
Lazy Release Consistency for GPUs

Johnathan Alsop† Marc S. Orr‡§ Bradford M. Beckmann§ David A. Wood‡§

†University of Illinois at Urbana–Champaign
alsop2@illinois.edu

‡University of Wisconsin–Madison
{morr,david}@cs.wisc.edu

§AMD Research
 Brad.Beckmann@amd.com

Abstract—The heterogeneous-race-free (HRF) memory

model has been embraced by the Heterogeneous System Archi-

tecture (HSA) Foundation and OpenCLTM because it clearly

and precisely defines the behavior of current GPUs. However,

compared to the simpler SC for DRF memory model, HRF has

two shortcomings. The first is that HRF requires programmers

to label atomic memory operations with the correct scope of syn-

chronization. This explicit labeling can save significant coher-

ence overhead when synchronization is local, but it is tedious

and error-prone. The second shortcoming is that HRF restricts

important dynamic data sharing patterns like work stealing.

Prior work on remote-scope promotion (RSP) attempted to re-

solve the second shortcoming. However, RSP further compli-

cates the memory model and no scalable implementation of RSP

has been proposed. For example, we found that the previously

proposed RSP implementation actually results in slowdowns of

up to 30% on large GPUs, compared to a naïve baseline system

that forgoes work stealing and scopes. Meanwhile, DeNovo has

been shown to offer efficient synchronization with an SC for

DRF memory model, performing on average 21% better than

our baseline system, but it introduces additional overheads to

maintain ownership of all modified data.

To resolve these deficiencies, we propose to adapt lazy re-

lease consistency—previously only proposed for homogeneous

CPU systems—to a heterogeneous system. Our approach, called

hLRC, uses a DeNovo-like mechanism to track ownership of

synchronization variables, lazily performing coherence actions

only when a synchronization variable changes locations. hLRC

allows GPU programmers to use the simpler SC for DRF

memory model without tracking ownership for all modified

data. Our evaluation shows that lazy release consistency pro-

vides robust performance improvement across a set of work-

stealing graph analysis applications—29% on average versus

the baseline system.

Keywords—graphics processing unit (GPU); memory model;

lazy release consistency; scope promotion; scoped synchroniza-

tion; work stealing

I. INTRODUCTION

Architects must carefully consider a plethora of tradeoffs
when specifying a new memory model and designing the
hardware that implements it. With the emergence of
heterogeneous computing and high-throughput accelerators,
there is an increasing tension to keep both the memory model

and hardware simple. In comparison, CPUs provide relatively
simple memory models, but use complex and highly
optimized cache coherence protocols that enforce the single-
writer/multiple reader invariant [1]. Specifically, store
operations invalidate the target address at every private cache
other than the initiator’s. This complicated CPU approach is a
poor fit for GPUs for several reasons. First, a GPU core, called
a compute unit (CU), has thousands of hardware threads,
called work-items. Sending invalidations on every store miss
would generate far too much invalidation traffic. Second,
managing the invalidations requires sophisticated cache
controllers that detract from the GPU’s primary application:
graphics. Finally, writer-initiated invalidations often employ
inclusive caches, which are a poor fit for GPUs because their
aggregate L1 cache capacity approaches the size of a typical
GPU last-level cache.

For these reasons, GPUs take a different approach to
synchronization. Specifically, they use simple bulk coherence
actions, like cache flushes and invalidates, at the
synchronization points in the program. This approach aligns
with current memory models, like C++11 [2], where
programmers clearly identify inter-thread communication by
operating on atomic variables. At these synchronization
points, coarse-grain coherence actions, like cache flushes and
invalidates, are sufficient to implement memory models that
guarantee sequential consistency for data race-free (SC for
DRF) programs [3].

Unfortunately, bulk coherence actions negatively affect
performance. Specifically, cache flushes incur long latencies
because they require all of the dirty cache blocks in the
initiator’s private caches to be written through the memory
hierarchy. Flash invalidations are fast, but degrade cache
locality and cause excessive cache misses.

To solve these problems, modern GPUs support scoped
synchronization [4][5][6]. Scopes takes advantage of the
GPU’s hierarchical execution model to limit the cost of bulk
coherence actions. For example, work-items executing on the
same CU can communicate through the L1 cache without
incurring any cache flushes or invalidates. In contrast, work-
items executing on different CUs are required to read and
write from the GPU’s monolithic last-level cache.

978-1-5090-3508-3/16/$31.00 ©2016 IEEE

While scoped synchronization is successful in mitigating
the cost of bulk coherence actions, it leads to a memory model
(e.g., SC for HRF [7][8]) with two significant shortcomings.
First, programmers are expected to explicitly label atomic
memory operations with the correct scope in order to
maximize performance, which is tedious and error-prone [9].
Second, scoped synchronization does not use caches
effectively for important dynamic data sharing patterns like
work stealing.

To combat this second shortcoming, remote-scope
promotion [12] was recently proposed, but it is not a panacea.
RSP further complicates the memory model and the initial
implementations of RSP, while effective for relatively small
GPUs, do not scale to large GPUs. Specifically, we found that
RSP actually performs worse on a large 128-CU GPU when
compared to a naïve baseline that forgoes work stealing and
scopes (Figure 1).

Meanwhile, the recent DeNovo proposal addresses the
first shortcoming by suggesting that future GPUs should forgo
scoped synchronization and support the simpler SC for DRF
memory model [10]. However, DeNovo tracks ownership for
all written data, incurring additional overheads to request and
revoke ownership registration. Also, when compared to
current GPU designs, DeNovo’s benefits primarily arise from
locality in written data, which is limited in existing GPU
compute applications.

In this work, we introduce heterogeneous lazy release
consistency (hLRC) for GPUs. Like DeNovo, our approach
eliminates scopes and enables SC for DRF on GPUs,
achieving scalable synchronization for data sharing patterns
like work stealing. hLRC also uses atomic registration, as
proposed by Sung and Adve [11], to track exclusive ownership
of synchronization variables, but not all of stored data like
DeNovo. hLRC also differs from DeNovo by performing
coherence actions when synchronization variables change

registration, thus implementing lazy releases and potentially
reducing coherence traffic. hLRC achieves a speedup of on
average 29% on a large GPU with 128 CUs, when compared
to the naïve baseline, and 7% on average compared to
DeNovo. Finally, our implementation of hLRC builds off of
bulk synchronization flush and invalidate actions, which is
consistent with the current approach to GPU synchronization.

II. GPU CACHES AND SYNCHRONIZATION

A. GPU Architecture

The GPU’s massively threaded architecture, depicted in
Figure 2, targets highly concurrent applications. Specifically,
each GPU core, called a compute unit (CU), executes
thousands of threads, called work-items, simultaneously. For
example, a CU in the AMD GCN architecture has hardware
state for 2,560 work-items [13]. The GPU’s CUs are
connected to memory through a hierarchy of caches.
Typically, each CU has a private L1 cache to optimize
communication within a CU. The L1 caches tend to be small
and optimized for throughput. For example, the L1 cache is
16 kB in AMD’s GCN architecture [13] and up to 48 kB in
Nvidia’s Maxwell GPU [4]. To optimize communication
between work-items on different CUs, it is common to
connect the L1 caches to a GPU-wide non-inclusive L2 cache.

GPU work-items (wi) execute within an execution
hierarchy that mirrors the GPU’s hierarchical design. The first
level of the execution hierarchy is a wavefront, which is a
small group of work-items (e.g., 64 on AMD GPUs, 32 on
NVIDIA GPUs, 4 on Intel GPUs, etc.) that execute in lockstep
on the GPU’s data-parallel execution units. Wavefronts then
execute in small teams called work-groups. Wavefronts in the
same work-group execute on the same CU, which enables
them to synchronize through the L1 cache. Ultimately, a GPU
executes a grid of work-groups. Thus, work-items in a grid
can communicate through the GPU’s L2. Finally, work-items
in a grid can communicate externally (e.g., with CPU threads)
through a common level of the memory hierarchy (e.g., the
memory controller).

B. GPU Synchronization

Recall that each CU executes thousands of work-items
concurrently. Thus, to avoid excessive invalidation traffic,

Figure 1. RSP scalability on a small and large GPU.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

8 CUs 128 CUs

Sp
e

e
d

u
p

baseline RSP

Table 1. Simple GPU coherence actions.

Flush local L1
Coarse-grain flush of all dirty data in the local L1 to the

next level of the memory hierarchy.

Inv local L1
Coarse-grain invalidation of all valid data in the local

L1.

LD/ST/RMW x

L1/L2

Atomic memory access on location x performed at the

L1 or L2 cache

Lock op/x
Block a specific operation (op) at a particular cache or

all ops on address x within a cache.

Figure 2. Baseline example GPU.

wavefront

work-group

Compute Unit (CU)

L1

L2

GPU

System on Chip (SoC)

CPU

Memory
Controller

CU

L1

wg-scope

agent -scope

system-scope

GPUs forgo CPU-like coherence protocols where each write
obtains ownership to enforce the single-writer/multiple reader
invariant [1]. Instead, GPUs only track whether a cache line is
valid (V), dirty (D), or invalid (I) and rely on simple coherence
actions, summarized in Table 1, at synchronization points
(e.g., when accessing an atomic variable like a lock).

Coherence actions enable sequential consistency for data-
race-free programs (SC for DRF) [3]. The C++11 memory
model [2][14] provides atomic variables for communicating
between threads. For example, consider the sequence of
operations in Figure 3a, where a work-item on CU0 executes
a store release (ST_rel) operation on the atomic variable x to
broadcast data that it has written to other work-items on the
GPU. A memory operation labeled as release naturally
corresponds to the flush action (Table 1), which writes dirty
data through the memory hierarchy. Referring back to Figure
3a, a work-item on CU1 then executes a load acquire memory
operation (LD_acq) to read data written by another work-item.
An acquire corresponds to the invalidate action in Table 1,
which eliminates cached data that may have become stale.

C. Scoped Synchronization

Since GPUs use expensive coarse-grain coherence
actions, current programmers are encouraged to use scoped
synchronization to minimize their performance impact. In
particular, cache flushes encounter long latency while waiting
to write all dirty data through the cache hierarchy, and flash
invalidates, while fast, significantly degrade cache locality.
Scoped synchronization allows programmers to identify when
these coarse-grain operations are necessary and conveniently
matches the GPU’s execution hierarchy. Currently, the most
important scopes are work-group (wg), GPU-wide (agent),
and SoC-wide (system)1 . For example, consider Figure 3b
where flushes and invalidates are avoided entirely because the
atomic memory operations are labeled as wg-scoped, which is
sufficient when work-items from the same work-group
communicate. In contrast, when instructions are labeled as
agent-scoped (Figure 3c), L1 cache flushes and invalidates
are used to communicate data through the GPU-wide L2 cache
and the atomic memory operations are directly performed at
the L2 (denoted in row 3 of Table 1). Finally, while agent
scope is sufficient when work-items from the same grid
communicate, system scope is used to communicate between
CPU and GPU threads.

Scoped synchronization has two major shortcomings. The
first shortcoming is that it leads to a more complex memory
model called SC for HRF, where atomic accesses must be

1 Agent and system scope are equivalent to memory_scope_device

and memory_scope_all_devices, respectively, in OpenCL terminology.

statically labeled to indicate the scope of communication. If a
programmer labels atomic memory operations with the wrong
scope, a race can occur. A second problem with scopes is that
it is difficult to optimize dynamic sharing patterns like work
stealing.

D. Remote-Scope Promotion

An inherent limitation of scoped synchronization is its
inability to effectively utilize caches for dynamic sharing
patterns like work stealing. For example, consider an
application that allocates a task queue per work-group. In the
common case, work-items within a work-group would like to
coordinate their task queue accesses using wg-scoped atomic
operations (e.g., Figure 3b). However, recall that work-items
in different work-groups are required to synchronize through
the agent scope (e.g., Figure 3c). Thus, accessing any queue
with wg-scoped atomics disallows a work-item to steal a task
from another work-group’s task queue.

To solve this dilemma, RSP gives work-items the
capability to dynamically promote the scope of atomic
memory operations executed by other work-items. This is
demonstrated in Figure 3d, where a work-item executing on
CU1 promotes the wg-scoped store release operation to the
GPU-wide agent scope.

While RSP resolves the limitation of using static scoped
synchronization, the initial implementation of RSP relies on
heavyweight broadcast operations and cache-level locks to
preserve RMW atomicity. Table 2 describes these operations.
To illustrate these overheads, we step through the required
coherence actions for the example in Figure 3d. We focus on
the implementation described (and verified) by Wickerson et
al. [15], which is enumerated on the left side of Table 3.

In the example, the wg-scoped store release is performed
locally in CU0’s L1 cache (a6) and does not trigger any
coherence actions. To correctly enforce acquire semantics, the
rm_agent-scoped RSP access needs to promote the scope of
the last wg-scoped release. In the example, after performing a

CU0 CU1
<guarded >
ST_rel x
 LD_acq x
 <guarded>

CU0 (wi 0) CU0 (wi 1)
<guarded >
ST_rel _wg x
 LD_acq_wg x
 <guarded >

CU0 CU1
<guarded >
ST_rel _agt x
 LD_acq_agt x
 <guarded >

CU0 CU1
<guarded >
ST_rel _wg x
 LD_acq_rm_agt x
 <guarded >

a. SC for DRF (no scopes) b. SC for HRF (work -group scope) c. SC for HRF (agent scope) d. RSP (remote agent scope)

Figure 3. Release to acquire synchronization in different memory models.

Table 2. Coherence actions added by RSP from Wickerson et al. [15].

Flush all L1s bcast
A broadcasted request to all remote L1

caches to flush their dirty data to the next

level of the cache hierarchy.

Inv all L1s bcast
A broadcasted request to all remote L1

caches to invalidate their valid data.

Lock all RMWs
A broadcasted request to all remote L1

caches to block RMWs.

Unlock all RMWs
A broadcasted request to all remote L1

caches to unblock RMWs.

load on the atomic variable at the L2 cache (a3), dirty data on
CU0 must be written through to the GPU-wide L2 cache, since
the wg-scoped release does not cause a flush. Since the RSP
access does not know the location of past synchronizing
releases, it must broadcast a flush command to all L1 caches
in the system (a4), conservatively expanding the scope of all
past release accesses to agent. When the heavy-weight
broadcast flush is complete, a local cache invalidation is
triggered at CU1’s L1 (a5) to make any flushed writes visible
at CU1.

A broadcast flush command can add significant overhead
to an RSP synchronization access because all dirty data in all
remote CUs must be flushed before the RSP access is
complete. Performing a flush at all CUs also reduces the write
combining potential of all L1 caches in the system and
increases traffic in the network.

The example focused on synchronizing a wg-scoped
release to a rm_agent-scoped acquire. A similar approach is
used to synchronize a rm_agent-scoped release (a9-a14) to a
wg-scoped acquire. Specifically, because the rm_agent-
scoped release does not know the origin of the next acquire, it
must broadcast an invalidation command to all L1 caches in
the system, conservatively expanding the scope of all future
acquires to the agent scope.

Any RSP operation that involves a write (e.g., store, a9–
a14, or RMW, a19–a25) must also enforce RMW atomicity with
concurrent wg-scoped RMW accesses (a15) to preserve a
consistent final state of memory [15]. Specifically, an RSP
store blocks RMW operations at all CUs using a broadcast
lock command (a9). It then ensures all caches have the target
variable in a consistent state using broadcast flush (a10) and
invalidate commands (note a11 and a13 are both necessary to
enforce sequential consistency). Finally, it broadcasts an

Table 3. Coherence actions for implementing the RSP (scoped) memory model and the DeNovo and hLRC (non-scoped) memory models.

Instruction Scoped Memory Models Non-scoped Memory Models

Order Scope RSP Actions Order Prior Location

of Registered

Atomic

DeNovo Actions hLRC Actions

Atomic LD Acquire Work-

group
a0: LD x L1 Acquire Local L1 b0: LD x L1

b1: Inv local L1

c0: LD x L1

Agent a1: LD x L2

a2: Inv local L1

L2 b2: R state & data to

requesting L1

b3: LD x L1

b4: Inv local L1

c1: R state & data to re-

questing L1

c2: LD x L1

c3: Inv local L1

Remote
Acquire

Agent a3: LD x L2

a4: Flush all L1s bcast

a5: Inv local L1

Remote L1 b5: R state & data to

requesting L1

b6: LD x L1

b7: Inv local L1

c4: Flush remote L1

c5: R state & data to re-

questing L1

c6: LD x L1

c7: Inv local L1

Atomic ST Release Work-

group
a6: ST x L1 Release Local L1 b8: StReg local L1

b9: ST x L1

c8: ST x L1

Agent a7: Flush local L1

a8: ST x L2

L2 b10: StReg local L1

b11: R state & data to

requesting L1

b12: ST x L1

c9: R state & data to re-

questing L1

c10: ST x L1

c11: Inv local L1

Remote

Release

Agent a9: LK all RMWs

a10: Flush all L1s bcast

a11: Inv all L1s bcast

a12: ST x L2

a13: Inv all L1s bcast

a14: UL all RMWs

Remote L1 b13: StReg local L1

b14: R state & data to

requesting L1

b15: ST x L1

c12: Flush remote L1

c13: R state & data to

requesting L1

c14: ST x L1

c15: Inv local L1

Atomic

RMW

Acquire-
Release

Work-
group

a15: RMW x L1 Acquire-
Release

Local L1 b16: StReg local L1

b17: RMW x L1

b18: Inv local L1

c16: ST x L1

Agent a16: Flush local L1

a17: RMW x L2

a18: Inv local L1

L2 b19: StReg local L1

b20: R state & data to

requesting L1

b21: RMW x L1

b22: Inv local L1

c17: R state & data to

requesting L1

c18: ST x L1

c19: Inv local L1

Remote

Acquire-

Release

Agent a19: LK all RMWs

a20: Flush all L1s bcast

a21: Inv all L1s bcast

a22: RMW x L2

a23: Flush all L1s bcast

a24: Inv all L1s bcast

a25: UL all RMWs

Remote L1 b23: StReg local L1

b24: R state & data to

requesting L1

b25: RMW x L1

b26: Inv local L1

c20: Flush remote L1

c21: R state & data to

requesting L1

c22: RMW x L1

c23: Inv local L1

unlock command, allowing CUs to resume processing local
RMW requests (a14). Broadcast lock and unlock commands
add overhead to the RSP atomic writes, increase network
traffic, and delay wg-scoped RMW accesses on all CUs for the
duration of the RSP access.

In the end, RSP enables dynamic sharing by adding a new
synchronization operation. However, the proposed
implementation of RSP triggers broadcast operations for
every remote-scoped access, which complicates the memory
system and significantly limits scalability.

E. DeNovo

Sinclair et al. recently proposed applying the DeNovo
coherence protocol to GPUs as a means to achieve efficient
synchronization without the need for scopes [10]. The column
labeled DeNovo Actions in Table 3 describes the
implementation and highlights that rather than using scopes to
avoid coherence actions, DeNovo uses exclusive registration
to reduce the impact of synchronization. Specifically, a cache
must have registered ownership for all written data by the time
it reaches a release point, and immediately for each atomic
access. We refer to this store registration action as StReg in
Table 3 (b8, b10, b13, b16, b19, and b23). The action is
conceptually similar to the Flush action described in Table 2.
However, instead of writing through dirty data, DeNovo
requests registration for each dirty address from the L2 cache
and the dirty data remains in the local L1 cache. As long as
data obtains exclusive registration, it does not need to be
flushed or invalidated on a subsequent acquire or release
operation.

DeNovo implements exclusive registration by adding a
Registered state to the L1 and L2 cache. If data is in the
Registered state at an L1 cache, then that cache has the only
registered, up-to-date copy of the variable in the system.
When in the Registered state, the L2 cache tracks the ID of the
current registered L1 cache using its empty L2 data entry,
avoiding the need for a separate pointer storage structure. This
requires L2 inclusivity for registered data.

When registration is transferred (either to the L2 on an L1
eviction or to a new requesting L1 cache), the previously
registered cache forwards the up-to-date value to the newly
registered cache. If the registration is to another L1, the L2
cache updates its registered ID. DeNovo registration thus
guarantees that there is always one up-to-date location for
written data, and its location can be determined by querying
the L2 cache.

By obtaining local registration for written data and atomic
accesses, DeNovo is able to exploit locality even in the
presence of frequent synchronization. Specifically, only non-
registered data needs to be invalidated or flushed on a
synchronizing atomic, and the actual atomic update is
performed locally. However unlike RSP, every synchronizing
atomic triggers an invalidation or flush action. As a result,
DeNovo can perform wasteful coherence actions when
synchronization is local, although registering written data can
make coherence actions cheaper and allows DeNovo to
exploit data locality even when synchronization locality is

absent. Additionally, DeNovo’s registration of all written data
can incur significant overhead, since the L2 must be kept
inclusive for this data and an additional level of indirection is
required when remotely owned data is requested.

III. LAZY RELEASE CONSISTENCY FOR GPUS

We propose heterogeneous lazy release consistency
(hLRC) as a new GPU implementation to efficiently support
dynamic sharing and the SC for DRF memory model. hLRC
is based on the principles of lazy release consistency, which
has previously been used to reduce wasteful communication
in distributed CPU shared memory systems [16]. Similar to
DeNovo (and unlike RSP), hLRC offers efficient local
synchronization and scalable global synchronization without
the need for scopes, thus enabling an SC for DRF memory
model. In addition, similar to RSP (and unlike DeNovo),
hLRC entirely avoids coherence actions when
synchronization is local.

Similar to the lazy release consistency for CPUs, hLRC
associates each atomic variable with the location it was last
accessed. Coherence actions are then performed only when
the location of the atomic variable changes (including when
the variable is first brought into a cache), because this
indicates a possible inter-core synchronization. In doing so,
the caches are able to exploit greater efficiency, and heavy-
weight coherence actions only need to occur in a targeted
manner on the one or two CUs that may be involved in remote
synchronization.

A. hLRC Atomic Tracking

In order to trigger the appropriate coherence actions when
an atomic variable changes location, hLRC must track and
serialize accesses to each atomic variable. This is
accomplished by obtaining exclusive local registration for
every atomic access. The registration mechanism used for
hLRC is based on DeNovo registration, described in Section
II.E. As with DeNovo, a variable may be registered in only
one location at any time, and once obtained, registration is not
revoked until a remote CU requests the registration or until the
data is evicted.

While DeNovo uses registration for both atomic accesses
and normal stores, a key distinction of hLRC is that only
atomic accesses require registration. As a result, DeNovo
experiences greater L2 cache pressure because every write
requires registration at the L2. By only registering atomics,
hLRC significantly reduces the amount of registered data that
must be tracked at the L2, effectively increasing L2 capacity.
In addition, hLRC significantly reduces the additional probe
bandwidth and latency incurred by requests for remotely
registered data.

B. Implementing Synchronization Semantics

hLRC implements release consistency in a scalable
fashion appropriate for GPUs and uses atomic registration to
automatically detect and exploit synchronization locality
without relying on scopes. By delaying coherence actions
until the location of a synchronization variable changes,

locality for all data (not just written data) is improved, coher-
ence actions are more targeted, and unnecessary data
communication is reduced.

Just as traditional lazy release consistency decouples the
coherence actions from a release operation and performs the
release only when a synchronizing acquire is detected, hLRC
only performs the necessary actions when potential inter-core
synchronization is detected: when the location of an atomic
variable changes. This section describes how hLRC
implements the relevant release consistency semantics. Our
implementation is specified completely in the right side of
Table 3, which is laid out to show how registration replaces
scopes. With hLRC, the coherence actions required by any
atomic operation are completely dependent on the prior
registered location of the targeted variable.

1) Acquire Semantic:
With hLRC, an acquire memory operation does not require

knowledge of the scope of the last release. Instead, the
location of the last release is determined through hardware
registration. If the target variable is not already registered at
the requesting L1, registration must be obtained. There are
two registration scenarios: (1) the atomic variable is resident
at the L2 cache or deeper; (2) the atomic variable is registered
at another CU’s L1 cache. In the latter case, registration is
revoked and the last (remote) L1 cache holding the registered
data is required to flush its dirty data to the GPU-wide L2
(Table 3, c4). Once the atomic is unregistered from the last
owner, the registration process can proceed (Table 3, c1-c3 or
c5-c7). Transferring registration to an L1 cache always triggers
an L1 invalidate (Table 3, c3, c7) following the data access. As
a result, future acquires to that atomic variable require no
coherence actions (Table 3, c0) as long as the variable remains
registered in the L1. To summarize, invalidations are limited
to changes in registration (for synchronization variable only).
hLRC acquires to local variables avoid the coherence actions
used by DeNovo acquires (i.e. invalidation of non-registered
data), and all hLRC acquires avoid the costly broadcast
invalidate actions used by the RSP implementation.

2) Release Semantic
The operation of a release (Table 3, c8;c9-c11;c12-c15)

mirrors the operation of an acquire. Notably, no coherence
actions occur when a release finds the atomic registered at the
L1 (Table 3, c8). This approach delays the flush associated
with a release until a registration change. Registration can
change in two ways: (1) an atomic access on another CU
revokes registration (Table 3, c4-c7); (2) the atomic variable is
evicted from the L1 cache. When the remote CU loses
registration, its L1 cache is flushed (Table 3, c12) to propagate
dirty data associated with the atomic and the atomic variable
may not be read by any core until the flush is complete. Since
this effectively moves the release latency from the releasing
thread to the next remote acquiring thread, this can be destruc-
tive if remote synchronization is frequent and acquire opera-
tions are more latency-sensitive. A second subtlety in
obtaining registration for a release access is that the local CU
executing the release requires an L1 cache invalidation (Table
3, c11;c15). This is to ensure that any subsequent acquire

operations to atomic variables located on the same cache line
synchronize correctly.

In summary, flushes only occur when an L1 loses
registration. Therefore release accesses to local variables
avoid the coherence actions incurred by DeNovo releases (i.e.
obtaining registration for non-registered stores), and the costly
broadcasted flushes used by RSP are eliminated. By delaying
the coherence actions associated with a release, hLRC can
improve store coalescing and reduce write-through traffic
when synchronization locality is high.

3) RMW Atomicity
In hLRC, registration acts as a token for exclusive

permission, naturally preserving RMW atomicity. Therefore,
unlike RSP, atomic memory operations do not require global
RMW locks to prevent racing local RMW accesses from
generating an inconsistent state.

C. Discussion

Tracking atomic variables enables targeted and efficient
coherence actions for most types of synchronization, however
there are complexities and costs associated with hLRC. In this
subsection, we discuss three unique issues associated with
hLRC.

1) Multi-word Cache Block Issues
False sharing occurs when two synchronization variables

lie in the same cache block. If these variables are accessed
regularly at different CUs, then hLRC registration transfers
may be frequent. Every time registration is transferred,
coherence actions are triggered to enforce data consistency
between the old CU and new CU even though there is no
synchronization between them.

In addition to false sharing between atomic variables,
hLRC may degrade the performance of non-atomic data
accesses to a registered cache line. When a cache line is
registered in an L1, it is unaffected by flush or invalidation
coherence actions. However, if there are non-atomic data
variables on the same line, then preventing flushes and
invalidations of this data could cause the cached data to
become inconsistent. Therefore data loads and stores to a
registered cache line must bypass the L1 cache and be
performed at the L2 cache. Servicing data accesses at the L2
to registered cache lines is possible because under SC for DRF
the data access may not conflict with the registered portion of
the L2 data field.

Code should be optimized to avoid the problems arising
from multiple atomic variables on the same cache line or
atomic and data variables on the same cache line. Specifically,
atomic data may be padded where feasible to prevent
colocation in the same cache line with unrelated atomics, or
with frequently accessed data.

2) Other Unnecessary Coherence Actions
A second problem is that unnecessary coherence actions

can be triggered when registration transfer occurs in the
absence of a synchronizing acquire-release pair. For example,

two release accesses from different CUs do not form a syn-
chronize-with relationship and thus do not require a local
cache invalidation to maintain coherence. However, under
hLRC, coherence actions are triggered when registration
changes for any reason, so these two accesses will result in
two unnecessary cache invalidations (triggered when each CU
obtains registration for the atomic) in addition to the flushes
needed for store propagation (triggered when each CU loses
registration for the atomic).. These disadvantages can be
mitigated by using synchronization scopes as a performance
optimization. This is discussed further in Section V.C.

In addition, cold misses, cache evictions, and false sharing
cause registration transfer as well. A cold miss on a
synchronization variable clearly does not require any coher-
ence actions. However, since the system cannot differentiate a
cold miss from data that has been evicted, an invalidation must
be triggered at the requesting L1.

Eviction of registered L1 data causes a flush of dirty data
at that L1. Furthermore, since registered data must be kept
inclusive in the L2, an eviction of a registered synchronization
variable at the L2 must also trigger an eviction and flush in the
L1. As a result if the variable is accessed next by the same CU,
the miss will trigger an additional unnecessary cache
invalidation.

To minimize the overhead associated with unnecessary
registration actions, we optimized the L1 and L2 cache
replacement policy to prefer non-registered data for eviction
first and then by last use (older data is preferred for eviction).

3) Supporting Fences and Relaxed Atomics
hLRC has been designed so far to support the simpler SC

for DRF memory model, but most modern programming lan-
guages, such as C++ [2], provide relaxed atomics and fences
that violate SC for DRF. While not explored in detail, we be-
lieve hLRC can implement these operations in a straightfor-
ward manner. Specifically, relaxed atomics could avoid coher-
ence actions and operate at the L1 cache on an L1 hit, at the
L2 cache on an L2 hit, or in a remote cache if remotely regis-
tered. Meanwhile, fence operations can translate to acquire-
release operations without a memory access (or to a dummy
variable).

IV. METHODOLOGY

We simulate a CPU-GPU system using an extended ver-
sion of the publicly available AMD gem5 APU simulator [17].
Figure 2 represents the high-level organization of the
evaluated GPU that contains 128 CUs in total. Each CU has
four SIMD units with 40 hardware wavefront contexts that are
scheduled using the oldest-job-first policy. Each CU has a
private L1 data cache. Each instruction cache is shared by four
CUs. All L1 data caches and instruction caches are connected
to a unified L2 cache that is then connected to system memory
through a memory controller shared by an on-chip CPU.
These components are distributed evenly across an 8x16 mesh
network. Table 4 describes the detailed parameters of the
simulated system.

The baseline protocol uses a write-through, write-allocate
policy at the L1 and L2 for all data. An acquire operation
triggers a single-cycle flash invalidation of the L1 cache, and
a release operation triggers a flush of the L1 store buffer,
which is implemented as a FIFO.

To support DeNovo and hLRC we added a Registered state
to the L1 and L2 caches. When using hLRC, or DeNovo L1
and L2 caches are write-back and write-allocate for registered
data. hLRC performs coherence actions when registration
state changes. When registration is transferred to an L1, an
invalidation is triggered at that L1. When registration is
transferred out of an L1, a flush is triggered at that L1. For
both DeNovo and hLRC, registered data is not invalidated on
a flash invalidation or written back on a flush.

A. Workloads

We select three graph processing applications from the
Pannotia benchmark suite [18] to evaluate our system
changes. The applications selected are:

Single-source shortest path (SSSP): Calculates the
shortest distance between a source node and all other nodes in
the graph.

Graph coloring (color): Assigns colors to nodes in a
graph such that each node is a different color than its
neighbors.

PageRank (PR): Generates a ranking of importance for
each node in a graph based on its connectivity and the ranks
of its neighbors.

Each of these applications converges on a solution by
iteratively processing all nodes in a graph. Processing a node

Table 5. Workloads and inputs.

Benchmarks Graph Inputs Graph Sizes

Single Source Shortest Path

(SSSP)

1: USA-road-d.BAY
2: USA-road-d.COL

3: c-68

7.86 MB
21.3 MB

4.27 MB

Graph Coloring (color)
1: ecology1

2: coAuthorsDBLP

3: dictionary28

35.9 MB
18 MB

1.64 MB

PageRank (PR)

1: USA-road-d.BAY

2: c-68
3: OPF_10000

7.86 MB

4.27 MB
3.57 MB

Table 4. Simulation configuration.

128 Compute Units, each configured as described below:

Clock 1GHz, 4 SIMD units

Wavefronts (#/scheduler) 40 (each 64 lanes)/oldest-job first

Data cache
16kB, 64B line, 16-way, 4 cycles, delivers

one line every cycle

Memory Hierarchy

L2 cache
4MB, 64B line, 16-way, 24 cycles

write-through (write-back for R data)

1 Instr. cache/4 CUs 32kB, 64B line, 8-way, 4 cycles

DRAM DDR3, 32 Channels, 500 MHz

Task Runtime

128 task queues
1 work-group/queue,

2 wavefronts/work-group

Additional DeNovo/hLRC Storage

L1 / L2 cache state R state / R state

involves visiting each of the node’s neighbors, so load
imbalance is introduced through variation in the degrees of
assigned nodes.

To mitigate load imbalance and demonstrate the value of
dynamic sharing, each application has been modified to use
per-CU task queues and work stealing. Graph nodes are
initially evenly distributed across all 128 task queues. In the
presence of load imbalance, underutilized CUs may steal from
remote task queues when stealing is enabled. Work stealing is
implemented similar to Orr et al [12][19]. Lock-free pop and
steal functions are used to consume nodes from the local task
queue and from a remote task queue, respectively.

Graph inputs are chosen from the Florida sparse matrix
collection [20]. The inputs that we evaluated for each
workload are listed in Table 5. These inputs were selected to
fully utilize all 128 CUs.

B. Scenarios

We use 6 execution scenarios to evaluate hLRC: baseline,
scope-only, steal-only, RSP, DeNovo-B, and hLRC. The
baseline configuration uses neither scoped synchronization
nor work stealing. Work-groups can only pull from their own
work list and use agent scope for all synchronization. The
scope-only configuration isolates the efficiency benefits of
scoped synchronization by only allowing work-groups to pull
from their own statically assigned work list and the work-
groups use wg-scope for all synchronization. The steal-only
configuration isolates the load balancing benefits of work
stealing by allowing work stealing from remote CUs and using
agent scope for all synchronization accesses. RSP uses the
RSP implementation described in Section II.D to take
advantage of both scoped synchronization and work stealing.
Work-items use wg-scoped synchronization when pulling
from their local work lists, and they use RSP synchronization
when stealing from a remote work list. DeNovo-B represents
a simplified implementation of the DeNovo protocol (de-
scribed in Section II.E) because it tracks registration at cache
block granularity rather than at word granularity. It also differs
from the prior implementation [10] because coherence regions
are not implemented for read-only data. Although these
simplifications reduce hardware and software complexity,

they can lead to increased false sharing and more wasteful in-
validations than would occur in the optimized protocol. hLRC
is implemented as described in Section III; it can perform
work stealing and exploit synchronization locality
automatically through local registration.

V. RESULTS

A. Performance of 128-CU GPU

Figure 4 compares the speedup of the 5 configurations
described in Section IV.B relative to baseline. On average, the
scope-only configuration improves performance by 7%
relative to baseline, the steal-only configuration improves
performance by 16%, the RSP implementation causes a 4%
decrease in performance, DeNovo-B improves performance
by 21%, and hLRC improves performance by 29%.

Each evaluated scenario triggers coherence actions at dif-
ferent rates for different reasons. To illustrate this, Figure 5
breaks down the L1 invalidations and Figure 6 breaks down
the L1 flush and store registration actions. All scenarios trig-
ger an equal amount of invalidation and flush actions at the
start and end of a kernel, labeled kernel start and kernel end.

In addition, accessing the task queue can cause invalida-
tion and flush actions. Specifically, in the baseline scenario
popping a task causes the following coherence actions: an L1
invalidation occurs for every acquire operation and an L1
store buffer flush occurs for every release operation. These are
labeled acquire in Figure 5 and release in Figure 6, respec-
tively. The figures demonstrate that stealing causes the steal-
only and DeNovo-B scenarios to experience more invalidate
and flush actions in some cases. At the same time, RSP can
experience fewer invalidate and flush actions because wg-
scoped operations do not require L1 coherence actions. In-
stead, RSP additionally triggers 127 (one for every remote
core) L1 self-invalidations for every remote release and 127
L1 store buffer flushes for every remote acquire (i.e., for every
steal attempt). These are labeled remote inval and remote flush
respectively. Finally, hLRC triggers an L1 invalidation when-
ever an L1 obtains exclusive ownership for an atomic varia-
ble, and an L1 flush whenever an L1 loses synchronization

Figure 4. Performance (speedup relative to baseline).

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

SSSP-1 SSSP-2 SSSP-3 color-1 color-2 color-3 PR-1 PR-2 PR-3 geo. mean

Sp
e

e
d

u
p

s

baseline scope steal RSP DeNovo-B hLRC

(i.e., for a synchronization miss or eviction). These are labeled
atomic in and atomic out respectively.

Figure 7 shows the combined latency of all non-atomic ac-
cesses, broken down by load and store operations and normal-
ized to baseline. Since all scenarios load and store approxi-
mately the same amount of data, this graph helps explain how
data access latency is affected by each protocol. Figure 8
shows the combined latency of all acquire operations, release
operations, and atomic accesses, broken down by operation
type and normalized to baseline. This helps explain how syn-
chronization operations, which are less numerous than data
accesses but are often on the program’s critical path, are af-
fected by each protocol. Acquire includes latency from the
kernel start and acquire actions in Figure 5, and Release in-
cludes latency from the kernel end and release actions in
Figure 6. Latency from the atomic in and atomic out invali-
date/flush actions is included in Atomic LD/ST/RMW.

Using these detailed graphs, we next compare the
performance of the RSP, DeNovo-B, and hLRC scenarios.

RSP: Although past work has shown RSP can benefit from
simultaneously providing both scoped synchronization and
work stealing when the number of CUs is small (e.g., eight)
[12], it is clear from these results that the initially proposed
RSP implementation does not scale. On 128 CUs, the

broadcast lock, invalidate, and flush commands of the RSP
implementation greatly increase coherence actions, data ac-
cess latency, and synchronization latency. This ultimately
degrades performance relative to the baseline configuration by
up to 33%.

DeNovo-B: The DeNovo-B configuration scales well to
128 cores and can exploit significant cache locality in the pres-
ence of work stealing, delivering the best performance for
multiple workloads. However, it does not provide the benefits
of both scope-only and steal-only for multiple other
workloads. DeNovo-B differs from RSP and hLRC in that it
obtains local registration for all stored data, and it performs
coherence actions for every atomic. DeNovo-B’s L2 inclusiv-
ity for all writes causes increased contention and evictions at
the L2 cache, which in turn increases release latency and fills
up the store buffer, stalling subsequent accesses (evident in the
high release latency, acquire latency, and store latency in
SSSP-3 and color-1). However, our implementation of store
registration also means the L2 functions as a write-back cache
for dirty data, which enables improved reuse of written data
through the L2. While all other evaluated scenarios, including
hLRC, maintain consistency with the CPU by invalidating L2
cache lines when writing through to memory. Thus, only the
DeNovo-B implementation keeps dirty data resident in the L2
cache until it is replaced. Therefore, DeNovo is better able to

Figure 5. Total counts of L1 cache invalidation coherence actions, normalized to baseline.

Figure 6. Total counts of L1 store flush/store registration coherence actions, normalized to baseline.

0

0.5

1

1.5

2

2.5

3

3.5
b

as
el

in
e

sc
o

p
e-

o
n

ly
st

ea
l-

o
n

ly
R

SP
D

eN
o

vo
-B

h
LR

C

b
as

el
in

e
sc

o
p

e-
o

n
ly

st
ea

l-
o

n
ly

R
SP

D
eN

o
vo

-B
h

LR
C

b
as

el
in

e
sc

o
p

e-
o

n
ly

st
ea

l-
o

n
ly

R
SP

D
eN

o
vo

-B
h

LR
C

b
as

el
in

e
sc

o
p

e-
o

n
ly

st
ea

l-
o

n
ly

R
SP

D
eN

o
vo

-B
h

LR
C

b
as

el
in

e
sc

o
p

e-
o

n
ly

st
ea

l-
o

n
ly

R
SP

D
eN

o
vo

-B
h

LR
C

b
as

el
in

e
sc

o
p

e-
o

n
ly

st
ea

l-
o

n
ly

R
SP

D
eN

o
vo

-B
h

LR
C

b
as

el
in

e
sc

o
p

e-
o

n
ly

st
ea

l-
o

n
ly

R
SP

D
eN

o
vo

-B
h

LR
C

b
as

el
in

e
sc

o
p

e-
o

n
ly

st
ea

l-
o

n
ly

R
SP

D
eN

o
vo

-B
h

LR
C

b
as

el
in

e
sc

o
p

e-
o

n
ly

st
ea

l-
o

n
ly

R
SP

D
eN

o
vo

-B
h

LR
C

SSSP-1 SSSP-2 SSSP-3 color-1 color-2 color-3 PR-1 PR-2 PR-3

N
o

rm
al

iz
ed

 L
1

 I
n

va
lid

at
io

n
 A

ct
io

n
s

kernel start acquire remote inval atomic in

5.8 4.9

0

0.5

1

1.5

2

2.5

3

3.5

b
as

el
in

e
sc

o
p

e-
o

n
ly

st
ea

l-
o

n
ly

R
SP

D
eN

o
vo

-B
h

LR
C

b
as

el
in

e
sc

o
p

e-
o

n
ly

st
ea

l-
o

n
ly

R
SP

D
eN

o
vo

-B
h

LR
C

b
as

el
in

e
sc

o
p

e-
o

n
ly

st
ea

l-
o

n
ly

R
SP

D
eN

o
vo

-B
h

LR
C

b
as

el
in

e
sc

o
p

e-
o

n
ly

st
ea

l-
o

n
ly

R
SP

D
eN

o
vo

-B
h

LR
C

b
as

el
in

e
sc

o
p

e-
o

n
ly

st
ea

l-
o

n
ly

R
SP

D
eN

o
vo

-B
h

LR
C

b
as

el
in

e
sc

o
p

e-
o

n
ly

st
ea

l-
o

n
ly

R
SP

D
eN

o
vo

-B
h

LR
C

b
as

el
in

e
sc

o
p

e-
o

n
ly

st
ea

l-
o

n
ly

R
SP

D
eN

o
vo

-B
h

LR
C

b
as

el
in

e
sc

o
p

e-
o

n
ly

st
ea

l-
o

n
ly

R
SP

D
eN

o
vo

-B
h

LR
C

b
as

el
in

e
sc

o
p

e-
o

n
ly

st
ea

l-
o

n
ly

R
SP

D
eN

o
vo

-B
h

LR
C

SSSP-1 SSSP-2 SSSP-3 color-1 color-2 color-3 PR-1 PR-2 PR-3

N
o

rm
al

iz
e

d
 F

lu
sh

/S
tR

e
g

A
ct

io
n

s

kernel end release remote flush atomic out

8.0 7.4 10.7 9.7 10.1

exploit reuse at the L2 between CUs, which is evident in the
decreased release latency and load latency for PR-2 and PR-
3. Meanwhile for SSSP-1, SSSP-2, and PR-1, DeNovo-B suf-
fers from frequent invalidates, which causes L1 read reuse to
suffer and data access latency to increase. However, by per-
forming coherence actions at every acquire or release,
DeNovo-B is less sensitive than RSP and hLRC to low syn-
chronization locality (e.g., color-3, PR-2, and PR-3).

Overall, DeNovo-B outperforms hLRC where reuse of
written data at the L2 is possible and synchronization locality
is low, but performs relatively poorly when synchronization is
primarily local and load-load reuse at the L1 is frequent, or
when L2 cache pressure is high.

hLRC: By automatically avoiding coherence actions
when synchronization is local, hLRC is able to exploit the
benefits of both work stealing and cache reuse. As Figure 5
and Figure 6 show, hLRC decouples flush and invalidate op-
erations from acquire and release accesses, reducing load, ac-
quire, and release latency when synchronization locality is
high. However, since hLRC’s benefits rely on synchronization
locality, its gains are less pronounced when stealing is
frequent, and it performs roughly the same as the steal-only
configuration when steal-only is dominant (SSSP-3, color-2,

PR-2, PR-3). This is because for every acquire-release pair be-
tween remote CUs, hLRC incurs the latency of serially exe-
cuting flush and invalidate actions as part of the acquiring
atomic access, rather than preemptively flushing at the release.
Although the increase in atomic latency is in most cases out-
weighed by a decrease in release latency (Figure 8), atomic
access latency is more likely to be on the critical path than a
release operation, so it can have a larger impact on perfor-
mance.

However, the common case is local synchronization.
Table 6 gives the proportion of hLRC synchronization ac-
cesses that are satisfied in the local L1 cache (L1 hits), in the
L2 cache or memory (L2/Mem hits), and in a remote L1 cache
(Remote L1 hits). Note that an L1 hit does not require a co-
herence action, a L2/Mem hit triggers an L1 invalidation, and
a Remote L1 hit triggers an L1 flush and an L1 invalidation.
For completeness, evictions that result in the loss of L1 regis-
tration are also shown (Synch Evicts), normalized to the total
number of synchronization accesses. These evictions also re-
sult in an L1 flush, but since non-registered data is prioritized
for eviction in hLRC, this count is near 0 for all inputs. Over-
all, atomic locality is high for the work stealing applications
studied, and in every workload a significant majority of
atomic accesses require no coherence actions. As a result,

Figure 7. Total latency for data operations (load and store) normalized to baseline.

Figure 8. Total latency for synchronization operations (atomic access, acquire, and release) normalized to baseline.

0

0.5

1

1.5

2

2.5

3

3.5
b

as
e

lin
e

sc
o

p
e-

o
n

ly
st

ea
l-

o
n

ly
R

SP
D

e
N

o
vo

-B
h

LR
C

b
as

e
lin

e
sc

o
p

e-
o

n
ly

st
ea

l-
o

n
ly

R
SP

D
e

N
o

vo
-B

h
LR

C

b
as

e
lin

e
sc

o
p

e-
o

n
ly

st
ea

l-
o

n
ly

R
SP

D
e

N
o

vo
-B

h
LR

C

b
as

e
lin

e
sc

o
p

e-
o

n
ly

st
ea

l-
o

n
ly

R
SP

D
e

N
o

vo
-B

h
LR

C

b
as

e
lin

e
sc

o
p

e-
o

n
ly

st
ea

l-
o

n
ly

R
SP

D
e

N
o

vo
-B

h
LR

C

b
as

e
lin

e
sc

o
p

e-
o

n
ly

st
ea

l-
o

n
ly

R
SP

D
e

N
o

vo
-B

h
LR

C

b
as

e
lin

e
sc

o
p

e-
o

n
ly

st
ea

l-
o

n
ly

R
SP

D
e

N
o

vo
-B

h
LR

C

b
as

e
lin

e
sc

o
p

e-
o

n
ly

st
ea

l-
o

n
ly

R
SP

D
e

N
o

vo
-B

h
LR

C

b
as

e
lin

e
sc

o
p

e-
o

n
ly

st
ea

l-
o

n
ly

R
SP

D
e

N
o

vo
-B

h
LR

C

SSSP-1 SSSP-2 SSSP-3 color-1 color-2 color-3 PR-1 PR-2 PR-3

N
o

rm
al

iz
ed

 t
o

ta
l d

at
a

ac
ce

ss
 la

te
n

cy

Data LD Data ST

0

0.5

1

1.5

2

2.5

3

3.5

b
as

e
lin

e
sc

o
p

e-
o

n
ly

st
ea

l-
o

n
ly

R
SP

D
e

N
o

vo
-B

h
LR

C

b
as

e
lin

e
sc

o
p

e-
o

n
ly

st
ea

l-
o

n
ly

R
SP

D
e

N
o

vo
-B

h
LR

C

b
as

e
lin

e
sc

o
p

e-
o

n
ly

st
ea

l-
o

n
ly

R
SP

D
e

N
o

vo
-B

h
LR

C

b
as

e
lin

e
sc

o
p

e-
o

n
ly

st
ea

l-
o

n
ly

R
SP

D
e

N
o

vo
-B

h
LR

C

b
as

e
lin

e
sc

o
p

e-
o

n
ly

st
ea

l-
o

n
ly

R
SP

D
e

N
o

vo
-B

h
LR

C

b
as

e
lin

e
sc

o
p

e-
o

n
ly

st
ea

l-
o

n
ly

R
SP

D
e

N
o

vo
-B

h
LR

C

b
as

e
lin

e
sc

o
p

e-
o

n
ly

st
ea

l-
o

n
ly

R
SP

D
e

N
o

vo
-B

h
LR

C

b
as

e
lin

e
sc

o
p

e-
o

n
ly

st
ea

l-
o

n
ly

R
SP

D
e

N
o

vo
-B

h
LR

C

b
as

e
lin

e
sc

o
p

e-
o

n
ly

st
ea

l-
o

n
ly

R
SP

D
e

N
o

vo
-B

h
LR

C

SSSP-1 SSSP-2 SSSP-3 color-1 color-2 color-3 PR-1 PR-2 PR-3

N
o

rm
al

iz
e

d
 t

o
ta

l s
yn

c
la

te
n

cy

Atomic LD/ST/RMW Acquire Release

5.6

hLRC is able to outperform all other configurations on
average.

In summary, RSP, DeNovo-B and hLRC all attempt to
simultaneously optimize for cache locality and work stealing,
but only hLRC is able to consistently match or exceed the
performance of the best of scope-only and steal-only for the
workloads studied. RSP’s broadcast operations significantly
degrade performance at 128 CUs, causing RSP to perform up
to 33% worse than the baseline. DeNovo-B improves upon
RSP, providing an average performance improvement of 21%
over the baseline. With a write-back L2 and a lack of reliance
on synchronization locality, the DeNovo-B implementation is
even able to outperform hLRC when locality in written data is
available and stealing is frequent. However, the overheads of
registration for data accesses and increased coherence actions
outweigh these benefits in most cases, and hLRC performs on
average 7% better than DeNovo-B for the work stealing work-
loads studied.

B. Analyzing the Optimized Replacement Policy

We next analyze the impact of an optimized L1 and L2
replacement policy that avoids evicting inclusively tracked
cache lines containing atomic variables for DeNovo-B and
hLRC. Figure 9 shows the speedup of four configurations
relative to the baseline: DeNovo-noprio, DeNovo-Rprio,
hLRC-noprio, and hLRC-Rprio. DeNovo-Rprio and hLRC-
Rprio use a state-aware replacement policy which ranks cache
lines first by state (non-Registered data is preferred for
eviction), and then by last use. DeNovo-noprio and hLRC-
noprio uses an unbiased least-recently-used (LRU)
replacement policy, which does not take into account the
Registered state of the cache line. The DeNovo-B and hLRC

policies evaluated in Section V.A are the same as the DeNovo-
noprio and hLRC-Rprio configurations here.

hLRC-noprio achieves on average 22% speedup relative
to baseline while hLRC-Rprio achieves on average 29%
speedup. This difference in performance demonstrates the
importance of preventing unnecessary Registration state
evictions and their subsequent coherence actions when
possible. In the evaluated workloads, atomic operations only
touch 24 KB of cache blocks. Thus by biasing the replacement
policy to hold onto these blocks, the 4 MB L2 still provides a
significant caching of non-atomic data and avoids
unnecessary coherence actions.

DeNovo, on the other hand, requires far more registration
than hLRC. For the applications studied, multiple megabytes
of stored data accumulate in DeNovo’s L2 cache, depending
on the size of the graph. Prioritizing these registered cache
lines actually degrades performance in most cases, causing
DeNovo-Rprio to perform only 3% faster than baseline on av-
erage, compared with 21% speedup for DeNovo-noprio.

C. Using Scopes With hLRC

 hLRC does not require scopes and simply acquires L1
registration for all atomic accesses, relying on implicit coher-
ence actions to keep data consistent. However, if
synchronization locality is low, then it may be preferable to
perform atomic accesses at the L2 and perform explicit coher-
ence actions as necessary. For example, if a release operation
is known to only synchronize with an acquire operation from
a remote CU, the CU should not cache the variable locally
after the release. Obtaining local Registration only triggers a
wasteful invalidation at the releasing CU and delays the
release until the critical path for the acquire. Instead, the
release should perform the atomic access at the L2 and
preemptively flush any data that needs to be synchronized.
Thus, the subsequent acquire operation does not need to look
up the local Registration owner of the variable or trigger
coherence actions on a remote CU. In essence, scopes could
be used by expert programmers to optimize an hLRC system
and exploit knowledge of communication locality. However,
unlike HRF, incorrect assumptions about communication
locality can only affect performance and not cause scope races
and correctness bugs.

Table 6. Synchronization hit proportions.

Bench-

mark

L1 hits L2/Mem

hits

Remote

L1 hits

Synch

Evicts

SSSP-1 95.7% 0.8% 3.6% 0%

SSSP-2 97.8% 0.3% 1.9% 0%

SSSP-3 76.0% 4.6% 19.4% 0.67%

color-1 92.3% 0.32% 7.4% 0%

color-2 85.3% 1.0% 13.7% 0%

color-3 74.3% 5.6% 20.0% 0%

PR-1 96.6% 1.0% 2.4% 0%

PR-2 80.7% 4.3% 15.0% 0%

PR-3 82.4% 6.4% 11.2% 0%

Figure 9. Impact of owned prioritization on performance.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

Sp
e

e
d

u
p

s

baseline DeNovo-noprio DeNovo-Rprio hLRC-noprio hLRC-Rprio

Figure 10. Speedup of hLRC-scoped vs. hLRC.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

Sp
e

e
d

u
p

baseline hLRC-scoped hLRC

hLRC can support scoped synchronization in a straight-
forward manner. Specifically wg-scoped atomic accesses are
handled the same as the non-scoped atomic accesses described
in Section III. For an agent-scoped atomic access, an L1 flush
(release) or invalidation (acquire) must be explicitly
performed before or after registering the data at the L2 (which
may require revoking registration from a remote L1),
respectively.

We demonstrate the potential performance effects of using
scopes by comparing hLRC, as described in the prior sections,
to a configuration that uses scopes, called hLRC-scoped. If
steals are rare, the scoped implementation should perform
better because the stealing threads avoid needless coherence
actions related to Registration transfer. In reality Figure 10
shows that on average, both hLRC and hLRC-scoped achieve
29% speedup over the baseline. hLRC-scoped does not
perform consistently better than hLRC, and in multiple cases
(SSSP-1, SSSP-3, Color-2, PR-3) performs slightly worse
because stealing does exhibit some locality. When multiple
steals from the same work-group occur, hLRC-scoped
repeatedly pushes the atomic variable back to the L2 cache
whereas in hLRC steals hit in the L1 cache, which amortizes
the cost of local L1 Registration.

VI. RELATED WORK

Many existing coherence protocols exhibit some degree of
laziness with regard to making written data visible to remote
cores. Such strategies often rely on weak memory models and
software-defined synchronization semantics to delay the point
of stale data invalidation until the time at which it may actually
be read [7][11][21][22], although the principle generalizes to
models such as TSO as well [23][24]. However, in all of these
protocols the propagation of dirty data to a shared cache level
is still triggered at the writing core. hLRC takes laziness a step
further by delaying the propagation of written data until a
potential remote synchronization is detected. In this respect,
hLRC more closely resembles Lazy Release Consistency,
which has been proposed for CPU systems [16]. By tracking
synchronization variables and delaying all write propagation
actions until a new core accesses a synchronization variable,
hLRC reduces communication and improves reuse.

DeNovoND, similar to hLRC, also tracks atomic variables
and propagates dirty data between synchronizing cores in a
targeted manner [25]. However, DeNovoND is even more se-
lective than hLRC, using a per-lock bloom filter to track dirty
data on remote cores and self-invalidates remote data on syn-
chronization. Unlike hLRC, DeNovoND synchronization is
limited to locks and barriers, and thus does not support the
evaluated release consistency model in this paper.

Other work has evaluated GPU memory consistency
models and some of them concluded that GPU can implement
sequential consistency just as efficiently as weaker memory
models [26][31]. However, their evaluations only assessed
coherence protocols, such as MESI, which require writer-
initiated invalidation. The overheads required for such
protocols are not attractive for current GPUs, and these prior
studies lack comparisons to more realistic data points.

There have been multiple attempts to limit the overheads
of hardware coherence protocols for GPUs. Heterogeneous
System Coherence uses a hierarchical directory to track
coherence state at coarse-grain regions [27]. This work fo-
cused on reducing coherence traffic between the CPU and the
GPU, which is orthogonal to hLRC’s focus on intra-GPU
communication. QuickRelease [28] is a hierarchal write coa-
lescing protocol improves effective memory bandwidth, but it
uses writer-initiated invalidation and broadcast invalidates for
coherence. Meanwhile, Temporal Coherence avoids writer-
initiated invalidation, but performance depends greatly on the
lifetime of data in the cache: too short, and locality cannot be
exploited; too long, and communication suffers [29].

Multiple efforts have also helped determine the exact
memory model semantics provided by existing GPUs. For in-
stance, Alglave et al. found that many common behavioral as-
sumptions were faulty [30]. Complementary, Hower et al.
defined the SC for HRF memory model to establish clearer
synchronization semantics for current GPUs [7][8]. HRF
enables programmers to exploit knowledge of locality by
specifying the visibility of synchronization operations. In this
way, synchronization between local threads can be performed
cheaply. However, using scopes requires static knowledge of
the locations of synchronizing threads, and it introduces the
notion of a heterogeneous data race, which occurs when two
threads synchronize at different scope instances. Work
stealing is possible with HRF, but it requires that all synchro-
nization occurs through an encompassing scope (e.g., agent
scope). Thus, dynamic sharing patterns like work stealing are
not able to scopes, thus motivating the already discussed,
Remote-Scope Promotion [12][15] work.

VII. CONCLUSION

Scoped synchronization is currently used by modern
GPUs, but it relies on a complex memory model and is unable
to exploit locality in many types of sharing patterns. Remote-
scope promotion (RSP) has been proposed to enable more
flexible communication patterns in GPUs, but RSP as
originally proposed uses broadcast invalidate, flush, and lock
commands which scale poorly.

In comparison, DeNovo coherence implements efficient
dynamic sharing without the use of scopes. Rather than
relying on software-specified synchronization locality to
reduce the cost of coherence actions, DeNovo uses exclusive
registration to exploit locality in written data, even in the
absence of synchronization locality. However, it still must
perform coarse-grain coherence actions on every acquire and
release, and the overhead of registration can outweigh its
benefits when written data exhibits minimal locality.

This work introduced hLRC, a novel method for GPU
synchronization based on lazy release consistency. Similar to
existing methods for GPU synchronization, hLRC uses
acquire-release semantics and coarse-grain coherence actions
to enforce consistency. Like RSP, hLRC relies on
synchronization locality to avoid performing these actions
when synchronization is local. However, hLRC does not rely
on scopes and instead uses an atomic tracking hardware

mechanism to trigger targeted coherence actions when
necessary. By automatically exploiting available
synchronization locality and performing targeted coherence
actions only when needed, hLRC achieves efficient cache
utilization and scalable communication. Specifically while
RSP degrades the performance of a 128-CU GPU and
DeNovo improves performance by on average 21%, hLRC
achieves a 29% speedup on average compared with our
baseline. Like DeNovo, hLRC it is able to achieve this
efficiency without any knowledge of communication locality,
thus reducing the need for scope synchronization.

ACKNOWLEDGMENTS

We thank Tony Gutierrez, Steve Reinhardt, Tyler
Sorensen, John Wickerson, and the anonymous reviewers for
their helpful feedback. We also thank Sarita Adve for her
insightful suggestions that significantly improved the DeNovo
comparison. Finally, we thank Tony Tye, Brian Sumner, and
Paul Blinzer for thoughtful discussions. This work was
performed while John Alsop interned at AMD Research.
AMD, the AMD Arrow logo, and combinations thereof are
trademarks of Advanced Micro Devices, Inc. OpenCL is a
trademark of Apple Inc. used by permission by Khronos.

REFERENCES

[1] D. J. Sorin, M. D. Hill, and D. A. Wood. A Primer on Memory
Consistency and Cache Coherence. Morgan and Claypool, 2011.

[2] International Organization for Standardization, “Working Draft,
Standard for Programming Language C++,” [Online]. Available:
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3337.pdf

[3] S. Adve and M. Hill, “Weak Ordering -- A New Definition,” in
Proceedings of the 17th Annual International Symposium on Computer
Architecture, 1990.

[4] “CUDA C Programming Guide.” [Online]. Available:
http://docs.nvidia.com/cuda/cuda-c-programming-guide/.

[5] A. Munshi. The OpenCL Specification (Version 2.0). Khronos OpenCL
Working Group, November 2013.

[6] “HSA Programmer’s Reference Manual: HSAIL Virtual ISA and
Programming Model, Compiler Writer’s Guide, and Object Format
(BRIG) Version 1.0 Provisional,” HSA Foundation, Spring 2013.

[7] D. R. Hower, B. A. Hechtman, B. M. Beckmann, B. R. Gaster, M. D.
Hill, S. K. Reinhardt, and D. A. Wood, “Heterogeneous-race-free
Memory Models,” In The 19th International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS-19), 2014.

[8] B. R. Gaster, D. Hower, and L. Howes, “HRF-Relaxed: Adapting HRF
to the complexities of industrial heterogeneous memory models,” In
Transactions on Architecture and Code Optimization (TACO), 2015.

[9] T. Sorenson and A. F. Donaldson, “Exposing errors related to weak
memory in GPU applications.” In Proceedings of the 37th Conference
on Programming Language Design and Implementation, 2016.

[10] M. D. Sinclair, J. Alsop, and S. V. Adve, “Efficient GPU
synchronization without scopes: Saying no to complex consistency
models,” In Proceedings of the 48th International Symposium on
Microarchitecture, 2015.

[11] H. Sung and S. V. Adve, “DeNovoSync: Efficient support for arbitrary
synchronization without writer-initiated invalidations,” In The 20th
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-20), 2015.

[12] M. S. Orr, S. Che, A. Yilmazer, B. M. Beckmann, M. D. Hill, and D.
A. Wood, “Synchronization using remote-scope promotion,” In The
20th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS-20), 2015.

[13] Mike Mantor, “AMD Radeon™ HD 7970 with Graphics Core Next
(GCN) Architecture,” In HOT Chips, A Symposium on High
Performance Chips, 2012.

[14] H. J. Boehm and S. Adve, “Foundations of the C++ Concurrency
Memory Model,” In PLDI, 2008

[15] J. Wickerson, M. Batty, B. M. Beckmann, and A. F. Donaldson,
“Remote-scope promotion: Clarified, rectified, and verified.” In
Proceedings of the 2015 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications,
2015.

[16] P. Keleher, A. L. Cox, and W. Zwaenepoel, “Lazy release consistency
for software distributed shared memory,” In Proceedings of the 19th
Annual Symposium on Computer Architecture, 1992.

[17] AMD Research, “AMD’s GEM5 APU simulator” [Online]. Available:
http://www.gem5.org/wiki/images/7/7a/2015_ws_03_amd-apu-
model.pdf

[18] S. Che, B. M. Beckmann, S. K. Reinhardt, and K. Skadron, “Pannotia:
Understanding Irregular GPGPU Graph Applications,” In Proceedings
of the International Symposium on Workload Characterizations, 2013

[19] D. Cederman and P. Tsigas, “Dynamic Load-Balancing Using Work-
Stealing,” In GPU Computing Gems Jade Edition, Wen-Mei Hwu
(Editor-in-Chief), Morgan Kaufmann

[20] The University of Florida Sparse Matrix Collection, T. A. Davis and Y.
Hu, ACM Transactions on Mathematical Software, Vol 38, Issue 1,
2011, pp 1:1 - 1:25. http://www.cise.ufl.edu/research/sparse/matrices

[21] A. Lebeck and D. Wood, “Dynamic self-invalidation: Reducing
coherence overhead in shared-memory multiprocessors,” In The 22nd
International Symposium on Computer Architecture (ISCA), 1995.

[22] A. Ros and S. Kaxiras. “Complexity-effective multicore coherence,”
In The International Conference on Parallel Architecture and
Compilation (PACT), 2012.

[23] M. Elver and V. Nagarajan. “TSO-CC: Consistency directed cache
coherence for TSO,” In High Performance Computer Architecture
(HPCA), 2014 IEEE 20th International Symposium on, 2014.

[24] M. Elver and V. Nagarajan. “RC3: Consistency directed cache
coherence for x86-64 with RC extensions,” In The International
Conference on Parallel Architecture and Compilation (PACT), 2015.

[25] H. Sung, R. Komuravelli, and S. V. Adve, “DeNovoND: efficient
hardware support for disciplined non-determinism.” In Proceedings of
the 47th International Symposium on Microarchitecture, 2014.

[26] B. A. Hechtman and D. J. Sorin, “Exploring Memory Consistency for
Massively-threaded Throughput-oriented Processors," in Proceedings
of the 40th Annual International Symposium on Computer
Architecture, 2013.

[27] J. Power, A. Basu, J. Gu, S. Puthoor, B. M. Beckmann, M. D. Hill, S.
K. Reinhardt, and D. A. Wood, “Heterogeneous System Coherence for
Integrated CPU-GPU Systems," in Proceedings of the 46th Annual
IEEE/ACM International Symposium on Microarchitecture, 2013.

[28] B. A. Hechtman, S. Che, D. R. Hower, Y. Tian, B. M. Beckmann, M.
D. Hill, S. K. Reinhardt and D. A. Wood, “QuickRelease: A
throughput-oriented approach to release consistency on GPUs,” In
High Performance Computer Architecture (HPCA), 2014 IEEE 20th
International Symposium on, 2014.

[29] I. Singh, A. Shriraman, W. W. Fung, M. O'Connor M, and T. M.
Aamodt TM, “Cache coherence for GPU architectures,” In The19th
International Symposium on High Performance Computer Architecture
(HPCA2013), 2013.

[30] J. Alglave, M. Batty, A. Donaldson, G. Gopalakrishnan, J. Ketema, D.
Poetzl, T. Sorensen, and J. Wickerson, “GPU Concurrency: Weak
behaviors and programming assumptions,” In The 20th International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS-20), 2015.

[31] A. Singh, S. Aga, and S. Narayanasamy, “Efficiently enforcing strong
memory ordering in GPUs,” In Proceedings of the 48th International
Symposium on Microarchitecture, 2015.

http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://www.gem5.org/wiki/images/7/7a/2015_ws_03_amd-apu-model.pdf
http://www.gem5.org/wiki/images/7/7a/2015_ws_03_amd-apu-model.pdf
http://www.cise.ufl.edu/research/sparse/matrices

