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Abstract—Future microprocessors need low-cost reliability so-
lutions to enable reliable operations in the presence of failure-
prone devices. The state-of-the-art reliability solutions detect the
presence of hardware faults by deploying low-cost software-level
symptom monitors. Recently researchers have shown that these
detection mechanisms provide high fault coverage with onlyfew
faults being undetected. There is a risk that these undetected
faults can result in silent data corruptions or SDCs. The SDC
rates demonstrated by the state-of-the-art symptom detection
mechanisms have been an impressive<0.5% for permanent and
transient hardware faults in all hardware units studied except
the data-centric FPU. However, a thorough and accurate analysis
is needed to evaluate the SDC rate to make these techniques
practically viable.

This paper presents Relyzer, an approach that analyzes the
fault-free execution of applications and performs smart selective
fault injection experiments, as opposed to random fault injec-
tions. Relyzer can thus provide a tight bound on the SDC rate.
Relyzer first lists all the architecture level hardware faults that
can possibly affect an application. It then employs a set of novel
fault pruning techniques to eliminate a large fraction of them by
predicting their outcomes and showing them equivalent to others.
The hardware faults that remain after the pruning phase are the
only ones that need thorough fault injection experiments. Our
results show that Relyzer is capable of pruning about 99.9979%
of hardware faults for the workloads that we studied. Some of
our pruning techniques are heuristic based and validating them
is a part of our ongoing work.

Index Terms—Silent Data Corruption, Transient Faults, Dy-
namic Program Analysis, Architecture

I. I NTRODUCTION

As process technology scales, hardware reliability is be-
coming a major challenge. The likelihood of future hardware
failing in the field is increasing due to various reasons suchas
wear-out, transient errors, and design bugs [1]. Future systems
must handle such failures through in-field fault detection,
diagnosis, repair, and recovery to guarantee continuous reliable
operations. Fault detection mechanisms form a crucial part
in devising such low-cost reliability solutions. Traditional
systems use heavy amounts of redundancy (in space or time)
to detect faults. Owing to prohibitive cost, such detection
mechanisms are no longer accepted for modern commodity
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systems. An effective detection technique should minimizethe
faults that escape detection and corrupt application outputs;
such faults are commonly known as Silent Data Corruptions
or SDCs.

Software-level symptom based fault detection mecha-
nisms [2, 3, 4, 5, 6, 7, 8, 9] have emerged as viable low-
cost alternatives. These detect only those hardware faultsthat
corrupt software execution by monitoring anomalous software
executions. SWAT (SoftWare Anomaly Treatment) [4, 10, 11,
12], a state-of-the-art reliability solution, is one such example.
Despite the simplicity of its detectors, SWAT achieves an
impressive SDC rate of<0.5% across several (compute-
intensive, media, and distributed client-server) workloads for
permanent and transient faults in all hardware units studied
except the data-centric FPU. The effectiveness of SWAT
has been demonstrated through statistical methods. Statistical
techniques randomly select a small representative sample of
hardware faults (typically in the order of 10s of thousands)
out of all hardware faults in the system (typically in the order
of 100s of trillions). While these methods provide statistical
guarantees on coverage and SDC rates, certain faults that may
be important to the application may be sampled out. Hence,
an accurate measurement of the SDC rate is required to make
SWAT-like symptom detectors a practically viable solution.

An ideal alternative is, therefore, to perform exhaustive fault
injections to measure accurate SDC rate. This can also list all
possible SDC-causing hardware faults and fault propagation
patterns which can be vital for eliminating them in a cost-
effective manner. However, this is impractical as the number
of such faults are in the order of trillions. Therefore performing
a systematic and thorough analysis of all the hardware faults
while running an application is a major challenge.

This paper presents Relyzer, a technique that is capable
of systematically analyzing all architecture level transient
hardware faults that can affect an application. Relyzer first
attempts to predict the outcome (detection, masking, or SDC)
of a transient fault. If the outcome of the fault is predictable
then it need not be studied through a fault injection experiment.
Relyzer then attempts to categorize faults that behave similarly
in to equivalent classes and select one representative for
fault injection. This further reduces the number of faults that
require fault injection study. Overall, Relyzer bins all the
hardware faults affecting an application into the following
three categories:

• Predictable faults: Using static and dynamic analysis,
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Relyzer attempts to predict the outcome of a hardware
fault. If Relyzer is able to predict the outcome then we
do not inject the fault to study it.

• Equivalent faults: Hardware faults that are expected to
show similar behavior fall under this category. We group
all equivalent hardware faults into one bin and then
select just one representative. We use heuristics to show
the equivalence between different faults. Studying the
behavior of such representative faults is sufficient to
determine the outcome of all faults in an equivalence
groups.

• Remaining faults: These are the unique hardware faults
with outcomes that Relyzer cannot determine. These
faults (faults where outcome cannot be predicted and
faults that represent the equivalent groups) need fault
injection experiments to determine their outcomes.

We present a series of fault pruning techniques to keep
the set of hardware faults that fall in theremaining faults
category small such that performing fault injections on allof
them would be feasible. Overall, Relyzer prunes out the set of
hardware faults such that studying a small number of them is
sufficient to determine the outcomes of all the faults affecting
an application. Our results show that Relyzer prunes over
99.99% of 1.16 trillion hardware faults across four applications
and only 26 million remaining faults require thorough fault
injection experiments.

The validation of the heuristics based fault pruning tech-
niques, used by Relyzer, is an ongoing work. Assuming
that the pruning performed by Relyzer is sound, it would
be feasible to exhaustively inject faults from theremaining
category to obtain a tightly bound SDC rate. Relyzer preserves
the ability to list all SDC-causing hardware faults. This ability
can potentially drive the development of low-cost fault de-
tectors (hardware or software). Relyzer also has the ability
to identify portions of an application that are SDC prone
and provide feedback to the programmer to assist him/her to
further improve the resiliency of the application.

II. RELATED WORK

SWAT [4, 10, 11, 12] is a low-cost comprehensive reli-
ability solution for in-core faults. It detects hardware faults
by monitoring anomalous software executions through low-
cost symptom detectors. The SDC rates demonstrated by the
SWAT detectors have been an impressive<0.5% of injected
permanent and transient hardware faults in all hardware units
studied except the data-centric FPU. SWAT evaluates its
detection mechanism using statistical fault injections ona
micro-architecture level model [4] and on a more accurate
gate level fault model [13]. SWAT, however, provides only
empirical evidence for its low SDC rate. Relyzer, on the other
hand, aims to analyze all faults in an application and provide
a tightly bound SDC rate.

To accurately measure SDC rate, techniques that analyze all
faults are required and SymPLFIED [14] has such capability.
The focus of SymPLFIED is to highlight the faults that result
in detection. SymPLFIED uses symbolic executions to abstract
state of erroneous values in the program and model checking

to find all errors that evade detection. SymPLFIED was applied
on only few small Siemens benchmarks. It is not clear whether
this search based approach will scale to larger applications.

Performing fault injection experiments on all hardware
faults is time consuming and impractical. Benso et al. [15],
therefore, proposed a solution that performs run-time analysis
of the application variables to obtain the criticality behavior
of every variable. It first develops an analytical model to
compute the criticality of a variable. It then performs a series
of fault injections to initialize the model parameters. Finally,
it employs the model with initialized parameters on other
applications. The results demonstrated that this solutionhas
low inaccuracies in predicting which variables are more likely
to cause SDCs and are thus critical to protect. However, the
results were shown on small applications with few variables.
Relyzer, on the other hand, aims to provide high confidence
measurements even for complex and large applications.

Sidharan et al. [16] performed a study of hardware fault
behavior at the application level. It quantifies the reliability
behavior of an application using a metric called Program Vul-
nerability Factor (PVF). PVF is a microarchitecture indepen-
dent method to quantify architectural fault masking inherent
to a program. PVF provides insights into the application level
reliability by evaluating different implementations of the same
application. However, PVF focuses on identifying only those
faults that are masked by the application. It does not attempt
to distinguish faults that lead to SDCs from the ones that result
in detection. However, with a SWAT-like system in place, it
becomes crucial to distinguish faults that result in detection
from those that result in SDCs because the system can now be
recovered from faults that result in detection. Hence, Relyzer
focuses on distinguishing SDCs from detections. It is unclear
whether PVF can make this distinction.

III. RELYZER: OVERVIEW

Relyzer systematically analyzes all hardware faults in an
application and categorizes them aspredictable, equivalent,
and remaining faults (Fig 1). The outcomes ofpredictable
faults can be determined with simple observations and anal-
ysis. These faults do not need fault injection experiments.
Equivalent faults are those that are shown to have similar
behavior. All the equivalent faults are grouped together and
only one representative is picked for fault injection. The
hardware faults that are not categorized as predictable or
equivalent fall under theremaining faults category.

We developed a set of novel pruning techniques to identify
hardware faults that fall under thepredictable andequivalent
categories. For identifying predictable faults, we used two
pruning techniques, namely bounding addresses and bounding
branch targets. These techniques aim to identify hardware
faults that result in catastrophic failures upon activation (e.g.,
segmentation faults, application aborts, kernel panic, etc.). For
identifying faults that fall under the equivalent category, we
developed two types of pruning techniques. The first type
uses def-use analysis and constant propagation to show how
two faults can have same outcomes. The second type uses
heuristics based algorithms on fault-free executions to identify
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Fig. 1. Overview: Sections marked detected, masked, and SDCs represent
the faults that have predictable outcomes. Sections markedequivalent are the
faults that are shown to be equivalent to others. The black section is the
representative set of unique faults that require fault injections to determine
the outcome. Faults that fall under theremaining faults category are shown
at the bottom of the figure.

computation patterns that can potentially behave similarly
under the influence of faults. Lastly, we added one more
pruning technique that uses statistical methods to evaluate and
prune faults in the branch instructions.

In this study we consider all ISA visible architecture level
faults. Since the focus is on transient faults, we consider single
bit-flips in the destination and source operands (in both register
and immediate values). If the operand is used as an address
then we also consider faults in the computed virtual address
and the memory value accessed by the instruction.

IV. FAULT PRUNING TECHNIQUES

A. Pruning Faults with Predictable Outcomes

Bounding addresses:Hardware faults can make applications
access memory locations that fall out of the range of the
allocated address space. Such accesses are likely to be detected
by operating systems and result in detectable symptoms (for
example, segmentation faults, application aborts, and kernel
panic). In fact, SWAT employs out-of-bounds and app-abort
detectors specifically to detect such scenarios within recover-
able latencies. Hence we do not need injection experiments
to identify the outcome of the faults in the of addresses
that would make them access unallocated addresses. We can
directly prune them from the set of hardware faults.

We determine the range of valid addresses, for both stack
and heap, by studying the dynamic memory profile of the
application. To keep our implementation simple, we monitor
global and heap addresses together. This also eliminates the
problem of distinguishing them from each other during run-
time. Once we identify the range of the valid addresses, we
prune faults in the bits of any memory access that would allow
them to access an invalid address.
Bounding branch targets: A fault that causes the control to
jump to a location that is not in the application may result ina
detectable symptom (e.g. application abort, segmentationfault,
etc.). SWAT’s app-abort and fatal-trap detectors can detect

these scenarios. We identify the addresses that constitutethe
valid targets by analyzing the text section of an application.
Typically, the text section is small (under million instructions,
i.e., under 32 bits) and hence a large fraction (over 50% on 64-
bit machines) of faults in the branch targets can be predicted
as detected and pruned by this technique alone.

B. Pruning Equivalent Faults

Def-use analysis:A register definition is created whenever a
register is used as a destination register in an instruction. Faults
in the use-chain of this definition, formed by those instructions
that use this register as a source operand, have similar behavior
to faults in this definition. Therefore, we prune out faults in
the use-chain and retain faults only in the definition. Sinceall
destinations have at least one use in the application, we expect
this technique to provide high pruning. If a definition has no
use then the instruction is dead and we prune all faults in this
instruction.
Constant propagation: This pruning technique observes the
fault propagation pattern in the instructions that operateon
constants. Currently this technique is limited to only those
logical operations that preserve the propagation of a single-
bit fault from the source operands to a destination operand.It
then prunes the faults in the source operands and retains only
the faults in the destination operands.

The techniques discussed so far do not use any approx-
imations to prune the faults. Our results, interestingly, show
that over 47% of the application-level hardware transient faults
are pruned by these techniques across all our applications (we
discuss them later in the evaluation section).

We observed that most of the remaining transient faults
come from three main sections of a basic block - instructions
that lead to a store, instructions that lead to a function call, and
instructions that lead to a compare instruction. In the following
sections we focus on developing techniques to prune faults in
these three code sections.
Dynamic store-load analysis: This pruning technique ex-
plains how a fault in two dynamic store instructions can
be shown equivalent (figure 2). We believe that faults in
different store instructions can be shown equivalent if the
store instructions have similar store effects. We measure the
store effect by using a heuristic. Assuming that the two store
instructions write in different addresses (e.g., Store 1 and Store
2 in figure 2), we first check whether the number of loads for
these addresses are same. If this is the case, then we check
the locations of these loads in the static control flow graph,
by looking at the program counter (e.g., comparing PC-L1a
to PC-L2a and PC-L1b to PC-L2b in figure 2). If these also
match, then we have a high degree of confidence that the two
store instructions have similar effects. To gain more confidence
we also look at the dynamic control flow at each of the load
instructions. In our simulation setup, we observe ten previous
memory instructions to obtain the dynamic control flow at each
of these locations. If the dynamic control flow also matches,
we conclude that the two dynamic store instructions have
similar store effects and we prune faults from one of them.
Call-site analysis: Whenever a function is called, the func-
tion parameters are transferred to the function body though
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Fig. 2. Example explaining dynamic store-load analysis: Store 1 and Store 2
are two store instructions writing to different addresses.Load 1a with program
counter PC-L1a and Load 1b with program counter PC-L1b are two load
instruction reading the value from address A. Similarly Load 2a and Load 2b
are two loads from address B at locations PC-L2a and PC-L2b respectively.
If PC-L1a is equal to PC-L2a and PC-L1b is equal to PC-L2b thenwe have
some confidence that the two stores (store 1 and store 2) have similar effects.

registers. These register are later stored onto different stack
locations. Similarly the return value is passed from the func-
tion body to the call-site though a register. This register is
later stored onto a memory location (stack or heap). Hence
call-site forms a special case of the store instruction and we
can utilize the dynamic store-load analysis discussed above to
prune faults in this code section.
Dynamic compare analysis:Compare instructions are usually
followed by branch instructions. A fault in the compare
instruction and the instructions that lead to it often affects only
the direction of the branch. Hence knowing the effect of an
incorrect branch and the number of faults that make the branch
take the incorrect direction, we can estimate the outcomes
of all the faults in the code section that leads to a compare
instruction. We obtain the effect of the wrong direction by
selecting only one fault among all the faults that make the
branch take the incorrect direction. We obtain the distribution
of the faults that lead to a correct or an incorrect directionby
first identifying a dynamic instance of the compare instruction
and selecting the code section that leads to this compare
instruction. We then inject all possible faults in this dynamic
instance of the code section.

C. Statistical Pruning

These pruning techniques are employed only when the prun-
ing from previous techniques is not sufficient. We currentlyuse
this approach only for the branch instruction.
Remaining branch targets: Faults in the branch targets that
are not pruned by thebounding branch targets technique
fall under this category. For every static conditional branch
instruction, we select a statistical sample of dynamic instances
and inject faults in all the bits in the branch target.
Remaining branch direction: The faults that fall in this
category are the ones that are remaining from after applying
dynamic compare analysis. These are the one-bit faults that
are used to measure the affect of an incorrect branch direction.
We select a statistical sample of dynamic instances for every
conditional branch instruction to inject the one-bit direction
fault.

TABLE I
APPLICATIONS

Application Description Number of Number
Instructions of Faults

LU Factors a matrix into the 2.1 Billion 310 Billion
(SPLASH-2) product of lower & upper

triangular matrix
FFT 1D Fast Fourier 7.1 Billion 111 Billion

(SPLASH-2) Transformations
Blackscholes Calculates prices of options 1.7 Billion 214 Billion
(PARSEC) with Black-Scholes partial

differential equation
Swaptions Computes prices of a port- 2.7 Billion 534 Billion
(PARSEC) folio of swaptions using

Monte Carlo simulations

We select the size of the sample of dynamic instances
for every static branch instruction such that we have high
confidence (99%) and low error (5%) in the results.

We plan to devise a heuristic based fault pruning technique
even for the branch instructions and eliminate the statistical
sampling approach altogether.

V. EVALUATION

We implemented the above described pruning techniques
on the SPARC V9 [17] architecture. As mentioned before, we
study all transient faults in the ISA visible architecture states.
We consider transient faults (bit-flips) in the destinationand
source operands of every instruction. If the operand is usedas
an address then we also consider faults in the computed virtual
address and the memory value accessed by the instruction.

We evaluate the developed pruning techniques on four ap-
plications – two each from SPLASH-2 [18] and PARSEC [19]
benchmark suits. A brief description of the applications, the
length of each application (based on the inputs selected), and
the number of faults prior to applying any pruning is shown
in Table I.

We required both static and dynamic analysis of the ap-
plication to implement the pruning techniques. The static
analyzer traverses the application and creates the set of all
hardware faults. It then applies static pruning techniquesand
computes the pruned fault set. The dynamic analyzer profiles
the branches and the store-load patterns to implement the
designed pruning techniques. We use Virtutech simics [20]
to implement these dynamic profilers. We use the information
from both static and dynamic analyses to generate the final
pruned fault set.

The size of the initial set of hardware faults across all
applications, before applying Relyzer, was approximately1.16
trillion. It is practically impossible to study these faults by
performing fault injection experiments. After applying all our
developed pruning techniques Relyzer was able to reduce the
set of hardware faults such that it is feasible to perform
fault injection experiments on all the remaining faults. Relyzer
reduced the set of hardware faults to under 26 million, which
corresponds only 0.0021% of the inital set of hardware faults.

Table II shows the breakdown of pruning obtained by dif-
ferent pruning techniques. As shown in table II, approximately
3.8% of the faults were pruned by predicting the outcomes.
Non-approximation based techniques that show equivalence
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TABLE II
THE BREAKDOWN OF THE PRUNING OBTAINED FROM EACH OF THE

TECHNIQUES.

Class Pruning technique Does it use Pruned
heuristics?

Predictable Bounding addresses No 2.8690%
Bounding branch targets No 0.9404%

Equivalent

Def-use analysis No 37.5772%
Constant propagation No 5.9492%
Dynamic store-load analysis Yes 43.7386%
Call-site analysis Yes 2.6213%
Dynamic compare analysis Yes 5.8568%

Statistical Remaining branch N.A. 0.4453%
targets and direction

Total 99.9979%
Remaining 0.0021%

between different faults provided about 43.2% of pruning and
the heuristic based techniques provided about 48.6% pruning.
This makes the pruning obtained by showing the equivalence
between different hardware faults to about 91.8%. Lastly, the
statistical sampling method for branch targets and direction
provided about 0.45% of pruning. Overall the pruning of
99.9979% shows how effectiveness Relyzer can be in pruning
hardware faults.

In ongoing work, we are validating the pruning performed
by the dynamic store-load analysis. We also plan to validate
the remaining heuristic based pruning techniques in near
future. Once we validate all our pruning techniques, we will
focus on obtaining the effective SDC rate.

VI. CONCLUSIONS ANDFUTURE WORK

Hardware reliability has become a major challenge in the
late CMOS era. Hence low-cost and effective fault detection
mechanisms are needed. Symptom based fault detection mech-
anisms have emerged as low-cost alternatives. SWAT, a state-
of-the-art reliability solution, employs such low-cost detectors.
It statistically demonstrated that this detection mechanism
produces only 0.5% of hardware faults as unacceptable Silent
Data Corruptions or SDCs. However, the SDC rate needs to be
accurately measured and analyzed to employ such mechanisms
in commodity systems. Accurately measuring and reducing the
SDC rate is vital for any fault detection mechanism.

This paper presents Relyzer, a group of novel fault prun-
ing techniques, that can analyze all hardware faults and
significantly reduce the number of faults to study. Relyzer
predicts the outcome of several faults, eliminating the need
for thorough fault injection experiments. Relyzer exploits the
fact that several faults exhibit similar behavior to a smallset
of hardware faults to further prune faults. Relyzer employsa
series of static and dynamic pruning techniques to reduce the
set of hardware faults from 1.16 trillion to under 26 million,
a pruning of 99.9979%. It is feasible to exhaustively perform
fault injection experiments on these pruned hardware faults to
measure the SDC rates with tight bounds.

We recently finished the implementation of the fault injec-
tion infrastructure. We also started validating the heuristics
based pruning techniques used in this paper. In near future,we
plan to perform fault injection experiments on the remaining

faults and relate them to all the equalized faults in order to
calculate the effective SDC rate.
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