
In the Proceedings ofthe 2005 International Symposium on Workload Characterization (IISWC’05), October 2005.

The ALPBench Benchmark Suite for
Complex Multimedia Applications ∗

Man-Lap Li Ruchira Sasanka Sarita V. Adve Yen-Kuang Chen Eric Debes
University of Illinois at Urbana-Champaign Architecture Research Labs

Department of Computer Science Intel Corporation
{manlapli, sasanka, sadve}@cs.uiuc.edu {yen-kuang.chen, eric.debes}@intel.com

ABSTRACT
Multimedia applications are becoming increasingly impor-
tant for a large class of general-purpose processors. Con-
temporary media applications are highly complex and de-
mand high performance. A distinctive feature of these ap-
plications is that they have significant parallelism, includ-
ing thread- , data-, and instruction-level parallelism, that is
potentially well-aligned with the increasing parallelismsup-
ported by emerging multi-core architectures. Designing sys-
tems to meet the demands of these applications therefore re-
quires a benchmark suite comprising these complex applica-
tions and that exposes the parallelism present in them.

This paper makes two contributions. First, it presents
ALPBench, a publicly available benchmark suite that pulls
together five complex media applications from various
sources: speech recognition (CMU Sphinx 3), face recog-
nition (CSU), ray tracing (Tachyon), MPEG-2 encode
(MSSG), and MPEG-2 decode (MSSG). We have modified
the original applications to expose thread-level and data-
level parallelism using POSIX threads and sub-word SIMD
(Intel’s SSE2) instructions respectively. Second, the paper
provides a performance characterization of the ALPBench
benchmarks, with a focus on parallelism. Such a charac-
terization is useful for architects and compiler writers for
designing systems and compiler optimizations for these ap-
plications.

1. INTRODUCTION
Multimedia applications are becoming an important work-

load for general-purpose processors [5]. Emerging me-
dia applications are highly complex, incorporating increas-
ingly intelligent algorithms that are more control intensive
than in the past and incorporating increasing functionality.
These applications demand high performance and energy ef-
ficiency. At the same time, they present new opportunities,
especially in the form of various types of parallelism. The
effective design of processors for these applications there-
fore requires a benchmark suite comprising contemporary

∗This work is supported in part by a gift from Intel Corp., an equipment do-
nation from AMD Corp., and the National Science Foundation under Grant
No. CCR-0096126, CCR-0209198, and EIA-0224453. Ruchira Sasanka
was supported by an Intel graduate fellowship.

complex media applications (versus individual kernels) that
exposes the parallelism in these applications.

This work makes two contributions. First, it presents
ALPBench, a suite of existing and emerging complex media
applications, modified to expose thread-level and data-level
parallelism (TLP and DLP respectively). ALPBench is pub-
licly available from http://www.cs.uiuc.edu/alp/alpbench/.
The current release includes five applications: speech recog-
nition (derived from CMU Sphinx3.3 [28]), face recognition
(derived from CSU face recognizer [3]), ray tracing (same
as Tachyon [31]), MPEG-2 encode (derived from MSSG
MPEG-2 encoder [25]), and MPEG-2 decode (derived from
MSSG MPEG-2 decoder [25]). We modified the original ap-
plications to expose TLP by using POSIX threads (ray trac-
ing was already parallelized) and to expose DLP by insert-
ing sub-word SIMD (Intel SSE2) instructions into the most
commonly used routines.

We believe that the applications in ALPBench will be rou-
tinely used on general-purpose processors to fulfill user re-
quirements such as video conferencing, DVD/HDTV play-
back and recording, gaming and virtual reality, video edit-
ing, authentication, and personal search/organization/mining
of media/digital information. The applications chosen repre-
sent a spectrum of media processing, covering video, speech,
graphics, and image processing. The applications are all
fairly complex, especially in contrast to kernels that are often
used in multimedia studies. It is important to study these ap-
plications in their entirety because many effects are difficult
to identify in a study that only evaluates kernels [9].

The second contribution of this work is a characterization
of the parallelism and performance for the five ALPBench
applications. We find that these applications contain multi-
ple forms of parallelism – TLP, DLP, and ILP (instruction-
level parallelism). For TLP, we find that all the applications
have coarse-grain threads and most show very good thread
scalability. Therefore, these applications are a good match
for emerging processors with chip-multiprocessing (CMP)
and simultaneous multi-threading (SMT). For DLP, we find
that four out of five of these applications are amenable to
sub-word SIMD instructions (SIMD for short). Many cur-
rent general-purpose processors already support such SIMD
media instruction sets (e.g., MMX/SSE [14]). We also re-
port on the interaction between different forms of parallelism

1



and the effects of the memory system on these applications
(including their working sets, bandwidth requirements, and
memory latency tolerance).

There are several prior studies that evaluate the individual
applications in ALPBench [4,10,16,17,19,20,23,24,26,30,
35]. There are also several popular benchmark suites that
already target media applications and contain some of the
applications in ALPBench; e.g., MediaBench [21], Berkeley
multimedia workload [30], MiBench [8], and EEMBC [7].
This work differs from most of the above work because our
focus is on theparallelism in these applications. Section 5
provides a detailed description of the related work.

2. APPLICATIONS
This section describes our applications and the enhance-

ments we made to them. To extract parallelism, we threaded
the applications and inserted SIMD instructions in the fre-
quently used functions. For threading, we used POSIX
threads (Pthreads). For most cases, straightforward paral-
lelization was sufficient for the relatively small systems we
consider (e.g., static scheduling of threads). For SIMD,
we used Intel SSE2 and a more aggressive simulated ver-
sion called ALP SIMD [29], which is modeled after SSE2.1

SIMD hand-coding is prevalent practice for these applica-
tions and the maximum number of static assembly instruc-
tions inserted for any given application is about 400 (for
MPEG-2 encoder). In some cases, we made a few algo-
rithmic modifications to the original applications to improve
performance.

The following sections describe algorithmic modifica-
tions (where applicable), major data structures, application
phases, thread support, and SIMD support.

2.1 MPEG-2 Encoder (MPGenc)
We use the MSSG MPEG-2 encoder [25]. MPGenc con-

verts video frames into a compressed bit-stream. A video
encoder is an essential component in VCD/DVD/HDTV
recording, video editing, and video conferencing applica-
tions. Many recent video encoders like MPEG-4/H.264 use
similar algorithms.

A video sequence consists of a sequence of input images,
which are in the YUV format; i.e., one luminance (Y)
and two chrominance (U,V) components. Each encoded
frame is characterized as an I, P, or B frame. I frames
are temporal references for P and B frames and are only
spatially compressed. On the other hand, P frames are
predicted based on I frames, and B frames are predicted
based on neighboring I and P frames.

Modifications: We made two algorithmic modifications
to the original MSSG code: (1) we use an intelligent
three-step motion search algorithm [18] instead of the
original full-search algorithm and (2) we use a fast integer
1The publicly released version of ALPBench only contains SSE2
SIMD instructions.

discrete cosine transform (DCT) butterfly algorithm based
on the Chen-Wang algorithm [34] instead of the original
floating point matrix-based DCT.

Data Structures: Each frame consists of 16x16 pixel mac-
roblocks. Each macroblock consists of four 8x8 luminance
blocks and two 8x8 chrominance blocks, one for U and one
for V.

Phases: The phases in MPEG-2 include motion estima-
tion, form prediction, quantization, discrete cosine transform
(DCT), variable length coding (VLC), inverse quantization,
and inverse DCT (IDCT).

The first frame is always encoded as an I-frame. For an
I-frame, the compression starts with DCT, which transforms
blocks from the spatial to the frequency domain. Following
DCT is quantization which operates on a given 8x8 block,
a quantization matrix, and a quantization value. The opera-
tions are performed on each pixel of the block independent
of each other. After quantization, VLC is used to compress
the bit stream. VLC uses both Huffman and run-length cod-
ing. This completes the compression.

For predictive (P and B) frames, the compression starts
with motion estimation. In motion estimation, for each mac-
roblock of the frame being currently encoded, we search for
a “best-matching” macroblock within a search window in
a previously encoded frame. The distance or “match” be-
tween two macroblocks is computed by calculating the sum
of the differences between the pixels of the blocks. The orig-
inal “full-search” algorithm performs this comparison forall
macroblocks in the search window. Instead, we use a three-
step search algorithm. This breaks a macroblock search into
three steps, searching at the (i) center, (ii) around the edges,
and (iii) around the center of the search window. A subse-
quent step is taken only if the previous step does not reveal a
suitable match. Motion estimation is the longest (most com-
pute intensive) phase for P and B frames. After motion es-
timation, the best-matched block is subtracted from the cur-
rent block to get the error (form predictions). The rest of the
compression for P and B frames is the same as that for an
I-frame.

To process subsequent frames, it is necessary to decode
the encoded frame. For this purpose, inverse quantization
and IDCT are applied to the encoded frame. These inverse
operations have the same properties as their forward coun-
terparts.

We removed the rate control logic from this application.
The original implementation performs rate control after each
macroblock is encoded, which imposes a serial bottleneck.
For the threaded version, rate control at the end of a frame
encoding would be more efficient but we did not implement
this.

Threads: We create a given number of threads at the start
of a frame and join them at the end of that frame. Within a

2



frame, each thread encodes an independent set of contiguous
macroblock rows in parallel. Each thread takes such a set
through all the listed phases and writes the encoded stream
to a private buffer. Thread 0 sequentially writes the private
buffers to the output.

SIMD: Integer SIMD instructions are added to all the phases
except VLC. 8b (char) sub-words are used in macroblocks;
16b (short) words are used to maintain running sums. The
main SIMD computation in motion estimation is a calcula-
tion of sum of absolute difference (SAD) between two 128b
packed words of two macroblocks. PSAD (packed SAD)
instructions in SSE2 are used for this purpose. The result
of the SAD is accumulated in a register. For half pixel mo-
tion estimation, it is necessary to find the average of two
128b records. This is achieved using PAVG (packed aver-
age) SSE2 instructions.

We obtained optimized SSE2 code for DCT and IDCT
from [12] and [13], respectively. This code uses sub-word
sizes of 16b (short) and multiply accumulate instructions for
common multiply accumulate combinations. Quantization
involves truncation operations. We use packed minimum
and packed maximum for performing the truncations [14].

Before DCT and after IDCT, the encoder performs a
block subtraction (prediction formation) and a block addi-
tion where a block of frequency deltas are added or sub-
tracted from a block. We use packed saturated addition and
subtraction for these operations.

2.2 MPEG-2 Decoder (MPGdec)
We use the MSSG MPEG-2 decoder [25]. MPGdec

decompresses a compressed MPEG-2 bit-stream. Video
decoders are used in VCD/DVD/HDTV playback, video
editing, and video conferencing. Many recent video de-
coders, like MPEG-4/H.264, use similar algorithms.

Data Structures: Same as for MPGenc.

Phases:Major phases for MPGdec include variable length
decoding (VLD), inverse quantization, IDCT, and motion
compensation.

The decoder applies the inverse operations performed
by the encoder. First, it performs variable-length Huffman
decoding. Second, it inverse quantizes the resulting data.
Third, the frequency-domain data is transformed with IDCT
to obtain spatial-domain data. Finally, the resulting blocks
are motion-compensated to produce the original pictures.

Threads: In our implementation, thread 0 identifies the
slices (contiguous rows of blocks) in the input encoded bit-
stream. When a given number of slices are identified, they
are assigned to a new thread for decoding. This results in
staggered thread creation and completion times, affecting
scalability.

Each thread takes each block in a slice through all the

phases listed above and then writes each decoded block into
a non-overlapping region of the output image buffer.

SIMD: Integer SIMD instructions are added to IDCT and
motion compensation. IDCT uses the SIMD code used in
MPGenc. Motion compensation contains sub-functions like
add-block (adding the reference block and error or frequency
deltas) and saturate. These operations are performed using
packed addition with saturate on 16b words.

2.3 Ray Tracing (RayTrace)
We use the Tachyon ray tracer [31]. A ray tracer renders a

scene using a scene description. Ray tracers are used to ren-
der scenes in games, 3-D modeling/visualization, virtual re-
ality applications, etc. Dubey includes ray tracing as one of
the key challenging applications for future general-purpose
processors [6].

The ray tracer takes in a scene description as input and
outputs the corresponding scene. A scene description
normally contains the location and viewing direction of the
camera, the locations, shapes, and types of different objects
in the scene, and the locations of the light sources.

Data Structures: The constructed scene is a grid of pixels.
The pixels are colored based on the light sources and objects
in the scene. The objects are maintained in a linked list. The
color of each pixel is determined independently.

Phases:This application does not have distinct phases at a
high level. At start, based on the camera location and the
viewing direction specified, the viewing plane is created to
represent the grid of pixels to be projected from the scene to
the resulting picture. To project the correct color for each
pixel, a ray is shot from the camera through the viewing
plane into the scene. The ray is then checked against the list
of objects to find out the first object that the ray intersects.
After that, the light sources are checked to see if any of
the light rays reach that intersection. If so, the color to
be reflected is calculated based on the color of the object
and the color of the light source. The resulting color is
assigned to the pixel where the camera ray and the viewing
plane intersect. Moreover, since objects can be reflective
or transparent, the ray may not stop at the first object it
intersects. Instead, the ray can be reflected or refracted to
other directions until it intersects another object.

Threads: Each thread is givenN independent rays to trace,
whereN is the total number of pixels in the viewing plane
divided by the number of threads in the system.

SIMD: No DLP support is added since we could not identify
DLP among either different rays or within a ray. Computa-
tions for different rays can be different since even neighbor-
ing rays can intersect different objects. Within a ray, sig-
nificant control intensive computation made it hard to find

3



DLP.

2.4 Speech Recognition (SpeechRec)
We use the CMU SPHINX3.3 speech recognizer [28].

A speech recognizer converts speech into text. Speech
recognizers are used with communication, authentication,
and word processing software and are expected to become a
primary component of the human-computer interface.

Data Structures: The major data structures used include:
(1) 39-element feature vectors extracted from an input

speech sample.
(2) Multiple lexical search trees built from the language

model provided. Each tree node is a 3-state hidden Markov
model (HMM) and describes a phoneme (sound element).

(3) Each senone (a set of acoustically similar HMM states)
is modeled by a Gaussian model. Each Gaussian model con-
tains two arrays of 39-element vectors (mean and variance)
and one array of coefficients.

(4) An array that stores candidates of recognized words.
Each array element also contains a word ID and a back
pointer to the previously recognized word. The word ID
is used to lookup the actual word from the dictionary. A
sequence of words linked by the back pointers forms a hy-
pothesis.

(5) A dictionary (hash table) of known words.

Phases: The application has three major phases: feature
extraction, Gaussian scoring, and searching the language
model/dictionary. First, the feature extraction phase creates
39-element feature vectors from the speech sample. The
Gaussian scoring phase then matches these feature vectors
against the phonemes in a database. It evaluates each fea-
ture vector based on the Gaussian distribution in the acous-
tic model (Gaussian model) given by the user. In a regular
workload, there are usually 6000+ Gaussian models. The
goal of the evaluation is to find the best score among all the
Gaussian models and to normalize other scores with the best
one found. As this scoring is based on a probability distribu-
tion model, multiple candidates of phonemes are kept so that
multiple words can be matched. The final phase is the search
phase, which matches the candidate phonemes against the
most probable sequence of words from the language model
and the given dictionary. Similar to the scoring phase, mul-
tiple candidates of words (hypotheses) are kept so that the
most probable sequence of words can be chosen.

The algorithm can be summarized as follows. At start, we
make the root node of each lexical search tree active. The
following steps are repeated until speech is identified:

(i) Feature extraction: This phase creates a feature vector
from the speech sample.

(ii) Gaussian scoring: A feature vector is compared
against Gaussian models of most likely senones and a simi-
larity score is computed for each senone.

(iii) Search phase - part 1 For each active node in each

lexical search tree, the best HMM score for it is calculated.
Then the overall best HMM score among all nodes is calcu-
lated (call thisSob).

(iv) Search phase - part 2 All nodes with HMM scores be-
low Sob − threshold, wherethreshold is a given threshold,
are deactivated and the children of the still active nodes are
also activated. If the current active node is a leaf node with
high enough score, the word is recognized and inserted into
the hypothesis array and the dictionary is looked up to find
the spelling.

For reporting results, the startup phase, where some
data structures are initialized, is ignored since it is done
only once for the entire session and it can be optimized by
loading checkpointed data [24].

Threads: We parallelized both the Gaussian scoring and the
search phases. We did not parallelize the feature extraction
phase since it takes only about 2% of the execution time
(with a single thread). A thread barrier is used for synchro-
nization after each phase. In the Gaussian scoring phase,
we divide the Gaussian models among threads to calculate
senone scores. In the search phase, we divide the active
nodes evenly among the threads. In the second part of the
search phase, since the updates of the hypotheses involve
writing to a shared data structure, we use fine grain locking
to synchronize these updates. This locking makes this phase
less scalable than the Gaussian scoring phase.

SIMD: We enhanced the Gaussian scoring phase with single
precision floating point (32b subwords) SIMD instructions.
The score computation consists of a short loop which per-
forms a packed subtraction (SUBPS) and two packed mul-
tiplications (MULPSs). The scalar score is then obtained
through reduction operations: packed addition (ADDPS)
and a horizontal sum (SREDF).

2.5 Face Recognition (FaceRec)
We use the CSU face recognizer [3]. Face recognizers rec-

ognize images of faces by matching a given input image with
images in a given database. Face recognition is used in appli-
cations designed for authentication, security, and screening.
Similar algorithms can be used in other image recognition
applications that perform image searches and data-mining.

This application uses a large database (called subspace)
that consists of multiple images. The objective of phase
recognition is to find the image in the subspace that best
matches a given input image. A match is determined by
taking the “distance” or difference between two images.

Modifications: The CSU software tries to find the pair-
wise distances among all images in the database since its
objective is to find the effectiveness of the distance finding
algorithm. We modified the application so that a separate
input image is compared with each image in the subspace to
emulate a typical face recognition scenario (e.g., a face ofa

4



subject is searched in a database).

Data Structures: Each image is a single column vector
with thousands of rows. The subspace is a huge matrix
where each column is an image.

Phases: This application is first trained with a collection
of images in order to distinguish faces of different persons.
Moreover, there are multiple images that belong to the same
person so that the recognizer is able to match face images
against different expressions and lighting conditions. Then,
the training data is written to a file so that it can be used
in the recognition phase. Since training is done offline, we
consider only the recognition phase for reporting results.

At the start of the recognition phase, the training data and
the image database are loaded. The subspace matrix is cre-
ated from the image database. The rest of the recognition
phase has two sub-phases:

(i) Projection: When an input image is given, it is normal-
ized and projected into the large subspace matrix that con-
tains the other images. The normalization involves subtract-
ing the subspace’s mean from the input. Then that normal-
ized image is “projected” on to the subspace by taking the
cross product between the normalized image and the sub-
space.

(ii) Distance computation: Computes the difference
between each image in the subspace and the given image by
finding the similarity (distance).

Threads: In the projection sub-phase, each thread is given
a set of columns from the subspace to multiply. In the
distance-computation sub-phase, each thread is responsible
for computing distances for a subset of images in the
database.

SIMD: Both the sub-phases of the recognition phase
contain short loops that perform multiplication and addi-
tion/subtraction. We use double precision FP (64b) packed
subtraction (SUBPD), packed multiplication (MULPD),
and packed addition (ADDPD) SIMD instructions in these
sub-phases.

3. METHODOLOGY
For this study, we primarily obtain results from a chip

multiprocessor (CMP) simulator called ALPSim. ALPSim
allows us to study the parallelism and scalability of systems
under different conditions. To augment these results, where
practically feasible, we also present data obtained on a real
Pentium 4 system.

ALPSim is an execution-driven cycle-level simulator de-
rived from RSIM [11], and models wrong path instructions
and contention at all resources. ALPSim simulates all code
in C libraries but only emulates operating system calls.

The CMP system modeled by ALPSim contains out-of-

order superscalar processor cores with private L1 data and
instruction caches and a shared unified L2 cache. Each
thread is run on a separate CMP processor (i.e., the num-
ber of CMP processors is equal to the maximum number of
threads used in an experiment). The simulation parameters
used are given in Table 1. Following the modern trend of
general purpose processor architectures, almost all processor
resources are partitioned (clustered) and caches are banked.

Parameter Value PER # of
PARTITION Partitions

Phy Int Reg File (32b) 64 regs, 5R/4W 2
Phy FP/SIMD Reg File (128b) 32 regs, 4R/4W 2
Int Issue Queue 2

-# of Entries 24
-# of R/W Ports 3R/4W
-# of Tag R/W Ports 6R/3W
-Max Issue Width 3

FP/SIMD Issue Queue 2
-# of Entries 24
-# of R/W Ports 3R/4W
-# of Tag R/W Ports 5R/3W
-Max Issue Width 3

Load/Store Queue 2
-# of Entries 16
-# of R/W Ports 2R/2W
-Max Issue Width 2

Branch Predictor (gselect) 2KB 2
Integer ALUs (32b) 2 2
FP/SIMD Units (128b) 2 2
Reorder Buffer 32 ent, 2R/2W 4

-Retire Width 2
Rename Width 4 per thread 2
Max. Fetch/Decode Width 6 (max 4 per thread)

Parameter Value PER BANK # Banks
L1 I-Cache 8K, 4 Way, 32B line, 1 Port 2
L1 D-Cache 8K, 2 Way, 32B line, 1 Port 4
(Writethrough)
L2 Cache 256K, 4 Way, 64B line, 1 Port 4
(Writeback, unified) (for single-threaded cases)

512K, 8 Way, 64B line, 1 Port
(for multithreaded cases) 32

Bandwidth and Contentionless Latencies @ 4 GHz
Parameter Value (cycles @ 4 GHz)
ALU/Int SIMD Latency 8 (Div-32b), 2 (Mult-32b), 1 (Other)
FP/FP SIMD Latency 12 (Div), 4 (Other)
L1 I-Cache Hit Latency 2
L1 D-Cache Hit Latency 3
L2 Cache Hit Latency 16
L2 Miss Latency 256
Memory Bandwidth 16 GB/s

Table 1: Base architecture parameters for ALPSim.Note that several

parameter values areper partition or bank.

The ALP SIMD programming model used with ALPSim
roughly emulates Intel’s MMX/SSE2 with multiple 8-, 16-,
32-, or 64-bit sub-words within a 128-bit word. Most com-
mon opcodes are supported; e.g., packed addition, subtrac-
tion, multiplication, absolute difference, average, horizontal
reduction, logical, and pack/unpack operations. SIMD oper-
ations use the FP register file and FP units.

ALPSim uses SPARC binaries for non-SIMD code.
Pthreads-based C code is translated into binary using
the Sun cc 4.2 compiler with options -xO4 -xunroll=4 -

5



xarch=v8plusa. SIMD code resides in a separate assembly
file, organized as blocks of instructions and simulated using
hooks placed in the binary. When such a hook is reached
while simulating, the simulator switches to the proper block
of SIMD instructions. ALPSim emulates synchronization
operations (locks and barriers), but properly charges for any
waiting time due to contention for a synchronization vari-
able.

To complement the results obtained using ALPSim, we
obtained data using a 3.06 GHz Pentium 4 system with SSE2
running the Linux 2.4 kernel (henceforth referred to asP4).
The processor front-side bus operates at 533 MHz (quad-
pumped) and the system has 2GB of PC2100 DDR memory.
The applications for P4 were compiled using the Intel icc
compiler with maximum optimization level O3 and options
-march=pentium4 -mcpu=pentium4. We aligned data arrays
at 16B boundaries for best performance as suggested in [14].
We used the Intel VTune performance analyzer and the per-
formance counter (sampling) mode to obtain results without
any binary instrumentation. We only obtained single-thread
data on P4.

We used the following inputs for the appli-
cations. For MPGenc and MPGdec, we used
DVD resolution (704x480) input streams from
ftp://ftp.tek.com/tv/test/streams/Element/index.html.
For RayTrace, we used a 512x512 resolution picture
(a scene of a room with 20 objects), available with the
original application. For SpeechRec, we used a dic-
tionary/vocabulary of 130 words with the input speech
sample containing the words “Erase T M A Z X two
thousand five hundred and fifty four” (obtained from
http://www.speech.cs.cmu.edu/databases/an4/). For Fac-
eRec, we used a database of 173 images (resolution
130x150) with an input image of the same resolution
(available with the original application).

4. RESULTS
This section first presents our results characterizing the

different types of parallelism in ALPBench, followed by re-
sults on the interaction between these types of parallelism.
Since we observe that our parallelism results are sensitive
to the memory system parameters, we next present memory
system related data, including the working set sizes, the ef-
fect of increasing memory latencies (i.e., frequency scaling),
and the effect of supporting more threads on the memory
bandwidth. Finally, we give the application-level real-time
performance of our applications on the P4 system.

Although the results we show are sensitive to the size of
the inputs, the overall parallelism should improve or remain
the same with larger inputs for all applications.

4.1 TLP
Figures 1(a) and (b) show the speedup achieved with mul-

tiple threads on ALPSim with an ideal 1 cycle memory sys-
tem and a realistic memory system respectively. The threads

do not use SIMD instructions. The ideal memory system re-
sults are obtained with perfect 1 cycle L1 caches to study
the TLP scalability independent of the memory system pa-
rameters (since, as shown in Section 4.5, the scalability is
sensitive to these parameters). The system with the realistic
memory system is as described in Section 3.

As shown in Figure 1, MPGenc, FaceRec, and RayTrace
scale very well up to 16 threads with both ideal and realistic
memory parameters since the threads are independent and
hence do not require extensive synchronization. MPGdec
also scales well, but its scalability could be further improved
by addressing two limitations: (i) staggered thread creation
and (ii) load imbalance. The effects of both limitations di-
minish with larger inputs (e.g., HDTV input improved the
speedup of 16 threads by 14%-15% for both ideal and real-
istic memory parameters). The second limitation can also be
addressed by dynamic slice assignment [10].

The thread scalability of SpeechRec is somewhat limited,
largely due to the fine-grain synchronization (locking) used
in the search phase [20]. We found that larger dictionaries
improve the scalability. We also note that the thread scalabil-
ity of SpeechRec is slightly better with the realistic memory
parameters. This is because the execution time of the single
thread version with realistic memory is dominated by the
time stalled for memory. The multithreaded versions reduce
that stall time considerably due to the memory parallelism
offered by multiple threads, countering the negative effect
due to synchronization. The ideal memory system does not
see this positive memory parallelism effect.

0

2

4

6

8

10

12

14

16

0 4 8 12 16

Number of Threads

S
p

e
e
d

u
p

RayTrace

FaceRec

MPGenc

MPGdec

SpeechRec

0

2

4

6

8

10

12

14

16

0 4 8 12 16

Number of Threads

S
p

e
e
d

u
p

FaceRec

MPGenc

RayTrace

MPGdec

SpeechRec

(a) (b)

Figure 1: Scalability of TLP without SIMD instructions (a) with an

ideal 1-cycle memory system, and (b) with realistic memory parameters

(as in Table 1).

4.2 DLP
Figure 2 gives the speedups achieved with SSE2 (on P4)

and ALP SIMD (on ALPSim) over the original non-SIMD
single-threaded application. The results with SSE2 show the
speedups achievable on existing general-purpose processors.
The results with ALP SIMD indicate the speedups possi-
ble with a more general form of SIMD on a simulated 4
GHz processor. Overall, our applications (except RayTrace)

6



achieve significant speedups with ALP SIMD and modest to
significant speedups with SSE2.

2.8

2.0

1.3
1.1

6.0

3.0

1.8 1.7

0

1

2

3

4

5

6

MPGenc MPGdec SpeechRec FaceRec

S
p

ee
d

u
p

SSE2 ALP SIMD

Figure 2: Speedup with SSE2 and ALP SIMD.

For all applications, the speedups with ALP SIMD are
higher than the speedups with SSE2 due to several reasons.
First, the latency of most SIMD instructions on ALPSim
is 1 cycle whereas all SSE2 instructions have multi-cycle
latencies. Further, the 128b SSE2 is implemented as two
64b operations on all Pentium processors that support SSE2,
essentially halving the peak throughput when compared to
ALPSim. Specifically, FaceRec fails to achieve any sig-
nificant speedup with SSE2 because FaceRec uses double
precision 64b operations. Second, the simulated processor
has a different pipeline and hardware resources.Third, ALP-
Sim supports SIMD opcodes that are more advanced than
those in SSE2. For instance, horizontal sub-word reductions
are available in ALPSim but not in SSE2 (although they are
available with SSE32).

4.2.1 SIMD Speedups of Individual Phases with SSE2

All parts of an application do not see the same level of per-
formance improvement with SIMD support. To understand
which parts are responsible for the overall SIMD speedup
(or lack thereof), Table 2 shows the percentage of execution
time and the SSE2 speedup of each phase in each application
on P4. The total SSE2 speedup for each application is also
given. The sampling error for small phases can be significant
and their speedup cannot be measured reliably; therefore, we
mark phases with non-SSE2 execution time less than 2% or
aggregates of such small phases as N/A. Further, a phase
cannot be completely separated from other phases; e.g., in-
structions from multiple adjacent phases can overlap in an
out-of-order processor and branch histories and cache data
due to one phase can affect another. Small slowdowns due
to SSE2 seen in a few cases in Table 2 are artifacts of such
anomalies.

MPGenc and MPGdec see good overall speedups with
SSE2. All major phases of MPGenc and all but the VLD
phase in MPGdec achieve speedups with SSE2. IDCT of
MPGdec and DCT/IDCT phases of MPGenc achieve excel-
lent speedups due to the use of optimized SSE2 code for
these phases.

2We did not use SSE3 for our applications since it is fairly newand
most existing systems do not support it.

no-SSE2 with SSE2
% ExTime % ExTime Speedup

MPGenc
Motion Estimation 64.3 66.3 2.69
DCT/IDCT 9.6 6.3 4.24
Form Predictions 5.6 11.9 1.3
Quant/IQuant 18.8 9.2 5.69
VLC 1.3 3.8 N/A
Other 0.4 2.5 N/A
Total 100.0 100.0 2.78
MPGdec
IDCT 36.6 13.8 5.38
Motion Compensation 41.9 40.4 2.10
- Saturate 8.3 10.4 1.61
- Add Block 9.3 5.7 3.3
- Form Predictions 21.5 20.4 2.14
- Clear Block 2.8 3.9 1.44
VLD 20.3 43.3 0.95
Other 1.2 2.5 N/A
Total 100 100 2.03
SpeechRec
Feature Extraction 1.6 2.1 0.97
Gaussian Scoring 89.0 85.3 1.34
- Vector Quantization 35.4 26.5 1.73
- Short-list Generation 10.5 13.7 0.99
- Gaussian Eval 35.7 34.3 1.34
- Others 7.4 10.8 N/A
Search 7.7 10.5 0.94
Other 1.7 2.1 N/A
Total 100.0 100.0 1.29
FaceRec
Projection 88.0 88.8 1.11
Distance Computation 7.4 5.7 1.47
Other 5.3 6.9 N/A
Total 100.0 100.0 1.12

Table 2: Percentage execution time and SSE2 speedup for major

phases of each application (except for RayTrace) on P4.Small phases

(i.e., phases with non-SSE2 execution time less than 2% or aggregates of

such small phases) where the speedup cannot be measured reliably are

marked as N/A.

The motion estimation phase of MPGenc achieves very
good speedups with SSE2 due to the use of byte operations
and the elimination of data-dependent branches using PSAD
(packed sum of absolute difference) instructions. Similarly,
quantization achieves excellent speedups due to the elimina-
tion of branches by using PMAX and PMIN instructions to
truncate.

In MPGdec, sub-phases of motion compensation phase
like saturate, add block, and form prediction achieve good
speedups with SSE2 since they contain straightforward
loops with (saturated) additions and subtractions. However,
VLD, which is a significant portion of the total application,
does not see any speedup resulting in a lower overall speedup
than MPGenc.

SpeechRec achieves reasonable speedup with SSE2 (due
to its use of 32b single precision floats, the peak possible
speedup is roughly 2X on Gaussian scoring). As expected,
SIMD instructions lead to significant speedups in the two
most dominant sub-phases of the Gaussian scoring phase.
However, the overall speedup is limited by phases without
DLP.

FaceRec fails to achieve significant speedups with SSE2

7



due to FaceRec’s use of double precision 64b operations
as described above. However, it records a small overall
speedup due to the elimination of overhead instructions.

4.3 ILP

ALPSim P4 (Pentium 4)
App Base SIMD Base SIMD
MPGenc 1.20 1.23 [4.24] 1.45 (1.87) 0.70 (1.03)
MPGdec 1.38 1.17 [3.31] 1.26 (1.73) 0.73 (1.14)
RayTrace 1.33 N/A 0.48 (0.73) N/A
SpeechRec 0.35 0.39 [0.67] 0.38 (0.57) 0.34 (0.45)
FaceRec 0.32 0.30 [0.48] 0.51 (0.61) 0.43 (0.47)

Table 3: Instructions per cycle achieved on ALPSim and P4 for

single-thread applications. For the ALP SIMD case, the number of sub-

word operations retired per cycle is also given within square brackets. For

P4, x86 micro-instructions per cycle is given in parenthesis.

Table 3 gives instructions-per-cycle (operations per cycle)
achieved on ALPSim and x86 instructions per cycle (micro-
instructions per cycle) achieved on P4. Note that the IPC
values for ALPSim and P4 cannot be directly compared be-
cause they do not use the same instruction set, processor, or
memory parameters.

FaceRec and SpeechRec fail to achieve large ILP due
to their working sets not fitting in the cache (Section 4.5).
Other applications show reasonable ILP on ALPSim. How-
ever, the SIMD versions of MPGenc and MPGdec and the
base version of RayTrace achieve significantly lower IPC on
P4 than on ALPSim. Specifically, for the SIMD versions
of MPGenc and MPGdec, as described in Section 4.2, the
longer SSE2 latencies and the lack of true 128-bit functional
units lower the IPC on P4. For RayTrace, P4 sees lower IPC
than ALPSim due to three main reasons: (i) longer latencies
and repetition intervals (lower throughput) of the FP units
of P4, (ii) the smaller 8K L1 cache of P4 achieves lower hit
rates than the 32K L1 of ALPSim (Figure 3), and (iii) branch
performance (P4 has a much deeper pipeline, and in Ray-
Trace, 10% of all instructions are branches with a somewhat
high misprediction rate of 4%).

P4, however, sees higher IPC for some applications due
its lower frequency, L2 hardware prefetcher, and differences
in the ISA (e.g., x86 ISA uses far more register spill instruc-
tions than SPARC ISA used with ALPSim).

Although SpeechRec and FaceRec have low ILP due to the
high memory latencies, we observed that their IPC values
become higher (1.5 and 1.3 respectively, with SIMD) when
the memory latency is reduced to 42 cycles to simulate a
500 MHz processor or a 500 MHz frequency setting on a
processor with frequency scaling. Further, we noticed that,
reducing the fetch/retire width from 4 to 2 reduces the IPC
of SIMD versions of MPGenc, MPGdec, and RayTrace by
35%, 33%, and 38% respectively. This again underscores
the importance of ILP for these applications.

4.4 Interactions Between TLP, DLP, and ILP

App 1T 4T 8T 16T
MPGenc 1.00 0.99 1.01 1.09
MPGdec 1.00 1.12 1.27 1.55
SpeechRec 1.00 1.09 1.23 1.49
FaceRec 1.00 0.97 0.96 0.96

Table 4: Ratio of TLP speedup without SIMD to TLP speedup with

SIMD for 1, 4, 8, and 16 threads.A ratio higher than 1.0 shows a reduction

in TLP speedup due to SIMD. The data uses ALPSim with a 1 cycle ideal

memory system.

4.4.1 Interaction Between TLP and DLP

Most SIMD sections in our applications occur within the
parallel (vs. serial) portions of the code. Thus, comparing
the SIMD and non-SIMD versions of a threaded application,
the parallel portion runs faster in the SIMD version, making
the serial portion more dominant in that version. In our ap-
plications, the use of SIMD therefore generally reduces TLP
speedup.

Specifically, for each application, Table 4 shows the ra-
tio of the TLP speedup of its non-SIMD version to the TLP
speedup of its SIMD version (for 1, 4, 8, and 16 threads, ob-
tained on ALPSim using a 1 cycle ideal memory system). A
ratio higher than 1.0 shows a reduction of TLP speedup due
to SIMD. We see larger ratios for MPGdec and SpeechRec
because they have relatively large SIMD-free serial sections
and significant SIMD use within the thread-parallel sections.
Further, note that the above ratio increases with the num-
ber of threads for MPGdec and SpeechRec, limiting their
TLP scalability in the presence of SIMD. This has signifi-
cant implications for the TLP scalability of emerging multi-
core/multi-threaded commercial processors that already sup-
port SIMD instructions. The above ratio stays close to 1 for
MPGenc and FaceRec since they do not have large serial
sections.

0.5

0.6

0.7

0.8

0.9

1.0

1 10 100 1000 10000

L1 Cache Size in KB (Logarithmic)

H
it

 R
a

te

MPGenc

MPGdec

RayTrace

SpeechRec

FaceRec

Figure 3: L1 cache hit rates.All applications except RayTrace use the

SIMD version.

4.4.2 Interaction Between DLP and ILP

Exploiting SIMD instructions in a given piece of code
should theoretically reduce the amount of ILP present in that
section of code since one SIMD instruction can replace mul-
tiple independent non-SIMD instructions. Table 3 shows this

8



MPGenc

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000

Cache Size (KB)

H
it

 R
at

e

1 Thread

4 Thread

MPGdec

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000

Cache Size (KB)

H
it

 R
at

e

1 Thread

4 Thread

RayTrace

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000

Cache Size (KB)

H
it

 R
at

e

1 Thread

4 Thread

SpeechRec

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000

Cache Size (KB)

H
it

 R
at

e

1 Thread

4 Thread

FaceRec

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000

Cache Size (KB)

H
it

 R
at

e

1 Thread

4 Thread

Figure 4: L2 cache hit rates (with L1 caches disabled).All applications (except RayTrace) use the SIMD version.

decrease for all applications except MPGenc and SpeechRec
with ALPSim.

The exceptions occur for multiple reasons. First, SIMD
code can provide increased resource usage relative to non-
SIMD code. For example, in ALPSim, (and P4), SIMD
instructions use the FP pipeline and FP functional units
(thereby increasing resource utilization for integer code).
Second, SIMD instructions can reduce contention to criti-
cal processor resources (e.g., load/store queue entries, cache
ports) by combining several non-SIMD instructions into one
instruction. Third, some SIMD instructions can reduce data
dependent branches that are usually hard to predict and com-
promise ILP in non-SIMD code (e.g., packed sum of ab-
solute difference or PSAD, packed maximum, and packed
minimum). SIMD code also reduces the number of condi-
tional branch instructions by reducing the number of loop
iterations and the branches associated with them.

4.4.3 Interaction Between TLP and ILP

The interaction between TLP and ILP is well known.
Specifically, with TLP, the presence of multiple threads
could change cache behavior, affecting ILP. As discussed
later, multiple threads can cause both positive and negative
cache effects (Figure 4). For instance, in our CMP system,
an application can see a reduction in ILP if there is no con-
structive sharing in the shared L2 cache (reducing the effec-
tive L2 size for each thread) or if there is false sharing in
the L1 cache. Conversely, if there is constructive sharing in
the L2 cache, then ILP is increased as each thread sees some
prefetching effects from the accesses of other threads.

Table 5 gives the percentage reduction of per thread IPC in
a 16-thread CMP with respect to the IPC of a single-thread
processor. The IPC does not include the effect of synchro-
nization instructions. We see that multiple threads cause a
small to modest reduction in per-thread IPC due to the ef-
fects discussed above. This reduction is smallest in FaceRec
due to some constructive data sharing among threads in the
L2 cache (Section4.5.1).

4.5 Sensitivity to Memory Parameters
As expected, the parallelism of our applications is sensi-

tive to the memory parameters. To understand this sensi-
tivity, we next report the cache hit ratios/working sets of our
applications, how our applications scale with increasing pro-

App. MPGenc MPGdec RayTr. Sp.Rec FaceRec
IPC Reduc. 6.1% 8.8% 10.6% 7.8% 2.7%

Table 5: Percentage reduction of per thread IPC in the 16-thread

CMP with respect to the IPC of a 1-thread processor (with realistic

memory system).The IPC does not include synchronization instructions.

cessor frequency (memory latencies), and the memory band-
width requirement with increasing number of threads.

4.5.1 Working Sets

Figure 3 gives the L1 data cache hit ratios obtained us-
ing ALPSim with SIMD for different L1 cache sizes (2K
to 1024K). Using the concepts described in [35], all appli-
cations, except FaceRec, have first-level working sets about
8KB since the first knee of all hit-rate curves occurs around
8KB. FaceRec has the first-level working set of 16KB. Both
RayTrace and MPGdec can further benefit significantly from
a cache size up to 64KB. MPGenc sees a slight benefit if
the cache size is further increased to 64KB. FaceRec and
SpeechRec, however, do not benefit much from increas-
ing the cache size after 8KB and 16KB, respectively (up to
1MB).

Figure 4 shows the shared L2 cache hit rates for different
cache sizes (2K - 1024K) for both single-thread and 4-thread
versions of each application with SIMD. The L1 caches were
disabled for this experiment to study the effect of data shar-
ing between multiple threads in L2. If the threads share a sig-
nificant portion of data and the single thread version achieves
a given hit rate withx KB, the 4-thread version should be
able to achieve the same or a better hit rate with4x KB of
cache. From Figure 4, we see that only threads in FaceRec
share a significant portion of data since the 4-thread version
achieves better hit rates than the single-thread version for a
given cache size. This is because the threads in FaceRec
share parts of the large subspace matrix (database). For the
other applications, the data is mostly partitioned among the
threads and then mostly exclusively accessed by one thread.

Even FaceRec, which exhibits some data sharing, does not
share all the data in L2 since a significant portion of its mem-
ory accesses still have to go to memory.

To summarize, first we see that three of our applications
have very good cache hit rates whereas two have low hit
rates. Low cache hit rates reduce ILP when memory la-

9



MPGenc

0

1

2

3

4

5

6

7

8

0 1000 2000 3000 4000

Frequency (MHz)

S
p

ee
d

u
p

Base

SIMD

MPGdec

0

1

2

3

4

5

6

7

8

0 1000 2000 3000 4000

Frequency (MHz)

S
p

ee
d

u
p

Base

SIMD

SpeechRec

0

1

2

3

0 1000 2000 3000 4000

Frequency (MHz)

S
p

ee
d

u
p

SIMD

Base

FaceRec

0

1

2

3

0 1000 2000 3000 4000

Frequency (MHz)

S
p

ee
d

u
p

Base

SIMD

RayTrace

0

2

4

6

8

10

0 1000 2000 3000 4000

Frequency (MHz)

S
p

ee
d

u
p

Base

Figure 5: Frequency scalability for single thread applications.The SIMD data are with ALP SIMD. RayTrace does not have a SIMD version.

tencies are high. We also see that increasing TLP demands
larger caches to accommodate the working sets of our appli-
cations since their threads do not share much data.

4.5.2 Sensitivity to Memory Latency or Processor
Frequency

Figure 5 shows the speedup achieved by the base (non-
SIMD) and SIMD versions of each single-thread application
on ALPSim when the processor (die) frequency is scaled
from 4 GHz to 500 MHz. Consequently, the time (in pro-
cessor cycles) to access memory decreases linearly from
240 cycles (at 4 GHz) to 30 cycles (at 500 MHz) (i.e., the
L2 miss latency is the memory/bus access time plus 16 cy-
cles for all frequencies). The other parameters given in Ta-
ble 1 are not changed. Specifically, the parameters used at
4 GHz are identical to those given in Table 1. Speedups
reported for non-SIMD (SIMD) are with respect to the non-
SIMD (SIMD) single thread version of the application run-
ning at the lowest frequency (500 MHz). Such frequency
scaling data is important since many systems, especially mo-
bile systems running these media applications, run at lower
frequencies. Further, many such systems employ dynamic
frequency scaling to run at lower frequencies than the maxi-
mum frequency supported by the processor to reduce power
and energy consumption. The following describes how each
application scales when the frequency isincreased from the
lowest (500 MHz) to the highest (4 GHz).

Figure 5 shows that the base cases of RayTrace, MPGenc
and MPGdec scale well with increasing frequency since
most of their working sets fit in the caches. The base cases
of FaceRec and SpeechRec show poor scalability after 1 or
2 GHz. This is mainly due to their larger working sets not
fitting in caches (Figure 3).

Two factors affect the relative scalability between SIMD
and non-SIMD versions of the same application. On the
one hand, the SIMD version has a lower computation to
memory ratio than the base case and hence is more sensi-
tive to longer memory latencies. This is because the SIMD
case reduces loop overhead and address calculation overhead
instructions, which are compute instructions. This effect
causes the SIMD versions of MPGenc, MPGdec, and Fac-
eRec to show lower scalability. The effect is more promi-
nent in MPGenc due to its use of small sub-words; in that
case, SIMD can reduce the loop iteration and overhead sig-
nificantly. On the other hand, the SIMD version exposes

more memory level parallelism to the out-of-order core –
since the SIMD loops use fewer instructions per loop, the
instruction window can contain a larger number of load in-
structions than possible in the non-SIMD case. This effect
gives the SIMD version better scalability when the applica-
tion has a significant L2 miss rate. Specifically, SpeechRec
benefits from this effect. Although, the SIMD version of
FaceRec should benefit from the same effect since it has high
L2 miss rates, the increase in memory level parallelism for
the SIMD version of FaceRec is low due to its use of double
precision operations. That is, the number of additional loop
iterations that can fit in the instruction window is not as large
as that for SpeechRec.

To summarize, three out of five of our applications scale
well with frequency. We see that higher memory laten-
cies affect applications with and without SIMD differently.
SIMD versions of all our applications except SpeechRec
show somewhat poorer scalability with increasing frequency
than their non-SIMD counterparts.

4.5.3 Memory Bandwidth

0
.2

0
.2

0
.2

2
.1 2
.5

0
.6

0
.7 0
.9

6
.4

9
.1

1
.2 1
.4 1
.6

1
1

.3

1
6

.0

2
.1 2
.2

1
.5

2
7

.9

1
6

.9

0

5

10

15

20

25

MPGenc MPGdec RayTrace SpeechRec FaceRec

M
e
m

o
ry

 B
a
n

d
w

id
th

 (
G

B
/s

)

1 Thread 4 Thread 8 Thread 16 Thread

Figure 6: Memory bandwidth (in GB/s) at 4 GHz without SIMD.

Figure 6 shows how memory bandwidth demand increases
for each application (non-SIMD) with the number of threads.
The results were obtained on ALPSim without ALP SIMD
using the parameters in Table 1 (with the processor at
4GHz). MPGenc, MPGdec, and RayTrace have relatively
low bandwidth requirements since they have smaller work-
ing sets. However, FaceRec and SpeechRec demand much
larger memory bandwidth since their working sets do not

10



Application Performance
MPGenc 21.8 fps (704x480 DVD resolution)
MPGdec 166.3 fps (704x480 DVD resolution)
RayTrace 0.75 fps (512x512 resolution)
SpeechRec 9.0 words/sec.
FaceRec 152.1 130x150 images/sec.

Table 6: Application-level real-time performance obtained by single

threaded versions of our applications on the P4 system.

fit in the L2 cache. The increase in bandwidth generally
follows the TLP speedup of applications. For all applica-
tions that have DLP, SIMD versions will demand more band-
width since they execute faster. These results show that the
bandwidth of MPGenc, MPGdec, and RayTrace can be ful-
filled by existing memory systems (assuming a maximum of
8.5 GB/s memory bandwidth on current personal computers
with DDR2 memory). However, for SpeechRec and Fac-
eRec, CMP systems that support 8 or more threads will have
to support a higher memory bandwidth than supported today
on many general-purpose systems [15].

4.6 Application-Level Real-time Performance
Table 6 shows the application-level real-time performance

results for each application on P4 (Section 3). The results
are for single-threaded applications with SSE2 (except for
RayTrace). The approximate performance for systems with
a higher number of threads and lower frequencies can be
derived using the thread/frequency scaling results presented
earlier. MPGdec already achieves the required real-time per-
formance on current systems. The performance of RayTrace
is far from real-time. Although MPGenc comes close to
the required real-time performance of 30 frames per sec-
ond, larger inputs (e.g., HDTV) will demand much higher
performance. Similarly, although SpeechRec and FaceRec
achieve reasonable performance with the given small in-
put sets, much larger inputs anticipated in the future (e.g.,
much larger dictionaries for SpeechRec, higher resolution
image/face recognition used with personal/database search,
and much larger image databases) will demand much higher
processing capabilities.

5. RELATED WORK
There have been many studies that characterize the indi-

vidual applications used in ALPBench.
Several papers characterize MPEG-2. Chen et al. [4, 10]

characterize various phases of MPGdec on a real system and
discuss and evaluate slice assignment policies, and data vs.
functional partitioning for parallelization. They also accel-
erate MPGdec with SSE instructions. However, they do not
perform a thread-scaling or a frequency scaling study. We
also modified MPEG encoder to use an intelligent motion
search algorithm and to use an optimized algorithm for dis-
crete cosine transform. Iwata et al. [16] propose a number of
coarse-grained parallel implementations of MPEG-2 decod-
ing and encoding. They evaluate the performance of these
implementations on a multiprocessor, compare the perfor-

mance against a single and wide issue superscalar processor,
and report results with multi-threading for 4 and 8 proces-
sors. They also find that thread scalability of MPGenc is bet-
ter than that for MPGdec. However, they report 8 thread re-
sults only with a single issue processor. We do the TLP scal-
ability study up to 16 threads using the same processor con-
figuration. They also report 50% speedup with MIPS based
SIMD instructions for MPGdec. We report SSE2 speedups
for both MPGenc and MPGdec; we are able to achieve much
higher speedups (2X) with SSE2 for MPGdec. We also per-
form a frequency scalability study.

Several researchers have discussed the Eigenface face
recognition algorithm used in this study [2, 23, 32]. Specif-
ically, Mathew et al. [23] characterize architectural features
such as cache hit rates and IPC on several embedded archi-
tectures. In addition to such characterizations, we analyze
the thread and SIMD parallelism of this application. Vor-
bruggen [33] describes a similar face recognition algorithm
used with SPEC CPU2000 but does not perform an evalua-
tion.

Ravishankar [27] describes the algorithms, data structures,
inputs/outputs of Sphinx3 used with this study, but does not
provide any evaluation. Mathew et al. [24] provide a detailed
analysis of Sphinx3. They identify the three distinct pro-
cessing phases (Section 2.5) and quantify the architectural
requirements for each phase. They also describe the large
memory footprint and find the Gaussian and search phases
to be the dominant ones. They also developed a parallel ver-
sion of Sphinx3 that runs the three major phases (i.e., fea-
ture recognition, Gaussian scoring, and search) using three
threads and report a speedup of 1.67. Instead of this type
of functional partitioning, we parallelize Sphinx3 using data
partitioning (i.e., each phase are divided into N symmetric
threads). This method gives better speedups and is more
scalable. Mathew et al. also develop a special-purpose accel-
erator for the dominant Gaussian scoring phase. The acceler-
ator consists of specialized multipliers and adders to perform
the specific multiply accumulate operation done in the inner
loop of Gaussian scoring. To overcome the latency of FP
multiply accumulate operations, they pipeline multiple inde-
pendent iterations. Instead of using a separate co-processor,
we use the SIMD units to exploit the DLP in the Gaussian
scoring phase.

Baugh et al. characterize and parallelize Sphinx2 [1]3.
They divide Sphinx2 into multiple phases and use work
queues in between phases. Then they use asymmetric
threads to execute each phase. They also investigate us-
ing symmetric threads within each phase. In contrast, we
use symmetric threads that span both Gaussian scoring and
search phases and do not use work queues. They report
speedups up to 2.7X using both asymmetric and symmet-
ric threads (a total of 6 threads). They also show prelimi-
nary results where they achieve speedups up to 6.8X with

3Sphinx2 has somewhat different Gaussian models than those used
in Sphinx3 [20].

11



10 threads. They do not investigate exploiting SIMD in this
study.

Krishna et al. [19] analyze parameters affecting the per-
formance of Sphinx2 with special emphasis on the mem-
ory system. They also find poor cache performance (Fig-
ure 3), poor memory reference predictability, and potential
for using multiple threads albeit with higher demands on the
memory system. Based on the insights from that work, they
propose architectural SMT techniques to exploit the TLP in
Sphinx3 [20]. They develop an architecture with multiple
speech processing elements that are capable of generating
their own threads and report good speedups (e.g., approx-
imately 12X speedup with 16 speech processing elements
and 4 thread contexts per processing element). They also
perform partitioning of search tree nodes; for thread creation
and synchronization, they use a fork/join model with a spe-
cial barrier instruction (called EPOCH) and locks. We use a
similar approach to exploit TLP and also investigate the use
of sub-word SIMD instructions.

Woo et al. [35] present a characterization of a different
version of RayTrace with other applications introduced with
the SPLASH-2 benchmark. They also report working set
characteristics similar to those reported here and also report
good TLP scalability. However, they do not study the scala-
bility of RayTrace with frequency and do not consider SIMD
instructions. Nguyen et al. [26] also characterize RayTrace
provided with SPLASH-2 as part of their work in evaluating
multiprocessor scheduling policies. They also study the TLP
scalability and identify the sources of speedup loss. How-
ever, they do not study working sets or frequency scalability
of this application.

In addition to the above studies that focus on the individual
applications, there have been several multimedia benchmark
suites that target applications included in ALPBench and re-
port their characteristics. These include MediaBench [21],
Berkeley multimedia workload [30], MiBench [8] and
EEMBC [7]. All these suites include MPEG encoder and de-
coder. Additionally, MiBench includes the Sphinx2 speech
recognizer, and both MediaBench and Berkeley multimedia
workload contain the RASTA speech recognizer. Berkeley
multimedia workload also includes the POVray3 ray tracer
as part of the suite. While all of the studies report single
thread workload characteristics of the media applications,
they do not characterize DLP and TLP.

Finally, in extended versions of this work, we also charac-
terize the behavior of the ALPBench applications for other
forms of DLP; i.e., conventional vectors [22] and a recently
proposed specialized form of vector/stream support called
SVectors and SStreams [29].

6. CONCLUSION
Complex media applications are becoming increasingly

popular on general-purpose systems such as desktops, lap-
tops, and handheld systems. This paper presents a publicly
released suite of five such complex media applications and

characterizes the parallelism and performance of them.
Our characterization shows that these applications have

multiple levels of parallelism - TLP, DLP, and ILP. For TLP,
we find that all our applications have coarse-grain TLP and
most of them show good thread scalability. As for DLP,
we find that these applications produce good speedups with
sub-word SIMD. We also study the interaction between two
forms of parallelism and find that exploitation of DLP could
reduce effectiveness of TLP. Further, we also study the ef-
fects of the memory system on these applications, and re-
port the different working sets, bandwidth requirements, and
memory latency tolerance in these applications. Our char-
acterization of parallelism can be used by processor/system
architects and compiler writers to provide better support for
complex media applications.

7. REFERENCES

[1] L. Baugh, J. Renau, J. Tuck, and J. Torrellas, “Sphinx
Parallelization,” Dept. of Computer Science, University of Illinois,
Tech. Rep. UIUCDCS-R-2002-2606, 2002.

[2] R. Beveridge, D. Bolme, M. Teixeira, and B. Draper, “The CSU face
identification evaluation system user’s guide,” http://www.cs.
colostate.edu/evalfacerec/algorithms/version5/faceIdUsersGuide.pdf,
2003.

[3] R. Beveridge and B. Draper, “Evaluation of face recognition
algorithms,” http://www.cs.colostate.edu/evalfacerec/, 2003.

[4] Y.-K. Chenet al., “Media Applications on Hyper-Threading
Technology,”Intel Technology Journal, Vol.6, Issue 1, 2002.

[5] K. Diefendorff and P. K. Dubey, “How Multimedia Workloads Will
Change Processor Design,”IEEE Computer, Sep. 1997.

[6] P. Dubey, “Recognition, Mining and Synthesis Moves Computers to
the Era of Tera,”Technology@Intel Magazine, February 2005.

[7] EDN Embedded Microprocessor Benchmark Consortium, “The
EEMBC benchmark suite,” 1997.

[8] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T.Mudge,
and R. B. Brown, “MiBench: A free, commercially representative
embedded benchmark suite,” inIEEE 4th Annual Workshop on
Workload Characterization, December 2001.

[9] J. L. Hennessy and D. A. Patterson,Computer Architecture: A
Quantitative Approach. Morgan Kaufmann Publishers Inc., 2002.

[10] M. Holliman and Y.-K. Chen, “MPEG Decoding Workload
Characterization,” inProc. of Workshop on Computer Architecture
Evaluation using Commercial Workloads, 2003.

[11] C. J. Hughes, V. S. Pai, P. Ranganathan, and S. V. Adve, “RSIM:
Simulating Shared-Memory Multiprocessors with ILP Processors,”
IEEE Computer, February 2002.

[12] Intel Application Notes AP-922, Intel Corporation, 1999.
[13] Intel Application Notes AP-945, Intel Corporation, 1999.
[14] The IA-32 Intel Architecture Optimization Reference Manual, Intel

Corporation, 2004.
[15] Intel Corporation, “Intel 925XE express chipset,”

http://www.intel.com/products/chipsets/925xe/, 2005.
[16] E. Iwata and K. Olukotun, “Exploiting Coarse-Grain Parallelism in

the MPEG-2 Algorithm,” Computer Systems Lab, Stanford
University, Tech. Rep. CSL-TR-98-771, 1998.

[17] H. Kalva, A. Vetro, and H. Sun, “Performance Optimization of an
MPEG-2 to MPEG-4 Video Transcoder,” inProc. of SPIE Conf. on
Microtechnologies for the New Millennium, VLSI Circuits and
Systems, 2003.

[18] K. I. T. Koga, A. Hirano, Y. Iijima, and T. Ishiguro,
“Motion-Compensated Interframe Coding for Video Conferencing,”
in Proc. of the 1981 National Telesystems Conference, 1981.

[19] R. Krishna, S. Mahlke, and T. Austin, “Insights Into theMemory
Demands of Speech Recognition Algorithms,” inProc. of the 2nd
Annual Workshop on Memory Performance Issues, 2002.

12



[20] ——, “Architectural Optimizations for Low-Power, Real-time
Speech Recognition,” inProc. of the Intl. Conf. on Compilers,
Architectures and Synthesis for Embedded Systems, 2003.

[21] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “MediaBench: A
Tool for Evaluating and Synthesizing Multimedia and
Communicatons Systems,” inProc. of the 29th MICRO, 1997.

[22] M.-L. Li, “Data-Level and Thread-Level Parallelism inEmerging
Multimedia Applications,” Master’s thesis, Univ. of Illinois,
Urbana-Champaign, 2005.

[23] B. Mathew, A. Davis, and R. Evans, “A Characterization of Visual
Feature Recognition,” Univ, of Utah, Tech. Rep. UUCS-03-014,
2003.

[24] B. Mathew, A. Davis, and Z. Fang, “A Low-Power Accelerator for
the SPHINX 3 Speech Recognition System,” inProc. of the Intl.
Conf. on Compilers, Architecture and Synthesis for Embedded
Systems, 2003.

[25] MPEG Software Simulation Group, “MSSG MPEG2 encoder and
decoder,” http://www.mpeg.org/MPEG/MSSG/, 1994.

[26] T. D. Nguyen, R. Vaswani, and J. Zahorjan, “Parallel Application
Characterization for Multiprocessor Scheduling Policy Design,” in
Job Scheduling Strategies for Parallel Processing, Volume 1162 of
Lecture Notes in Computer Science, Springer-Verlag, 1996.

[27] M. K. Ravishankar, “Sphinx-3 s3.X decoder,”
http://cmusphinx.sourceforge.net/sphinx3/, 2004.

[28] R. Reddyet al., “CMU SPHINX,”
http://www.speech.cs.cmu.edu/sphinx/, 2001.

[29] R. Sasanka, M.-L. Li, S. V. Adve, Y.-K. Chen, and E. Debes, “ALP:
Efficient Support for All Levels of Parallelism for Complex Media
Applications (Submitted for publication),” Dept. of Computer
Science, University of Illinois, Tech. Rep. UIUCDCS-R-2005-2605,
July 2005.

[30] N. T. Slingerland and A. J. Smith, “Design and Characterization of
the Berkeley Multimedia Workload.”Multimedia Syst., vol. 8, no. 4,
2002.

[31] J. E. Stone, “Taychon raytracer,”
http://jedi.ks.uiuc.edu/∼johns/raytracer/, 2003.

[32] M. Turk and A. Pentland, “Face Recognition Using Eigenfaces,” in
Journal of Cognitive Neuroscience, Vol. 3, 1991.

[33] J. C. Vorbruggen, “187.facerec: CFP2000 benchmark description,”
http://www.spec.org/osg/cpu2000/CFP2000/, 2000.

[34] Z. Wang, “Fast Algorithms for the Discrete Cosine Transform and for
the Discrete Fourier Transform,” inIEEE Transactions in Acoustics,
Speech, and Signal Processing. Vol. ASSP-32, 1984.

[35] S. C. Wooet al., “The SPLASH-2 Programs: Characterization and
Methodological Considerations,” inProc. of the 22th Annual Intl.
Symp. on Comp. Architecture, 1995.

13


