
mSWAT: Low-Cost Hardware Fault Detection and
Diagnosis for Multicore Systems

∗

Siva Kumar Sastry Hari, Man-Lap Li, Pradeep Ramachandran, Byn Choi, Sarita V. Adve
Department of Computer Science

University of Illinois at Urbana-Champaign
swat@cs.uiuc.edu

ABSTRACT

Continued technology scaling is resulting in systems with billions
of devices. Unfortunately, these devices are prone to failures from
various sources, resulting in even commodity systems being af-
fected by the growing reliability threat. Thus, traditional solutions
involving high redundancy or piecemeal solutions targeting specific
failure modes will no longer be viable owing to their high over-
heads. Recent reliability solutions have explored using low-cost
monitors that watch for anomalous software behavior as a symptom
of hardware faults. We previously proposed the SWAT system that
uses such low-cost detectors to detect hardware faults, and a higher
cost mechanism for diagnosis. However, all of the prior work in this
context, including SWAT, assumes single-threaded applications and
has not been demonstrated for multithreaded applications running
on multicore systems.
This paper presents mSWAT, the first work to apply symptom

based detection and diagnosis for faults in multicore architectures
running multithreaded software. For detection, we extend the symp-
tom-based detectors in SWAT and show that they result in a very
low Silent Data Corruption (SDC) rate for both permanent and tran-
sient hardware faults. For diagnosis, the multicore environment
poses significant new challenges. First, deterministic replay re-
quired for SWAT’s single-threaded diagnosis incurs higher over-
heads for multithreaded workloads. Second, the fault may propa-
gate to fault-free cores resulting in symptoms from fault-free cores
and no available known-good core, breaking fundamental assump-
tions of SWAT’s diagnosis algorithm. We propose a novel perma-
nent fault diagnosis algorithm for multithreaded applications run-
ning on multicore systems that uses a lightweight isolated deter-
ministic replay to diagnose the faulty core with no prior knowledge
of a known good core. Our results show that this technique success-
fully diagnoses over 95% of the detected permanent faults while in-
curring low hardware overheads. mSWAT thus offers an affordable
solution to protect future multicore systems from hardware faults.

∗This work is supported in part by the Gigascale Systems Research
Center (funded under FCRP, an SRC program), the National Sci-
ence Foundation under Grants NSF CCF 0541383, CNS 0720743,
and CCF 0811693, an OpenSPARC Center of Excellence at Illinois
supported by Sun Microsystems. Pradeep Ramachandran is sup-
ported by an Intel PhD fellowship and an IBM PhD scholarship.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MICRO ’09, December 12–16, 2009, New York, NY, USA.
Copyright 2009 ACM 978-1-60558-798-1/09/12 ...$10.00.

Categories and Subject Descriptors

B.8.1 [Reliability, Testing and Fault-Tolerance]

General Terms

Reliability, Experimentation, Design

Keywords

Error detection, Multicore processors, Architecture, Fault injection

1. INTRODUCTION
Driven by Moore’s Law, continuous device scaling has provided
smaller devices that make increasing system integration feasible.
These smaller devices are, however, susceptible to failures due to
various phenomena such as high energy particle strikes, aging or
wear-out, infant mortality, and so on [2]. Since this reliability threat
is projected to affect the broad computing market, traditional so-
lutions involving excessive redundancy are too expensive in area,
power, and performance [1, 26].
Answering this need for low-cost solutions, previous work has
proposed the use of high-level symptom detectors that identify only
those hardware faults that propagate to higher levels of the sys-
tem [4, 5, 10, 12, 14, 19, 22, 23, 28, 30]. Compared to tradi-
tional redundancy based schemes, such detection solutions incur
lower overheads, but assume checkpoint/rollback support for re-
covery. Much of the prior work in this context has focused on
transient faults [4, 5, 17, 19, 22, 28, 30] where the combination
of detection and recovery forms a complete reliability solution. In
contrast, permanent faults, that are becoming increasingly impor-
tant [10, 14, 23], further require a diagnosis mechanism to isolate
the faulty core or microarchitectural component for repair or recon-
figuration.
In particular, the SWAT (SoftWareAnomaly Treatment) project [9,
10, 23] has undertaken a comprehensive exploration of the above
approach for detection, diagnosis, and recovery for both perma-
nent and transient hardware faults. SWAT has shown that a small
set of simple and high-level detectors can provide very high de-
tection coverage at negligible cost [10, 23]. Further, SWAT uses
a synergistic diagnosis algorithm, called Trace Based Fault Diag-
nosis (TBFD), that leverages the recovery mechanism to distin-
guish between software bugs, and permanent and transient hard-
ware faults, and to isolate the faulty microarchitectural component
in the case of permanent faults [9]. SWAT relies on existing check-
point/rollback mechanisms for recovery [21, 25], and employs ex-
isting microachitecture-level techniques for repair/reconfiguration
in the case of permanent faults [3, 6, 27]. The key SWAT philoso-
phy is that detection must incur minimal overhead since it is always



on while diagnosis can afford higher overhead (but within the ac-
ceptable mean time to repair) because it is rarely invoked.
Although SWAT has been shown to be largely successful, a cur-

rent limitation of SWAT, and all the above cited work, is the as-
sumption of single-threaded workloads running on a single core.
Multithreaded software running on multicore systems is, however,
becoming increasingly important. Thus, for a system like SWAT
to be widely deployable, it must include techniques to detect and
diagnose faults in multicore systems.
SWAT’s symptom-detection can potentially be used to detect faults

in the new environment, but their efficacy needs to be evaluated.
The original SWAT diagnosis algorithm, TBFD, however cannot be
directly applied for two reasons. First, TBFD requires deterministic
replays of the software execution for diagnosis, which is non-trivial
for multithreaded software. While recent methods for deterministic
replay of multithreaded software may be leveraged [7, 15, 18, 31]
the accompanying overheads are too high. Second, because of data
sharing across threads, a fault may escape from a faulty core to
a fault-free core (a phenomenon we call cross-core fault propa-
gation), resulting in breaking two assumptions of TBFD: (1) the
symptom causing core can no longer be assumed to be faulty, and
(2) once a fault is detected, no core in the system can be assumed
to be fault-free.
This paper presents mSWAT – the SWAT approach for multi-

threaded workloads running on multicore systems in the presence
of faults. We investigate the efficacy of the low-cost detectors of
SWAT and develop a novel diagnosis algorithm for multithreaded
workloads on multicore. We leverage existing work on multicore
recovery to recover these faults [21, 25]. Our contributions are:

1. Detection: We show that with a small extension, the existing
SWAT detectors are very effective on multicore processors.
The augmented detectors result in a low SDC rate of 0.2% for
permanent faults and 0.5% for transient faults. A large frac-
tion of the detected faults are detected within 10M instruc-
tions, and can be recovered using previously proposed meth-
ods. Further, 4.5% of the detected permanent faults cause
symptoms from fault-free cores, confirming the need for the
diagnosis algorithm to handle such situations.

2. Diagnosis: We propose a novel algorithm to identify the
faulty core in the case of a permanent fault with no prior
knowledge of a known good core, even in the presence of
cross-core fault propagation. Using a lightweight technique
to deterministically replay each thread of the multithreaded
workload in isolation, the algorithm synthesizes an inexpen-
sive selective Triple Modular Redundant (TMR) replay to
achieve a scalable solution that incurs minimal hardware over-
heads. Our algorithm successfully diagnoses over 95% of
the 7, 449 detected permanent faults. In particular, all the
faults that resulted in symptoms in fault-free cores (due to
cross-core fault propagation) are successfully diagnosed. Ad-
ditionally, 96% of the diagnosed faults require < 200KB

hardware buffers for diagnosis. This can be implemented in
lower level caches of modern processors, incurring low hard-
ware overheads.

To the best of our knowledge, this is the first work that pro-
vides a low-cost detection and diagnosis of hardware faults in mul-
tithreaded workloads running on multicore systems, without relying
on expensive, always-on redundancy. This work uses redundancy
only for diagnosis, which is a relatively rare case. Fault-free oper-
ation, which remains the common case, continues to see near-zero

overhead. Although our work is presented here in the context of
SWAT, the diagnosis algorithm can be used in combination with
other high-level detection mechanisms that may allow a fault to es-
cape the faulty core.

2. RELATED WORK
Reliable system design has been a prominent area of research for
many decades. There has been much recent work on using high-
level symptom based detection solutions that provide substantial
reliability benefits for little cost [4, 5, 10, 14, 17, 19, 22, 23, 28, 30].
We focus on SWAT as exemplifying this line of work and discuss
it in more detail below. We also discuss related work in check-
pointing and deterministic replay techniques. Other related work
includes diagnosis for the DIVA architecture [3] and low-level on-
line testing based diagnosis [24] – both techniques do not consider
faults escaping the faulty core in multicore environments and both
incur overheads during fault-free operation.

2.1 SWAT: SoftWare Anomaly Treatment
Two high-level observations drive the SWAT work [10]. First,
any hardware reliability solution should handle only those faults
that affect software execution. Second, despite the growing reli-
ability threat, fault-free operation remains the common case and
must be optimized. These observations motivate fault detection by
watching for anomalous software behavior using zero to low-cost
hardware and software monitors. With this approach, the fault de-
tection mechanism is largely oblivious to the underlying hardware
fault mechanism, treating hardware faults analogous to software
bugs and potentially leveraging solutions for software reliability to
amortize overhead. Given that fault detection occurs at a high level,
diagnosis is more complex. However, since diagnosis is invoked
only in the relatively rare event of a fault, a higher overhead is ac-
ceptable (but within the constraints of mean time to repair). We
describe the detection and diagnosis mechanisms of SWAT below.

Fault Detection: The initial SWAT work proposed hardware fault
detection that employ very low-cost monitors to detect anomalous
software behavior with very little hardware and no software sup-
port [10]. mSWAT uses these hardware-only detectors, with one
new addition, as described in Section 3. Subsequently, the iSWAT
framework proposed using mined likely program invariants from
the application to augment these hardware-only detectors [23]. Al-
though these invariants further reduce the SDC rate, we do not ex-
plore these detectors here as they required changes to the applica-
tion binary.

Fault Diagnosis: After a symptom is detected, control is trans-
ferred to the firmware that initiates diagnosis. Since the detectors
detect faults at a high level, the diagnosis mechanism should dis-
tinguish between software bugs, transient and permanent hardware
faults, and false positives (from iSWAT and a few heuristic detec-
tors), and in the case of a permanent fault, identify the faulty mi-
croarchitectural component for repair. TBFD, the diagnosis algo-
rithm of SWAT, achieves this with the help of another fault-free core
and the ability to deterministically replay an execution of the single-
threaded application. The key insight here is that the execution that
generated the symptom can be used as a test trace to repeatedly
activate any faults present in order to incrementally perform diag-
nosis. SWAT leverages existing recovery techniques to repeatedly
rollback, replay and compare the test trace from the faulty core to
that from a known good core for diagnosis.
TBFD first uses three simple steps to distinguish between soft-



ware bugs, transient faults, and permanent faults: (1) It first replays
the symptom-generating execution from the last checkpoint on the
same (faulty) core. If the symptom does not recur, a transient fault
or a non-deterministic software bug is diagnosed and the execution
continues. (2) If the symptom recurs, then the fault-free core exe-
cutes the thread from the same checkpoint. If the symptom also oc-
curs in the fault-free core, then the fault is diagnosed as a software
bug. (3) If no symptom occurs in the fault-free core, the original
core is diagnosed with a permanent fault.
TBFD further diagnoses a permanent fault down to a microarchi-

tectural granularity to facilitate fine-grained repair and reconfigura-
tion. TBFD inexpensively synthesizes Dual-Modular Redundancy
(DMR) between the known faulty and good cores, comparing the
execution traces on the two cores. A mismatch between the exe-
cutions helps determine the faulty microarchitectural component.
TBFD successfully diagnoses 98% of the faults detected in single-
threaded workloads [9], making it a highly effective diagnosis tool.

2.2 Checkpointing and Deterministic Replay
Since mSWAT diagnosis is based on repeated rollback/replay,

we leverage existing work for rollback recovery on multicore sys-
tems [21, 25]. These schemes use a combination of checkpoint-
ing and logging techniques to establish periodic checkpoints of the
processor and memory state. For error recovery, the rollback pro-
cedure restores the pristine processor and memory state from the
checkpointed state and logged states.
The diagnosis algorithm in mSWAT requires the ability to deter-

ministically replay a core’s execution from its previous checkpoint,
in isolation from the other cores. While there has been much recent
work on determinisic replay of multithreaded workloads [7, 15, 18,
31], our work in this context is closest to BugNet [18] but with key
differences, as described below.
BugNet [18] (and other schemes [7, 15, 31]) were designed for

software production runs, where the continuously collected logs are
transferred back to the developer on a crash. The program can then
be deterministically replayed to determine the root cause of the
crash. To efficiently replay all application threads, BugNet logs
only the first loads to a given memory address and cross-thread
communications through memory.
We leverage the idea of logging the load values from BugNet to

enable isolated deterministic replay, but with the following key dif-
ferences. First, our scheme logs all loads because logging only the
first load values would not suffice as the hardware fault may corrupt
the value returned by subsequent loads. This also gives us the abil-
ity to replay each thread in isolation as loads do not access memory
during replay. Second, these logged loads circumvent recording
memory orderings, reducing the incurred area overhead. We also
present an iterative techinque to further reduce the sizes of these
logs (Section 4.2.5). Finally, since our logging is turned on only in
the rare event of a fault, it does not affect fault-free operations and
can tolerate higher performance overheads, which we leverage for
lower area overheads.

3. MSWAT FAULT DETECTION
mSWAT uses the following detectors to detect hardware faults in

multicore systems. The first three detectors were previously pro-
posed for SWAT [10]. We extend this list with a new detector to
identify kernel panics.

• Fatal-Traps: These traps are not thrown in normal execution
and indicate anomalous software behavior (e.g., Division by

Zero). These are thus used as zero-cost detectors to detect
hardware faults.

• Hangs: A simple hardware hang detector, that monitors the
frequency of branch instructions in the application and OS, is
used to identify hangs.

• High-OS: Typical invocations of the OS, except for system
calls and interrupts, complete in few 100s of instructions.
Thus, abnormally high number of contiguous OS instructions
represents an anomaly. Existing performance counters can
trivially identify such scenarios.

• Panic: When the kernel detects an unrecoverable error dur-
ing execution, it self-terminates by calling a known central-
ized panic reporting routine to minimize potential damage to
the user data and to facilitate debugging. This detector, thus,
monitors the PC of the retiring instructions to identify kernel
panics, and can be implemented with simple support from the
OS and the hardware.

Once a fault causes a symptom, it invokes the mSWAT firmware
that initiates diagnosis to identify the faulty component.

4. MSWAT FAULT DIAGNOSIS
In this work, we only consider faults in the core and assumes a
single core fault model; i.e., at most one core is faulty. The mSWAT
multicore diagnosis procedure must achieve the following:

1. Determine whether the symptom was caused by a software
bug, a transient hardware fault, or a permanent hardware fault.
Although SWAT also does this, the new multithreaded envi-
ronment poses new challenges to mSWAT.

2. For permanent faults, determine which core is faulty even
with cross-core fault propagation. In contrast, SWAT simply
assumes that the symptom-causing core is faulty.

3. Depending on the granularity of the field reconfigurable unit,
isolate the faulty microarchitecture-level unit in the core for
repair. To achieve this, mSWAT uses TBFD [9] after identi-
fying the core that contains a permanent fault.

Recall that the key insight behind TBFD is to use the execution
that generated the symptom as a test trace; repeated replays and
comparisons of this test trace on good and faulty cores result in
a diagnosis. A multithreaded environment creates two main chal-
lenges to exploit this insight for mSWAT. First, deterministic replay
of multithreaded workloads incurs high hardware overheads, that
may be unacceptable. Second, cross-core fault propagation breaks
two fundamental assumptions of TBFD – the symptom causing core
can no longer assumed to be faulty, and once a symptom is detected,
no core in the system can be assumed to be fault-free.
To address the first issue, existing proposals for deterministic re-
play of multithreaded software [7, 15, 18, 31] can be leveraged,
but their hardware cost needs to be brought down. Deriving a cost-
effective method to address the “no known good core” issue, on the
other hand, is a significant challenge.
A naive extension of the current diagnosis scheme in SWAT for
a multithreaded execution running on N cores would use this N -
core execution as the test trace. For identifying the faulty core, it
would rollback this execution to the last checkpoint and perform a
full system deterministic replay on another set of N (known) good



cores. A comparison of corresponding cores for these two execu-
tions would identify the faulty core. This algorithm must assume
that N known good (spare) cores and a facility for full determin-
istic replay are available, which is clearly too expensive for most
systems.
An optimization is to use only one spare (known-good) core for

a total of N + 1 cores. This allows N replays from the N -core
checkpoint, with each replay replacing one of the original N cores
with the known-good spare core. The execution where no symptom
occurs identifies the replaced core as the faulty one. This solution
also has several drawbacks: (i) it is not scalable because it could
require up to N replays, (ii) it requires one known good spare core
just for this purpose, making it the single point of failure for the
entire system, and (iii) it also requires support for full deterministic
replay.
We propose an algorithm with the following desirable properties:

(1) No spare cores are required – This eliminates a potential single
point of system failure. (2) Low hardware overhead – the algorithm
uses a lightweight deterministic replay mechanism that does not
require capturing memory ordering among different threads. (3)
Scalability – the algorithm diagnoses a faulty core with a maximum
of 3 replays (plus one replay to screen out transients) for any system
with N ≥ 4 cores.

4.1 mSWAT Fault Diagnosis Overview
mSWAT addresses the two challenges above as follows. For de-

terministic replay of the multithreaded execution, we note that the
diagnosis has no need to recreate the memory ordering among dif-
ferent cores but only cares about the per-core execution that acti-
vates the fault (test trace). Hence, during diagnosis, mSWAT col-
lects enough information in the execution of each core to replay the
core’s trace in isolation. For this purpose, we leverage BugNet’s
idea of using load values to replay the execution on each core.
BugNet records only the first loads to a given memory address,
along with memory ordering of different threads, and relies on the
execution to generate subsequent values at that address. However,
since the fault may corrupt the values subsequently generated at
that memory location, we log the values accessed by all loads in
the system. With this approach, our diagnosis scheme is able to
replay each trace independently on a different core. A divergence
between the original trace and the replay then provides two candi-
dates for the faulty core. Although we start without the knowledge
of a known good core, this divergence indicates that the other cores
are fault-free (since we assume at most one core is faulty). Hence,
another replay on one of the known good cores can pinpoint the
true faulty core. Overall, we can view mSWAT’s algorithm as an
inexpensive synthesis of Triple Modular Redundancy (TMR) since
it compares up to three different executions to identify a fault.
In mSWAT, fault diagnosis is done in four phases, as illustrated

in Figure 1 – screening, trace generation, first replay, and (pos-
sibly) second replay. We give a high level overview of each of
these phases below and subsequently discuss various implementa-
tion choices for each phase. As with SWAT, mSWAT leverages a
recovery method like SafetyNet or Revive, assuming a mechanism
that can safely roll back to a previous pristine checkpoint and restart
execution.

Screening: The first phase screens for transients and non-determini-
stic software bugs by replaying the execution on all cores from the
previous pristine checkpoint.1 This simple rollback/replay may not
be deterministic because of different thread interleavings in multi-

1This pristine checkpoint is at least next to last because the last one

Symptom?

No Yes

Continue  Execution  

Transient h/w fault or 

Non-deterministic s/w bug

Screening phase

Symptom detected

Deterministic s/w bug or 

Permanent h/w fault

First replay phase

Deterministic 

s/w bug

Zero Two

Trace generation phase

Faulty core 

identified

Second 

replay phase

Number of divergences?

One

Diagnose µµµµarch-level 

faulty unit with 

SWAT TBFD

Figure 1: The mSWAT diagnosis algorithm. mSWAT isolates

the source of the fault by replaying the fault activating trace

and comparing the re-executions.

threaded executions. If this replay does not result in any symptom,
we diagnose the fault as a transient or a non-deterministic software
bug and simply let the execution continue. If a symptom is seen in
screening, we suspect the fault to be either a permanent hardware
fault or a deterministic software bug.

Trace generation: Using the recovery mechanism, the previous
checkpoint is again restored and the execution is replayed. In this
phase, each core stores a trace of its execution that contains enough
information to (i) enable future deterministic replay from the same
checkpoint (load values in our case) and (ii) compare subsequent
replays of this trace and identify divergences caused by activations
of an underlying permanent fault. We refer to the information in the
trace needed for the first part as the loadLog and the second part as
the compareLog. An implementation may choose to either merge
or separate these logs, as discussed later.

First replay: This phase aims to replay the execution of each thread
and to diagnose the faulty core by identifying divergences. Each
core is assigned a buddy core from which it gets a checkpoint and
a trace for replay. Once a core finishes generating its own trace, it
cedes control to firmware to wait for its buddy core to finish trace
generation (indicated through a flag synchronization mechanism).
The core then loads the checkpoint of the buddy and determinis-
tically replays the execution using the loadLog of the buddy. The
checkpoint in this case is only the core state checkpoint (registers);
memory state does not need to be recovered since all execution-
driven data comes from the loadLog in the trace. For the same
reason, in this phase, stores do not need to write to memory and
are effectively no-ops. The compareLog generated in this replay is
compared with that received from the buddy to identify divergences
during replay.
There are three possible outcomes of the comparison. (1) If there
is no divergence (for all cores), a software bug is assumed and con-
trol is delivered to the relevant appropriate software layer. (2) If two
replays (two pairs of cores) show divergence in this phase, then the
core that is in both the diverging pairs is faulty. This can happen
when the fault is activated in both the trace generation and the first
replay phases, resulting in divergences from two traces. After iden-

may be corrupted by the fault.



Trace Generation

Screening

ChkY – Checkpoint of

core Y

TraceX – Trace generated

by core X

Core
A

Core
B

Core
C

Core
D

Chk
A

Chk
B

Chk
C

Chk
D

Chk
A

Chk
B

Chk
C

Chk
D

Core
A

Core
B

Core
C

Core
D

Trace
A

Trace
B

Trace
C

Trace
D

– Fault-free core      

– Faulty core

First Replay

(Get Chk, Trace from buddy) 

Divergence

Second Replay

Divergence

Core
A

Core
B

Core
C

Core
D

Trace
D

Trace
A

Trace
B

Trace
C

Core
A

Trace
C

Figure 2: Example of the mSWAT diagnosis mechanism. Iso-

lated deterministic replay allows synthesizing selective TMR to

diagnose the faulty core.

tifying a faulty core, the diagnosis algorithm terminates. (3) If only
one divergence is seen, then two suspected faulty cores are found,
the remaining cores are declared to be fault-free and the algorithm
proceeds to the second replay phase.

Second replay: The trace that saw the divergence is replayed on
a core that is now known to be fault-free. This replay is similar
to the first replay phase and is compared against the compareLog
generated in the trace generation phase to identify divergence. If
a divergence occurs, the core that generated the trace is faulty. If
no divergence occurs, the core that replayed this trace in the first
replay phase is faulty.
Figure 2 illustrates the above diagnosis procedure with an ex-

ample to diagnose the fault in CoreC . Once a symptom is seen
in the screening phase, trace generation is triggered. During this
phase, CoreA−D generates TraceA−D, respectively, comprising
a loadLog and a compareLog of the corresponding execution. Sub-
sequently, in the first replay phase, each core uses the (core-only)
checkpoint and trace of the core to its left to replay. Now CoreD

sees a divergence since it replays the trace from the faulty CoreC .
Since we cannot be sure which core is faulty, this event identifies
two potentially faulty suspects, CoreC and CoreD , and invokes
the second replay phase. Here, CoreA, a known fault-free core,
replays from CheckpointC using TraceC . It finds a divergence
during replay, confirming that CoreC is faulty.

4.2 Implementation Details
This section describes each of the above described phases in

more detail, highlighting several design choices needed to perform
the diagnosis in a reliable way and with acceptable overheads.

4.2.1 Screening

The screening phase is similar to a typical rollback/replay recov-
ery. To determine whether a symptom re-occurred during screen-
ing, the replay controller in the recovery mechanism is enhanced
with a hardware counter that tracks the number of cycles since the
last symptom. If a symptom occurs on any core within a pre-defined
threshold, the controller determines this to be a recurring symptom
and sends an interrupt to all cores to invoke the trace generation
phase. (If no symptom is seen, the cores simply continue.)

4.2.2 Trace Generation

The trace generation phase also starts like a recovery – a rollback
and a replay. In addition, each core also generates a loadLog and a
compareLog for isolated deterministic replay and for comparison to
identify divergence. We discuss design choices in this phase below.

1. Information for Replay: As discussed in Section 4.1, we
record the values of all retiring loads to drive deterministic
replay. To reduce the log size, we can use BugNet’s dictio-
nary structure to encode load values provided that the added
hardware cost to generate such encoding is acceptable. We
do not explore this optimization here.

To avoid asynchronous events that may interfere with deter-
ministic replay, we disable interrupts during the trace gener-
ation and replay phases. An exception is the interrupts gen-
erated by the firmware controlling the diagnosis algorithm.
Unlike BugNet, our scheme traces and replays system calls
as well because we log all loads, including privileged loads.
Our scheme, however, does not consider self-modifying code
since we assume that the instruction at a given PC is fixed
across different replays.

2. Information for Trace Comparison: A naive implementa-
tion to compare the traces generated across different replays
is to record the destination values of all retiring instructions.
We reduce the resulting overhead by recording and compar-
ing only data and address values of stores and the branch tar-
gets of retiring control instructions in the compareLog and
the address of loads in the loadLog.2

Logging every store and branch may also result in large com-
pareLogs. One possible optimization is to instead generate
signatures that represent the entire execution (e.g., CRC-16).
This approach requires hardware support for signature com-
putation, impacting the overheads and diagnosis latency as
the divergence status is not known until the entire trace is
replayed. (By comparing instructions during replay, a diver-
gence is known right away.) We reduce the hardware over-
head for recording load addresses by recording only a parity
bit (generated by a parity module) instead of the entire 64-bit
load address for trace comparison.

Although we lose some diagnosis opportunity through these
optimizations, our results show that the benefits outweigh the
losses.

3. The Trace Buffer and Other Details: The simplest imple-
mentation of the trace buffer is a small FIFO buffer that is
memory backed and contains a merged loadLog and com-
pareLog. As the core retires loads, stores, and branches,
the relevant information is recorded in the trace buffer. The
buffer is periodically flushed to memory, similar to analogous
buffers in BugNet and TBFD. Since diagnosis can accommo-
date some performance slack, this hardware buffer can be as
small as a few entries; the actual size is determined by the
acceptable hardware cost and sensitivity to diagnosis latency.
In practice, we expect most of the buffer will reside in cache
to minimize off-chip memory bandwidth requirements (Sec-
tion 6 shows the actual trace sizes for our design choice).

We note here that having the trace buffer be memory backed
makes the generated traces vulnerable to corruptions by the

2While this load address is technically a part of the compareLog,
we record it in the loadLog to simplify our implementation.



Core i-1

Buddy of core i

Core i

Buddy of core i+1

Core i+1

Trace generation

phase

Set  sync flag

Wait

Arch-state

1

Core i+2

Divergence

Divergence

Interrupts

First replay
phase

2

Two divergences

⇒⇒⇒⇒ Faulty core = i

3

Figure 3: An example of first replay phase where two diver-

gences are observed.

faulty core. This problem occurs with the basic recovery
schemes as well [21, 25]. One solution is to provide hard-
ware support to ensure that no core writes to the trace region
of another core through simple base and bounds-style checks.

The trace generation phase starts from a checkpoint and contin-
ues until the number of instructions exceeds a pre-defined threshold
(or until a symptom is detected). Since the log size grows with the
threshold, we later describe an iterative method that alternates be-
tween trace generation and replay to reduce the size of the log.

4.2.3 First Replay

Figure 3 illustrates the first replay phase. At the end of a core’s
trace generation, the firmware seizes control, sets a flag, and waits
for the buddy core to set its flag. A core’s buddy is the core from
whom it gets the checkpoint/trace to replay – this buddy is prede-
fined, say core (i+1) mod N replays the trace for core i, where N
is the number of cores. (In the subsequent discussion, we drop the
mod N for brevity.)
Thus, core i waits for core i-1 to set its flag to indicate it has fin-

ished its trace generation (¶ in Figure 3). Once the flag is set, the
firmware begins replay on core i. Although the faulty core may try
to subvert this procedure by not setting its flag, a time-out mecha-
nism can detect such a subversion and terminate the procedure with
a correct diagnosis.
The simplest implementation to replay and compare the replayed

execution with that of the buddy is to have the firmware emulate the
execution using the register checkpoint and perform the comparison
all in software.3 During emulation, the loads return values from
the loadLog. Branches, stores, and load addresses are compared
against the information fetched from the buddy’s trace. If there
is no divergence between the replayed execution and the buddy’s
replay, the core sets a flag and waits for the other cores as described
below.
If a divergence occurs, it indicates that either this core, say i, or its

buddy, i-1, is faulty. More importantly, this implies that the other
cores are fault-free (since we assume a single core fault model).

3An alternative, faster implementation is to replay natively with
hardware support and stream in the loadLog and compareLog to
on-chip buffers. This requires changes in the processor pipeline
since loads now need to read from the loadLog buffer in the issue
stage. The benefit is that it does not incur the penalties of emulation;
however, the disadvantage is hardware cost. Since our first priority
is to minimize hardware overhead, we do not report results from
this implementation here.

Core i-1

Buddy of core i
Core i Core i+1

Trace generation

phase

Set sync flag
Wait

Arch-state

Divergence
First replay

phase

One Divergence ⇒⇒⇒⇒

2nd replay phase

Divergence ⇒⇒⇒⇒ Core i-1 is faulty

Second replay

phase

1

2

Interrupts

Figure 4: An example of second replay phase where a diver-

gence is observed.

Since core i itself could be faulty and can no longer be relied on, it
sends an interrupt to two cores, i+1 and i+2 (which are now known
to be fault-free), to take over the process (· in Figure 3).
We need two cores to take over now to prevent the faulty core
from subverting the process. For example, if core i were faulty, it
may not send the above interrupt to core i+1 and it may appear that
we will lose diagnosability. This is not a problem because core i+1
itself will see a divergence (since it is comparing a faulty trace), and
will inform core i+2, which is a good core. The more problematic
case is when the faulty core sends an interrupt to a different core
(core i+k) masquerading as core i+k-1, and indicating that good
cores i+k-1 or its buddy are faulty. To overcome this, we assume
that the core issuing this interrupt cannot fake its identity.
Thus, at the end of the first replay, if a divergence was reported to
a good core, then at least two cores that are known to be good have
received an interrupt indicating that a divergence has been found.
If one of these good cores received notice of two divergences, then
it could deduce that the common core involved was faulty (¸ in
Figure 3). It informs another fault-free core – together they decon-
figure the faulty core, and set a flag each to indicate that the bad
core is found. (Two cores are needed for this procedure because
the faulty core could otherwise deconfigure a good core and set a
bad flag.) If only one divergence is seen, then these two good cores
enter the second replay phase to isolate the faulty core.
At the end of this phase, if no divergence is found, flags corre-
sponding to all cores are set, and a deterministic software bug is
diagnosed. Since the faulty core may not set this flag, a timeout
is triggered when only N-1 flags are set. Subsequently, the faulty
core is diagnosed and two pre-specified cores (faulty+1 and +2) can
deconfigure that core.

4.2.4 Second Replay

At this point, two suspected faulty cores (i-1 and i) are identified
and two cores (i+1 and i+2), known to be fault-free, are notified
of this event (¶ in Figure 4). Core i+1 now replays and compares
with the trace generated by core i-1 for a divergence. If a diver-
gence is found (· in Figure 4), core i-1 is diagnosed as faulty as it
diverges from both core i and i+1. If no divergence is found, core i
is diagnosed as faulty since core i-1 and i diverge but fault-free core
i+1 does not diverge from the trace of core i-1. Subsequently, both
i+1 and i+2 set their flags appropriately and deconfigure the faulty
core. As an alternative, core i+1 or i+2 can also invoke TBFD on
the faulty core to achieve a finer granularity of diagnosis and repair



instead of disabling the entire core. Once all the flags have been set,
diagnosis terminates and the recovery mechanism is invoked.

4.2.5 Iterative Diagnosis Approach

While the described method can effectively identify a faulty core,
large traces may incur unacceptably high area and performance
overheads. To limit these overheads, we propose an iterative ap-
proach where the trace generation and the first replay phases are
executed repeatedly on short traces until a divergence is observed
or a predefined number of instructions is executed. Once a diver-
gence is identified, the second replay phase is invoked to identify
the faulty core as before.
At the end of each (short) trace generation phase, the state of

the processor is checkpointed and the first replay phase is initiated
to identify any divergence. If no divergence is found, the check-
pointed processor states are restored and the next iteration of trace
generation is performed (followed by a subsequent replay and so
on). Since stores do not write to memory in the replay phases,
memory checkpointing and rollback is not necessary between iter-
ations. (However, memory checkpointing remains on during trace
generation.)
Shorter iteration lengths make this iterative diagnosis method

more effective by reducing the size of the trace. However, executing
fewer instructions in each iteration may result in short traces that
may not utilize the microarchitecture fully, leading to fewer fault
activations, and hence, fewer divergences and loss of diagnosabil-
ity. This is an inherent design trade-off for the iterative approach.

4.2.6 Other Issues

As with every reliability solution, we need to ensure that the
faulty core and the firmware running on it do not subvert our al-
gorithm. Further, we need to identify the hardware that we rely on
to be fault-free. Although we do not provide a formal proof here,
our algorithm description indicates how we guard against subver-
sion by the faulty core in the critical places as well as the small
amount of hardware that we need to work reliably.

5. EXPERIMENTAL METHODOLOGY
Ideally, we would perform hardware fault injections on a full im-

plementation of mSWAT. However, since modern processors do not
allow sufficient controllability and observability and since we do
not yet have the required models to perform FPGA-based fault in-
jections [20], we turn to simulations for our experiments, much like
SWAT [10]. While we previously showed that injecting faults at
the microarchitecture (vs. gate) level could result in some inaccu-
racies [8], we choose microarchitecture-level fault injection since
we do not have gate level models of all modules of interest. Since
a large part of our focus is on diagnosing permanent faults, we pri-
marily focus on such faults here. Following previous work, we
use microarchitecture level single bit stuck-at-0 and stuck-at-1 fault
models. For completeness, we also perform detection experiments
for transients (modeled as single bit flips) and summarize those re-
sults here.

5.1 Simulation Environment
We simulate a modern multicore processor with the SPARC V9

ISA, having four out-of-order superscalar cores (Table 1). We use
the Virtutech Simics full system simulator [29] coupled with the
GEMS [13] timing models for processor and memory. We run a real
operating system (OpenSolaris) within this simulated environment
and study the behavior of six multithreaded workloads from three

Base Processor Parameters

Frequency 2.0GHz
Number of cores 4

Per-core parameters

Fetch/decode/ 4 per cycle
execute/retire
Functional units 2 Int add/mul, 1 Int div, 2 Load,

2 Store, 1 Branch, 2 FP add,
1 FP mul, 1 FP div/sqrt

Integer FU latencies 1 add, 4 mul, 24 div
FP FU latencies 4 default, 7 mul, 12 div
Reorder buffer size 128
Register file size 256 integer, 256 FP
Load-store queue 64 entries

Memory Hierarchy Parameters

Data L1 (private) 16KB
Instruction L1 (private) 16KB
L1 hit latency 1 cycle
L2 (Unified) 4MB
L2 hit/miss latency 6/80 cycles

Table 1: Parameters of the simulated processor.

Suite Workload Size of input

ALPBench

RayTrace A teapot scene (2560×2560 pixels)
FaceRec 173 images (130×150 pixels)
MpegEnc 32 HD frames (1920x1080)
MpegDec 128 HD frames (1920x1080)

SPLASH-2 LU 1600x1600 matrix

PARSEC
BodyTrack 4 cameras, 4 frames,

4000 particles, 5 annealing layers

Table 2: Workloads and inputs used in fault injections.

benchmark suites. Table 2 lists the workloads we use, along with a
description of the input sets.
When a multithreaded application is running on all 4 simulated
cores in the system, we inject hardware faults (one per experiment)
in a random bit of the 7 microarchitecture units listed in Table 3. For
each application, we first pick 5 base injection points (or phases) in
the execution that are sufficiently spaced apart to capture applica-
tion behavior across different periods of execution. In each phase,
for each faulty structure, we pick 5 spatially and temporally ran-
dom injection points (e.g., 5 different physical registers, etc.) to in-
ject permanent (stuck-at-0 and stuck-at-1) and transient faults. This
give us a total of 8,400 permanent faults (6 applications × 5 phases
× 4 cores × 7 structures × 5 random points × 2 fault models),
and 4,200 transient faults (same as above, except one fault model –
single bit flip).

5.2 Fault Detection
We detect the injected faults using the SWAT and the newmSWAT
symptoms. Based on profiling fault-free executions of our work-
loads, we use a threshold of 50K contiguous instructions to trigger
the High-OS detector and a threshold of 1% of retiring instructions
as branches for the hang detector, avoiding false positives.

µarch structure Fault location

Instruction decoder Input latch
Integer ALU Output latch
Register data bus Bus on register file write port
Physical int reg file A physical register
Reorder buffer (ROB) Entry’s src/dst reg id
Reg alias table (RAT) Logical→ physical map of logical register
Address gen unit (AGEN) Virtual address output

Table 3: Microarchitectural structures injected with faults.



After a fault is injected, we simulate the system (with applica-
tion and OS running) until each core has retired at least 10 million
instructions, a duration we deem recoverable by hardware check-
pointing [21, 25]. If the fault does not corrupt the architectural state
(registers and memory) in this interval, it is architecturally masked.
Faults that are not architecturally masked, and hence activated, are
simulated in detail until either they trigger one of the detectors or
until all cores retire more than 10 million instructions from activa-
tion, whichever comes first.
Unmasked faults not detected in this period are simulated in func-

tional mode (using only Simics) until the application completes or
a symptom is detected. Since the fault is not active in the functional
simulation, the injected permanent fault appears as an intermittent
fault that lasts for 10M instructions. Faults detected in this interval
are classified as DUE (detected unrecoverable errors) as they are
detected at latencies that current hardware checkpointing schemes
may not support.
The application outputs of the remaining undetected cases are

compared with the fault-free outputs. If the outputs match exactly,
the fault is classified to be masked by the application. Other out-
puts are categorized as Silent Data Corruptions (SDCs). In spite
of the differences from their fault-free counterparts, these outputs
may still be acceptable, especially by workloads that output multi-
media content. Following previous work [11], we classify an output
with PSNR of > 50dB as acceptable for MpegEnc and MpegDec.
For the other benchmarks, we do not tolerate any differences in ap-
plication output. Such acceptable outputs are categorized as SDC-
acceptable and the rest as SDC-unacceptable.
We use two metrics to evaluate the efficacy of the symptom de-

tectors – SDC rate and latency. SDC rate is the fraction of the in-
jected faults that results in unacceptable outputs (SDC-unacceptable).
Detection latency computation is a bit more involved as the fault
may be detected in a fault-free core due to cross-core fault propa-
gation. If the fault is detected in the faulty core, it is the latency (in
instructions) between the the architectural state corruption of this
core and symptom detection. If the detection is in a fault-free core,
we identify the instruction count on the fault-free core at which the
architectural state of the faulty core is corrupted, and we measure
latency from that point. Latency is measured as the total number
of instructions from architecture state corruption (either the OS or
the App) to detection. The detection latency helps us understand
recoverability of the detected faults.

5.3 Fault Diagnosis
Our diagnosis algorithm uses firmware-based control to run the

screening and trace generation phases in native mode while em-
ulating the replay phases. Owing to the complexity of the full
firmware implementation, we currenlty mimic the functionality of
the firmware within our simulation infrastructure.
The checkpointing and rollback/replay required by the diagnosis

algorithm are performed using SafetyNet [25]. In order to ensure
determinism during diagnosis, we disable asynchronous interrupts
during trace generation and replay phases. Cross calls between
cores are, however, always serviced and cannot be disabled in the
SPARC V9 architecture. On such interrupts, we abort and restart
the current diagnosis phase (trace generation or replay) to ensure
determinism.
In the screening phase, permanent faults are expected to cause

symptoms and trigger trace generation. However, some permanent
faults may not throw symptoms when screened (0.9% in our exper-
iments) due to non-determinism in both the microarchitecture (e.g.,
instruction scheduling) and the software execution (no determinis-

60%

80%

100%

P
e
rc

e
n

ta
g

e
 o

f 
in

je
c
ti

o
n

s

SDC-unaccept

SDC-accept

DUE

0.1      0 0.2 0.3 0 0.2        0.6         0.2

0%

20%

40%

D
e
c
o

d
e
r 

IN
T

 A
L

U
 

R
e
g

 D
b

u
s
 

In
t 

re
g

 

R
O

B
 

R
A

T
 

A
G

E
N

 

A
v
e
ra

g
e

P
e
rc

e
n

ta
g

e
 o

f 
in

je
c
ti

o
n

s

Detect-Fault-
Free

Detect-Faulty

Masked

R
e
g

 D
b

u
s
 

Figure 5: SDC rate for mSWAT for permanent faults in vari-

ous structures. The symptom detectors result in very low SDC

rates while incurring near-zero hardware overheads and there-

fore are effective even for multithreaded workloads.

tic replay in this phase). We diagnose these faults as transients that
are recoverable with rollbacks, and do not trigger trace generation
for these faults.
For trace generation and replay, we study the iterative diagnosis
approach with an iteration length of 100K and 1M instructions. We
do not model the cache/memory traffic or latency generated by the
read or write of the trace buffers. Although, this does not affect
the correctness of the implemented diagnosis, it affects the reported
performance evaluation. The performance evaluation is further af-
fected by our mimicking of the firmware within our simulator and
running replays in native execution mode. This under-estimates the
overhead of a firmware based approach by about 10-20X (docu-
mented overheads of state-of-the-art emulators).
We evaluate mSWAT diagnosis using two metrics – diagnosabil-
ity, and diagnosis latency. Diagnosability is the fraction of detected
faults for which the faulty core is correctly diagnosed. Diagnosis la-
tency is the number of cycles from the start of screening phase until
the end of the last replay phase (first or second). We conservatively
multiply the latency of the replay phases by 20X to account for the
slowdown due to emulation. In order to understand the incurred
hardware overheads, we also measure the sizes of the loadLog and
compareLog collected in the trace generation phase.

6. RESULTS

6.1 Fault Detection

6.1.1 SDC Rate

Figure 5 shows the SDC rate from our symptom detectors for
permanent faults in different structures. For each case, the figure
shows the percentage of faults that are masked by both the archi-
tecture and application. Faults detected within 10M instructions
are classified into those detected by a symptom in the faulty core
(Detect-Faulty) and those detected by a symptom in a fault-free
core (Detect-Fault-Free). Faults detected beyond 10M instructions
are classified as DUEs. The undetected faults are further classified
into SDC-acceptable and SDC-unacceptable. The numbers on top
of each bar show the SDC-unacceptable rate of the symptom detec-
tors for faults in that structure.
The symptom detectors perform very well in this new environ-



60%

80%

100%

P
e
rc

e
n

ta
g

e
 o

f 
d

e
te

c
te

d
 f

a
u

lt
s

>10M

<10M

<1M

<100K

99 99 99 99         100          99          97          99

0%

20%

40%

D
e
c
o

d
e
r 

IN
T

 A
L

U
 

R
e
g

 D
b

u
s
 

In
t 

re
g

 

R
O

B
 

R
A

T
 

A
G

E
N

 

A
v
e
ra

g
e

P
e
rc

e
n

ta
g

e
 o

f 
d

e
te

c
te

d
 f

a
u

lt
s

<100K

<10K

<1K

D
e
c
o

d
e
r 

IN
T

 A
L

U
 

R
e
g

 D
b

u
s
 

Figure 6: Breakdown of detection latency for detected perma-

nent faults. A large fraction of the faults are detected within

10M instructions, and can be recovered with support for hard-

ware checkpointing.

ment, resulting, in a low average SDC rate of 0.2%. Further, the
SDC rate is fairly uniformly low across the different structures.
This shows the efficacy of symptom detection to detect faults in
multicore systems running multithreaded workloads.
Figure 5 also shows the effect of cross-core fault propagation

– 4.5% of the detected permanent faults are detected on fault-free
cores. This stresses the importance of the diagnosis algorithm to
handle such cross-core fault propagation.

6.1.2 Detection Latency

Figure 6 gives the breakdown of the detection latency for the
detected permanent faults. The numbers on the top of each bar
shows the percentage of the faults that were detected within 10M
instructions. For each structure, the bars are divided into several
latency stacks from< 1K to> 10M . The result aggregated across
all structures is also shown.
From the figure we see that, on an average, nearly all perma-

nent faults (99%) are detected within 10M instructions. Hardware
techniques such as ReVive [21] and SafetyNet [25] can handle such
latencies for recovery, making these faults recoverable using hard-
ware checkpointing (10 million instructions corresponds to about
10ms on a 1 GHz processor, assuming an IPC of 1). However, sys-
tem I/O would have to be buffered and delayed for this interval,
potentially impacting performance [16].

6.1.3 Transient Faults

Of the injected transient faults, 91% were masked (85% are ar-
chitecturally masked and 6% are masked by the application). Only
0.5% of the injections faults result in unacceptable SDCs. 73%
of the detected permanent faults are detected within 10M instruc-
tions. These results are consistent with previous findings for single-
threaded workloads [10, 12, 30].

6.2 Fault Diagnosis

Diagnosability: Figure 7 shows the diagnosability for permanent
faults that throw a symptom in the screening phase (99.1% of the
faults show a symptom during screening phase) across different mi-
croarchitectural structures. Each such fault is diagnosed using the
iterative diagnosis algorithm with iteration length of 100K instruc-

40%

60%

80%

100%

P
e
rc

e
n

ta
g

e
 o

f 
D

e
te

c
te

d
 F

a
u

lt
s

99            99            99 86 100           80           99 95.9

0%

20%

40%

D
e
c
o

d
e
r 

IN
T

 A
L

U
 

R
e
g

 D
b

u
s
 

In
t 

re
g

 

R
O

B
 

R
A

T
 

A
G

E
N

 

A
v
e
ra

g
e

P
e
rc

e
n

ta
g

e
 o

f 
D

e
te

c
te

d
 F

a
u

lt
s

CorrectlyDiagnosed UndiagnosedCorrectlyDiagnosed Undiagnosed

Figure 7: Diagnosability of detected faults that throw symp-

toms in the screening phase. mSWAT successfully diagnoses

95.9% of such faults, and in particular, all faults that cause

symptoms from fault-free cores.

tions, until either the fault is successfully diagnosed (Correctly Di-
agnosed) or a threshold of 20 million instructions is reached. In the
latter case, the fault is not diagnosed (Undiagnosed). The numbers
on top of each bar show the diagnosability for faults detected in that
microarchitecture structure.
Figure 7 shows that 95.9% of the faults subjected to diagnosis
are successfully diagnosed. In particular, all the faults that were de-
tected on fault-free cores (4.5% of the detected cases from Figure 5)
were successfully diagnosed, demonstrating the ability of mSWAT
to diagnose permanent faults in multicore systems.
Our iterative diagnosis algorithm approach, however, does not
diagnose 4.1% of the faults – most of these occur in the Integer
Register and the RAT. We investigated whether our design choices
of storing only parity for load addresses in the compareLog and fix-
ing the iteration size at 100K instructions led to these undiagnosed
cases. When comparing all the bits of the load address, instead
of the parity, diagnosability improved by a mere 0.03%. Increas-
ing the iteration length to 1M instructions increases diagnosabil-
ity by only 0.1%. The fundamental reason for these undiagnosed
faults is the difference in fault activation between the screening,
trace generation, and replay phases. This is in turn due to non-
determinism induced from the initial microarchitecture states being
different between the screening and replay phases. In particular,
88% of these undiagnosed faults never activate the fault in diagno-
sis, resulting in no divergence. While the remaining 12% activate
the fault during diagnosis, these faults are not diagnosed due to in-
herent microarchitecture-level non-determinism (due to differences
in scheduling, physical register allocation, etc.) that prevents diver-
gences during replay.

Diagnosis Latency: Figure 8 categorizes the diagnosis latency of
the faults that are successfully diagnosed into various bins of 100
thousand to 1 billion cycles. The number on the top of each bar
shows the percentage of diagnosed cases with latency less than 10
million cycles.
From this figure, we see that 80% of diagnosed cases have la-
tency within 1 million cycles and 98% within 10 million cycles, la-
tencies that are invisible to end users (<10ms in a 1GHz processor
assuming an IPC of 1). Further, 93% of these faults were success-
fully diagnosed within 1 iteration while 98.5% took 10 iterations
(results not shown here). This shows that the iterative approach sig-



0%

20%

40%

60%

80%

100%

D
e

c
o

d
e

r 

IN
T

 A
L

U
 

R
e

g
 D

b
u

s
 

In
t 

re
g

 

R
O

B
 

R
A

T
 

A
G

E
N

 

A
v
e

ra
g

e

P
e

rc
e

n
ta

g
e

 o
f 

D
ia

g
n

o
s

e
d

 F
a

u
lt

s

<1B

<100M

<10M

<1M

<100K

100          99 99          94 99 93          97 98

Figure 8: Breakdown of diagnosis latency for diagnosed perma-

nent faults. 98% of the faults are diagnosed within 10M cycles,

resulting in low system down time.

nificantly reduces diagnosis latency, by avoiding logging the entire
execution before initiating replay.
For 1.5% of the diagnosed faults, the diagnosis latency is larger

than 10 million cycles (<100M and <1B in Figure 8). Since diag-
nosis is a rare process, even these longer latencies are acceptable,
albeit undesirable.

Log Size: Figures 9(a) and 9(b) show the sizes of the loadLog and
compareLog recorded in trace generation for the diagnosed faults.
Since the log size depends on individual applications, the figures
present the results on a per-application basis.
We observe that, on average, 96% of the cases require less than

200KB of loadLog and less than 200KB of compareLog during di-
agnosis. These logs can be easily accommodated in the L2 or L3
caches. In contrast to previous methods that performed determinis-
tic replay of multicore systems, these logs are orders of magnitude
smaller (FDR proposed logs in the order of megabytes [31]), require
less complex hardware (compared to BugNet [18], our scheme does
not require the complexities of memory-race-buffer, dictionaries,
etc.), and works with existing memory subsystems (Rerun [7] and
DeLorean [15] require changes in the memory subsystem to opti-
mize their hardware overheads from logging).
The results presented in this section show that mSWATcan achieve

high detection coverage and low SDC rate while incuring accept-
able hardware overheads for fault diagnosis, making it widely ap-
plicable for faults even in commodity systems.

7. CONCLUSIONS AND FUTUREWORK
This paper addresses the problem of reliability that is a serious

threat to the current computer industry. While recent advances have
embraced low-cost reliability solutions as a replacement for tradi-
tional high-cost full redundancy techniques, they have focused on
single threaded workloads running on a single core. Our focus here
is on studying faults in the emerging multicore systems running
multithreaded workloads.
In this paper, we propose mSWAT, the first full system reliability

solution for multithreaded workloads that uses high-level near-zero
overhead symptom detectors to detect faults, and a novel, but more
expensive, diagnosis mechanism after a fault is detected. The detec-
tors achieve a low SDC rate for both permanent and transient hard-
ware faults in multicore processors running multithreaded work-
loads. The diagnosis module, with no prior knowledge of a fault-

free core, successfully diagnoses over 95% of the detected perma-
nent faults at low hardware overheads. Further, mSWAT is con-
trolled by a thin firmware layer that requires minimal hardware sup-
port, making it widely deployable even in commodity systems. Al-
though the diagnosis algorithm is presented in the context of SWAT,
it can be used in combination with other high-level detection mech-
anisms that may allow a fault to escape the faulty core.
There are many avenues for future work with mSWAT. The de-
tectors can be augmented (e.g., OS and the application-level de-
tectors [23]) to further improve SDC rate and latency. We also
need to fully implement the mSWAT firmware and evaluate it under
more accurate gate-level fault models for permanent faults. Finally,
mSWAT currently focuses on in-core faults and needs extensions
to handle faults in off-core components such as the I/O controller,
memory sub-system, etc.

References
[1] D. Bernick et al. NonStop Advanced Architecture. In Proceedings
of the International Conference on Dependable Systems and Networks

(DSN), 2005.

[2] S. Borkar. Designing Reliable Systems from Unreliable Components:
The Challenges of Transistor Variability and Degradation. IEEE Mi-
cro, 25(6), 2005.

[3] F. A. Bower, D. Sorin, and S. Ozev. Online Diagnosis of Hard Faults
in Microprocessors. ACM Transactions on Architecture and Code Op-
timization (TACO), 4(2), 2007.

[4] M. Dimitrov and H. Zhou. Unified Architectural Support for Soft-
Error Protection or Software Bug Detection. In Proceedings of the
International Conference on Parallel Archtectures and Compilation

Techniques (PACT), 2007.

[5] O. Goloubeva, M. Rebaudengo, M. S. Reonda, and M. Violante. Soft-
Error Detection Using Control Flow Assertions. In International Sym-
posium on Defect and Fault Tolerance in VLSI Systems, 2003.

[6] S. Gupta, S. Feng, A. Ansari, J. Blome, and S. Mahlke. The StageNet
Fabric for Constructing Reslilient Multicore Systems. In Proceedings
of the International Symposium on Microarchitecture (MICRO), 2008.

[7] D. R. Hower and M. D. Hill. Rerun: Exploiting Episodes for
Lightweight Memory Race Ordering. In Proceedings of the Interna-
tional Symposium on Computer Architecture (ISCA), 2008.

[8] M.-L. Li, P. Ramachandran, R. Karpuzcu, S. K. S. Hari, and S. Adve.
Accurate Microarchitecture-Level Fault Modeling for Studying Hard-
ware Faults. In Proceedings of the International Symposium on High
Performance Computer Architecture (HPCA), 2009.

[9] M.-L. Li, P. Ramachandran, S. K. Sahoo, S. Adve, V. Adve, and
Y. Zhou. Trace-Based Microarchitecture-Level Diagnosis of Perma-
nent Hardware Faults. In Proceedings of the International Conference
on Dependable Systems and Networks (DSN), 2008.

[10] M.-L. Li, P. Ramachandran, S. K. Sahoo, S. Adve, V. Adve, and
Y. Zhou. Understanding the Propagation of Hard Errors to Software
and Implications for Resilient Systems Design. In Proceedings of the
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2008.

[11] X. Li and D. Yeung. Application-level correctness and its impact on
fault tolerance. In Proceedings of the International Symposium on
High Performance Computer Architecture (HPCA), 2007.

[12] G. Lyle, S. Cheny, K. Pattabiraman, Z. Kalbarczyk, and R. Iyer. An
End-to-end Approach for the Automatic Derivation of Application-
Aware Error Detectors. In Proceedings of the International Confer-
ence on Dependable Systems and Networks (DSN), 2009.

[13] C. Mauer, M. Hill, and D. Wood. Full-System Timing-First Simula-
tion. Proceedings of the ACM SIGMETRICS Conference on Measure-
ment and Modeling of Computer Systems, 2002.

[14] A. Meixner, M. Bauer, and D. Sorin. Argus: Low-Cost, Comprehen-
sive Error Detection in Simple Cores. In Proceedings of the Interna-
tional Symposium on Microarchitecture (MICRO), 2007.

[15] P. Montesinos, L. Ceze, and J. Torellas. DeLorean: Recording and
Deterministically Replaying Shared Memory Multiprocessor Execu-



0%

20%

40%

60%

80%

100%

M
p

e
g

E
n

c

M
p

e
g

D
e

c

R
a

y
T

ra
c

e

F
a

c
e

R
e

c

B
o

d
y
T

ra
c

k

L
U

A
v
e

ra
g

e

P
e

rc
e

n
ta

g
e

 o
f 

d
e

te
c

te
d

 f
a

u
lt

s

<1MB

<500KB

<200KB

<100KB

<10KB

<1KB

0%

20%

40%

60%

80%

100%

M
p

e
g

E
n

c

M
p

e
g

D
e

c

R
a

y
T

ra
c

e

F
a

c
e

R
e

c

B
o

d
y
T

ra
c

k

L
U

A
v
e

ra
g

e

P
e

rc
e

n
ta

g
e

 o
f 

d
e

te
c

te
d

 f
a

u
lt

s

<1MB

<500KB

<200KB

<100KB

<10KB

<1KB

(a) Size of loadLog (b) Size of compareLog

Figure 9: The size of the loadLog and compareLog used by our diagnosis algorithm. Over 96% fo the diagnosed faults require less

than 200KB of logs per core, which can fit in the L2/L3 cache of modern processors.

tion Efficiently. In Proceedings of the International Symposium on
Computer Architecture (ISCA), 2008.

[16] J. Nakano, P. Montesinos, K. Gharacorloo, and J. Torrellas. Re-
ViveI/O: Efficient Handling of I/O in Highly-Available Rollback-
Recovery Servers. In Proceedings of the International Symposium on
High Performance Computer Architecture (HPCA), 2006.

[17] N. Nakka, G. P. Saggese, Z. Kalbarczyk, and R. K. Iyer. An Architec-
tural Framework for Detecting Process Hangs/Crashes. In Proceed-
ings of European Dependable Computing Conference (EDCC), 2005.

[18] S. Narayanasamy, G. Pokam, and B. Calder. BugNet: Continuously
Recording Program Execution for Deterministic Replay Debugging.
In Proceedings of the International Symposium on Computer Archi-
tecture (ISCA), 2005.

[19] K. Pattabiraman, G. Saggese, D. Chen, Z. Kalbarczyk, and R. K. Iyer.
Dynamic Derivation of Application-Specific Error Detectors and their
Implementation in Hardware. In European Dependable Computing
Conference, 2006.

[20] A. Pellegrini, K. Constantinides, D. Zhang, S. Sudhakar, V. Bertacco,
and T. Austin. CrashTest: A Fast High-Fidelity FPGA-based Re-
siliency Analysis Framework. In IEEE International Conference on
Computer Design, September 2008.

[21] M. Prvulovic, Z. Zhang, and J. Torrellas. ReVive: Cost-Effective Ar-
chitectural Support for Rollback Recovery in Shared-Memory Multi-
processors. In Proceedings of the International Symposium on Com-
puter Architecture (ISCA), 2002.

[22] P. Racunas, K. Constantinides, S. Manne, and S. S. Mukherjee.
Perturbation-based Fault Screening. In Proceedings of the Inter-
national Symposium on High Performance Computer Architecture

(HPCA), 2007.

[23] S. K. Sahoo, M.-L. Li, P. Ramachandran, S. Adve, V. Adve, and
Y. Zhou. Using Likely Program Invariants to Detect Hardware Er-
rors. In Proceedings of the International Conference on Dependable
Systems and Networks (DSN), 2008.

[24] S. Shyam, K. Constantinides, S. Phadke, V. Bertacco, and T. Austin.
Ultra Low-Cost Defect Protection for Microprocessor Pipelines. In
Proceedings of the International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS), 2006.

[25] D. J. Sorin, M. M. K. Martin, M. D. Hill, and D. A. Wood. Safe-
tyNet: Improving the Availability of Shared Memory Multiprocessors
with Global Checkpoint/Recovery. In Proceedings of the International
Symposium on Computer Architecture (ISCA), 2002.

[26] L. Spainhower et al. IBM S/390 Parallel Enterprise Server G5 Fault
Tolerance: A Historical Perspective. In IBM Journal of R&D, Septem-
ber/November 1999.

[27] J. Srinivasan, S. Adve, P. Bose, and J. A. Rivers. Exploiting Structural
Duplication for Lifetime Reliability Enhancement. In Proceedings of
the International Symposium on Computer Architecture (ISCA), 2005.

[28] R. Venkatasubramanian, J. Hayes, and B. Murray. Low-Cost On-Line
Fault Detection Using Control Flow Assertions. In Proceedings of the
International Online Test Symposium, 2003.

[29] Virtutech. Simics Full System Simulator. Website, 2006. http:

//www.simics.net.

[30] N. Wang and S. Patel. ReStore: Symptom-Based Soft Error Detection
in Microprocessors. IEEE Transactions on Dependable and Secure
Computing, 3(3), July-Sept 2006.

[31] M. Xu, R. Bodik, and M. Hill. A “Flight Data Recorder” for Enabling
Full-system Multiprocessor Deterministic Replay. In Proceedings of
the International Symposium on Computer Architecture (ISCA), 2003.


