory. The

output of DataApproxilyzer is the application’s comprehensive data error profile.

The rest of this chapter details the design choices, analysis techniques, methodology

and effectiveness of the automated application-level error analysis tool-suite. In the rest

of the document the Automated Error Analysis tools described above (Approxilyzer, gem5-

Approxilyzer and DataApproxilyzer) are collectively referred to as AEA tools.

3.1 MOTIVATION FOR HIGH-LEVEL DESIGN CHOICES

This section briefly explains the motivation for making specific high-level design choices

(which are orthogonal) for the error analysis techniques employed in this work.

3.1.1 Application-level Error Analysis

Different error-efficient techniques have been proposed at the level of software [10, 39, 40,

41, 42, 43, 44, 84, 85, 86, 87, 88] and hardware [6, 7, 8, 9, 10, 11, 89, 90, 91, 92, 93, 94,

95, 96, 97] with different trade-offs and targeted at different resource savings. We envision

future systems to contain a heterogeneous mix of error-efficient computing components with

control knobs that are exposed to software. The optimal combination of error-efficiency

techniques for a given workload can then be customized or tuned based on the output

quality requirements of the user and the error resilience characteristics of the workload. This

methodology is analogous to computing systems today where selective computing elements

(e.g., functional units, accelerators etc.) are activated at the direction of software (the

workload). As will be shown in Section 4.2, different applications have widely varying error

characteristics and a one-size-fits-all approach to error-efficiency is sub-optimal. Hence,

35

this work focuses on developing systematic methodology to perform error analysis at the

application-level.

3.1.2 Object Code Analysis

Application-level error analysis can be performed at source code [82, 98], compiler IR [99,

100] or object code (assembly) [13, 33] level. The advantages of source code and IR level

analysis are twofold: (1) It is easier to reason about the results of the error analysis in

relation to the source code and hence there is a simple 1:1 mapping to any programming

language framework where the error characteristics can be specified and (2) The generality

of error analysis is preserved across different architectures.

However the cost of preserving this generality is sacrificing customized ”tight” solutions

that may leave some computing efficiency untapped. Since the end goal is to enable maxi-

mum benefit from highly optimized and customized error-efficiency solutions, we choose to

perform the error analysis on assembly level (object) code. We will show that this choice is

validated (in Section 4.2.4) by undertaking a comparison (using gem5-Approxilyzer) of the

same application compiled to two different ISAs. The error profiles of the same application

are very different – leading to different static instructions being picked for resiliency and

approximate computing solutions – under the two different architectures. This opportunity

to customize architecture-specific error-efficiency solutions could not have been afforded by

analysis of the source code or IR. Hence, the choice is made to perform error analysis at the

object (assembly) code level.

3.1.3 Architectural Error Models

We choose architectural error models for our application-level error analysis. Architectural

error models (i.e., errors that affect the architectural state of the workload) are commonly

used in software-centric analysis [33, 82, 98, 99] as they are general and not hardware specific.

Architectural error models are also useful for analyzing software in the early design phases

when detailed lower level models are not available.

While architectural error models are important and realistic [101], they account for only

a subset of hardware errors that can occur in a system. Accurately modeling how low-level

(gate-level) hardware faults manifest at the architecture level is an open research problem

today. Simulating all low-level faults in the system provides accuracy but is intractable in

speed and cost. To bridge the gap between the accuracy of low-level fault models and the

speed of high-level error models, researchers have suggested techniques such as hierarchical

36

simulations [58] and fault dictionaries [102]. These techniques, however, are either applica-

ble to a limited set of faults or still too slow for exploring resiliency profiles for complete

applications. Additionally, their complexity and lack of generality further limits their use.

In the absence of high fidelity models that can translate the effects of low-level hardware

faults on the system, analysis techniques (especially those at the early stage of software/hard-

ware development) use high-level architectural models. It is important to note that the errors

represented by architectural models are realistic for a class of hardware errors. For example,

an error in the output latch of an adder can propagate and result in a single bit error in the

architectural register file.

While progress is being made to improve the fidelity of error models, comprehensively

analyzing high-level architectural models is an important research problem. Being able to

comprehensively and effectively analyze large numbers of high-level errors can not only pro-

vide increased coverage (for modeling the effects) of hardware errors today [101] but can

potentially play an important role in comprehensive testing of hardware and software in the

future (when better translation is available between the low-level and high-level error mod-

els). This work significantly improves the state-of-art to show how high-level architectural

errors can be analyzed accurately, comprehensively and at low-cost (a problem that was

intractable before this work).

We note, however, that concepts and methodology developed as part of this work are gen-

eral and can potentially be applied to other (lower-level) error models as well. For example,

a recent tool called Merlin [103] takes inspiration from hybrid error analysis (specifically

the concept of error equalization similar to that used in this work) and applies it to a set

of lower-level micro-architectural errors. Extending the error analysis techniques from this

work to comprehensively analyze other error models is part of our future work.

3.2 MOTIVATION FOR HYBRID ERROR ANALYSIS

Error analysis techniques in the literature can be classified into three main categories

(focused largely on transient errors):

(1) Error injection: The most widely used evaluation technique is error injection, where

an error is injected (typically one error at a time) in a given cycle in a real or simulated

system and its impact studied [56, 57, 58, 59, 60, 61, 99, 104, 105, 106]. This technique can

predict the impact of an error with high accuracy. Unfortunately, comprehensively injecting

each error of interest at each cycle in an execution is prohibitively time consuming. Most

work therefore performs statistical error injection which injects selected error types in a

randomly selected sample of execution cycles. While such a technique can provide statistical

37

summaries of the program’s behaviour under errors (for example, silent data corruption

rates), it does not accurately determine the impact of errors that are unsampled.

(2) Program analysis: Some evaluation techniques examine certain (static or dynamic)

program properties to identify program locations that are vulnerable to errors [15, 75, 76, 77,

78, 80, 82, 98, 107]. These techniques are much faster than error injection based techniques,

but their accuracy (in precisely modeling the impact of errors on program output) has not

been previously validated

(3) Hybrid injection+analysis: A recent work, called Relyzer [33], demonstrates the use

of a hybrid technique – which uses a combination of program analysis and error injection

– to comprehensively analyze virtually all single-bit errors in integer registers of dynamic

instructions within a program. Relyzer applies static and dynamic program analyses (with

some heuristics) to determine when different errors in the program’s instruction result in

the same outcome (i.e., impact the output similarly). For a set of errors that are shown to

produce equivalent outcomes, Relyzer performs error injection for only one of these errors

(referred to as the pilot) to determine that outcome. Relyzer uses program analysis to

prune the number of error injections needed for comprehensive error analysis by 99.78%

and demonstrates an accuracy of >96% (for error outcome prediction). Relyzer’s analysis is

used to accurately determine which instruction errors will lead to Silent Data Corruptions

(SDCs), where an incorrect output is produced.

Although Relyzer is 2 to 6 orders of magnitude faster than comprehensive error injection, it

unfortunately still spends a significant amount of time in error injection for the pilot errors.

Thus, while Relyzer is certainly more practical than comprehensive pure error injection,

compared to program analysis based techniques, its accuracy comes at a significant cost in

speed – the program analysis techniques studied average running times of approximately 5

CPU hours compared to 2.5 days of wall clock time on a 188 cluster node for Relyzer (90%

of this time is spent on error injections).

A legitimate question therefore is whether current program analysis based techniques

obviate the need for hybrid tools such as Relyzer altogether. As mentioned above, it has

not been previously possible to test the accuracy of program analysis based techniques. The

availability of Relyzer allows us to perform such a test.

In this work, we evaluate the accuracy of several program analysis based techniques using

Relyzer [30]. We use program based metrics proposed by [98] and some derivatives as

examples of pure program analysis based techniques that have been suggested to measure

the vulnerability of instructions to SDC. By comparison with Relyzer, we show that, in

general, these program analyses based metrics and their various derivatives and combinations

are unable to adequately predict an instruction’s vulnerability to SDCs [30]. Although it

38

is possible that other analysis based techniques (and more sophisticated machine learning

techniques) are more accurate, a comprehensive evaluation of all such techniques is outside

the scope of this work. Nevertheless, the negative results provided here do indicate that there

is much work needed to develop accurate pure program analysis based techniques, and hybrid

techniques (like Relyzer) provide a valuable solution to the error analysis problem. Thus, a

hybrid error analysis technique is chosen for developing the automated error analysis tools

described in this work.

3.2.1 Methodology to evaluate program analyses based techniques

To evaluate the accuracy of pure program analyses based techniques, we study metrics

proposed by [98] and some derivatives. Particularly, we explore the following two metrics

from [98] for a given static instruction, as an indicator of its vulnerability to producing SDCs.

(1) Fanout is defined for a static instruction that writes to a register as the cumulative fanout

of all the dynamic instances of the instruction. Fanout for a dynamic instruction that writes

to a register R is defined as the number of dynamic uses of R before the next dynamic

write to R. (2) Av.lifetime is defined for a static instruction that writes to a register as

the average of the lifetimes of dynamic instances of the static instruction. Lifetime for a

dynamic instruction Id that writes to a register R is defined as the number of cycles from

the execution of Id to the last use of R before the next dynamic write to R.

We also explore the following three metrics. (1) Av.fanout, which is the fanout averaged

over all dynamic instances of an instruction. (2) Lifetime, which is the cumulative lifetime

over all dynamic instances of an instruction. (3) Dyn.inst, which is the total number of

instances of the static instruction. The last metric was also explored in the prior work, but

did not show promise – we present it here because it performed better than other metrics in

some cases in the results.

We evaluate the five metrics using five single-threaded applications – two (randomly se-

lected) from PARSEC [108] and three (randomly selected) from the SPLASH-2 [109] bench-

mark suites. Table 3.4 provides a brief description of these applications and inputs used.

We collect the values of these metrics at the instruction level using Wind River Simics [110].

All the metric values are normalized to one. Since lifetime and fanout for an instruction are

derived from its destination register, the metrics evaluation is restricted to errors in destina-

tion registers. For a given static instruction, we also obtain the number of SDCs it produces

by employing Relyzer and use it as the golden metric (sdc), also normalized to one.

Although Relyzer analysis is orders of magnitude faster than naiv̈e error injections cam-

paigns, it still requires a significant number of error injections (in the pilots chosen through

39

Application Input

PARSEC 2.1
Blackscholes sim-large
Swaptions sim-small

SPLASH 2
FFT 64K points
LU 512× 512 matrix, 16× 16 blocks

Water 512 molecules

Table 3.1: Applications studied.

error equalization) to cover all the error-sites (program locations where an error can occur;

which for Relyzer’s error model is integer register bits in dynamic instructions). In the in-

terest of simulation time, prior work has instead chosen to analyze or cover a large subset

(>95% but <100%) of error-sites, which is sufficient for most applications [33]. In this work,

an aggregated Relyzer coverage of 97% is used. To ensure that the missing error information

did not skew the metrics evaluation, we additionally ensured that all error-sites belonging

to static instructions that cover at least the top 75% of the metric values were analyzed.

Any missing information, therefore, is from static instructions that have among the lowest

metric values and the lowest dynamic instruction counts.

Metric evaluation:

Three different methods are used to evaluate the metrics described above. The first two

methods quantify how accurately the individual metrics predict SDCs in isolation while the

third evaluates a combinations of the metrics.

Correlation coefficient: For each application, correlation coefficients1 between individual

metrics and sdc (golden metric) is measured to study the linear relationship between them.

Cost vs. SDC reduction: We note that the objective of estimating SDCs with metrics is

to identify optimal set of SDC-targeted error detectors. We therefore employ a 0/1 knapsack

algorithm to find an optimal set of detectors that will provide the largest SDC reduction at

a given cost – we assume duplication for detectors and charge one instruction as the cost of

duplicating and comparing results for one instruction on average (similar to [13]). Thus,

SDC reduction vs. cost graph for each application is obtained using the known SDC count

for each instruction from Relyzer. We call this Relyzer curve (RC).

We then apply the same knapsack algorithm using the metric of interest, instead of the

1Correlation coefficients cc are a standard measure of the linear relationship between two variables X and
Y giving a value between +1 and -1 inclusive. |cc| gives the strength of the correlation (1 indicates a perfect
linear correlation and 0 indicates no correlation between X and Y). We use Pearson’s correlation coefficients
in our analysis.

40

SDC count, and plot a similar tradeoff curve which we call Prediction curve (PC). This curve

is the predicted SDC reduction vs. cost curve if the metric were accurate. We also plot an

Actual curve (AC) as follows: for each point on the PC curve, we calculate and plot the

actual number of SDCs (from Relyzer) covered by the instructions actually identified by the

metric in the PC curve. This gives us the actual SDC reduction vs. cost curve of the metric.

For a given cost, the gap between AC and RC tells us how well the metric estimates SDCs

(the smaller the gap, the better).

Combining multiple metrics: We also evaluate combinations of the above metrics using

linear models based on regression techniques that use these metrics to predict SDCs being

produced by the instructions. We use the statistical tool R to build (least square) linear

regression models for each of the benchmarks, which take the following form:

sdci = β0lifetimei + β1fanouti + β2av.lifetimei+

β3av.fanouti + β4dyn.insti + εi
(3.1)

We also attempt to evaluate a non-linear combination of the metrics. Since some non-linear

relationships between variables (or metrics) can be approximated using linear regression on

polynomials,2 we evaluated another linear regression to model the following:

sdci = β0lifetimei + β1(lifetimei)
2 + β3(lifetimei)

3+

β4fanouti + β5(fanouti)
2 + β6(fanouti)

3+

β7av.lifetimei + β8(av.lifetimei)
2 + β9(av.lifetimei)

3+

β10av.fanouti + β11(av.fanouti)
2 + β12(av.fanouti)

3+

β13dyn.insti + β14(dyn.insti)
2 + β15(dyn.insti)

3 + εi

(3.2)

3.2.2 Accuracy of pure program analyses based metrics

This section presents the results for the accuracy of program analyses based techniques,

evaluated using the methodology described in Section 3.2.1

Correlation coefficients

Table 3.2 shows the correlation coefficients between sdc and individual metrics for all the

metrics and applications studied. It shows that av.lifetime and av.fanout have virtually no

correlation with sdc for our workloads. Lifetime displays weak to virtually no correlation

2The more complex the non-linearity, the higher the order of polynomials required.

41

and fanout exhibits moderate correlation for Blackscholes, FFT and LU. Although dyn.inst

is the only metric that shows high correlation with sdc for a few applications (FFT and LU),

there is no single metric that uniformly demonstrates a strong linear relationship with sdc

for all our workloads. Furthermore, when correlation is calculated on the combined data

points from all the benchmarks (represented by All), none of the metrics display a strong

association with sdc.

Applications vs lifetime fanout av. lifetime av. fanout dyn.inst

Blackscholes

sdc

0.25 0.56 -0.05 -0.04 0.68
Swaptions -0.04 0.21 -0.03 -0.02 0.27

FFT 0.08 0.52 -0.03 -0.01 0.82
LU 0.19 0.56 -0.02 -0.01 0.80

Water 0.08 0.40 -0.02 -0.01 0.52
All 0.13 0.49 -0.02 -0.01 0.62

Table 3.2: Correlation coefficients between metrics and sdc for different workloads.

Cost vs. SDC reduction

Here we compare optimal cost vs. SDC reduction curves for the metrics vs. Relyzer by

plotting the RC, PC, and AC curves as described in Section 3.2.1. For brevity, the cost

vs. SDC reduction curves are presented for a representative subset from our workload and

metric combinations in Figure 4.7.3

In the remainder of this section the term gap is used to signify the difference in the Y axis

(SDC) for a given value on the X axis between the different curves.

Graphs for LU:dyn.inst and FFT:dyn.inst show a high correlation between PC and AC,

which was expected based on Table 3.2. (The gap between the PC and AC curve – which

shows the inaccuracy in the SDC coverage claimed by the corresponding metric – is lower

for these graphs).

However, even for these best cases there is a significant gap in SDC reduction between the

AC and RC curves, showing that these metrics do not pick the optimum set of detectors. For

example, at dynamic instruction overhead of 20%, the loss in SDC reduction for LU:dyn.inst

and FFT:dyn.inst is 37% and 17%, respectively (compared to RC). This is primarily because

3For graphs that use av.lifetime and av.fanout, the PC curve immediately goes up to very close to 100%.
This is because the static instructions that have very large values for av.lifetime and av.fanout have few
dynamic instructions. Hence, these static instructions account for a large fraction of these metrics and the
execution overhead of protecting them (based on dynamic instruction count) is very small.

42

PC AC RC

0

20

40

60

80

100

0 20 40 60 80 100

 Blackscholes : fanout

0

20

40

60

80

100

0 20 40 60 80 100

 LU : fanout

0

20

40

60

80

100

0 20 40 60 80 100

 Swaption : lifetime

0

20

40

60

80

100

0 20 40 60 80 100

 Swaption : av.lifetime

0

20

40

60

80

100

0 20 40 60 80 100

 LU : dyn.inst

0

20

40

60

80

100

0 20 40 60 80 100

 FFT : dyn.inst

0

20

40

60

80

100

0 20 40 60 80 100

 Water : av.fanout

0

20

40

60

80

100

0 20 40 60 80 100

 Water : lifetime

Figure 3.1: SDC reduction vs. execution overhead. The X axis plots % execution overhead
(in terms of increase in dynamic instructions) and the Y axis represents % reduction in
SDCs.

the instructions that do not produce SDCs were also selected for protection (false positives)

by the metrics.

Overall, the significant gaps we observed in the SDC reduction between AC and RC for

a given overhead reveals that the individual metrics are poor predictors of SDC causing

instructions. This also indicates that correlation coefficient alone is not a determining factor

in predicting SDCs.

Combining multiple metrics

Table 3.3 shows the result of the linear regression (Equation 3.1) for the workloads studied.

It shows the metrics that are significant4 to the model and the model’s adjusted R2. The

adjusted R2 value estimates the percentage of variance in sdc that is explained by the metrics.

If the adjusted R2 is high then the derived model is considered robust. For example, 0.66

adjusted R2 for LU implies that only 66% of the variance in sdc can be explained by the

metrics, which leaves 34% as unexplained or caused by randomness. However, a low adjusted

R2 value can be interpreted either as (a) the model is missing key additional explanatory

4A standard t-test is used to calculate the significance of the individual linear regression coefficients.

43

Applications Significant Adjusted CV10 CV4 CV2
metrics R2 RMSE/Mean

Blackscholes
fanout, av.fanout, dyn.inst,

lifetime
0.61 [0.67] 1.46 [> 104] 264 [> 103] 285 [> 104]

Swaptions dyn.inst, lifetime 0.07 [0.26] 4.48 [4.16] 4.55 [4.25] 4.64 [4.44]
FFT dyn.inst, lifetime 0.68 [0.69] 6.91 [> 107] 10.1 [> 107] 5.94 [> 105]
LU dyn.inst, fanout 0.66 [0.77] 4.96 [152] 4.73 [85.1] 4.95 [201]

Water
lifetime, fanout, av.lifetime,

av.fanout, dyn.inst
0.28 [0.49] 5.82 [> 103] 6.03 [> 103] 10.3 [> 104]

All
dyn.inst, lifetime, fanout,

av.lifetime
0.39 [0.50] 4.55 [9.97] 4.40 [14.3] 4.45 [79.2]

Table 3.3: Linear regression summary. The significant metrics and the main number in each
cell are the result of using linear regression based on Equation 3.1. The numbers in the
square brackets are results using linear regression on polynomials based on Equation 3.2.

variables (other metrics), or (b) that a linear model is not sufficient to explain the relationship

between the metrics and sdc. Overall, we make the following observations:

• No common model (formed by a linear combination of our metrics) that offers a best fit

for all our workloads was identified. For different applications, different metrics were

identified as being significant contributors. For metrics that prove to be significant

for multiple applications, the respective regression coefficients (βi) were different. For

example, even though fanout is identified as a significant metric for Blackscholes, LU,

and Water, the regression coefficients (β1) were 0.60, -0.21, and -0.33 respectively.

• The adjusted R2 values varied between 0.07 (for Swaptions) to 0.68 (for FFT) and

were mostly lower than desired.

• The last three columns of Table 3.3 show the ratio of the Root Mean Square Error

(RMSE) to the Mean for K-fold cross validations (CVK)5 with K = 10, 4 and 2. Even

for models that have relatively high adjusted R2 value (e.g., for LU or FFT), the cross

validation showed high errors (values >1) in the predicted and observed SDCs. For

example, for FFT, the average error for CV4 is a very high 10.1 times the mean.

The results from nonlinear regression (Equation 3.2 in Section 3.2.1) are presented in

brackets in Table 3.3. They show a trend similar to that of linear regression – no common

model for the studied workloads is identified. The adjusted R2 has improved for all the

workloads, which indicates that a nonlinear combination of the metrics can perform better

5Cross validation (CV) is a model validation technique for accessing how well the results of the analysis
generalize to an independent set. A K fold cross validation splits the population randomly into K parts. K-1
parts are used for training the model and the remaining one part is used for testing. This is done K times
until all the parts have been used for testing.

44

than a linear combination in predicting SDCs. However, for several applications the adjusted

R2 value is still poor, indicating that other metrics and/or different nonlinear regression

models are required. The last three columns show that the error from cross validation is also

high. In the data sets for some of the applications, there are outliers that have significantly

larger metric values than others. During CV when these outlier metric values are fed into the

model, they produce large deviations in the output which result in higher RMSE. Regression

on polynomials further exacerbates this problem as the model exponentially increases the

error. For example, in FFT just one instruction accounts for approximately 96% of av.fanout

of the entire application and removing it brings the CV error for polynomial regression down

from approximately 107 to approximately 5. Although removing these outliers may improve

the error rate, it also means that we are removing from our analysis instructions that the

metrics identify as the most vulnerable. Since we are evaluating the predictive capacity of

the metrics, we choose to not remove these instructions.

In summary, simple linear and nonlinear models using the pure program analyses based

metrics we study do not uniformly explain or predict SDCs in the workloads studied. While

other program analysis based metrics may be more effective, these results provide evidence

that developing such metrics is not straightforward and establish the value of hybrid error

analysis techniques (such as Relyzer) in accurately determining the impact of errors on

output.

3.3 COMMON CONCEPTS AND METHODOLOGY FOR AUTOMATED ERROR
ANALYSIS TOOL SUITE

The following sections provide a brief description of common concepts, terminology and

methodology employed in the development and evaluation of all three automated error analy-

sis tools described in this work – Approxilyzer, gem5-Approxilyzer and Minnow (collectively

referred to as AEA tools) .

3.3.1 High-Level Objective of Error Analysis

The goal of the error analysis undertaken in this work is to characterize the impact of any

given error (per the error model) in a program’s execution with high accuracy and precision.

The term error site(s) is used to refer to specific points in the application’s execution where

an error could be encountered. Thus, if the error model used is single-bit transient errors in

architectural registers (as in the case of Approxilyzer [31] and gem5-Approxilyzer [25]), then

an error site will refer to a specific bit in a specific operand register of a specific dynamic

45

instruction.

The error analysis must accurately determine the outcome (impact on program output)

of an error - no output, correct output or corrupted output with quality degradation Q (

measured compared to the output generated by an error-free execution) – for virtually all

error-sites in the program. We will use the term output quality hereafter to refer to the

degradation in output quality caused by an error in the execution.

Since error-efficient techniques trade-off output quality for resource savings, the error

analysis must determine output quality with high precision – for example, the tools must

be able to distinguish if an error resulted in an output quality degradation of 20% vs 23%

etc. Finally, it must do this using a general methodology (applicable to different applica-

tions and error models) that is (relatively) inexpensive and imposes minimal burden on the

programmer.

3.3.2 Error Models

The AEA tools are designed to analyze errors in both instructions (compute) and data

(storage) in a given application. In this work we focus on transient bit-flip errors [98, 111,

112, 113, 114, 115]. Targeted bits (in instruction and data) are flipped (value changed

from 0 to 1 or 1 to 0) and remain in corrupted state till they are overwritten. The error

models for instructions (used in Approxilyzer and gem5-Approxilyzer) and data (used in

DataApproxilyzer) are described below.

Error Model for Instructions

The error model used is a single bit transient error in instruction registers. This error

model has been widely used in literature [13, 33, 98, 111, 115] and shown to be effective [115].

Specifically, our error model is a single bit transient error in an operand register of a dynamic

instruction in the program. Hence, an error site refers to a specific bit in a specific operand

register in a specific dynamic instruction. Errors in both integer and floating point archi-

tectural registers are studied. The error can occur in the source operand register (the error

occurs just before the register value is read by the instruction) or the destination operand

register (the error occurs just after the register value has been written by the instruction) of

a given dynamic instruction. To illustrate with an example, consider a dynamic instance of

an multiply instruction with register operands r1, r2 and r3. We consider single-bit flips in

registers r1, r2 and r3 that are accessed by this instruction (one at a time, in different bits).

46

Error Model for Data

The error model used is multi-bit transient errors in (data stored in) system memory. We

focus on multi-bit errors in memory words as they are are an increasing concern [116, 117,

118, 119] in modern memory systems. Furthermore, unlike in the case of single-bit memory

errors, widely used ECC schemes are incapable of protecting the memory against multi-bit

errors in the same word (two-bit errors can be detected but not corrected; errors in three or

more bits can neither be detected or corrected). We study errors in data memory regions

(both heap and stack); errors in memory regions containing code are not studied.

Error sites for data corruption (during a program’s execution) in memory have both a

spatial (where, i.e., which memory address) and a temporal (when, i.e, what cycle in the

program execution) component. For example, consider a data byte D that is accessed (read-

/written) multiple times (by different dynamic instructions) during a program’s execution.

A given error in D could impact the output quality differently depending on whether it

occurs while being accessed by dynamic instruction X vs. dynamic instruction Y. Thus, it

is essential to distinguish and identify data errors based on both when and where the error

occurred. In order to capture the temporal component of errors we record the first dynamic

instruction in the program execution that reads (error occurs just before the read) or writes

(error occurs just after the write) the corrupted data bit(s). Thus, an error site is defined as

individual (random) bits in data bytes that are accessed (read/written) by a given dynamic

memory instruction. To illustrate using the example described above, for a given dynamic

instance X of a memory instruction (load/store) that accesses (reads/writes) data byte(s)

D, we consider n-bit errors (one at a time, in different combinations of n bits) in D.

Specifically, we study the following four error models:

1. 1-bit: A single bit error in a given data bit accessed by a given dynamic instruction

2. 2-bit: Error in any two data bits of the n (n >= 1) bytes of data accessed by a given

dynamic instruction.

3. 4-bit: Error in any four data bits of the n (n >= 1) bytes of data accessed by a given

dynamic instruction.

4. 8-bit: Error in any eight data bits of the n (n >= 1) bytes of data accessed by a given

dynamic instruction.

In this work, we study errors in an abstract memory device from which data is read or

written. This allows us to study the impact of errors on data while being agnostic to different

memory configuration implementations. We choose this design since our goal is show that

47

3

Quality Metric
+

+
Quality Threshold (Optional)

Unmodified

Program

Comprehensive
Error
Profile

Error Analysis

Figure 3.2: Overview of the input and output interface of the Automated Error Analysis
tools.

it is possible to accurately determine the impact of any and all data errors (for a given

error model). Thus, we chose an error model where data errors are always “activated” or

consumed by the execution. This need not be true in systems that have caches. For instance,

an error in DRAM will not be activated if a copy is present in SRAM (the execution will

access the error-free data from the SRAM). Similarly, an error in a clean (not dirty) line in

SRAM will not be activated if it is evicted before it can be read. The techniques presented

in this work are generally applicable to errors in both SRAM and DRAM. Depending on

particular system memory configurations, a subset of data errors will simply not be activated

(and hence need not be analyzed).

3.3.3 Inputs for Error Analysis

As shown in figure 3.2, the AEA tools require the following inputs from the user:

1. Application: An (unmodified) application that the user wishes to analyze along with

its relevant program input parameters.

2. Quality Metric: Underlying any error-efficient computing solution is the need to quan-

tify output quality through an end-to-end quality metric. To quantify the quality

(degradation) of a corrupted output, it is essential to find a measure of its difference

from the golden (error-free) output. This “difference measure” is referred to as the qual-

ity metric – technically, this is a quality degradation metric since the higher the value of

the difference, the lower the quality. The quality metric is domain-specific [87, 120, 121]

and the AEA tools assume that the programmer or user will supply it.

3. Quality Threshold (Optional): Another parameter pertinent to many use cases for

error-efficient computing is the quality threshold that sets a bound on the maximum

48

quality degradation that is acceptable to the user. The quality threshold is an optional

parameter that the AEA tools can take as input from the user. Since programmers

may want to use the AEA tools for analysis or tuning, these tools enables them to

specify quality threshold ranges if they so desire. In the limit, no threshold range may

be specified, in which case the tools will perform their analyses for the full range of

quality degradation.

Along with the application, the quality metric is the absolute minimal input required

by any error analysis tool. It is a tall order for any tool to predict how the user intends

to use the program output and, hence, how they wish to calculate output quality. For

example, in a program with numerical outputs, the user might want to measure the average

deviation (from the golden output) across all components or might want to measure the

maximum deviation for each individual output component. Error analysis tools (including

the AEA tools developed in this work) assume that the user will provide the quality metrics.

Although an orthogonal concern, in order to assist the user, we envision incorporating simple

domain-specific libraries in the error analysis framework that include common sense quality

metrics and thresholds that a user can choose. For example, the maximum of the relative

(percentage) difference between the golden and error-free output components, L2-norms of

matrices, and absolute differences are examples of quality metrics that quantify the deviation

of the erroneous output from the error-free one. Negative values and infinities are examples

of obviously unacceptable outputs for many financial applications – the user can choose to

apply acceptable thresholds. Section 3.3.5 describes specific metrics and thresholds used

in evaluating the AEA tools. The error analysis methodology developed in this work are

independent of the quality metric and quality thresholds chosen.

In summary, the AEA tools developed in this work place the absolute minimal burden on

the user, by only only requiring an (unmodified) application, an end-to-end quality metric

and, optionally, acceptable quality thresholds.

3.3.4 Quality Aware Error Outcome Categorization

The impact of an error of the output of an execution is referred to as error outcome.

Traditional error analysis schemes broadly classify error outcomes as either Masked (the

effects of the error are masked by the execution and correct output was generated), De-

tected (no output was generated, as in the case of program crash or hang), or Silent Data

Corruption (an incorrect or corrupted output was generated). Prior tools like Relyzer do

not consider output quality, marking all corruptions in an output (no matter how trivial) as

49

Er
ro

r
Detected

Output Corruption
(OC)

Detectable Data
Corruption (DDC)

Silent Data Corruption
(SDC)

SDC-Bad

SDC-Maybe

SDC-Good

Masked

Figure 3.3: A quality aware error outcome classification and their implication for error-
efficient approximation and resiliency.

a Silent Data Corruption (SDC) outcome.

The AEA tools refine the notion of an error outcome by including the quality of the er-

roneous output as part of this outcome. They assess the quality of the corrupted/erroneous

output by measuring its deviation from the error-free/precise output using the quality met-

rics provided by the user. Thus, an error that produces a quality degradation of (say) 20%

is said to have a different outcome from one with a quality degradation of (say) 25%.

In this work, we introduce a new categorization of error outcomes [31] to incorporate

the notion of output quality into the category of errors traditionally known as Silent Data

Corruptions (SDCs), as illustrated in Fig 3.3.

We use the term Output Corruption (OC) to indicate the outcome of an error where

the execution runs to completion without crashing the program, but where the output does

not match up identically to that of the golden (error-free) output. In the literature, such

outcomes have previously been uniformly referred to as SDCs. However, we observe that

there is a subclass of these previously classified SDCs that is, in fact, detectable and not

strictly silent. Such outcomes can be detected using a variety of low-cost mechanisms such

as range detectors [12, 13]. Additional detectors are introduced in the AEA tools to catch

NaNs, infinity values, negative outputs (if not expected by an application), and a check to

see if the final output of the erroneous execution generates the same number of values as the

golden output, irrespective of deviation. Our categorization refers to the output corruptions

detected through the above means as Detectable Data Corruptions (DDC). It refers to

the remaining output corruptions, which are not detectable and truly silent, as Silent Data

Corruptions (SDC).

50

The SDCs are further categorized as follows:

SDC-Good: These SDCs are highly tolerable SDCs which produce negligibly small quality

degradations. This category also includes outcomes where the deviations from the golden

output occur only in non-significant portions of the output (e.g., program related statistics

and timing information).

SDC-Maybe: These are potentially tolerable SDCs. The entire class is not outright tol-

erable, but a subset of SDCs in this class may be tolerable based on user-provided application

quality constraints – usually in the form of an acceptable quality threshold.

SDC-Bad: These produce such large quality degradations that it can be reasonably

assumed that they are not tolerable for most applications and users.

The above categorization of the SDCs is dependent on the domain-specific quality metric

(required) and acceptable quality thresholds (optional) provided by the user. If a quality

threshold is provided by the user, then whether an SDC is tolerable or not is a binary decision

based on whether the resulting output quality degradation falls below or above the quality

threshold. In the absence of user-provided quality thresholds (e.g., in cases where the user

wants to undertake program analysis or tuning), the the SDC error sites are classified into

SDC-Good, SDC-Bad, and SDC-Maybe.

To assist the user, the AEA tools incorporate simple domain- specific and common sense

quality metrics and thresholds that a user can choose. For example, negative values and

infinities are examples of obvious DDC outputs for many financial applications, and quality

differences of less than one-hundredth of a cent could be assumed to be SDC-Good. The

classification into SDC-Good and SDC-Bad occurs only if the user chooses to apply common

sense domain-specific thresholds provided by the tool (Section 3.3.5); Otherwise all the SDC

error sites are classified as SDC-Maybe.

For each error site belonging to the SDC-Maybe error class, the AEA tools also records

its associated output quality degradation. Hence, the output quality for a given error site is

characterized by its error outcome class (also called error outcome category or simply error

category) and additionally, in the case of SDC-Maybe, by the amount of quality degradation

introduced in the output.

3.3.5 Workloads and Quality Measures

To evaluate the AEA tools, we use workloads across three different benchmark suites

(Parsec [122]6, Splash-2 [109] and Accept [4]) and spanning multiple application domains.

6Approxilyzer uses Parsec 2.1, whereas gem5-Approxilyzer and DataApproxilyzer use Parsec 3.0. The two
applications (Blackscholes and Swaptions) studied from the Parsec suite do not significantly vary between

51

Application Domain Description

PARSEC [122]
Blackscholes Financial Modeling

Calculates prices of options with Black-
Scholes partial differential equation

Swaptions Financial Modeling
Computes prices of a portfolio of swaptions
using Monte Carlo simulations

SPLASH-2 [109]
FFT Signal Processing 1D Fast Fourier Transform

LU Scientific Computing
Factors a matrix into the product of a lower
& upper triangular matrix

Water Scientific Computing
Evaluates forces and potentials that occur
over time in a system of water molecules

ACCEPT [4] Sobel Image Processing
Image convolution kernel implementing the
Sobel filter

Table 3.4: Applications studied.

Application DDC SDC-Good SDC-Bad SDC-Maybe

Blackscholes Fi > $500 max-abs-diff < $10−4 max-rel-err > 100% max-rel-err
Fi < $0

Swaptions Fi > $500 max-abs-diff < $10−4 max-abs-diff > $1 max-abs-diff
Fi < $0

No
LU No App-Specific max-rel-err < 10−4% max-rel-err > 100% max-rel-err

Detectors
No

Water App-Specific max-rel-err < 10−4% max-rel-err > 100% max-rel-err
Detectors

No
FFT App-Specific rel-l2-norm < 10−4% rel-l2-norm > 100% rel-l2-norm

Detectors
No

Sobel App-Specific mean-pixel-diff < 10−4% mean-pixel-diff > 100% mean-pixel-diff
Detectors

Common to all Fi = NaN Errors in non-
apps Fi = Inf significant portions

#F != #G of the output

Table 3.5: Quality metrics and quality thresholds used for different applications.

Table 3.4 provides a brief description of the applications studied.

Table 3.5 details the quality metrics and quality threshold ranges used (per application)

in evaluating the AEA tools7. In the absence of specific domain studies and standardiza-

tion [87, 120, 121], we have done our best to choose quality metrics that strike a balance

between over- and under-estimating an application’s tolerance to errors. For example, con-

sider outputs with multiple components. Without further guidance, one must first determine

a difference function for each component and then a method to aggregate across the compo-

the two versions.
7Determining the quality metrics and quality thresholds to use involved a multi-month effort where we

consulted different domain experts to understand how they use use the application and how much quality
loss they can tolerate

52

nents. Depending on the magnitude of the individual components, we use the absolute dif-

ference (small magnitude) or the relative difference (large magnitude) for the per-component

difference function. To aggregate across components, we use the maximum instead of the

average (average can hide very large errors in individual components when the number of

components is large). In cases where there is an established common practice to analyze the

output, we use the corresponding quality metric. For example, FFT produces a matrix and

we use the relative difference in the bounded L2 norm to determine the output quality8. In

the case of Sobel (which produces an image output), we measure the pixel difference between

images [4]. More precisely, given a golden output G and a faulty (erroneous) output F , both

having n components, where n ≥ 1, Table 3.5 uses the following quality metrics.

(1) max-abs-diff : This metric calculates the maximum absolute difference between the

components of the golden and faulty outputs.

max-abs-diff = max(|G1 − F1|, |G2 − F2|, . . . , |Gn − Fn|) (3.3)

(2) max-rel-err : This metric calculates the maximum of the relative error between the

individual components of the golden and faulty outputs.

rel erri =
|Gi − Fi|

Gi

∗ 100 (3.4)

max-rel-err = max(rel err1, rel err2, . . . , rel errn) (3.5)

(3) rel-l2-norm : This metric is typically used in mathematics to directly compare two

matrices. The metric estimates the relative difference in the bounded L2 norms (BL2N) of

the golden and erroneous matrices. For any matrix A, having n elements, a1, a2, . . . , an, we

define the following,

‖A‖BL2N =
‖A‖L2

n
(3.6)

where,

‖A‖L2 =

√√√√ n∑
i=1

a2
i (3.7)

The rel-l2-norm is thus defined as:

rel-l2-norm =
‖G− F‖BL2N

‖G‖BL2N

∗ 100 (3.8)

8We do not use this for LU because it effectively produces two triangular matrices and how the errors in
the two are composed depends on how the output is used.

53

(4) mean-pixel-diff : This metric is used for image outputs and calculates the mean of

the differences between individual pixels within the images (normalized as percentage).

mean-pixel-diff =
|Gi − Fi|
255 ∗ n ∗ 100 (3.9)

Table 3.5 also lists the quality threshold ranges for identifying SDC-Good and SDC-Bad

(Section 3.3.4). We use fairly conservative values that we believe will be reasonable for

most users and applications. As mentioned in Section 3.3.4, the AEA tools uses detectors

to catch DDCs. These detectors include range violations, NaNs, infinity values, negative

outputs (if not expected by an application), and a check to see if the final output of the

erroneous execution generates the same number of values (components) as the golden output,

irrespective of deviation. The DDC detectors used for different applications are detailed in

Table3.5.

3.3.6 Output of Error Analysis

0x4028cf, 3678000, r8, 1, Destination ::: SDC-Good : 0.00008%

PC

Cycle number
(dynamic instance of PC)

Register Name Error outcome category

Output quality deviation caused
by error at this error site

ERROR SITE DESCRIPTION ERROR OUTCOME
Bit

Operand type
(Source/Destination)

Example of a single entry from the instruction error profile

0x401a88, 2250443, Read-1, 0x6a10a, 2, 7 ::: SDC-Maybe : 4.25%

PC

Cycle number
(dynamic instance of PC)

Access-id

Memory Address

Byte offset Error outcome category

Output quality deviation caused
by error at this error site

ERROR SITE DESCRIPTION ERROR OUTCOME

Bit

Example of a single entry from the data error profile (1-bit error model)

(a)

(b)

Figure 3.4: A single example entry, describing a single error site and its corresponding error
outcome, is shown for (a) instruction error profile (error model - one bit transient error in
dynamic instruction register) and (b) data error profile (error model - one bit transient error
in data bit accessed by a dynamic instruction).

54

The output of the error analysis (for a given application) is a comprehensive error profile

of the application. The error profile contains a detailed list of the error outcomes for virtually

all errors (for a given error model) in the program’s execution. Each entry in the error profile

contains two pieces of information, (1) the description of an error site in the program and

(2) the error outcome (Section 3.3.4) of an error at the described error site.

Approxilyzer and gem5-Approxilyzer use an error model of transient errors in instructions

(Section 3.3.2) and hence the error profile they output characterizes the behavior of errors

in program instructions, and is called the instruction error profile. DataApproxilyzer, on

the other hand, analyzes transient errors in program data (Section 3.3.2) and accordingly

its output error profile is called the data error profile.

Figure 3.4 shows a single example entry, each from the instruction and data error profiles.

The instruction error profile entry, for example, shows that an error, in bit 1 of register 8 in

the dynamic instance of instruction 0x4028cf (this is the static PC) at cycle number 3678000,

will lead to an output with a quality degradation of 0.00008%, which, using the common-

sense thresholds supplied by the tool, is an error outcome categorized as SDC-Good. The

entry for the data error profile in Figure 3.4 shows an example error model of a 1-bit error in

data that is stored in system memory (DRAM in this case). Hence, the error-site describes

the particular data bit at a specified location (address) in memory that was corrupted when

it was read/written by the given dynamic instruction. Note that the examples shown in

Figure 3.4 show just a single entry each from the error profiles. In reality, the error profiles

can have millions (or even billions – depending on the size of the application) of such entries

corresponding to different individual error sites in the application.

3.3.7 Use-case Aware Error Outcome Categorization

Error-efficient computing environments often trade accuracy in the program output for

gains in other system parameters such as energy or performance. Two error-efficient tech-

niques are discussed in this work – (1) approximate computing which deliberately introduces

errors in computation for improved performance or energy, and (2) ultra-low cost hardware

resiliency which allows some unintentional hardware errors to escape as user-tolerable output

corruptions (rather than incurring high overheads to prevent all errors).

The application error profile generated by the AEA tools, which quantify the output

quality of each error site in the program, can be used to understand the trade-offs between

loss in output accuracy with respect to other system benefits for different error-efficiency

schemes. In this section, we explain how, based on the error outcomes reported in the error

profiles, the AEA tools can identify which error sites in the application need protection from

55

Error outcome category Is this class of error sites
approximable?

Does this class of error sites
need resiliency protection?

Masked 3 7

SDC-Good 3 7

SDC-Maybe Maybe Maybe
SDC-Bad 7 3

DDC 7 7

Detected 7 7

Table 3.6: Error outcomes and their potential for approximation and resiliency overhead
savings.

transient errors (low cost resiliency), or alternatively, which error sites could be approximable

(approximate computing). we will demonstrate how this information can be used to enable

different error-efficiency techniques in Chapter 4.

Section 3.3.4 describes the various categories of error outcomes. The knowledge of each

error site’s output quality can be used to further categorize and equalize error sites accord-

ing to the error-efficiency context in which the error analysis (and hence the application’s

error profile) is used. The error outcome equalization for two error-efficiency use-cases are

described below (summarized in Table3.6).

(1) Low-Cost Resiliency: Each error site’s output quality is used to decide whether that

error site needs protection from transient errors (Table 3.6). Error sites that result in Masked

outcomes do not need to be protected since they produce the golden (correct) output even

in the presence of transient errors. Low cost detectors (as discussed earlier in Section 3.3.4)

can be used to catch the Detected category of errors and hence the associated error sites

do not need to be protected. In the absence of AEA tools, we would have to protect all

OC error sites. With the quality information provided by the AEA tools, the system can

selectively protect only those OCs that are neither tolerable by the user/application, nor

can be protected by low cost detectors. Since SDC-Good is inherently tolerable and DDC

(like Detected) can be captured using other low cost detectors, these error sites need not be

protected. SDC-Bad error sites produce intolerable outputs and hence they always have to

be protected. SDC-Maybes may or may not need protection based on whether they meet

the user’s quality threshold.

(2) Approximate Computing: Table 3.6 provides a classification of which error outcome

categories are approximable and which are not. Error sites that produce Detected, DDC

and SDC-Bad outcomes are clearly not acceptable and are considered as not approximable.

SDC-Good and Masked error sites are considered approximable. SDC-Maybe error sites

are potential candidates for approximation depending on whether their quality meets the

56

acceptable quality threshold set by the user.

3.3.8 Error Pruning

The comprehensive error profile generated by the AEA tools contain the error outcomes

for millions (or even billions) of error sites present in typical programs. In order to accurately

analyze such a large number of error sites, the AEA tools employ error site pruning (or simply

error pruning) techniques (pioneered by Relyzer [33]) to reduce the number of error sites

needing detailed study (by error injection), either by predicting their outcomes or showing

them equivalent to other errors.

Compared to a näıve campaign that performs an error injection for every error site, the

AEA tools dramatically reduce (by many orders of magnitude) the number of error injections

required to predict the error outcome for all error sites. They use a hybrid technique of

program analysis and error injections to perform this comprehensive analysis with high

accuracy while performing relatively few error injections.

The AEA tools build on key insights gained by prior work [33] that errors propagating

through “similar“ control and data flow paths in the program result in similar outcomes.

Program analysis (both static and dynamic) and some heuristics are used to determine this

similarity and group resulting error sites predicted to have similar outcomes in an equivalence

class. Using an error injection experiment on a single representative from an equivalence

class (called the pilot), they predict that all members of the class will have the same error

outcome (as the pilot). Hence, these tools are able to predict the error outcomes of virtually

all the error sites in the application, with high accuracy, using relatively few error injection

experiments (in the pilots). Dynamic instances (or data accesses) of (from) the same static

instruction are searched to find equivalent-outcome instructions (or data).

We do not claim that the error pruning techniques and heuristics used in this work are the

fastest or the most accurate. However, as we will show later in this chapter, the techniques

used hit the sweet spot of very high accuracy (> 95%) with very high error pruning (up to

5 orders of magnitude reduction in errors). Exploring improvements to our error pruning

technique is part of our future work.

The rest of this section describes the error pruning techniques developed by the prior work

Relyzer. Specific error pruning techniques employed by the individual AEA tools will be

described later in this Chapter.

57

Background: Relyzer’s Error Pruning Techniques

Prior work called Relyzer [33] was the first to employ the novel error-pruning techniques

described in this section. Relyzer used the error model of transient errors in (integer) regis-

ters of dynamic instructions. Relyzer systematically analyzes all application error sites (ac-

cording to its error model) and carefully selects a small subset for thorough error injection

experiments such that it can still estimate the outcomes of all the errors in the application.

To achieve this goal, Relyzer applies a set of pruning techniques that are classified as known-

outcome and equivalence-based pruning techniques. The known-outcome techniques largely

use static (and some dynamic) program analyses to predict the outcome of an error. The

equivalence-based techniques prune errors by showing them equivalent to others using static

and dynamic analyses and/or heuristics. This section briefly describes these techniques;

detailed explanations and examples can be found in [33].

The first step of error analysis (for Relyzer as well as the AEA tools from this work)

is to enumerate all the errors that can impact the application. This requires an error-free

execution trace for a given application (and input). Each dynamic instruction instance in the

trace forms a potential application error site. Relyzer studies errors in architectural integer

registers and in output latches of address generation units (this is equivalent to errors in

operand registers of load and store instructions that hold the memory address).

While enumerating the list of all application error sites, Relyzer stores all the error site

related information such as static instruction (program counter), error sites within the in-

struction (e.g., names of registers), number of dynamic instances of the instruction etc.

Error pruning techniques are then applied on this initial set of errors. The rest of the section

enumerates the various error pruning techniques applied.

Known-outcome pruning technique

Bounding addresses: Transient errors can make applications access memory locations

that fall out of the range of the allocated address space. Such accesses are likely to result

in detectable error outcomes (e.g., fatal traps, segmentation faults, application aborts, and

kernel panic). Hence, there is no need for injection experiments to identify the outcome of

most such errors and these can be directly pruned as follows. The range of valid addresses

are determined, for both the stack and the heap, by studying the dynamic memory profile

of the application.

Once the range of the valid addresses are identified, the errors that would allow a memory

instruction to access an invalid address are pruned (e.g., errors in high order bits of the

58

address when the error-free trace shows valid addresses are within lower order bits). The

pruned errors (error sites) are apriori determined to produce detected error outcomes. This

technique is applicable to memory instructions (both loads and stores).

Equivalence-based pruning techniques

The equivalence-based class of pruning techniques eliminates errors that are equivalent to

each other from the initial set of errors and retains only the representative errors (pilots) for

thorough error injection experiments. The pruning techniques are further categorized as as

precise and heuristics-based, based on whether they use accurate analyses or heuristics to

form the equivalence classes.

Precise equivalence technique

Def-use analysis: A register definition is created whenever a register is used as a desti-

nation operand in an instruction. Errors in the definition of a register have similar behavior

to that of errors in the first use of this definition. Therefore, errors in the definition are

pruned out and errors in the first use are retained. Note that this technique prunes errors

only in the definition and not in the uses. There can be multiple uses of a definition, and er-

rors in different uses may have different error propagation. Whenever a definition is pruned,

the information of the first use is recorded. This allows relating the error outcomes of the

first use to the definition’s at a later stage. Ideally, the destination register operands of all

the instructions can be pruned by this technique. However Relyzer only prunes errors in

those destination registers that have a first use within the same basic-block. This was done

to keep the implementation simple yet precise; Relyzer uses a static program pass for to

identify def-use pairs and the presence of conditional moves makes the precise association of

a definition with its first use non-trivial.

Heuristics-based equivalence techniques

Control-equivalence: This heuristic pruning technique uses the observation that errors

propagating through similar code sequences are likely to behave similarly. It also uses

the observation that a majority of the errors appear in code sequences that are executed

many times. Consider a static instruction I with many dynamic instances in the error-

free execution under consideration. The pruning technique attempts to partition all these

dynamic instances of I into equivalence classes, based on the control flow path followed after

the dynamic instance.

It is convenient to describe and implement the algorithm at the basic block level. The tech-

59

nique uses the error-free application execution to enumerate all possible control flow paths

up to a depth n starting at the basic block that contains the instruction of interest. Depth

is defined as the number of branch or jump instructions encountered. For the paths that

were exercised multiple times in the execution, it randomly selects one dynamic occurrence,

a pilot. It prunes all other unselected executions of such paths (population) and assumes

that errors in those dynamic executions are represented by the selected ones (pilots). More

precisely, a dynamic instruction instance on a pilot path serves as a pilot for other instances

with the same PC on the other paths in its population.

Figure 3.5 (from [33]) explains through an example how this pruning technique selects

pilots. The figure presents a control flow graph of a small program, with the basic blocks

represented by the black and grey circles with numbers on their sides. Assume the grey

basic block is not exercised by the dynamic execution of interest. Assume n = 5 (depth until

which control flow is tracked). Suppose that the objective is to find representative pilots

for an instruction in basic block 1. All control flow paths starting at basic block 1 up to a

depth of 5 that are executed in the dynamic error-free execution of interest are enumerated.

Basic block 4 is never executed and hence it does not appear in the list of dynamically

exercised paths. Each path is identified as forming a new equivalence class. There will be

potentially many instances of such paths in the dynamic execution trace. One dynamic

execution sequence is randomly identified for each equivalence class and named as the pilot

for that class. As mentioned before, a dynamic instruction instance on a pilot path serves

as a pilot for other instances with the same PC on the other paths in its population.

Relyzer applies this technique to prune errors in all instructions other than stores and

those that affect stores within a basic block. This is because the propagation of an error in

a store also depends on the addresses of the loads in the control flow path taken (only loads

to the same address as the store will propagate the error). The next technique described

deals with this distinction. Exceptions to the above are a few SPARC specific instructions;

namely, save, restore, call, return, and read state register. Relyzer does not not inject errors

in these instructions and therefore does not consider them any further. Relyzer also does

not inject errors in dead instructions and does not consider those any further either.

Overall, control-equivalence has the potential of pruning a large fraction of the errors by

softening the constraint on evaluating all dynamic occurrences from a specific code section.

Store-equivalence: An error in a store instruction propagates through the loads that

read the erroneous values. Load addresses are not entirely captured by the control flow path

taken after the store. Therefore, an alternate heuristic, called store-equivalence, is used for

errors in store instructions or in instructions that a store depends on within the same basic

block. This heuristic captures the error propagation behavior by observing the addresses

60

1

2 3

4 5

6

7

8

Dynamically exercised paths up to depth 5

1 → 2 → 5 → 6 → 7 → 8

1 → 3 → 7 → 8

1 → 3 → 7 → 1 → 2 → 5

1 → 3 → 7 → 1 → 3 → 7

1 → 2 → 5 → 6 → 7 → 1

Figure 3.5: Control-equivalence example from [33]. The figure shows a CFG for a small
program starting at basic block 1 and ending at basic block 8. All dynamically exercised
control paths up to a depth, say 5, are enumerated. Here basic block 4 (showed in grey) never
gets exercised. Therefore control flow paths through this node do not appear on the list of
dynamically exercised paths. The executions along each of these paths form the equivalence
classes for similar error outcomes.

that a store writes in an error-free execution and recording all read accesses to this address.

It treats the errors in stores differently whenever a different permutation of load instructions

read the stored value.

Figure 3.6 (from [33]) illustrates this heuristic with an example. Consider Store 1 and

Store 2 as two dynamic store instruction instances from the same static instruction. To

determine if the errors in these two store instructions will have the same outcomes, Relyzer

examines all the loads that return the values written by these stores in the error-free execu-

tion, i.e., Load 1a and Load 1b for Store 1 and Load 2a and Load 2b for Store 2 from the

figure. It first checks whether the number of such loads is the same (two for each store in the

figure). If this is the case, it then checks whether the static instructions (program counters)

of the corresponding loads are the same; e.g., if the program counters of Load L1a and Load

L2a are the same and if those of Load L1b and Load L2b are the same in the figure. If

these match, then Relyzer concludes that the two dynamic store instructions are very likely

to have similar error outcomes and places them both in the same equivalence class.

61

Store 1

Memory

A

PC-L1a PC-L2b

Store 2

PC-L1a PC-L2b

B

Load 2b Load 2a

Load 1a Load 1b

Figure 3.6: Store-equivalence example from [33]. Store 1 and Store 2 are two store in-
structions from the same static instruction writing to addresses A and B respectively. Load
1a with program counter PC-L1a and Load 1b with program counter PC-L1b are two load
instructions reading the value from address A. Similarly, Load 2a and Load 2b are two
loads from address B with program counters PC-L2a and PC-L2b respectively. The store-
equivalence heuristic requires that PC-L1a equal PC-L2a and PC-L1b equal PC-L2b.

3.3.9 Validation of Error Analysis

The AEA tools use similar error pruning techniques as those described in Section 3.3.8.

Since heuristics-based equivalence techniques rely on heuristics to predict the outcome of

error sites, validation experiments are needed to measure the accuracy of these techniques,

and hence, the accuracy of the tool in predicting error outcomes. Note that known-outcome

and precise equivalence techniques use precise a priori knowledge, to determine error out-

come and show equivalence respectively, and hence do not need validation (and will not

be discussed further). In this section, the validation experiments undertaken to show the

accuracy and precision of the AEA tools are described.

1. Baseline Validation:

The heuristic-based equivalence techniques rely on heuristics to group error sites that

produce similar quality outcomes into an equivalence class. They predict the quality

of each member of an equivalence class based on the outcome of an error injection

experiment on its pilot (Section 3.3.8). Similar to the methodology used in prior

62

work [33], the validity of the equivalence techniques is measured by the extent to

which the they correctly group error sites (with the same outcome) into equivalence

classes.

Specifically, the validation attempts to answer the following question: how accurately

does the error outcome of the pilot predict the error outcome of the other error sites

in its equivalence class? For validating a single pilot, error injections are performed

in a sample of error sites (not including the pilot) – called the population – chosen

randomly from the pilot’s equivalence class. The error outcome of the population

is then compared with that of the pilot to gain confidence that the pilot accurately

represents the population, and hence the equivalence class. For example, a pilot that

produces a DDC has a 100% validation/prediction accuracy if the injection experiments

for all of its associated population also produced DDCs.

To validate a pilot of an SDC-Maybe class, it is further required that the quality

degradation (refered to a QD) of the pilot match that of the population to be considered

a correct prediction. For example, consider a pilot X that generates an SDC-Maybe

with quality degradation of 12% (written as QD-12 for brevity). Suppose 86% of its

population is SDC-Maybe with QD-12, 6% is SDC-Maybe with QD-13, 5% is SDC-

Maybe with QD-10, and 3% is SDC-Bad. Then the prediction accuracy of pilot X is

86%.

The baseline validation described above is general and measures the accuracy of the

techniques independent of any error-efficiency use-case or context (discussed further

below). Hence, this type of evaluation is referred to as CF (context-free) validation.

2. Flexible Quality Window:

Quality is a continuous parameter and requiring the pilot’s QD to exactly match the

QD of the associated population is unnecessarily conservative and a tall order for

any tool. We therefore introduce a flexibility parameter, δ, that allows a fine-grained

margin of error at QD boundaries. For the validation of pilot X described above,

setting δ = x means that an error site in its population with QD of 12 ± x would be

considered as a correct prediction. Thus, pilot X’s prediction accuracy with δ = 1 is

92% and with δ = 2 is 97%.

Note that Masked, SDC-Good and SDC-Bad error-sites also have quality information

associated with them. Masked outcomes have a QD = 0 (no quality degradation),

SDC-Good outcomes have QD < Th1 and SDC-Bad outcomes have QD > Th2, where

Th1 and Th2 are common-sense application specific thresholds set by the AEA tools

63

(as described in Section 3.3.5 and Table 3.5). Thus, the δ parameter can also allow

for fine-grained error margins in quality at the boundaries of these categories. For

example, given a pilot SDC-Maybe with QD-1, setting δ = 2 will result in all Masked

outcomes in the associated population to be counted as correct prediction.

3. Equalizing Error Outcomes for Error-Efficiency Use-Case:

Since the output of the AEA tools can be used to enable different error-efficiency

techniques, it is interesting to extend the baseline validation to include the context

in which the error analysis is used. As mentioned in Section 3.3.7, we study low-cost

resiliency and approximate computing as two representative error-efficiency use-cases

in this work and we evaluate the AEA tools for both these contexts.

Validation for Resiliency: In this first case, the AEA tools are used to determine which

error sites in the application need to be protected for resiliency (Section 3.3.7). There

is no need to distinguish between Masked, SDC-Good, DDC, and Detected outcomes

since all of them do not require protection. Therefore these error outcomes can be

grouped together.

Validation for Approximation: In the second case, the AEA tools are used to determine

which error sites are approximable (Section 3.3.7). Therefore, there is no need to

distinguish between Masked and SDC-Good outcomes since they are approximable,

and they can be grouped together. Similarly, SDC-Bad, DDC, and Detected outcomes

can be grouped together since they are not approximable.

Thus, for a given use case, a pilot is said to have a correct prediction for a member

of its equivalence class if both the pilot and the member produce an outcome within

the same group as defined above for the use case. We henceforth use Res and Approx

when considering use-specific validations for resiliency and approximation respectively.

To illustrate the above with an example, consider an equivalence class whose pilot Y

generates a DDC. Suppose 86% of its population is DDC, 6% is Masked, 5% is SDC-

Maybe with QD-2, and 3% is Detected. Then the prediction accuracy of pilot Y for

CF is 86%, for Res is 95% and for Approx is 89%.

In the presence of user specified output quality thresholds (referred to as QT), SDC-

Maybe error sites can be equalized based on if their QD falls above or below the QT.

For instance, if the QT provided is 5% (i.e., the user is willing to tolerate a QD of up

to 5%), then the SDC-Maybe error sites with QD-2 in the example above are classified

as being approximable and not needing resiliency protection (for the approximation

and resiliency use-case respectively). Thus the prediction accuracy for pilot Y , from

64

the example above, is refined to 100% for Res (Approx validation accuracy remains at

89%).

To illustrate all of the above concepts with a combined example, consider a pilot Z that

generates an SDC-Maybe with QD-6. Suppose the error outcomes of its population are as

follows: (a) 84% of its population is SDC-Maybe with QD-6, (b) 6% is SDC-Maybe with

QD-3, (c) 5% is SDC-Maybe with QD-8, (d) 3% is Masked, and (e) 2% is DDC. Then

the validation accuracy of Z for the different validation strategies is as follows:(1) CFδ=0

(Context free and no flexible quality) is 84% (a is correct), (2) CFδ=2 is 89%=84%+5%

(a and c are correct), (3) Resδ=2 is 89%=84%+5% (a and c are correct), (4) Approxδ=2

is 89%=84%+5% (a and c are correct), (5) Resδ=2,QT=7 is 100% (all are correct, even c,

which lies above the QT, because its QD falls within the δ = 2 margin of the pilot), and (6)

Approxδ=2,QT=7 is 98% (e is incorrect).

The overall validation accuracy for an application is obtained by calculating the average of

the prediction accuracy across all the pilots studied, weighted by the size of their equivalence

class. Validation accuracy for individual equivalence-based pruning techniques (for example,

control-equivalence, store-equivalence etc.) can be obtained by studying the accuracy of

pilots from equivalence classes built using the individual techniques.

To gain confidence in the AEA tools, it is imperative that the accuracy of a sufficient num-

ber of equivalence classes (and their pilots) are evaluated using the validation methodology

described in this section. To evaluate each AEA tool, we perform the validation experiments

for ∼750 pilots from each application. This corresponds to a 99% confidence interval with

a 5% error margin. Each pilot is validated against a sample population size of 750 (drawn

randomly from the equivalence class), which also corresponds to a statistical confidence of

99% with a 5% error margin. In all, I perform approximately 7.6 million error injection ex-

periments – 2.6 million for Approxilyzer, 1.6 million for gem5-Approxilyzer and 3.4 million

for DataApproxilyzer – to validate the AEA tools.

The AEA tool-suite described in this work has been developed over many years and hence,

there are minor methodological differences in the evaluation of individual tools (inspired by

collaborator and reviewer feedback). These include variations in benchmarks, inputs, (minor

variations in) validation methodology etc. For example, Approxilyzer discretizes output qual-

ity into multiple Quality Bins (QB), fine-grained enough to capture small quality variations.

For example, with the max-rel-err metric, the bins are 1% wide, and quality degradation

values of 12.1%, 12.6% and 13.3% are assigned a QB of 13, 13, and 14 respectively. And

thus the QD value stored with the SDC-Maybe outcomes correspond to the QB values. The

various quality bins associated with different applications and metrics are detailed in [24]

65

(Table II).

DataApproxilyzer’s validation is slightly modified to evaluate ”purity” of the equivalence

classes (analogous to validation in clustering techniques) which identifies the largest set of

similar error outcomes within the population [26]. Hence, the accuracy of a given equivalence

class is based on the extent to which it contains error outcomes of a single category (instead

of comparing it to the pilot). This eliminates effects (over- or under- estimation) introduced

by the randomness of picking pilots (which may or may not belong to the largest error

outcome set within the equivalence class). For example, consider an equivalence class E

whose population distribution is 97% Masked and 3% DDC. If its randomly chosen pilot

belongs to the DDC set, then baseline validation described in this section will assign E and

accuracy score of 3%. On the other hand if the pilot is Masked, then the accuracy of E is

97%. Using the purity metric, the accuracy of E is 97% (largest common outcome class)

and is independent of the pilot. All the concepts of flexible quality window and use-case

equalization still apply (each error-site is compared to the most common error outcome).

The methodological differences within the AEA tools are relatively minor and are not

anticipated to affect the accuracy measurements significantly.

3.4 APPROXILYZER

In this section, we present Approxilyzer [24], an automated error analysis framework that

determines the quality impact of errors in program instructions. The error model that

Approxilyzer uses is single bit transient errors in operand registers of dynamic instructions

(Section 3.3.2). To our knowledge, Approxilyzer is the first tool that quantifies the quality

impact of a single-bit error in (operand registers of) virtually all dynamic instructions of an

execution with high accuracy and low-cost. The output of Approxilyzer’s error analysis is

the comprehensive instruction error profile for a given application (Section 3.3.6).

The evaluation results presented in this section show that Approxilyzer can predict output

quality, at very fine granularities, with high accuracy (95% on average) and at low-cost (up

to 5 orders of magnitude fewer error injections than näıve techniques).

3.4.1 Error Pruning

To build the application’s comprehensive error profile, Approxilyzer employs a hybrid error

analysis technique which uses a combination of program analysis and few error injections

(Section 3.2). Approxilyzer builds upon Relyzer [33], a tool that predict the outcomes

of errors in integer registers of dynamic instructions. Relyzer’s predictions, however, only

66

consider whether an error will affect the output but does not quantify how the output will

be affected. Relyzer determines if an error results in being Masked, Detected, or a Silent

Data Corruption (SDC). Relyzer does not consider output quality, marking all corruptions

in an output (no matter how trivial) as an SDC outcome.

Approxilyzer refines the notion of an error outcome by including the quality of the erro-

neous output as part of this outcome (Section 3.3.4). It assesses the quality of the corrupt-

ed/erroneous output by measuring its deviation from the error-free/precise output using the

application-specific quality metrics provided by the user (Section 3.3.3).

Approxilyzer hypothesizes that Relyzer’s main insight (that errors propagating “similarly”

through the program are likely to result in similar outcomes) also holds true when considering

quality as part of the error outcome. That is, errors propagating ”similarly” through the pro-

gram are likely to generate program outputs of similar quality. Approxilyzer uses Relyzer’s

error pruning techniques and heuristics – bounding addresses, def-use, control-equivalence

(control depth is set to N=50, as in prior work [30]) and store-equivalence (described in

Section 3.3.8) – to predict similarity and to divide error sites into equivalence classes. Val-

idation experiments (as described in Section 3.3.9) are performed to test this hypothesis

and we show that this is indeed the case (Section 3.4.4). Additionally, while Relyzer only

studied errors in a integer registers (which in turn only allowed it to study errors in a small

subset of integer instructions), Approxilyzer’s analysis extends to errors in both integer and

floating point registers (thereby enabling analysis of errors in virtually all instructions in the

program).

Thus, Approxilyzer is able to enumerate, with high confidence, the output quality gener-

ated for a given error in the program. And it is able to do this for virtually all errors in the

program instructions with relatively few error injections – 3 to 5 orders of magnitude fewer

error injections when compared to näıve techniques.

3.4.2 Workloads and Inputs

To evaluate Approxilyzer, we select five benchmarks from two different benchmark suites

spanning multiple application domains (application descriptions can be found in Section 3.3.5).

Table 3.7 lists the workloads and inputs used to evaluate Approxilyzer. The quality metrics

and quality thresholds (common-sense thresholds provided by the tool) used for each of the

applications is detailed in Section 3.3.5.

67

Application Input

Blackscholes sim-large
Swaptions sim-small

LU 512x512 matrix
16x16 blocks

FFT 64K points
Water 512 Molecules

Table 3.7: Workloads and inputs.

3.4.3 Error Injection Framework and Speed

The error injection simulation infrastructure is similar to that used for [33], based on Wind

River Simics [110] and GEMS [123] running the applications on OpenSolaris and compiled

to the SPARC V9 ISA.

We inject single bit flips in integer and floating point architectural registers. Hence, we

only consider instructions that employ either an integer or floating point register as an

operand. For example, we do not inject errors in instructions such as call (no operands), ret

(no operands) or branches that use special condition code registers. Such instructions will

not be considered for any of the error-efficiency techniques demonstrated in this work.

Although error injections are performed only in the pilots of the generated equivalence

classes, this can still lead to a large number of error injections, especially for longer appli-

cations. In order to reduce the simulation time, we only study 99% of the error sites in

the application, thereby trading off simulation time for a modest loss in coverage [33]. The

1% of error sites not included in the study do not detract from the observations and gains

reported.

Approxilyzer retains Relyzer’s speed benefits, with negligible additional overheads. Com-

pared to a (hypothetical) framework that would perform an error injection for each error

site, Relyzer (and hence, Approxilyzer) is able to prune error injections by 3 to 5 orders of

magnitude [33]. The remaining error injections complete on a cluster of 200 machines in a

few days. Approxilyzer adds a few hours to this process to perform quality calculations and

error outcome categorizations.

3.4.4 Approxilyzer Validation

We carry out validation experiments as described in Section 3.3.9. We discuss the val-

idation accuracy of Approxilyzer for the approximation and resiliency contexts separately

below.

68

0

10

20

30

40

50

60

70

80

90

100

Swaptions LU Blackscholes FFT Water Average

A
p

p
r
o

x
il

y
z
e

r
V

a
li

d
a

t
io

n
 %

CF (δ = 0) Res (δ = 0) Res (δ = 1) Res (δ = 2) Res (δ = 5)
99

96
97

99.8
96

90

Figure 3.7: Approxilyzer validation geared towards resiliency.

Validation for Resiliency: The results for validation geared towards resiliency are shown in

Fig. 3.7. All of the applications show very high pilot prediction rates with an average predic-

tion rate of 96% across applications using a very fine quality window of 2 (bar corresponding

to Res(δ = 2)).

Swaptions and Water see big gains in validation just by applying the Res optimization

(Note that Res(δ = 0) equals just applying Res without any flexible quality window). Both

of these applications have high SDC-Good rates and therefore many pilots that are picked

for validation belong to the SDC-Good outcome category. Some of these equivalence classes

(with SDC-Good pilots) contain a mix of Masked and SDC-Good error sites, leading to lower

overall validation for CF (δ = 0).

Water especially has a high rate of SDC-Good outcomes which are due to very small

errors (< 10−6%) in the program statistics part of the output file. Approxilyzer heuristics

(not surprisingly) combine these error sites with Masked outcomes into equivalence classes.

As a result, applying the Res optimization causes the validation rate of Water to jump from

71% to 98%.

In addition to having equivalence classes with mixed SDC-Good and Masked outcomes (as

described above for Water), Swaptions also has some pilots with DDC outcomes belonging to

equivalence classes that feature a mix of DDC and Masked outcomes. These pilots represent

error sites from a few floating point instructions that process randomly generated numbers.

69

0

10

20

30

40

50

60

70

80

90

100

Swaptions LU Blackscholes FFT Water Average

A
p

p
r
o

x
il

y
z
e

r
V

a
li

d
a

t
io

n
 %

CF (δ = 0) Approx (δ = 0) Approx (δ = 1) Approx (δ = 2) Approx (δ = 5)

81

99

92

97
99.8

94

Figure 3.8: Approxilyzer validation geared towards approximation.

If the error causes the random number to exceed the (expected) range of 0 to 1, it causes

floating point overflows which result in NaN values. Because Approxilyzer heuristics cannot

accurately distinguish this special case, Swaptions contains some equivalence classes with a

mix of Masked and DDC outcomes which results in poor validation for CF (δ = 0). Applying

the Res optimization, causes the validation rate of Swaptions to go up from 79% to 99%.

While still high at 90% (for Res(δ = 2)), Blackscholes shows the lowest validation ac-

curacy of the applications studied. Further analysis shows that this is due to a few pilots

whose equivalence classes have a mix of SDC-Maybe and SDC-Bad outcomes. This is why

increasing the quality window size (δ) does not cause the prediction rate to increase. The

reason behind the mixed equivalence class can be attributed to the fact that Blackscholes

calculates the option price for a portfolio containing more than 64,000 options and hence,

the same instructions produce OCs of different quality based on the input being processed at

any given execution cycle. While range detectors to capture certain SDC-Bad outcomes and

specialized heuristics to better capture variations in data patterns can be applied to handle

some of these cases, their implementation is left to future work. Applying user-specified

quality thresholds can also equalize some of the SDC-Maybe and SDC-Bad outcomes and

improve the accuracy. In spite of these special cases, Blackscholes shows high prediction

rate.

Validation for Approximation: Fig. 3.8 shows the graph for Validation considering Ap-

70

proximation. On average, the validation percentage for Approx(δ = 2) is 94% across all

applications. Swaptions shows lower validation predominantly due to poorly validated DDC

pilots belonging to a few floating point instructions (validation accuracy for integer pilots

with Approx(δ = 2) is 97%) operating on random numbers. While the Res optimization

equalized these outcomes, the Approx considers DDC and Masked outcomes separately and

hence the validation accuracy is not improved. Simple range detectors to check the range of

the random numbers can resolve this issue and we leave its implementation to future work.

Overall, the average validation percentage, across Approx(δ = 2) and Res(δ = 2), for the

applications studied is 95%. Thus, we conclude that Approxilyzer can capture the output

quality – at very fine granularities – with high accuracy for the purposes of both Resiliency

and Approximate Computing.

3.5 GEM5-APPROXILYZER

Approxilyzer has significantly furthered the state-of-the-art in automated error analysis, by

providing the precise impact (execution anomalies and output quality) of single-bit transient

errors on every operand register bit in virtually every dynamic instruction in a program

execution, with high accuracy and low-cost. Furthermore, Approxilyzer can analyze general-

purpose applications while placing minimal burden on the programmer.

Approxilyzer’s unique features enable new avenues of research, but limitations in its orig-

inal implementation hinder its usability. Approxilyzer relies on Wind River Simics [110], a

proprietary full-system simulator and is designed to handle only applications compiled for

the SPARC ISA. The restrictions imposed from both the simulator and ISA make a wide

adoption of the tool challenging.

To mitigate these restrictions, we develop gem5-Approxilyzer [25], a fully open-source [28]

implementation of Approxilyzer that enables support for more ISAs, beginning with x86

in this work. gem5-Approxilyzer is built using the open-source gem5 simulator [83] which

facilitates (with relative ease) the future inclusion of more ISAs into the tool. Building

gem5-Approxilyzer required significant engineering effort to support x86 error analysis on

gem5. For example, Approxilyzer’s original implementation for SPARC assumes constant

register size and instruction encoding length, which is not the case for x86.

This work is the first to show Approxilyzer’s effectiveness/accuracy with a different ISA,

namely x86. Since gem5-Approxilyzer analyses errors in applications compiled to x86 (and

Approxilyzer techniques were evaluated for SPARC), validation experiments are performed

to show the accuracy and effectiveness of Approxilyzer’s error pruning techniques (Sec-

tion 3.4.1) for x86. We show that gem5-Approxilyzer is effective in error pruning and

71

reduces the number of error injections required by up to two orders of magnitude over a

näıve campaign9. We also show that gem5-Approxilyzer predicts the impact of errors on the

program’s output quality with high accuracy (> 92% on average and up to 99.9% for some

applications). Hence, gem5-Approxilyzer produces accurate and precise instruction error

profiles at relatively low-cost.

The remainder of this section details the implementation challenges of building gem5-

Approxilyzer and demonstrate the effectiveness and accuracy of gem5-Approxilyzer.

3.5.1 Error Model

gem5-Approxilyzer uses the same error-model as Approxilyzer – single-bit transient er-

rors in operand registers of dynamic instructions in the program (Section 3.3.2). However,

because gem5-Approxilyzer analyzes applications compiled to CISC x86 (vs. Approxilyzer

that analyzes RISC SPARC) there are additional considerations which are detailed below.

In this work, we undertake error injection in registers of x86 macro-instructions. Modern

CISC implementations like x86 often implement the complex machine instructions (macro-

instructions) using low-level instructions called micro-instructions or micro-operations. Micro-

instructions are generally specific and proprietary to the micro-architecture and not faith-

fully recreated in publicly available simulators. Hence, we restrict the analysis to macro-

instructions.

For this study, we only consider general-purpose registers and SSE10 registers in x86.

We do not inject errors in special-purpose, status, and control registers (e.g., %rsp, %rbp,

rflags) to simplify the error model and reduce the number of error injections required for

a first-order analysis. We assume that these always need protection and can be hardened

in hardware (e.g., with ECC). We also do not inject in implicit11 registers in this work.

Extending gem5-Approxilyzer to support these registers is relatively straightforward and we

leave it to future work.

9The gains from error-pruning are lower in this work (compared to Approxilyzer) since we use minimized
program inputs that have been shown to considerably speedup error analysis [29]. Since these smaller inputs
lead to programs with less dynamic instructions (per static instruction), the potential for error pruning is
considerably reduced. Yet, even for these smaller programs, considerable error pruning is achieved. The
gains from larger inputs are expected to be commensurate with Approxilyzer.

10The binaries we study do not explicitly use floating point stack registers (st0-st7) in the region of interest
and hence we do not study them.

11For example, the instruction imul rbx performs the following signed multiplication: rdx : rax←− rax∗rbx.
We only inject errors in rbx and not in rax and rdx.

72

3.5.2 Implementation Details

The inputs required by gem5-Approxilyzer are detailed in Section 3.3.3. The user can

optionally mark the beginning and end of a code region of interest (ROI) – either by anno-

tating the source or providing static PCs marking the beginning and end of the ROI – for

analysis. In the absence of an ROI, the full application is analyzed.

gem5-Approxilyzer executes four phases to produce an application’s instruction error pro-

file (Section 3.3.6).

(1) Phase 1 extracts static and dynamic properties of instructions executed within the

ROI. An instruction parser module analyzes static instructions in the application’s disas-

sembly to identify registers used, determine if the instruction affects control flow (jumps,

conditional branches, function calls, etc.), and identify any registers that contain memory

addresses (these are marked for address-bound pruning). Information from this static pass is

used to build the def-use chains that are used by pruning techniques in Phase 2. Next, gem5

is used to produce a full dynamic execution trace of user-mode instructions and memory

accesses. From this trace, only the (dynamic) instructions that are found within the static

disassembly, along with their corresponding memory accesses, are extracted for analysis;

gem5-Approxilyzer does not analyze external library code, system code, or calls to them.

gem5-Approxilyzer further simplifies the trace to only contain the execution within the ROI

(if an ROI is provided).

(2) Phase 2 prunes error sites using the same techniques as Approxilyzer – by apply-

ing control- and store-equivalence as well as address-bound and def-use techniques. gem5-

Approxilyzer processes the execution trace from Phase 1 to build control-equivalence classes

and def-use chains. The memory accesses recorded in the trace are used to build store

equivalence classes and perform address-bound pruning. At the end of this phase, gem5-

Approxilyzer picks a pilot for each equivalence class and creates the set of error sites for

error injections.

(3) Phase 3 performs the error-injection experiments using the error injector module

built for gem5. The error injector takes as input the error-site description: dynamic instruc-

tion described using the cycle number of the simulation, register information (register name

and whether it is used as a source/destination operand) and register bit number. The error

injector pauses the simulation at the specified dynamic instruction and flips the bit in the

register. For source registers, the bit flip is performed before the instruction execution. For

destination registers, the error is simulated by performing the bit flip after the instruction

execution (otherwise the error would be overwritten by the instruction execution). The sim-

ulation then proceeds, checking for any hangs and crashes, or other symptoms to identify

73

Detected outcomes. If no Detected symptoms are encountered before the simulation ends,

gem5-Approxilyzer compares the generated output with the error-free execution’s output.

If there is an OC, gem5-Approxilyzer uses the user-provided quality metric to evaluate the

output quality.

(4) Phase 4 analyzes the outcome of each error injection and assigns it the appropriate

error outcome, i.e., error outcome category and quality degradation (QD) score for OCs.

gem5-Approxilyzer then assigns the same error outcomes to pruned error sites associated

with the pilot, and finally outputs the application’s comprehensive instruction error profile

containing all the error sites studied and their corresponding error outcomes.

For an end-to-end error analysis with gem5-Approxilyzer, the error injections in Phase 3

consume the most time – several days worth of CPU time versus only few minutes/hours

consumed by all the other phases combined for the experiments reported here. Thus, using

effective pruning techniques that can reduce the total number of error injections in Phase 3

is the most direct means of reducing the tool’s analysis time.

3.5.3 x86 Implementation Challenges

While phases 3 and 4 (described in the previous section) are largely ISA independent,

phases 1 and 2 require customization to support different ISAs. Since x86 is a CISC ISA,

opcode lengths vary, and hence the instruction parser in Phase 1 must capture instruction

semantics correctly to identify source and destination operands of different instructions. De-

pending on the complexity of the macro-instructions, a varying number of micro-instructions

can be generated. Any memory accesses performed by these micro-instructions in the gem5

memory trace must be mapped to the correct macro-instruction. Since x86 allows for vari-

able register sizes, another challenge in Phase 2 is to correctly associate registers of varying

sizes with their aliased 64-bit registers. This must be done carefully to identify aliased def-

use pairs which enables pruning the right set of error sites within an aliased register. For

example, %ax and %eax both alias to %rax. While performing def-use pruning, only the

lower 16 bits of %eax definition must be pruned if the first use is %ax.

3.5.4 Extensions to gem5-Approxilyzer

gem5-Approxilyzer has been designed to be reasonably modular (e.g., each phase in Sec-

tion 3.5.2 is a separate module) to enable future extensions to support different ISAs, error

models, and pruning techniques. This section briefly elaborates on some details for future

extensions.

74

The gem5 simulator currently supports many ISAs, and gem5-Approxilyzer could support

them with the following modifications. 1) The instruction parser in Phase 1 must be modified

to capture the semantics of the new ISA. 2) ISA-specific behaviors that affect control flow

(e.g., branch delay slots for SPARC) should be incorporated into the control-equivalence

algorithm accordingly. 3) Register aliasing must be captured correctly to track def-use

pairs.

The error-injector module in Phase 3 can be modified to support other error models such

as multi-bit injections or injections to other system structures like DRAM. The error-pruning

module in Phase 2 would need to be extended to support pruning algorithms appropriate

for the chosen error model.

gem5-Approxilyzer performs Phase 2 analysis on the dynamic trace generated by gem5

in Phase 1. For very long executions, this may result in excessively long traces, requiring a

tighter coupling of phases 1 and 2 to trace and analyze parts of the execution at a time.

3.5.5 Workloads and Inputs

To evaluate gem5-Approxilyzer, five benchmarks are selected from three different bench-

mark suites spanning multiple application domains (application descriptions can be found

in Section 3.3.5). Table 3.8 lists the workloads and inputs used in the evaluation. These

inputs are chosen because we have shown (in Chapter 5) that performing error analysis on

these inputs is much faster and at least as accurate as for larger reference inputs provided

by benchmark suites [29]. We use gem5 to simulate an Ubuntu-16.04 system, and use GCC

7.3 with -O3 optimization to compile the applications. The quality metrics and quality

thresholds (common-sense thresholds provided by the tool) used for each of the applications

is detailed in Section 3.3.5.

3.5.6 Error Pruning Effectiveness

gem5-Approxilyzer employs the same error pruning techniques as Approxilyzer – control-

equivalence (depth set to N=50) and store-equivalence as well as address-bound and def-use

techniques. The address-bound and def-use techniques together are referred to as non-

heuristic (NH) pruning techniques, since they do not employ any heuristics (Section 3.3.8).

The effectiveness of gem5-Approxilyzer is measured by observing how many error sites

were pruned using the various pruning techniques. For each application, we measure first

the number of error sites in the application’s region of interest (column 3 in Table 3.8)

and then the number of error sites remaining after the pruning (column 4 in Table 3.8)

75

Application Input Error Sites Pruned Error
Total Remaining Sites (%)

Blackscholes 21 options 232K 100K C: 12.24
S: 9.45
C+S+NH: 56.77

Swaptions 1 option 10.3M 720K C: 52.47
1 simulation S: 7.85

C+S+NH: 93.01
LU 16x16 matrix 1.2M 268K C: 23.49

8x8 blocks S: 22.72
C+S+NH: 77.91

FFT 28 data points 4.4M 215K C: 43.99
S: 21.50
C+S+NH: 95.05

Sobel 81x121 pixels 85.3M 300K C: 62.74
S: 20.94
C+S+NH: 99.65

Table 3.8: Benchmarks, inputs, and error-site pruning by technique (C: Control-Equivalence,
S: Store-Equivalence, C+S+NH: total pruning using control, store, and non-heuristic tech-
niques)

to calculate the number of error sites that have been pruned. This metric evaluates the

tool’s effectiveness since the number of error sites pruned directly reduces the number of

error-injection experiments needed to analyze the application.

The last column of Table 3.8 shows the percentage of error sites pruned by gem5-Approxilyzer

using the control-equivalence (C), store-equivalence (S), and non-heuristic (NH) pruning

techniques. At 56.77%, Blackscholes has the smallest total (C+S+NH) pruning. Blacksc-

holes is a small application, which coupled with our choice of a small input leads to a very

small execution footprint (as can be seen by the small number of total error sites). This

translates to few dynamic instructions per static PC which leads to very small equivalence

classes. The average size of the equivalence class in Blackscholes is just 1.96. Since the

amount of pruning is directly proportional to the size of the equivalence class, it is not sur-

prising that the pruning effectiveness for Blackscholes is limited. The maximum pruning is

achieved in Sobel, at 99.65%. Apart from Blackscholes, all the other applications see a one

to two orders of magnitude reduction in the number of error injections needed to compre-

hensively analyze them. Thus we show that these pruning techniques are also effective for

x86.

76

0

10

20

30

40

50

60

70

80

90

100
Bl

ac
ks

ch
ol

es FF
T LU

Sw
ap

tio
ns

So
be

l

Av
er

ag
e

Bl
ac

ks
ch

ol
es FF
T LU

Sw
ap

tio
ns

So
be

l

Av
er

ag
e

Bl
ac

ks
ch

ol
es FF
T LU

Sw
ap

tio
ns

So
be

l

Av
er

ag
e

Va
lid

at
io

n
(%

)
Res (δ = 2) Approx (δ = 2) Res (δ = 2, QT = 5) Approx (δ = 2, QT = 5)

(a) Control (b) Store (c) Combined

Figure 3.9: gem5-Approxilyzer validation for (a) control equivalence, (b) store equivalence,
and (c) combined (control + store) equivalence.

3.5.7 gem5-Approxilyzer Validation

We evaluate the accuracy of gem5-Approxilyzer using validation experiments as described

in Section 3.3.9. Figures 3.9(a), 3.9(b), and 3.9(c) show the validation accuracy for the

control equivalence, store equivalence and their combination respectively. On average, both

control and store equivalence techniques show high accuracy (> 92%) for Res and Approx

with δ = 2. Note that the flexible quality parameter δ = 2 used here corresponds to 2%

error margin for Blackscholes, FFT, LU, and Sobel, while for the financial applications,

Blackscholes12 and Swaptions, it corresponds to the absolute difference in the dollar value

set to $0.01 (difference of 1 cent or less).

In summary, gem5-Approxilyzer is able to correctly predict the output quality of the x86

application error sites with very fine granularity (2% or within a single cent).

Swaptions (> 94%), LU (> 98.5%), and Sobel (> 99.9%) show very high validation accu-

racy across the board. While still relatively high, Blackscholes shows the poorest validation

accuracy for both control (Resδ=2 = 87%, Approxδ=2 = 86%) and store (Resδ=2 = 78%,

Approxδ=2 = 79%). As mentioned before, Blackscholes has small equivalence classes which

12Two different quality metrics are employed for Blackscholes (Table 3.5) and hence the flexibility param-
eter δ is applied to both metrics.

77

can lead to poor prediction accuracy even if a single error site is predicted incorrectly.

We observe that the pilots that have low prediction accuracy in Blackscholes and FFT

(and a few in Swaptions) predominantly belong to two categories: (a) pilots are SDC-Maybe

and the populations also produce SDC-Maybe but with quality degradations that have a

wider range than allowed by the δ and (b) pilots of equivalence classes that have a mix of

outcomes at the border of either SDC-Bad and DDC or SDC-Maybe and SDC-Bad. More

sophisticated heuristics that combine control and data flow might capture specific patterns

in these applications more accurately and we leave their exploration to future work. Across

all applications, we observe that pilots with Masked, SDC-Good, and Detected outcomes

show almost perfect (> 99.9%) validation accuracy.

Both Blackscholes and FFT show an improvement (> 90%) when a user quality threshold

is applied. For brevity we show results for QT=5, but we performed this experiment with a

range of different QT values and observed a similarly high validation accuracy. This implies

that even for pilots that fail to predict the quality at a fine granularity, the grouping of the

equivalence classes is sufficiently accurate to be used in many realistic use cases. On average,

we observe that when a quality threshold is supplied, the validation accuracy is > 97% for

both store and control heuristics (and hence their combination).

In summary, the results show that the techniques used by gem5-Approxilyzer are very

accurate in precisely quantifying the impact of errors on output quality for x86 applications.

3.6 DATAAPPROXILYZER

In this section, we describe DataApproxilyzer, the first automated application-level error

analysis tool to perform extensive analysis of errors in program data. DataApproxilyzer

extensively analyzes many, and in some cases all, errors (for a given data error model)

and determines the output quality produced (for each error) with high accuracy (98% on

average) and at fine granularity (within a 2% error margin). The error models used by

DataApproxilyzer are multi-bit (1-, 2-, 4- and 8-bit) transient errors in (data stored in)

system memory (details of the error model can be found in Section 3.3.2). The output of

DataApproxilyzer is the given application’s data error profile that extensively lists the data

errors (for a given data error model) that can impact program execution along with the

corresponding output quality produced in the presence of each error (Section 3.3.6).

DataApproxilyzer builds on the hybrid error analysis techniques (Section 3.2) developed

by Approxilyzer (and by extension gem5-Approxilyzer) and employs a combination of pro-

gram analysis and (relatively) few error injections to generate the application’s data error

profile. DataApproxilyzer introduces a novel equivalence-based error pruning technique (Sec-

78

tion 3.3.8) called Load-Order-Equivalence that prunes the number of data error sites that

need detailed analysis through error injections by up to 99.9% (98% on average) for the

workloads studied. The main insight offered by the Load-Order-Equivalence technique is

that errors in data bits that are read (and therefore consumed and propagated) by the same

sequence of load instructions in the program, produce outputs of similar quality. We under-

take validation experiments (as described in Section 3.3.9) to show the high accuracy (98%

on average) of the Load-Order equivalence technique (Section 3.6.5). DataApproxilyzer is

the first to show that equivalence-based error pruning techniques can be applied to multi-bit

data errors.

In this section, we elaborate on the the Load-Order-Equivalence technique used by DataAp-

proxilyzer and show that DataApproxilyzer can predict error outcomes for data errors in the

program with high accuracy and at low cost.

3.6.1 Error Pruning Technique

Like the other AEA tools (Approxilyzer and gem5-Approxilyzer) described in this work,

DataApproxilyzer also uses error pruning techniques to identify just a small subset of pilot

error sites which require error injections (Section 3.3.8). DataApproxilyzer uses a new equiv-

alence based pruning technique called Load-Order equivalence, which uses a data-flow based

heuristic (simply referred to as the Load-Order heuristic) to equalize ”similar” data errors

into equivalence classes. This heuristic captures how errors in program data are propagated

and consumed by subsequent computation(s) in the execution. Specifically, the Load-Order

heuristic captures the sequence of dynamic instructions in the program that read (and thus

propagate) the corrupted data.

The Load-order heuristic improves upon the store-equivalence heuristic (used by Approx-

ilyzer and gem5-Approxilyzer) that equalizes single-bit errors in operand registers of store

instructions (Section 3.3.8). Single-bit errors in operand registers of store instructions consti-

tute a small subset of memory (data) errors, when the store instruction writes the corrupted

values in the register to system memory; The Load-Order technique used by DataApproxi-

lyzer improves upon store-equivalence to make analysis of these more efficient. Additionally,

DataApproxilyzer analyzes many more data errors in memory (both single- and multi-bit)

that lie outside this subset of errors. Note that while some registers directly access data

(such as destination operands of load instructions), errors in such registers is fundamentally

different than errors affecting (the same data in) memory since the errors in memory will

persist across multiple instructions that access this data. And hence, the analysis of such

memory errors need a modified approach.

79

The remainder of this section details the methodology of the Load-Order equivalence

technique.

Pre-processing for Error Equalization:

The first step DataApproxilyzer performs is to identify and label all the error sites in the

application. To do this, DataApproxilyzer extracts the application’s (error-free) dynamic

memory trace and labels each memory access made by a dynamic instruction (referred to

as a Dynamic-Memory-Access) with a unique identifier (called a Dynamic-Memory-Access

ID). Each Dynamic-Memory-Access ID consists of (1) the instruction’s static PC (Program

Counter), (2) the instruction’s dynamic instance, usually identified by some abstract se-

quence number in program order (such as the cycle number at fetch) and (3) a tuple, called

the micro-access-ID, consisting of the type of memory access (read or write) and a number

to differentiate between multiple Dynamic-Memory-Accesses of the same type within a given

dynamic instance (common in CISC instructions). An example toy memory trace is shown

in Figure 3.10 to illustrate this process of assigning Dynamic-Memory-Access IDs.

PC
Dynamic
instance Memory access(es) made by the dynamic instruction

A n1 Read i bytes from address X
Dynamic-Memory-Access ID = A_n1_Read-1

Write j bytes to address Y
Dynamic-Memory-Access ID = A_n1_Write-1

B m1 Read i bytes from address U
Dynamic-Memory-Access ID = B_m1_Read-1

A n2 Read i bytes from address V
Dynamic-Memory-Access ID = A_n2_Read-1

Write j bytes to address W
Dynamic-Memory-Access ID = A_n2_Write-1

B m2 Read i bytes from address W
Dynamic-Memory-Access ID = B_m2_Read-1

A n3 Read i bytes from address X
Dynamic-Memory-Access ID = A_n3_Read-1

Write j bytes to address Y
Dynamic-Memory-Access ID = A_n3_Write-1

Ex
ec

ut
io

n
 tr

ac
e

Figure 3.10: Toy trace showing the terminology of Dynamic Memory Accesses and when they may
be equalizable.

Each data bit accessed by a given Dynamic-Memory-Access is an individual error site.

Hence, if Dynamic-Memory-Access D accesses data of size n (where n>=1) bytes starting

at memory address X, then each of the n∗8 data bits starting at X is a potential error site.

80

Each error site (individual data bit) is described/labeled by the Dynamic-Memory-Access

ID, the memory address of the access and a byte offset and bit number.

Load-Order Equalization Technique:

In this section we describe the Load-Order equalization heuristic used in DataApproxi-

lyzer. We evaluated a few different equalization heuristics for DataApproxilyzer (described

in the next section) before picking the heuristic with the best performance and accuracy

(reported here).

Error equalization is attempted only within Dynamic-Memory-Accesses that have the same

PC and micro-access-ID. The goal of equalization is to identify error sites that are consumed

(used) and propagated similarly through the program; data bits accessed from different

PCs or micro-access-IDs are considered as being dissimilar for this purpose. Thus, error

sites belonging to Dynamic-Memory-Accesses from different PCs or from the same PC but

having different micro-access-IDs will never be in the same equivalence class. The Dynamic-

Memory-Accesses in Figure 3.10 are colour coded to show Dynamic-Memory-Accesses that

can potentially be equalized (those with the same colours) with each other.

Given Dynamic-Memory-Accesses with the same PC and micro-access-ID (called equal-

izable Dynamic-Memory-Accesses), we use an equivalence heuristic to identify Dynamic-

Memory-Accesses that have similar error propagation in the program execution and hence

can be equalized.

The equivalence heuristic used is called the Load-Order heuristic. For a given Dynamic-

Memory-Access D, the Load-Order heuristic records the PCs of all the loads (Dynamic-

Memory-Accesses of type Read) executed after D that read from the same memory location

(same memory address) as D, in a list called the Load-Order-Chain. The Load-Order-Chain

concatenates consecutive reads from the same PCs into a single entry so as to observe

longer load patterns. The Load-Order-Chain stops being updated when its size reaches a

pre-determined limit l or when a write to the same address as D is encountered. Such

Load-Order-Chains are built for each Dynamic-Memory-Access in the program. Equalizable

Dynamic-Memory-Accesses that have the same Load-Order-Chains are grouped together

in the same meta-equivalence class. Figure 3.11 illustrates the Load-Order equalization

heuristic for two equalizable Dynamic-Memory-Accesses.

The size l of the Load-Order-Chain is set to 50 in this work to restrict the number of

equivalence classes (and hence the number of pilots for error injection) generated. We start

with l=50 since prior work[30] has shown that a control depth of 50 can adequately capture

different program paths for error propagation. The high pruning percentage and accuracy of

81

this technique validates this choice and we stop there. Exploring smaller Load-Order chains

for more efficient analysis is left for future work.

Individual data bits within an data byte or word(s) accessed by a Dynamic-Memory-Access

can display different error-characteristics. For example, an error in the most significant bit

(MSB) of a data word can lead to a different error outcome compared to an error in the least

significant bit (LSB). Hence, it is crucial that error analysis distinguishes between individual

data bits within Dynamic-Memory-Accesses and only group together data bits that occupy

the same relative positions within an equivalence class (for example, all MSBs across different

Dynamic-Memory-Accesses in the same meta-equivalence class will be grouped together and

all LSBs will be grouped together). Thus, given an meta-equivalence class of Dynamic-

Memory-Accesses E, all data bits in the same position (byte offset and bit number) across

all the Dynamic-Memory-Accesses in E will be grouped together into equivalence classes.

To illustrate with an example, say that a single representative Dynamic-Memory-Access D

is chosen from E. Since D accesses data of size n (where n >= 1) bytes, it contains n ∗ 8

data bits. Each of these data bits is an individual error site (for the 1-bit error model) and

are each chosen individually as pilots for error injection. The error outcome O from an error

injection at the data bit located at byte m (m <= n), bit b of D’s access is assigned to the

corresponding data bits at byte m and bit b for all the Dynamic-Memory-Accesses in E. For

the multi-bit error models the appropriate number of bits are chosen and equalized to the

same bit positions across the members of E.

Other Heuristics Considered

The “goodness” of an equivalence heuristic is measured by (1) how effective it is at pruning

the number of error sites that need analysis by error injections (referred to simply as heuristic

effectiveness) and (2) how accurate it is at grouping “similar” errors into equivalence classes,

i.e, it did not group “dissimilar” errors together (referred to as heuristic accuracy).

A “good” equivalence heuristic will equalize more error sites into fewer equivalence classes

leading to fewer pilots and larger pruning. But this alone is not sufficient since accuracy is a

necessary requirement for an equivalence heuristic. Accuracy of equivalence heuristic deter-

mines if the pilot chosen for analyses truly represents the other members of the equivalence

class and hence determines the accuracy of the final memory error profile generated. Thus,

the best heuristic is one that shows high pruning effectiveness and high accuracy.

We also considered and evaluated other equivalence heuristics for DataApproxilyzer based

on data and control flow, before picking the Load-Order heuristic. For example, we con-

sidered two variation of the Load-Order heuristic: (1) which tracks not only the PC order

82

Load-Order-Chain = <PC-B, PC-C>

PC-A_m_MemAccess-1 X

PC-C Read X

PC-D Write X

PC-B Read X

PC-B Read X

Load-Order-Chain = <PC-E, PC-F>

PC-A_n_MemAccess-1 Y

PC-E Read Y

PC-F Read Y

PC-G Write Y

PC-A_m_MemAccess-1 PC-A_n_MemAccess-1
Equivalent

iff, PC-B = PC-E and PC-C = PC-F

Figure 3.11: Equalization of two Dynamic-Memory-Accesses using Load-Order heuristic.
Both Dynamic-Memory-Accesses have the same micro-access-ID and PC and hence are
equalizable. The micro-access-ID is shown simply as MemAccess-1 to illustrate that the
methodology is the same irrespective of whether the memory access is a read or a write.

but also the number of times each load PC reads a corrupted value and (2) full load chains

(this is similar to the store equivalence used by Approxilyzer [31]) with different limits on

the size of the load chains. We also considered simply using the control-equivalence heuris-

tic from Approxilyzer. We found the Load-Order heuristic to provide the largest pruning

percentage; the number of pilots to be analyzed were reduced by up to 80% compared to the

next best heuristic, which was a variation of the Load-Order heuristic but with no cap on

size of the load chain. This is because, in hot code with large loops, dynamic instructions

(belonging to the same static instructions) in different iterations may never be equalized if

we strictly track every subsequent load or branch within the loop (they will monotonically

lead to decreased chain lengths with each iteration); leading to more equivalence classes and

hence smaller pruning. We will show in Section 3.6.5 that the Load-Order heuristic is also

extremely accurate at predicting the error outcomes at very fine output quality granularity.

83

Application Input

Blackscholes 64k options
Swaptions 1 option

1 simulation
LU 16x16 matrix

8x8 blocks
FFT 28 data points
Sobel 321x481 pixels

Table 3.9: Workloads and inputs.

3.6.2 Workloads, Input and Quality Thresholds

To evaluate DataApproxilyzer, five benchmarks from three different benchmark suites

spanning multiple application domains (application descriptions can be found in Section 3.3.5)

are used. Table 3.9 lists the workloads and inputs used to evaluate DataApproxilyzer. To

facilitate extensive analysis of data errors for large applications like Swaptions, FFT and LU,

we chose minimized inputs (Chapter 5) that can enable fast and comprehensive error anal-

ysis. For relatively smaller benchmarks like Blackscholes and Sobel we use reference inputs

provided in the Parsec [122] benchmark suite and Intel’s Approximate Computing Toolkit

(iACT) [124] respectively. The quality metrics and common-sense domain-specific quality

thresholds provided by the tool (to identify SDC-Good, SDC-Bad and DDC outcomes) used

for each of the applications is detailed in Section 3.3.5.

Beyond this, a user can optionally specify quality thresholds that make SDC-Maybe out-

puts with quality degradation within this threshold acceptable. For validating DataApprox-

ilyzer (Section 3.3.9), we use the following 3 different quality thresholds (QT) values (with

varying degrees of error-tolerance):

1. Threshold 1: 2% quality degradation is acceptable for Blackscholes, LU, FFT and

Sobel. Absolute loss in dollar value of less that one-tenth of a cent (<$0.001) is

acceptable for Swaptions.

2. Threshold 2: 5% quality degradation is acceptable for Blackscholes, LU, FFT and

Sobel. Absolute loss in dollar value of less that one cent (<$0.01) is acceptable for

Swaptions.

3. Threshold 3: 10% quality degradation is acceptable for Blackscholes, LU, FFT and

Sobel. Absolute loss in dollar value of less that ten cents (<$0.1) is acceptable for

Swaptions.

84

3.6.3 Evaluation Infrastructure

We use the gem5 [83] simulator for extracting memory execution trace and for simulating

error injections. We use the full system (Ubuntu-16.04) functional simulator in gem5 with

atomic CPU and atomic memory accesses (fast-mem option). We use GCC 7.3 with -O3 to

compile the studied applications.

For carrying out the error injection simulations, we developed an error injector module in

gem5 that is capable of stopping at specific target cycle numbers (corresponding to specific

dynamic instruction instances) and injecting n-bit errors at the targeted address bits.

3.6.4 Error Pruning Effectiveness

To evaluate the error pruning effectiveness of the Load-Order equivalence heuristic, we first

calculate the total number of error sites in the application. Next we calculate the error sites

corresponding to the pilots chosen after equalization using the Load-Order heuristic. The

relative difference in the number of error sites between the pilots and rest of the application

is the application’s pruning percentage.

Application Number of Total Error Remaining Error
Data Bytes Sites in Sites after Pruning
Analyzed Application (% Pruned)

Blackscholes 1835.3K 251,313,760 205,248 (99.9%)
Swaptions 30.75K 2,820,064 44,864 (98.4%)

LU 2.8K 410,432 35,616 (91.3%)
FFT 13.3K 1,373,592 25,368 (98.15%)
Sobel 309K 371,105,472 7,960 (>99.9%)

Table 3.10: Error site pruning statistics for DataApproxilyzer.

Table 3.10 lists the number of error sites before and after pruning as well as the percentage

of error sites pruned (in the last column) using the Load-Order equalization heuristic. On

average 98% of error sites are pruned across all the workloads with Sobel showing the highest

pruning at>99.9%. Most of the applications see orders of magnitude reduction in the number

of error sites to be analyzed, with the largest being a 5 orders of magnitude reduction

for Sobel. Even LU, which has the lowest pruning percentage at 91.3% sees an order of

magnitude reduction in error sites that need to be analyzed with error injections. LU is a

small application (with minimized inputs) with only 6K dynamic memory instructions and

an average of 12 dynamic instances per static memory instruction. Thus the size of the

equivalence classes formed are small which equates to less pruning. The amount of error

85

site pruning is directly proportional to the size of the equivalence classes; larger equivalence

classes equates to a single pilot representing a bigger number of error sites. Thus, larger

applications have more potential for error pruning.

Hence, we conclude that the Load-Order equivalence technique is very effective at error

pruning.

3.6.5 DataApproxilyzer Validation

We undertake validation experiments as described in Section 3.3.9 to evaluate the ac-

curacy of the Load-Order equivalence technique and hence, DataApproxilyzer. Fig 3.12

shows the validation accuracy of DataApproxilyzer (on the Y axis), targeted to approximate

computing (Approx) and resiliency (Res), for the workloads studied, across the four error

models and three quality thresholds (Threshold 1 in Fig 3.12(a), Threshold 2 in Fig 3.12(b)

and Threshold 3 in Fig 3.12(c)). We can see from the figure that the validation accuracy is

very high across the board with average validation accuracy (across workloads and quality

thresholds) for Approx of 1-bit and 2-bit error models at 99% and the validation accuracy of

4-bit and 8-bit error models at 97%; For Res, the validation accuracy of 1-bit, 2-bit and 4-bit

error models is 99% and the validation accuracy for 8-bit error models is at 98%. LU and

Sobel show almost perfect validation for all error models and across all quality thresholds.

FFT shows the worse validation, especially for 4-bit and 8-bit error models, with the worst

case validation accuracy of 86% for 8-bit errors with Threshold 3 for Approx. Upon closer

examination, we find that the bad validation of FFT at 4-bit and 8-bit error models comes

from a few equivalence classes that contain SDC-Maybe outcomes with a wider range of

output quality degradation than that allowed by the validation methodology. Adjusting the

flexibility quality window δ to 5% increases FFT’s validation accuracy across the board to

96% (and up to 99%). Further increasing δ to 10% increases FFT’s validation accuracy to

>98% across all the error-models and quality thresholds.

Thus, these results show that error equalization performed by DataApproxilyzer using

the Load-Order equalization technique is accurate – for both Approx and Res – for all the

studied workloads across a range of realistic quality thresholds. Not only is the equalization

accurate for 1-bit data errors, it also holds for 2-bit, 4-bit and 8-bit errors. Furthermore,

we have shown that it can accurately predict the impact of 1-bit, 2-bit, 4-bit and 8-bit data

errors on the quality of the program output up to a very fine granularity (within an error

margin δ of 2%).

In summary, we show that DataApproxilyzer is not only effective at reducing the number

of error injections required to analyze program data but is also highly accurate in precisely

86

(a) Threshold_1 : 2% , $0.001

0

10

20

30

40

50

60

70

80

90

100

Bl
ac

ks
ch

ol
es FF
T

Sw
ap

tio
ns LU

So
be

l

Av
er

ag
e

Bl
ac

ks
ch

ol
es FF
T

Sw
ap

tio
ns LU

So
be

l

Av
er

ag
e

Bl
ac

ks
ch

ol
es FF
T

Sw
ap

tio
ns LU

So
be

l

Av
er

ag
e

Bl
ac

ks
ch

ol
es FF
T

Sw
ap

tio
ns LU

So
be

l

Av
er

ag
e

Va
lid

at
io

n
Ac

cu
ra

cy
 (%

)
Approx Res

1-Bit 2-Bit 4-Bit 8-Bit

0
10
20
30
40
50
60
70
80
90

100

Bl
ac

ks
ch

ol
es FF
T

Sw
ap

tio
ns LU

So
be

l

Av
er

ag
e

Bl
ac

ks
ch

ol
es FF
T

Sw
ap

tio
ns LU

So
be

l

Av
er

ag
e

Bl
ac

ks
ch

ol
es FF
T

Sw
ap

tio
ns LU

So
be

l

Av
er

ag
e

Bl
ac

ks
ch

ol
es FF
T

Sw
ap

tio
ns LU

So
be

l

Av
er

ag
e

Va
lid

at
io

n
Ac

cu
ra

cy
 (%

)

Approx Res

1-Bit 2-Bit 4-Bit 8-Bit

(b) Threshold_2 : 5% , $0.01

0
10
20
30
40
50
60
70
80
90

100

Bl
ac

ks
ch

ol
es FF
T

Sw
ap

tio
ns LU

So
be

l

Av
er

ag
e

Bl
ac

ks
ch

ol
es FF
T

Sw
ap

tio
ns LU

So
be

l

Av
er

ag
e

Bl
ac

ks
ch

ol
es FF
T

Sw
ap

tio
ns LU

So
be

l

Av
er

ag
e

Bl
ac

ks
ch

ol
es FF
T

Sw
ap

tio
ns LU

So
be

l

Av
er

ag
e

Va
lid

at
io

n
Ac

cu
ra

cy
 (%

)

Approx Res

1-Bit 2-Bit 4-Bit 8-Bit

(c) Threshold_3 : 10% , $0.1

Figure 3.12: Validation accuracy for DataApproxilyzer
87

predicting the program’s output quality in the presence of 1-bit, 2-bit, 4-bit and 8-bit data

errors.

3.6.6 Building the Application’s Data Error Profile

The application data error profile is a list of all the data error sites analyzed in the program

along with the output quality expected when they encounter an error. This is straightfor-

ward for error models where the number of pilots generated are feasible to comprehensively

analyze by error injection experiments. However, for complex error models, comprehensive

error injections is all pilots can be prohibitively expensive. To illustrate with an example,

suppose that DataApproxilyzer equalizes data errors in a program P, prunes 99% of data

and identifies just 64 bits of data (as pilot) for detailed analysis by error injection. We

can now comprehensively analyze P for all 1-bit and 2-bit errors by performing just 64 and

2016 error injections respectively. However, to analyze P for all 8-bit errors would require

approximately 4 billion error injections. Nevertheless, even in cases of n-bit errors where com-

binatorial explosion makes 100% comprehensive analysis infeasible, statistical methodologies

can be employed to generate an extensive data error profile that can provide a first-order

estimate of the program data’s error characteristic.

In this section we describe how we build the data error profile for the different error

models.

1-bit: We build a comprehensive data error profile by (1) doing error injections in all

pilot data bits and (2) assigning their error outcomes to the corresponding data bits in their

equivalence classes. Hence, the final Data Error Profile comprehensively lists all the error

sites (for this error model) in the application along with their error outcomes.

2-bit, 4-bit, 8-bit: Ideally for an n-bit error model, a comprehensive data error profile

will list the error outcome for all n-bit error sites in the program. But this can quickly become

prohibitive as n increases. Hence, we use a statistical methodology to build a data error

profile that provides a first order estimate of the error characteristics of the program data

that can be used for targeted error-efficiency technique. In Chapter 4, we will demonstrate

how an application’s data profile can enable a customized approximate computing technique.

And hence, here we show an example of how an extensive data error profile can be built

for a use-case of approximate computing. Note that this methodology can be tuned based

on analysis budget and use-case. While we leave the exploration of other methodologies to

future work, we note that the methodology described here is sufficient for the error-efficiency

use case described in Section 4.4.

For a given n-bit error model (n > 1), 16 different n-bit error injections are performed in

88

each pilot’s data (note that there are multiple pilots in the program). We chose 16 different

combinations of multi-bit errors since we observed that most of our pilots spanned 16 or

32 data bits and using 16 different combinations increased the probability that each of the

different bits were included in at least one n-bit error-site composition. We observe the out-

comes from 16 error injections per pilot and calculate the percentage of approximable error

outcomes (Section 3.3.7). We then assign this percentage (as an approximation probability)

to each of the data bits in the pilot and therefore to each of the data bits in its corresponding

equivalence class. Thus the data error profile contains each single data bit in the application

along with the probability that an n-bit injection spanning the given data bit will result in

an approximate outcome.

3.7 CONCLUSION

This work introduces a suite of automated application-level error analysis tools – Approx-

ilyzer, gem5-Approxilyzer and DataApproxilyzer – that can determine the output that the

program will produce for each of the billions of error that the program might encounter in its

computation and data. To the best of our knowledge, the error analysis tools and techniques

developed as part of this work are the first-of-their-kind that satisfy all six requirements of

automation, accuracy, precision, comprehensiveness, (relatively) low-cost and generality.

The automated error analysis tools accurately (>95% on average, up to 99.9%) quantify

the impact of virtually all errors (for a given error model) in a program’s computation and

data on its final output quality at very fine granularities (within a 2% error margin). Using a

hybrid approach (built upon prior work [33]) of program analysis and relatively few (up to five

orders of magnitude less) error injections, these tools can comprehensively analyze billions of

possible errors that can impact a program’s execution at low cost. They impose the absolute

minimal programmer burden by only requiring the user to provide an unmodified program

(along with relevant program inputs), a (domain-specific) quality metric and optionally a

quality threshold. These tools are general and can be used to analyze any general-purpose

application and have been evaluated for five different error models. The output of automated

error analyses are comprehensive application error profiles that list the errors that can affect

the program’s execution (instructions and data) along with the corresponding output quality

expected for each of the errors. The application error profiles can be used by programmers

or systems to derive a comprehensive view of the application’s error characteristics without

the need for programmer expertise.

89

Chapter 4: AUTOMATED ERROR ANALYSIS TO CUSTOMIZED
ERROR-EFFICIENCY

The paradigm of error-efficient computing exploits new opportunities for compute effi-

ciency by allowing the system to make controlled errors. One of the fundamental require-

ments for achieving safe and effective error-efficiency is to understand how errors encoun-

tered during a program’s execution impact the quality of the program output. In the ab-

sence of systematic methodologies to guarantee output quality in the presence of errors,

error-efficient techniques today rely on program or domain experts to understand the error

tolerance characteristics of their program and articulate it via custom annotations, data-

types, error-bounds on function parameters etc. [3, 4, 5, 17, 18, 19]. This is very limiting

since such expertise is sparse and can take years to develop for specific domains [20, 21, 22].

To alleviate this dependence on programmer expertise, this work developed automated error

analysis tools (Chapter 3) that can automatically determine the impact of billions of errors

in the program’s computation and data on its output quality.

The application error profiles generated by the automated error analysis tools allow us

to derive a comprehensive view of the error characteristics of the application without the

need for programmer expertise. To demonstrate the versatility of this approach, this work

demonstrates how these automatically generated error profiles can be used to devise different

error-efficiency solutions – from low-cost resiliency to approximate computing – that are

tailored to the application and user requirements.

In the rest of this chapter, we first show how the application instruction and data error

profiles can enable an understanding of the application’s error characteristic, which can

inform their potential for error-efficiency. For example, the application’s error profile is used

to perform a first-order analysis to identify promising subsets of instructions and/or data that

can be potentially targeted by approximate computing techniques. The error profiles can

also be used to gain insights that can motivate further research. For example, we show that

error profiles for the same application, compiled to different ISAs (SPARC vs. x86), can vary

widely [25]; motivating the need for customized error-efficiency for different architectures,

and validating the choice of error analysis at the machine-code level (as opposed to at the

intermediate representation or source-code level).

Next, we demonstrate how the first-order understanding built from the application’s error

profile can be used to build error-efficiency solutions that are customized to the application

and user targets. For example, we demonstrate how an application’s instruction error profile

is used for error-efficiency solutions targeted towards ultra-low cost resiliency to transient

hardware errors [31]. We show that large resiliency overhead reductions (up to 55%) are

90

possible if the user is willing to tolerate a very small loss in output accuracy (1%) while still

providing high (99%) resiliency coverage [31]. In another example, we demonstrate how the

data error profile can be used to enable an approximate computing technique. Specifically,

the data error profile is used to (1) automatically identify non-critical or approximable data

(for a given user-specified quality threshold) and (2) map them to be stored in approximate

DRAM with low refresh rates (which saves power – 23% on average for our workloads – but

incurs modest errors), without programmer intervention [26]; prior techniques required the

programmer to identify non-critical data with annotations. We show that this automatic

mapping to approximate memory meets the quality target set by the user 98% of the time,

on average, over (tens of) thousands of executions.

In summary, this chapter demonstrates the versatility of the automated error analysis

methodology in enabling a diverse range of customized hardware and software error-efficiency

solutions targeting both instructions and data.

4.1 METHODOLOGY TO IDENTIFY ERROR-EFFICIENCY OPPORTUNITIES

Error-efficient computing environments often trade accuracy in the program output for

gains in other system parameters such as energy, performance or resiliency overheads. The

application error profiles, which quantify the output quality of each error site in the program,

can be used to tune the loss in output accuracy with respect to other system benefits. Two

error-efficient techniques are discussed in this work – (1) approximate computing which

deliberately introduces errors in computation for improved performance or energy, and (2)

ultra-low cost hardware resiliency which allows some unintentional hardware errors to escape

as user-tolerable output corruptions (rather than incurring high overheads to prevent all

errors).

In Section 3.3.7 (Table 3.6), we detail how, based on the error outcomes reported in the

error profiles, the AEA tools can identify which error sites in the application need protec-

tion from transient errors (low cost resiliency), or alternatively, which error sites could be

approximable (approximate computing). The reasoning about the error-efficiency potential

of individual error sites can be extended to larger granularities, such as instructions (both

dynamic and static) and data bytes, based on the error outcome of their constituent error

sites. The methodology is described below.

91

4.1.1 Low-Cost Resiliency

The application error profiles can be used to tune the loss in output accuracy with respect

to reduction in the overhead costs related to resiliency. Section 3.3.7 (Table 3.6) describes

how each error site’s output quality is used to decide whether that error site needs protection

from transient errors. Error-sites with Masked, SDC-Good, DDC and Detected outcomes

do not need resiliency protection. SDC-Bad error sites need to be protected. SDC-Maybes

error sites may or may not need protection based on whether they meet the user’s quality

threshold.

This reasoning about which error sites need protection from transient errors can be ex-

tended to larger granularities such as instructions (both dynamic and static) based on the

quality of their constituent error sites. For example, the instruction error profile contains

error sites that describe individual register bits in operand registers of dynamic instructions.

The description for each error site in the instruction error profile (Section 3.3.6) identifies

the register, the dynamic instance and the static instruction that contains the given error

site. Thus, this information can be used to identify dynamic and static instructions in the

application that need resiliency protection. For a given dynamic instruction, if any of its

constituent error sites (spanning all bits of all operand registers accessed by the dynamic

instruction) needs resiliency protection, then the dynamic instruction is marked as needing

resiliency protection. Similarly, if any of the dynamic instructions belonging to a single

static instruction (identified by program counter or PC), is marked as needing resiliency

protection, then that static instruction is deemed as needing resiliency protection.

4.1.2 Approximate Computing

The application error profiles can be used to identify which error sites in the program are

potential first order candidates for approximations. Section 3.3.7 (Table 3.6) describes how

each error site’s output quality is used to decide whether that error site is a candidate for

approximation (referred to as approximable) or not. Error sites with Detected, DDC and

SDC-Bad outcomes are considered to be not approximable. Error sited with Masked and

SDC-Good outcomes are considered approximable. SDC-Maybe error sites can be approx-

imable (or not) depending on whether their output quality meets (or does not meet) the

output quality threshold set by the user.

92

Approximation Potential of Instructions

The knowledge of individual error sites can be extended to decide the approximation po-

tential of instructions (static and dynamic) based on the quality of their constituent error

sites. Using the instruction error profile, if any error site in a dynamic instruction (span-

ning all bits of all operand registers accessed by the dynamic instruction) is deemed not

approximable, then the dynamic instruction is marked as non approximable. Otherwise, the

dynamic instruction is marked as a potential candidate for approximation. The knowledge of

the approximation potential of dynamic instructions can be similarly composed to decide if

a static instruction is approximable (all constituent dynamic instructions are approximable)

or not (at least one constituent dynamic instruction is deemed not approximable). Note that

individual error sites can be composed to different granularities (using the same methodol-

ogy described here) depending on the approximation techniques. For example, individual

operand registers within dynamic instructions may be considered for approximation depend-

ing on the approximation potential of their constituent error sites (all bits within the given

operand register).

Approximation Potential of Data

The approximable potential of error sites within the application data error profile (Sec-

tion 3.3.6) can similarly be used to identify approximable data at different granularity within

the program. For example, we can understand the approximation potential of a single byte

of program data by looking at the error outcome for all of its constituent bits accessed at

different dynamic instructions in the entire program. To illustrate with an example, consider

data byte D stored at memory starting at address A. Whether data byte D is approximable

is decided by looking at error sites corresponding to all data bits located at memory loca-

tions A to A+7, across all dynamic instructions that access these data bits. If all of the

constituent error sites are approximable then data byte D is considered approximable.

For n-bit error models (n > 1), for each data error site, the data error profile generated

by DataApproxilyzer lists the probability (as a percentage) that an error at the given error

site will result in an approximable outcome (Section 3.6.6). Thus, when using the data

error profile across these error-models, approximable data bytes are identified for different

approximation targets (for example, data bytes that produce approximable error outcomes

100% of the time they encounter an error vs. those that are approximate only 50% of the

time they encounter an error).

93

4.1.3 Discussion

Since this work uses transient single bit errors as the intruction error model, instructions

marked as approximable may be false positives, since they may produce unacceptable quality

output with approximation techniques that use different error models. False negatives,

however, are expected to be rare since in most cases if a single bit upset in an instruction

causes an unacceptable outcome, then it is highly likely that multi-bit upsets will also result

in unacceptable outcomes. Similarly, for data since the error analysis only considers the

impact of one (n-bit) transient error in isolation, data bytes marked as approximable may

be false positives; false negatives are similarly expected to be rare.

While this approach is aggressive, we believe it is still useful since it narrows the huge

exploration space for approximation to a manageable smaller set of instructions and data

on which it is feasible to do further rigorous and targeted analysis. Another benefit of this

approach is that the identification of approximable instructions and data is automatic and

needs only minimal programmer input – end-to-end quality metrics and quality thresholds

– and no program modifications. This makes it feasible even for novice programmers to

analyze any program for hidden approximation opportunities.

The AEA tools significantly reduce analysis time by performing error injections only in

the pilots of the generated equivalence classes (Section 3.3.8). This can still lead to a

large number of error injections, especially for longer applications. In order to reduce the

simulation time, we only study 99% of the error sites in the application (for Approxilyzer [24]

analysis), thereby trading off simulation time for a modest loss in coverage [33]. The 1% of

error sites not included in the study do not detract from the observations and gains reported

in this work. While identifying approximable instructions, these remaining error sites might

introduce some false positives (in the event that they produce unacceptable errors). This is,

however, consistent with the overall goal to tolerate some false positives, while minimizing

false negatives, in the quest to uncover approximation opportunities in the application. For

resiliency overhead tuning, these unexplored error sites might represent missed opportunity

(in the event that they produce SDCs) for further overhead reduction than that reported in

this work.

4.2 EXPLORING FIRST-ORDER ERROR-EFFICIENCY OPPORTUNITIES

In this section, we will detail how a given application’s instruction and data error profile

can be used to derive a first-order understanding of its potential for error-efficiency.

94

4.2.1 Output Corruption Distribution

In this study, we examine the instruction error profiles generated by Approxilyzer (Sec-

tion 3.4) to gain insights into application error characteristics. Fig. 4.1 shows the distribution

of error outcomes for error sites in the studied applications1 (Section 3.4.2). Each applica-

tion exhibits a unique distribution of error outcomes. At 68.8%, LU contains the highest

percentage of Output Corruption (OC) causing error sites and Swaptions, at 15.6%, the

lowest.

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

Swap0ons	
 LU	
 Blackscholes	
 FFT	
 Water	

%
	
 o
f	
 E

rr
or
	
 S
ite

s	

Masked	
 Output	
 Corrup/on	
 Detected	

Figure 4.1: Distribution of error outcomes for the applications studied.

Fig. 4.2 shows the different categories of output corruptions, separately for integer and

floating point register error sites. Swaptions and Water show very high percentage of SDC-

Good at 76% and 58% respectively while Blackscholes produces 68% DDC (for both Integer

and Float combined). Swaptions and FFT show an interesting dichotomy in the behavior

of errors in the integer vs. floating point registers, implying perhaps, a need for separate

techniques for resiliency and approximation across the two different register classes. LU’s

OC error sites are almost exclusively (>98%) composed of SDC-Bad outcomes. This may

1The OC (originally SDC) rates reported in this work are different from the rates reported in previous
work [13, 33] as our error model is different. We study errors in both integer and floating point architectural
registers, while prior work only considered integer registers.

95

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

	
 INT	
 	
 FLOAT	
 	
 INT	
 	
 FLOAT	
 	
 INT	
 	
 FLOAT	
 	
 INT	
 	
 FLOAT	
 	
 INT	
 	
 FLOAT	

%
	
 o
f	
 O

ut
pu

t	
 C
or
ru
p;

on
s	

SDC-­‐Good	
 SDC-­‐Maybe	
 SDC-­‐Bad	
 DDC	

Swap;ons	
 FFT	
 Water	
 Blackscholes	
 LU	

Figure 4.2: Distribution of output corruptions (OC) in integer (INT) and floating point
(FLOAT) registers.

either imply that LU is inherently not tolerant to errors or that the quality metric used to

classify errors in the output of LU may not be the correct choice.

These results illustrate how the instruction error profile can be employed to automatically

analyze an application to gain insights into its behavior in the presence of errors in its

instructions.

4.2.2 Exploring Approximation Opportunities in Program Instructions

In this section, we use the instruction error profile (generated by Approxilyzer) to analyze

the approximation potential of static instructions for five workloads (Section 3.4.2). We use

the same technique used to identify which static instructions are potentially approximate

(Section 4.1.2), to also identify approximation along different static instruction granularities.

For example, if all the error sites related to a particular register in a static instruction were

deemed approximable, then we say that the register is approximable. In this case study we

do this analysis for the following static instruction granularities:

(1) Full Instruction (FI): The entire static instruction (i.e., all register bits) is approx-

imable.

96

(2) Partial Instruction, Full Register (PI FR): At least one full register in the

static instruction is approximable. (3) Partial Instruction, Partial Register, x bits

(PI xb): At least one x bit long register chunk in the static instruction is approximable.

For the purposes of this study we do not assume a quality threshold. Instead, we estimate

the best and worst case approximation bounds. For the best case, we assume that all the

SDC-Maybes have acceptable quality and hence are approximable. For the worst case we

assume that none of them have acceptable output quality and therefore are not approximable.

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

	
 %
	
 o
f	
 S
ta
(c
	
 In
st
ru
c(
on

s	
 	

(b)	

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

	
 %
	
 o
f	
 S
ta
(c
	
 In
st
ru
c(
on

s	
 	

(a)	

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

	
 %
	
 o
f	
 D

yn
am

ic
	
 In
st
ru
c(
on

s	
 	

	

(d)	

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

	
 %
	
 o
f	
 D

yn
am

ic
	
 In
st
ru
c(
on

s	
 	

(c)	

0	
 10	
 20	
 30	
 40	
 50	
 60	
 70	
 80	
 90	
 100	
 Swap5ons	
 LU	
 Blackscholes	
 FFT	
 Water	
 Average	

Figure 4.3: Graphs (a) and (b) show the first order worst and best case bounds respectively
for the percentage of static instructions (studied) that are approximable for each applica-
tion at different granularities of approximation. Graphs (c) and (d) show the percentage
of dynamic instructions (in the full application) generated by these static approximable
instructions in the worst and best case respectively.

Figure 4.3(a) and 4.3(b) show, for each application the worst and best case bound, re-

spectively, on the number of static instructions, marked as candidates for approximation (as

described in Section 4.1.2). In order to understand the potential impact of approximating

97

these static instructions, Figure 4.3(c) and 4.3(d) show the proportion of dynamic instances

produced by these static instructions in the full application. Note that while the static

instruction percentage shown is for the fraction of static instructions studied, for a better

insight, the dynamic instruction percentage reported is the fraction over the entire appli-

cation, which includes dynamic instances of instructions that Approxilyzer does not study

(Section 3.4.3).

The graphs show that, on average, between 34% (worst case) to 40% (best case) of the

static instructions studied have 32 bits of continuous register chunks that can be candidates

for approximation (assuming a technique can exploit approximations at that granularity).

These static instructions account for 27% (worst case) and 36% (best case) of dynamic

instructions respectively. Of the applications studied, Swaptions shows the most potential

for approximation. This is commensurate with its high SDC-Good and overall low OC error

sites, as shown in Section 4.2.1.

Another insight gained from this experiment is that even applications that do not have full

instructions that are approximable, may contain pockets of smaller register chunks (partial

instructions) that are tolerable to errors. Hence, techniques that can exploit approximation

at these finer granularities can conceivably achieve big gains and unlock the hidden potential

in many new applications traditionally not considered as candidates for approximate com-

puting. For example, in the best case, while only 4% of the static instructions (producing

3% dynamic instructions) in Blackscholes are marked as candidates for (full instruction)

approximation by Approxilyzer, this number goes up to 29% (31% dynamic instructions)

when considering individual 32b register chunks. While in this work we only consider static

instructions for approximation, such analysis can also be carried out along the dimension

of individual dynamic instructions to further understand the application’s approximation

potential2.

In summary, the instruction error profile can be used to understand the best and worst case

bounds on the approximation potential of an application even without a clear quality thresh-

old. Such analysis can unlock much hidden approximation potential that can then be targeted

by specialized techniques.

4.2.3 Exploring Approximation Opportunities in Program Data

In this case study, we use the data error profile generated by DataApproxilyzer (Sec-

tion 3.6) to perform a first order analysis that estimates the approximation potential of

2This can be useful to determine if the application will benefit from approximation techniques at the
dynamic instruction granularity (e.g., task skipping [125] and loop perforation [39]).

98

different data bytes in each workload studied (Section 3.6.2), across different approximation

targets and different data error models (Section 3.3.2). To calculate the approximation po-

tential of a single data byte for the 1-bit error model, we look at all the error sites listed

in the data error profile corresponding to all bits (across all dynamic accesses) of the given

data byte and calculate the percentage of error outcomes that are approximable. For the

multi-bit error models, we similarly identify constituent error sites in the data error profile

and average the corresponding approximation probability listed (Section 3.6.6). This gives

an estimate of the approximation potential of the data byte under consideration. We do this

for all application data bytes, thereby building a list of data bytes that are approximable

for given approximation targets. The building of this list of approximable data bytes takes

a few seconds per application.

0

20

40

60

80

100

0 20 40 60 80 100Da
ta

 B
yt

es
 in

 A
pp

lic
at

io
n

(%
)

Approximation Target (%)

Blackscholes

0

20

40

60

80

100

0 20 40 60 80 100

Da
ta

 B
yt

es
 in

 A
pp

lic
at

io
n

(%
)

Approximation Target (%)

Swaptions

0

20

40

60

80

100

0 20 40 60 80 100

Da
ta

 B
yt

es
 in

 A
pp

lic
at

io
n

(%
)

Approximation Target (%)

FFT

90% approximate à

0

20

40

60

80

100

0 20 40 60 80 100

Da
ta

 B
yt

es
 in

 A
pp

lic
at

io
n

(%
)

Approximation Target (%)

LU

1-Bit 2-Bit 4-Bit 8-Bit

90% approximate à

90% approximate à

90% approximate à

Figure 4.4: Percentage of approximable data bytes across different error models and approx-
imation targets.

Fig. 4.4 shows the percentage of application data bytes (on the Y axis) that are approx-

imable at different approximation targets (shown on the X axis). The line at 90% on the

X axis, for example, represents data bytes that are approximable 90% of the times they

encounter an n-bit error. We only show four workloads here for brevity. We see that 46%

of the data bytes in Blackscholes are 100% approximable when perturbed by single-bit er-

rors. However, they quickly become non-approximable (yielding egregious outcomes), when

99

perturbed by multi-bit errors. FFT shows a similar trend of being less tolerant to multi-bit

errors. However, we note that most of the data bytes in FFT are tolerant to a significant

number of errors. For example, >80% of the data bytes in FFT are approximate 40% of the

time (40 on the X axis) they encounter errors of any bit length. Further analyzing FFT’s

data error profile to understand patterns in error sites that are approximable is an interesting

future direction.

The trend-lines for LU, Swaptions and Sobel (not shown for brevity) show that a high

percentage of program data in these workloads are approximable – perturbing the data using

the 1-bit, 2-bit, 4-bit and 8-bit error models leads to acceptable loss in output quality a large

fraction of the time. For example, >80% of data bytes in Swaptions are approximable 99%

of times they encounter an error. This number is even higher for Sobel where 99% of data

bytes are approximable 100% of the time for all the error models studied.

In summary, the data error profile (generated by DataApproxilyzer) makes it possible to

automatically perform such analysis that enable programmers and approximate computing

systems to make informed decisions about the approximation potential of the program data

and possibly inform data targeted approximations.

4.2.4 Application Error Profiles under different ISAs

In this case study, we compare the error profiles of the same applications compiled to

two different ISAs – SPARC and x86. First we use gem5-Approxilyzer to generate the

instruction error profile for workloads (Section 3.5.5) compiled to x86 binary. Next, we

generate instruction error profiles for the same workloads compiled to a SPARC binary

using Approxilyzer. This allows a first-order comparison comparison of the resiliency and

approximation characteristics of the same workloads for two different ISAs.

Figure 4.5 compares the distribution of error outcomes (for all the error sites) in each ap-

plication for the x86 and SPARC ISAs. The instruction error profiles of the same application

look rather different for the different ISAs. We note, however, that some differences are ex-

pected due to the CISC vs. RISC nature of the instructions as well as the fact that x86 uses

many more implicit registers (that we do not inject into) compared to SPARC. The graph

shows that SPARC has a higher percentage of more egregious outcomes. For example, while

Blackscholes-x86 has many error sites that lead to SDC-Good, SDC-Maybe, and SDC-Bad

outcomes, the error outcomes in Blackscholes-SPARC produce such bad quality output that

they become DDCs. We leave a deeper analysis of the causes for these differences to future

work.

Next, we use the instruction error profiles (for x86 and SPARC) to identify the sets of

100

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

x86 SPARC x86 SPARC x86 SPARC x86 SPARC x86 SPARC

D
is

tr
ib

ut
io

n
of

 e
rr

or
 o

ut
co

m
es

Masked SDC-Good SDC-Maybe SDC-Bad DDC Detected

Blackscholes LUFFT SobelSwaptions

Figure 4.5: Distribution of error outcome categories for the applications studied using the
x86 and SPARC ISAs.

static instructions that need (1) resiliency protection and (2) are candidates for approximate

computing (using the methodology described in Section 4.1) under given output quality

thresholds. Figure 4.6 shows the percentage of static instructions that need resiliency pro-

tection and those that are approximable for the same quality threshold (QT) across the two

ISAs.

The wide differences across the two ISAs and the lack of a clear trend further underscore

the importance of error analysis tools (such as those developed in this work) that can analyze

applications at the binary level to devise customized resiliency and approximation solutions

for different architectures. Source-code or IR-level error analysis may not lead to the most

optimized solutions.

4.3 CUSTOMIZED LOW-COST RESILIENCY USING THE APPLICATION ERROR
PROFILE

In the previous section, we demonstrated how the application error profile can be used

to build a first-order understanding of the application’s error-efficiency potential. In this

section we will show an end-to-end workflow of how this understanding of the application’s

error characteristic can be used to enable an error-efficiency solution. Specifically, we will

101

0

10

20

30

40

50

60

70

80

90

Black
sc

holes
FF

T LU

Sw
aptio

ns
So

bel

Black
sc

holes
FF

T LU

Sw
aptio

ns
So

bel

%
 o

f S
ta

ti
c

PC
s

x86 SPARC

PCs that need resiliency protection PCs that may be approximable

Figure 4.6: Percentage of static PCs in the application that need resiliency protection and
percentage of PCs that are approximable across x86 and SPARC. The same quality threshold
is used across both ISAs: 5% for Blackscholes, Sobel, FFT, and LU; $0.001 for Blackscholes
and Swaptions.

show how the application’s automatically generated instruction error profile is used to enable

an ultra-low cost resiliency solution to transient hardware errors that can be tuned to user

or system requirements.

4.3.1 Background for Resiliency Analysis

As we have discussed in Chapter 1 and Chapter 3, increasing susceptibility of hardware to

errors pose a challenge to the reliability of modern systems. In this section, we will briefly

recap some background on resiliency analysis as well as establish the goal of resiliency analysis

performed in this study.

Traditional reliability solutions, relying on indiscriminate redundancy in space or time,

are too expensive for a range of systems – from small embedded systems to large-scale high-

performance computing systems. Therefore, there has been significant research in cross-

layer solutions [126, 127] that rely on the software layers of the system stack to provide

acceptable end-to-end system resiliency for hardware errors at lower cost than hardware-

only solutions [128, 129, 130, 131].

102

Early work recognized that a large majority of hardware errors were either masked at

the software level or resulted in easily detectable anomalous software behavior [12, 57,

132, 133, 134, 135, 136]. Since the former errors require no action and the latter can be

detected using zero to very low-cost detection mechanisms, such software-centric resiliency

techniques show immense promise. Unfortunately, these techniques allow some hardware

errors to escape detection and result in undetected and potentially unacceptable silent data

corruptions (SDCs)

Such SDCs have been an obstacle in the widespread adoption of software-centric resiliency

techniques; therefore, significant recent research has focused on characterizing and reducing

these SDCs either through hardware solutions (e.g., use of ECC in hardware memory struc-

tures) or software solutions (e.g., insertion of software checks in application code regions de-

termined to be too vulnerable to SDCs) [12, 13, 14, 15, 16, 56, 68, 82, 107, 126, 137, 138, 139].

Underlying all of these solutions is the need for techniques that find SDCs in the appli-

cations of interest. In this study, we use the term resiliency to mean the ability of a given

piece of software to avoid an SDC for a given hardware error. This study is concerned with

identifying SDC-causing instructions in a given program.

4.3.2 Methodology to tune Output Quality vs. Resiliency vs. Overhead

As explained in Section 4.1.2, using the application’s instruction error profile, specific

static instructions can be targeted for resiliency protection based on the quality threshold

specified. Given additional criteria regarding resiliency (the fraction of output corruption

producing error sites in the application that must be protected, hereby referred to as ”re-

siliency coverage” or simply ”coverage”) and the maximum overhead to be incurred for

protection, an optimizer can pick the optimum balance of output quality, resiliency cover-

age, and overhead to target user requirements. We produce tuning curves that show the

tradeoffs for different combinations.

To produce the different tuning curves, we first identify the instructions that need resiliency

protection for different output quality thresholds (range of quality degradations). Then a

0/1 knapsack algorithm is used to pick the instructions for resiliency protection that offer

the specified coverage for the least overhead. A similar methodology is used in [33] to tune

resiliency vs. overhead, but without relaxation of output quality.

The (software-based) resiliency protection scheme we assume in this work is instruction

redundancy ([140]) and charge one instruction worth of overhead to protect a given instruc-

tion. Hence, the execution overhead cost for protecting static instruction X is equivalent to

the dynamic instruction count of X.

103

To illustrate the above with a simple example, consider two candidate static instructions

A and B, each responsible for 30% and 20% of the output corruption error sites in the

application, and producing 5% and 10% of the dynamic instructions, respectively. Assume

that the maximum quality degradation (QD) produced by an error in A and B is 1% and

4% respectively. Then for no quality loss, to cover 50% of the output corruption error sites

(resiliency coverage), both A and B have to be protected and the (execution) overhead cost

of doing so is their cumulative dynamic instruction count; i.e., 15%. If the user is willing to

accept a quality loss of 2%, we do not have to protect A, and essentially get the resiliency

coverage afforded by A (30%) at no additional overhead cost. For resiliency coverage of 50%

(with acceptable quality loss of 2%), we will need to protect B and incur an overhead of

10%.

For this study, we use the instruction error profile generated by Approxilyzer and hence

use the same workloads as Approxilyzer (Section 3.4.2). The analysis to generate quality vs.

resiliency vs. overhead curves for an application takes several minutes of CPU time for the

workloads studied.

4.3.3 Customizable Low-Cost Resiliency

Fig. 4.7 shows the resiliency overhead cost vs. coverage for different levels of acceptable

output quality degradation (QD) using the methodology in Section 4.3.2. Graphs for four

of our five benchmarks is shown (the fifth, LU, is discussed later). Each graph shows the

following curves corresponding to different levels of acceptable quality degradation.

(1) All Output Corruptions: This curve represents the optimal overhead vs. cover-

age when all output corruption (OC) causing instructions are protected. It represents the

state-of-the-art in the absence of the output quality impact information (provided by the

automatically generated instruction error profiles) to distinguish instructions that produce

acceptable quality output.

(2) All SDC-Bad + SDC-Maybe: This curve shows the optimal overhead vs. coverage

when all the instructions causing SDC-Bad and SDC-Maybe outcomes are protected. This

is the graph that will be generated in the absence of specific user-defined quality thresholds.

Instructions that only produce SDC-Good and DDC are automatically removed from the

list of instructions to protect.

(3) All SDC-Bad + SDC-Maybe with QD>x : These are the optimal overhead vs.

coverage curves with user-specified quality threshold x. For these curves, Approxilyzer does

not protect instructions that produce SDC-Maybe with QD≤x from the list of instructions

protected. This essentially means that if a user says that they are willing to tolerate x%

104

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70 80 90 100

%
 O

ve
rh

ea
d

% Coverage

Swaptions

99% Resiliency Coverage -->

26%
0

10
20
30
40
50
60
70
80

0 10 20 30 40 50 60 70 80 90 100

%
 O

ve
rh

ea
d

% Coverage

Blackscholes

20%

99% Resiliency Coverage -->

0
10
20
30
40
50
60
70
80

0 10 20 30 40 50 60 70 80 90 100

%
 O

ve
rh

ea
d

% Coverage

Water

55%

99% Resiliency Coverage -->

0
10
20
30
40
50
60
70
80

0 10 20 30 40 50 60 70 80 90 100

%
 O

ve
rh

ea
d

% Coverage

FFT

11%
99% Resiliency Coverage -->

01020304050607080
0102030405060708090100

All Output Corruptions All SDC-Bad + All SDC-Maybe

All SDC-Bad + SDC-Maybe with QB > 1% or $0.001 All SDC-Bad + SDC-Maybe with QB > 2% or $0.01

All SDC-Bad + SDC-Maybe with QB > 5% or $0.1 All SDC-Bad + SDC-Maybe with QB > 10% or $1

QD

QD QD

QD

Figure 4.7: Tuning resilience vs. execution overhead vs. output quality for different applica-
tions.

quality loss in the output, then we need not protect the instructions that we know will not

suffer a quality degradation greater than x% in the presence of transient errors.

The gaps between the various curves for each point along the x axis represent the over-

head/cost savings by not applying resiliency protection to those instructions that produce

acceptable quality loss when perturbed. The benchmarks shown in Fig. 4.7 show significant

overhead savings if the user can tolerate very small quality loss. For example, if the user

can tolerate a 1% quality degradation in the output, then the resiliency overhead costs can

be reduced by 20%, 55%, and 11% for Blackscholes, Water and FFT respectively, while still

achieving 99% coverage (the difference between the All Output Corruptions and All SDC-

Bad + SDC-Maybe with QD>1% curves at 99% on the x axis). Similarly, for a quality loss

of less than one hundredths of a penny in final stock price (All SDC-Bad + SDC-Maybe

with QD>$0.001), Swaptions achieves an overhead reduction of 26% while providing 99%

105

coverage.

Swaptions has many instructions that exclusively contain SDC-Good error-sites. Hence

the overhead is significantly reduced by not protecting those instructions (99% coverage for

All SDC-Bad + SDC-Maybe has an overhead of 3%). Further increasing the application’s

quality degradation threshold provides marginal benefits (2% overhead reduction).

Blackscholes also does not show any benefit from increasing the quality degradation thresh-

old, but for a different reason. As mentioned in Section 3.4.4, many (static) instructions in

Blackscholes produce a mix of SDC-Bad and SDC-Maybe outcomes (with wide QD ranges)

and hence they are always protected. Blackscholes does, however, achieve a 20% overhead

reduction by not protecting instructions that only generate DDC and/or SDC-Good out-

comes.

FFT, on the other hand, displays a behavior contrary to Swaptions and Blackscholes –

all its overhead reductions come from increasing the acceptable quality threshold of SDC-

Maybes (the curves for All Output Corruptions and All SDC-Bad + SDC-Maybe sit on top

of each other). This can be attributed to the fact that none of the instructions in FFT

exclusively produce only DDC or SDC-Good outcomes. Changing the quality threshold

from QD>1% to QD>5% results in an additional overhead reduction of 12% for the 99%

coverage point.

Water shows the most overhead reduction while tolerating a small quality loss. This

is because Water has many instructions that contain a mixture of SDC-Good and SDC-

Maybe error sites that result in very small quality degradation. Hence even a small quality

degradation threshold results in large gains.

LU (not shown in the figure for brevity) shows no gains from either quality tuning or from

not protecting SDC-Good and DDCs. This is because, as seen from Fig 4.2, LU produces

only SDC-Bad corruptions and hence all of the instructions need protection.

In summary, most of the applications studied show significant resiliency overhead reduc-

tions while suffering very small accuracy losses. Thus, the application’s instruction error

profile can be used to target ultra-low cost resiliency solutions in an error-efficient environ-

ment.

4.4 CUSTOMIZED APPROXIMATE COMPUTING USING THE APPLICATION
ERROR PROFILE

To demonstrate the versatility of the (automatically generated) application error pro-

files in enabling error-efficient techniques, this section shows a second end-to-end workflow

targeting a different error-efficient technique – Approximate Computing. Specifically, the

106

application’s data error profile (generated by DataApproxilyzer) is used to automatically

identify approximable data bytes in the program (for a given user-specified quality thresh-

old) and simulate their storage in approximate memory with sub-optimal (but low energy)

refresh rates (Flikker [18]). The evaluation shows that, on average, this automatic approx-

imate data partitioning and mapping to approximate memory meets the quality target set

by the user 98% of the time over (tens of) thousands of simulations.

4.4.1 Approximate Memory Technique

There have been different techniques suggested for approximate memory solutions that

trade-off errors in memory for performance or energy benefits. One such technique suggested

for approximate memory is Flikker [18]. Flikker allows developers to specify critical and non-

critical (approximate) data in programs and the runtime system then allocates this data in

separate parts of memory. The portion of memory containing critical data is refreshed at the

regular refresh-rate, while the portion containing non-critical data (referred to as approximate

memory) is refreshed at substantially lower rates. This partitioning saves energy at the cost

of a modest increase in data corruption in the non-critical data.

While Flikker needed programmer annotations to identify approximate data, here the

application’s data error profile is used to automatically identify critical data to store in ap-

proximate memory for a given quality target (thus removing the burden on the programmer).

Note that while the data error analysis performed by DataApproxilyzer analyses (multi-bit)

errors in one data block at a time, a model like Flikker can induce errors in multiple data

blocks in an execution. We show (in Section 4.4.4) that the partitioning of approximate

and critical data (to store in approximate and precise memory regions respectively) is accu-

rate; i.e., it leads to acceptable (within user specified thresholds) output quality over tens of

thousands of simulated runs.

4.4.2 Flikker Design Overview

This section provides a brief overview of the Flikker hardware design described in detail

in [18]. Flikker enhances existing DRAM architectures (in modern mobile devices) that

allow for a partial refresh of DRAM memory by allowing different refresh rates for different

sections in memory.

Memory systems in smartphones devices consume power both when the device is active

(active mode) and when it is suspended (standby mode). In standby mode, the refresh

operation is the dominant consumer of power, and hence the focus of Flikker [18] is on

107

reducing refresh power. In modern mobile systems, several low-power DRAM states are

used in different system scenarios [18]. Self-refresh is a feature of low power mobile DRAMs

in which the DRAM array is periodically refreshed when the processor is in standby or sleep

mode. Partial Array Self Refresh (PASR) is a low power state in which only a portion of the

DRAM array is refreshed. DRAM cells that are not refreshed will lose their data in PASR.

The main difference between Flikker DRAM and PASR is that instead of discarding the data

in a part of the memory array (by not refreshing the data), Flikker lowers the reliability of

the data (by refreshing the data at a lower rate). As a result, Flikker is able to achieve power

savings without compromising on the amount of memory available to applications [18].

In the Flikker DRAM architecture, each bank is partitioned into two different parts, the

high refresh (error-free) part and the low refresh (erroneous) part. DRAM rows in the high

refresh part are refreshed at a regular refresh cycle time (64 milliseconds or 32 milliseconds

in most systems). The error rate of data in the high refresh parts is negligible (similar to

data in state-of-the-art DRAM chips). On the other hand, the low refresh part is refreshed

at a much lower rate (longer refresh cycle time) and its error rate is a function of the refresh

cycle time.

Figure 4.8 [18] shows the Flikker Bank Architecture. The DRAM bank is partitioned into

two parts, the high refresh part, which contains critical data, and the low refresh part, which

contains non-critical data. The high refresh/low refresh partition can be assigned at discrete

locations as shown in Figure 4.8. Henceforth, we refer to the the low-refresh part of memory

as simply approximate memory. The non-critical data that is stored in approximate memory

is referred to as approximate data.

4.4.3 Methodology to Map Data to Approximate Memory

Identifying Approximate Data

The data error profile (generated by DataApproxilyzer) is used to perform a first order

analysis that estimates the approximation potential of different data bytes in each workload

studied across different approximation targets and different error models. Using the method-

ology described in Section 4.2.3, for each of the four error models studied (Section 3.3.2),

we first build a list of data bytes that are approximable for the given error model and given

approximation targets. The approximation target that we use for this study is 100%, i.e., for

each error model, we list data bytes that are approximable 100% of the times they encounter

an error. Next, we pick the data bytes that are approximable (for a given quality threshold)

across all 4 error models (1-bit, 2-bit, 4-bit and 8-bits). We denote these data bytes as

108

Figure 2. Flikker Bank Architecture. The DRAM bank is partitioned into
two parts, the high refresh part, which contains critical data, and the low
refresh part, which contains non-critical data. The high refresh / low refresh
partition can be assigned at discrete locations, as shown by the dashed lines.
The curly brackets on the left show a partition with 1/4 high refresh rows
and 3/4 low refresh rows.

pared with fast low-power states, self-refresh and deep power-down
has lower power consumption as well as longer wakeup time. Un-
like the self-refresh, the deep power-down mode will stop all re-
fresh operations and hence the DRAM will lose data in deep power-
down state. In the following, we will discuss details of these low-
power states.

Self-refresh: Self-refresh is a feature of low power mobile
DRAMs in which the DRAM array is periodically refreshed even
if the processor is in sleep mode. The self-refresh operation is per-
formed by dedicated hardware on the DRAM chip. The self-refresh
mode is activated only when the mobile device is in standby and
the processor is put to sleep as it incurs considerable latencies to
transition in and out of self-refresh mode. The Operating System
(OS) needs to activate self-refresh before putting the mobile device
to sleep.

Partial Array Self Refresh (PASR) is an enhancement of the
self-refresh low power state [18] in which only a portion of the
DRAM array is refreshed. DRAM cells that are not refreshed will
lose data in PASR. In a system with PASR, before switching to self-
refresh mode, the OS needs to specify the portion of the memory ar-
ray to refresh. In Micron’s mobile DDR SDRAM [18] with 4 banks,
there are five different options for PASR, full array (4 banks), half
array (2 banks), quarter array (1 bank), 1/8 array (1/2 bank), and
1/16 array (1/4 bank).

The main difference between Flikker DRAM and PASR is that
instead of discarding the data in a part of the memory array, Flikker
lowers the reliability of the data. As a result, Flikker is able to
achieve similar levels of power savings as PASR, without compro-
mising on the amount of memory available to applications.

Fast Low-power States: Mobile DRAMs also employ low-
power states during active mode to conserve power. These low-
power modes are activated even when there are brief periods of no
DRAM traffic as the latency of transitioning out of these states is
only around 10 nano-seconds. The transition to/from these modes
is performed by the DRAM controller and does not need OS inter-
vention. The power consumption in these low-power states is typi-
cally less than half of the DRAM power-consumption without any
memory accesses.

3.2 Flikker DRAM Architecture
Figure 2 illustrates a Flikker DRAM bank. In Flikker DRAM, each
bank is partitioned into two different parts, the high refresh fault-
free part and the low refresh faulty part. DRAM rows in the high
refresh part are refreshed at a regular refresh cycle time Tregular

(64 milliseconds or 32 milliseconds in most systems). The error
rate of data in these high refresh parts is negligible (similar to data
in state-of-the-art DRAM chips). On the other hand, the low refresh
part is refreshed at a much lower rate (longer refresh cycle time

extra bits

row address

counter_clk

refresh
enable config

Figure 3. Self-refresh counter in the Flikker DRAM.

Tlow) and its error rate is a function of the refresh cycle time (see
Section 3.3).

Mobile DRAMs use a hardware counter during the self-refresh
operation to remember which row to refresh next, known as the
self-refresh counter. Flikker DRAM extends this counter by a few
extra bits (see Figure 3.2) in order to support two refresh rates. The
Flikker self-refresh counter also has an additional “refresh enable”
output. The DRAM row is refreshed only when the refresh enable
bit is set to “1”. A configurable controller sets different values to
refresh enable bit based on higher bits of the row address and the
extra bits, and thus control the refresh rate of different DRAM rows.

The number of additional bits required in the self-refresh
counter is given by the ratio of Tlow to Tregular . For example,
in a system where Tlow = 16 × Tregular , the Flikker self-refresh
counter requires 4 extra bits. The refresh enable bit is always set
to “1” when the row address is a high refresh row. For low refresh
rows, the refresh enable bit is set to “1” only when the extra bits
has a predefined value (say “1111”). In the case of 1/8 high refresh,
when the extra bits are “0000” through “1110”, the refresh enable
bits is only set for row addresses with highest three bits of “000”.
When the extra bits are “1111”. The refresh enable bits is set for
all row addresses. With this configuration, the low refresh rows
(rows with “001” through “111” in highest bits of row address) are
refreshed 16 times less frequently than the high refresh rows.

3.3 Flikker DRAM Error Rates
Previous work [3, 36] has measured DRAM error rate as a function
of refresh cycle time. Bhalodia presents the per cell DRAM error
rate under different temperatures and different refresh cycles [3].
Venkatesan et al. measure the percentage of DRAM rows that are
free from errors with a low refresh rate [36]. Although these two
measurements are at different granularity (per cell versus per row),
their results are consistent with each other.

Table 1 shows the DRAM error rates used in our experiments
which are based on Bhalodia’s measurements [3]. The retention
time of DRAM cells decrease with temperature. Therefore, under
a given refresh cycle, the DRAM error rate increases with ambient
temperature. We assume an operating temperature of 48°C, which
is higher than the operating temperatures of most smartphones, and
hence our error-rates are higher than those likely to be experienced
under real conditions.

Note that the above error-rates are only a function of the re-
fresh period and temperature. In particular, the error-rates do not
depend on the duration of low refresh mode. This is because errors
in DRAM cells are primarily caused by manufacturing variations
among their retaining capacities. Thus, under a given temperature
and refresh rate, a fraction of DRAM cells loses their charge, and
this fraction is independent of how long the refresh rate is applied.

3.4 Flikker DRAM Power Model
We use an analytical model to estimate the power consumption of
the Flikker DRAM. The model is based on real power measure-
ments in mobile DDR DRAMs with PASR [18]. The self-refresh
power consumption is calculated as follows:

12
Figure 4.8: Flikker DRAM bank architecture [18]. The bank is partitioned into high- and
low-refresh parts at discreet locations. The curly brackets on the left show a partition with
1/4 high refresh rows and 3/4 low refresh rows.

approximable or non-critical and mark them to be mapped to approximate memory.

Non-critical data bits are selected using the above methodology for different user-acceptable

quality thresholds. The quality thresholds used in this study are described in Section 3.6.2.

For the convenience of the reader, the quality thresholds used are recapped below:

1. Threshold 1: 2% quality degradation is acceptable for Blackscholes, LU, FFT and

Sobel. Absolute loss in dollar value of less that one-tenth of a cent (<$0.001) is

acceptable for Swaptions.

2. Threshold 2: 5% quality degradation is acceptable for Blackscholes, LU, FFT and

Sobel. Absolute loss in dollar value of less that one cent (<$0.01) is acceptable for

Swaptions.

3. Threshold 3: 10% quality degradation is acceptable for Blackscholes, LU, FFT and

Sobel. Absolute loss in dollar value of less that ten cents (<$0.1) is acceptable for

Swaptions.

Simulating Errors in Approximate Memory

The approximate memory technique of lowering refresh rate saves power at the cost of

incurring modest errors in the non-critical (approximate) data stored in the approximate

memory. To simulate these errors in the non-critical data (stored in approximate memory),

we develop an error injector framework in the gem5 [83] simulator.

109

The injector starts the application and executes it for an initial period. No errors are

injected during this initialization period. Then a self-refresh period is inserted, after which

errors are injected in non-critical memory to emulate the effect of lowering their refresh

rate. In order to keep track of the errors injected during the self-refresh period, the injector

maintains a modified bit for each non-critical data bit (in low refresh memory) which tracks

whether this bit has been accessed after the self-refresh period. Before a non-critical bit is

read, the corresponding modified bit is checked. If it is a 0, then the bit is flipped with a

pre-computed probability (error rate) and the modified bit is set to 1 (the modified bit is

set to 1 to prevent future error injections into these bits). This methodology is the same as

that employed by Flikker [18]).

In the original Flikker implementation, since a self-refresh cycle is only inserted once in

the beginning of the application (as described above), a write to a data bit automatically

sets the corresponding modified bit from 0 to 1 (no error is injected into this data). In

our evaluation, however, we also simulate errors in data values that are written during the

execution (this is similar to a self-refresh cycle occurring after the the data value is written

but before it is read); hence, the modified bit is reset to 0 on a write to the data bit. Note

that this results in our evaluation being stricter (more errors are injected in our study) than

in the original Flikker work. We will show later (Section 4.4.4) that even with this more

conservative methodology, we achieve high accuracy in identifying and mapping non-critical

data to approximate memory. Figure 4.9 shows the state transition diagram of the modified

bit.

The error rate that is used in this work is the same as Flikker [18] – 4 × 10−8 – which

corresponds to a refresh cycle of 1 second at an operating temperature of 48◦C. A refresh

cycle of 1 second is chosen as it is shown to achieve a desirable trade-off between power

savings and reliability [18].

Power Savings Estimate

An analytical power model (based on real power measurements in mobile DDR DRAMs

with PASR) is used in Flikker to estimate the power consumption of different Flikker DRAM

configurations [18]. Figure 4.10 (originally appearing in [18]) provides the self-refresh current

of different PASR and Flikker DRAM configurations (with different refresh cycle times for

the low-refresh part). We will use the values reported in Figure 4.10 to estimate power

savings. Note that for the results reported in this work, we assume a refresh time of 1s

and hence only use the values from the corresponding column. The self-refresh power is

calculated as self-refresh current times power supply voltage (1.8V in this work). The power

110

Inject
Error

Read

P

(1-P)

0

1

Start

Write

11

Figure 4.9: State transition diagram of “modified” bit in fault-injector. Error is injected in
non-critical bits with probability P.

saved by Flikker is estimated as the difference between the power consumed in refreshing

all arrays at a high refresh rate (corresponding to the PASR with a high refresh size of 1

from Figure 4.10) and power consumed by Flikker configuration that uses low refresh rate

for part of the arrays. Hence, for a flikker configuration with 1/4 arrays at high refresh rate,

results in a power savings of 22.5%. .

Refresh Cycle [s] Error Rate Bit Flips per Byte
1 4.0 × 10−8 3.2 × 10−7

2 2.6 × 10−7 2.1 × 10−6

5 3.8 × 10−6 3.0 × 10−5

10 2.0 × 10−5 1.6 × 10−4

20 1.3 × 10−4 1.0 × 10−3

Table 1. Error rate under different refresh cycle (under 48°C, data derived
from [3]).

High Refresh Size
Self-Refresh Current [mA]

PASR Flikker
1s 10s 100s

1 0.5 0.5 0.5 0.5
3/4 0.47∗ 0.4719 0.4702 0.4700
1/2 0.44 0.4438 0.4404 0.4400
1/4 0.38 0.3877 0.3807 0.3801
1/8 0.35 0.3596 0.3509 0.3501
1/16 0.33 0.3409 0.3310 0.3301

Table 2. Self-refresh current in different PASR and Flikker configurations
(PASR current values are from [18]). ∗ This value is derived from linear
interpolation of full array (1) and half array(1/2) cases.

PFlikker =Prefresh + Pother

=Prefresh low + Prefresh high + Pother

=PL × Tregular

Tlow
+ Prefresh high + Pother

=(Pfull − PPASR) × Tregular

Tlow
+ PPASR

(1)

As shown in Eq. 1, PFlikker has two components, Prefresh,
which is the power consumed by refresh operations, and Pother ,
which is the power consumed by other parts of the DRAM (e.g.
the control logic) in standby. Prefresh is proportional to the refresh
rate; while Pother is independent of the refresh rate and is constant.
Then we divide Prefresh into Prefresh high and Prefresh low,
which correspond to the refresh power consumed by the high and
low refresh parts respectively (as shown in second line of Eq. 1).
We further explicate the relationship between refresh power and
refresh cycle time by representing Prefresh low as PL (which is a
constant) times Tregular/Tlow (third line in Eq. 1).

In order to evaluate PFlikker , we consider the DRAM with
PASR and DRAM with full array refreshed (i.e., regular DRAM)
as two extreme cases of Flikker. We calculate PPASR and Pfull

by assigning Tlow = ∞ and Tlow = Tregular in the third line
of Eq. 1. With these two extremes cases, we rewrite the third line
of Eq. 1 with PPASR and Pfull (as shown in the fourth line of
Eq. 1). The underlined and double-underlined parts of the third line
in Eq. 1 are equal to the corresponding parts in the fourth line.

Table 2 summarizes the self-refresh current of different PASR
configurations and Flikker DRAM with different refresh cycle
times for the low refresh part. The self-refresh power is calculated
as self-refresh current times power supply voltage (1.8V in our ex-
periments). It is important to understand that the self-refresh power
comprises the power consumed in refreshing the DRAM array, and
the power consumed to control the refresh operations of the DRAM
chip. The former is proportional to the refresh rate, while the latter
is a constant. Therefore, the self-refresh power does not decrease
linearly with the refresh rate, but decreases and saturates at about
33%.

!"#$%&

!"#$%'

!"#$%!

!&(

)%(

)&(

'%(

!
"
"
#
"
$%
&
'
(

"
(
)
"
(
*
+
$
,
#
-
(
"
$
.
&
/
0
1
2

!"#$%&'()*+,&(+-&.%%"%&/(0$&1"%&

2*11$%$+0&/$1%$34&/(0$

!"#$%&'()*+, -%%"%&.(/$

!"#$!!

!"#$%*

!"#$%+

!"#$%&

!"#$%'

!"#$%!

%(

&(

!%(

!&(

)%(

)&(

'%(

012 013 014 2 3 4 20 30

!
"
"
#
"
$%
&
'
(

.
(
3
)
4
"
(
)
"
(
*
+
$
,
#
-
(
"
$
.
&
/
0
1
2

!"#$"%&'()*+"',%-

!"#$%&'()*+,&(+-&.%%"%&/(0$&1"%&

2*11$%$+0&/$1%$34&/(0$

!"#$%&'()*+, -%%"%&.(/$

!"#$

!"%$

!"&$

#$
%$ &$ #!$ %!$

!"#

!$#

%"#

%$#

&"#

!
"
#
$
%
&
'
(
)
*
'
)
*

+
"
,
+
"
-
.
*
/
(
0
"
+

!"#$%&''('%")*+%,-.%/(0+'%1),234%

!"#$

!"%$

!"&$

#$
%$ &$ #!$ %!$

"#

$#

!"#

!$#

%"#

%$#

&"#

!"##$%!! !"##$%#& !"##$%#' !"##$%#(!"##$%#)

!
"
#
$
%
&
'
(
)
*
'
)
*

1
"
2
,
3
+
"
,
+
"
-
.
*
/
(
0
"
+

!""#"$%&'(

!"#$%&''('%")*+%,-.%/(0+'%1),234%

Figure 4. Error rate and power saving for different refresh cycles. The
high refresh part is 1/4 of DRAM array .

3.5 Power-Reliability Trade-off
The models derived in the two previous sections are used to derive
a suitable refresh rate for Flikker. Figure 4 shows the self-refresh
power saving and DRAM error rate of different refresh cycles in
a system with 1/4 of the memory array at the high refresh rate.
In Figure 4 (top), the X-axis represents the refresh cycle time,
the Y-axis on the left represents the power-savings in self-refresh
mode, while the Y-axis on the right represents the error-rate on
a logarithmic scale. It can be observed that the DRAM error rate
increases exponentially with the DRAM refresh cycle. However,
the self-refresh power saving saturates to about 25% at a refresh
cycle time of about 1 second.

Increasing the refresh cycle beyond 1 second leads to significant
increase in the error rates (the graph is draw to log-scale). For
example, from 1 to 20 seconds, the error rate increases over 3000
times, from 4.0 × 10−8 to 1.3 × 10−4. However, the improvement
in power saving corresponding to the refresh cycle increase is small
(22.5% to 23.9%). On the other hand, reducing refresh cycle time
from 1 second to 0.5 seconds leads to a steep decrease in power
saving. This finding is also substantiated in Figure 4 (bottom),
which shows the power-savings as a function of the error-rate (in
log scale). Therefore, we believe that a refresh cycle of 1 second
is near-optimal, as it achieves a desirable tradeoff between power
savings and reliability. This is the value we use in our experiments.

4. Flikker Software
In this section, we describe the changes that need to be made to
software so that it can use the Flikker DRAM. Figure 5 shows the
steps involved in the operation of Flikker. First, the programmer
marks application data as critical or non-critical. Second, the run-
time system allocates critical and non-critical data to separate pages
in memory, and places the pages in separate regions of memory
(i.e., high-refresh and low-refresh respectively). Third, the Oper-
ating System (OS) configures the DRAM self-refresh counter be-
fore switching to the self-refresh mode. Finally, the self-refresh
controller refreshes different rows of the DRAM bank at different
rates depending on the OS-specified parameters. Based on Figure 5,
modifications need to be made to the application, the runtime sys-
tem and the Operating System (OS).

14Figure 4.10: Self-refresh current in different PASR and Flikker configurations [18].

Note that since self-refresh (in PASR and therefore Flikker) is employed in standby mode,

the power savings estimate reported here are only for the power saved in standby mode.

This is still significant since prior work [141] shows cell phone usage profiles with 5% being

busy and 95% in standby mode (self-refresh state).

To estimate power savings for the workloads studied, we first compute the proportion

111

of critical and non-critical data for each of the applications studied. As discussed in Sec-

tion 4.4.2 (and shown in Figure 4.10), the partitioning of approximate memory is done at

discrete boundaries. Therefore, only non-critical (or approximate) data that can fit into

a discrete partition is considered for power calculations. Furthermore, for power savings

estimation, we allocate approximate data in 4KB pages, so we do not count the data that

is fragmented, i.e., resides in the same page with non-approximate (critical) data. To il-

lustrate with an example, suppose 80% of data bytes in an application are identified to be

approximate (using the application’s error profile). Discarding the fragmented approximate

data-bytes, 78% of the data bytes are identified and marked into approximate pages. How-

ever, only 75% of data bytes are considered as being stored in approximate memory for

power savings (corresponding to a configuration where 1/4 of arrays are refreshed at normal

rate and 3/4 of the arrays are refreshed at lower rate). Note however that this is done only

for the power savings estimate using the methodology described above. To generalize the ac-

curacy of the techniques described in this work – which automatically identify approximate

data and map them to approximate memory – errors are simulated in all non-critical data

(80% of data bytes from the above example) that can potentially be stored in approximate

memory. We describe the methodology to determine the accuracy of mapping approximate

data to low-refresh approximate memory next.

Accuracy of Mapping Data to Approximate Memory

In this study, for a given user-specified quality target, we use the data error profile to auto-

matically identify non-critical data to be mapped to approximate memory. The application

is executed while simulating errors in data stored in approximate memory. The accuracy

of our approximate memory mapping is validated by verifying that the quality of the final

output produced by the execution is within the user specified quality target (used to gener-

ate the mapping). Since each execution can produce different errors in the non-critical data

(errors are randomly injected according to a given bit error rate), it is imperative that the

accuracy of a given mapping (for a given quality target) is verified over many executions.

We perform 10,000 simulations for each mapping (for a given quality threshold) of non-

critical data to approximate memory. The output produced at the end of the simulations is

observed. If the output quality degradation is below the quality threshold (that was used

to generate the mapping), the mapping is considered to be accurate. Thus, if all 10,000

simulations lead to acceptable outputs, the mapping accuracy is considered to be 100%.

112

Memory System

Flikker [18] simulates approximate DRAM memory by reducing DRAM refresh rate. In

this work, we simulate an abstract approximate memory device that mimics the DRAM

with lower refresh rate. Caches are not simulated in this system. This is a deliberate design

choice to ensure that all the errors introduced in the non-critical data (due to the lowered

refresh rate) are “activated” or consumed by the execution. This need not be true in systems

that have caches. For instance, an error in DRAM will not be activated if a copy of the

data is present in SRAM. The design chosen is to present a strict (conservative) evaluation

of the accuracy of the approximate data mapping. Hence in real systems with caches, the

accuracy of the automatic approximate data mapping is expected to be higher than that

reported here.

4.4.4 Accuracy of Mapping Data to Approximate Memory

0

10

20

30

40

50

60

70

80

90

100

Bl
ac

ks
ch

ol
es FF
T

Sw
ap

tio
ns LU

So
be

l

Av
er

ag
e

M
ap

pi
ng

 A
cc

ur
ac

y
(%

)

Figure 4.11: Accuracy of Mapping non-critical (Approximate) data to Approximate Memory

We evaluate the accuracy of mapping non-critical data to approximate memory using the

methodology described in Section 4.4.3. We observe empirically that each simulated execu-

113

tion run (across workloads) incurs errors that number in the thousands. Figure 4.11 shows

the mapping accuracy (on Y axis) for the workloads studied using Threshold 1. The figure

shows that, on average, the workloads generate acceptable outputs (with quality degradation

less than Threshold 1), 98% of the time over tens of thousands of simulation runs. Sobel

shows the least accuracy at 92%. Upon closer inspection, a significant number of incorrect

outcomes in Sobel are caused by Segmentation Faults. As mentioned in Section 4.2.3, 99%

of data bytes are designated as approximable for Sobel. This includes data that is stored

in stack and heap including pointers, which can lead to egregious errors if corrupted with

multiple errors over time in the execution (the data error profiles are generated by analyzing

errors in a single data block – single data value read or written by a given instruction – at

a time). Extending the automated error analysis to analyze errors in multiple data blocks

within an execution is part of our future work.

We also study the accuracy of the approximate memory mapping generated using Thresh-

old 2 and Threshold 3. We observe similarly high mapping accuracy (>97% and 98% on

average across all thresholds) across these quality thresholds as well.

Hence, we conclude that the data error profile of applications can enable automatic extrac-

tion of non-critical (approximable) data for mapping to approximate memory.

4.4.5 Power Savings Estimate Using Flikker Power Model

We calculate the estimated power savings of mapping non-critical data to approximate

memory using the methodology described in Section 4.4.3. Figure 4.12 shows the power

savings observed across the studied workloads. Swaptions and LU show power savings of

22.5% and Sobel shows a power savings of 32%. Blackscholes and FFT show no power

savings as the original analytical model assumes a discrete DRAM partitioning which requires

at least 25% of approximable data (corresponding to 3/4 of high refresh rows) to achieve

any power savings. Choosing a different approximate memory architecture to exploit fine

grained approximate data or using a different criteria for selecting approximate data (such

as requiring non-critical data to be approximate 90% of the time, as opposed to our strict

criteria of 100%) could offer better power savings, but we leave their exploration to future

work.

4.5 CONCLUSION

The application error profiles generated by the automated error analysis tools enable

a fundamental understanding of the application’s error characteristic. The first-order un-

114

0

5

10

15

20

25

30

35

Swaptions FFT Sobel Blackscholes LU

Es
tim

at
ed

 P
ow

er
 Sa

vi
ng

s (
%

)

Figure 4.12: Estimated power savings using the analytical power model from Flikker.

derstanding built from the application’s error profile can be used to build error-efficiency

solutions that are customized to the application and user quality targets. This work demon-

strates the versatility of this approach by showing two end-to-end workflows that use the

application error profiles to devise customized error-efficiency solutions.

First, the application’s instruction error profile is used for error-efficiency solutions tar-

geted towards ultra-low cost resiliency to transient hardware errors. It is shown that large

resiliency overhead reductions (up to 55%) are possible if the user is willing to tolerate a very

small loss in output accuracy (1%) while still providing high (99%) resiliency coverage. Next,

we demonstrate how the data error profile can be used to enable an approximate computing

technique. Specifically, the data error profile is used to automatically (without programmer

intervention) identify non-critical or approximable data (for a given user-specified quality

threshold) and map them to be stored in approximate DRAM with low refresh rates (re-

sulting in up to 32% power savings). The evaluations show that this automatic mapping to

approximate memory meets the quality target set by the user 98% of the time, on average,

over (tens of) thousands of executions.

115

Chapter 5: IMPROVING SPEED AND SCALABILITY OF ERROR
ANALYSIS

The AEA tools discussed in this work significantly further the state-of-the-art in auto-

mated error analysis. But, their dependence on error injections (albeit orders of magnitude

fewer than naive techniques) can still make them too slow for some practical use cases. In

order to improve speed, some error analysis techniques may sacrifice comprehensiveness or

coverage by only analyzing a fraction, say 99%, of error-sites in the program. While this is

practical for most applications, it may be unacceptable for safety-critical applications which

need 100% coverage to enable highly accurate application of error-efficiency. For example,

resiliency analysis (Section 4.3.1) informed by an incomplete error profile (coverage lt100%)

may risk not protecting against some SDCs produced by the remaining 1% of error-sites

not covered. Since the hybrid error analysis described in this work use dynamic program

analysis and error injections, they are also input dependant. For robust error analysis, these

techniques must be scalable across different inputs and workloads. For all of the above

reasons, it thus is essential for error analyses to be be efficient and scalable.

This work presents Minotaur, a toolkit that shows a systematic adaptation of software

testing concepts to (hardware) error analysis, thereby significantly improving the speed and

scalability of error analyses. The novel insight behind Minotaur is that analyzing software

for (hardware) errors is similar to testing software for software bugs; therefore, adapting

techniques from the rich software testing literature can lead to principled and significant

improvements in error analysis. Minotaur techniques can benefit many error analysis tech-

niques; it is evaluated in this work by applying it to Approxilyzer [24].

Minotaur identifies, adapts, and evaluates four bridges between software testing and error

analysis:

Concept 1: Test-Case Quality → Input Quality. A key concept in software testing

is test-case (input) quality; i.e., an input’s effectiveness in finding bugs in the target software.

Several input quality criteria have been proposed in the literature, typically at the source-

code level, with statement coverage as a simple and widely used criterion (Section 5.1.1).

Typical error analysis techniques, for example those used for resiliency analysis [33] typically

use generic inputs often developed for performance evaluation; e.g., the reference inputs in

benchmark suites. Error analysis performed using these generic inputs could be sub-optimal

for specific error efficiency techniques, that, say identify SDC instructions (for resiliency

analysis) or for discovering approximable instructions (for approximate computing). Yet

there is no accepted input-quality criterion for error analysis (or for traditional resiliency

analysis or approximate computing).

116

This work introduces the notion of input-quality criteria for error analysis, adapts several

widely used software testing criteria to the object-code level, and evaluates these criteria

for error analysis targeting both resiliency and approximate computing. Program counter

(PC) coverage, an analog of the widely used statement coverage, is found to be an effective

input-quality criterion for error analysis. Intuitively, PC coverage measures the fraction of

assembly instructions executed for a given input.

Concept 2: Test-Case Minimization → Input Minimization. Test-case minimiza-

tion for software takes a high quality, expensive/slow test and creates a cheaper/faster test

with similar high quality. Minotaur adapts minimization to error analysis by creating mini-

mized inputs (referred to as Min) that are smaller and execute faster than, but have similar

quality as, the reference inputs (Ref).

Minotaur uses a Minimizer module to systematically (using a greedy binary search) reduce

the input till the Min input generated meets the specified minimization objective (speed in

this case) and input quality target (100% PC coverage). Applying minimization to seven

benchmarks (across multiple application domains) shows that using Min instead of Ref

speeds up error analysis by 4.1X (up to 15.5X for some benchmarks) on average.

The improved analysis speed afforded by Min enables it to be analyzed more comprehen-

sively, whereas Ref can be prohibitively expensive to analyze in its entirety [31, 33]. This

more comprehensive error analysis can, in turn, lead to more accurate resiliency and approxi-

mate computing solutions. For example, resiliency analysis using Min can correctly find 96%

of SDC causing static instructions (SDC-PCs) in the program whereas an incomplete (albeit

high coverage at 99%) analysis using Ref only finds 64% of the SDC PCs. In the context of

approximate computing, Min identifies 96% of first-order approximable instructions whereas

Ref only identifies 81%. This result that Min is more accurate (by enabling more compre-

hensive analysis) than Ref parallels recent work from the software testing literature on bug

detection [142].

Concept 3: Test-Case Prioritization → Error-Injection Prioritization.

Test-case prioritization for software systematically prioritizes test cases to find critical

software failures as early as possible. Minotaur adapts test-case prioritization in two ways—

prioritization of error injections for a given PC with a given input (Concept 3) and prioriti-

zation of inputs (Concept 4). Error injection prioritization can be effectively applied if the

context for which the analysis is performed is known. For example, if the context is to find

SDC PCs for resiliency protection then once a PC is found to generate an SDC, no further

error injections are performed on that PC because it needs to be hardened (protected against

SDCs) anyway. Similarly, if the context is to find approximable instuctions, then once a PC

is found to generate an output of unacceptable quality (egregious outcome), then it can be

117

classified as non-approximable and no further injections are needed on it.

Several priority orderings are explored for error injections for a given PC. Surprisingly, we

find that random ordering reveals SDCs/egregious outcomes almost as quickly as an oracular

best case. Further investigation shows that an SDC-PC often produces SDCs for a very large

number of its injections; therefore, a random ordering quickly finds one such injection (same

trend for approximation). The combination of random ordering and termination of injections

on a PC after an SDC (or egregious outcome) discovery, combined with input minimization,

provides an average 10.3X speedup (up to 38.9X) in error analysis targeting resiliency by

employing Minotaur. Similarly, error analysis for first-order approximate instructions sees a

speedup 18X (up to 55X) by using Minotaur techniques of minimization and error injection

prioritization.

Concept 4: Test-Case Prioritization → Input Prioritization. Minotaur also

adapts test-case prioritization across multiple inputs. For example, to find SDC-PCs as

fast as possible, error analysis on the faster Min input is prioritized over the slower Ref

input. Then, for higher accuracy, we can additionally perform error analysis on the larger

Ref input, but only for those PCs not already classified as SDCs by Min. This prioritiza-

tion of inputs for resiliency analyses results in finding the union of SDC-PCs across both

inputs, while running on average 2.3X faster than analyzing both inputs independently in

their entirety.

To summarize, Minotaur shows, for the first time, that leveraging software testing con-

cepts for error analysis enables principled and significant benefits in speed and accuracy.

While the evaluation in this work uses Approxliyzer as the underlying error analysis, Mino-

taur and its concepts apply more generally. For example, Concepts 1 and 2 can be applied

to speed up any dynamic resiliency analyses that typically study large inputs, by producing

a smaller representative input for analysis. Error-injection analyses can greatly benefit from

Concept 3, by prioritizing error-injections and employing early termination for SDC-PCs.

Concept 4 can propel resiliency analyses to explore multiple inputs, a new direction which

previously was daunting due to speed and accuracy concerns of existing techniques. Mino-

taur provides a foundation for a systematic methodology for efficient error analysis based

on software testing, and opens up many avenues for further research. By building a bridge

between software testing and (hardware) error analysis, Minotaur lays the foundation for

systematically integrating (hardware) error analyses into the software development workflow.

As a working example, the rest of this study shows an application of Minotaur to Ap-

proxilyzer analysis targeting resiliency, with the goal of identifying SDC-PCs in a given

application. Henceforth, for brevity, Approxilyzer analysis targeted to resiliency will be sim-

ply referred to as resiliency analysis. Section 5.5 discusses evaluation of using Minotaur for

118

Approxilyzer analysis targeting approximate computing.

5.1 BACKGROUND

This section provides an overview of the relevant software testing techniques adapted by

Minotaur and a brief recap of Approxilyzer (Section 3.4).

5.1.1 Relevant Software Testing Techniques

Software testing is the process of executing a program or system with the intent of finding

failures [143]. The objective of testing can be quality assurance, verification, validation, or

reliability estimation. This section discusses some techniques and best practices adopted by

the software testing community.

Test-Case Quality

In software testing, a test case is an input and an expected output used to determine

whether the system under test satisfies some software testing objective. A test set is a

collection of test cases. The number of all test cases can be intractably large. Thus, selecting

appropriate test cases has a significant impact on testing cost and effectiveness. Test cases

are selected by evaluating them using quality criteria relevant to the testing objectives.

Selecting a quality criterion involves a tradeoff. A “stronger” criterion enables closer

scrutiny of program behavior to find bugs, while a “weaker” criterion can be fulfilled using

fewer test cases [144]. The choice of criterion depends on several factors, including the size

of the program, cost requirements, and criticality of failure. Some popular criteria [144],

ordered from weaker to stronger, are: (1) statement coverage [145], which measures the

fraction of program statements executed by tests; (2) branch coverage [143], which measures

the fraction of branch edges executed; and (3) def-use coverage [144, 146], which measures the

fraction of pairs of variable definitions and their corresponding uses executed. Despite being

a weak criterion, statement coverage is typically used for testing commercial software due

to its low resource overheads. Branch coverage is often used for safety-critical systems [147].

The software testing literature provides an extensive analysis of various testing criteria [145].

119

Test-Case Minimization

While running larger (or more) test cases is desirable for thorough testing, time and re-

sources limit the size (or number) of test cases that can be executed. Test-case minimization

is used to minimize the testing cost in terms of execution time [142, 148, 149, 150, 151, 152,

153]. The goal is to generate a smaller test case that has similar or (ideally) the same quality

as the original test case; e.g., covers the same statements.

Test-Case Prioritization

Resource constraints can sometimes make it infeasible to execute all planned test cases. It

thus becomes necessary to prioritize and select test cases so that critical failures can surface

sooner rather than later [148]. Test-case prioritization techniques schedule test cases in an

order that allows the most important tests, by some measure, to execute first. For example,

test-cases can be prioritized by their coverage. Many test-case prioritization techniques have

been proposed in the literature [148].

5.1.2 Approxilyzer

Minotaur is evaluated in this work using Approxilyzer (Section 3.4). In this work, the

error analysis performed in the context of resiliency with the end goal of identifying static

instructions (PCs) in the application that result in a Silent Data Corruption when perturbed

by errors (Section 4.3.1). While a detailed explanation of Approxilyzer methodology and

its use for application resiliency is provided in Chapter 3 and Chapter 4, some of the key

concepts are briefly recapped here for the convenience of the reader.

Approxilyzer is a state-of-the-art instruction-level error (resiliency) analysis tool that is

fine-grained (it identifies individual SDC-PCs) and comprehensive (it analyzes nearly all

instructions). Approxilyzer uses a combination of program analysis and error injections to

determine the outcome of a single-bit transient hardware error occurring during the execution

of any dynamic instruction—in any source or destination register bit of the instruction—of

the given program and its input. The term error site is used to refer to the combination of

the dynamic instruction instance and its register bit that incurs the error.

Approxilyzer dramatically reduces the number of required error injections to predict the

error outcome for all application error sites for a given input. It systematically analyzes

all error sites, and carefully picks a small subset to perform selective error injections. It

uses novel error-site pruning techniques (pioneered by Relyzer [33]) to reduce the number

120

Figure 5.1: A classification of error outcomes. Only outcomes of SDC-Bad and SDC-Maybe
constitute SDC-PCs.

of error-sites needing detailed study, either by predicting their outcomes or showing them

equivalent to other errors. To prune error sites, Approxilyzer partitions error sites into

equivalence classes such that the error outcome ofa single representative of each class is

needed to predict error outcome for all error sites in the class. However, it is still slow,

requiring millions of error injections for standard benchmarks with reference inputs [31].

Past studies, therefore, performed error injections only for the classes that contain 99% of

the error sites (sorted by equivalence class size), referred to as 99% error-site coverage—

analyzing the last 1% was deemed too expensive, because it can involve many more classes

and would require many more error injections [31, 33].

Approxilyzer distinguishes error-injection outcomes as masked, detected, or output cor-

ruptions (OCs). While most prior work considers all OCs as SDCs, Approxilyzer analyzes

the quality (degradation) of the corrupted outputs to further differentiate between output

corruptions that are tolerable to the user from those that are not. A comprehensive list of

error outcomes follows, also summarized in Figure 5.1:

• Detected: An error that raises observable symptoms and can hence be caught using

various low-cost detectors [12] before the end of execution.

• DDC: An OC that is detectable via low-cost mechanisms such as range detectors

applied on the output [13].

• SDC-Bad: An OC with very large (unacceptable) output quality degradations.

• SDC-Maybe: An OC that may be tolerable if the output-quality degradation is

within a user-provided acceptability threshold (if no threshold is provided, all SDC-

Maybe’s default to SDC-Bad).

121

Input Quality
Checker

Application
Input

Input Quality Target
(Criterion + Threshold)

Minimizer

Minimization Objective

Input Constraints

Input Selector
Resiliency Analyzer

APPROXILYZER

Resiliency Analysis
Output

1 2 3 4

Error-injection prioritization1 Input quality Input minimization Input prioritization3 42

Input Prioritization
Objective

Figure 5.2: Overview of Minotaur. Approxilyzer may be replaced with another resiliency
analyzer.

• SDC-Good: An OC that produces negligibly small (and acceptable) output quality

degradations.

• Masked: Errors that produce no output corruption.

To identify an SDC-PC, Approxilyzer examines the error outcomes for all error sites in

a given static PC. If even a single error site results in an unacceptable outcome (SDC-

Bad or SDC-Maybe for quality degradations outside the acceptability threshold), the PC is

classified as an SDC-PC. Because SDC-Good outcomes are tolerable, their error sites do not

need hardening and do not contribute to SDC-PCs.

5.2 MINOTAUR

This section describes Minotaur, a novel toolkit for principled and efficient resiliency

analysis for hardware errors. Figure 5.2 illustrates the complete system.

5.2.1 Input Quality

Ensuring that ”good” quality inputs are used for resiliency analysis increases the effec-

tiveness of the analysis. The concept of test-case quality (Section 5.1.1) is adapted to build

an Input Quality Checker (Figure 5.2) that measures the quality of the inputs used for

resiliency analysis.

The software test quality criteria are typically expressed at the source-code level, to make

it easier for developers to understand what is covered and what is not. There has also been

122

// INPUT: c = True

// Source. 100% Statement Coverage

1. v = c ? E1 : E2 // covered

// Assembly. 75% PC Coverage

PC-1. beq c, $0, L2 # covered

L1: PC-2. move v, E1 # covered

PC-3. jump L3 # covered

L2: PC-4. move v, E2 # not covered

L3: …

Figure 5.3: Statement coverage vs. PC coverage.

some work on test coverage at the object-code level [154, 155], but it is not widely studied.

Approxilyzer’s resiliency analysis examines error models at the object code level and aims to

find assembly instructions that are vulnerable to SDCs (SDC-PCs). Hence, it is desirable to

measure the quality of the input used for resiliency analysis with quality criteria expressed

at the object code.

Figure 5.3 demonstrates the difference between using input quality criteria at the source

vs. object code level. Suppose a ternary operator is used by the developer, such as in Line

1. Assuming a value of True for the variable c, statement coverage (Section 5.1.1) of the

source code measures that this single input will cover (execute) 100% of the code. However,

for the same code compiled to assembly, only 75% of the instructions are covered (executed).

Analyzing resiliency with just this input does not provide full (100%) assembly instruction

coverage, and an error in assembly instruction PC-4 would not be captured.

For resiliency analysis, three test (input) quality criteria are adapted to the object code

level—statement, branch, and def-use coverage. The analog of statement coverage at the

object code level measures the fraction of static assembly instructions (or PCs) executed

by the input; we call it simply PC coverage. Branch and def-use coverage are analogously

adapted from the source to the object code level to consider assembly-level branches and

def-uses pairs, respectively.

The Input Quality Checker (Box 1 in Figure 5.2) evaluates whether a given input meets

the desired quality threshold (e.g., 90%) for a specified quality criterion (e.g., PC coverage).

The combination of the input quality criterion and the threshold is referred to as the input

quality target .

123

5.2.2 Input Minimization

Minimizing the input size can greatly speed up the resiliency analysis by reducing the

time for each error-injection experiment and/or reducing the total number of error injections

needed. Using insights from test-case minimization, we designed a systematic technique, a

Minimizer (Box 2 in Figure 5.2), that Minotaur uses to generate a minimal input, Min,

provided a reference input, Ref.

There is no general algorithm to minimize inputs across all application domains in soft-

ware testing [145]. The Minimizer algorithm in this work is specialized for the workloads

studied . Given a Ref, the goal of the Minimizer is to find a reduced input (Min) that min-

imizes a stated minimization objective (MinObj) (e.g., execution time) while satisfying an

input quality target (e.g., 90% PC coverage relative to Ref). We chose a simple, greedy al-

gorithm based on binary search for the Minimizer and found it effective. More sophisticated

optimizers may find better Min inputs; such an exploration is left to future work.

In addition to the minimization objective and input quality target, the Minimizer is pro-

vided with the list of input parameters (e.g., command line and other program-specific

parameters) and a set of parameter constraints (e.g, range or boundary conditions) to en-

sure that the Min generated is both legal and realistic. A realistic Min enables the resiliency

analysis to uncover SDC-PCs that are vulnerable for realistic conditions, avoiding over- or

under-protection. Domain knowledge enables understanding the realistic range of input val-

ues and how to change them (e.g., choosing image shrinking instead of sub-sampling pixels

or subsetting image inputs [156]) to achieve realistic inputs.

Figure 5.4 shows the algorithm (pseudo-code) of Minotaur’s Minimizer. It first performs

a pre-processing pass over the reference input’s parameter list and orders the parameters

according to their estimated impact on the minimization objective. The current imple-

mentation in this work determines this order by running the program with a few different

values for each input parameter and measuring the impact on the minimization objective.

This step can be accelerated with additional domain knowledge or automated using more

sophisticated optimizers.

Given the ordered parameter list, the Minimizer uses binary search to progressively change

each input parameter (one with highest impact on the minimization objective first) while

ensuring that the new input value meets the input quality target. Lines 6–10 of Figure 5.4

show this search for applications with (1) numeric inputs and (2) where reducing the value of

input parameters reduces (or does not affect) the minimization objective. All applications

studies (except Sobel, which takes as input an image) satisfy both characteristics, with

binary search sufficing for the value exploration. The images for Sobel are reduced using the

124

studied . Given a Ref, the goal of the Minimizer is to find a reduced input (Min) that

minimizes a stated minimization objective (MinObj) (e.g., execution time) while satisfying

an input quality target (e.g., 90% PC coverage relative to Ref). We chose a simple, greedy

algorithm based on binary search for the Minimizer and found it e↵ective. More sophis-

ticated optimizers may find better Min inputs; such an exploration is left to future work.

In addition to the minimization objective and input quality target, the Minimizer is pro-

vided with the list of input parameters (e.g., command line and other program-specific

parameters) and a set of parameter constraints (e.g, range or boundary conditions) to

ensure that the Min generated is both legal and realistic. A realistic Min enables the

resiliency analysis to uncover SDC-PCs that are vulnerable for realistic conditions, avoid-

ing over- or under-protection. Domain knowledge enables understanding the realistic

range of input values and how to change them (e.g., choosing image shrinking instead of

sub-sampling pixels or subsetting image inputs [160]) to achieve realistic inputs.

1 PList: Parameter List, C: Constraints,
2 IQT : Input Quality Target, MinObj: Minimization Objective,
3 PListRef : Reference input’s PList
4 Function Minimizer(PListRef , C, IQT, MinObj):
5 PList OrderParams(PListRef , MinObj)
6 for param 2 PList do
7 lower Minimum value of param provided C
8 upper Reference value of param
9 PList[param] BinarySearch(lower, upper, C, IQT)

10 end
11 return PList

12 Function OrderParams(PList, MinObj):
13 return Ordered parameters of PList with respect to MinObj
14 Function BinarySearch(lower, upper, C, IQT):
15 Search values between lower and upper provided C, checking if the candidate

value satisfies IQT
16 return minimum value that satisfies IQT

Algorithm ?? shows the pseudo-code of Minotaur’s Minimizer. It first performs a

pre-processing pass over the reference input’s parameter list and orders the parameters

according to their estimated impact on the minimization objective. The current imple-

mentation in this work determines this order by running the program with a few di↵erent

values for each input parameter and measuring the impact on the minimization objective.

This step can be accelerated with additional domain knowledge or automated using more

sophisticated optimizers.

Given the ordered parameter list, the Minimizer uses binary search to progressively

122

16
Figure 5.4: Algorithm for Input Minimization.

resize utility in the ImageMagick suite [157], which accepts a numerical argument, adapting

the binary search to adjust this argument. Similarly, other application domains could also

require appropriate adaptation of the algorithm. At the end of this process, the Minimizer

outputs the final parameter list for the minimized input.

5.2.3 Error-Injection Prioritization

We next use insights from test-case prioritization to improve resiliency analysis for any

input (minimized or not). We evaluate error-injection prioritizations that order error injec-

tions for a PC such that error sites which are more likely to be SDC-causing are examined

earlier. Once an injection reveals an SDC, Minotaur does not perform injections for any

other error sites for that PC. Hence, error-injection prioritization can lead to early termina-

tion of error-injection campaigns, leading to significant savings. Box 3 of Figure 5.2 shows

the application of error-injection prioritization in Minotaur’s workflow.

We study the following ordering schemes for error-injection prioritization are to understand

which error sites result in SDCs:

• Bit position of registers (BitPos): Injecting into specific bits first (such as the

MSB or LSB).

125

• Dynamic instance of error site (DI): Error sites from an earlier dynamic instance

may be more prone to SDCs than later dynamic instances.

• Register type (RT) – integer vs. floating point: Certain register types could be

more susceptible to SDCs than others.

• Operand kind (OP) – source vs. destination: Prioritizing source vs. destination

register may also show a pattern for SDC-causing instructions.

• Equivalence class size (ECS): This ordering is specific to Approxilyzer and prior-

itizes injections in error sites of largest equivalence classes first, which is the default

ordering used by Approxilyzer to maximize the number of error sites with predicted

outcome for a given number of total error injections.

• Random ordering: Error sites are chosen at random.

5.2.4 Input Prioritization

Mission-critical applications with high resiliency requirements must undergo analysis us-

ing multiple inputs to build confidence that most SDC-PCs in the application have been

identified. To that end, a näıve, but prohibitively expensive, scheme could analyze many

inputs in their entirety to find all SDC-PCs in an application. Instead, we adapt test-case

prioritization from software testing in the form of input prioritization to speed up resiliency

analysis for multiple inputs.

In this scheme, an Input Selector (Box 4 in Figure 5.2) chooses inputs for resiliency analysis

according to an order specified by an input prioritization objective. This work chooses to

analyze the input with the shortest execution time, prioritizing faster analyses first (e.g.,

we choose Min before Ref). Input prioritization can lead to faster resiliency analysis speed

for each subsequent input because the PCs already identified as SDC-PCs by prior inputs

need not be (re)analyzed. Thus, input-prioritization can be leveraged to find many of the

SDC-PCs from one (faster) input, and carry this information onto another (slower but larger)

input to avoid unnecessary error injections. Minotaur’s Input Selector can successively select

inputs for resiliency analysis until it meets an analysis target (e.g., a coverage or resource

target).

126

Application Domain Ref Input Min Input PC Branch Def-Use

(%) (%) (%)

Blackscholes [122] Financial Modeling 64K options 21 options 100 100 99.38

Swaptions [122] Financial Modeling 16 options 1 option 99.91 99.23 98.42

5000 simulations 1 simulation

Streamcluster [122] Data Mining centers = [10,20] centers = [4,5] 99.97 99.77 98.67

num iterations = 3 num iterations = 1

LU [109] Scientific Computing 512x512 matrix 16x16 matrix 100 100 95.56
16x16 block size 8x8 block size

Water [109] 512 molecules 216 molecules 99.89 99.36 99.85

FFT [109] Signal Processing 220 data points 28 data points 100 100 99.59

Sobel [4] Image Processing 100% image size 25.25% image size 100 100 100
(321x481 pixels) (81x121 pixels)

Table 5.1: Applications studied and key input parameters (the ones that changed during
minimization) for Ref and Min. The last three columns show the coverage of Min relative
to Ref for different input quality criteria.

5.3 METHODOLOGY

5.3.1 Evaluation Infrastructure and Workloads

The error-injection infrastructure used here builds on Approxilyzer, based on simulation

using Wind River Simics [110] and GEMS [123] running OpenSolaris. The workloads used

are compiled to the SPARC V9 ISA with all optimizations enabled.

Approxilyzer’s error model uses single-bit architecture-level errors (Section 3.3.2), which

are a limited but effective [115] and realistic subset of hardware errors [101]. With resiliency

becoming a first-class software design objective [158], techniques with different speed, preci-

sion, and error models are needed at different stages of software development.For example,

early design stages specifically emphasize speed, so techniques using lower-level error models

may be inappropriate—either too slow, not available, or eschewed to maintain generality.

Thus, working with tools that use high-level models is a key application of Minotaur. Eval-

uating Minotaur with tools that use different error models (lower-level, multi-bit, etc.) is

part of our future work.

To evaluate Minotaur, this work uses seven workloads from three benchmark suites span-

ning multiple application domains, summarized in Table 5.1. Column 4 lists the reference

(Ref) input parameters used in this study. For five of the benchmarks—Blackscholes, Swap-

tions, LU, Water, and FFT—we use the same inputs as Approxilyzer(Section 3.4.2) for the

reference inputs. For Streamcluster, prior evaluations [39, 73] showed that the benchmark

benefits from realistic datasets (as opposed to data points generated internally by the appli-

cation); hence, a dataset from the UCI Machine-Learning Repository [159, 160, 161] is used

as its Ref input. For Sobel, the bird image from the iACT [124] repository is used as input.

127

This work chooses relatively small Ref inputs for almost all applications to be conservative

and not over-estimate the benefits of input minimization. To evaluate the quality of the out-

puts, the same quality metrics as described in Section 3.3.5 are used Blackscholes, Swaptions,

LU, Water, Sobel and FFT; for Streamcluster, the maximum relative error (max-rel-err from

Section 3.3.5 is used.

Evaluating Minotaur using the above workloads involved performing over 8.4 million error-

injection experiments spanning approximately seven weeks of simulation time on a 200-node

cluster of 2.4GHz Intel Xeon processors.

5.3.2 Input-Quality Criteria

Since no available tool can easily measure test coverage at the object-code level, custom

tools were developed (as part of this work) using dynamic traces from Simics [110] for PC,

branch, and def-use coverage for the object code. For PC coverage, we simply track the PCs

executed by the input. For branch coverage, we store the unique branch-target PC pairs

that represent control edges exercised by the input. For def-use coverage, we analyze the

definition and use of operand registers exercised by the input, and store unique PC pairs

that represent a def-use edge. For all criteria, Min’s coverage is measured relative to Ref.

5.3.3 Input Minimization

Minotaur uses application run time as the minimization objective and targets 100% PC

coverage (relative to Ref) as the input quality target when possible. PC, branch, and def-use

coverage are measured for each Min relative to its corresponding Ref; e.g., if Min executes

all PCs executed by its Ref, it is considered to have 100% PC coverage. Similarly, if Min

exercises all branch-target and def-use pairs exercised by Ref, it is considered to have 100%

branch and def-use coverage, respectively.

PC coverage is chosen as our quality criterion because it is simple and fast to compute

and it is the analog of the widely used statement coverage criterion for software testing

(Section 5.1.1). We find that the Min inputs generated using PC coverage are surprisingly

effective (Section 5.4.1), and also exhibit high (but not perfect) branch and def-use coverage.

5.3.4 Accuracy Analysis

Minotaur uses input minimization to generate a Min that is a good representative of a

Ref. Minotaur’s accuracy for a given input is quantified as the fraction of SDC-PCs found

128

by the input (either Min or Ref) relative to the total number of SDC-PCs found by the

union of both inputs.

To understand the sources of inaccuracy, the SDC-PCs identified by Min and Ref are

analyzed by grouping them into categories based on whether they were found by Ref, Min,

or both. We further distinguish the cases where certain PCs are explored (i.e., analyzed

for resiliency) by one input but not both inputs. The difference occurs when the targeted

error-site coverage (Section 5.1.2) is less than 100% and Minotaur chooses different PCs to

meet that coverage for the two different inputs. We use the term explore to convey that at

least one error site for a PC was analyzed (for a given input) by Minotaur. If no error site

for a PC was analyzed (for a given input), we say that the PC was not explored by the input.

Note that not explored does not mean not executed by the input; it simply means that the

PCs were not analyzed for resiliency.

The SDC-PCs are grouped into five categories:

1. Common: Both Min and Ref classify the PCs as SDC, which are considered accurately

classified by both.

2. MinSDC: Min classifies these as SDC-PCs and Ref explores them but does not classify

them as SDC-PCs. Although Ref did not find these SDC-PCs, they are still candidates

for hardening because they were found by a realistic Min input. Hence, these PCs are

considered accurately classified by Min, but not by Ref.

3. MinSDC+: Min classifies these as SDC-PCs and Ref does not explore them. For

similar reasons as MinSDC, this category is also considered accurately classified by

Min, but not by Ref.

4. RefSDC: Ref classifies these as SDC-PCs and Min explores them but does not classify

them as SDC-PCs. These PCs are inaccurately classified by Min because relying only

on Min’s analysis would leave these PCs unprotected.

5. RefSDC+: Ref classifies these as SDC-PCs and Min does not explore them. This

category is also considered inaccurately classified by Min.

The error-injection prioritization scheme (Section 5.3.5) does not affect accuracy because

it finds the same set of SDC-PCs for an input as without the optimization, albeit faster.

Employing the input-prioritization scheme for all inputs (Section 5.3.6) will result in 100%

accuracy since input-prioritization obtains the union of SDC-PCs found by analyzing all

inputs (while optimizing resiliency analysis speed).

129

5.3.5 Error-Injection Prioritization

This work explores 38 different error-injection prioritizations using combinations of the

schemes from Section 5.2.3. For BitPos, DI, and ECS schemes, both ascending (A) and

descending (D) orderings are tested. Compositional schemes are also explored. For example,

BitPos A + ECS D first orders error injections by bit positions in ascending order (i.e.,

starting with the LSB), followed by ordering in descending equivalence class size. For RT and

OP schemes, we simply pick the type/kind of register (e.g., OPSrc or OPDest) to prioritize.

To understand the bounds on the error-injection prioritization gains, an Oracle best and

worst case are also evaluated. The best case assumes that the Oracle identifies an SDC-PC

with a single injection. For the worst case, the Oracle picks (for each PC) all injections

that are not SDC-causing before picking an SDC-causing injection, reducing the benefit of

early termination.

5.3.6 Input Prioritization

Minotaur’s Input Selector prioritizes (faster) Min over Ref. Section 5.4 shows that while

Min exhibits high accuracy (Section 5.3.4), it misses a small number of SDC-PCs found only

by Ref. To achieve 100% accuracy, resiliency analysis on Ref is run after resiliency analysis

on Min completes, but only for PCs that Min did not find as SDCs (Section 5.2.4).

5.3.7 Runtime Analysis of Minotaur

The time that Minotaur takes to perform resiliency analysis on a single input is evaluated.

The Input Quality Checker, Minimizer, and Input Selector (boxes 1, 2, and 4 in Figure 5.2)

take negligible time compared to the resiliency analysis (Approxilyzer) time (box 3); there-

fore, the focus here is on the resiliency analysis component.

Ideally, the runtime performance would be measured directly by measuring all components

of Approxilyzer and every error injection. However, this cannot be done precisely on a

busy cluster which introduces variability between runs. The total runtime is estimated by

measuring statistically sampled error injections and using formulas as follows.

The time for resiliency analysis for a given application and input (Ref or Min) depends

on: (1) equivalence class generation time (tequiv class gen) [31, 33], (2) total injections of

each outcome category (Imasked, Idet, IOC) for a target error site coverage, and (3) the av-

erage error-injection runtime of each outcome category (tmasked, tdet, tOC). We measure the

runtime for each category separately because it can be quite different; e.g., an OC error

130

requires additional post-processing (compared to Masked) to quantify the error quality into

Good/Maybe/Bad categories, while Detected outcomes involve simulator and OS overhead

to report outcomes such as SegFaults.

The runtime is measured by sampling 1,000 error-injection experiments for each of masked,

detected, and OC outcomes per application and input, excluding outliers in the top and

bottom 2.5% of runs. The total samples correspond to a 99.8% confidence level with 5%

error margin in timing measurements [162]. The time for resiliency analysis is calculated as:

TotalRuntime = tequiv class gen +Σn (In × tn) (5.1)

where each outcome type n ∈ {masked, det, OC} is weighted by the number of injections

with that outcome and average injection runtime for that outcome.

In practice, error injections (the second term of Equation 5.1) dominate the total runtime

of resiliency analysis. Thus, even though tequiv class gen is much shorter for Min (order of

minutes) compared to Ref (order of hours), it is negligible compared to the total time of

injection experiments.

All runs for Ref and Min begin with a checkpoint at the start of the region of interest

(ROI), generally provided by the benchmarks, to avoid simulator startup cost and applica-

tion initialization overhead. The measurements are broken down into two components: the

application runtime only inside the ROI, and the remaining runtime from the end of the

ROI to the injection outcome. The latter runtime includes simulation overheads, various file

I/O, and analysis of the application output.

5.4 RESULTS

Minotaur’s impact on a resiliency analysis tool, Approxilyzer [31], is evaluated by ana-

lyzing (1) the speedup and accuracy from a minimized input (Min) for resiliency analysis

(Section 5.4.1); (2) the speedup from error-injection prioritization with early termination

(Section 5.4.2); (3) the combined speedup from minimization and error-injection prioritiza-

tion (Section 5.4.3); and (4) the speedup from applying input prioritization across multiple

inputs (Section 5.4.4).

131

5.4.1 Input Minimization

Min Quality

Table 5.1 shows the Min generated by applying Algorithm ?? to each Ref, using PC

coverage as the input quality criterion. Most applications show a large reduction of input

parameter values in Min (column 5), which translates to faster application runtimes relative

to Ref (Section 5.4.1).1 Additionally, Min maintains very high PC coverage relative to Ref

(column 6), which translates to high accuracy in finding SDC-PCs (Section 5.4.1).

Not all workloads achieve a significant application speedup with the input quality threshold

set to 100%. Slightly reducing the threshold by less than a percent, however, results in

substantially higher minimization for Swaptions, Streamcluster, and Water. We show that

the PC coverage reduction does not impact Min’s accuracy significantly (Section 5.4.1), while

allowing Minotaur to benefit from running the faster Min (Section 5.4.1).

The last two columns of Table 5.1 show the branch and def-use coverage of the generated

Min (relative to Ref) and are discussed further in Section 5.4.1.

Minimization Speedup

Min typically runs faster than Ref because it has fewer dynamic instructions, resulting in

fewer error injections and a shorter runtime per injection.

Figure 5.5 shows the total number of error injections needed for resiliency analysis for

an application, relative to analyzing 100% of Ref’s error sites (Ref100). Past studies found

that targeting 100% error-site coverage was too expensive and so targeted just the top

99% of error sites (Ref99), as discussed in Section 5.1.2. By using input minimization,

achieving 100% error-site coverage is no longer elusive for many applications. Figure 5.5

shows that for the Min inputs of Blackscholes, Swaptions, LU, and FFT, the number of error

injections required for 100% error site coverage (Min100) is comparable to the number of

error injections for Ref99 Thus, for these applications, it becomes tractable to run resiliency

analysis with Min100. The other applications (Water, Streamcluster, and Sobel) also reduce

the number of error injections from Ref100 to Min100, but the total number is still very large,

presenting a trade-off between resiliency-analysis runtime and error-site coverage. We choose

to favor runtime and use 99% error-site coverage for these applications. Henceforth, we use

the umbrella term Min (unless otherwise stated) to encompass Min100 for Blackscholes,

1Many of the Ref inputs used are themselves relatively small; higher benefits are likely with larger Ref
inputs.

132

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
R

e
la

ti
ve

 N
u

m
b

e
r

o
f

In
je

ct
io

n
s

95% Error Sites 98% Error Sites 99% Error Sites 100% Error Sites

R M R M R M R M R M R M R M R M

B
la

ck
sc

h
o

le
s

Sw
ap

ti
o

n
s

LU FF
T

W
at

e
r

St
re

am
cl

u
st

er

So
b

e
l

A
ve

ra
ge

Figure 5.5: Number of error injections for different error-site coverage targets for each bench-
mark, relative to 100% error-site coverage for Ref (Ref100). R=Ref, M=Min.

Swaptions, LU, and FFT, and Min99 for Water, Streamcluster, and Sobel. We use Ref to

refer to Ref99 for all applications.

Not only does Min require fewer error injections for most of the workloads studied, each

individual injection runs faster compared to Ref. Figure 5.6 shows the average runtime per

injection for Ref and Min for different outcome types (Masked, Detected, and OC). Each bar

is divided into the application runtime during the ROI (which begins after an application’s

initialization phase) and the simulation overhead (Section 5.3.7).

Min injections run 2.1X faster on average2 than Ref for all outcome types for two primary

reasons. First, the application runtime itself is faster (2.3X on average across outcome types)

due to the smaller input. Second, for some applications, the I/O and other simulation envi-

ronment overhead is significantly reduced for Min (1.8X on average). This is most notable

for LU and FFT, where a large output matrix is generated for Ref but not for Min. The out-

put matrix needs to be extracted for comparison and error classification (Figure 5.1). Min’s

smaller output matrices allow for faster post-processing, further speeding up the resiliency

2All averages in this chapter refer to the arithmetic mean.

133

0

0.2

0.4

0.6

0.8

1
R

e
la

ti
ve

 R
u

n
ti

m
e

 (
n

o
rm

al
iz

e
d

)
Application Run Time Simulation OverheadRuntime

R M R M R M R M R M R M R M R M

B
la

ck
sc

h
o

le
s

Sw
ap

ti
o

n
s

LU FF
T

W
at

e
r

St
re

am
cl

u
st

er

So
b

e
l

A
ve

ra
ge

Figure 5.6: Average runtime per injection, normalized to Ref. Each set of three bars rep-
resents (from left to right) Masked, Detected, OC runtime (Section 5.3.7), divided into
application runtime and simulation overhead. R = Ref and M = Min.

analysis relative to Ref for these applications.

Figure 5.7 shows the total speedup obtained for Min (and the Minotaur optimizations

discussed in the next sections). The first bar for each application shows the speedup from

using a Min input relative to Ref. Overall, the combination of having fewer error sites and

faster runtime per injection results in a 4.1X speedup for Min over Ref on average (up to

15.5X for FFT), with nearly all applications showing speedup. Even for the applications that

do not show much speedup (Streamcluster and Sobel), the Min inputs are more accurate than

Ref inputs (they identify more SDC-PCs) and benefit from error-injection prioritization, as

discussed in the next sections.

134

0

5

10

15

20
Sp
e
e
d
u
p

Min Min_EIP Ref_EIP

B
la
ck
sc
h
o
le
s

Sw
ap

ti
o
n
s

LU FF
T

W
at
e
r

St
re
am

cl
u
st
er

So
b
e
l

A
ve
ra
ge

38.9

Ref

𝐌𝐢𝐧𝐄𝐈𝐏𝐌𝐢n 𝐑𝐞𝐟𝐄𝐈𝐏

Figure 5.7: Min, MinEIP , and RefEIP speedup relative to Ref.

Minimization Accuracy

Figure 5.8 shows the accuracy of Ref and Min for each application. The Y-axis corresponds

to the union of SDC-PCs found by Ref or Min, distributed into the five accuracy categories

(Section 5.3.4). The results show that a majority of SDC-PCs are categorized in the same

way by both Ref and Min (60% on average are Common). Further, a large number of PCs

fall in the MinSDC and MinSDC+ categories (35% on average). These are SDC-PCs that

Min finds that Ref misses – either due to misclassification by Ref (MinSDC) or due to the

lack of exploration of that PC by Ref altogether (MinSDC+).

Figure 5.9 explains the surprising result of finding additional SDC-PCs over Ref in the

MinSDC+ category. The Y-axis corresponds to the total number of static PCs explored for

different error site coverage targets. Ref error sites, although much more than Min error sites

(Section 5.4.1), generally explore fewer distinct PCs than Min at lower error site coverage

targets. Figure 5.9 shows that, on average, for 99% error-site coverage (sorted by equivalence

class size), Ref explores 55% of the static PCs explored by the union of Ref and Min, while

Min explores 85%. Thus, it can still be advantageous to run resiliency analysis with Min for

135

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
SD

C
-P
C
s

Common MinSDC MinSDC+ RefSDC RefSDC+

B
la
ck
sc
h
o
le
s

Sw
ap

ti
o
n
s

LU FF
T

W
at
e
r

St
re
am

cl
u
st
e
r

So
b
e
l

A
ve
ra
ge

Figure 5.8: Min and Ref accuracy. The Y-axis represents all SDC-PCs found by Min or Ref
in an application.

workloads such as Streamcluster and Sobel, even though the total analysis time is similar to

that of running with Ref.

The remaining two categories, RefSDC and RefSDC+, reflect a loss of accuracy for Min.

For many workloads, there are no RefSDC+ because Min explores all the PCs explored

by Ref. The RefSDC category is also small, but not insignificant (4% on average). Upon

further study of the misclassified PCs, a majority of the mismatches are found to occur at

the boundary of SDC categories that distinguish if protection is needed or not. For example,

in many cases Ref identifies a PC as SDC-Maybe, but Min identifies it as SDC-Good. Often

the difference in output quality between these is less than 1%. Similarly, on the other end

of the protection spectrum, there are many PCs that mismatch because Ref classified the

PC as SDC-Bad but Min classified it as DDC.

Overall, Min shows significantly higher accuracy than Ref. Of the total SDC-PCs dis-

covered, on average, Min finds (the sum of Common, MinSDC, and MinSDC+ categories)

while Ref finds only 64% (the sum of Common, RefSDC, and RefSDC+) of these SDC-PCs.

136

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
P

C
s

Ex
p

lo
re

d

95% Error Sites 98% Error Sites 99% Error Sites 100% Error Sites

R M R M R M R M R M R M R M R M

B
la

ck
sc

h
o

le
s

Sw
ap

ti
o

n
s

LU FF
T

W
at

e
r

St
re

am
cl

u
st

e
r

So
b

e
l

A
ve

ra
ge

Figure 5.9: Percentage of PCs explored for different error-site coverage targets. R = Ref, M
= Min.

Improving Min Selection Criteria

The branch and def-use coverage of Min (relative to Ref) is examined to understand if

these stronger criteria could have been used to generate an alternate Min that provides

higher accuracy than PC coverage. Table 5.1 shows that the Min inputs generated using

PC coverage already have very high branch and def-use coverage of 99.76% and 98.78%,

respectively, relative to Ref. Further, as discussed, Min already finds 96% of the SDC-PCs

discovered by the union of Ref and Min. Thus, the potential improvement from using the

more complex criteria is limited.

Nevertheless, the branch-target and def-use pairs that were in Ref but not in Min are

identified in order to determine if they were responsible for the RefSDCs in Figure 5.8. We

found that none of the RefSDC PCs intersect with the isolated branch-target pairs and only

four intersect with the def-use pairs (one each for Blackscholes and Swaptions and two for

LU). A more comprehensive analysis would explore the entire control and data flow paths

rooted at the isolated branch-target and def-use PCs in Ref to conclusively confirm whether

137

0

1

2

3

4
Bl

ac
ks

ch
ol

es

Sw
ap

tio
ns LU FF

T

W
at

er

St
re

am
cl

us
te

r

So
be

l

Av
er

ag
e

Sp
ee

du
p

Oracle_best Oracle_worst Random
ECS_D BitPos_D + ECS_D BitPos_A + ECS_D
DI_A + ECS_D RT_Int OP_Src

Figure 5.10: Min speedup with error-injection prioritization.

the stronger criteria would add further accuracy. Such an analysis and exploration of even

more complex input quality criteria (e.g., path coverage) is left to future work, given that

the results presented here already show that PC coverage provides an excellent sweet spot

for simplicity, performance, and accuracy.

5.4.2 Error-Injection Prioritization

38 different error injection prioritization schemes are studied in this work (Section 5.3.5).

For brevity, results for only the 7 most effective schemes are shown, in addition to the oracle

best-case and oracle worst-case schemes.

Figures 5.10 and 5.11 show the speedup results for Min and Ref, respectively, for different

error injection prioritization schemes with early termination enabled. The figures show a

noticeable speedup for most cases for both Min and Ref. Random prioritization gains the

best average speedup of 2.4X and 3.8X for Min and Ref (upto 3X and 8.1X), respectively,

while also being very close to the oracle best-case.

138

0

1

2

3

4

5

6

7

8

9
Bl

ac
ks

ch
ol

es

Sw
ap

tio
ns LU FF

T

W
at

er

St
re

am
cl

us
te

r

So
be

l

Av
er

ag
e

Sp
ee

du
p

Oracle_best Oracle_worst Random
ECS_D BitPos_D + ECS_D BitPos_A + ECS_D
DI_A + ECS_D RT_Int OP_Src

Figure 5.11: Ref speedup with error-injection prioritization.

To understand the surprising result that Random performs the best, Figure 5.12 plots

the cumulative probability (averaged over all SDC-PCs) of choosing an SDC-causing error

injection after n error injections in an SDC-causing PC. Figure 5.12 shows only four appli-

cations using Ref input, but the trends are representative across the workloads and inputs.

The figure shows that the probability of finding an SDC injection shoots up within the first

few injections. Upon investigation, an interesting insight is uncovered – when a PC is SDC-

causing, a large fraction of the injections in that PC result in an SDC outcome. Randomly

choosing an injection therefore tends to quickly find an SDC for that instruction. Thus,

Random error injection prioritization scheme is chosen for the remainder of the evaluations

in this chapter.

5.4.3 Minimization Plus Injection Prioritization

This section discusses the benefits of combining input minimization with error injection

prioritization. Figure 5.7 shows the speedup in resiliency analysis, relative to Ref, from

139

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100Pr
ob

ab
ili

ty
 o

f S
DC

 in
je

ct
io

n

Number of error injections

Blackscholes

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100Pr
ob

ab
ili

ty
 o

f S
DC

 in
je

ct
io

n

Number of error injections

FFT

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100Pr
ob

ab
ili

ty
 o

f S
DC

 in
je

ct
io

n

Number of error injections

LU

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100Pr
ob

ab
ili

ty
 o

f S
DC

 in
je

ct
io

n

Number of error injections

Water

Figure 5.12: Cumulative probability (Y-axis) of picking an SDC-causing error injection
within the first n injections (X-axis) for an SDC-causing PC.

(1) using Min (discussed in Section 5.4.1), (2) using Min with error injection prioritization

(referred to as MinEIP), and (3) using Ref with error injection prioritization (RefEIP). As

previously discussed in Section 5.4.1, using only Minotaur’s input minimization optimization

for resiliency analysis provides a 4.1X average speedup (up to 15.5X) compared to Ref

(first bar for each application in Figure 5.7). Combining Minotaur’s input minimization

optimization with error injection prioritization results in an average speedup of 10.3X (up to

38.9X for FFT), relative to Ref. In contrast, RefEIP observes only a 3.8X average speedup

(up to 8.14X for LU) relative to Ref (third bar for each application in Figure 5.7 and also

discussed in Section 5.4.2).

Recall that the accuracy of MinEIP is the same as that of Min (Section 5.4.1). Thus, in

addition to MinEIP significantly outperforming Ref and RefEIP on average, MinEIP has the

added benefit of finding many SDC-PCs that were not found by Ref (and RefEIP) – Min

finds 96% of the total SDC-PCs while Ref finds 64%.

140

0

2

4

6

8

10
R

u
n

ti
m

e
 (

re
la

ti
ve

 t
o

 M
in

_E
IP

)

Min_EIP + Ref_EIP (Min_EIP + Ref_EIP)_IP

B
la

ck
sc

h
o

le
s

Sw
ap

ti
o

n
s

LU FF
T

W
at

e
r

St
re

am
cl

u
st

er

So
b

e
l

A
ve

ra
ge

𝑴𝒊𝒏𝑬𝑰𝑷

𝐌𝐢𝐧𝐄𝐈𝐏 + 𝐑𝐞𝐟𝐄𝐈𝐏 𝐌𝐢𝐧𝐄𝐈𝐏 + 𝐑𝐞𝐟𝐄𝐈𝐏 𝐈𝐏

Figure 5.13: Resiliency analysis time for analyzing both MinEIP and RefEIP , without and
with input prioritization, normalized to analysis time for only MinEIP .

5.4.4 Input Prioritization

For safety-critical systems which may require even higher accuracy, Minotaur provides the

additional optimization of input prioritization. This optimization can speed up the analysis

of multiple inputs in an attempt to further improve SDC-PC identification without taking

the performance hit of running resiliency analysis for each individual input in its entirety.

Figure 5.13 shows the runtime of analyzing both MinEIP and RefEIP , without and with

input prioritization, normalized to the runtime of MinEIP (Section 5.4.3).

The first bar for each application shows the runtime of employing a naive input prior-

itization scheme, by simply running MinEIP followed by RefEIP analyses in their entirety

(MinEIP + RefEIP in the figure). The second bar shows the runtime of running MinEIP

and RefEIP with input prioritization enabled. That is, MinEIP is first run in its entirety

(which is relatively fast, as discussed in Section 5.4.3), followed by RefEIP but only for PCs

not identified as SDC-PCs by MinEIP . Thus, input prioritization requires the second input

(RefEIP in this study) to run for only a fraction of the original resiliency analysis time.

141

Figure 5.13 shows that without input prioritization, MinEIP + RefEIP runs 3.7X slower

than MinEIP . Using input prioritization ((MinEIP + RefEIP)IP in the figure) brings the

analysis time to only 1.6X slower than MinEIP . Thus, leveraging input prioritization allows

Minotaur to analyze both inputs 2.3X faster on average than analyzing each input alone in

its entirety. By carrying over information from one input analysis to the next, Minotaur is

capable of achieving 100% accuracy while running much quicker than previous techniques.

5.5 MINOTAUR EXTENSIONS

Minotaur’s techniques can be used to benefit analyses beyond those discussed so far. This

section demonstrates Minotaur’s generality by discussing and evaluating two extensions.

5.5.1 Extension to Approximate Computing

Approxilyzer analysis can also be used to target approximate computing. Approxilyzer

classifies an instruction as approximable if no egregious errors – Detected, DDC, or OC

above a user-defined threshold – are observed for any dynamic instance of that instruction.

The following user-defined thresholds are used here: 1) for financial applications, errors in

individual outputs that are smaller than a cent are tolerable and 2) for other applications,

relative errors up to 5% in individual outputs are tolerable. The same Min and Ref inputs

as in Table 5.1 are used, and random error injection prioritization with early termination

is applied (we observe the same trend that randomized error injection ordering performs

close to oracle best). For approximate computing, early termination is triggered when an

error-injection reveals a PC as non-approximable, indicating that no further injections are

required for that instruction.

For approximate computing, Minotaur’s analysis time without error injection prioritiza-

tion is the same as that for resiliency since we use the same Min and Ref inputs. That is, Min

observes an average 4.1X speedup compared to Ref, due to Min’s smaller size (Section 5.4.1).

Applying error injection prioritization for approximate computing analysis (where early ter-

mination differs compared to resiliency, as described above), Min analysis can be sped up

by 4.4X on average, while Ref shows an average speedup of 5.53X. Combining the two op-

timizations, MinEIP shows an average speedup of 18X compared to Ref for approximate

computing analysis.

An accuracy metric similar to that in Section 5.3.4, is adapted from SDC-PC to

Approximable-PC. Min shows very high accuracy – of all the approximable-PCs identified

by both Min and Ref, on average, Min identifies 96% while Ref identifies 81%.

142

5.5.2 Selective Instruction Analysis

Minotaur can speed up analysis for any desired subset of PCs. For example, a user may

desire to analyze the ”hot” PCs that account for X% of the dynamic execution. The user can

identify the ”hot” PCs by first profiling Ref and then switching to Min to run the resiliency

analysis. For instance, by targeting the PCs for the top 25% of the dynamic execution in

Blackscholes, MinEIP speeds up the analysis by 6.8X over Ref for the same PCs and with

100% accuracy.

5.6 CONCLUSION AND FUTURE WORK

This work presents Minotaur, a toolkit to improve the error analysis by leveraging concepts

from software testing. Minotaur adapts several concepts from software testing for software

bug detection to error analysis (for resiliency and approximate computing): 1) identify-

ing test-case quality criteria, 2) test-case minimization, and 3) two adaptations of test-case

prioritization. Minotaur is evaluated on the error analysis tool, Approxilyzer. Minotaur’s

single-input techniques speed up Approxilyzer’s resiliency analysis (or approximate comput-

ing analysis) by 10.3X (18X) on average while significantly improving SDC-PC detection

accuracy (96% vs. 64% on average for resiliency, and 96% vs. 81% on average for approxi-

mate computing) for the workloads studied. Further, Minotaur presents a technique, input

prioritization, which enables finding SDC-PCs across multiple inputs at a speed 2.3X faster

(on average) than analyzing each input independently.

Although Minotaur is already very effective, there are many avenues of future work to

improve both Minotaur’s effectiveness and its applicability. For example, it is interesting

to explore more input quality criteria (such as path coverage, loop coverage, or state cover-

age [145]) as well as develop new quality criteria geared specifically towards resiliency (e.g.,

criteria derived from ACE bits [78] or PVF [15]) or towards approximate computing (e.g.,

using parameter range coverage). Employing more sophisticated optimizers to improve the

speed and scalability of the Minimizer along with custom minimization objectives (e.g., num-

ber of error-sites analyzed) for faster Mins is another future direction. The Input Selector

can also be improved by tuning analysis speed vs. accuracy for multiple Refs and Mins with

variable input quality thresholds.

To widen the applicability of Minotaur, it can be applied to other resiliency and approxi-

mation analysis techniques proposed in the literature, using a broader range of error models

abstracted at lower and higher layers of the system stack than studied here.

The end goal of this line of research is a seamless integration of (hardware) error analysis

143

into the standard software development and testing workflow. Minotaur opens up many

avenues for further research towards this ambitious end goal. Modern software development

practices such as continuous integration encourage developers to continuously commit their

code, which would be ideally checked for error-efficiency, making fast and accurate error

analysis techniques such as Minotaur even more important.

144

Chapter 6: RELATED WORK

In this chapter, we discuss related works that are pertinent to the contributions of this

thesis.

6.1 AUTOMATED ERROR ANALYSIS

This work develops a suite of automated application-level error analysis tools – Approxi-

lyzer, gem5-Approxilyzer and DataApproxilyzer (collectively referred to as the AEA tools)

[25, 26, 31] – that can automatically extract the error characteristics of applications (Chap-

ter 3). The AEA tools developed in this work significantly advance the state-of-the-art in

error analysis to meet all the six requirements of accuracy, precision, comprehensiveness,

automation, generality and low-cost.

While error analysis techniques that satisfy all six of the above requirements posed a sig-

nificant research challenge before this work, researchers have made progress by relaxing some

of these requirements. For example, one class of techniques rely on empirically introducing

a small (statistically determined) sample of errors during a program’s execution (referred to

as error injection) and observing the resultant behaviour [22, 58, 60, 65, 66, 67, 68, 69, 70,

71, 72, 73, 74, 99, 101, 104, 105, 106, 131, 163]. These techniques aim to provide statistical

averages or probabilistic bounds of program behaviour under errors; they cannot compre-

hensively and accurately guarantee impact on output quality for the large majority of errors

that are left out during sampling.

Another class of techniques leverage program analysis of error-free execution to understand

how errors in data may propagate to affect program output [15, 75, 76, 77, 78, 79, 80, 81, 82].

The widely used ACE [78] analysis is often used to measure the Architectural Vulnerability

Factors (AVF) [75, 76, 77, 78, 79] of hardware structures. PVF [15] isolates purely (program

or software dependent) architecture-level vulnerabilities in the AVF; ePVF [80] further iso-

lates bits that may lead to crashes and achieves a more accurate estimation of the program’s

SDC vulnerability. Many cross-layer resiliency solutions have been proposed using these

techniques [81, 164]. Shoestring [82] uses a compiler analysis to identify vulnerable program

locations. While fast (low-cost), such techniques cannot accurately and precisely model an

error’s impact on execution since they use information from an error-free execution.

The AEA tools developed in this work use a hybrid technique of program analysis and

(relatively) few error injections. The techniques employed by the AEA tools build upon

the error equalization and pruning techniques developed by prior work called Relyzer [33].

145

Relyzer analyzed single-bit errors in integer instructions of programs to identify which errors

lead to silent data corruptions (SDCs). While Relyzer determined if an error affected the

final output, the AEA tools can precisely determine how an error affects output by quanti-

fying the output quality produced. Furthermore, the AEA tools can precisely quantify the

impact of errors for a wider range of errors – integer, floating point, instruction, data, single

and multi-bit.

There are other works in the literature that combine program analysis with selected error-

injection campaigns. MeRLiN [103] applies ACE-like analysis and error pruning to accelerate

statistical micro-architectural error injections. It can provide fine-grained reliability esti-

mates for hardware structures and SDC vulnerability estimates for software. VTrident [165]

uses error injections in static instructions to build an input-dependent model on top of Tri-

dent’s [166] error propagation analysis to predict the instruction’s SDC vulnerability. Other

works have attempted fault equalization for GPU [167] and Neural Network resiliency [168].

The analysis technique used by the AEA tools, is also a hybrid technique, but its primary

goal is not a statistical average or probability—it is to determine precisely if/how an error

in any specific instruction or data will impact the final output.

Relationships between errors in program and effect on output has also been widely studied

in the fields of software engineering[169, 170] and formal methods[171, 172]. Error analysis

employed in this work differs from these methods since the goal is not to find buggy code or

derive error bounds; rather the goal is to precisely determine the output quality produced

in the presence of errors caused by underlying hardware faults.

As part of the AEA tool-suite, this work develops gem5-Approxilyzer which is an open-

source error analysis tool built using the open-source simulator gem5 [83]. Other error

analysis tools have used gem5 as their base simulator. For instance, MeRLiN [103] uses

GeFIN [173] (which is also a built on top of gem5) to simulate micro-architectural error in-

jections. GemFI [174] is another error-injection tool that operates at the micro-architectural

level, is built on top of gem5 and supports both Alpha and x86 ISA. Other error-injection

tools, such as LLFI [104], analyze applications at the compiler intermediate representation

(IR) level. IR is ISA-independent by design, so such an analysis is independent of the

hardware architecture. However, there may be a loss in error site accuracy because IR still

requires additional transformations before producing the assembly [175]. FAIL* [105] per-

forms ISA-level analysis. FAIL* also uses gem5 and supports ARM but is limited to one

pruning technique: def-use analysis.

146

6.2 AUTOMATED ERROR ANALYSIS TO CUSTOMIZED ERROR EFFICIENCY

This work demonstrates the versatility of the automated error analysis approach, by show-

ing how the automatically generated application error profiles can be used to devise different

(hardware and software) error-efficiency solutions – from low-cost resiliency to approximate

computing – that can be customized to user and system requirements with minimal pro-

grammer intervention (Chapter 4). We undertake a discussion of related works below.

6.2.1 Approximate Computing

Many techniques have been proposed that leverage approximate computing at the level

of software [10, 39, 40, 41, 42, 43, 44, 84, 85, 86, 87, 88], programming languages [2, 3, 4, 5,

17, 19, 45] and hardware [6, 7, 8, 9, 10, 11, 89, 90, 91, 92, 93, 94, 95, 96, 97] for improved

performance, energy, or reliability. The techniques described in this work is orthogonal to

these and the application error profile (generated by the AEA tools) can potentially be used

to provide approximation hints to all of these techniques.

Programming language support, such as that in [2, 3, 4, 5, 45] helps programmers ab-

stractly express approximations and check program correctness at the cost of increased

programmer burden. Recent frameworks [17, 19, 176] build on these languages to auto-

matically identify approximate regions of the code while providing some statistical [17] or

probabilistic [176] guarantees on the final end-to-end error. While these frameworks advance

the state-of-the-art to greatly reduce programmer burden, they still require the programmer

to adopt a new programming language and/or modify their source code. Thus, they can-

not be used for very large multi-kernel programs (static analysis may be complicated and

under-estimate the approximation potential) or for programs where the source code is not

available (such as legacy code). We believe that the AEA tools developed in this work are

complementary to these technique and can be used as a front end plugin to these frame-

works. A concurrent work [43] provides statistical guarantees on final output quality given

an approximate kernel and accelerator configuration using compiler support and hardware

binary classifiers. While this work focuses on coarse-gain approximation with accelerators,

the AEA tools provide a general framework to study approximation at the fine granularity

of single instructions or single data byte.

SAGE [41] automatically generates approximate kernels for GPUs but like other meth-

ods [40, 177] uses an online mechanism to catch unacceptable quality degradation in a

reactive fashion. On the other hand, the error profile generated by the AEA tools provides

offline output quality information. Techniques such as [44] control output quality constraints

147

by tuning various knobs in an approximate program. The AEA tools solves the problem of

identifying approximate code/data and as such is an orthogonal technique.

6.2.2 Resiliency

There exists a large body of work on resiliency analysis that does not assume that output

quality degradation is allowed [13, 15, 33, 56, 57, 82, 107, 132, 133, 135, 136, 138]. We will

focus here on works that allows quality degradation.

The idea of identifying unacceptable output corruptions for selective reduced-cost re-

siliency protection has previously been explored. A combination of error injections and static

analysis is used in [71] to identify Egregious Data Corruption (EDC) prone code and data

segments in computations that can then be protected by detector placements. IPAS [178]

uses machine learning to identify and protect only those Silent Output Corruptions (SOC)

instructions that alter the output of scientific codes. Khudia et al. [179] use compiler analysis

to identify critical variables in the application that are likely to generate Unacceptable Silent

Data Corruptions (USDCs) in the presence of errors and only protect those using strategic

expected value checks. The application error profiles generated by the AEA tools classify

error outcomes into categories based on approximation potential and predicts the impact

of errors in individual instructions (and data) with high accuracy. This allows for very fine

tuning of resiliency protection schemes for different quality and overhead requirements.

Application of approximate computing to hardware resiliency has also been demonstrated

in specialized domains such as bio-medical applications. Sabry et al. [180] study Electrocar-

diogram (ECG) monitoring wireless body sensor nodes and trade-off inaccuracies inherent

to the domain to achieve resiliency overhead savings. The AEA tools also exploits accu-

racy loss for resiliency overhead savings but does so in a manner that can be used by any

general-purpose program.

6.3 MINOTAUR

Minotaur is the first work to systematically adapt and apply software testing techniques

for fast and effective error analysis (Chapter 5). Section 5.1 describes the key background

related work from software testing. Other related works are discussed here.

148

6.3.1 Concepts similar to Minotaur

The most directly related works from other domains with similarities to different concepts

in Minotaur are discussed here. IRA [156] uses statistical techniques to generate reduced

canary inputs that are used to explore different approximation techniques; once an appropri-

ate technique is found, it is applied to the larger input. In Minotaur, the Min input is used

not just for exploration, but also for the final resiliency analysis. The Ref input is analyzed

only if additional accuracy is desired from multiple inputs and even so, only a subset of Ref

needs analysis. A key difference is that IRA targets online production time analysis whereas

Minotaur is motivated by offline development time analysis.

DeepXplore [168] proposes the criterion of neuron coverage for quantifying the fraction

of a deep learning system’s logic exercised by a set of test inputs based on the number of

neurons activated by the inputs. Neuron coverage is an orthogonal application-specific input

quality criterion that could be employed by Minotaur for appropriate domains.

There are several (static and runtime) approaches in other contexts that share the same

goal as Minotaur’s early termination technique, namely, cutting the computation short with-

out sacrificing accuracy [32, 181, 182, 183]. A recent example is SnaPEA [181] where con-

volution operations are terminated early if their output is predicted to be zero.

MinneSPEC [184] aims to provide reduced input workloads to improve performance (usu-

ally runtime of applications), which differs from our objective of uncovering SDC causing

instructions.

6.3.2 Error Analysis Techniques:

As discussed in detail in Section 6.1, different error analysis techniques have been pro-

posed in the literature. These include resiliency analysis techniques that employ error-

injections [58, 60, 99, 101, 104, 105, 106, 131, 163], program analysis [15, 75, 76, 77,

78, 78, 79, 80, 81, 82, 164] or a hybrid combination [33, 103, 165, 166]. Criticality-

testing [69, 70, 71, 72, 73, 74, 185] of approximate computations is another important analysis

technique for many domains.

Minotaur is an orthogonal technique that can be used to improve many of the above

techniques. In general, the concepts of measuring input quality and input minimization

are broadly applicable to all techniques that use application inputs. PC coverage as an

input quality criterion can conceptually apply to many of the above techniques, but it

needs experimental verification. Error injection prioritization can be directly applied to all

techniques that use error injections. Input prioritization is also a general concept that can

149

be applied in cases where multiple inputs are used.

Minotaur can potentially be applicable to other hardware platforms as well. Although

this work focuses on CPUs, recent resiliency analyses on GPUs [67, 167, 186], for example,

can potentially benefit from the concepts of Minotaur to improve runtime and/or accuracy.

6.4 ERROR-EFFICIENCY FOR VIDEO SUMMARIZATION APPLICATION

We undertake a motivational study to demonstrate the effectiveness of error-efficiency

techniques for edge-computing applications used in Unmanned Aerial Vehicles or UAVs

(Chapter 2). Specifically, we study a state-of-the-art Video Summarization (VS) application

(developed at IBM Research) that constitutes key end-to-end video and image analytics

aboard UAVs. In this first-of-a-kind work that studies the effect of approximations on system

resiliency, we show that software approximations to the VS application yields significant

energy and performance without degrading the overall resiliency of the system. In this

section, we discuss other works related to this study.

6.4.1 Error-Efficiency Techniques

Different error-efficient techniques (related to resiliency and approximate computing) have

been discussed in Section 6.1 and Section 6.2. Section 2.1.2 discusses many trends in ap-

proximate computing. A related area is analysis that performs criticality testing [70, 72]

and works that take advantage of soft computations - resilient code regions that result in

tolerable output corruptions, when perturbed by errors - to reduce resiliency overheads in

approximate environments [24, 69, 71, 187]. To the best of our knowledge, this work is the

first that directly measures the resilience of approximate algorithms.

In [188] Thomas et al. propose the term EDC describing outcomes that deviate signif-

icantly from the error-free outcomes of an application. Based on heuristics learned from

EDC characterization, they propose a detection mechanism to identify variables and loca-

tions to protect against EDC. We propose a novel quantitative metric for EDC evaluation on

a complete video stitching algorithm and approximation algorithms to achieve improvement

in energy efficiency and performance without significant loss in end-quality.

6.4.2 Computer vision for UAV-based mobile cognition

Extensive research has gone into image-stitching algorithms in the field of computer vi-

sion. In [189], Szeliski describes various algorithms for aligning and stitching images into

150

seamless 2D photo-mosaics. Various state-of-the-art algorithms to handle and summarize

video content captured on-board a UAV-based processor, have been described in [49]. Rane

et al. [190] proposed a method to evaluate mosaic quality using maximum information re-

trieval. The method uses the similarity between the stripes of the mosaic and the original

frames to evaluate performance of mosaicking methods. The videos in the VIRAT dataset

contain both translational and rotational movements. However, unlike the algorithm evalu-

ated in our study, this method works when camera has only translational movement. The

evaluation method proposed by Camargo et al. [191] uses the distances between the cor-

responding keypoints in all frames after the mosaic is generated. This method is used to

compare different optimization methods for parameter estimation, but does not consider the

image distortions caused by error injection. Another work [192] empirically evaluates the

detectability of objects of interest for human observers when temporally local mosaics are

applied on the live aerial video, but cannot provide quantitative evaluation for error injec-

tion. Paalanen et al. [193] proposed a method to evaluate the mosaic quality using ground

truth data. However, ground truth data can only be obtained in synthetic datasets. Since

the dataset that we use for the evaluations in our study is a real-word one, determining the

ground truth is difficult. El-Saban et al. [194] use human eye to measure precision/recall

of the mosaic quality of image pairs. However, this method too cannot provide scientific

measurement of the distortion caused by error injection.

151

Chapter 7: CONCLUSION AND FUTURE WORK

Error-efficient computing has the potential to be a key enabler for many emerging ap-

plication domains – Edge Computing, AI, Robotics, etc. – with strict power, performance

and reliability requirements. However, despite its promise, the lack of general methodologies

and excessive programmer burden have limited its widespread adoption. This work aims

to democratize error-efficient computing by building systematic methodologies that remove

excessive programmer burden and enable the adoption of error-efficient computing.

The automated application-level error analysis tools developed in this work – Approxilyzer,

gem5-Approxilyzer and DataApproxilyzer – are the first-of-their-kind that can quantify the

impact of billions of individual errors in a program’s computation and data on its final

output quality. The comprehensive application error profiles (generated using automated

error analysis) can not only improve fundamental understanding of how applications/systems

behave when perturbed by errors, they can facilitate users to tune the trade-off between

output quality with other system benefits in an error-efficient environment while providing

output quality guarantees. Two such proof-of-concept workflows are demonstrated that

use the application error profiles to devise customized error-efficiency solutions – targeting

approximate computing and low-cost resiliency to hardware errors – that meet user/system

requirements and quality targets.

In order to facilitate the use of error analyses within the computing stack, a framework

called Minotaur is developed to significantly improve the speed (up to 55X) and scalability

(across multiple workloads and inputs) of error analyses. By showing a principled adap-

tation of software testing techniques to (hardware) error analysis, Minotaur takes the first

step towards the goal of integrating (hardware) error analysis into the standard software

development and testing workflow.

While this work shows the promise of automated error analysis techniques that can po-

tentially be integrated within a software development framework, there is still a long way

to go towards the research vision of automated full-stack methodologies that can provide

optimal system-wide error-efficiency solutions for emerging applications. The remainder of

this section describes some of the future work towards that vision.

152

7.1 ERROR-EFFICIENCY AT SCALE FOR EMERGING COGNITIVE
APPLICATIONS

The work in this thesis has thus far shown fast, comprehensive and automated error

analyses for single-threaded CPU workloads from different domains (image processing, data

mining, scientific computing, etc.); precisely analyzing these workloads in their entirety was

a challenge before this work. Performing scalable and efficient automated error analysis for

large multi-threaded applications is a natural next step. It is especially interesting to analyze

cognitive applications – such as image processing, autonomous driving, virtual/augmented

reality and robotics – that aim to extract context/insight from vast quantities of data.

These applications heavily use sensory signals (image, audio, etc.) that can inherently

tolerate inaccuracies in data and/or computation and hence, are natural candidates for error-

efficient computing. Error-efficiency techniques applied to these domains today are largely

empirical and focused on single/few techniques which is sub-optimal and may leave additional

sources of efficiency untapped. An optimal solution that considers different combinations

of error-efficiency techniques (customized to system/user specifications) is an intractable

optimization problem today; automatic, scalable and comprehensive error analysis of these

applications can provide insights and be the first step towards a systematic methodology to

extract maximum resource efficiency for emerging domains.

7.2 ERROR-EFFICIENCY FOR PERFORMANCE, ENERGY AND BEYOND

The output of automated error analysis (for a given application) is a comprehensive ap-

plication error profile that lists each error (for the error model under consideration) that

can perturb the program’s execution along with its corresponding impact on output qual-

ity. This work shows a few examples (targeted to approximate computing and hardware

resiliency) of how these comprehensive error profiles can enable customized error-efficiency,

but this is just a beginning. Exploring other use-cases for application error profiles, such

as selective ECC deployment, mixed dynamic precision or criticality testing for emerging

storage solutions like non-volatile memories (NVMs) is an interesting future direction.

Error-efficiency techniques have largely been focused on trading functional correctness, in

the form of output inaccuracies, to improve power/energy or performance. But the promise

of error-efficiency and automated error analysis can potentially be extended to other do-

mains that deal with anomalies in computing behavior; for instance, efficient protection

from fault attacks, analyzing interference behaviour of secure/private data being computed

on erroneous substrates, using application error profiles to assist with debugging during

153

hardware validation, etc. Another interesting direction is to explore if the error profiles

can be leveraged to design more efficient accelerators that exploit error-efficiency opportu-

nities [195, 196, 197].

7.3 ERROR-EFFICIENCY ACROSS THE COMPUTING STACK

An ideal error-efficient solution should take any application, along with user inputs (like

quality of service guarantees or optional domain-specific information) and map it to opti-

mal combinations of hardware/software error-efficiency techniques. To realize this, we need

integrated, full-stack solutions that treat error-efficiency as a first class metric at each layer

of the compute stack. This work thus far has been at the application layer of the stack and

it has shown how error-efficiency can be integrated into the software development workflow.

Other researchers have made progress at different layers of the stack – hardware/software

error-efficiency techniques, schedulers, optimizers, compilers, programming languages, etc.

However, we are missing the right abstractions to enable integration across the different

layers.

We are also seeing a trend towards specialization and heterogeneity at different scales. This

has been a boon for error-efficiency techniques that have leveraged hardware/software co-

design to extract maximum compute efficiency for specialized domains. However, it has made

the task of developing general full-stack error-efficiency methodologies, that still retain the

flexibility to specialize/customize at different layers, very challenging. Going forward, it will

be interesting to explore the following fundamental questions that need to be answered for

error-efficiency solutions across the compute stack: What are the right metrics to quantify an

application’s error characteristics? What is the right abstraction for programming languages

to express error-specifications in inputs, return values, instructions and data? How can

compilers encode/translate dynamic error-efficiency opportunities of applications? Can the

heterogeneous error characteristics of hardware be abstracted as standardized knobs that

can be tuned at the direction of software? Answers to these questions will require a cross-

disciplinary solutions.

7.4 SYSTEM WIDE ERROR-EFFICIENCY OVER HETEROGENEOUS SOURCES OF
ERRORS

As mentioned in the beginning of this thesis, part of the larger research vision is to

develop a principled and unified methodology for analyzing different sources of errors. This

is an important but extremely challenging problem since modern workloads can encounter

154

a wide variety of heterogeneous components that have varied sources of errors, each with

a different error model and no established methodology for translation between them. It

is unclear how different error-efficiency techniques across a range of devices will interact,

combine and complement or negate each other to provide end-to-end application and/or

system benefits. System wide solutions that can holistically optimize for error effects arising

from heterogeneous compute, data and networks will require a systematic methodology for

incremental and compositional error-efficiency analyses over a range of workloads, devices

and error models. Conceptual intuition gained by this work postulates that, albeit hard,

this is a problem that can be solved. For example, this work provides an intuition for how

the problem of finding the errors in compute that lead to output corruptions can be tackled

by systematically performing incremental analysis over increasingly complex error models.

Formalizing these concepts will be crucial for establishing a systematic methodology for

system-wide error-efficiency.

155

BIBLIOGRAPHY

[1] P. Stanley-Marbell and M. Rinard, “Error-efficient computing systems,” Found.
Trends Electron. Des. Autom., vol. 11, no. 4, p. 362–461, Dec. 2017. [Online].
Available: https://doi.org/10.1561/1000000049

[2] M. Carbin, S. Misailovic, and M. C. Rinard, “Verifying quantitative reliability
for programs that execute on unreliable hardware,” in Proceedings of the 2013
ACM SIGPLAN International Conference on Object Oriented Programming Systems
Languages & Applications, ser. OOPSLA ’13. New York, NY, USA: ACM,
2013. [Online]. Available: http://doi.acm.org/10.1145/2509136.2509546 pp. 33–52.

[3] S. Misailovic, M. Carbin, S. Achour, Z. Qi, and M. C. Rinard, “Chisel:
Reliability- and accuracy-aware optimization of approximate computational kernels,”
SIGPLAN Not., vol. 49, no. 10, pp. 309–328, Oct. 2014. [Online]. Available:
http://doi.acm.org/10.1145/2714064.2660231

[4] A. Sampson, A. Baixo, B. Ransford, T. Moreau, J. Yip, L. Ceze, and M. Oskin,
“Accept: A programmer-guided compiler framework for practical approximate com-
puting,” in Technical Report UW-CSE-15-01-01, University of Washington, 2015.

[5] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and D. Grossman,
“Enerj: Approximate data types for safe and general low-power computation,” in
Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language
Design and Implementation, ser. PLDI ’11. New York, NY, USA: ACM, 2011.
[Online]. Available: http://doi.acm.org/10.1145/1993498.1993518 pp. 164–174.

[6] J. Sartori and R. Kumar, “Architecting processors to allow voltage/reliability trade-
offs,” in Proc. of International Conference on Compilers, Architectures and Synthesis
for Embedded Systems (CASES), 2011, pp. 115–124.

[7] J. Han and M. Orshansky, “Approximate computing: An emerging paradigm for
energy-efficient design.” in ETS. IEEE Computer Society, 2013. [Online]. Available:
http://dblp.uni-trier.de/db/conf/ets/ets2013.html#HanO13 pp. 1–6.

[8] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural acceleration for
general-purpose approximate programs,” in Microarchitecture (MICRO), 2012 45th
Annual IEEE/ACM International Symposium on, 2012, pp. 449–460.

[9] J. San Miguel, J. Albericio, A. Moshovos, and N. E. Jerger, “Doppelganger: A cache
for approximate computing,” in International Symposium on Microarchitecture, 2015.

[10] F. Betzel, K. Khatamifard, H. Suresh, D. J. Lilja, J. Sartori, and U. Karpuzcu, “Ap-
proximate Communication: Techniques for Reducing Communication Bottlenecks in
Large-Scale Parallel Systems,” ACM Comput. Surv., vol. 51, no. 1, Jan. 2018.

156

[11] D. Jevdjic, K. Strauss, L. Ceze, and H. S. Malvar, “Approximate Storage of Com-
pressed and Encrypted Videos,” in Proc. of International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS), 2017, pp.
361–373.

[12] S. Sahoo, M.-L. Li, P. Ramchandran, S. V. Adve, V. Adve, and Y. Zhou, “Using Likely
Program Invariants to Detect Hardware Errors,” in Proc. of International Conference
on Dependable Systems and Networks, 2008.

[13] S. K. S. Hari, S. V. Adve, and H. Naeimi, “Low-cost Program-level Detectors for Re-
ducing Silent Data Corruptions,” in Proc. of International Conference on Dependable
Systems and Networks, 2012.

[14] M.-L. Li, P. Ramachandran, S. Sahoo, S. Adve, V. Adve, and Y. Zhou, “Trace-Based
Microarchitecture-Level Diagnosis of Permanent Hardware Faults,” in International
Conference on Dependable Systems and Networks, 2008.

[15] V. Sridharan and D. R. Kaeli, “Eliminating microarchitectural dependency from ar-
chitectural vulnerability,” in Proc. of International Symposium on High Performance
Computer Architecture, 2009.

[16] K. Pattabiraman, N. Nakka, Z. Kalbarczyk, and R. Iyer, “Symplfied: Symbolic
program-level fault injection and error detection framework,” in International Con-
ference on Dependable Systems and Networks, 2008.

[17] J. Park, X. Zhang, K. Ni, H. Esmaeilzadeh, and M. Naik, “Expax: A framework
for automating approximate programming,” in Technical Report, Georgia Institute of
Technology, 2014.

[18] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn, “Flikker: Saving dram
refresh-power through critical data partitioning,” SIGPLAN Not., vol. 46, no. 3, pp.
213–224, Mar. 2011. [Online]. Available: http://doi.acm.org/10.1145/1961296.1950391

[19] B. Boston, A. Sampson, D. Grossman, and L. Ceze, “Probability type inference
for flexible approximate programming,” in Proceedings of the 2015 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems, Languages, and
Applications, ser. OOPSLA 2015. New York, NY, USA: ACM, 2015. [Online].
Available: http://doi.acm.org/10.1145/2814270.2814301 pp. 470–487.

[20] G. Stazi, L. Adani, A. Mastrandrea, M. Olivieri, and F. Menichelli, “Impact of ap-
proximate memory data allocation on a h.264 software video encoder,” in High Per-
formance Computing, R. Yokota, M. Weiland, J. Shalf, and S. Alam, Eds. Cham:
Springer International Publishing, 2018, pp. 545–553.

[21] G. Stazi, F. Menichelli, A. Mastrandrea, and M. Olivieri, “Introducing approximate
memory support in linux kernel,” in 2017 13th Conference on Ph.D. Research in Mi-
croelectronics and Electronics (PRIME), June 2017, pp. 97–100.

157

[22] R. Venkatagiri, K. Swaminathan, C.-C. Lin, L. Wang, A. Buyuktosunoglu, P. Bose,
and S. Adve, “Impact of Software Approximations on the Resiliency of a Video Sum-
marization System,” in Proc. of International Conference on Dependable Systems and
Networks (DSN), 2018.

[23] R. Venkatagiri, K. Swaminathan, C. Lin, L. Want, A. Buyuktosunoglu, P. Bose, and
S. Adve, “Resilience characterization of a vision analytics application under varying
degrees of approximation,” in International Symposium on Workload Characterization
(IISWC), 2016.

[24] R. Venkatagiri, A. Mahmoud, S. K. S. Hari, and S. V. Adve, “Approxilyzer: Towards a
systematic framework for instruction-level approximate computing and its application
to hardware resiliency,” in 2016 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), Oct 2016, pp. 1–14.

[25] R. Venkatagiri, K. Ahmed, A. Mahmoud, S. Misailovic, D. Marinov, C. W. Fletcher,
and S. V. Adve, “gem5-approxilyzer: An open-source tool for application-level soft er-
ror analysis,” in 2018 48th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN).

[26] R. Venkatagiri, S. Misailovic, D. Marinov, C. W. Fletcher, and S. V. Adve, “Automated
application-level error analysis of program data,” in Under review.

[27] “Approxilyzer,” https://ma3mool.github.io/Approxilyzer.

[28] “gem5-approxilyzer,” https://github.com/rsimgroup/gem5-approxilyzer.

[29] A. Mahmoud, R. Venkatagiri, K. Ahmed, S. Misailovic, D. Marinov, C. W.
Fletcher, and S. V. Adve, “Minotaur: Adapting software testing techniques for
hardware errors,” in Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and Operating Systems,
ser. ASPLOS ’19. New York, NY, USA: ACM, 2019. [Online]. Available:
http://doi.acm.org/10.1145/3297858.3304050 pp. 1087–1103.

[30] S. K. Sastry Hari, R. Venkatagiri, S. V. Adve, and H. Naeimi, “Ganges:
Gang error simulation for hardware resiliency evaluation,” SIGARCH Comput.
Archit. News, vol. 42, no. 3, pp. 61–72, June 2014. [Online]. Available:
http://doi.acm.org/10.1145/2678373.2665685

[31] R. Venkatagiri, A. Mahmoud, S. K. S. Hari, and S. V. Adve, “Approxilyzer: Towards a
systematic framework for instruction-level approximate computing and its application
to hardware resiliency,” 2016 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), vol. 00, pp. 1–14, 2016.

[32] S. K. Sastry Hari, R. Venkatagiri, S. V. Adve, and H. Naeimi, “Ganges: Gang error
simulation for hardware resiliency evaluation,” in Proceeding of the 41st Annual Inter-
national Symposium on Computer Architecuture, ser. ISCA ’14. IEEE Press, 2014,
pp. 61–72.

158

[33] S. K. S. Hari, S. V. Adve, H. Naeimi, and P. Ramachandran, “Relyzer: Exploiting
Application-Level Fault Equivalence to Analyze Application Resiliency to Transient
Faults,” in Proc. of International Conference on Architectural Support for Program-
ming Languages and Operating Systems, 2012.

[34] G. Ananthanarayanan, P. Bahl, P. Bod́ık, K. Chintalapudi, M. Philipose, L. Ravin-
dranath, and S. Sinha, “Real-time video analytics: The killer app for edge computing,”
IEEE Computer, vol. 50, no. 10, pp. 58–67, 2017.

[35] M. Satyanarayanan, “The emergence of edge computing,” Computer, vol. 50, no. 1,
pp. 30–39, Jan 2017.

[36] R. Viguier et al., “Resilient mobile cognition: Algorithms, innovations, and architec-
tures,” in ICCD, 2015.

[37] L. Wang et al., “Power-efficient embedded processing with resilience and real-time
constraints,” in ISLPED, 2015.

[38] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Architecture support for
disciplined approximate programming,” SIGPLAN Not., 2012.

[39] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. C. Rinard, “Managing
performance vs. accuracy trade-offs with loop perforation,” in SIGSOFT FSE, 2011,
pp. 124–134.

[40] W. Baek and T. M. Chilimbi, “Green: A framework for supporting energy-conscious
programming using controlled approximation,” in Proceedings of the 2010 ACM
SIGPLAN Conference on Programming Language Design and Implementation,
ser. PLDI ’10. New York, NY, USA: ACM, 2010. [Online]. Available:
http://doi.acm.org/10.1145/1806596.1806620 pp. 198–209.

[41] M. Samadi, J. Lee, D. A. Jamshidi, A. Hormati, and S. Mahlke, “Sage: Self-tuning
approximation for graphics engines,” in Proceedings of the 46th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO-46. New York, NY,
USA: ACM, 2013. [Online]. Available: http://doi.acm.org.proxy2.library.illinois.edu/
10.1145/2540708.2540711 pp. 13–24.

[42] J. Sartori and R. Kumar, “Branch and data herding: Reducing control and memory
divergence for error-tolerant gpu applications,” Multimedia, IEEE Transactions on,
vol. 15, no. 2, pp. 279–290, Feb 2013.

[43] D. Mahajan, A. Yazdanbakhsh, J. Park, B. Thwaites, and H. Esmaeilzadeh, “Towards
statistical guarantees in controlling quality tradeoffs for approximate acceleration,” in
Proceedings of the 43rd International Symposium on Computer Architecture (ISCA),
ser. ISCA, 2016.

159

[44] X. Sui, A. Lenharth, D. S. Fussell, and K. Pingali, “Proactive control of
approximate programs,” in Proceedings of the Twenty-First International Conference
on Architectural Support for Programming Languages and Operating Systems,
ser. ASPLOS ’16. New York, NY, USA: ACM, 2016. [Online]. Available:
http://doi.acm.org/10.1145/2872362.2872402 pp. 607–621.

[45] J. Park, H. Esmaeilzadeh, X. Zhang, M. Naik, and W. Harris, “Flexjava: Language
support for safe and modular approximate programming,” in Proceedings of the 10th
Joint Meeting on Foundations of Software Engineering, 2015, pp. 745–757.

[46] J. Sartori and R. Kumar, “Architecting processors to allow voltage/reliability
tradeoffs,” in Proceedings of the 14th International Conference on Compilers,
Architectures and Synthesis for Embedded Systems, ser. CASES ’11. New York, NY,
USA: ACM, 2011. [Online]. Available: http://doi.acm.org/10.1145/2038698.2038718
pp. 115–124.

[47] S. Agarwal, H. Milner, A. Kleiner, A. Talwalkar, M. I. Jordan, S. Madden, B. Mozafari,
and I. Stoica, “Knowing when you’re wrong: building fast and reliable approximate
query processing systems,” in International Conference on Management of Data, SIG-
MOD, 2014, pp. 481–492.

[48] K. Swaminathan et al., “A case for approximate computing in real-time mobile cog-
nition,” in Workshop on Approximate Computing Across the System Stack (WACAS),
2015.

[49] C. Lin et al., “Moving camera analytics: Emerging scenarios, challenges, and applica-
tions,” IBM JRD, 2015.

[50] E. Rosten and T. Drummond, “Fusing points and lines for high performance tracking.”
in ICCV, 2005.

[51] E. Rosten and T. Drummond, “Machine learning for high-speed corner detection,” in
ECCV, 2006.

[52] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: an efficient alternative to
sift or surf,” in ICCV, 2011.

[53] M. Fischler and R. Bolles, “Random sample consensus: A paradigm for model fitting
with applications to image analysis and automated cartography,” Commun. ACM,
1981.

[54] S. Oh et al., “A large-scale benchmark dataset for event recognition in surveillance
video,” in CVPR, 2011.

[55] A. Vega et al., “Resilient, UAV-embedded real-time computing,” in ICCD, 2015.

[56] A. Meixner, M. E. Bauer, and D. J. Sorin, “Argus: Low-Cost, Comprehensive Error
Detection in Simple Cores,” in Proc. of International Symposium on Microarchitecture,
2007.

160

[57] M. Li et al., “Understanding the Propagation of Hard Errors to Software and Impli-
cations for Resilient Systems Design,” in International Conference on Architectural
Support for Programming Languages and Operating Systems, 2008.

[58] M.-L. Li, P. Ramachandran, R. U. Karpuzcu, S. K. S. Hari, and S. V. Adve, “Accurate
Microarchitecture-Level Fault Modeling for Studying Hardware Faults,” in Proc. of
International Symposium on High Performance Computer Architecture, 2009.

[59] A. Pellegrini, K. Constantinides, D. Zhang, S. Sudhakar, V. Bertacco, and T. Austin,
“CrashTest: A Fast High-Fidelity FPGA-based Resiliency Analysis Framework,” in
Proc. of International Conference on Computer Design, 2008.

[60] A. Pellegrini, R. Smolinski, X. Fu, L. Chen, S. K. S. Hari, J. Jiang, S. V. Adve,
T. Austin, and V. Bertacco, “CrashTest’ing SWAT: Accurate, Gate-Level Evaluation
of Symptom-Based Resiliency Solutions,” in Proc. of the Conference on Design, Au-
tomation, and Test in Europe, 2012.

[61] S. Nomura, M. D. Sinclair, C.-H. Ho, V. Govindaraju, M. de Kruijf, and K. Sankar-
alingam, “Sampling + DMR: Practical and Low-overhead Permanent Fault Detection,”
in Proc. of International Symposium on Computer Architecture, 2011.

[62] S. Hari, S. Adve, H. Naeimi, and P. Ramachandran, “Relyzer: Exploiting Application-
level Fault Equivalence to Analyze Application Resiliency to Transient Faults,” in
ASPLOS, 2012.

[63] “perf: Linux profiling with performance counters.” [Online]. Available: \url{https:
//perf.wiki.kernel.org/index.php/Main Page}

[64] “Open source computer vision library (OpenCV),” 2015. [Online]. Available:
\url{https://github.com/itseez/opencv}

[65] J. J. Cook and C. B. Zilles, “A Characterization of Instruction-level Error Derating
and its Implications for Error Detection,” in Proc. of International Conference on
Dependable Systems and Networks (DSN), 2008.

[66] W. Gu, Z. Kalbarczyk, Ravishankar, K. Iyer, and Z. Yang, “Characterization of Linux
Kernel Behavior Under Errors,” in Proc. of International Conference on Dependable
Systems and Networks (DSN), 2003.

[67] G. Li, K. Pattabiraman, C.-Y. Cher, and P. Bose, “Understanding Error Propagation
in GPGPU Applications,” in International Conference for High Performance Comput-
ing, Networking, Storage and Analysis (SC), 2016, pp. 240–251.

[68] G. Li, S. K. S. Hari, M. Sullivan, T. Tsai, K. Pattabiraman, J. Emer, and S. W.
Keckler, “Understanding Error Propagation in Deep-Learning Neural Networks (DNN)
Accelerators and Applications,” in The International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), 2017.

161

[69] P. Roy, R. Ray, C. Wang, and W. F. Wong, “Asac: Automatic sensitivity
analysis for approximate computing,” in Proceedings of the 2014 SIGPLAN/SIGBED
Conference on Languages, Compilers and Tools for Embedded Systems, ser.
LCTES ’14. New York, NY, USA: ACM, 2014. [Online]. Available: http:
//doi.acm.org/10.1145/2597809.2597812 pp. 95–104.

[70] M. Carbin and M. C. Rinard, “Automatically identifying critical input regions and
code in applications,” in Proceedings of the 19th International Symposium on Software
Testing and Analysis, ser. ISSTA ’10. New York, NY, USA: ACM, 2010. [Online].
Available: http://doi.acm.org/10.1145/1831708.1831713 pp. 37–48.

[71] A. Thomas and K. Pattabiraman, “Error detector placement for soft computation,”
in International Conference on Dependable Systems and Networks, 2013, pp. 1–12.

[72] B. Nongpoh, R. Ray, S. Dutta, and A. Banerjee, “Autosense: A framework for au-
tomated sensitivity analysis of program data,” IEEE Transactions on Software Engi-
neering, vol. PP, no. 99, pp. 1–1, 2017.

[73] S. Misailovic, S. Sidiroglou, H. Hoffmann, and M. Rinard, “Quality of Service Profil-
ing,” in Proc. of International Conference on Software Engineering (ICSE), 2010, pp.
25–34.

[74] R. Akram and A. Muzahid, “Approximeter: Automatically finding and quantifying
code sections for approximation,” in 2017 IEEE International Symposium on Workload
Characterization (IISWC), 2017.

[75] M. Gupta, V. Sridharan, D. Roberts, A. Prodromou, A. Venkat, D. Tullsen, and
R. Gupta, “Reliability-Aware Data Placement for Heterogeneous Memory Architec-
ture,” in Proc. of International Symposium on High Performance Computer Architec-
ture (HPCA), 2018, pp. 583–595.

[76] X. Li, S. Adve, P. Bose, and J. Rivers, “Online Estimation of Architectural Vulnera-
bility Factor for Soft Errors,” in Submitted for publication, 2007.

[77] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin, “A System-
atic Methodology to Compute the Architectural Vulnerability Factors for a High-
performance Microprocessor,” in Proc. of International Symposium on Microarchi-
tecture (MICRO), 2003, pp. 29–40.

[78] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin, “A System-
atic Methodology to Compute the Architectural Vulnerability Factors for a High-
Performance Microprocessor,” in International Symposium on Microarchitecture, 2003.

[79] A. Naithani, S. Eyerman, and L. Eeckhout, “Reliability-Aware Scheduling on Hetero-
geneous Multicore Processors,” in Proc. of International Symposium on High Perfor-
mance Computer Architecture (HPCA), 2017, pp. 397–408.

162

[80] B. Fang, Q. Lu, K. Pattabiraman, M. Ripeanu, and S. Gurumurthi, “epvf: An en-
hanced program vulnerability factor methodology for cross-layer resilience analysis,”
in 2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), June 2016, pp. 168–179.

[81] B. Wibowo, A. Agrawal, T. Stanton, and J. Tuck, “An accurate cross-layer
approach for online architectural vulnerability estimation,” ACM Trans. Archit.
Code Optim., vol. 13, no. 3, pp. 30:1–30:27, Sep. 2016. [Online]. Available:
http://doi.acm.org/10.1145/2975588

[82] S. Feng, S. Gupta, A. Ansari, and S. Mahlke, “Shoestring: Probabilistic soft error
reliability on the cheap,” in Proc. of International Conference on Architectural Support
for Programming Languages and Operating Systems, 2010.

[83] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness,
D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D.
Hill, and D. A. Wood, “The Gem5 Simulator,” SIGARCH Comput. Archit. News,
2011.

[84] T. Wang, Q. Zhang, and Q. Xu, “ApproxQA: A Unified Quality Assurance Frame-
work for Approximate Computing,” in Proc. of Design, Automation Test in Europe
Conference Exhibition (DATE), 2017, pp. 254–257.

[85] H.-J. Wunderlich, C. Braun, and A. Schöll, “Pushing the Limits: How Fault Tolerance
Extends the Scope of Approximate Computing,” in Proc. of International Symposium
on On-Line Testing and Robust System Design (IOLTS), 2016, pp. 133–136.

[86] T.-W. Chin, C.-L. Yu, M. Halpern, H. Genc, S.-L. Tsao, and V. J. Reddi, “Domain-
Specific Approximation for Object Detection,” IEEE Micro, vol. 38, no. 1, pp. 31–40,
January 2018.

[87] J. Park, E. Amaro, D. Mahajan, B. Thwaites, and H. Esmaeilzadeh, “Axgames:
Towards crowdsourcing quality target determination in approximate computing,” in
Proceedings of the Twenty-First International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’16. New York, NY,
USA: ACM, 2016. [Online]. Available: http://doi.acm.org/10.1145/2872362.2872376
pp. 623–636.

[88] R. Xu, J. Koo, R. Kumar, P. Bai, S. Mitra, S. Misailovic, and S. Bagchi, “Videochef:
efficient approximation for streaming video processing pipelines,” in 2018 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 18), 2018, pp. 43–56.

[89] R. Boyapati, J. Huang, P. Majumder, K. H. Yum, and E. J. Kim, “APPROX-NoC:
A Data Approximation Framework for Network-On-Chip Architectures,” in Proc. of
International Symposium on Computer Architecture (ISCA), 2017, pp. 666–677.

163

[90] P. Guo and W. Hu, “Potluck: Cross-Application Approximate Deduplication for
Computation-Intensive Mobile Applications,” in Proc. of International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS),
2018, pp. 271–284.

[91] S. Xu and B. C. Schafer, “Exposing Approximate Computing Optimizations at Differ-
ent Levels: From Behavioral to Gate-Level,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 25, no. 11, pp. 3077–3088, 2017.

[92] H. Song, X. Song, T. Li, H. Dong, N. Jing, X. Liang, and L. Jiang, “A FPGA Friendly
Approximate Computing Framework with Hybrid Neural Networks,” in Proc. of Inter-
national Symposium on Field-Programmable Gate Arrays (FPGA), 2018, pp. 286–286.

[93] C. Xu, X. Wu, W. Yin, Q. Xu, N. Jing, X. Liang, and L. Jiang, “On Quality Trade-off
Control for Approximate Computing using Iterative Training,” in Proc. of Interna-
tional Design Automation Conference (DAC), 2017, pp. 1–6.

[94] T. Moreau, J. S. Miguel, M. Wyse, J. Bornholt, A. Alaghi, L. Ceze, N. E. Jerger, and
A. Sampson, “A Taxonomy of General Purpose Approximate Computing Techniques,”
IEEE Embedded Systems Letters, vol. 10, no. 1, pp. 2–5, March 2018.

[95] H. Zhao, L. Xue, P. Chi, and J. Zhao, “Approximate Image Storage with Multi-level
Cell STT-MRAM Main Memory,” in 2017 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), 2017, pp. 268–275.

[96] S. K. Khatamifard, I. Akturk, and U. R. Karpuzcu, “On Approximate Speculative
Lock Elision,” IEEE Transactions on Multiscale Computing Systems, Special Issue on
Emerging Technologies and Architectures for Manycore Computing, 2017.

[97] I. Akturk, N. S. Kim, and U. R. Karpuzcu, “Decoupled Control and Data Processing
for Approximate Near-threshold Voltage Computing,” IEEE Micro Special Issue on
Heterogeneous Computing, pp. 70–78, 2015.

[98] K. Pattabiraman, Z. Kalbarczyk, and R. K. Iyer, “Application-based metrics for strate-
gic placement of detectors,” in Proc. of Pacific Rim International Symposium on De-
pendable Computing (PRDC), 2005.

[99] J. Calhoun, L. Olson, and M. Snir, “Flipit: An llvm based fault injector for hpc,” in
European Conference on Parallel Processing. Springer, 2014, pp. 547–558.

[100] I. Laguna, M. Schulz, D. F. Richards, J. Calhoun, and L. Olson, “Ipas:
Intelligent protection against silent output corruption in scientific applications,”
in Proceedings of the 2016 International Symposium on Code Generation and
Optimization, ser. CGO ’16. New York, NY, USA: ACM, 2016. [Online]. Available:
http://doi.acm.org/10.1145/2854038.2854059 pp. 227–238.

[101] H. Cho, S. Mirkhani, C.-Y. Cher, J. Abraham, and S. Mitra, “Quantitative evaluation
of soft error injection techniques for robust system design,” in Proc. of International
Design Automation Conference, 2013, pp. 1–10.

164

[102] F. Bower, D. Sorin, and S. Ozev, “Online Diagnosis of Hard Faults in Microprocessors,”
ACM Transactions on Architecture and Code Optimization, vol. 4, no. 2, 2007.

[103] M. Kaliorakis, D. Gizopoulos, R. Canal, and A. Gonzalez, “MeRLiN: Exploiting Dy-
namic Instruction Behavior for Fast and Accurate Microarchitecture Level Reliability
Assessment,” in Proc. of International Symposium on Computer Architecture (ISCA),
2017.

[104] J. Wei, A. Thomas, G. Li, and K. Pattabiraman, “Quantifying the accuracy of high-
level fault injection techniques for hardware faults,” in 2014 44th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, June 2014, pp. 375–
382.

[105] H. Schirmeier, M. Hoffmann, C. Dietrich, M. Lenz, D. Lohmann, and O. Spinczyk,
“Fail*: An open and versatile fault-injection framework for the assessment of
software-implemented hardware fault tolerance,” in Dependable Computing Confer-
ence (EDCC), 2015 Eleventh European, Sept 2015, pp. 245–255.

[106] J. Li and Q. Tan, “Smartinjector: Exploiting intelligent fault injection for sdc rate
analysis,” in 2013 IEEE International Symposium on Defect and Fault Tolerance in
VLSI and Nanotechnology Systems (DFTS), Oct 2013, pp. 236–242.

[107] A. Benso, S. Di Carlo, G. Di Natale, P. Prinetto, and L. Taghaferri, “Data criticality
estimation in software applications,” in Proc. of International Test Conference, 2003.

[108] C. Bienia and K. Li, “PARSEC 2.0: A New Benchmark Suite for Chip-
Multiprocessors,” in Proc. of 5th Workshop on Modeling, Benchmarking and Simu-
lation, 2009.

[109] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The SPLASH-2 Programs:
Characterization and Methodological Considerations,” in International Symposium on
Computer Architecture, 1995.

[110] Virtutech, “Simics Full System Simulator,” Website, 2006, http://www.simics.net.

[111] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August, “Swift: software
implemented fault tolerance,” in International Symposium on Code Generation and
Optimization, 2005.

[112] Weining Gu, Z. Kalbarczyk, and R. K. Iyer, “Error sensitivity of the linux kernel
executing on powerpc g4 and pentium 4 processors,” in International Conference on
Dependable Systems and Networks, 2004, 2004.

[113] D. Skarin, R. Barbosa, and J. Karlsson, “Goofi-2: A tool for experimental dependabil-
ity assessment,” in 2010 IEEE/IFIP International Conference on Dependable Systems
Networks (DSN), 2010.

165

[114] L. Palazzi, G. Li, B. Fang, and K. Pattabiraman, “A tale of two injectors: End-
to-end comparison of ir-level and assembly-level fault injection,” in 2019 IEEE 30th
International Symposium on Software Reliability Engineering (ISSRE), 2019.

[115] B. Sangchoolie, K. Pattabiraman, and J. Karlsson, “One Bit is (Not) Enough: An
Empirical Study of the Impact of Single and Multiple Bit-Flip Errors,” in 2017 47th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN), 2017.

[116] S. Cha, O. Seongil, H. Shin, S. Hwang, K. Park, S. J. Jang, J. S. Choi, G. Y. Jin, Y. H.
Son, H. Cho, J. H. Ahn, and N. S. Kim, “Defect analysis and cost-effective resilience
architecture for future dram devices,” in 2017 IEEE International Symposium on High
Performance Computer Architecture (HPCA), 2017.

[117] D. Zhang, V. Sridharan, and X. Jian, “Exploring and optimizing chipkill-correct for
persistent memory based on high-density nvrams,” in 2018 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2018.

[118] V. Sridharan, N. DeBardeleben, S. Blanchard, K. B. Ferreira, J. Stearley, J. Shalf, and
S. Gurumurthi, “Memory errors in modern systems: The good, the bad, and the ugly,”
in Proceedings of the Twentieth International Conference on Architectural Support for
Programming Languages and Operating Systems, 2015.

[119] S. Gurumurthi, “Advanced memory device correction (amdc) for servers,” AMD
Whitepaper, 2020.

[120] I. Akturk, K. Khatamifard, and U. R. Karpuzcu, “On quantification of accuracy loss in
approximate computing,” in Workshop on Duplicating, Deconstructing and Debunking
(WDDD), 2015.

[121] R. Venkatagiri, A. Mahmoud, and S. Adve, “Towards more precision in approximate
computing,” in Workshop on Approximate Computing Across the Stack (WAX), 2016.

[122] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. dissertation, Princeton
University, January 2011.

[123] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R. Alameldeen,
K. E. Moore, M. D. Hill, and D. A. Wood, “Multifacet’s General Execution-Driven
Multiprocessor Simulator (GEMS) Toolset,” SIGARCH Computer Architecture News,
vol. 33, no. 4, 2005.

[124] A. K. Mishra, R. Barik, and S. Paul, “iACT: A Software-hardware Framework for
Understanding the Scope of Approximate Computing,” in WACAS, 2014.

[125] M. Rinard, “Probabilistic accuracy bounds for fault-tolerant computations that
discard tasks,” in Proceedings of the 20th Annual International Conference on
Supercomputing, ser. ICS ’06. New York, NY, USA: ACM, 2006. [Online]. Available:
http://doi.acm.org/10.1145/1183401.1183447 pp. 324–334.

166

[126] E. Cheng, S. Mirkhani, L. G. Szafaryn, C.-Y. Cher, H. Cho, K. Skadron, M. R. Stan,
K. Lilja, J. A. Abraham, P. Bose, and S. Mitra, “CLEAR: Cross-Layer Exploration for
Architecting Resilience - Combining Hardware and Software Techniques to Tolerate
Soft Errors in Processor Cores,” in Proceedings of the 53rd Annual Design Automation
Conference, ser. DAC ’16, 2016.

[127] M. de Kruijf, S. Nomura, and K. Sankaralingam, “Relax: An Architectural Framework
for Software Recovery of Hardware Faults,” in International Symposium on Computer
Architecture, 2010.

[128] J. F. Ziegler and H. Puchner, SER–history, Trends and Challenges: A Guide for
Designing with Memory ICs. Cypress, 2004.

[129] K. Reick, P. N. Sanda, S. Swaney, J. W. Kellington, M. Mack, M. Floyd, and D. Hen-
derson, “Fault-Tolerant Design of the IBM Power6 Microprocessor,” IEEE Micro, 2008.

[130] D. Ernst et al., “Razor: A Low-Power Pipeline Based on Circuit-Level Timing Spec-
ulation,” in MICRO, dec 2003.

[131] W. Dweik, M. Annavaram, and M. Dubois, “Reliability-Aware Exceptions: Tolerating
Intermittent Faults in Microprocessor Array Structures,” in Proc. of Design, Automa-
tion Test in Europe Conference Exhibition (DATE), March 2014, pp. 1–6.

[132] M. Dimitrov and H. Zhou, “Unified Architectural Support for Soft-Error Protection or
Software Bug Detection,” in Proc. of International Conference on Parallel Archtectures
and Compilation Techniques, 2007.

[133] O. Goloubeva, M. Rebaudengo, M. S. Reorda, and M. Violante, “Soft-Error Detection
Using Control Flow Assertions,” in Proc. of International Symposium on Defect and
Fault Tolerance in VLSI Systems, 2003.

[134] S. K. S. Hari, M.-L. Li, P. Ramachandran, B. Choi, and S. V. Adve, “mSWAT: Low-
cost Hardware Fault Detection and Diagnosis for Multicore Systems,” in Proc. of
International Symposium on Microarchitecture, 2009.

[135] K. Pattabiraman, G. P. Saggese, D. Chen, Z. Kalbarczyk, and R. K. Iyer, “Dynamic
Derivation of Application-Specific Error Detectors and their Implementation in Hard-
ware,” in Proc. of European Dependable Computing Conference, 2006.

[136] N. Wang and S. Patel, “ReStore: Symptom-Based Soft Error Detection in Micro-
processors,” IEEE Transactions on Dependable and Secure Computing, vol. 3, no. 3,
July-Sept 2006.

[137] M. Dimitrov and H. Zhou, “Anomaly-based Bug Prediction, Isolation, and Validation:
An Automated Approach for Software Debugging,” in International Conference on
Architectural Support for Programming Languages and Operating Systems, 2009.

167

[138] G. Lyle, S. Cheny, K. Pattabiraman, Z. Kalbarczyk, and R. Iyer, “An End-to-end
Approach for the Automatic Derivation of Application-Aware Error Detectors,” in
International Conference on Dependable Systems and Networks, 2009.

[139] P. Racunas, K. Constantinides, S. Manne, and S. S. Mukherjee, “Perturbation-based
Fault Screening,” in International Symposium on High Performance Computer Archi-
tecture, 2007.

[140] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August, “Swift: software
implemented fault tolerance,” in International Symposium on Code Generation and
Optimization, March 2005, pp. 243–254.

[141] R. K. Venkatesan, S. Herr, and E. Rotenberg, “Retention-aware placement in dram
(rapid): software methods for quasi-non-volatile dram,” in The Twelfth International
Symposium on High-Performance Computer Architecture, 2006., 2006.

[142] A. Groce, M. A. Alipour, C. Zhang, Y. Chen, and J. Regehr, “Cause reduction: Delta
debugging, even without bugs,” STVR, vol. 26, no. 1, pp. 40–68, 2015.

[143] G. J. Myers, Art of Software Testing. New York, NY, USA: John Wiley & Sons, Inc.,
1979.

[144] S. Rapps and E. J. Weyuker, “Selecting software test data using data flow information,”
IEEE Transactions on Software Engineering, vol. SE-11, no. 4, pp. 367–375, April 1985.

[145] P. Ammann and J. Offutt, Introduction to Software Testing. Cambridge University
Press, 2008.

[146] P. G. Frankl and E. J. Weyuker, “An applicable family of data flow testing criteria,”
IEEE Transactions on Software Engineering, vol. 14, no. 10, pp. 1483–1498, Oct 1988.

[147] “Road vehicles — Functional safety,” Website, https://www.iso.org/standard/43464.
html.

[148] S. Yoo and M. Harman, “Regression testing minimization, selection and prioritization:
A survey,” STVR, vol. 22, no. 2, pp. 67–120, 2012.

[149] C. Zhang, A. Groce, and M. A. Alipour, “Using test case reduction and prioritization
to improve symbolic execution,” in ISSTA, 2014, pp. 160–170.

[150] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and X. Yang, “Test-case Reduction
for C Compiler Bugs,” in Proc. of International Conference on Programming Language
Design and Implementation (PLDI), 2012.

[151] A. Groce, M. Alipour, C. Zhang, Y. Chen, and J. Regehr, “Cause reduction for quick
testing,” in ICST, 2014, pp. 243–252.

168

[152] M. A. Alipour, A. Shi, R. Gopinath, D. Marinov, and A. Groce, “Evaluating non-
adequate test-case reduction,” in Proc. of the 31st IEEE/ACM Conference on Auto-
mated Software Engineering (ASE), Singapore, Singapore, Sep. 2016, pp. 16–26.

[153] A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-inducing input,” TSE,
vol. 28, no. 2, pp. 183–200, 2002.

[154] J. Brauer, M. Dahlweid, T. Pankrath, and J. Peleska, “Source-Code-to-Object-Code
Traceability Analysis for Avionics Software: Don’T Trust Your Compiler,” in Pro-
ceedings of the 34th International Conference on Computer Safety, Reliability, and
Security - Volume 9337, ser. SAFECOMP 2015, 2015.

[155] M. Bordin, C. Comar, T. Gingold, J. Guitton, O. Hainque, and T. Quinot, “Object
and Source Coverage for Critical Applications with the COUVERTURE Open Analysis
Framework,” in Embedded Real Time Software and Systems (ERTSS), 2010.

[156] M. A. Laurenzano, P. Hill, M. Samadi, S. Mahlke, J. Mars, and L. Tang,
“Input responsiveness: Using canary inputs to dynamically steer approximation,”
in Proceedings of the 37th ACM SIGPLAN Conference on Programming Language
Design and Implementation, ser. PLDI ’16. New York, NY, USA: ACM, 2016.
[Online]. Available: http://doi.acm.org/10.1145/2908080.2908087 pp. 161–176.

[157] I. S. LLC, “Image Magick,” Website, 2018, https://www.imagemagick.org/.

[158] D. E. Bernholdt, A. Geist, and B. Maccabe, “Resilience is a Software Engineering
Issue,” Software Productivity for Extreme-Scale Science (SWP4XS) Workshop, Oak
Ridge National Laboratory, 2014.

[159] M. Isenkul, B. Sakar, and O. Kursun, “Improved Spiral Test Using Digitized Graphics
Tablet for Monitoring Parkinson’s Disease,” in The 2nd International Conference on
e-Health and Telemedicine (ICEHTM-2014), 05 2014.

[160] B. E. Sakar, M. E. Isenkul, C. O. Sakar, A. Sertbas, F. S. Gürgen, S. Delil, H. Apaydin,
and O. Kursun, “Collection and Analysis of a Parkinson Speech Dataset With Multiple
Types of Sound Recordings,” IEEE Journal of Biomedical and Health Informatics,
vol. 17, pp. 828–834, 2013.

[161] D. Dheeru and E. Karra Taniskidou, “UCI machine learning repository,” 2017.
[Online]. Available: http://archive.ics.uci.edu/ml

[162] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert, “Statistical fault injection:
Quantified error and confidence,” in 2009 Design, Automation Test in Europe Confer-
ence Exhibition, April.

[163] M. S. Gupta, J. A. Rivers, L. Wang, and P. Bose, “Cross-layer System Resilience at
Affordable Power,” in 2014 IEEE International Reliability Physics Symposium, 2014,
pp. 2B.1.1–2B.1.8.

169

[164] A. Agrawal, B. Wibowo, and J. Tuck, “Software marking for cross-layer architectural
vulnerability estimation model,” in SELSE, 2017.

[165] G. Li and K. Pattabiraman, “Modeling Input-Dependent Error Propagation in Pro-
grams,” in Proc. of International Conference on Dependable Systems and Networks
(DSN), June 2018, pp. 279–290.

[166] G. Li, K. Pattabiraman, S. K. S. Hari, M. Sullivan, and T. Tsai, “Modeling Soft-
Error Propagation in Programs,” in Proc. of International Conference on Dependable
Systems and Networks (DSN), 2018.

[167] B. Nie, L. Yang, A. Jog, and E. Smirni, “Fault site pruning for practical reliabil-
ity analysis of gpgpu applications,” in 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), Oct 2018, pp. 749–761.

[168] K. Pei, Y. Cao, J. Yang, and S. Jana, “DeepXplore: Automated Whitebox Testing
of Deep Learning Systems,” in Proc. of Symposium on Operating Systems Principles
(SOP), 2017, pp. 1–18.

[169] W.-C. Lee, T. Bao, Y. Zheng, X. Zhang, K. Vora, and R. Gupta, “Raive:
Runtime assessment of floating-point instability by vectorization,” in Proceedings
of the 2015 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, ser. OOPSLA 2015. New
York, NY, USA: Association for Computing Machinery, 2015. [Online]. Available:
https://doi.org/10.1145/2814270.2814299 p. 623–638.

[170] D. Jeffrey, N. Gupta, and R. Gupta, “Fault localization using value replacement,” in
Proceedings of the 2008 International Symposium on Software Testing and Analysis,
ser. ISSTA ’08. New York, NY, USA: Association for Computing Machinery, 2008.
[Online]. Available: https://doi.org/10.1145/1390630.1390652 p. 167–178.

[171] M. P. D. Lohar and E. Darulova, “Sound probabilistic numerical error analysis,” in
iFM, ser. iFM ’19, 2019.

[172] E. D. H. Becker, P. Panchekha and Z. Tatlock, “Combining tools for optimization and
analysis of floating-point computations,” in FM, ser. FM ’08, 2018.

[173] A. Chatzidimitriou and D. Gizopoulos, “Anatomy of Microarchitecture-level Reliabil-
ity Assessment: Throughput and Accuracy,” in ISPASS, 2016.

[174] K. Parasyris, G. Tziantzoulis, C. D. Antonopoulos, and N. Bellas, “GemFI: A Fault
Injection Tool for Studying the Behavior of Applications on Unreliable Substrates,” in
DSN, 2014.

[175] N. Hasabnis and R. Sekar, “Lifting Assembly to Intermediate Representation: A Novel
Approach Leveraging Compilers,” in ASPLOS, 2016.

170

[176] S. Misailovic, M. Carbin, S. Achour, Z. Qi, and M. C. Rinard, “Chisel: Reliability- and
accuracy-aware optimization of approximate computational kernels,” in Proceedings of
the 2014 ACM International Conference on Object Oriented Programming Systems
Languages & Applications, 2014.

[177] D. Khudia, B. Zamirai, M. Samadi, and S. Mahlke, “Rumba: An online quality man-
agement system for approximate computing,” in Computer Architecture (ISCA), 2015
ACM/IEEE 42nd Annual International Symposium on, June 2015, pp. 554–566.

[178] I. Laguna, M. Schulz, D. F. Richards, J. Calhoun, and L. Olson, “Ipas: Intelligent
protection against silent output corruption in scientific applications,” in Proceedings
of the 2016 International Symposium on Code Generation and Optimization, 2016, pp.
227–238.

[179] D. Khudia and S. Mahlke, “Harnessing soft computations for low-budget fault toler-
ance,” in Microarchitecture (MICRO), 2014 47th Annual IEEE/ACM International
Symposium on, Dec 2014, pp. 319–330.

[180] M. M. Sabry, G. Karakonstantis, D. Atienza, and A. Burg, “Design of energy efficient
and dependable health monitoring systems under unreliable nanometer technologies,”
in Proceedings of the 7th International Conference on Body Area Networks, ser.
BodyNets ’12. ICST, Brussels, Belgium, Belgium: ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering), 2012. [Online].
Available: http://dl.acm.org/citation.cfm?id=2442691.2442706 pp. 52–58.

[181] A. Yazdanbakhsh, K. Samadi, and H. Esmaeilzadeh, “SnaPEA: Predictive Early Ac-
tivation for Reducing Computation in Deep Convolutional Neural Networks,” in Pro-
ceedings of the 45th International Symposium on Computer Architecture (ISCA), 2018.

[182] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neural
network with pruning, trained quantization and huffman coding,” CoRR, 2015.

[183] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating very deep neural
networks,” CoRR, 2017.

[184] A. J. KleinOsowski and D. J. Lilja, “MinneSPEC: A New SPEC Benchmark Workload
for Simulation-Based Computer Architecture Research,” IEEE Comput. Archit. Lett.,
vol. 1, no. 1, p. 7, Jan. 2002.

[185] R. Akram, “Performance and accuracy analysis of programs using approximation tech-
niques,” Ph.D. dissertation, 2017.

[186] C. Kalra, F. Previlon, X. Li, N. Rubin, and D. Kaeli, “Prism: Predicting resilience of
gpu applications using statistical methods,” in Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage, and Analysis, ser. SC
’18. IEEE Press, 2018.

171

[187] Q. Shi, H. Hoffmann, and O. Khan, “A cross-layer multicore architecture to tradeoff
program accuracy and resilience overheads,” IEEE Computer Architecture Letters,
vol. 14, no. 2, pp. 85–89, 2015.

[188] A. Thomas and K. Pattabiraman, “Error Detector Placement for Soft Computation,”
in DSN, 2013.

[189] R. Szeliski, “Image alignment and stitching: A tutorial,” 2004.

[190] K. Rane et al., “Mosaic evaluation: An efficient and robust method based on maximum
information retrieval,” Int. J. Computer Applications, 2013.

[191] A. Camargo, Q. He, and K. Palaniappan, “Performance evaluations for super-
resolution mosaicing on UAS surveillance videos,” Int J Adv Robotic Systems, 2013.

[192] B. Morse et al., “Application and evaluation of spatio-temporal enhancement of live
aerial video using temporally local mosaics,” in CVPR, 2008.

[193] P. Paalanen, J.-K. Kämäräinen, and H. Kälviäinen, “Image based quantitative mosaic
evaluation with artificial video,” in Image Analysis, 2009, pp. 470–479.

[194] M. El-Saban, M. Izz, A. Kaheel, and M. Refaat, “Improved optimal seam selection
blending for fast video stitching of videos captured from freely moving devices,” in
ICIP, 2011.

[195] Y. S. Shao, S. L. Xi, V. Srinivasan, G. Wei, and D. Brooks, “Co-designing accelerators
and soc interfaces using gem5-aladdin,” in 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2016.

[196] U. Gupta, B. Reagen, L. Pentecost, M. Donato, T. Tambe, A. M. Rush, G. Wei, and
D. Brooks, “Masr: A modular accelerator for sparse rnns,” in 2019 28th International
Conference on Parallel Architectures and Compilation Techniques (PACT), 2019.

[197] M. Minutoli, V. G. Castellana, C. Tan, J. Manzano, V. Amatya, A. Tumeo, D. Brooks,
and G. Y. Wei, “Soda: a new synthesis infrastructure for agile hardware design of ma-
chine learning accelerators,” in 2020 IEEE/ACM International Conference On Com-
puter Aided Design (ICCAD), 2020.

172

