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Abstract—Future microprocessors need low-cost reliability so- systems. An effective detection technique should minirttize
lutions to enable reliable operations in the presence of faire-  faults that escape detection and corrupt application dsfpu

prone devices. The state-of-the-art relifability solutiors detect the such faults are commonly known as Silent Data Corruptions
presence of hardware faults by deploying low-cost softwaréevel or SDCs

symptom monitors. Recently researchers have shown that tise .
detection mechanisms provide high fault coverage with onljew Software-level symptom based fault detection mecha-
faults being undetected. There is a risk that these undeteett nisms [2, 3, 4, 5, 6, 7, 8, 9] have emerged as viable low-
faults can result in silent data corruptions or SDCs. The SDC cgost alternatives. These detect only those hardware ftnats
rates demonstrated by the state-of-the-art symptom detemin  cqpypt software execution by monitoring anomalous soféwa

mechanisms have been an impressive0.5% for permanent and .
transient hardware faults in all hardware units studied exaept executions. SWAT (SoftWare Anomaly Treatment) [4, 10, 11,

the data-centric FPU. However, a thorough and accurate angsis  12], @ state-of-the-art reliability solution, is one suctample.
is needed to evaluate the SDC rate to make these techniquesDespite the simplicity of its detectors, SWAT achieves an
practically viable. impressive SDC rate 0k0.5% across several (compute-
This paper presents Relyzer, an approach that analyzes the jhtensive, media, and distributed client-server) workledor
fault-free execution of applications and performs smart skective t and t ient faults in all hard its stidi
fault injection experiments, as opposed to random fault ingc- permanent an ran5|gn aults in-ail har \_/vare units studie
tions. Relyzer can thus provide a tight bound on the SDC rate. €Xxcept the data-centric FPU. The effectiveness of SWAT
Relyzer first lists all the architecture level hardware faults that has been demonstrated through statistical methods. t&taitis
can possibly affect an application. It then employs a set ofavel  techniques randomly select a small representative sanfple o
fault pruning techniques to eliminate a large fraction of them by argware faults (typically in the order of 10s of thousands)
predicting their outcomes and showing them equivalent to dters. t of all hard faults in th t tvpically in th d
The hardware faults that remain after the pruning phase are he outora ar_ yvare au S in the system (typical y n e@rr_
only ones that need thorough fault injection experiments. @r  ©f 100s of trillions). While these methods provide statiti
results show that Relyzer is capable of pruning about 99.996 guarantees on coverage and SDC rates, certain faults that ma
of hardware faults for the workloads that we studied. Some of pe important to the application may be sampled out. Hence,
our pruning techniques are heuristic based and validating hem 5 sccurate measurement of the SDC rate is required to make

Is a part of our ongoing work. SWAT-like symptom detectors a practically viable solution

Index Terms—Silent Data Corruption, Transient Faults, Dy- An ideal alternative is, therefore, to perform exhaustavelf
namic Program Analysis, Architecture injections to measure accurate SDC rate. This can alsolllist a
possible SDC-causing hardware faults and fault propagatio
|. INTRODUCTION patterns which can be vital for eliminating them in a cost-

hnol | hard liability i beffective manner. However, this is impractical as the numbe
As process technology scales, hardware reliability is bgt o, faults are in the order of trillions. Therefore penfiing

coming a major challenge. The likelihood of future hardwarg o stematic and thorough analysis of all the hardwaregfault
failing in the field is increasing due to various reasons sagh while running an application is a major challenge.

wear-out, transient errors, and design bugs [1]. FUUr®8YS i paper presents Relyzer, a technique that is capable

must handle such failures through in-field fault detectiony gy stematically analyzing all architecture level trami
diagnosis, repair, and recovery to guarantee continudiabte |, qyare faults that can affect an application. Relyzet firs
operations. Fault detection mechanisms form a crucial paffempts to predict the outcome (detection, masking, or}SDC
in devising such low-cost reliability solutions. Tradi@ ¢ 5 yransient fault. If the outcome of the fault is predideab
systems use heavy amounts of redundancy (in space or i), it need not be studied through a fault injection expenitn

to deteqt faults. Owing to prohibitive cost, such deteCt'oﬁelyzerthen attempts to categorize faults that behaveasigni
mechanisms are no longer accepted for modern commodly 1, equivalent classes and select one representative for
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Relyzer attempts to predict the outcome of a hardwate find all errors that evade detection. SymPLFIED was applie
fault. If Relyzer is able to predict the outcome then wen only few small Siemens benchmarks. It is not clear whether
do not inject the fault to study it. this search based approach will scale to larger applicstion

» Equivalent faults: Hardware faults that are expected to Performing fault injection experiments on all hardware
show similar behavior fall under this category. We groufaults is time consuming and impractical. Benso et al. [15],
all equivalent hardware faults into one bin and thetherefore, proposed a solution that performs run-timeyaisl
select just one representative. We use heuristics to shofthe application variables to obtain the criticality betoa
the equivalence between different faults. Studying th&f every variable. It first develops an analytical model to
behavior of such representative faults is sufficient toompute the criticality of a variable. It then performs aiser
determine the outcome of all faults in an equivalenagf fault injections to initialize the model parameters. dilyp,
groups. it employs the model with initialized parameters on other

» Remaining faults: These are the unique hardware faultapplications. The results demonstrated that this solutias
with outcomes that Relyzer cannot determine. The$®w inaccuracies in predicting which variables are morelljk
faults (faults where outcome cannot be predicted and cause SDCs and are thus critical to protect. However, the
faults that represent the equivalent groups) need faudisults were shown on small applications with few variables
injection experiments to determine their outcomes.  Relyzer, on the other hand, aims to provide high confidence

We present a series of fault pruning techniques to ke&peasurements even for complex and large applications.

the set of hardware faults that fall in thremaining faults ~ Sidharan et al. [16] performed a study of hardware fault
category small such that performing fault injections ondadll behavior at the application level. It quantifies the relifi
them would be feasible. Overall, Relyzer prunes out the etlghavior of an application using a metric called Program-Vul
hardware faults such that studying a small number of themngrability Factor (PVF). PVF is a microarchitecture indepe
sufficient to determine the outcomes of all the faults affept dent method to quantify architectural fault masking ininére
an application. Our results show that Relyzer prunes oviér a program. PVF provides insights into the applicatiorelev
99.99% of 1.16 trillion hardware faults across four appiimas ~reliability by evaluating different implementations oftisame

and only 26 million remaining faults require thorough faul@pplication. However, PVF focuses on identifying only thos
injection experiments. faults that are masked by the application. It does not attemp

The validation of the heuristics based fault pruning tecHio distinguish faults that lead to SDCs from the ones thatites
niquesl used by Re|yzer, is an Ongoing work. Assumiﬁg detection. However, with a SWAT-like system in place, it
that the pruning performed by Re|yzer is sound, it Woumecomes crucial to distinguish faults that result in dédect
be feasible to exhaustively inject faults from themaining from those that result in SDCs because the system can now be
category to obtain a tightly bound SDC rate. Relyzer preser/secovered from faults that result in detection. Hence, Raly
the ability to list all SDC-causing hardware faults. Thigligp focuses on distinguishing SDCs from detections. It is uaicle
can potentially drive the development of low-cost fault dewhether PVF can make this distinction.
tectors (hardware or software). Relyzer also has the wbilit

to identify portions of an application that are SDC prone 1. RELYZER: OVERVIEW
and provide feedback to the programmer to assist him/her to ) _
further improve the resiliency of the application. Relyzer systematically analyzes all hardware faults in an

application and categorizes them pedictable, equivalent,
and remaining faults (Fig 1). The outcomes opredictable
faults can be determined with simple observations and anal-
SWAT [4, 10, 11, 12] is a low-cost comprehensive reliysis. These faults do not need fault injection experiments.
ability solution for in-core faults. It detects hardwareults Equivalent faults are those that are shown to have similar
by monitoring anomalous software executions through lovbehavior. All the equivalent faults are grouped togethed an
cost symptom detectors. The SDC rates demonstrated by tmdy one representative is picked for fault injection. The
SWAT detectors have been an impressi@.5% of injected hardware faults that are not categorized as predictable or
permanent and transient hardware faults in all hardwarts unéquivalent fall under theemaining faults category.
studied except the data-centric FPU. SWAT evaluates itsWe developed a set of novel pruning techniques to identify
detection mechanism using statistical fault injections an hardware faults that fall under thedictable and equivalent
micro-architecture level model [4] and on a more accuratategories. For identifying predictable faults, we used tw
gate level fault model [13]. SWAT, however, provides onlypruning techniques, namely bounding addresses and bayindin
empirical evidence for its low SDC rate. Relyzer, on the othéranch targets. These techniques aim to identify hardware
hand, aims to analyze all faults in an application and pmvidaults that result in catastrophic failures upon activatie.g.,
a tightly bound SDC rate. segmentation faults, application aborts, kernel pani).efor
To accurately measure SDC rate, techniques that analyzeiddintifying faults that fall under the equivalent categome
faults are required and SymPLFIED [14] has such capabilityeveloped two types of pruning techniques. The first type
The focus of SymPLFIED is to highlight the faults that resulises def-use analysis and constant propagation to show how
in detection. SymPLFIED uses symbolic executions to abistrawo faults can have same outcomes. The second type uses
state of erroneous values in the program and model checkimguristics based algorithms on fault-free executions ¢ntifly
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these scenarios. We identify the addresses that constitate
valid targets by analyzing the text section of an applicatio

Detected Typically, the text section is small (under million insttions,
i.e., under 32 hits) and hence a large fraction (over 50% 6n 64
bit machines) of faults in the branch targets can be predlicte
‘ as detected and pruned by this technique alone.
B. Pruning Equivalent Faults
Def-use analysis:A register definition is created whenever a

register is used as a destination register in an instruckiaults
in the use-chain of this definition, formed by those instiarts
that use this register as a source operand, have similavioeha
ST ENEAL O oo e Bre vt (ke
y in the definition. Sialte
destinations have at least one use in the application, wecéxp
Fig. 1. Overview: Sections marked detected, masked, andsSB@esent this technique to provide high pruning. If a definition has no

the faults that have predictable outcomes. Sections msehad'al_ent are the use then the instruction is dead and we prune all faults & thi
faults that are shown to be equivalent to others. The bladticseis the

representative set of unique faults that require faultdiiges to determine instruction.
the outcome. Faults that fall under themaining faults category are shown Constant propagation: This pruning technique observes the

at the bottom of the figure. fault propagation pattern in the instructions that operate
constants. Currently this technique is limited to only #os
ogical operations that preserve the propagation of a singl
it fault from the source operands to a destination opertind.
then prunes the faults in the source operands and retaigs onl

computation patterns that can potentially behave simila
under the influence of faults. Lastly, we added one mo

pruning technique that uses statistical methods to evabrad the faults in the destinati q
prune faults in the branch instructions. € faufis in the destination operands.

In this study we consider all ISA visible architecture level The techniques discussed so far do not use any approx-

faults. Since the focus is on transient faults, we consithgfie |trr:1att|0ns Zc;(;)ru?;ahthe fa}_ultst_. Olljr relshults(,j, mtersstm_ghotg
bit-flips in the destination and source operands (in botfsteg atover o orthe application-ievel hardware transian

and immediate values). If the operand is used as an addr%gespruned by these techniques across all our applicatis (

then we also consider faults in the computed virtual addre g\/c\:/uss them later in the evaluation sect_lo_n). :
and the memory value accessed by the instruction. e observed that most of the remaining transient faults

come from three main sections of a basic block - instructions
that lead to a store, instructions that lead to a functioh aat
) i ] instructions that lead to a compare instruction. In theofelhg
A. Pruning Faults with Predictable Outcomes sections we focus on developing techniques to prune faults i
Bounding addressesHardware faults can make applicationgshese three code sections.
access memory locations that fall out of the range of tH&ynamic store-load analysis: This pruning technique ex-
allocated address space. Such accesses are likely to lmtedeteplains how a fault in two dynamic store instructions can
by operating systems and result in detectable symptoms (b# shown equivalent (figure 2). We believe that faults in
example, segmentation faults, application aborts, andeferdifferent store instructions can be shown equivalent if the
panic). In fact, SWAT employs out-of-bounds and app-abaostore instructions have similar store effects. We meaduee t
detectors specifically to detect such scenarios withinveco store effect by using a heuristic. Assuming that the twoestor
able latencies. Hence we do not need injection experimeiristructions write in different addresses (e.g., Stored &tore
to identify the outcome of the faults in the of addressexin figure 2), we first check whether the number of loads for
that would make them access unallocated addresses. We ttese addresses are same. If this is the case, then we check
directly prune them from the set of hardware faults. the locations of these loads in the static control flow graph,
We determine the range of valid addresses, for both stask looking at the program counter (e.g., comparing PC-L1la
and heap, by studying the dynamic memory profile of thi®e PC-L2a and PC-L1b to PC-L2b in figure 2). If these also
application. To keep our implementation simple, we monitanatch, then we have a high degree of confidence that the two
global and heap addresses together. This also eliminages gtore instructions have similar effects. To gain more canfak
problem of distinguishing them from each other during rurwe also look at the dynamic control flow at each of the load
time. Once we identify the range of the valid addresses, wrestructions. In our simulation setup, we observe ten jesi
prune faults in the bits of any memory access that would allomvemory instructions to obtain the dynamic control flow atreac
them to access an invalid address. of these locations. If the dynamic control flow also matches,
Bounding branch targets: A fault that causes the control towe conclude that the two dynamic store instructions have
jump to a location that is not in the application may resulkin similar store effects and we prune faults from one of them.
detectable symptom (e.g. application abort, segmentédidh  Call-site analysis: Whenever a function is called, the func-
etc.). SWAT’s app-abort and fatal-trap detectors can detdmn parameters are transferred to the function body though

IV. FAULT PRUNING TECHNIQUES



TABLE |

A CATIONS
— PC-Lla — PC-L1b PPLICATION

——~—~» Store 1 ~—~—— Load 1a ————— Load 1b —~—~+ Application Description Number of Number

Instructions | of Faults
// LU Factors a matrix into the | 2.1 Billion | 310 Billion
(SPLASH-2) | product of lower & upper

triangular matrix

Memory

FFT 1D Fast Fourier 7.1 Billion | 111 Billion
(SPLASH-2) Transformations
\ Blackscholes| Calculates prices of options 1.7 Billion | 214 Billion
(PARSEC) with Black-Scholes partial
~—~—+ Store2~——~—"Lload 2a ————~ load 2b ~—~ differential equation
Swaptions Computes prices of a port{ 2.7 Billion | 534 Billion

(PARSEC) folio of swaptions using
Monte Carlo simulations

— PC-L2a «~—PC-L2b

Fig. 2. Example explaining dynamic store-load analysisré&i and Store 2
are two store instructions writing to different addresdesad 1a with program
counter PC-L1a and Load 1b with program counter PC-L1b ae ltvad . L
instruction reading the value from address A. Similarly d&®a and Load 2b  We select the size of the sample of dynamic instances

iafrg (T-:Wflloads fr0n|1 ad;icr:eIS_SZ B atdlosétifﬁ ,PC-LZaI am,j: CP(IZ_-ZL?EEEAXEW- for every static branch instruction such that we have high
some coifiﬁeiqcueatr:gt the th ;T)res (store If :r?cLiJZt(t)(r)e 2) hai}ars;?est\f confidence (99%), and low .err-or (5%) in the resqlts' .
We plan to devise a heuristic based fault pruning technique
even for the branch instructions and eliminate the stasti
registers. These register are later stored onto differeatks sampling approach altogether.
locations. Similarly the return value is passed from thecfun
tion body to the call-site though a register. This register i V. EVALUATION

later stored onto a memory location (stack or heap). Hencéwe implemented the above described pruning technigues
call-site forms a special case of the store instruction aed W, the SPARC V9 [17] architecture. As mentioned before, we
can utilize the dynamic store-load analysis discussed@bmv gy,gy gl transient faults in the ISA visible architectutates.
prune faults in this code section. _ We consider transient faults (bit-flips) in the destinatamd
Dynamic compare analysisCompare instructions are usuallysoyrce operands of every instruction. If the operand is ased
followed by branch instructions. A fault in the compargp aqdress then we also consider faults in the computedirtu
instruction and the instructions that lead to it often affemly  544ress and the memory value accessed by the instruction.
the direction of the branch. Hence knowing the effect of an \ye eyaluate the developed pruning techniques on four ap-
incorrect branch and the number of faults that make the "’ra“&ications — two each from SPLASH-2 [18] and PARSEC [19]
take the mcorre_ct direction, we can estimate the outcomgsnchmark suits. A brief description of the applicatior t

of all the faults in the code section that leads to a COMPAgth of each application (based on the inputs selected), a

instruc_:tion. We obtain the effect of the wrong direction byne number of faults prior to applying any pruning is shown
selecting only one fault among all the faults that make thg Taple |.

branch take the incorrect direction. We obtain the distrdiu We required both static and dynamic analysis of the ap-
of the faults that lead to a correct or an incorrect direcbyn pjication to implement the pruning techniques. The static
first identifying a dynamic instance of the compare insiartt 551y zer traverses the application and creates the setl of al
and selecting the code section that leads to this comp@igqware faults. It then applies static pruning technicares

instruction. We then inject all possible faults in this dgma computes the pruned fault set. The dynamic analyzer profiles

instance of the code section. the branches and the store-load patterns to implement the
o ) designed pruning techniques. We use Virtutech simics [20]
C. Statistical Pruning to implement these dynamic profilers. We use the information

These pruning techniques are employed only when the prdrem both static and dynamic analyses to generate the final
ing from previous techniques is not sufficient. We curreng pruned fault set.
this approach only for the branch instruction. The size of the initial set of hardware faults across all
Remaining branch targets: Faults in the branch targets thatapplications, before applying Relyzer, was approximateh6
are not pruned by théounding branch targets technique ftrillion. It is practically impossible to study these faulby
fall under this category. For every static conditional lman performing fault injection experiments. After applyind alr
instruction, we select a statistical sample of dynamicansés developed pruning techniques Relyzer was able to reduce the
and inject faults in all the bits in the branch target. set of hardware faults such that it is feasible to perform
Remaining branch direction: The faults that fall in this fault injection experiments on all the remaining faultslyzer
category are the ones that are remaining from after applyingduced the set of hardware faults to under 26 million, which
dynamic compare analysis. These are the one-bit faults thatorresponds only 0.0021% of the inital set of hardware gault
are used to measure the affect of an incorrect branch directi  Table 1l shows the breakdown of pruning obtained by dif-
We select a statistical sample of dynamic instances foryevderent pruning techniques. As shown in table Il, approxahat
conditional branch instruction to inject the one-bit difen 3.8% of the faults were pruned by predicting the outcomes.
fault. Non-approximation based techniques that show equivalence



TABLE I
THE BREAKDOWN OF THE PRUNING OBTAINED FROM EACH OF THE

TECHNIQUES
Class Pruning technique Does it use| Pruned
heuristics?
Predictable Bounding addresses No 2.8690%
Bounding branch targets No 0.9404%
Def-use analysis No 37.5772%
Constant propagation No 5.9492%
Equivalent | Dynamic store-load analysi Yes 43.7386%
Call-site analysis Yes 2.6213%
Dynamic compare analysis Yes 5.8568%
Statistical Remaining br_anch N.A. 0.4453%
targets and direction
Total 99.9979%
Remaining 0.0021%

between different faults provided about 43.2% of pruning an
the heuristic based techniques provided about 48.6% pgunin
This makes the pruning obtained by showing the equivalence
between different hardware faults to about 91.8%. Ladiig, t [7]
statistical sampling method for branch targets and dioecti

provided about 0.45% of pruning. Overall the pruning of(g
99.9979% shows how effectiveness Relyzer can be in pruning

hardware faults.

In ongoing work, we are validating the pruning performed
by the dynamic store-load analysis. We also plan to validdie]
the remaining heuristic based pruning technigques in near
future. Once we validate all our pruning techniques, we will

focus on obtaining the effective SDC rate.

VI. CONCLUSIONS ANDFUTURE WORK

Hardware reliability has become a major challenge in the
late CMOS era. Hence low-cost and effective fault detectid

faults and relate them to all the equalized faults in order to
calculate the effective SDC rate.
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