SWAT: An Error Resilient System

Man-Lap Li, Pradeep Ramachandran, Swarup K. Sahoo, Sari#al¥%é, Vikram S. Adve, Yuanyuan Zhou
Department of Computer Science
University of Illinois at Urbana-Champaign
swat@cs.uiuc.edu

Abstract— As devices continue to scale, future shipped high overheads for reliability to low-end desktop ma-
hardware is more likely to fail due to in-the-field hardware chines that are stringent about overheads for economical
faults. As traditional redundancy-based hardware reliabi- reasons. Thus, a reliability solution that can be effec-

ity solutions are too expensive to be broadly deployable, L
recent research has focused on low-overhead reliability so tively deployed in the broad market must incur limited

lutions. One approach is to employ low-overhead detection Overheads in area, performance, and power. A SELSE-

(always-on) techniques that catch high-level symptoms and 2 industry panel converged on a 10% area overhead

pay a higher overhead for diagnosis (rarely invoked). target to handle all sources of chip errors as a guide-
To this end, we are developing SWAT (SoftWare |ine for academics. In this context, traditional solutions

Anomaly Treatment) — a low-cost reliability solution that .
effectively handles multiple sources of faults by detectip that involve heavy redundancy, such as dual modular

anomalous software behavior. At the last SELSE, we redundancy or triple modular redundancy, are no longer
motivated SWAT and presented a preliminary detection Vviable. Solutions such as redundant multithreading and
component that detects hardware failures by monitoring its various flavors improve on this, but still incur large

simple software level symptoms. This paper presents twWo gyerheads in performance and/or power [9].

significant enhancements to the SWAT system over the We make two high-level observations that motivate

last year: (1) an effective diagnosis strategy that identiéis A . .
the faulty microarchitectural unit by exploiting a check- OUr quest for low-overhead reliability solutions. First,

point/replay based recovery mechanism and analyzing the the reliability solution needs to handle only device faults
faulty core’s instruction trace, and (2) a sophisticated that propagate through higher level of the system and
detection mechanism that specifically targets silent data pecome observable to the software. Second despite this

corruptions by using compiler-inserted range-based invair . . L) X ;
ants to further improve detection coverage and latency. The impending reliability threat, fault-free operation remsi

detection strategy leverages the online diagnosis stratgg the common case and must be optimized,.possibly at the
in a novel way to enable aggressive use of invariants while cost of increased overhead after a fault is detected (in

minimizing the impact of false positives at runtime. accordance with Amdahl's law).
These observations motivate o®WAT (SoftWare
|. INTRODUCTION AnomalyTreatment) system where faults are detected by

ous to software bugs, potentially leveraging solutions

. . 'PPES} software reliability to further amortize the overhead.
componenFs due to seyeral reasons mcludmg aging Rher an error is detected, the diagnosis process is
wear-out, infant mortality, soft errors, design deECtSI”hvoked to identify the error type (transient or permanent

process variations, and so on [2]. Such a scenarig . .
error) and the faulty component (if a permanent error is

requires mechanisms to detect, diagnose, recover fr(‘)é'.n

in-field failures, and possibly repair/reconfigure aroun lagnosed). Based on the result of the diagnosis, the rel-
! P y rep 9 vant recovery and/or repair is performed to circumvent

these failed components so that the system can prov% error
reliable and continuous operation. In previous work, to investigate the feasibility of the

The _reliability challenge_today pervades the entirgWAT approach, we explored using low-cost always-
computing market — from high-end servers that tolerafe = w0 of software anomalies, callegimptoms,

for detecting hardware faults [5][6]. The symptoms we

This work is supported in part by an IBM faculty partnership . L
award, the Gigascale Systems Research Center (funded EQdRP, used werefatal traps from either the application or

an SRC program), the National Science Foundation under terathe OS (indicated by the hardwarepplication aborts

crosystems, Inc’'s OpenSPARC Centers of Excellence at tleetsity -
of lllinois at Urbana-Champaign, and an equipment donafiom or the OS (indicated by a hardware hang detector),

AMD. and high OS activity (indicated by the hardware per-

formance counter). Through microarchitecture-leveltfautliagnosed and propagated to the software layer. A lack
injections into 8 hardware structures in a simulatedf symptom in the fault-free core indicates the existence
superscalar out-of-order processor, we found that 958ba permanent fault in the original core. While transient

of unmasked faults in 7 of the 8 structures resultedardware faults in the original core can be dealt with by

in detectable symptoms within 10 million instructionsa simple re-execution, permanent hardware faults need
of simulation. Additionally, only 0.8% of these faultsmore sophistication to enable reconfiguration/repair to

resulted in silent data corruptions (SDC). These resulisevent further activation of the fault.

indicate the effectiveness of these symptoms, in spite Rf
their simplicity, and motivate the SWAT strategy. '

In this paper, we present two significant enhancementsWhen a permanent fault is diagnosed in a core, the

to the SWAT framework: simplest solution is to decommission the entire core
« We derive a diagnosis strategy that identifies thtg prevent further corruption of the syste_m. However,
such an approach may be too conservative as most of

faulty microarchitectural component by eproiting[h core may be fully functional and the core may be
checkpoint/replay based recovery mechanisms and

. N . repairable by deconfiguring only the faulty microarchi-
by analyzing the faulty cores instruction tracetectural modules (e a physical register). Motivated
Of all the detected faults, our approach correctl (e.g. a phy 9):

identifies the faulty component in 96% of the case%y this observation, we employ a microarchitecture-

. We explore a sophisticated detection mechanis%vel fault diagnosis scheme called Trace-Based Fault

e : ._Diagnosis (TBFD).
that uses compiler-inserted range-based invariants, =" o e suggests, TBED identifies permanent
:ﬁed;trﬁc':ehsr?nwigfn;agg;r?g/:;r;blfvzd tiligngd\]’! :%eults by analyzing instruction traces. More specifically,
further Pm rgveg the coverage shorter,1$ the det e'E: compares the execution trace of the faulty core to that
. P ge, f the fault-free core. When a mismatch occurs between
tion latency, and reduces the number of total SD e result generated by the two cores, TBED reasons
events by about 50% with low overheads. o o '
. . o that the corresponding instruction in the faulty core has
With an ever increasing list of reasons for hardwargctiyated the fault and begins to track down the faulty
failures, systems that detect hardware failures througficroarchitectural module.
anomalous software executions, similar to SWAT, be- TBED proceeds as follows. When a faulty core is iden-
come more attractive owing to their low overhead angkieq, the faulty core rolls back to a previous checkpoint
the|r ability t(_) deal .Wlth mult|ple. failure sources. Theyng generates an instruction trace that is tagged with
designs for diagnosis and detection presented here fogRyroarchitectural resources used by each instruction

the cornerstones for building such error resilient systerrt%a”ed faulty execution trace). To generate golden states

for comparisons, a fault-free core is loaded with the
same checkpoint and produces the fault-free execution
Since SWAT performs detection by observing anomarace. A mismatch between the result of the faulty
lous software behavior, it can detect both hardware faukgecution and that of the fault-free execution invokes the
and software bugs. Consequently, the SWAT diagnosi8FD algorithm to systematically track down the faulty
component is thus of paramount importance to not onipodule.
distinguish between faults in hardware from faults in Currently, TBFD assumes a superscalar processor with
software, but in the case of hardware faults to alsegister-renaming and targets faults in three main areas
identify the type (transients or permanents) of hardwace# the processor core: the front-end (e.g., the decoder),
faults to facilitate the appropriate recovery and/or repathe meta-datapath (the datapath that tracks dependences
In the SWAT diagnosis framework, we assume a multamong instructions, including the RAT and ROB), and
core system where a fault-free core is available. Whe datapath (e.g., functional units, physical registers,
also currently assume that all detections are becauseetf.). When a mismatch occurs, TBFD first checks
faults in the core. Upon detection, we use a repeatélie decoded information (opcode, source operands, and
rollback/replay strategy from a checkpoint to distinguisbestination operands) of the faulty instruction. If this
transient faults, permanent faults, and software faults [Bnismatches with that of the fault-free execution, a fault is
The diagnosis firmware observes whether the symptasuspected in the front-end. Else, using the faulty execu-
recurs after the execution is replayed from the checkeon trace, TBFD checks the logical-to-physical register
point on the symptom-causing core. A lack of symptormappings used by the faulty instruction to verify the
indicates that a transient fault might have occurred amategrity of the meta-datapath. One common symptom of
is appropriately recovered. If the symptom recurs, themeta-datapath fault is that a physical register is mapped
execution is replayed on another fault-free core. If thee two or more logical registers. If the register mappings
symptom recurs in the fault-free core, a software fault &re correct, a fault is suspected in the datapath.

Overview of Trace-Based Fault Diagnosis

Il. FAULT DIAGNOSIS

structure is one of the identified units. T@errect Type

Nl R R 7 stack shows the cases where the diagnosis does not
% // // "nw”ect identify the specific faulty array entry (e.g., RAT entry)
o 80%7 4 i but the faulty array structure (e.g., RAT) is correctly
= HCorrect . g
2 Type identified. Thelncorrect stack shows the cases where
2 600 - oamong 3+ the diagnosis identifies one or more structures as faulty,
g none of which is the actual faulty structure.
S aom | @among 2 of all detected faults, our trace-based diagnosis is able
: ocorrect 10 COrrectly and uniquely identify 76% down to the single
8 faulty unit or array entry. Further, for 90% of the detected
20% 1 - e atch faults, the faulty unit falls within the two units reported
by TBFD as potentially faulty. These results show that
0% . . A1 . B s TBFD is effective in identifying most of the faults down
Decoder INTALU Reg IntReg ROB RAT AGEN Overall to an array entry at the microarchitecture-level.

Dbus

Fig. 1. Effectiveness of microarchitecture-level fault diagno- o RAT, we found that TBFD cannot identify many
sis. The figure shows the ability of the diagnosis algorithm Of the faults down to an array entry because speculative
to accurately diagnose detected faults. On an average, 96% instructions could cause a live physical register to be
of the detected faults are accurately diagnosed. _ freed and then get squashed. Since TBFD only analyzes
Since a faulty instruction could have used multiplgetiring instructions, the original faulty RAT entry is
resources in each of the areas described above (€.g.-h@Rder to track. However, if more traditional diagnosis
add instruction may use ALUO, data-bus1, and physiCglchniques are available, it is sufficient for TBFD to
register 20), TBFD uses counters to track potentialigentify faults at the granularity of the array structure.
faulty structures (similar to the approach in [3] but thesjyen this assumption, an additional 42% of the detected

counters are in software and are invoked only after a faydaT faults can be identifiedQorrect Type stack) down
is detected). When a larger number of faulty instructiong the RAT structure.

are encountered, the counter value of the faulty mOd“|eOveraII, by collecting and analyzing the instruction

will_be higher than other modules and thus can bgce from the faulty execution, TBFD correctly narrows
identified. 96% of the detected faults down to a single array entry
B. Effectiveness of Trace-Based Fault Diagnosis (Correct), 2 and 3 faulty units/array entrieg\iiong 2

. ._and Among 3), and the array structureCérrect Type).

T9 evaluate TBFPZ we use a full system S|mglat|on These results show that TBFD is effective in diag-
e;:.\;lrotnmeint cdomprlsmg t?e .Wlscgns:ntGEM?S r.mcroarﬁosing permanent faults at the microarchitecture-level,
¢ |et_c ura 'tanth m\e/:_n:otry r:n’gng sm;u”a orsi[[7] n C(l)n'without (1) assuming specialized architecture (such as
Jtlé?cioln V¥o etheer I;#ezz s'rTI1mII;tSorlsJ ?gs-sg] CS'QS_E'I?IVA [1]), (2) changing the instruction scheduler within

[]Z gether, Imule _provi y Yhe processor, and (3) disabling suspected faulty units
cycle microarchitecture-level timing simulation of a rea] nd retrying as in prior work [3]. This approach also

workload (6 SpecInt2000 and 4 SpecFP2000) running . . o
a commercial operating system (full Solaris-9 on SPAR ther enhances the diagnosis capability of the SWAT

V9 ISA) on a modern out-of-order superscalar processo¥5tem'
and memory hierarchy.

We inject 11,200 permanent faults into 7 microarchi-
tectural structures of the simulated processor. For the
injected faults that are detected using our symptoms [6],In our previous implementation of the detection mod-
TBFD is invoked to identify the faulty microarchitecturalule in the SWAT system, we used simple software-
structure. observable events to infer the presence of an underlying

Figure 1 presents the results indicating the effectivérardware fault [6]. Although these detection mechanisms
ness of the diagnosis for faults in different microarchiincur negligible hardware overheads for detection and
tectural structures. In each bar, thie Mismatch stack result in highly competent coverage, more sophisticated
represents cases that the faulty core’s trace is identicktection mechanisms must be used to further improve
to the golden core’s trace within 10M instructions. Théhis coverage and latency by reducing the faults that es-
Correct stack represents cases that the diagnosis proceape detection in the simulated 10M instruction window
correctly and uniquely identifies the faulty unit or theand eventually reduce SDC events. For this purpose, we
faulty entry within an array structure in the faulty coredesigned the SWAT-I detection framework, an enhance-
The Among N stack represents cases that the diagnositent to the proposed SWAT detection mechanisms [6]
process identifies N potential faulty units and the faultthat explores the use of program invariants.

IIl. THE SWAT-I INVARIANT-BASED DETECTION
FRAMEWORK

Program Invariants are program properties involvingverhead low. For the invariant insertion phase, we insert
program values/attributes at some particular prograoalls to appropriate invariant checking code through
point that are expected to hold on all possible inputs, i.eanother compile-time instrumentation pass and generate
they are sound invariants. Likely Program Invariants aretive code for SPARC-based Solaris system using the
program properties involving program values that hol8un cc compiler.
on many executions on different inputs and are expectgd
or likely to hold on other inputs. Extraction of likely —
program invariants is easier than extraction Of Sound The simulation infrastructure used to evaluate invari-
invariantS, as we do not need Costly static anaiysis meﬁ.pts is identical to that used for eValuating the diagnosis
Ods to prove program properties_ The extraction may @@mework. We eValuated our inVariant'based approach
done either online or offline. With compiler supportin conjunction with the four low-cost detection mech-
invariants can be extracted offline, and transparent§isms (fatal traps in application, fatal traps in OS,
during development/testing phaseS. application aborts and hlgh—OS aCt|V|ty) built into the

Invariants are broadly classified into three broad catase SWAT system [6] using five different metrics. For
egories: Value-based, Control-flow-based and PC-badb§ experiments, we used five SPEC benchmarks: four
invariants. In the current SWAT-I system, we only us&PecINT benchmarks (gzip, bzip2, mcf, parser) and one
range-based invariants (a particular type of value-base@ecFP benchmark (art). Currently, we use 12 train-
invariant), which specify a range with constant lower ang inputs collected from external sources or generated
upper bounds for specific program values. For examplf@rough a script (includingest and train inputs) for
a Sampie range invariant on a program variablevill the inVariant generation phase for a.” applications. We
be of the form [MIN, MAX], where MIN and MAX inject 5600 permanent faults into 7 microarchitectural
are constants inferred from offline training such thagtructures of the simulated processor.

MIN < z < MAX is true for all the training runs. For the evaluation of the effectiveness of invariant-
As a first step, we decided to use range-based invariart@sed approachief input was used to compute five
as they can be easily and efficiently generated. They #léferent metrics: Coverage, Latency, False positives,
also much easier to enforce within checking code ardPCs and Overhead. We used two configurations of
cause many fewer false positives compared to most ot#B¢ timing simulator for the experiment$2-input that
types of invariants. enforces invariants anbaseline that does not. We in-

Since we propose to use ||ke|y program invariants tgrument the application W|th inVariantS CheCking COde
detect permanent faults, one limitation is that some & both configurations, but disable the enforcement of
these invariants may bml% postiveS. An invariant is inVariantS in the Simulator fOI’ the baseline case. ThIS Step
called a false positive for some particular input, if it doet§ necessary to minimize the differences in the binaries
not hold true for that input. To handle the false positive@nd obtain a valid coverage comparison between the
with minimal overhead, we need an efficient method fd0 cases because the behavior of faults depends on
detecting them online, unlike transient hardware faulloth the static code layout and the dynamic instruction
where relatively low-cost techniques such as pipelingduence. We also kept the invariant checks for the
flush can deal with false positives [8]. In SWAT-I, wecompletion runs (needed to compute SDCs) of the 12-
leverage the rollback/replay support in the diagnosiQPUt case but removed the false positive invariants as
framework and detect false positives by rolling back an#e did not have false positive detection support in the
replaying the execution on the fault-free core when dHnctional simulator used for the completion runs. When
invariant violation is detected. We limit the overheadnvariant violations occur during the completion runs, the
caused by these rollbacks by limiting each invariant t@Pplications exit.
cause at most one rollback and replay. If the rollback 1) Coverage: We defineCoverage as the total num-

and replay determines a false positive, we disable tH§r of detections as a percentage of total non-masked
invariant for future executions. faults (i.e. total number of fault injections excluding

those cases which are masked architecturally or at the
A. Generating Invariants and Invariant Checking Code application level).

Our SWAT-I framework has two distinct components: For each fault injection, we run the full timing simu-
invariant generation and invariant insertion. Both of thedation for 10 million instructions. Figure 2 partitions all
use the LLVM compiler infrastructure [4]. the fault injections into eight categories based upon the

For the invariant generation phase, we use compildetection method which detects the fault within the 10M
time instrumentation to monitor program values onlinenstruction window for both configuration&2-input and
In this work, we monitor only the store values of albaseline. The seven categories are as followsch-Mask
integer types (both signed and unsigned) of size 2, #gpresents the set of injections that were architecturally
and 8 bytes as well as floating point types, to keep tmeasked.Appl-Mask represents the set of faults which

Effectiveness of Invariants for Detection

96% 97%

100% - found the false positive rate to be less than 5% for all the

W Unknown applications and 0% for three of the applications. As the
80% miNv false positive rate was sufficiently low for our purpose,
BHigh-08 we did not need to use more inputs. Quite surprisingly,
60% - BApp-Abort after just two inputs, nearly 50% of the invariants are

BratalTrap-0S trye positives. This low rate of false positives from many
Srawl-Trap-App - inputs motivates the use of likely invariants for detecting
FIApPpl-Mask permanent faults.

4) Slent Data Corruptions (SDCs): In order to de-
termine the SDC events among theknown cases after
' ' 10M instructions of detailed timing simulation with fault
Baseline 12-input injection, we ran the application to completion using a

Simulator Configuration functional simulator. If the application failed to termtea
Fig. 2. Effectiveness of different symptoms to detect within five hours of simulation, then we declared the
faults in various microarchitecture structures. Software- result an application or OS hang. We simulate bti#h
level invariants improve the coverage of SWAT detection input and baseline versions to completion.
from 96% to 97%. . .

Overall, the invariants are able to reduce the SDC
are masked at the application level. The topmost staglients by almoss0% from 45 events t023 events. We
shows the set of non-masked fault injections that remagynsider the reduction in the SDC events as the most
undetected after the simulated 10M instruction WindO\nlnportant contribution of the invariants. Though some
(we call this categoryUnknown). The other partitions SDC events remain, we believe that the use of more
— INV, High-OS, App-Abort, Fatal-Trap-OS, andFatal- sophisticated invariants can make the number of SDC
Trap-App — represent detections by the correspondingyents negligible.
techniques [6], wher&\V represents detections through 5) Overhead: For evaluating the overhead of the
the invariant method. The faults not detected are catedfvariant Checking code, we used two versions of the
rized under theUnknown category. The number aboveapplication code - one with invariants checking code
each bar shows the total coverage for each version. and the original code without any invariants check. We

Three points are apparent from this graph. First, thept all the invariant checks including false positives
invariant detection detects nearly 10% of faults. Se¢or evaluation of overhead. We first evaluated the over-
ond, the invariant detection detects some faults that thead with a 1GHz Sun UltraSPARC-T1 processor. The
baseline techniques missed, increasing the total coverag@rage overhead measured as the geometric mean of
from 96% to 97%. Thlrd, the invariant detection deteC@Verhead of all benchmarks is around 14%. The h|gher
some faults that would have been caught by other teafian expected overhead is most likely due to the simple
niques (about 8% of total faults). Overall, we seB3& (1-wide, 6-stage pipeline) architecture, which is unable
reduction of unknown cases from 189 in the baseling hide the latency of extra instructions and cache misses.
version to 145 in the 12-input version. To verify this, we ran the same overhead experiments on

2) Latency: The detectiorLatency is the total number the x86 architecture, a dual processor 1755 MHz AMD
of instructions retired from the first architecture stat@thlon™MP 2100+ machine. The average overhead
corruption (of either OS or application) until the fault isgeometric mean) is only 5%, which makes this initial
detected by one of the above techniques. For the latengyproach promising.
experiments, we used two different configurations of the
simulator, as in the coverage experiments. IV. CONCLUSIONS

The total number of detections with lateney100K, With ever increasing hardware overheads to meet
as a percentage of the total number of non-masked faultsquired reliability targets, systems like SWAT that de-
increases from 79% to 81%. Since hardware checkpoit¢ct hardware failures by tracking anomalous software
ing can handle recovery at this detection latency [10behavior become increasingly attractive. In addition to
using invariants increases the number of faults amenalgtfifective low-cost detection, accurate diagnosis to nar-
to hardware recovery, making recovery simpler. Faultew down the faulty hardware component is of prime
detected at a latency larger than 100K instructions wilnportance to initiate repair/reconfiguration of the fsult
require software checkpointing schemes. hardware.

3) False Positives: We defineFalse positive rate as This paper presented two important components of the
the fraction of all the static invariants that do not hol&8WAT system: (1) a microarchitecture-level diagnosis
true for some particular input. We used all 12 traininframework, called TBFD, that performs fault diagnosis
inputs for generating invariants. To evaluate the fald®y analyzing the faulty execution trace with the help
positive rate, we used theef input. With 12 inputs, we of a fault-free core and (2) a detection framework,

40%

Total Injections

OArch-Mask
20% -

0%

called SWAT-I, that uses compiler-inserted invariants to
improve detection coverage and latency with acceptable
overheads. These components are essential for the SWAT
system to ensure continuous and reliable operations. In
addition to improving the ability of these components to
detect and diagnose faults, we are also working on other
components of SWAT and working towards the goal of
providing a low-cost full-system reliability solution for
future hardware.

(1]

(2]

(3]

(4

(5]

(6]

(7]

(8]

El

[10]

(11]

REFERENCES

T. M. Austin, “DIVA: A Reliable Substrate for Deep Subman
Microarchitecture Design,” ifProceedings of International Sym-
posium on Microarchitecture (MICRO), 1998.

S. Borkar, “Designing Reliable Systems from UnreliaBlempo-
nents: The Challenges of Transistor Variability and Degtiaah,”
IEEE Micro, vol. 25, no. 6, 2005.

F. Bower et al., “A Mechanism for Online Diagnosis of Hard
Faults in Microprocessors,” iRroceedings of International Sym-
posium on Microarchitecture (MICRO), 2005.

C. Lattner and V. Adve, “LLVM: A Compilation Framework fo
Lifelong Program Analysis and Transformation,” Rnoceedings

of International Symposium on Code Generation and Optimiza-
tion (CGO), 2004.

M. Li, P. Ramachandran, S. Adve, V. Adve, and Y. Zhou,
“Towards a Software-Hardware Co-Designed Resilient Syste
in 3rd Workshop on Slicon Errors in Logic - System Effects,
2007.

M. Li, P. Ramachandran, S. Sahoo, S. Adve, V. Adve, and
Y. Zhou, “Understanding the Propagation of Hard Errors to
Software and Implications for Resilient System Design,Pio-
ceedings of International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS),
2008.

M. Martin et al., “Multifacet's General Execution-Driven Mul-
tiprocessor Simulator (GEMS) Toolset3GARCH Computer
Architecture News, vol. 33, no. 4, 2005.

P. Racunast al., “Perturbation-based Fault Screening,” Fno-
ceedings of International Symposium on High Performance Com-
puter Architecture (HPCA), 2007.

E. Rotenberg, “AR-SMT: A Microarchitectural Approaah Fault
Tolerance in Microprocessors,” iRroceedings of International
Symposium on Fault-Tolerant Computing (FTCS), 1999.

D. Sorin et al., “Fast Checkpoint/Recovery to Support Kilo-
Instruction Speculation and Hardware Fault Tolerance,im€o
puter Sciences Department, University of Wisconsin, Marlis
Tech. Rep. 1420, 2000.

Virtutech, “Simics Full System Simulator,” WebsiteQ@5, http:
/lwww.simics.net.

