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Abstract— As devices continue to scale, future shipped
hardware is more likely to fail due to in-the-field hardware
faults. As traditional redundancy-based hardware reliabil-
ity solutions are too expensive to be broadly deployable,
recent research has focused on low-overhead reliability so-
lutions. One approach is to employ low-overhead detection
(always-on) techniques that catch high-level symptoms and
pay a higher overhead for diagnosis (rarely invoked).

To this end, we are developing SWAT (SoftWare
Anomaly Treatment) – a low-cost reliability solution that
effectively handles multiple sources of faults by detecting
anomalous software behavior. At the last SELSE, we
motivated SWAT and presented a preliminary detection
component that detects hardware failures by monitoring
simple software level symptoms. This paper presents two
significant enhancements to the SWAT system over the
last year: (1) an effective diagnosis strategy that identifies
the faulty microarchitectural unit by exploiting a check-
point/replay based recovery mechanism and analyzing the
faulty core’s instruction trace, and (2) a sophisticated
detection mechanism that specifically targets silent data
corruptions by using compiler-inserted range-based invari-
ants to further improve detection coverage and latency. The
detection strategy leverages the online diagnosis strategy
in a novel way to enable aggressive use of invariants while
minimizing the impact of false positives at runtime.

I. I NTRODUCTION

Hardware reliability is becoming a major obstacle to
reaping the benefits of increased integration projected
by Moore’s law. With increased scaling, this problem
continues to worsen and threaten the failure of shipped
components due to several reasons including aging or
wear-out, infant mortality, soft errors, design defects,
process variations, and so on [2]. Such a scenario
requires mechanisms to detect, diagnose, recover from
in-field failures, and possibly repair/reconfigure around
these failed components so that the system can provide
reliable and continuous operation.

The reliability challenge today pervades the entire
computing market – from high-end servers that tolerate
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high overheads for reliability to low-end desktop ma-
chines that are stringent about overheads for economical
reasons. Thus, a reliability solution that can be effec-
tively deployed in the broad market must incur limited
overheads in area, performance, and power. A SELSE-
2 industry panel converged on a 10% area overhead
target to handle all sources of chip errors as a guide-
line for academics. In this context, traditional solutions
that involve heavy redundancy, such as dual modular
redundancy or triple modular redundancy, are no longer
viable. Solutions such as redundant multithreading and
its various flavors improve on this, but still incur large
overheads in performance and/or power [9].

We make two high-level observations that motivate
our quest for low-overhead reliability solutions. First,
the reliability solution needs to handle only device faults
that propagate through higher level of the system and
become observable to the software. Second, despite this
impending reliability threat, fault-free operation remains
the common case and must be optimized, possibly at the
cost of increased overhead after a fault is detected (in
accordance with Amdahl’s law).

These observations motivate ourSWAT (SoftWare
AnomalyTreatment) system where faults are detected by
watching for anomalous software behavior, or symptoms
of faults, using zero to low-cost hardware and software
monitors [6]. Such a strategy treats hardware faults anal-
ogous to software bugs, potentially leveraging solutions
for software reliability to further amortize the overhead.
After an error is detected, the diagnosis process is
invoked to identify the error type (transient or permanent
error) and the faulty component (if a permanent error is
diagnosed). Based on the result of the diagnosis, the rel-
evant recovery and/or repair is performed to circumvent
the error.

In previous work, to investigate the feasibility of the
SWAT approach, we explored using low-cost always-
on monitors of software anomalies, calledsymptoms,
for detecting hardware faults [5][6]. The symptoms we
used werefatal traps from either the application or
the OS (indicated by the hardware),application aborts
(indicated by the OS),hangs of either the application
or the OS (indicated by a hardware hang detector),
and high OS activity (indicated by the hardware per-



formance counter). Through microarchitecture-level fault
injections into 8 hardware structures in a simulated
superscalar out-of-order processor, we found that 95%
of unmasked faults in 7 of the 8 structures resulted
in detectable symptoms within 10 million instructions
of simulation. Additionally, only 0.8% of these faults
resulted in silent data corruptions (SDC). These results
indicate the effectiveness of these symptoms, in spite of
their simplicity, and motivate the SWAT strategy.

In this paper, we present two significant enhancements
to the SWAT framework:

• We derive a diagnosis strategy that identifies the
faulty microarchitectural component by exploiting
checkpoint/replay based recovery mechanisms and
by analyzing the faulty core’s instruction trace.
Of all the detected faults, our approach correctly
identifies the faulty component in 96% of the cases.

• We explore a sophisticated detection mechanism
that uses compiler-inserted range-based invariants
to detect hardware faults. When used along with
the simple symptoms described above, this scheme
further improves the coverage, shortens the detec-
tion latency, and reduces the number of total SDC
events by about 50% with low overheads.

With an ever increasing list of reasons for hardware
failures, systems that detect hardware failures through
anomalous software executions, similar to SWAT, be-
come more attractive owing to their low overhead and
their ability to deal with multiple failure sources. The
designs for diagnosis and detection presented here form
the cornerstones for building such error resilient systems.

II. FAULT DIAGNOSIS

Since SWAT performs detection by observing anoma-
lous software behavior, it can detect both hardware faults
and software bugs. Consequently, the SWAT diagnosis
component is thus of paramount importance to not only
distinguish between faults in hardware from faults in
software, but in the case of hardware faults to also
identify the type (transients or permanents) of hardware
faults to facilitate the appropriate recovery and/or repair.

In the SWAT diagnosis framework, we assume a multi-
core system where a fault-free core is available. We
also currently assume that all detections are because of
faults in the core. Upon detection, we use a repeated
rollback/replay strategy from a checkpoint to distinguish
transient faults, permanent faults, and software faults [6].
The diagnosis firmware observes whether the symptom
recurs after the execution is replayed from the check-
point on the symptom-causing core. A lack of symptom
indicates that a transient fault might have occurred and
is appropriately recovered. If the symptom recurs, the
execution is replayed on another fault-free core. If the
symptom recurs in the fault-free core, a software fault is

diagnosed and propagated to the software layer. A lack
of symptom in the fault-free core indicates the existence
of a permanent fault in the original core. While transient
hardware faults in the original core can be dealt with by
a simple re-execution, permanent hardware faults need
more sophistication to enable reconfiguration/repair to
prevent further activation of the fault.

A. Overview of Trace-Based Fault Diagnosis

When a permanent fault is diagnosed in a core, the
simplest solution is to decommission the entire core
to prevent further corruption of the system. However,
such an approach may be too conservative as most of
the core may be fully functional and the core may be
repairable by deconfiguring only the faulty microarchi-
tectural modules (e.g., a physical register). Motivated
by this observation, we employ a microarchitecture-
level fault diagnosis scheme called Trace-Based Fault
Diagnosis (TBFD).

As the name suggests, TBFD identifies permanent
faults by analyzing instruction traces. More specifically,
it compares the execution trace of the faulty core to that
of the fault-free core. When a mismatch occurs between
the result generated by the two cores, TBFD reasons
that the corresponding instruction in the faulty core has
activated the fault and begins to track down the faulty
microarchitectural module.

TBFD proceeds as follows. When a faulty core is iden-
tified, the faulty core rolls back to a previous checkpoint
and generates an instruction trace that is tagged with
microarchitectural resources used by each instruction
(called faulty execution trace). To generate golden states
for comparisons, a fault-free core is loaded with the
same checkpoint and produces the fault-free execution
trace. A mismatch between the result of the faulty
execution and that of the fault-free execution invokes the
TBFD algorithm to systematically track down the faulty
module.

Currently, TBFD assumes a superscalar processor with
register-renaming and targets faults in three main areas
of the processor core: the front-end (e.g., the decoder),
the meta-datapath (the datapath that tracks dependences
among instructions, including the RAT and ROB), and
the datapath (e.g., functional units, physical registers,
etc.). When a mismatch occurs, TBFD first checks
the decoded information (opcode, source operands, and
destination operands) of the faulty instruction. If this
mismatches with that of the fault-free execution, a fault is
suspected in the front-end. Else, using the faulty execu-
tion trace, TBFD checks the logical-to-physical register
mappings used by the faulty instruction to verify the
integrity of the meta-datapath. One common symptom of
a meta-datapath fault is that a physical register is mapped
to two or more logical registers. If the register mappings
are correct, a fault is suspected in the datapath.
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Fig. 1. Effectiveness of microarchitecture-level fault diagno-
sis. The figure shows the ability of the diagnosis algorithm
to accurately diagnose detected faults. On an average, 96%
of the detected faults are accurately diagnosed.

Since a faulty instruction could have used multiple
resources in each of the areas described above (e.g., an
add instruction may use ALU0, data-bus1, and physical
register 20), TBFD uses counters to track potentially
faulty structures (similar to the approach in [3] but the
counters are in software and are invoked only after a fault
is detected). When a larger number of faulty instructions
are encountered, the counter value of the faulty module
will be higher than other modules and thus can be
identified.

B. Effectiveness of Trace-Based Fault Diagnosis

To evaluate TBFD, we use a full system simulation
environment comprising the Wisconsin GEMS microar-
chitectural and memory timing simulators [7] in con-
junction with the Virtutech Simics full system simula-
tor [11]. Together, these simulators provide cycle-by-
cycle microarchitecture-level timing simulation of a real
workload (6 SpecInt2000 and 4 SpecFP2000) running on
a commercial operating system (full Solaris-9 on SPARC
V9 ISA) on a modern out-of-order superscalar processor
and memory hierarchy.

We inject 11,200 permanent faults into 7 microarchi-
tectural structures of the simulated processor. For the
injected faults that are detected using our symptoms [6],
TBFD is invoked to identify the faulty microarchitectural
structure.

Figure 1 presents the results indicating the effective-
ness of the diagnosis for faults in different microarchi-
tectural structures. In each bar, theNo Mismatch stack
represents cases that the faulty core’s trace is identical
to the golden core’s trace within 10M instructions. The
Correct stack represents cases that the diagnosis process
correctly and uniquely identifies the faulty unit or the
faulty entry within an array structure in the faulty core.
The Among N stack represents cases that the diagnosis
process identifies N potential faulty units and the faulty

structure is one of the identified units. TheCorrect Type
stack shows the cases where the diagnosis does not
identify the specific faulty array entry (e.g., RAT entry)
but the faulty array structure (e.g., RAT) is correctly
identified. TheIncorrect stack shows the cases where
the diagnosis identifies one or more structures as faulty,
none of which is the actual faulty structure.

Of all detected faults, our trace-based diagnosis is able
to correctly and uniquely identify 76% down to the single
faulty unit or array entry. Further, for 90% of the detected
faults, the faulty unit falls within the two units reported
by TBFD as potentially faulty. These results show that
TBFD is effective in identifying most of the faults down
to an array entry at the microarchitecture-level.

For RAT, we found that TBFD cannot identify many
of the faults down to an array entry because speculative
instructions could cause a live physical register to be
freed and then get squashed. Since TBFD only analyzes
retiring instructions, the original faulty RAT entry is
harder to track. However, if more traditional diagnosis
techniques are available, it is sufficient for TBFD to
identify faults at the granularity of the array structure.
Given this assumption, an additional 42% of the detected
RAT faults can be identified (Correct Type stack) down
to the RAT structure.

Overall, by collecting and analyzing the instruction
trace from the faulty execution, TBFD correctly narrows
96% of the detected faults down to a single array entry
(Correct), 2 and 3 faulty units/array entries (Among 2
and Among 3), and the array structure (Correct Type).

These results show that TBFD is effective in diag-
nosing permanent faults at the microarchitecture-level,
without (1) assuming specialized architecture (such as
DIVA [1]), (2) changing the instruction scheduler within
the processor, and (3) disabling suspected faulty units
and retrying as in prior work [3]. This approach also
further enhances the diagnosis capability of the SWAT
system.

III. T HE SWAT-I INVARIANT-BASED DETECTION

FRAMEWORK

In our previous implementation of the detection mod-
ule in the SWAT system, we used simple software-
observable events to infer the presence of an underlying
hardware fault [6]. Although these detection mechanisms
incur negligible hardware overheads for detection and
result in highly competent coverage, more sophisticated
detection mechanisms must be used to further improve
this coverage and latency by reducing the faults that es-
cape detection in the simulated 10M instruction window
and eventually reduce SDC events. For this purpose, we
designed the SWAT-I detection framework, an enhance-
ment to the proposed SWAT detection mechanisms [6]
that explores the use of program invariants.



Program Invariants are program properties involving
program values/attributes at some particular program
point that are expected to hold on all possible inputs, i.e.,
they are sound invariants. Likely Program Invariants are
program properties involving program values that hold
on many executions on different inputs and are expected
or likely to hold on other inputs. Extraction of likely
program invariants is easier than extraction of sound
invariants, as we do not need costly static analysis meth-
ods to prove program properties. The extraction may be
done either online or offline. With compiler support,
invariants can be extracted offline, and transparently,
during development/testing phases.

Invariants are broadly classified into three broad cat-
egories: Value-based, Control-flow-based and PC-based
invariants. In the current SWAT-I system, we only use
range-based invariants (a particular type of value-based
invariant), which specify a range with constant lower and
upper bounds for specific program values. For example,
a sample range invariant on a program variablex will
be of the form [MIN, MAX], where MIN and MAX
are constants inferred from offline training such that
MIN ≤ x ≤ MAX is true for all the training runs.
As a first step, we decided to use range-based invariants,
as they can be easily and efficiently generated. They are
also much easier to enforce within checking code and
cause many fewer false positives compared to most other
types of invariants.

Since we propose to use likely program invariants to
detect permanent faults, one limitation is that some of
these invariants may befalse positives. An invariant is
called a false positive for some particular input, if it does
not hold true for that input. To handle the false positives
with minimal overhead, we need an efficient method for
detecting them online, unlike transient hardware faults
where relatively low-cost techniques such as pipeline
flush can deal with false positives [8]. In SWAT-I, we
leverage the rollback/replay support in the diagnosis
framework and detect false positives by rolling back and
replaying the execution on the fault-free core when an
invariant violation is detected. We limit the overhead
caused by these rollbacks by limiting each invariant to
cause at most one rollback and replay. If the rollback
and replay determines a false positive, we disable this
invariant for future executions.

A. Generating Invariants and Invariant Checking Code

Our SWAT-I framework has two distinct components:
invariant generation and invariant insertion. Both of these
use the LLVM compiler infrastructure [4].

For the invariant generation phase, we use compile-
time instrumentation to monitor program values online.
In this work, we monitor only the store values of all
integer types (both signed and unsigned) of size 2, 4,
and 8 bytes as well as floating point types, to keep the

overhead low. For the invariant insertion phase, we insert
calls to appropriate invariant checking code through
another compile-time instrumentation pass and generate
native code for SPARC-based Solaris system using the
Sun cc compiler.

B. Effectiveness of Invariants for Detection

The simulation infrastructure used to evaluate invari-
ants is identical to that used for evaluating the diagnosis
framework. We evaluated our invariant-based approach
in conjunction with the four low-cost detection mech-
anisms (fatal traps in application, fatal traps in OS,
application aborts and high-OS activity) built into the
base SWAT system [6] using five different metrics. For
the experiments, we used five SPEC benchmarks: four
SpecINT benchmarks (gzip, bzip2, mcf, parser) and one
SpecFP benchmark (art). Currently, we use 12 train-
ing inputs collected from external sources or generated
through a script (includingtest and train inputs) for
the invariant generation phase for all applications. We
inject 5600 permanent faults into 7 microarchitectural
structures of the simulated processor.

For the evaluation of the effectiveness of invariant-
based approach,ref input was used to compute five
different metrics:Coverage, Latency, False positives,
SDCs and Overhead. We used two configurations of
the timing simulator for the experiments:12-input that
enforces invariants andbaseline that does not. We in-
strument the application with invariants checking code
for both configurations, but disable the enforcement of
invariants in the simulator for the baseline case. This step
is necessary to minimize the differences in the binaries
and obtain a valid coverage comparison between the
two cases because the behavior of faults depends on
both the static code layout and the dynamic instruction
sequence. We also kept the invariant checks for the
completion runs (needed to compute SDCs) of the 12-
input case but removed the false positive invariants as
we did not have false positive detection support in the
functional simulator used for the completion runs. When
invariant violations occur during the completion runs, the
applications exit.

1) Coverage: We defineCoverage as the total num-
ber of detections as a percentage of total non-masked
faults (i.e. total number of fault injections excluding
those cases which are masked architecturally or at the
application level).

For each fault injection, we run the full timing simu-
lation for 10 million instructions. Figure 2 partitions all
the fault injections into eight categories based upon the
detection method which detects the fault within the 10M
instruction window for both configurations:12-input and
baseline. The seven categories are as follows.Arch-Mask
represents the set of injections that were architecturally
masked.Appl-Mask represents the set of faults which
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Fig. 2. Effectiveness of different symptoms to detect
faults in various microarchitecture structures. Software-
level invariants improve the coverage of SWAT detection
from 96% to 97%.

are masked at the application level. The topmost stack
shows the set of non-masked fault injections that remain
undetected after the simulated 10M instruction window
(we call this categoryUnknown). The other partitions
— INV, High-OS, App-Abort, Fatal-Trap-OS, andFatal-
Trap-App — represent detections by the corresponding
techniques [6], whereINV represents detections through
the invariant method. The faults not detected are catego-
rized under theUnknown category. The number above
each bar shows the total coverage for each version.

Three points are apparent from this graph. First, the
invariant detection detects nearly 10% of faults. Sec-
ond, the invariant detection detects some faults that the
baseline techniques missed, increasing the total coverage
from 96% to 97%. Third, the invariant detection detects
some faults that would have been caught by other tech-
niques (about 8% of total faults). Overall, we see a23%
reduction of unknown cases from 189 in the baseline
version to 145 in the 12-input version.

2) Latency: The detectionLatency is the total number
of instructions retired from the first architecture state
corruption (of either OS or application) until the fault is
detected by one of the above techniques. For the latency
experiments, we used two different configurations of the
simulator, as in the coverage experiments.

The total number of detections with latency< 100K,
as a percentage of the total number of non-masked faults,
increases from 79% to 81%. Since hardware checkpoint-
ing can handle recovery at this detection latency [10],
using invariants increases the number of faults amenable
to hardware recovery, making recovery simpler. Faults
detected at a latency larger than 100K instructions will
require software checkpointing schemes.

3) False Positives: We defineFalse positive rate as
the fraction of all the static invariants that do not hold
true for some particular input. We used all 12 training
inputs for generating invariants. To evaluate the false
positive rate, we used theref input. With 12 inputs, we

found the false positive rate to be less than 5% for all the
applications and 0% for three of the applications. As the
false positive rate was sufficiently low for our purpose,
we did not need to use more inputs. Quite surprisingly,
after just two inputs, nearly 50% of the invariants are
true positives. This low rate of false positives from many
inputs motivates the use of likely invariants for detecting
permanent faults.

4) Silent Data Corruptions (SDCs): In order to de-
termine the SDC events among theunknown cases after
10M instructions of detailed timing simulation with fault
injection, we ran the application to completion using a
functional simulator. If the application failed to terminate
within five hours of simulation, then we declared the
result an application or OS hang. We simulate both12-
input andbaseline versions to completion.

Overall, the invariants are able to reduce the SDC
events by almost50% from 45 events to23 events. We
consider the reduction in the SDC events as the most
important contribution of the invariants. Though some
SDC events remain, we believe that the use of more
sophisticated invariants can make the number of SDC
events negligible.

5) Overhead: For evaluating the overhead of the
invariant checking code, we used two versions of the
application code - one with invariants checking code
and the original code without any invariants check. We
kept all the invariant checks including false positives
for evaluation of overhead. We first evaluated the over-
head with a 1GHz Sun UltraSPARC-T1 processor. The
average overhead measured as the geometric mean of
overhead of all benchmarks is around 14%. The higher
than expected overhead is most likely due to the simple
(1-wide, 6-stage pipeline) architecture, which is unable
to hide the latency of extra instructions and cache misses.
To verify this, we ran the same overhead experiments on
the x86 architecture, a dual processor 1755 MHz AMD
AthlonTMMP 2100+ machine. The average overhead
(geometric mean) is only 5%, which makes this initial
approach promising.

IV. CONCLUSIONS

With ever increasing hardware overheads to meet
required reliability targets, systems like SWAT that de-
tect hardware failures by tracking anomalous software
behavior become increasingly attractive. In addition to
effective low-cost detection, accurate diagnosis to nar-
row down the faulty hardware component is of prime
importance to initiate repair/reconfiguration of the faulty
hardware.

This paper presented two important components of the
SWAT system: (1) a microarchitecture-level diagnosis
framework, called TBFD, that performs fault diagnosis
by analyzing the faulty execution trace with the help
of a fault-free core and (2) a detection framework,



called SWAT-I, that uses compiler-inserted invariants to
improve detection coverage and latency with acceptable
overheads. These components are essential for the SWAT
system to ensure continuous and reliable operations. In
addition to improving the ability of these components to
detect and diagnose faults, we are also working on other
components of SWAT and working towards the goal of
providing a low-cost full-system reliability solution for
future hardware.
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