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Much research has been conducted on energy management for memory and disks. Most studies use
control algorithms that dynamically transition devices to low power modes after they are idle for
a certain threshold period of time. The control algorithms used in the past have two major limita-
tions. First, they require painstaking, application-dependent manual tuning of their thresholds to
achieve energy savings without significantly degrading performance. Second, they do not provide
performance guarantees.

This article addresses these two limitations for both memory and disks, making memory/disk
energy-saving schemes practical enough to use in real systems. Specifically, we make four main con-
tributions. (1) We propose a technique that provides a performance guarantee for control algorithms.
We show that our method works well for all tested cases, even with previously proposed algorithms
that are not performance-aware. (2) We propose a new control algorithm, Performance-Directed
Dynamic (PD), that dynamically adjusts its thresholds periodically, based on available slack and
recent workload characteristics. For memory, PD consumes the least energy when compared to
previous hand-tuned algorithms combined with a performance guarantee. However, for disks, PD
is too complex and its self-tuning is unable to beat previous hand-tuned algorithms. (3) To improve
on PD, we propose a simpler, optimization-based, threshold-free control algorithm, Performance-
Directed Static (PS). PS periodically assigns a static configuration by solving an optimization prob-
lem that incorporates information about the available slack and recent traffic variability to different
chips/disks. We find that PS is the best or close to the best across all performance-guaranteed disk
algorithms, including hand-tuned versions. (4) We also explore a hybrid scheme that combines PS
and PD algorithms to further improve energy savings.
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1. INTRODUCTION

Energy consumption has emerged as an important issue in the design of com-
puting systems. For battery-operated mobile devices, energy consumption di-
rectly affects the battery life. For high-end data centers, the increasing energy
consumption is driving energy costs up as much as 25% annually and making
it a growing consideration in the TCO (total cost of ownership) [Moore 2002].

The storage hierarchy, which includes memory and disks, is a major energy
consumer in computer systems. This is especially true for high-end servers at
data centers [Carrera et al. 2003; Gurumurthi et al. 2003; Lebeck et al. 2000].
Recent measurements from real server systems show that memory could con-
sume 50% more power than processors [Lefurgy et al. 2003]. A recent industry
report shows that storage devices at a data center account for almost 27% of
the total energy consumed [Maximum Throughput 2002].

To reduce energy consumption, modern memory such as RDRAM allows
each individual memory device to transition into different low-power operating
modes [Rambus 1999]. Similarly, many disks also support several low-power
operating modes [IBM; Paleologo et al. 1998]. Gurumurthi et al. [2003] have
recently proposed a multispeed disk model to further reduce disk energy
consumption. Transitioning a device (a memory chip or a disk) to a low-power
mode can save energy but can degrade performance. The key to the effective
use of these low-power modes, therefore, is an effective control algorithm that
decides which power mode each device (memory chip or disk) should be in at
any time. This article concerns effective control algorithms for memory and
disk energy management.

Memory and disks share many similarities in their low-power operating
modes and their cost/benefit analysis; therefore, we take a common view of
the energy management problem in both of these subsystems. All the solutions
we propose here are effective for both subsystems; however, the best solution
is different for each. For simplicity, we use the term storage to refer to both
memory and disk and the term device to refer to a single memory chip or disk.

The best previously proposed storage-energy control algorithms monitor us-
age (e.g., through idle time or through degradation of response time) and move
to a different power mode if this usage function exceeds (or is less than) a speci-
fied threshold [Carrera et al. 2003; Gurumurthi et al. 2003; Lebeck et al. 2000].
In general, the number of thresholds depends on the number of power modes
as well as the number of usage functions monitored. Thus, the thresholds are
a key feature of these algorithms. Although these algorithms are effective in
reducing energy, two problems make them difficult (if not impossible) to use in
practice, as discussed in the following.

1.1 Limitations of the State-of-the-Art

Almost all previous algorithms that are effective in saving storage energy suffer
from the following two limitations.

(1) Painstaking, application-dependent manual tuning of thresholds.
Threshold-based algorithms require manual tuning of the threshold
values. Section 5.2 shows that reasonable threshold values are highly
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application-dependent. For example, for the memory subsystem, a set of
thresholds derived from competitive analysis proposed in Lebeck et al.
[2000] showed a performance degradation of 8% to 40% when applied to six
SPEC benchmarks. During our hand-tuning efforts as well, we repeatedly
found that the best threshold values for a given application caused high
performance degradation in others, for example, the best set for gzip gave
63% degradation for parser (Section 5.2).

(2) No performance guarantee. Even if a system were designed with thresh-
olds tuned for an expected set of applications, there is no mechanism to
bound the performance degradation for applications that may deviate from
the behavior used for tuning. As discussed previously, the potential perfor-
mance degradation with the wrong set of thresholds can be very high (up
to several times in our experiments). This type of unpredictable behavior
or lack of a safety net is clearly a problem for all users. However, it can
be particularly catastrophic for high-end servers in host data centers that
have to honor service level contracts with customers. Such data centers are
becoming increasingly important consumers of high-end servers, and the
ability to provide some form of performance guarantee is crucial for their
business models to be viable. Furthermore, as indicated earlier, it is exactly
in such high-end server scenarios that reducing memory and disk energy
can lead to significant cost savings.

1.2 Contributions of this Work

Our results unequivocally demonstrate the current difficulty in the practical ex-
ploitation of memory/disk low-power modes due to (1) the extensive application-
specific tuning required for current algorithms, and (2) the lack of any perfor-
mance guarantee (safety net) for applications deviating from the tuning set.

In this article, we decouple the above two problems and provide solutions to
both in an orthogonal way.

(1) Technique to guarantee performance. First, we propose a new technique
that guarantees that performance will not be degraded by the underlying
control algorithm beyond a specified limit. It dynamically monitors the per-
formance degradation at runtime and forces all devices to full-power mode
when the degradation exceeds the specified limit. This performance guar-
antee algorithm can potentially be combined with any underlying control
algorithm for managing the system power modes. Furthermore, the pres-
ence of this algorithm enables making conscious, user-specific trade-offs in
performance for increased energy savings. In this article, we allow the user
to specify an acceptable slowdown, and the system seeks to minimize en-
ergy within this constraint. We evaluated our algorithm for memory and
disk using simulation and report results for more than 200 scenarios. In
each case, the algorithm successfully limits the performance degradation
to the specified limit.

(2) A self-tuning thresholds based control algorithm (called PD). Second, we
develop an algorithm that automatically tunes its thresholds periodically,
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eliminating the need for hand tuning. The period for tuning is a large num-
ber of instructions, referred to as an epoch. At every epoch, the algorithm
changes its thresholds based on the insight that the optimal thresholds are
a function of the (predicted) access traffic and acceptable slowdown that
can be incurred for that epoch. We refer to this algorithm combined with
the performance-guarantee algorithm as PD (for Performance-directed
Dynamic).

We compare PD with the original threshold-based algorithm [Lebeck
et al. 2000] without and with performance guarantee (referred to as OD and
OD+, respectively, where OD stands for Original Dynamic). We find that
for memory, PD consumes the least energy of all performance-guaranteed
algorithms (up to 68% less than the best OD+). Even compared to the
best hand-tuned OD (no performance guarantee), PD performs well in
most cases without any manual tuning and providing a performance
guarantee. For disks, however, PD does not perform as well because the
number of parameters involved is much larger than for memory, making it
too complex to self-tune all parameters dynamically. Thus, the self-tuned
algorithm is unable to compete with the hand-tuned one in a few cases.

(3) A simpler, optimization based, thresholds-free control algorithm (called PS).
Since PD is relatively complex (although not much more complex than the
original algorithms) and is still primarily based on heuristics to determine
the best thresholds, we also explore a relatively simpler algorithm based
on formal optimization. Like PD, this algorithm also works on an epoch
granularity. However, it eliminates the thresholds-based nature of the
dynamic algorithm by choosing a single configuration for each device for
the entire epoch. We refer to this algorithm as PS because it is inspired by
the static algorithm (referred to as OS) proposed in Lebeck et al. [2000]. OS
uses a fixed configuration for all devices throughout the entire execution.
In contrast, PS exploits variability in space by assigning different modes
(configurations) to different devices and also exploits variability in time
by reassigning configurations at the start of a new epoch. At each epoch,
the configuration is chosen by mapping this problem to a constrained
optimization problem. Applying standard optimization techniques, we can
achieve a close to optimal solution (for fixed configurations through an
epoch) without resorting to complex heuristics.

For memory, as mentioned earlier, PD performs very well and PS is not
competitive. For disks, PS is the best, or close to the best in all but one case,
when compared to all performance-guaranteed algorithms studied here.

(4) A hybrid scheme that combines PS and PD algorithms. In order to further
improve energy savings, we combine PS and PD to exploit both the fine-
grained temporal variability and spatial variability within an epoch. Our re-
sults show that the hybrid scheme can improve the energy savings from PS
and PD for the disk case, but it has little improvement for the memory case.

Overall, this article makes a significant step towards making control algo-
rithms for memory/disk energy conservation usable in real systems especially
systems such as data centers that require service guarantees. We do this by
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eliminating the need for painstaking, application-dependent parameter tuning
and by minimizing energy while providing a performance guarantee. With our
schemes, users never need to worry about whether the underlying energy con-
servation scheme may degrade the performance by some unpredictable values.

2. BACKGROUND

This article aims to investigate performance-guaranteed control algorithms
that are generally applicable to storage components including both main mem-
ory and disks.

2.1 Memory Power Model

We base the power model for the memory subsystem on recent advances
that have yielded memory chips capable of operating in multiple power
modes. In particular, our model follows the specifications for Rambus DRAM
(RDRAM) [Rambus 1999]. Each RDRAM chip can be activated independently.
When not in active use, it can be placed into a low-power operating mode to
save energy. RDRAM supports three such modes: standby, nap, and powerdown.
Each mode works by activating only specific parts of the memory circuitry such
as column decoders, row decoders, clock synchronization circuitry, and refresh
circuitry (instead of all parts of the chip) [Rambus 1999]. Data is preserved
in all power modes. More details of the workings of these modes can be found
elsewhere [Rambus 1999; Storage Systems Division 1999] and are not the focus
of this article.

A RDRAM chip must be in active mode to perform a read or write operation.
Accesses to chips in low-power operating modes incur additional delay and
energy for bringing the chip back to active state. The delay time varies from
several cycles to several thousand cycles depending on which low-power state
the chip is in. In general, the lower the power mode, the more time and the
more energy it takes to activate it for access.

2.2 Disk Power Model

To reduce energy consumption, modern disks use multiple power modes in-
cluding active, standby, powerdown, and other intermediate modes [Storage
Systems Division 1999]. In the active mode, a disk is spinning at its full speed
even when there is no disk request, and therefore it provides the best-possible
access time but consumes the most energy. In the active mode, serving a request
requires extra energy to move the disk head in addition to the energy consumed
by disk-spinning. In the standby mode, the disk consumes much less energy,
but servicing a request incurs significant energy and time overhead to spin up
to active mode.

Recently, Gurumurthi et al. [2003] have proposed using multispeed disks,
called Dynamic Rotations Per Minute (DRPM), to reduce energy for data center
workloads. Lower rotational speed modes consume less energy than higher
ones, and the energy and time costs to shift between rotational speed modes
are relatively small compared to the costs for shifting from standby to active
in the traditional disk power models. Furthermore, a DRPM disk can service
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requests at a low rotational speed without the need to transition to full speed.
Although the service time is longer for all accesses at slower speeds, it can avoid
the transition overhead. We use the DRPM disk model in our study since, for
data center workloads, it saves much more energy than the traditional model.

2.3 Previous Control Algorithms

Previous control algorithms for storage energy management can be classified
into two groups: static and dynamic. Static algorithms always put a device in
a fixed low-power mode. A device only transitions into full-power mode if it
needs to service a request as in the memory case. After a request is serviced,
it immediately transitions back to the original mode unless there is another
request waiting. Lebeck et al. [2000] have studied several static algorithms
that put all memory chips in a standby, nap and powerdown mode, respectively.
Their results show that the static nap algorithm has the best Energy × Delay
values. We refer to their static algorithms as OS, and specifically to the versions
that invoke the static standby, nap, and powerdown configurations as OSs, OSn,
and OSp, respectively.

Dynamic algorithms transition a device from the current power mode to
the next lower-power mode after being idle for a specified threshold amount of
time (different thresholds are used for different power modes). When a request
arrives, the memory chip transitions into active mode to service the request (and
then waits for the next threshold period of idle time to transition to the next
lower-power mode). Lebeck et al. [2000] have shown that dynamic algorithms
have better energy savings than all static algorithms.

The dynamic algorithms for the modeled RDRAM-style power modes require
three thresholds for three different transitions: active to standby, standby to
nap, and nap to powerDown. As described in Section 1, the energy consump-
tion and performance degradation are very sensitive to these thresholds, and
manually tuning these parameters for each application is not easy.

The dynamic algorithm for disks proposed in Gurumurthi et al. [2003] is a
heuristic algorithm for a DRPM disk model. This algorithm dynamically transi-
tions a disk from one speed to another based on changes in the average response
time and the request queue length. It requires tuning of five parameters: (1)
checking period p to examine the disk queue length, (2) the upper tolerance UT
in percentage response time changes to spin up a disk to a higher RPM, (3) the
lower tolerance LT in percentage response time changes to spin down a disk,
(4) window size W , and (5) the disk queue length threshold Nmin.

Specifically, the dynamic algorithm for disks works as follows. Periodically
(with checking period p), each disk checks its average queue length. If the queue
length is less than a threshold Nmin, the disk can spin down to a lower RPM, but
not lower than a bound of rotation rate, called Low watermark. Low watermark
is adjusted by monitoring the response time change �Tresp. If �Tresp over the
last two W -request windows is:

—larger than UT, then force the disks to the full speed immediately by setting
Low watermark to the full RPM;

—between LT and UT, the controller keeps Low watermark;
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—less than LT, Low watermark is decreased proportionally based on how much
the response time change is lower than LT (i.e., LT−�Tresp

LT ).

3. PROVIDING PERFORMANCE GUARANTEES

Although there is clear motivation for providing performance guarantees
(Section 1), the appropriate metric and methodology for measuring delivered
performance is unclear. For example, absolute guarantees on delivered MIPS,
MFLOPS, IPC, transactions per second, and so on all depend on a priori knowl-
edge of the workload which may be hard to ascertain. This issue, however, is
independent of whether the system employs energy management techniques
and outside the scope of this article (although adding energy management may
add further complexity). In our work, we assume that the user has been guaran-
teed some base best performance assuming no energy management, and has an
option to further save cost (i.e., energy) by accepting a slowdown relative to this
best offered base performance. We assume such an acceptable slowdown as an
input to our system and refer to it as Slowdownlimit (expressed as a percentage
increase in execution time, relative to the base). We can envisage future systems
where the operating system automatically assigns appropriate slowdown to dif-
ferent workloads based on utility functions that incorporate appropriate notions
of benefits and costs, but again, such work is outside the scope of this article.
We can also extend this work by letting the user specify an acceptable trade-off
between performance and energy (e.g., slowdown X% for Y% energy savings).
In this article, we choose to minimize energy within the acceptable slowdown.

Given Slowdownlimit, the goal of the performance-guarantee algorithm is to
ensure that the underlying energy management algorithm does not slow down
the execution beyond this acceptable limit. Thus, there are two key components
to the performance-guarantee algorithm: (1) estimating the actual slowdown
due to energy management, and (2) enforcing that the actual slowdown does not
exceed the specified limit. The performance-guarantee algorithm can be used
in energy management for both memory and disks. For convenience, we first
focus on memory energy management to demonstrate the idea in the following
and then address the differences for the disk case in Section 3.2.

3.1 Performance Guarantees for Memory Energy Management

3.1.1 Estimating Actual Slowdown—Key Idea. At each access, the
performance-guarantee algorithm estimates the absolute delay in execution
time due to energy management, and then determines if the resulting percent-
age slowdown so far is within the absolute limit. We use the following terms:

—t = execution time using the underlying energy management algorithm until
some point P in the program;

—Tbase(t) = execution time without any energy management until the same
point in the program;

—Delay(t) = absolute increase in execution time due to energy management =
t − Tbase(t);

—actual percentage slowdown = Delay(t)
Tbase

∗ 100 = Delay(t)
t−Delay(t) ∗ 100.
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Fig. 1. An example of overlapped requests and refinement of the delay estimate.

The constraint that must be ensured by the performance-guarantee algo-
rithm is actual percentage slowdown ≤ Slowdownlimit. That is,

Delay(t)
t − Delay(t)

∗ 100 ≤ Slowdownlimit.

So conceptually, the only unknown to be determined is the delay. To guaran-
tee the performance requirement, the delay estimation should be as accurate
as possible, but conservative (estimated delay ≥ actual delay).

Naive method. A simple way to estimate delay is to sum up the delay for
each access. Here, the delay for an access that arrives at a device in low-power
mode is the transition time from the current low-power mode to active mode
(required for it to be serviced).

Refinements. Although this method can estimate delay, it is too conserva-
tive because it does not consider the effect of overlapped accesses and other
latency-hiding techniques in modern processors (e.g., out-of-order execution,
prefetching, nonblocking caches, and write-buffers, among others). Such tech-
niques can hide a portion of the access latency, resulting in an actual program
slowdown that is much smaller than the sum of the slowdowns for each access.

In general, it is difficult to account for all the latency-hiding techniques be-
cause there are too many uncertain factors. We refine our program slowdown
estimation method to consider some of the major sources of inaccuracy.

First, our algorithm assumes that the processor sees the delay from energy
management for a single load. In modern out-of-order processors, the latency
of a cache miss that goes to memory cannot usually be fully overlapped with
other computation. The additional delay from energy management simply adds
to the existing stall time and delays the execution.

If the processor sends two loads to the memory system in parallel, their laten-
cies overlap, therefore hiding some of the energy management delay. Our first
refinement is to exploit information about overlapped or concurrent requests.
For example, in Figure 1, access A is first issued to device 0. Before A finishes,
another request, B, can be issued to device 1. Suppose both devices are in low-
power mode, and therefore access A is delayed by D1 time units, and B is delayed
by D2 time units. Obviously, the total delay in execution time will be smaller
than D1 + D2. A tighter bound is D, the value obtained by subtracting the over-
lapped time from D1 + D2. This idea can be extended to multiple overlapped
requests, and is incorporated in our delay estimation for both memory and disks.

Second, writes to memory are mostly write-backs from cache line displace-
ment, and most cache architectures can perform these in the background.
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Similarly, writes to disks can be also performed in the background using write-
buffers. It is therefore unnecessary to consider the extra delay for writes unless
there is another request waiting to access the same device.

Third, modern processors often do not block on store instructions. Delays of
memory reads caused by store instructions therefore need not also be consid-
ered unless there is memory contention.

3.1.2 Enforcing Performance Guarantees. It is useful to define another
term:

Slack(t) = the amount of allowed execution delay that would not
violate the slowdown constraint

= Tbase(t) ∗ Slowdownlimit/100 − Delay(t)
= (t − Delay(t)) ∗ Slowdownlimit/100 − Delay(t).

Simple Method. A simple way to enforce the performance guarantee is to
ensure that slack is never negative. If slack goes negative, the performance-
guarantee algorithm disables the underlying energy management algorithm,
pulling all devices to full-power mode. The system continues like this until
enough slack is accumulated to activate the underlying control algorithm again.

The performance-guarantee algorithm described so far can be coupled with
any energy management algorithm, in principle. In the general case, (e.g., with
OS and OD), the delay and slack updates are performed at each access. If the
slack is negative, the underlying control mechanism is temporarily disabled
until enough slack is generated. This value of “enough slack” is a new parameter
for the algorithm that may need to be tuned for the general case.

Refinement. The above method has two limitations. First, it relies on a new
tunable parameter called “enough slack”. Second, it has to check the actual
percentage slowdown against the slack limit (at least one division and one
comparison) after every access, incurring too much overhead.

To overcome the above two limitations, a refinement is to break the execution
time into epochs. An epoch is a relatively large time interval over which the
application execution is assumed to be predictable. In our experiments, we set
the epoch length to be 1 million instructions for the memory case and 100
seconds for the disk case (as reported in Section 5.1 and Section 6.4, we found
that our results are not very sensitive to the epoch length). At the start of an
epoch, the algorithm estimates the absolute available slack for the entire epoch
(as shown in the following). Now, after each access, the algorithm only needs
to check the actual absolute delay so far in this epoch against the estimated
available slack for the entire epoch. If the actual delay is more than the available
slack, all devices are forced to active-power mode until the end of the epoch. This
method does not need the “enough slack” parameter, and avoids the division
computation at each access. Since our two new control algorithms (Section 4)
are already epoch-based, it is fairly easy to use this refinement.

The available slack for the next epoch can be estimated based on the
Slowdownlimit specified by the application and the predicted execution time
of the next epoch without power management (denoted tepoch and predicted to
be the same as for the last epoch). The available slack for the next epoch needs
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to satisfy the following constraint:

AvailableSlack + Delay(t)
t − Delay(t) + tepoch

∗ 100 ≤ Slowdownlimit

Solving this for AvailableSlack, we have

AvailableSlack ≤ Slowdownlimit

100
×tepoch+Slowdownlimit

100
×(t−Delay(t))−Delay(t)

(1)
The first part is the next epoch’s fair share of the allowed slowdown, and

the second part is the leftover slack carried forward from the previous epochs.
So if the previous epochs have not used up their share of slack, this epoch can
afford to use more than its fair share. Conversely, if the previous epoch used
up too much slack (e.g., because of incorrect prediction of the epoch length), the
next epoch will attempt to make up that slack. Overshooting of the slack by
the last few epochs of the program may be difficult to compensate. However,
if the program runs for a reasonably long time (as in data center workloads),
any error introduced by this is relatively small and, in fact, negligible. In our
experiments, we found our method of reclaiming slack from previous epochs to
be very effective in conserving energy while providing a performance guarantee.

3.1.3 Implementation and Overhead. The performance guarantee method
just discussed can be implemented in the memory controller. The controller
keeps track of the actual delay for each epoch. After each access, based on
the delay estimation described in Section 3.1.1, it updates the actual total
delay. This is then compared against the available slack for this epoch; if the
former is larger, all devices are forced to active mode. At the end of an epoch, it
calculates the available slack for the next epoch using the delay estimate and
the Equation (1).

The overhead for this method is quite small, consisting of only 1–2 integer
comparisons and fewer than 4 arithmetic additions or subtractions per access.
The available slack calculation requires some multiplications but occurs once
each epoch; this overhead is therefore amortized over a large interval and is
negligible.

Although our method assumes a single memory controller that manages all
memory chips, we can extend it to systems with multiple memory controllers.
This optimally requires spreading the total available slack across all controllers
to minimize total energy consumption, using a method similar to our new PS
control algorithm presented in Section 4.1.

3.2 Performance Guarantees for Disk Energy Management

The previous performance-guarantee method can be used for disk energy man-
agement. We assume that the system uses synchronous mode to read data which
is true in most file system workloads [Ruemmler and Wilkes 1993]. The disk
controller keeps track of the total actual delay after each access and compares
it against the available slack for the whole epoch. Due to the difference of the
power model between memory and disks, the delay estimate is different.

ACM Transactions on Storage, Vol. 1, No. 3, August 2005.



356 • X. Li et al.

For each disk access, the physical access time includes seek time, rotation
latency, and transfer time. The delay for the access serviced at power mode Pk
can be estimated as:

d (Pk) = taccess(Pk) − taccess(P0),

where Pk is the power mode in the last epoch, taccess(Pk) is the observed access
time at power mode Pk , and taccess(P0) is the estimated access time if the access
is serviced at full-power mode.

Ideally, the seek time for an access does not change due to the different RPM
speeds, and the rotation latency and transfer time are inverse proportional to
the rotation speed. Hence, the delay can be estimated as:

d (Pk) = (trotation latency(Pk) − trotation latency(P0)) + (ttransfer(Pk) − ttransfer(P0))

=
(

1 − RPM(Pk)
RPM(P0)

)
× (trotation latency(Pk) + ttransfer(Pk)),

where trotation latency(Pk) and ttransfer(Pk) are the observed rotation latency and
transfer time at power mode Pk ; RPM(Pk) is the rotation speed for power mode
Pk ; and RPM(P0) is the full rotation speed.

Although DRPM disks can service requests at a low speed and avoid the
speed transition overhead, if a request arrives during the speed transition, it
can still result in a long delay for the access (up to several seconds). Therefore,
besides the extra physical access time due to slow rotation speed, we also take
account of the transition overhead in the delay estimate for such accesses.

It is not difficult to implement the performance-guarantee algorithm in disk
controllers. The actual delay estimate for each access involves at least 2 arith-
metic additions or subtractions and 1 multiplication, which is more compli-
cated than the memory case. Compared with milliseconds of each disk access
time, however, the overhead for tracking the actual delay and available slack is
ignorable.

4. CONTROL ALGORITHMS

This section presents two new control algorithms, Performance-Directed Static
Algorithm (PS) and Performance-Directed Dynamic Algorithm (PD). Based on
awareness of slack available during program execution, these algorithms tune
themselves to be more or less aggressive, resulting in higher energy savings.
Consequently, they do not require extensive manual tuning. Both algorithms
provide a performance guarantee using the method described in Section 3, and
use the slack information generated by the performance-guarantee algorithm
to guide energy management.

As described in Section 3, we divide the execution into epochs. At the end of
each epoch, the performance-guarantee algorithm estimates the available slack
for the next epoch. Both energy control algorithms use this slack as a guide.

In the following description of PS and PD algorithms, we first focus on mem-
ory energy management, and then describe how to apply each algorithm to the
disk case by addressing the key differences.
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Fig. 2. PS algorithm.

4.1 The PS Algorithm

PS is inspired by previous static algorithms in Lebeck et al. [2000] but im-
proves on them using two insights. First, like OS, PS assigns a fixed configu-
ration (power mode) to a memory chip for the entire duration of an epoch. The
chip transitions into active mode only to service a request. However, unlike
OS, PS allows this configuration to be changed at epoch boundaries based on
available slack. Thus, PS can adapt to large epoch-scale changes in application
behavior. Second, unlike OS, PS allows different configurations for different de-
vices. This allows PS to exploit variability in the amount of traffic to different
storage devices—PS effectively apportions total slack differently to different
devices.

4.1.1 Problem Formulation and PS Algorithm. The goal of the PS algo-
rithm is to choose, for each device, i, a configuration (power mode), Ci, that
maximizes the total energy savings subject to the constraint of the total avail-
able slack for the epoch. That is:

maximize
N−1∑
i=0

E(Ci) subject to
N−1∑
i=0

D(Ci) ≤ AvailableSlack (2)

where E(Ci) is a prediction of the energy that will be saved by keeping device
i in configuration Ci in the next epoch, D(Ci) is a prediction of the increase in
execution time due to keeping device i in configuration Ci in the next epoch,
and AvailableSlack is a prediction of the slack available for the next epoch. N
is the total number of devices.

The prediction of AvailableSlack is obtained from the performance-guarantee
algorithm as discussed in Section 3.1.2. The predictions for E(Ci) and D(Ci)
are described in the next sections. With the knowledge of E(Ci) and D(Ci),
the Equation (2) represents the well-known multiple choice knapsack problem
(MCKP). Although finding the optimal solution is NP complete, several close-to-
optimal solutions have been proposed [Martello and Toth 1990]. In this work, we
use a linear greedy algorithm (we omit details of the solution due to space limi-
tations). The overall PS algorithm is summarized as the algorithm in Figure 2.

4.1.2 Estimation of D(Ci) and E(Ci). For each device i, for each possible
power mode, we need to estimate the energy that would be saved and the delay
that would be incurred for the next epoch. For an accurate estimation of these
terms, we would need to predict the number and distribution (both across de-
vices and in time) of the accesses in the next epoch.

For the number of accesses in the next epoch and the distribution of these
accesses across the different memory chips, we make the simple assumption
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Fig. 3. Access count per epoch to 2 different memory chips for vortex with 1 million instruction
epochs.

that these are the same as in the last epoch. We found this assumption to work
well in practice since the epoch lengths are relatively large and the number
of accesses to each device changes slowly over epochs. For example, Figure 3
shows the access count for 1500 epochs (1 million instructions each) for the
application vortex (see Section 5.1 for experimental methodology). The figure
shows that, for the most part, the access rate remains relatively stable for
each device; the figure also clearly shows the importance of distinguishing be-
tween different devices. There are, however, some bursty periods where the
access count changes abruptly for a short time. These will result in suboptimal
configurations. The performance-guarantee algorithm, however, compensates
for this. If the access count is under-predicted and the power mode is too low,
the performance-guarantee algorithm will force the device to go active. Con-
versely, if the access count is over-predicted and too little slack is used up, the
performance-guarantee algorithm will reclaim the leftover slack for the next
epoch.

For estimating the temporal distribution of accesses, we make a simplify-
ing assumption that accesses to a given chip are uniformly distributed in time,
and there is no overlap among accesses to the same or different chips. This
is clearly a simplistic assumption; however, more accurate information would
require prohibitively expensive tracking of access time distribution in the pre-
vious epochs or some as yet unavailable analytic models. The assumption, al-
though simplistic, is strictly conservative. That is, a nonuniform distribution for
a given device provides more opportunities for energy saving and reduces delay
(since a single activation of the chip can potentially handle multiple buffered
requests). Similarly, ignoring overlap among accesses to different chips also
overestimates delay (as explained in Section 3.1.1). Nevertheless, note again
that the performance-guarantee algorithm can partly compensate for some of
the resulting suboptimality by reclaiming any unused slack for the subsequent
epoch. The performance-guarantee algorithm is able to account for overlap in
its slack calculation as described in Section 3.1.2 (the difference is that this
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overlap is determined as it occurs in the actual execution, while the previous
discussion is concerned with predicting overlap for the future which is more
difficult).

With the above assumptions, we can now calculate the contribution of device
i in power mode Pk (i.e., Ci = Pk) to the overall execution time delay as:

D(Pk) = Ai ∗ (taccess(Pk) − taccess(Pactive)), (3)

where Ai is the predicted number of accesses to device i in the next epoch,
taccess(Pk) is the average device access time for power mode k, and taccess(Pactive)
is the average active mode device access time.

The energy saved by placing device i in power mode Pk can also be calculated
in a similar way.

4.1.3 Enforcing Performance Guarantee. In addition to the performance-
guarantee algorithm described in Section 3, PS also provides the ability to have
a chip-level performance watchdog. The PS optimization described previously
essentially apportions a part of the available slack to each chip (D(i, Pi)). To
provide finer-grained control, we also keep track of the actual delay that each
chip incurs and compare it with this predicted (apportioned) delay. If the former
ever exceeds the latter, that chip is forced to the active or full-power mode until
the end of the epoch. This ensures that one bad device (a device that uses up its
slack too fast) does not penalize all other devices. This turns out to subsume the
guarantee provided by the global (cross-device) algorithm of Section 3. However,
we still use that algorithm to determine AvailableSlack to apportion over the
next epoch since that algorithm accounts for overlap and other refinements
discussed in Section 3.

4.1.4 Overhead of the PS Algorithm. Similar to the performance guaran-
tee method, PS can also be implemented in a memory controller with some
processing power. Many memory controllers (e.g., the Impulse memory con-
troller [Zhang et al. 2001]) already contain low-power processors.

At the beginning of each epoch, PS has to first evaluate D(Ci) and E(Ci)
for all devices. This requires 3MN multiplications and a similar number of
additions, where M is the number of power modes (usually less than 5) and
N is the number of memory chips (less than 16 usually). Since we use a linear
greedy approximation algorithm to solve the knapsack problem and D(Ci) and
E(Ci) are monotonically nondecreasing, the overhead of the algorithm is not
significant. On average, it requires 2MN computation steps, with each step
consisting of 1–2 integer comparisons and 1–2 subtractions.

Since PS is invoked only at the beginning of each epoch (1 million instructions
in our experiments), PS’s overhead is amortized over the entire epoch.

4.1.5 Applying PS to Disks. Similarly, PS for disks can also be formulated
as an MCKP problem as shown in Equation (2). In order to solve the MCKP
problem, we have to estimate the total delay D(Ci) and the energy savings E(Ci)
in the next epoch for disk i in configuration Ci (speed level). For an accurate
estimation of these terms, we need to predict the number and distribution of
the accesses in the next epoch.
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Fig. 4. Disk access count per epoch to 2 different disks for Cello’96 trace with 100 second epochs.

We can also make the simple assumption that the number of accesses in
the next epoch are the same as the last epoch. This assumption is based on the
observation that the number of accesses to each disk changes slowly over epochs
if the epoch lengths are relatively large (hundreds of seconds). For example,
Figure 4 shows the access count for 360 epochs (100 seconds each) to 2 disks for
the Cello’96 trace (see Section 6.1 for experimental setup). It shows that, for the
most part, the access rate remains relatively stable for a relatively long time
for each disk. For example, for the disk 1, the access rate is around 900 in the
first phase (epoch 0–113), around 9000 in the second phase (epoch 114–166),
and around 1400 in the third phase (epoch 167–360); for the disk 2, the access
rate stays around 300. Some bursty periods and idle periods, however, may
result in suboptimal configurations. Nevertheless, the performance-guarantee
algorithm can partly compensate for it by reclaiming any unused slack across
epochs.

There are two sources for performance delay that we incorporate: (1) time
spent transitioning between two speeds since no request can be serviced during
this time, and (2) higher rotational delay when a request is serviced at a low
speed. Hence, we can estimate the contribution of disk i in power mode Pk to
the overall execution time delay in the next epoch as:

D(Pk) = ttransition(Pk′ , Pk) + Ai ∗ (taccess(Pk) − taccess(P0)), (4)

where Pk′ is the power mode in the last epoch, ttransition(Pk′ , Pk) denotes the
disk spinning-up/down time from power mode Pk′ to Pk , Ai is the predicted
number of accesses to disk i in the next epoch, taccess(Pk) is the average access
time for power mode Pk , and taccess(P0) is the average access time for full speed
mode. This estimation of the execution time delay is strictly conservative for two
reasons. First, we always take into account the transitioning time as delay if the
disk changes power mode between two contiguous epochs. The actual delay may
be much shorter than the transitioning time because the first request in the
next epoch may arrive much later than transitioning. Second, ignoring overlap
among accesses to different disks also overestimates the delay.
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The second part of Equation (4) can be estimated by breaking down the disk
physical access time as described in Section 3.2.

Similar to the performance-guarantee method, PS can also be implemented
in a disk controller. The complexity of estimating D(Ci) and E(Ci) is O(MN),
where M is the number of power modes and N is the number of disks. The linear
greedy approximation algorithm used to solve the knapsack problem also has
the complexity of O(MN). Since PS is invoked once each epoch (100 seconds in
our experiments), the overhead is amortized over the entire epoch.

4.2 The PD Algorithm

The PS algorithm maintains a single configuration for a device throughout
an epoch; hence, it does not exploit temporal variability in the access stream
within an epoch. The PD algorithm seeks to exploit such variability, inspired
by previous dynamic algorithms which transition to lower power modes after
being idle for a certain threshold period of time [Lebeck et al. 2000]. However,
unlike previous dynamic algorithms, PD automatically retunes its thresholds
at the end of each epoch based on available slack and workload characteristics.
Further, PD also provides a performance guarantee using the method described
in Section 3.

4.2.1 Problem Formulation and PD Algorithm. For the PD algorithm also,
we can map the problem to a constrained optimization problem using the same
equations as for PS in Section 4.1.1. The difference, however, is that now the
configuration, Ci, for device i is described by thresholds Th1, Th2, . . . , ThM−1,
where M is the number of power modes and Thi is the amount of time the
device will stay in power mode i − 1 before going down to power mode i. A
key difference between PS and PD is that the search space for this problem is
prohibitively large (a total of M −1 threshold variables and each variable could
be any integer between [0, ∞)). In the absence of an efficient solution for this
large space, we consider a heuristics-based technique.

First, we curtail the space of solutions by using the same set of thresholds
for all devices in a given epoch. Second, we observe that the thresholds must
have a first-order dependence on the available slack for the epoch as well as the
number of accesses. Specifically, for larger slack, devices can go to lower-power
modes more aggressively (i.e., thresholds can be smaller) since a larger delay
can be tolerated. Similarly, for a given slack S, lower access counts allow for
lower thresholds since they cause a lower total delay. There is also a strong de-
pendence on the distribution of accesses; however, as explained in Section 4.1.2,
it incurs too much overhead to predict this distribution and so we do not exploit
it.

Thus, we seek to determine Thk as a function of available slack and access
count (for each k, 1 ≤ k ≤ M − 1). Given that both available slack and access
count can be predicted from techniques in previous sections, we reduce our
problem to determining Thk as a function of slack S for a given access count. The
next section shows how to determine this function. The overall PD algorithm
is summarized as Algorithm 2 in Figure 6.
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Fig. 5. Threshold function Thk(S). A is the access count for the next epoch. ti is the transition
time from power mode i to active.

Fig. 6. PD algorithm.

4.2.2 Selection of Function Thk(S). In general, if the number of accesses A
is fixed, Thk(S) is monotonically nonincreasing with respect to available slack
S, as shown in Figure 5. To reduce the computation complexity, we approximate
Thk(S) using multiple linear segments. We first consider M key values of slack
S and approximate Thk for each of these values. These values are S A · ti, where
0 ≤ i ≤ M − 1 (we assume t0 = 0). This divides the available slack or S axis
into M distinct intervals—[0, A · t1], . . . , [A · tM−2, A · tM−1], [A · tM−1, ∞). We
use the approximated values of the function at the various A · ti ’s to interpolate
the values of the rest of the points in the corresponding intervals. For function
Thk(S), these approximate values and interpolations are determined as follows.

Consider the key identified slack values A · ti, where i > k. These values
imply available slack that is large enough to allow every access to wait for
the transition time tk . Therefore, ideally, Thk should be 0 in this case; how-
ever, in practice, we found this does not work very well for two reasons. First,
the interarrival times of accesses are not uniformly distributed. Using a zero
threshold wastes energy when the interarrival time is too short to justify the
power-up/down cost. In this case, it can be more effective to keep the chip ac-
tive during the short idle time. Second, the prediction for the number of future
accesses may not be accurate. Therefore, we set the minimal threshold for Thk
at the energy break-even point described in Irani et al. [2001]. This provides
the 2-competitive property in the worst-case energy consumption.

Now consider the remaining identified slack values; that is, A · ti, where
0 ≤ i ≤ k. For these cases, the available slack is either not enough or just

ACM Transactions on Storage, Vol. 1, No. 3, August 2005.



Performance Directed Energy Management for Main Memory and Disks • 363

barely enough for each access to wait for the transition time tk . Therefore, we
need to be conservative about putting a device in mode k; unless the device is
already idle for a long time, we should not put it in mode k. To achieve this,
we should set the threshold Thk(A · ti) to be much larger than for Thk(A · tk+1).
Further, the lower the value of i, the higher we should set the threshold. We
propose setting the threshold to Ck−i · tk because it satisfies all the qualitative
properties of Thk discussed previously. Here C is a dynamically-adjusted factor
that we will discuss later.

Now we have the approximate values for the values of available slack S =
A · ti, 0 ≤ i ≤ M − 1. For an available slack value S in an interval (A · ti−1, A · ti)
where 0 < i < M − 1, we determine the value of Thk(S) by a linear iterpola-
tion between the endpoints of the interval. For available slack values S in the
interval (A · tM−1, ∞), we determine the value of Thk(S) to be the same as that
at S = A · tM−1.

The remaining problem is choosing the C factor. PD uses feedback-based
control to dynamically adjust the constant value C at runtime. If during the last
epoch, the system does not use up all its slack, it indicates that the thresholds
are too conservative. So PD reduces the constant value C to 95% of the current
value to reduce the threshold values. Next epoch, the chip will go to lower-power
mode more aggressively. On the other hand, if during the last epoch, the system
used up all its slack and forces all devices to become active in order to provide
a performance guarantee, it indicates that the thresholds are aggressive. So
PD doubles the constant to increase the threshold values. Our experimental
results show that our dynamic-threshold adjustment scheme works very well
and we never need to tune the adjustment speeds for decreasing and increasing
constant C. The selection of 95% and a factor of 2 are based on insights from
the TCP/IP congestion control method.

4.2.3 Overhead of the PD Algorithm. At the beginning of each epoch, for
each threshold Thk , PD needs to first compare the current slack with the k
key points to see which segment of Thk(S) we should use. This involves less
than M − 1 comparisons for each Thk(S) function. So the total number of com-
parisons is less than M 2. Then we evaluate the linear functions, which takes
4–5 multiplications, divisions, and additions. So the total computational com-
plexity is smaller than M 2 + 5M . (M is the number of power modes smaller
than 5.)

Similar to PS, the threshold adjustment in PD is only performed at the
beginning of each epoch. Therefore, its overhead is amortized over 1 million
instructions.

4.2.4 Applying PD to Disks. Compared to memory, OD for disks has many
more parameters, each with a different meaning as we described in Section 2.3.
Dynamically self-tuning all of them for PD is difficult; specifically, it is difficult
to model or analyze the impact of the period length, the window length, and
the disk queue length parameters on performance slowdown and energy. We
therefore chose to restrict dynamic tuning to the two threshold parameters of
LT and UT, using a method similar to that for memory. For the rest of the pa-
rameters, we started from the values in Gurumurthi et al. [2003] and explored
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Table I. Thresholds Used for Different Configurations of OD
(The first number in a tuple (Th1, Th2, Th3) is the threshold
from active to standby, the second number is from standby to

nap, and the third number is from nap to powerdown.)

Scheme Thresholds (ns)
ODs (0, 2000, 50000)
ODn (0, 100, 5000)
ODc (27, 103, 9131)

bzip (0, 1000, 50000)
gcc (25, 500, 50000)

ODt gzip (25, 150, 17830)
parser (13, 2000, 75000)
vortex (0, 1000, 50000)
vpr (13, 250, 50000)

the space around these values to find a best set which is then used throughout
all of our experiments (discussed further in Section 6.1.)

PD dynamically retunes the thresholds at the beginning of each epoch. It
is based on the observation that a larger LT or UT saves more energy but
incurs a higher slowdown (larger LT implies more aggressive transitions to
lower speeds, while a larger UT implies lazier transitions to higher speeds.)
Specifically, if during the last epoch, the system did not use up all its slack, it
indicates that the thresholds are too conservative, and therefore PD increases
the values of LT and UT. In the next epoch, the disks will go to lower-power
mode more aggressively. Conversely, if during the last epoch, the system used
up all its slack and forces all disks to the full speed mode in order to provide a
performance guarantee, it indicates that the threshold are too aggressive, and
therefore PD decreases the values of LT and UT.

5. RESULTS FOR MEMORY ENERGY MANAGEMENT

5.1 Experimental Setup

We enhanced the SimpleScalar simulator with the RDRAM memory
model [Burger et al. 1996]. Table II gives the processor and cache configuration
used in our experiments. There are a total of four 256Mb RDRAM chips in our
system. Table III shows the energy consumption and resynchronization time for
the RDRAM chips we simulate. The numbers are from the latest RDRAM spec-
ifications [Rambus 1999]. We use the power-aware page allocation suggested
in Lebeck et al. [2000].

We evaluate our algorithms using execution-driven simulations with SPEC
2000 benchmarks. There are two main reasons for choosing the SPEC bench-
marks. First, our infrastructure does not support an operating system so we
cannot run more advanced server-based applications. We are in the process
of building a full system simulator based on SIMICS [Magnusson et al. 2002]
to study the effects of data center workloads. Second, the use of SPEC bench-
marks makes it easier to compare our results with previous work on memory
energy management which also used the same benchmarks [Delaluz et al. 2002;
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Table II. Processor and Cache Configuration

Processor
Clock frequency 2 GHz
Issue queue 128 entries
Fetch, issue, commit width 8 instructions
Branch prediction 2 level
Branch misprediction penalty 6 cycles
Int ALU & mult/div 8 & 2
FP ALU & mult/div 4 & 2

Cache memory
L1 D-cache, I-cache 32KB 2-way

32-byte lines, 2 cycles
L2 unified cache 512KB 4-way

64-byte lines, 8 cycles

Table III. Power Consumption and Transition Time for
Different Power Modes

Power State/Transition Power Time
Active 300 mW —
Standby 180 mW —
Nap 30 mW —
Powerdown 3 mW —
Active → Standby 240 mW 1 memory cycle
Active → nap 160 mW 8 memory cycle
Active → powerdown 15 mW 8 memory cycle
Standby → Active 240 mW +6ns
Nap → Active 160 mW +60ns
Powerdown → Active 15 mW +6000ns

Lebeck et al. 2000]. In particular, for the dynamic algorithms, we evaluate the
threshold settings found to perform well in previous studies in addition to our
own set of tuned parameters. We randomly selected 6 SPEC benchmarks for
our evaluation—bzip, gcc, gzip, parser, vortex, and vpr. We expect the results
with other SPEC benchmarks to be similar and our algorithms to apply to more
advanced applications.

We report energy consumption and performance degradation results for the
new PS and PD algorithms. For comparison, we also implement the original
static and dynamic algorithms studied in Lebeck et al. [2000]. We call the orig-
inal static algorithms OSs (Static Standby), OSn (Static Nap), and OSp (Static
Powerdown.) For the original dynamic algorithms, we use four different settings
for the required set of thresholds. The first set (ODs) was suggested by Lebeck
et al. [2000] to give the best E · D results for their simulation experiments with
SPEC benchmarks. The second set of threshold values (ODn), also from Lebeck
et al. [2000], is the best setting for their Windows NT benchmarks. The third set
(ODc) is calculated based on E · D competitive analysis shown in Lebeck et al.
[2000]. The fourth set (ODt) is obtained by extensive hand-tuning, to account
for the differences in the applications and system studied here and in Lebeck
et al. [2000]. For tuning, we started with the above thresholds and explored the
space around them to find a set of best thresholds for each application that min-
imized energy within 10% of performance degradation. We run OD with each
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Table IV. % Execution Time Degradation for Original
Memory Algorithms

Scheme OSs OSn OSp ODs ODn ODc
bzip 1 9 832 6 219 21
gcc 1 14 603 6 140 29
gzip 1 6 470 4 25 8
parser 4 33 2013 9 835 40
vortex 2 22 1633 5 466 22
vpr 2 18 1635 3 505 12

Table V. Relative Comparison of Energy Consumption of Different Algorithms
(The numbers are average [min, max]% improvement in energy consumption of the first

algorithm over the second. Best OS+, OD+, OS, and OD imply cases with the lowest energy. For
OS and OD, only the cases that are within the specified slowdown are considered.)

Slowdownlimit 5% 10% 20% 30%
PS vs. best OS+ 36 [19, 42] 18 [−45, 55] 19 [−37, 56] −2 [−35, 27]
PD vs. best OD+ 49 [6, 68] 29 [14, 40] 12 [3, 29] 15 [5, 30]
PD vs. PS 27 [10, 37] 28 [5, 40] 23 [10, 36] 22 [4, 37]
PD vs. best OD N/A −2.2 [−15, 13] 10 [10, 29] 8 [−9,26]
PS vs. best OS 42 [21,61] 22 [−54, 60] 11 [−37, 62] 3 [−35, 52]

of these thresholds and refer to these algorithms as ODs, ODn, ODc, and ODt,
respectively (where the subscripts stand for SPEC, NT, competitive-analysis,
and tuned, respectively.) Table I gives the values of the various thresholds used.

In addition, we enhance the original dynamic algorithms and the original
static algorithms to provide performance guarantees using the method de-
scribed in Section 3. We call the performance guaranteed static algorithms
OSs+, OSn+, and OSp+ and the dynamic ones ODs+, ODn+, ODc+, and ODt+.

For all the performance-guaranteed algorithms, we vary the Slowdownlimit
parameter from 5% to 30%.

In our experiments for PS and PD, we set the epoch length to 1 million
instructions for all applications. Epoch length may have some effect on the
final energy saved—too short an epoch length could cause access counts to vary
a lot from epoch to epoch, making the predictions in PS and PD less accurate.
We will study the sensitivity of our energy results to epoch length in Section 5.4.

5.2 Results for Performance Guarantee

5.2.1 Original Algorithms. Table IV shows the performance degradation
for the original static (OSs, OSn, OSp) and dynamic algorithms with the three
different settings for thresholds (ODs, ODn, and ODc). We do not show the
results for ODt because this is tuned with a 10% slowdown as the limit.

As expected, the performance degradation for the static algorithms increases
dramatically from OSs to OSp. This is because the lower the power mode that
a chip stays in, the longer it takes to transition into active to service a re-
quest, making OSp virtually unusable. For the dynamic algorithms, the per-
formance degradation is different for different threshold settings. In general,
ODs has reasonable performance degradation (3–9%). This is not surprising
since ODs was hand-tuned for various SPEC benchmarks. However, as shown
later, ODs saves less energy than PD. ODc has medium to high performance
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Table VI. Percentage Execution Time Degradation for Performance-Guaranteed
Memory Algorithms

Slowdownlimit 5%
Scheme ODs+ ODn+ ODc+ OSs+ OSn+ OSp+ PS PD
bzip 3 4 4 1 5 5 4 4
gcc 3 4 3 1 4 4 3 3
gzip 3 3 3 1 4 5 3 3
parser 4 4 3 4 5 5 4 4
vortex 3 4 3 2 5 5 2 3
vpr 3 4 4 2 4 5 3 3

Slowdownlimit 10%
Scheme ODs+ ODn+ ODc+ OSs+ OSn+ OSp+ PS PD
bzip 6 8 7 1 9 10 8 8
gcc 6 7 6 2 8 9 7 6
gzip 4 7 6 1 6 9 6 6
parser 8 8 7 4 9 10 8 8
vortex 5 8 6 2 9 10 6 7
vpr 3 8 7 2 9 9 6 7

Slowdownlimit 20%
Scheme ODs+ ODn+ ODc+ OSs+ OSn+ OSp+ PS PD
bzip 6 17 14 1 9 19 16 16
gcc 6 14 11 1 14 17 15 12
gzip 4 13 8 1 6 18 11 12
parser 9 16 13 4 19 19 17 17
vortex 5 16 12 2 18 19 17 15
vpr 3 16 12 2 17 18 16 15

Slowdownlimit 30%
Scheme ODs+ ODn+ ODc+ OSs+ OSn+ OSp+ PS PD
bzip 6 25 20 1 9 29 24 24
gcc 6 21 17 1 14 26 23 19
gzip 4 19 8 1 6 26 18 19
parser 9 24 20 4 28 29 27 24
vortex 5 23 18 2 22 28 26 21
vpr 3 24 12 2 18 27 26 24

degradation, around 8–40%. ODn is the worst, with most applications’ perfor-
mance degraded over 100% and one up to 835%. The reason is that this thresh-
old setting is tuned for Windows NT benchmarks, not SPEC 2000. These results
unequivocally show the strong sensitivity of the performance degradation to
the thresholds. Thresholds tuned for one set of applications give unacceptable
performance for another set, providing evidence for the need for painstaking,
application-dependent manual tuning in the original dynamic algorithms.

5.2.2 Performance Guaranteed Algorithms. Table VI shows the perfor-
mance degradation for the 8 algorithms that use the performance guarantee
method described in Section 3. Slowdownlimit ranges from 5% to 30%. Across
all the 192 cases (covering all the algorithms, applications, slowdown limits,
and threshold settings), the performance degradation stays within the spec-
ified limit. This indicates that our method for guaranteeing performance is
indeed effective even when combined with algorithms such as OD+ and OS+
that are not designed to be performance-aware.
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Fig. 7. Memory energy consumption for different Slowdownlimit, normalized to the case without
energy management. For OD and OS, the numbers above the bars represent the % performance
degradation. (bzip, gcc, and gzip).

5.3 Results for Energy Savings

Figures 7 and 8 show the energy consumption for the various control algorithms.
For OS+ and OD+, we show the results of the setting with the minimum energy
consumption (for each application). On the right side of each figure, we also
show the results for OS and OD for reference only (as discussed, their tuning re-
quirements likely make them impractical to implement in a real system). Since
these algorithms do not provide a performance guarantee, their performance
degradations are shown on top of the energy bars. Each bar is also split into
energy consumed in different power modes. Table V provides a summary of the
data by showing the average, minimum, and maximum relative improvements
of energy savings for key pairs of algorithms for each Slowdownlimit value.

Overall results. Comparing all algorithms that provide a performance guar-
antee, we find that PD consumes the least energy in all cases. PS does better
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Fig. 8. Memory energy consumption for different Slowdownlimit. (parser, vortex, and vpr).

than OS+ in most (but not all) cases, but is never able to beat PD. PD and PS
also compare favorably to the original algorithms without performance guar-
antee in many (but not all) cases. We next discuss the results in more detail,
comparing key pairs of algorithms.

PS vs. best OS+. PS consumes less or similar energy as the best OS+ in
most cases, particularly with smaller slack. This is because PS allows differ-
ent configurations for different chips and changes these at epoch granularity,
taking into account changes in the spatial and temporal access pattern and
available slack. In contrast, OS+ simply uses the same configuration for all
chips throughout the entire execution and never considers the available slack.
Especially when the available slack is small, OS+ uses up the slack quickly and
has to force all chips to active in order to provide the performance guarantee.

There are a few cases where PS consumes 36–46% more energy than the
best OS+ (e.g., bzip with 10–30% Slowdownlimit). Note, however, that this com-
parison is with the best OS+ and determining the best OS+ also requires
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tuning. These cases occur when PS’s prediction is inaccurate, potentially re-
sulting its use of the wrong configuration for the next epoch. The applications
in these cases (e.g., bzip) have irregular access traffic that varies substantially
from epoch to epoch. We expect future improvement on PS by dynamically
changing the epoch length; for example, using the recent phase-tracking work
[Dhodapkar and Smith 2003; Sherwood et al. 2003].

PD vs. best OD+. PD always consumes less energy than the best OD+ even
though PD does not require any manual threshold tuning, and the best OD+ in-
cludes a threshold setting manually tuned for that application. In some cases,
the energy reduction is quite significant (up to 68%). The reason is that PD
is able to change its threshold settings each epoch to respond to varying ac-
cess count and available slack. OD+, however, uses a fixed setting throughout
the run. The results clearly indicate the limitation of using a single threshold
setting even for a single application, especially at low allowed slowdown.

PS vs. PD. PD always consumes less energy than PS, saving up to 40% in
one case. The reason is that within an epoch, PD can also exploit temporal
variability, while PS only exploits spatial variability. Once PS sets a chip into
a certain power mode, even if the chip is idle for a long time, PS does not
put the chip into lower-power modes. PD, however, will take advantage of this
gap and move to a lower-power mode. The difference between PD and PS is
more pronounced for applications with unbalanced traffic in time but relatively
uniform traffic across chips (e.g., bzip where PS consumes 33–37% more energy
than PD).

PS vs. best OS and PD vs. best OD. Just for reference, for given Slowdownlimit,
we compare PS (PD) with the lowest energy OS (OD) that incurs slowdown
within the specified limit. This is an unfair comparison since OS/OD require
extensive tuning, including per-application tuning, and do not provide a perfor-
mance guarantee. Even so, in most cases, PD compares favorably to OD and in
many cases, PS compares favorably to OS (Table V).

The reason that PS does not do better in some cases is that the performance
guarantee is too conservative: whenever the slack is used up, all chips are forced
active until the next epoch. It does not allow borrowing slack from future epochs
that may not need as much slack. Thus, examining the actual slowdown by PS,
it is significantly lower than the given slack. For example, with 10% slack, PS
slows down vpr only by 6%.

5.4 Sensitivity Study on Epoch Length in PD

Overall, PD is the best algorithm for memory. Epoch length is the only one
parameter in PD given a specified slack Slowdownlimit. In order to evaluate the
sensitivity of the energy results to epoch length, we vary the epoch length from
20,000 to 5,000,000 instructions for each application. The results in Figure 9
show that the difference for energy consumption under PD with different epoch
lengths is very small. Even though the epoch length cannot be too large (e.g.,
the entire program duration) or too small (e.g., every instruction), our results
show that PD is insensitive to the epoch length in a large range of reasonable
values that we tested, that is, 200K to 5 million instructions. The reason is that,
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Fig. 9. Effects of epoch length on energy savings (Slowdownlimit = 10%).

Table VII. Disk Model Parameters
(Standby and active power are used to feed the linear

power model to derive power at different speeds.)

IBM Ultrastar 36Z15 with DRPM
Standard Interface SCSI
Individual Disk Capacity 18.4 GB
Maximum Disk Rotation Speed 15000 RPM
Minimum Disk Rotation Speed 3000 RPM
RPM Step-Size 3000 RPM
Active Power(R/W) 13.5 W
Seek Power 13.5 W
Idle Power@15000RPM 10.2 W
Standby Power 2.5 W
Spinup Time (Standby → Active) 10.9 secs
Spinup Energy (Standby → Active) 135 J
Spindown Time (Active → Standby) 1.5 secs
Spindown Energy (Active → Standby) 13 J

when the epoch length is larger, the access behaviors across adjacent epochs are
more stable which results in more accurate prediction. On the other hand, small
epoch lengths allow PD to adapt energy more agilely. These two effects offset
each other, making the overall results relativly insensitive to the epoch length.

6. RESULTS FOR DISK ENERGY MANAGEMENT

6.1 Experimental Setup

We evaluated our disk energy control algorithms using three traces, with the
widely used DiskSim trace-driven simulator [Ganger et al. ] modified to support
the DRPM disk model. The disk modeled is similar to the IBM Ultrastar 36Z15
but enhanced with the linear multiple power model [Gurumurthi et al. 2003].
The parameters are taken from the disk’s data sheet [IBM] and Carrera et al.
[2003], and Gurumurthi et al. [2003]. Table VII shows some key parameters.

We use both synthetic traces and real system traces in our simulations. Sim-
ilar to Gurumurthi et al. [2003], we consider two types of distributions for

ACM Transactions on Storage, Vol. 1, No. 3, August 2005.



372 • X. Li et al.

Table VIII. Trace Parameters

Trace #Requests #Disks Average Inter-Arrival Time (ms)
Exponential 1000000 12 10.0
Pareto 1000000 12 10.0
Cello’96 536937 5 8.9

interarrival times for our synthetic traces, exponential and Pareto. The real
system trace is the Cello trace collected from HP Cello File Servers in 1996.
In our experiments, the trace includes 10 hours of execution during the busy
part of the daytime (1996.11.1.8am-6pm). The original trace contains accesses
to 20 disks. But many disks are idle most of the time. To prevent these disks
from polluting the results, we filter the trace to only contain accesses to the 5
busiest disks. In addition, since this trace is quite old, we replay the trace 10
times faster than the original because current processors are about 10 times
faster than processors in 1996. The parameters of these traces are shown in
Table VIII.

To accurately estimate the performance delay due to energy management,
we need application-level inter-request dependence information. For instance,
an application may need to wait for results from previous reads for subse-
quent computation. After certain computation time, it may send the next few
independent requests. Unfortunately, the traces do not provide us with such
information. To simulate dependence effects, we randomly assign dependency
for every request in the two synthetic traces: each request is dependent on
one of the most recent n requests with probability prob. We set n = 10 and
prob = 0.95 for the synthetic traces. The Cello trace contains some information
about the process ID. We assume that each process uses synchronous mode to
read data (which is true in most file system workloads [Ruemmler and Wilkes
1993]) so a request depends on the previous read request issued by the same
process.

For energy control, we study algorithms analogous to the memory case. Al-
though static algorithms for disks have not been previously evaluated, we can
define OS and OS+ algorithms analogous to the memory case: all disks stay at
a fixed speed level to service requests. For performance guarantee in OS+, all
disks are forced to full speed when the actual percentage slowdown exceeds the
specified limit. We denote the variations of static algorithms as OSr and OSr+
representing a fixed rK RPM speed, where r = 3, 6, 9, 12.

In the results reported here, the epoch length is 100 seconds. Extensive exper-
iments indicated that our algorithms are not very sensitive to the epoch length.
We used the following procedure for the remaining parameters for the OD,
OD+, and PD algorithms. We started with the parameters used in Gurumurthi
et al. [2003] and explored the space near those parameters to minimize the
overall energy-delay product for OD. Specifically, we varied the period length
from 2 seconds (which was used in Gurumurthi et al. [2003]) to 12 seconds
and explored window sizes of 250, 500 and 1,000 (also explored in Gurumurthi
et al. [2003]). The best setting we found was: (p = 6, LT = 5%, UT = 50%, W =
250, Nmin = 0). We refer to OD and OD+ with these settings as OD1 and OD1+,
respectively. We also ran OD and OD+ at the parameter settings chosen by
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Table IX. Percentage Execution Time Degradation for Original
Disk Algorithms

Scheme OS12 OS9 OS6 OS3 OD1 OD2
Exponential 1 2 4 16 6 26
Pareto 2 6 14 42 39 39
Cello 6 17 40 108 31 23

Table X. Percentage Execution Time Degradation for Performance-Guaranteed
Disk Algorithms

Slowdownlimit 10%
Scheme OD1+ OD2+ OS12+ OS9+ OS6+ OS3+ PS PD
Exponential 3 7 1 2 3 4 2 8
Pareto 4 7 2 3 4 4 5 7
Cello’96 7 8 5 6 6 7 8 7

Slowdownlimit 15%
Scheme OD1+ OD2+ OS12+ OS9+ OS6+ OS3+ PS PD
Exponential 3 11 1 2 4 6 2 4
Pareto 7 12 2 5 5 6 6 10
Cello’96 10 11 7 8 9 10 11 10

Slowdownlimit 30%
Scheme OD1+ OD2+ OS12+ OS9+ OS6+ OS3+ PS PD
Exponential 5 21 1 2 7 9 4 4
Pareto 11 24 2 6 10 12 9 10
Cello’96 18 13 7 15 17 20 18 19

Slowdownlimit 40%
Scheme OD1+ OD2+ OS12+ OS9+ OS6+ OS3+ PS PD
Exponential 5 25 1 2 6 12 5 5
Pareto 14 30 2 6 12 15 11 12
Cello’96 23 13 7 17 21 26 22 24

Gurumurthi et al. [2003]. We refer to this setting as OD2 and OD2+, respec-
tively, and the parameters are (p = 2, LT = 5%, UT = 15%, W = 250, Nmin =
0).

For PD, we used the parameter settings of OD1 except that, as mentioned
before, LT and U T are dynamically adjusted.

6.2 Results for Performance Guarantee

Table IX shows the performance degradation for the original static and dynamic
algorithms with different settings. Similar to the memory case, the original
static algorithms at low-speed modes can incur unacceptably large performance
degradations. For example, for the real system trace Cello’96, OS3 incurs 108%
degradation. Similarly, the original dynamic algorithms can also incur large
performance degradations (up to 39%).

In contrast, Table X shows that our performance-guarantee algorithms are
effective in all cases and never violate Slowdownlimit.

6.3 Results for Energy Savings

The results for energy saving for the disk case are presented in Table XI and
Figure 10. The results show that PS for the disk case is either comparable to
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Table XI. Relative Comparison of Energy Consumption of Different Algorithms
(The numbers are average, [min, max] percentage improvement in energy consumption of

the first algorithm over the second.)

Slowdownlimit 10% 15% 30% 40%
PS vs. best OS+ −6 [−17, 3] 7 [−5, 19] 11 [6, 14] 10 [9, 13]
PD vs. best OD+ −10 [−20, 3] 9 [−6, 30] 5 [−3, 14] 0 [−2, 3]
PS vs. PD 18 [13, 23] 3 [−8, 14] −2 [−6, 3] 3 [−1, 8]

Fig. 10. Disk energy consumption for different Slowdownlimit, normalized to the case without en-
ergy management. For OD, the numbers above the bars represent the % performance degradation.

or better than PD. For example, with a 10% slowdown limit, PS can save 18%
more energy than PD on average. The primary reason is the complexity of the
dynamic algorithms in the disk case in terms of the number of parameters and
the tuning required for them. PD can dynamically tune only two parameters
while keeping the others fixed, so PD does not achieve its full potential. This is
also the reason why PD does worse than OD+ in some cases. PD cannot compete
with the hand-tuning of OD+ for some cases; however, it is important to note
that this hand-tuning makes OD+ far less practical.

The results also show that no algorithm is a clear winner across all cases,
although PS is the best or close to the best in all but one case. The excep-
tion case is for the Pareto trace with 10% Slowdownlimit, where PS consumes
17% more energy than OS9+. The reason is that this case has a particularly
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Fig. 11. Effects of epoch length on energy savings (Slowdownlimit = 15%).

bursty distribution which results in poor predictions in the PS algorithm; the
low Slowdownlimit exacerbates the effect of this poor prediction. In the future,
we plan to apply the phase-tracking work by others to enable better predic-
tions [Dhodapkar and Smith 2003; Sherwood et al. 2003].

The primary reason for the somewhat inconclusive results in the disk case is
that PD is not able to exploit its full potential as discussed previously. We tried
another optimization on PD as follows. Currently, PD uses the same parameter
settings for all disks in the system. We used a PS-style knapsack optimization
algorithm to determine a close-to-optimal apportioning of the total available
slack among the individual disks (based on per-disk access counts). Customizing
the slack for each disk allowed customizing the threshold values for each disk.
Therefore, we can combine PS and PD together so that PS can allocate the slack
to each disk and PD can dynamically adjust the thresholds for each disk based
on its slack. We will discuss this hybrid scheme in Section 7.

6.4 Sensitivity Study on Epoch Length in PS

Epoch length is the only one parameter in PS given a specified slack
Slowdownlimit. In order to evaluate the sensitivity of our energy results to epoch
length, we vary the epoch length from 90 seconds to 600 seconds for different
traces. The results in Figure 11 show that the difference for energy consump-
tion under PS with different epoch lengths is less than 11%. The most sensitive
range occurs when the epoch length is less than 200 seconds. The reason is
that, when the epoch length is too short, the AvailableSlack calculated from
Equation (1) may be too small to compensate for the time overhead due to
spinup/spindown when reconfiguring the disk power modes at the beginning of
each epoch. The results demonstrate that PS is insensitive to the epoch length
when it is relatively large.

7. DISCUSSION: COMBINING PS AND PD

Our experimental results indicate that both the PS and PD algorithms have
better energy benefits than the performance guaranteed versions of previous
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Fig. 12. The energy benefits of the combined algorithm (PS+PD) in the disk case for the Cello’96
trace.

dynamic and static algorithms. Both algorithms adjust their control param-
eters based on the available slack at epochs but exploit different sources
of benefits. PS gains energy benefits over previous algorithms by exploit-
ing the spatial variability (variability to different storage devices) but as-
sumes uniform traffic in time during the epoch. PD gains energy benefits
over previous algorithms by exploiting the temporal variability (variability
in time within an epoch) but assumes uniform traffic across storage devices.
Although PS also expoits the temporal variability by reconfiguring the sys-
tem at the beginning of each epoch, the granularity is much coarser than
PD. Therefore, PS works well for applications with unbalanced traffic to dif-
ferent devices, whereas PD works well for applications with burstiness in
traffic.

It is conceivable that PS and PD can be combined together to exploit the
variability in both temporal and spatial behavior within an epoch. At the be-
ginning of an epoch, the combined algorithm would use PS to allocate the slack
to each storage device based on their workload characteristics in the last epoch,
and use PD to dynamically adjust the threshold values for each device based
on its slack allocated by PS. During the epoch, the combined algorithm would
use the threshold values set for each device to dynamically control the power
mode based on idle period. It would use the method described in Section 3 to
provide a performance guarantee.

We have evaluated such a combined algorithm for the disk case.
Figure 12 shows our preliminary results with the combined algorithm for
the Cello’96 trace. The combined algorithm can improve PS and PD’s energy
savings by 9% and 21%, respectively, given the available percentage slack of
10%, indicating that it is beneficial to exploit both the temporal and spatial
variability.

We have also evaluated the combined algorithm for the memory case but
we see little improvement over PS and PD, especially when the available per-
centage slack is larger than 10%. The reason is that our combined algorithm
integrates PS and PD very loosely. To get the benefits of both algorithms, PS
and PD need to be tightly coupled. For example, in the PS algorithm, the con-
figuration table (the estimation of D(Ci) and E(Ci)) should be based on the PD
algorithm. That is, each item in the configuration table should be the perfor-
mance penalty and energy savings with PD if the system gives this device a
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certain slack. In the future, we will continue to investigate how to integrate the
two algorithms in a cooperative way.

8. RELATED WORK

This section discusses closely related work on control algorithms for energy
management for memory, disk, and other subsystems.

Memory. In addition to the work described in Section 2, Delaluz et al. [2001]
have also studied compiler-directed approaches in and operating system-based
approaches [Delaluz et al. 2002] to reduce memory energy. Recently, H. Huang
et al. [2003] proposed a power-aware virtual memory implementation in the
OS to reduce memory energy. Our work differs from all previous work in that
it focuses on performance-guaranteed control algorithms.

Disk. Most of the previous disk energy work focuses on a single disk in mo-
bile devices [Greenawalt 1994; Helmbold et al. 2000; Pinheiro and Bianchini
2004; Weissel et al. 2002; Zedlewski et al. 2002; Zhu et al. 2004a, 2004b]. Re-
cently, a few studies looked into energy management for high-end storage sys-
tems [Carrera et al. 2003; Colarelli and Grunwald 2002; Gurumurthi et al.
2003]. An analytical technique is involves using a 2-competitive benefit anal-
ysis to compute the threshold values [Li et al. 1994]. Several previous studies
have investigated some adaptive threshold adjustment schemes [Douglis et al.
1995; Helmbold et al. 2000; Krishnan et al. 1995]. However, they focus on en-
ergy consumption without any explicit limits on the consequent performance
degradation. Our PD algorithm can provide performance guarantees.

Other control algorithms for energy adaptation. There is also substantial
work on control algorithms for adapting other parts of the system, in partic-
ular, the processor and cache [Bahar and Manne 2001; Buyuktosunoglu et al.
2000; Folegnani and González 2001]. Integrating this work with the storage
system adaptations is a key part of our future work. Most work on the proces-
sor architecture has been similar to the dynamic algorithms studied here (i.e.,
threshold-based) and requires a lot of tuning. Some exceptions are work by M. C.
Huang et al. [2003] and work in the area of multimedia applications [Hughes
et al. 2001] where adaptations occur at the granularity of subroutines and
multimedia application frames, respectively. This granularity is analogous to
our epochs, but none of this work provides a performance guarantee. Recently,
there has been work on using optimization-based techniques for adapting the
processor architecture for multimedia applications with the explicit purpose of
eliminating tuning of thresholds for processor algorithms [Hughes and Adve
2004]. Thus, this work shares our goals, and the optimization equations are
similar to those for our PS algorithm. However, there are several significant
differences. First, because it is difficult to estimate slowdowns due to processor
adaptations, the work in Hughes and Adve [2004] relies on extensive offline pro-
filing that exploits certain special features of multimedia applications. Instead,
we are able to make more elegant analytic estimates of the slowdowns due
to adaptation in each storage device and apply our work to general-purpose
applications. Furthermore, we are also able to provide performance guaran-
tees which the previous work does not provide. Finally, there has also been
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optimization-driven work in the area of dynamic voltage-scaling in the proces-
sor [Ishihara and Yasuura 1998]. The PS optimization framework shares sim-
ilarities with such work but applies the ideas to an entirely different domain
(storage subsystems).

9. CONCLUSIONS AND FUTURE WORK

Current memory and disk energy management algorithms are difficult to use in
practice because they require painstaking application-dependent manual tun-
ing and can result in unpredictable slowdowns (more than 800% in one case).
This article overcomes these limitations by (1) proposing an algorithm to guar-
antee performance that can be coupled with any underlying energy manage-
ment control algorithm, and (2) proposing a self-tuning, heuristics-based energy
management algorithm (PD) and an optimization-based (tuning-free) energy
management algorithm (PS). Over a large number of scenarios, our results
show that our algorithms are effective in overcoming the current limitations,
thereby providing perhaps the first practical means of using the low-power
modes present in commercial systems today and/or proposed in recent
literature.

We envisage several directions for future work. First, we would like to work
towards energy management algorithms that take all system components (e.g.,
processors, memory, and disk) into account. Second, our work will likely benefit
from incorporating recent work on detecting predictable phases [Dhodapkar
and Smith 2003; Sherwood et al. 2003] to improve the predictions used by our
algorithms. Finally, we would like to combine energy management with thermal
considerations.
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