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Abstract—The heterogeneous-race-free (HRF) memory 

model has been embraced by the Heterogeneous System Archi-

tecture (HSA) Foundation and OpenCLTM because it clearly 

and precisely defines the behavior of current GPUs. However, 

compared to the simpler SC for DRF memory model, HRF has 

two shortcomings. The first is that HRF requires programmers 

to label atomic memory operations with the correct scope of syn-

chronization. This explicit labeling can save significant coher-

ence overhead when synchronization is local, but it is tedious 

and error-prone. The second shortcoming is that HRF restricts 

important dynamic data sharing patterns like work stealing. 

Prior work on remote-scope promotion (RSP) attempted to re-

solve the second shortcoming. However, RSP further compli-

cates the memory model and no scalable implementation of RSP 

has been proposed. For example, we found that the previously 

proposed RSP implementation actually results in slowdowns of 

up to 30% on large GPUs, compared to a naïve baseline system 

that forgoes work stealing and scopes. Meanwhile, DeNovo has 

been shown to offer efficient synchronization with an SC for 

DRF memory model, performing on average 21% better than 

our baseline system, but it introduces additional overheads to 

maintain ownership of all modified data. 

To resolve these deficiencies, we propose to adapt lazy re-

lease consistency—previously only proposed for homogeneous 

CPU systems—to a heterogeneous system. Our approach, called 

hLRC, uses a DeNovo-like mechanism to track ownership of 

synchronization variables, lazily performing coherence actions 

only when a synchronization variable changes locations. hLRC 

allows GPU programmers to use the simpler SC for DRF 

memory model without tracking ownership for all modified 

data. Our evaluation shows that lazy release consistency pro-

vides robust performance improvement across a set of work-

stealing graph analysis applications—29% on average versus 

the baseline system. 
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I. INTRODUCTION 

Architects must carefully consider a plethora of tradeoffs 
when specifying a new memory model and designing the 
hardware that implements it. With the emergence of 
heterogeneous computing and high-throughput accelerators, 
there is an increasing tension to keep both the memory model 

and hardware simple. In comparison, CPUs provide relatively 
simple memory models, but use complex and highly 
optimized cache coherence protocols that enforce the single-
writer/multiple reader invariant [1]. Specifically, store 
operations invalidate the target address at every private cache 
other than the initiator’s. This complicated CPU approach is a 
poor fit for GPUs for several reasons. First, a GPU core, called 
a compute unit (CU), has thousands of hardware threads, 
called work-items. Sending invalidations on every store miss 
would generate far too much invalidation traffic. Second, 
managing the invalidations requires sophisticated cache 
controllers that detract from the GPU’s primary application: 
graphics. Finally, writer-initiated invalidations often employ 
inclusive caches, which are a poor fit for GPUs because their 
aggregate L1 cache capacity approaches the size of a typical 
GPU last-level cache. 

For these reasons, GPUs take a different approach to 
synchronization. Specifically, they use simple bulk coherence 
actions, like cache flushes and invalidates, at the 
synchronization points in the program. This approach aligns 
with current memory models, like C++11 [2], where 
programmers clearly identify inter-thread communication by 
operating on atomic variables. At these synchronization 
points, coarse-grain coherence actions, like cache flushes and 
invalidates, are sufficient to implement memory models that 
guarantee sequential consistency for data race-free (SC for 
DRF) programs [3]. 

Unfortunately, bulk coherence actions negatively affect 
performance. Specifically, cache flushes incur long latencies 
because they require all of the dirty cache blocks in the 
initiator’s private caches to be written through the memory 
hierarchy. Flash invalidations are fast, but degrade cache 
locality and cause excessive cache misses. 

To solve these problems, modern GPUs support scoped 
synchronization [4][5][6]. Scopes takes advantage of the 
GPU’s hierarchical execution model to limit the cost of bulk 
coherence actions. For example, work-items executing on the 
same CU can communicate through the L1 cache without 
incurring any cache flushes or invalidates. In contrast, work-
items executing on different CUs are required to read and 
write from the GPU’s monolithic last-level cache. 
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While scoped synchronization is successful in mitigating 
the cost of bulk coherence actions, it leads to a memory model 
(e.g., SC for HRF [7][8]) with two significant shortcomings. 
First, programmers are expected to explicitly label atomic 
memory operations with the correct scope in order to 
maximize performance, which is tedious and error-prone [9]. 
Second, scoped synchronization does not use caches 
effectively for important dynamic data sharing patterns like 
work stealing. 

To combat this second shortcoming, remote-scope 
promotion [12] was recently proposed, but it is not a panacea. 
RSP further complicates the memory model and the initial 
implementations of RSP, while effective for relatively small 
GPUs, do not scale to large GPUs. Specifically, we found that 
RSP actually performs worse on a large 128-CU GPU when 
compared to a naïve baseline that forgoes work stealing and 
scopes (Figure 1).  

Meanwhile, the recent DeNovo proposal addresses the 
first shortcoming by suggesting that future GPUs should forgo 
scoped synchronization and support the simpler SC for DRF 
memory model [10]. However, DeNovo tracks ownership for 
all written data, incurring additional overheads to request and 
revoke ownership registration. Also, when compared to 
current GPU designs, DeNovo’s benefits primarily arise from 
locality in written data, which is limited in existing GPU 
compute applications. 

In this work, we introduce heterogeneous lazy release 
consistency (hLRC) for GPUs. Like DeNovo, our approach 
eliminates scopes and enables SC for DRF on GPUs, 
achieving scalable synchronization for data sharing patterns 
like work stealing. hLRC also uses atomic registration, as 
proposed by Sung and Adve [11], to track exclusive ownership 
of synchronization variables, but not all of stored data like 
DeNovo. hLRC also differs from DeNovo by performing 
coherence actions when synchronization variables change 

registration, thus implementing lazy releases and potentially 
reducing coherence traffic. hLRC achieves a speedup of on 
average 29% on a large GPU with 128 CUs, when compared 
to the naïve baseline, and 7% on average compared to 
DeNovo. Finally, our implementation of hLRC builds off of 
bulk synchronization flush and invalidate actions, which is 
consistent with the current approach to GPU synchronization.  

II. GPU CACHES AND SYNCHRONIZATION 

A. GPU Architecture 

The GPU’s massively threaded architecture, depicted in 
Figure 2, targets highly concurrent applications. Specifically, 
each GPU core, called a compute unit (CU), executes 
thousands of threads, called work-items, simultaneously. For 
example, a CU in the AMD GCN architecture has hardware 
state for 2,560 work-items [13]. The GPU’s CUs are 
connected to memory through a hierarchy of caches. 
Typically, each CU has a private L1 cache to optimize 
communication within a CU. The L1 caches tend to be small 
and optimized for throughput. For example, the L1 cache is 
16 kB in AMD’s GCN architecture [13] and up to 48 kB in 
Nvidia’s Maxwell GPU [4]. To optimize communication 
between work-items on different CUs, it is common to 
connect the L1 caches to a GPU-wide non-inclusive L2 cache. 

GPU work-items (wi) execute within an execution 
hierarchy that mirrors the GPU’s hierarchical design. The first 
level of the execution hierarchy is a wavefront, which is a 
small group of work-items (e.g., 64 on AMD GPUs, 32 on 
NVIDIA GPUs, 4 on Intel GPUs, etc.) that execute in lockstep 
on the GPU’s data-parallel execution units. Wavefronts then 
execute in small teams called work-groups. Wavefronts in the 
same work-group execute on the same CU, which enables 
them to synchronize through the L1 cache. Ultimately, a GPU 
executes a grid of work-groups. Thus, work-items in a grid 
can communicate through the GPU’s L2. Finally, work-items 
in a grid can communicate externally (e.g., with CPU threads) 
through a common level of the memory hierarchy (e.g., the 
memory controller). 

B. GPU Synchronization 

Recall that each CU executes thousands of work-items 
concurrently. Thus, to avoid excessive invalidation traffic, 

 
Figure 1. RSP scalability on a small and large GPU. 
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Table 1. Simple GPU coherence actions. 

Flush local L1 
Coarse-grain flush of all dirty data in the local L1 to the 

next level of the memory hierarchy. 

Inv local  L1 
Coarse-grain invalidation of all valid data in the local 

L1. 

LD/ST/RMW x 

L1/L2 

Atomic memory access on location x performed at the 

L1 or L2 cache 

Lock op/x 
Block a specific operation (op) at a particular cache or 

all ops on address x within a cache. 
 

 
Figure 2. Baseline example GPU. 
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GPUs forgo CPU-like coherence protocols where each write 
obtains ownership to enforce the single-writer/multiple reader 
invariant [1]. Instead, GPUs only track whether a cache line is 
valid (V), dirty (D), or invalid (I) and rely on simple coherence 
actions, summarized in Table 1, at synchronization points 
(e.g., when accessing an atomic variable like a lock). 

Coherence actions enable sequential consistency for data-
race-free programs (SC for DRF) [3]. The C++11 memory 
model [2][14] provides atomic variables for communicating 
between threads. For example, consider the sequence of 
operations in Figure 3a, where a work-item on CU0 executes 
a store release (ST_rel) operation on the atomic variable x to 
broadcast data that it has written to other work-items on the 
GPU. A memory operation labeled as release naturally 
corresponds to the flush action (Table 1), which writes dirty 
data through the memory hierarchy. Referring back to Figure 
3a, a work-item on CU1 then executes a load acquire memory 
operation (LD_acq) to read data written by another work-item. 
An acquire corresponds to the invalidate action in Table 1, 
which eliminates cached data that may have become stale. 

C. Scoped Synchronization 

Since GPUs use expensive coarse-grain coherence 
actions, current programmers are encouraged to use scoped 
synchronization to minimize their performance impact. In 
particular, cache flushes encounter long latency while waiting 
to write all dirty data through the cache hierarchy, and flash 
invalidates, while fast, significantly degrade cache locality. 
Scoped synchronization allows programmers to identify when 
these coarse-grain operations are necessary and conveniently 
matches the GPU’s execution hierarchy. Currently, the most 
important scopes are work-group (wg), GPU-wide (agent), 
and SoC-wide (system)1 . For example, consider Figure 3b 
where flushes and invalidates are avoided entirely because the 
atomic memory operations are labeled as wg-scoped, which is 
sufficient when work-items from the same work-group 
communicate. In contrast, when instructions are labeled as 
agent-scoped (Figure 3c), L1 cache flushes and invalidates 
are used to communicate data through the GPU-wide L2 cache 
and the atomic memory operations are directly performed at 
the L2 (denoted in row 3 of Table 1). Finally, while agent 
scope is sufficient when work-items from the same grid 
communicate, system scope is used to communicate between 
CPU and GPU threads. 

Scoped synchronization has two major shortcomings. The 
first shortcoming is that it leads to a more complex memory 
model called SC for HRF, where atomic accesses must be 

                                                           
1  Agent and system scope are equivalent to memory_scope_device 

and memory_scope_all_devices, respectively, in OpenCL terminology. 

statically labeled to indicate the scope of communication. If a 
programmer labels atomic memory operations with the wrong 
scope, a race can occur. A second problem with scopes is that 
it is difficult to optimize dynamic sharing patterns like work 
stealing. 

D. Remote-Scope Promotion 

An inherent limitation of scoped synchronization is its 
inability to effectively utilize caches for dynamic sharing 
patterns like work stealing. For example, consider an 
application that allocates a task queue per work-group. In the 
common case, work-items within a work-group would like to 
coordinate their task queue accesses using wg-scoped atomic 
operations (e.g., Figure 3b). However, recall that work-items 
in different work-groups are required to synchronize through 
the agent scope (e.g., Figure 3c). Thus, accessing any queue 
with wg-scoped atomics disallows a work-item to steal a task 
from another work-group’s task queue. 

To solve this dilemma, RSP gives work-items the 
capability to dynamically promote the scope of atomic 
memory operations executed by other work-items. This is 
demonstrated in Figure 3d, where a work-item executing on 
CU1 promotes the wg-scoped store release operation to the 
GPU-wide agent scope. 

While RSP resolves the limitation of using static scoped 
synchronization, the initial implementation of RSP relies on 
heavyweight broadcast operations and cache-level locks to 
preserve RMW atomicity. Table 2 describes these operations. 
To illustrate these overheads, we step through the required 
coherence actions for the example in Figure 3d. We focus on 
the implementation described (and verified) by Wickerson et 
al. [15], which is enumerated on the left side of Table 3. 

In the example, the wg-scoped store release is performed 
locally in CU0’s L1 cache (a6) and does not trigger any 
coherence actions. To correctly enforce acquire semantics, the 
rm_agent-scoped RSP access needs to promote the scope of 
the last wg-scoped release. In the example, after performing a 

CU0          CU1 
<guarded > 
ST_rel x  
             LD_acq x  
             <guarded> 

CU0 (wi 0)   CU0 (wi 1)  
<guarded > 
ST_rel _wg x 
             LD_acq_wg x 
             <guarded > 

CU0          CU1 
<guarded > 
ST_rel _agt  x 
             LD_acq_agt  x 
             <guarded > 

CU0          CU1 
<guarded > 
ST_rel _wg x 
             LD_acq_rm_agt  x 
             <guarded > 

a. SC for DRF (no scopes) b. SC for HRF (work -group scope) c. SC for HRF (agent scope) d. RSP (remote agent scope) 

Figure 3. Release to acquire synchronization in different memory models. 

Table 2. Coherence actions added by RSP from Wickerson et al. [15]. 

Flush all L1s bcast 
A broadcasted request to all remote L1 

caches to flush their dirty data to the next 

level of the cache hierarchy. 

Inv all L1s bcast 
A broadcasted request to all remote L1 

caches to invalidate their valid data. 

Lock all RMWs 
A broadcasted request to all remote L1 

caches to block RMWs. 

Unlock all RMWs 
A broadcasted request to all remote L1 

caches to unblock RMWs. 
 



load on the atomic variable at the L2 cache (a3), dirty data on 
CU0 must be written through to the GPU-wide L2 cache, since 
the wg-scoped release does not cause a flush. Since the RSP 
access does not know the location of past synchronizing 
releases, it must broadcast a flush command to all L1 caches 
in the system (a4), conservatively expanding the scope of all 
past release accesses to agent. When the heavy-weight 
broadcast flush is complete, a local cache invalidation is 
triggered at CU1’s L1 (a5) to make any flushed writes visible 
at CU1. 

A broadcast flush command can add significant overhead 
to an RSP synchronization access because all dirty data in all 
remote CUs must be flushed before the RSP access is 
complete. Performing a flush at all CUs also reduces the write 
combining potential of all L1 caches in the system and 
increases traffic in the network. 

The example focused on synchronizing a wg-scoped 
release to a rm_agent-scoped acquire. A similar approach is 
used to synchronize a rm_agent-scoped release (a9-a14) to a 
wg-scoped acquire. Specifically, because the rm_agent-
scoped release does not know the origin of the next acquire, it 
must broadcast an invalidation command to all L1 caches in 
the system, conservatively expanding the scope of all future 
acquires to the agent scope. 

Any RSP operation that involves a write (e.g., store, a9–
a14, or RMW, a19–a25) must also enforce RMW atomicity with 
concurrent wg-scoped RMW accesses (a15) to preserve a 
consistent final state of memory [15]. Specifically, an RSP 
store blocks RMW operations at all CUs using a broadcast 
lock command (a9). It then ensures all caches have the target 
variable in a consistent state using broadcast flush (a10) and 
invalidate commands (note a11 and a13 are both necessary to 
enforce sequential consistency). Finally, it broadcasts an 

Table 3. Coherence actions for implementing the RSP (scoped) memory model and the DeNovo and hLRC (non-scoped) memory models. 

Instruction Scoped Memory Models Non-scoped Memory Models 

Order Scope RSP Actions Order Prior Location 

of Registered 

Atomic 

DeNovo Actions hLRC Actions 

Atomic LD Acquire Work-

group 
a0:  LD x L1 Acquire Local L1 b0:  LD x L1 

b1:  Inv local L1 

c0:  LD x L1 

Agent a1:  LD x L2 

a2: Inv local L1 

L2 b2:  R state & data to 

requesting L1 

b3:  LD x L1 

b4:  Inv local L1 

c1:  R state & data to re-

questing L1 

c2:  LD x L1 

c3:  Inv local L1 

Remote 
Acquire 

Agent a3:  LD x L2 

a4:  Flush all L1s bcast 

a5:  Inv local L1 

Remote L1 b5:  R state & data to 

requesting L1 

b6:  LD x L1 

b7:  Inv local L1 

c4:  Flush remote L1 

c5:  R state & data to re-

questing L1 

c6:  LD x L1 

c7:  Inv local L1 

Atomic ST Release Work-

group 
a6:  ST x L1 Release Local L1 b8:  StReg local L1 

b9:  ST x L1 

c8:  ST x L1 

Agent a7:  Flush local L1 

a8:  ST x L2 

L2 b10:  StReg local L1 

b11:  R state & data to 

requesting L1 

b12:  ST x L1 

c9:  R state & data to re-

questing L1 

c10:  ST x L1 

c11:  Inv local L1 

Remote 

Release 

Agent a9:  LK all RMWs 

a10:  Flush all L1s bcast 

a11:  Inv all L1s bcast 

a12:  ST x L2 

a13:  Inv all L1s bcast  

a14:  UL all RMWs 

Remote L1 b13:  StReg local L1 

b14:  R state & data to 

requesting L1 

b15:  ST x L1 

c12:  Flush remote L1 

c13:  R state & data to 

requesting L1 

c14:  ST x L1 

c15:  Inv local L1 

Atomic 

RMW 

Acquire-
Release 

Work-
group 

a15:  RMW x L1 Acquire-
Release 

Local L1 b16:  StReg local L1 

b17:  RMW x L1 

b18:  Inv local L1 

c16:  ST x L1 

Agent a16:  Flush local L1 

a17:  RMW x L2 

a18:  Inv local L1 

L2 b19:  StReg local L1 

b20:  R state & data to 

requesting L1 

b21:  RMW x L1 

b22:  Inv local L1 

c17:  R state & data to 

requesting L1 

c18:  ST x L1 

c19:  Inv local L1 

Remote 

Acquire-

Release 

Agent a19:  LK all RMWs 

a20:  Flush all L1s bcast 

a21:  Inv all L1s bcast 

a22:  RMW x L2 

a23:  Flush all L1s bcast 

a24:  Inv all L1s bcast 

a25:  UL all RMWs 

Remote L1 b23:  StReg local L1 

b24:  R state & data to 

requesting L1 

b25:  RMW x L1 

b26:  Inv local L1 

c20:  Flush remote L1 

c21:  R state & data to 

requesting L1 

c22:  RMW x L1 

c23:  Inv local L1 

 



unlock command, allowing CUs to resume processing local 
RMW requests (a14). Broadcast lock and unlock commands 
add overhead to the RSP atomic writes, increase network 
traffic, and delay wg-scoped RMW accesses on all CUs for the 
duration of the RSP access. 

In the end, RSP enables dynamic sharing by adding a new 
synchronization operation. However, the proposed 
implementation of RSP triggers broadcast operations for 
every remote-scoped access, which complicates the memory 
system and significantly limits scalability. 

E. DeNovo 

Sinclair et al. recently proposed applying the DeNovo 
coherence protocol to GPUs as a means to achieve efficient 
synchronization without the need for scopes [10]. The column 
labeled DeNovo Actions in Table 3 describes the 
implementation and highlights that rather than using scopes to 
avoid coherence actions, DeNovo uses exclusive registration 
to reduce the impact of synchronization. Specifically, a cache 
must have registered ownership for all written data by the time 
it reaches a release point, and immediately for each atomic 
access. We refer to this store registration action as StReg in 
Table 3 (b8, b10, b13, b16, b19, and b23). The action is 
conceptually similar to the Flush action described in Table 2. 
However, instead of writing through dirty data, DeNovo 
requests registration for each dirty address from the L2 cache 
and the dirty data remains in the local L1 cache. As long as 
data obtains exclusive registration, it does not need to be 
flushed or invalidated on a subsequent acquire or release 
operation. 

DeNovo implements exclusive registration by adding a 
Registered state to the L1 and L2 cache. If data is in the 
Registered state at an L1 cache, then that cache has the only 
registered, up-to-date copy of the variable in the system. 
When in the Registered state, the L2 cache tracks the ID of the 
current registered L1 cache using its empty L2 data entry, 
avoiding the need for a separate pointer storage structure. This 
requires L2 inclusivity for registered data. 

When registration is transferred (either to the L2 on an L1 
eviction or to a new requesting L1 cache), the previously 
registered cache forwards the up-to-date value to the newly 
registered cache. If the registration is to another L1, the L2 
cache updates its registered ID. DeNovo registration thus 
guarantees that there is always one up-to-date location for 
written data, and its location can be determined by querying 
the L2 cache. 

By obtaining local registration for written data and atomic 
accesses, DeNovo is able to exploit locality even in the 
presence of frequent synchronization. Specifically, only non-
registered data needs to be invalidated or flushed on a 
synchronizing atomic, and the actual atomic update is 
performed locally. However unlike RSP, every synchronizing 
atomic triggers an invalidation or flush action. As a result, 
DeNovo can perform wasteful coherence actions when 
synchronization is local, although registering written data can 
make coherence actions cheaper and allows DeNovo to 
exploit data locality even when synchronization locality is 

absent. Additionally, DeNovo’s registration of all written data 
can incur significant overhead, since the L2 must be kept 
inclusive for this data and an additional level of indirection is 
required when remotely owned data is requested. 

III. LAZY RELEASE CONSISTENCY FOR GPUS 

We propose heterogeneous lazy release consistency 
(hLRC) as a new GPU implementation to efficiently support 
dynamic sharing and the SC for DRF memory model. hLRC 
is based on the principles of lazy release consistency, which 
has previously been used to reduce wasteful communication 
in distributed CPU shared memory systems [16]. Similar to 
DeNovo (and unlike RSP), hLRC offers efficient local 
synchronization and scalable global synchronization without 
the need for scopes, thus enabling an SC for DRF memory 
model. In addition, similar to RSP (and unlike DeNovo), 
hLRC entirely avoids coherence actions when 
synchronization is local. 

Similar to the lazy release consistency for CPUs, hLRC 
associates each atomic variable with the location it was last 
accessed. Coherence actions are then performed only when 
the location of the atomic variable changes (including when 
the variable is first brought into a cache), because this 
indicates a possible inter-core synchronization. In doing so, 
the caches are able to exploit greater efficiency, and heavy-
weight coherence actions only need to occur in a targeted 
manner on the one or two CUs that may be involved in remote 
synchronization. 

A. hLRC Atomic Tracking 

In order to trigger the appropriate coherence actions when 
an atomic variable changes location, hLRC must track and 
serialize accesses to each atomic variable. This is 
accomplished by obtaining exclusive local registration for 
every atomic access. The registration mechanism used for 
hLRC is based on DeNovo registration, described in Section 
II.E. As with DeNovo, a variable may be registered in only 
one location at any time, and once obtained, registration is not 
revoked until a remote CU requests the registration or until the 
data is evicted. 

While DeNovo uses registration for both atomic accesses 
and normal stores, a key distinction of hLRC is that only 
atomic accesses require registration. As a result, DeNovo 
experiences greater L2 cache pressure because every write 
requires registration at the L2. By only registering atomics, 
hLRC significantly reduces the amount of registered data that 
must be tracked at the L2, effectively increasing L2 capacity. 
In addition, hLRC significantly reduces the additional probe 
bandwidth and latency incurred by requests for remotely 
registered data. 

B. Implementing Synchronization Semantics 

hLRC implements release consistency in a scalable 
fashion appropriate for GPUs and uses atomic registration to 
automatically detect and exploit synchronization locality 
without relying on scopes. By delaying coherence actions 
until the location of a synchronization variable changes, 



locality for all data (not just written data) is improved, coher-
ence actions are more targeted, and unnecessary data 
communication is reduced. 

Just as traditional lazy release consistency decouples the 
coherence actions from a release operation and performs the 
release only when a synchronizing acquire is detected, hLRC 
only performs the necessary actions when potential inter-core 
synchronization is detected: when the location of an atomic 
variable changes. This section describes how hLRC 
implements the relevant release consistency semantics. Our 
implementation is specified completely in the right side of 
Table 3, which is laid out to show how registration replaces 
scopes. With hLRC, the coherence actions required by any 
atomic operation are completely dependent on the prior 
registered location of the targeted variable. 

1) Acquire Semantic:  
With hLRC, an acquire memory operation does not require 

knowledge of the scope of the last release. Instead, the 
location of the last release is determined through hardware 
registration. If the target variable is not already registered at 
the requesting L1, registration must be obtained. There are 
two registration scenarios: (1) the atomic variable is resident 
at the L2 cache or deeper; (2) the atomic variable is registered 
at another CU’s L1 cache. In the latter case, registration is 
revoked and the last (remote) L1 cache holding the registered 
data is required to flush its dirty data to the GPU-wide L2 
(Table 3, c4). Once the atomic is unregistered from the last 
owner, the registration process can proceed (Table 3, c1-c3 or 
c5-c7). Transferring registration to an L1 cache always triggers 
an L1 invalidate (Table 3, c3, c7) following the data access. As 
a result, future acquires to that atomic variable require no 
coherence actions (Table 3, c0) as long as the variable remains 
registered in the L1. To summarize, invalidations are limited 
to changes in registration (for synchronization variable only). 
hLRC acquires to local variables avoid the coherence actions 
used by DeNovo acquires (i.e. invalidation of non-registered 
data), and all hLRC acquires avoid the costly broadcast 
invalidate actions used by the RSP implementation. 

2) Release Semantic 
The operation of a release (Table 3, c8;c9-c11;c12-c15) 

mirrors the operation of an acquire. Notably, no coherence 
actions occur when a release finds the atomic registered at the 
L1 (Table 3, c8). This approach delays the flush associated 
with a release until a registration change. Registration can 
change in two ways: (1) an atomic access on another CU 
revokes registration (Table 3, c4-c7); (2) the atomic variable is 
evicted from the L1 cache. When the remote CU loses 
registration, its L1 cache is flushed (Table 3, c12) to propagate 
dirty data associated with the atomic and the atomic variable 
may not be read by any core until the flush is complete. Since 
this effectively moves the release latency from the releasing 
thread to the next remote acquiring thread, this can be destruc-
tive if remote synchronization is frequent and acquire opera-
tions are more latency-sensitive. A second subtlety in 
obtaining registration for a release access is that the local CU 
executing the release requires an L1 cache invalidation (Table 
3, c11;c15). This is to ensure that any subsequent acquire 

operations to atomic variables located on the same cache line 
synchronize correctly. 

In summary, flushes only occur when an L1 loses 
registration. Therefore release accesses to local variables 
avoid the coherence actions incurred by DeNovo releases (i.e. 
obtaining registration for non-registered stores), and the costly 
broadcasted flushes used by RSP are eliminated. By delaying 
the coherence actions associated with a release, hLRC can 
improve store coalescing and reduce write-through traffic 
when synchronization locality is high. 

3) RMW Atomicity 
In hLRC, registration acts as a token for exclusive 

permission, naturally preserving RMW atomicity. Therefore, 
unlike RSP, atomic memory operations do not require global 
RMW locks to prevent racing local RMW accesses from 
generating an inconsistent state. 

C. Discussion 

Tracking atomic variables enables targeted and efficient 
coherence actions for most types of synchronization, however 
there are complexities and costs associated with hLRC. In this 
subsection, we discuss three unique issues associated with 
hLRC. 

1) Multi-word Cache Block Issues 
False sharing occurs when two synchronization variables 

lie in the same cache block. If these variables are accessed 
regularly at different CUs, then hLRC registration transfers 
may be frequent. Every time registration is transferred, 
coherence actions are triggered to enforce data consistency 
between the old CU and new CU even though there is no 
synchronization between them.  

In addition to false sharing between atomic variables, 
hLRC may degrade the performance of non-atomic data 
accesses to a registered cache line. When a cache line is 
registered in an L1, it is unaffected by flush or invalidation 
coherence actions. However, if there are non-atomic data 
variables on the same line, then preventing flushes and 
invalidations of this data could cause the cached data to 
become inconsistent. Therefore data loads and stores to a 
registered cache line must bypass the L1 cache and be 
performed at the L2 cache. Servicing data accesses at the L2 
to registered cache lines is possible because under SC for DRF 
the data access may not conflict with the registered portion of 
the L2 data field. 

Code should be optimized to avoid the problems arising 
from multiple atomic variables on the same cache line or 
atomic and data variables on the same cache line. Specifically, 
atomic data may be padded where feasible to prevent 
colocation in the same cache line with unrelated atomics, or 
with frequently accessed data. 

2) Other Unnecessary Coherence Actions 
A second problem is that unnecessary coherence actions 

can be triggered when registration transfer occurs in the 
absence of a synchronizing acquire-release pair. For example, 



two release accesses from different CUs do not form a syn-
chronize-with relationship and thus do not require a local 
cache invalidation to maintain coherence. However, under 
hLRC, coherence actions are triggered when registration 
changes for any reason, so these two accesses will result in 
two unnecessary cache invalidations (triggered when each CU 
obtains registration for the atomic) in addition to the flushes 
needed for store propagation (triggered when each CU loses 
registration for the atomic).. These disadvantages can be 
mitigated by using synchronization scopes as a performance 
optimization. This is discussed further in Section V.C. 

In addition, cold misses, cache evictions, and false sharing 
cause registration transfer as well. A cold miss on a 
synchronization variable clearly does not require any coher-
ence actions. However, since the system cannot differentiate a 
cold miss from data that has been evicted, an invalidation must 
be triggered at the requesting L1. 

Eviction of registered L1 data causes a flush of dirty data 
at that L1. Furthermore, since registered data must be kept 
inclusive in the L2, an eviction of a registered synchronization 
variable at the L2 must also trigger an eviction and flush in the 
L1. As a result if the variable is accessed next by the same CU, 
the miss will trigger an additional unnecessary cache 
invalidation. 

To minimize the overhead associated with unnecessary 
registration actions, we optimized the L1 and L2 cache 
replacement policy to prefer non-registered data for eviction 
first and then by last use (older data is preferred for eviction). 

3) Supporting Fences and Relaxed Atomics 
hLRC has been designed so far to support the simpler SC 

for DRF memory model, but most modern programming lan-
guages, such as C++ [2], provide relaxed atomics and fences 
that violate SC for DRF. While not explored in detail, we be-
lieve hLRC can implement these operations in a straightfor-
ward manner. Specifically, relaxed atomics could avoid coher-
ence actions and operate at the L1 cache on an L1 hit, at the 
L2 cache on an L2 hit, or in a remote cache if remotely regis-
tered. Meanwhile, fence operations can translate to acquire-
release operations without a memory access (or to a dummy 
variable). 

IV. METHODOLOGY 

We simulate a CPU-GPU system using an extended ver-
sion of the publicly available AMD gem5 APU simulator [17]. 
Figure 2 represents the high-level organization of the 
evaluated GPU that contains 128 CUs in total. Each CU has 
four SIMD units with 40 hardware wavefront contexts that are 
scheduled using the oldest-job-first policy. Each CU has a 
private L1 data cache. Each instruction cache is shared by four 
CUs. All L1 data caches and instruction caches are connected 
to a unified L2 cache that is then connected to system memory 
through a memory controller shared by an on-chip CPU. 
These components are distributed evenly across an 8x16 mesh 
network. Table 4 describes the detailed parameters of the 
simulated system. 

The baseline protocol uses a write-through, write-allocate 
policy at the L1 and L2 for all data. An acquire operation 
triggers a single-cycle flash invalidation of the L1 cache, and 
a release operation triggers a flush of the L1 store buffer, 
which is implemented as a FIFO. 

To support DeNovo and hLRC we added a Registered state 
to the L1 and L2 caches. When using hLRC, or DeNovo L1 
and L2 caches are write-back and write-allocate for registered 
data. hLRC performs coherence actions when registration 
state changes. When registration is transferred to an L1, an 
invalidation is triggered at that L1. When registration is 
transferred out of an L1, a flush is triggered at that L1. For 
both DeNovo and hLRC, registered data is not invalidated on 
a flash invalidation or written back on a flush. 

A. Workloads 

We select three graph processing applications from the 
Pannotia benchmark suite [18] to evaluate our system 
changes. The applications selected are: 

Single-source shortest path (SSSP): Calculates the 
shortest distance between a source node and all other nodes in 
the graph. 

Graph coloring (color): Assigns colors to nodes in a 
graph such that each node is a different color than its 
neighbors. 

PageRank (PR): Generates a ranking of importance for 
each node in a graph based on its connectivity and the ranks 
of its neighbors. 

Each of these applications converges on a solution by 
iteratively processing all nodes in a graph. Processing a node 

Table 5. Workloads and inputs. 

Benchmarks Graph Inputs Graph Sizes 

Single Source Shortest Path 

(SSSP) 

1: USA-road-d.BAY 
2: USA-road-d.COL 

3: c-68 

7.86 MB 
21.3 MB 

4.27 MB 

Graph Coloring (color) 
1: ecology1 

2: coAuthorsDBLP 

3: dictionary28 

35.9 MB 
18 MB 

1.64 MB 

PageRank (PR) 

1: USA-road-d.BAY  

2: c-68 
3: OPF_10000 

7.86 MB 

4.27 MB 
3.57 MB 

 

Table 4. Simulation configuration. 

128 Compute Units, each configured as described below: 

Clock 1GHz, 4 SIMD units 

Wavefronts (#/scheduler) 40 (each 64 lanes)/oldest-job first 

Data cache 
16kB, 64B line, 16-way, 4 cycles, delivers 

one line every cycle 

Memory Hierarchy 

L2 cache 
4MB, 64B line, 16-way, 24 cycles 

write-through (write-back for R data) 

1 Instr. cache/4 CUs 32kB, 64B line, 8-way, 4 cycles 

DRAM DDR3, 32 Channels, 500 MHz 

Task Runtime 

128 task queues 
1 work-group/queue, 

2 wavefronts/work-group 

Additional DeNovo/hLRC Storage 

L1 / L2 cache state R state / R state 
 



involves visiting each of the node’s neighbors, so load 
imbalance is introduced through variation in the degrees of 
assigned nodes.  

To mitigate load imbalance and demonstrate the value of 
dynamic sharing, each application has been modified to use 
per-CU task queues and work stealing. Graph nodes are 
initially evenly distributed across all 128 task queues. In the 
presence of load imbalance, underutilized CUs may steal from 
remote task queues when stealing is enabled. Work stealing is 
implemented similar to Orr et al [12][19]. Lock-free pop and 
steal functions are used to consume nodes from the local task 
queue and from a remote task queue, respectively. 

Graph inputs are chosen from the Florida sparse matrix 
collection [20]. The inputs that we evaluated for each 
workload are listed in Table 5. These inputs were selected to 
fully utilize all 128 CUs. 

B. Scenarios 

We use 6 execution scenarios to evaluate hLRC: baseline, 
scope-only, steal-only, RSP, DeNovo-B, and hLRC. The 
baseline configuration uses neither scoped synchronization 
nor work stealing. Work-groups can only pull from their own 
work list and use agent scope for all synchronization. The 
scope-only configuration isolates the efficiency benefits of 
scoped synchronization by only allowing work-groups to pull 
from their own statically assigned work list and the work-
groups use wg-scope for all synchronization. The steal-only 
configuration isolates the load balancing benefits of work 
stealing by allowing work stealing from remote CUs and using 
agent scope for all synchronization accesses. RSP uses the 
RSP implementation described in Section II.D to take 
advantage of both scoped synchronization and work stealing. 
Work-items use wg-scoped synchronization when pulling 
from their local work lists, and they use RSP synchronization 
when stealing from a remote work list. DeNovo-B represents 
a simplified implementation of the DeNovo protocol (de-
scribed in Section II.E) because it tracks registration at cache 
block granularity rather than at word granularity. It also differs 
from the prior implementation [10] because coherence regions 
are not implemented for read-only data. Although these 
simplifications reduce hardware and software complexity, 

they can lead to increased false sharing and more wasteful in-
validations than would occur in the optimized protocol. hLRC 
is implemented as described in Section III; it can perform 
work stealing and exploit synchronization locality 
automatically through local registration. 

V. RESULTS 

A. Performance of 128-CU GPU 

Figure 4 compares the speedup of the 5 configurations 
described in Section IV.B relative to baseline. On average, the 
scope-only configuration improves performance by 7% 
relative to baseline, the steal-only configuration improves 
performance by 16%, the RSP implementation causes a 4% 
decrease in performance, DeNovo-B improves performance 
by 21%, and hLRC improves performance by 29%. 

Each evaluated scenario triggers coherence actions at dif-
ferent rates for different reasons. To illustrate this, Figure 5 
breaks down the L1 invalidations and Figure 6 breaks down 
the L1 flush and store registration actions. All scenarios trig-
ger an equal amount of invalidation and flush actions at the 
start and end of a kernel, labeled kernel start and kernel end. 

In addition, accessing the task queue can cause invalida-
tion and flush actions. Specifically, in the baseline scenario 
popping a task causes the following coherence actions: an L1 
invalidation occurs for every acquire operation and an L1 
store buffer flush occurs for every release operation. These are 
labeled acquire in Figure 5 and release in Figure 6, respec-
tively. The figures demonstrate that stealing causes the steal-
only and DeNovo-B scenarios to experience more invalidate 
and flush actions in some cases. At the same time, RSP can 
experience fewer invalidate and flush actions because wg-
scoped operations do not require L1 coherence actions. In-
stead, RSP additionally triggers 127 (one for every remote 
core) L1 self-invalidations for every remote release and 127 
L1 store buffer flushes for every remote acquire (i.e., for every 
steal attempt). These are labeled remote inval and remote flush 
respectively. Finally, hLRC triggers an L1 invalidation when-
ever an L1 obtains exclusive ownership for an atomic varia-
ble, and an L1 flush whenever an L1 loses synchronization 

 
Figure 4. Performance (speedup relative to baseline). 
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(i.e., for a synchronization miss or eviction). These are labeled 
atomic in and atomic out respectively. 

Figure 7 shows the combined latency of all non-atomic ac-
cesses, broken down by load and store operations and normal-
ized to baseline. Since all scenarios load and store approxi-
mately the same amount of data, this graph helps explain how 
data access latency is affected by each protocol. Figure 8 
shows the combined latency of all acquire operations, release 
operations, and atomic accesses, broken down by operation 
type and normalized to baseline. This helps explain how syn-
chronization operations, which are less numerous than data 
accesses but are often on the program’s critical path, are af-
fected by each protocol. Acquire includes latency from the 
kernel start and acquire actions in Figure 5, and Release in-
cludes latency from the kernel end and release actions in 
Figure 6. Latency from the atomic in and atomic out invali-
date/flush actions is included in Atomic LD/ST/RMW. 

Using these detailed graphs, we next compare the 
performance of the RSP, DeNovo-B, and hLRC scenarios. 

RSP: Although past work has shown RSP can benefit from 
simultaneously providing both scoped synchronization and 
work stealing when the number of CUs is small (e.g., eight) 
[12], it is clear from these results that the initially proposed 
RSP implementation does not scale. On 128 CUs, the 

broadcast lock, invalidate, and flush commands of the RSP 
implementation greatly increase coherence actions, data ac-
cess latency, and synchronization latency. This ultimately 
degrades performance relative to the baseline configuration by 
up to 33%. 

DeNovo-B: The DeNovo-B configuration scales well to 
128 cores and can exploit significant cache locality in the pres-
ence of work stealing, delivering the best performance for 
multiple workloads. However, it does not provide the benefits 
of both scope-only and steal-only for multiple other 
workloads. DeNovo-B differs from RSP and hLRC in that it 
obtains local registration for all stored data, and it performs 
coherence actions for every atomic. DeNovo-B’s L2 inclusiv-
ity for all writes causes increased contention and evictions at 
the L2 cache, which in turn increases release latency and fills 
up the store buffer, stalling subsequent accesses (evident in the 
high release latency, acquire latency, and store latency in 
SSSP-3 and color-1). However, our implementation of store 
registration also means the L2 functions as a write-back cache 
for dirty data, which enables improved reuse of written data 
through the L2. While all other evaluated scenarios, including 
hLRC, maintain consistency with the CPU by invalidating L2 
cache lines when writing through to memory. Thus, only the 
DeNovo-B implementation keeps dirty data resident in the L2 
cache until it is replaced. Therefore, DeNovo is better able to 

 
Figure 5. Total counts of L1 cache invalidation coherence actions, normalized to baseline. 

 
Figure 6. Total counts of L1 store flush/store registration coherence actions, normalized to baseline. 
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exploit reuse at the L2 between CUs, which is evident in the 
decreased release latency and load latency for PR-2 and PR-
3. Meanwhile for SSSP-1, SSSP-2, and PR-1, DeNovo-B suf-
fers from frequent invalidates, which causes L1 read reuse to 
suffer and data access latency to increase. However, by per-
forming coherence actions at every acquire or release, 
DeNovo-B is less sensitive than RSP and hLRC to low syn-
chronization locality (e.g., color-3, PR-2, and PR-3). 

Overall, DeNovo-B outperforms hLRC where reuse of 
written data at the L2 is possible and synchronization locality 
is low, but performs relatively poorly when synchronization is 
primarily local and load-load reuse at the L1 is frequent, or 
when L2 cache pressure is high. 

hLRC: By automatically avoiding coherence actions 
when synchronization is local, hLRC is able to exploit the 
benefits of both work stealing and cache reuse. As Figure 5 
and Figure 6 show, hLRC decouples flush and invalidate op-
erations from acquire and release accesses, reducing load, ac-
quire, and release latency when synchronization locality is 
high. However, since hLRC’s benefits rely on synchronization 
locality, its gains are less pronounced when stealing is 
frequent, and it performs roughly the same as the steal-only 
configuration when steal-only is dominant (SSSP-3, color-2, 

PR-2, PR-3). This is because for every acquire-release pair be-
tween remote CUs, hLRC incurs the latency of serially exe-
cuting flush and invalidate actions as part of the acquiring 
atomic access, rather than preemptively flushing at the release. 
Although the increase in atomic latency is in most cases out-
weighed by a decrease in release latency (Figure 8), atomic 
access latency is more likely to be on the critical path than a 
release operation, so it can have a larger impact on perfor-
mance.  

However, the common case is local synchronization. 
Table 6 gives the proportion of hLRC synchronization ac-
cesses that  are satisfied in the local L1 cache (L1 hits), in the 
L2 cache or memory (L2/Mem hits), and in a remote L1 cache 
(Remote L1 hits). Note that an L1 hit does not require a co-
herence action, a L2/Mem hit triggers an L1 invalidation, and 
a Remote L1 hit triggers an L1 flush and an L1 invalidation. 
For completeness, evictions that result in the loss of L1 regis-
tration are also shown (Synch Evicts), normalized to the total 
number of synchronization accesses. These evictions also re-
sult in an L1 flush, but since non-registered data is prioritized 
for eviction in hLRC, this count is near 0 for all inputs. Over-
all, atomic locality is high for the work stealing applications 
studied, and in every workload a significant majority of 
atomic accesses require no coherence actions. As a result, 

 
Figure 7. Total latency for data operations (load and store) normalized to baseline. 

 
Figure 8. Total latency for synchronization operations (atomic access, acquire, and release) normalized to baseline. 
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hLRC is able to outperform all other configurations on 
average. 

In summary, RSP, DeNovo-B and hLRC all attempt to 
simultaneously optimize for cache locality and work stealing, 
but only hLRC is able to consistently match or exceed the 
performance of the best of scope-only and steal-only for the 
workloads studied. RSP’s broadcast operations significantly 
degrade performance at 128 CUs, causing RSP to perform up 
to 33% worse than the baseline. DeNovo-B improves upon 
RSP, providing an average performance improvement of 21% 
over the baseline. With a write-back L2 and a lack of reliance 
on synchronization locality, the DeNovo-B implementation is 
even able to outperform hLRC when locality in written data is 
available and stealing is frequent. However, the overheads of 
registration for data accesses and increased coherence actions 
outweigh these benefits in most cases, and hLRC performs on 
average 7% better than DeNovo-B for the work stealing work-
loads studied. 

B. Analyzing the Optimized Replacement Policy 

We next analyze the impact of an optimized L1 and L2 
replacement policy that avoids evicting inclusively tracked 
cache lines containing atomic variables for DeNovo-B and 
hLRC. Figure 9 shows the speedup of four configurations 
relative to the baseline: DeNovo-noprio, DeNovo-Rprio, 
hLRC-noprio, and hLRC-Rprio. DeNovo-Rprio and hLRC-
Rprio use a state-aware replacement policy which ranks cache 
lines first by state (non-Registered data is preferred for 
eviction), and then by last use. DeNovo-noprio and hLRC-
noprio uses an unbiased least-recently-used (LRU) 
replacement policy, which does not take into account the 
Registered state of the cache line. The DeNovo-B and hLRC 

policies evaluated in Section V.A are the same as the DeNovo-
noprio and hLRC-Rprio configurations here. 

hLRC-noprio achieves on average 22% speedup relative 
to baseline while hLRC-Rprio achieves on average 29% 
speedup. This difference in performance demonstrates the 
importance of preventing unnecessary Registration state 
evictions and their subsequent coherence actions when 
possible. In the evaluated workloads, atomic operations only 
touch 24 KB of cache blocks. Thus by biasing the replacement 
policy to hold onto these blocks, the 4 MB L2 still provides a 
significant caching of non-atomic data and avoids 
unnecessary coherence actions. 

DeNovo, on the other hand, requires far more registration 
than hLRC. For the applications studied, multiple megabytes 
of stored data accumulate in DeNovo’s L2 cache, depending 
on the size of the graph. Prioritizing these registered cache 
lines actually degrades performance in most cases, causing 
DeNovo-Rprio to perform only 3% faster than baseline on av-
erage, compared with 21% speedup for DeNovo-noprio. 

C. Using Scopes With hLRC 

 hLRC does not require scopes and simply acquires L1 
registration for all atomic accesses, relying on implicit coher-
ence actions to keep data consistent. However, if 
synchronization locality is low, then it may be preferable to 
perform atomic accesses at the L2 and perform explicit coher-
ence actions as necessary. For example, if a release operation 
is known to only synchronize with an acquire operation from 
a remote CU, the CU should not cache the variable locally 
after the release. Obtaining local Registration only triggers a 
wasteful invalidation at the releasing CU and delays the 
release until the critical path for the acquire. Instead, the 
release should perform the atomic access at the L2 and 
preemptively flush any data that needs to be synchronized. 
Thus, the subsequent acquire operation does not need to look 
up the local Registration owner of the variable or trigger 
coherence actions on a remote CU. In essence, scopes could 
be used by expert programmers to optimize an hLRC system 
and exploit knowledge of communication locality. However, 
unlike HRF, incorrect assumptions about communication 
locality can only affect performance and not cause scope races 
and correctness bugs. 

Table 6. Synchronization hit proportions. 

Bench-

mark 

L1 hits L2/Mem 

hits 

Remote 

L1 hits 

Synch 

Evicts 

SSSP-1 95.7% 0.8% 3.6% 0% 

SSSP-2 97.8% 0.3% 1.9% 0% 

SSSP-3 76.0% 4.6% 19.4% 0.67% 

color-1 92.3% 0.32% 7.4% 0% 

color-2 85.3% 1.0% 13.7% 0% 

color-3 74.3% 5.6% 20.0% 0% 

PR-1 96.6% 1.0% 2.4% 0% 

PR-2 80.7% 4.3% 15.0% 0% 

PR-3 82.4% 6.4% 11.2% 0% 

 

 
Figure 9. Impact of owned prioritization on performance. 
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Figure 10. Speedup of hLRC-scoped vs. hLRC. 
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hLRC can support scoped synchronization in a straight-
forward manner. Specifically wg-scoped atomic accesses are 
handled the same as the non-scoped atomic accesses described 
in Section III. For an agent-scoped atomic access, an L1 flush 
(release) or invalidation (acquire) must be explicitly 
performed before or after registering the data at the L2 (which 
may require revoking registration from a remote L1), 
respectively.  

We demonstrate the potential performance effects of using 
scopes by comparing hLRC, as described in the prior sections, 
to a configuration that uses scopes, called hLRC-scoped. If 
steals are rare, the scoped implementation should perform 
better because the stealing threads avoid needless coherence 
actions related to Registration transfer. In reality Figure 10 
shows that on average, both hLRC and hLRC-scoped achieve 
29% speedup over the baseline. hLRC-scoped does not 
perform consistently better than hLRC, and in multiple cases 
(SSSP-1, SSSP-3, Color-2, PR-3) performs slightly worse 
because stealing does exhibit some locality. When multiple 
steals from the same work-group occur, hLRC-scoped 
repeatedly pushes the atomic variable back to the L2 cache 
whereas in hLRC steals hit in the L1 cache, which amortizes 
the cost of local L1 Registration. 

VI. RELATED WORK 

Many existing coherence protocols exhibit some degree of 
laziness with regard to making written data visible to remote 
cores. Such strategies often rely on weak memory models and 
software-defined synchronization semantics to delay the point 
of stale data invalidation until the time at which it may actually 
be read [7][11][21][22], although the principle generalizes to 
models such as TSO as well [23][24]. However, in all of these 
protocols the propagation of dirty data to a shared cache level 
is still triggered at the writing core. hLRC takes laziness a step 
further by delaying the propagation of written data until a 
potential remote synchronization is detected. In this respect, 
hLRC more closely resembles Lazy Release Consistency, 
which has been proposed for CPU systems [16]. By tracking 
synchronization variables and delaying all write propagation 
actions until a new core accesses a synchronization variable, 
hLRC reduces communication and improves reuse. 

DeNovoND, similar to hLRC, also tracks atomic variables 
and propagates dirty data between synchronizing cores in a 
targeted manner [25]. However, DeNovoND is even more se-
lective than hLRC, using a per-lock bloom filter to track dirty 
data on remote cores and self-invalidates remote data on syn-
chronization. Unlike hLRC, DeNovoND synchronization is 
limited to locks and barriers, and thus does not support the 
evaluated release consistency model in this paper. 

Other work has evaluated GPU memory consistency 
models and some of them concluded that GPU can implement 
sequential consistency just as efficiently as weaker memory 
models [26][31]. However, their evaluations only assessed 
coherence protocols, such as MESI, which require writer-
initiated invalidation. The overheads required for such 
protocols are not attractive for current GPUs, and these prior 
studies lack comparisons to more realistic data points. 

There have been multiple attempts to limit the overheads 
of hardware coherence protocols for GPUs. Heterogeneous 
System Coherence uses a hierarchical directory to track 
coherence state at coarse-grain regions [27]. This work fo-
cused on reducing coherence traffic between the CPU and the 
GPU, which is orthogonal to hLRC’s focus on intra-GPU 
communication. QuickRelease [28] is a hierarchal write coa-
lescing protocol improves effective memory bandwidth, but it 
uses writer-initiated invalidation and broadcast invalidates for 
coherence. Meanwhile, Temporal Coherence avoids writer-
initiated invalidation, but performance depends greatly on the 
lifetime of data in the cache: too short, and locality cannot be 
exploited; too long, and communication suffers [29]. 

Multiple efforts have also helped determine the exact 
memory model semantics provided by existing GPUs.  For in-
stance, Alglave et al. found that many common behavioral as-
sumptions were faulty [30]. Complementary, Hower et al. 
defined the SC for HRF memory model to establish clearer 
synchronization semantics for current GPUs [7][8]. HRF 
enables programmers to exploit knowledge of locality by 
specifying the visibility of synchronization operations. In this 
way, synchronization between local threads can be performed 
cheaply. However, using scopes requires static knowledge of 
the locations of synchronizing threads, and it introduces the 
notion of a heterogeneous data race, which occurs when two 
threads synchronize at different scope instances. Work 
stealing is possible with HRF, but it requires that all synchro-
nization occurs through an encompassing scope (e.g., agent 
scope). Thus, dynamic sharing patterns like work stealing are 
not able to scopes, thus motivating the already discussed, 
Remote-Scope Promotion [12][15] work. 

VII. CONCLUSION 

Scoped synchronization is currently used by modern 
GPUs, but it relies on a complex memory model and is unable 
to exploit locality in many types of sharing patterns. Remote-
scope promotion (RSP) has been proposed to enable more 
flexible communication patterns in GPUs, but RSP as 
originally proposed uses broadcast invalidate, flush, and lock 
commands which scale poorly.  

In comparison, DeNovo coherence implements efficient 
dynamic sharing without the use of scopes. Rather than 
relying on software-specified synchronization locality to 
reduce the cost of coherence actions, DeNovo uses exclusive 
registration to exploit locality in written data, even in the 
absence of synchronization locality. However, it still must 
perform coarse-grain coherence actions on every acquire and 
release, and the overhead of registration can outweigh its 
benefits when written data exhibits minimal locality. 

This work introduced hLRC, a novel method for GPU 
synchronization based on lazy release consistency. Similar to 
existing methods for GPU synchronization, hLRC uses 
acquire-release semantics and coarse-grain coherence actions 
to enforce consistency. Like RSP, hLRC relies on 
synchronization locality to avoid performing these actions 
when synchronization is local. However, hLRC does not rely 
on scopes and instead uses an atomic tracking hardware 



mechanism to trigger targeted coherence actions when 
necessary. By automatically exploiting available 
synchronization locality and performing targeted coherence 
actions only when needed, hLRC achieves efficient cache 
utilization and scalable communication. Specifically while 
RSP degrades the performance of a 128-CU GPU and 
DeNovo improves performance by on average 21%, hLRC 
achieves a 29% speedup on average compared with our 
baseline. Like DeNovo, hLRC it is able to achieve this 
efficiency without any knowledge of communication locality, 
thus reducing the need for scope synchronization. 
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