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Abstract

This paper concerns the validity of a widely used method for
estimating the architecture-level mean time to failure (MTTF)
due to soft errors. The method first calculates the failure rate
for an architecture-level component as the product of its raw
error rate and an architecture vulnerability factor (AVF). Next,
the method calculates the system failure rate as the sum of the
failure rates (SOFR) of all components, and the system MTTF
as the reciprocal of this failure rate. Both steps make signifi-
cant assumptions. We investigate the validity of the AVF+SOFR
method across a large design space, using both mathemati-
cal and experimental techniques with real program traces from
SPEC 2000 benchmarks and synthesized traces to simulate
longer real-world workloads. We show that AVF+SOFR is valid
for most of the realistic cases under current raw error rates.
However, for some realistic combinations of large systems,
long-running workloads with large phases, and/or large raw
error rates, the MTTF calculated using AVF+SOFR shows sig-
nificant discrepancies from that using first principles. We also
show that SoftArch, a previously proposed alternative method
that does not make the AVF+SOFR assumptions, does not ex-
hibit the above discrepancies.

1 Introduction

Radiation induced soft errors represent a major challenge to
exploiting the benefits from continued CMOS scaling. Soft er-
rors or single event upsets are transient errors caused by high
energy particle strikes such as neutrons from cosmic rays and
alpha particles from the IC packaging materials. These errors
can be catastrophic to program execution by flipping bits stored
in storage cells or changing the values being computed by logic
elements. While there is still a lack of consensus on the exact
soft error rates (SER) of specific circuits, it is clear that the SER
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per chip is growing substantially due to the increasing number
of devices on a chip [3, 5, 9, 11].

If a particle strike causes a bit to flip or a piece of logic to
generate a wrong result, we call the bit flip or the wrong result
a raw soft error. Fortunately, not all raw soft errors cause the
program to fail. For example, a soft error in a functional unit
that is not currently processing an instruction or in an SRAM
cell that is not storing useful data will not harm the execution.
Such an error is said to be masked. Research has shown that
there is a large masking effect at the architecture (and micro-
architecture) levels [2, 4, 6, 8, 13, 14]; e.g., Wang et al. [13]
report more than 85% masking.

This paper concerns the impact of architectural masking on
the methodology to compute the widely used metric of mean
time to failure (MTTF) for soft errors for modern processors.

A widely used methodology to compute MTTF uses two
simple steps [8], illustrated in Figure 1: (1) The AVF step
calculates the failure rate of each individual processor compo-
nent (e.g., ALU, register file, issue queue) as the product of its
raw failure rate and a derating factor that accounts for masking.
Mukherjee et al. formalized the notion of a derating factor as the
architectural vulnerability factor (AVF) [8] and showed how to
calculate it for various architectural components [1, 8]. (2) The
SOFR step calculates the failure rate of the entire processor (or
any system) as the Sum Of the Failure Rates (SOFR) of the in-
dividual components of the processor or system (as calculated
in the AVF step). It calculates the MTTF of the processor (or
system) as the reciprocal of its failure rate.

Figure 1. The AVF and SOFR steps for MTTF.

Both the AVF and SOFR steps implicitly make certain as-
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sumptions about the statistical properties of the underlying er-
ror process. While these assumptions, described below, may
hold for the raw error process, it is unclear whether they hold
for the architecturally masked process. The goal of this paper
is to examine the validity of these assumptions underlying the
mathematical basis of the AVF and SOFR steps, and the impli-
cations of these assumptions for evaluating soft error MTTF for
real systems.
AVF+SOFR assumptions.

A key assumption behind the AVF step is that the probabil-
ity of failure due to a soft error in a given component is uniform
across a program’s execution. This allows a single AVF value
to be used to derate the raw error rate of a component. The
uniformity assumption is reasonable for raw error events since
the probability of a high energy particle strike is no different
at different points in the program’s execution for most realis-
tic scenarios. However, it is unclear that the assumption holds
after incorporating architectural masking. Similarly, a well-
documented assumption for the SOFR step is that the time to
failure for a given component follows an exponential distribu-
tion. Again, the assumption is reasonable and widely accepted
for raw error events, but it is unclear that it holds for failures
after architectural masking.

Thus, both the AVF and SOFR steps make assumptions
about the error process that may be considered questionable,
once architectural masking effects are taken into account. The
question we address is: Under what conditions (if any) does
the violation of the above AVF+SOFR assumptions introduce
significant errors in the calculation of the MTTF?
Contributions of this work.

We answer the above question through both mathematical
and experimental analysis. Our rigorous mathematical methods
identify the assumptions of the AVF+SOFR method, and using
some synthesized workloads, analyze the value ranges of vari-
ous parameters for which the AVF+SOFR assumptions do or do
not hold. To validate the conclusions on real world workloads
and quantify the relative error of the AVF+SOFR method, we
design simulation-based experiments to explore a wide design
space.

We find that the impact of the above assumptions on the
MTTF calculation depends on three parameters related to the
environment, system, and the workload respectively: (1) the
raw error rate of the individual components, (2) the number of
components in the system on which SOFR is applied, and (3)
the length of the full execution or the longest repeated phase of
the workload. Specifically, our evaluations show the following.

First, for systems where the individual components have
small raw error rates, the total number of components is small,
and where the workload consists of repeated executions of a
short program, the AVF+SOFR assumptions introduce negligi-
ble error. To our knowledge, previously published work using
the AVF+SOFR methodology considers systems and workloads
that obey the above constraints. This result is by itself signifi-
cant since it, for the first time, validates the mathematical basis
for using the AVF+SOFR methodology.

Second, our results show that the AVF+SOFR method can
result in large discrepancies in MTTF (up to 100%) for large
raw error rates of individual components (e.g., as would be
the case in space or in accelerated tests or with components
consisting of many millions of bits) and/or systems that have
many components (e.g., large clusters of thousands of proces-
sors) and/or long-running workloads with different utilization
characteristics over large time windows (e.g., server workloads
that run at high utilization in the day but low utilization in
the night). This problematic part of the design space is cer-
tainly much smaller and less common than the space over which
AVF+SOFR is valid; however, it is not negligible and repre-
sents several realistic systems. Our results give a note of caution
against blind use of the AVF+SOFR method for such systems.

Finally, given the limitations of AVF+SOFR identified here,
we briefly explore alternative methods for soft error analysis
with architectural masking. Traditionally, fault injection in low-
level (RTL) simulators has been used (e.g., [2, 4, 13]). This
technique does not make the AVF+SOFR assumptions, but re-
quires running numerous experiments that make it impractically
slow for architecture-level work (which usually requires sim-
ulating long workloads). A more recent methodology called
SoftArch [6] uses a probabilistic model based on first princi-
ples coupled with architecture-level simulation. SoftArch does
not make the AVF+SOFR assumptions. We show here that
SoftArch does not exhibit the MTTF discrepancies shown by
AVF+SOFR. These experiments are not meant as a complete
validation of SoftArch or a full comparison between SoftArch
and AVF+SOFR. A fair comparison would require applying
both methods to all processor components and using all the ad-
vanced optimizations of AVF+SOFR which is beyond the scope
of this work. Rather, these experiments point to future work to
determine the best combination of methodologies that will pro-
vide the best MTTF estimates across all relevant scenarios.

2 Background

2.1 Failure Rate, MTTF, and FIT Rate

Three common terms are often used to discuss system relia-
bility: failure rate, mean time to failure (MTTF), and failures in
time (FIT) [12].

The failure rate at time t is the conditional probability that
the component will fail in the time interval [t, t+dt], given that
it has not failed until time t. When the distribution of the time
to failure is exponential, the failure rate is a constant and does
not vary with time. We use λ to denote this constant failure rate.

The mean time to failure (MTTF) of a component is simply
the expected (average) time to failure. For components with
exponentially distributed time to failure, MTTF is simply the
reciprocal of the constant failure rate (1/λ).

The metric of failures in time or FITs is defined as the
number of failures per one billion hours of operation. Of-
ten, FITs are referred to as the failure rate and the equation
FIT = 109

MTTF
is used. However, this assumes that the fail-

ure rate is constant in time, and equivalently, the time to failure
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follows an exponential distribution.

2.2 The AVF Step and its Assumptions

In a given cycle, only a fraction of the bits in a processor
storage component and only some of the logic components will
affect the final program output. A raw error event that does not
affect these critical bits or logic components has no adverse ef-
fect on the program outcome. Mukherjee et al. used the term ar-
chitecture vulnerability factor (AVF) to express the probability
that a visible error (failure) will occur, given a raw error event
in a component [8]. The AVF for a hardware component can
be calculated as the percentage of time the component contains
Architecturally Correct Execution (ACE) bits (i.e., the bits that
affect the final program output). Thus, for a storage cell, the
AVF is the percentage of cycles that this cell contains ACE bits.
For a logic structure, the AVF is the percentage of cycles that it
processes ACE bits or instructions.

Mukherjee et al. calculate the FIT rate of a processor com-
ponent as the product of the component’s AVF and its raw FIT
rate (i.e., the FIT rate of the component if every bit were ACE).
Denoting the raw FIT rate of the component as λc (also called
the raw soft error rate or raw SER) and its AVF as AV Fc, they
derive the MTTF of the component as:

MTTFc =
1

λc · AV Fc

(1)

We show in Section 3.1 that an assumption underlying the
above equation is that the time to failure for a program is uni-
formly distributed over the program. We explore the cases
where this assumption is and is not true to assess the validity
of the AVF step.

2.3 The SOFR Step and its Assumptions

Sum of failure rates (SOFR) is an industry standard model
for combining failure rates of individual processor (or system)
components to give the failure rate and MTTF of the entire pro-
cessor (or system). Let the system contain k components with
failure rate of component i as FailureRatei (which is assumed
to be the reciprocal of the MTTF of component i or 1/MTTFi).
The SOFR model calculates the failure rate (FailureRatesys)
and the MTTF (MTTFsys) of the system as:

FailureRatesys =

k
∑

i=1

FailureRatei =

k
∑

i=1

1

MTTFi

(2)

MTTFsys =
1

FailureRatesys

(3)

The SOFR model makes two major assumptions [12]. First,
it assumes that each component has a constant failure rate (i.e.,
exponentially distributed time to failure) and the failures for dif-
ferent components are independent of each other. Section 3.2
shows that architectural masking may violate this assumption
in some cases. Second, the SOFR model assumes a series fail-
ure system; i.e., the first instance of a component failure causes
the entire processor to fail. This assumption holds if there is

no redundancy in the system. Since our focus is on the impact
of program-dependent architectural masking on the statistical
properties of the failure process, we continue to make this as-
sumption as well and focus only on the first assumption.

3 Examining the Limits: An Analytical View

This section uses mathematical analysis to understand the
limits of the basic assumptions underlying the AVF+SOFR
methodology for estimating MTTF for soft errors. Later sec-
tions back these results with detailed Monte-Carlo simulations
for actual workloads.

Our analysis makes two assumptions that are also made by
the AVF+SOFR methodology.

(1) Inter-arrival times for raw errors in a component are in-
dependent and exponentially distributed with density function
λe−λt. It is reasonable to assume that the time to the next
high energy particle strike is independent of the previous strike
and is exponentially distributed (the process is memoryless). In
practice, there is some device- and circuit-level masking, which
could possibly render the raw error process that is subject to
architectural masking as non-exponential. In our experiments,
however, we do not have this low-level masking information
available; we therefore assume the best case for the AVF+SOFR
methodology – that the inter-arrival time for raw errors before
any architectural masking is an exponential process with den-
sity function λe−λt. We refer to λ as the raw error rate.

(2) The workload runs in an infinite loop with similar itera-
tions of length L. This work considers the effect of real appli-
cation workloads. For a workload that runs for a finite time,
there is a possibility that no failure occurs during its execution.
For a meaningful interpretation of MTTF for a system running
such a workload, we assume that the workload runs repeatedly
in a loop until the first failure. All iterations of this loop are
identical and each represents a single invocation of the origi-
nal workload. We refer to the size of this loop iteration as L.
Workloads that are naturally infinite also run in a loop. We as-
sume that such a workload also consists of identical iterations,
each of size L. This assumption is trivially satisfied since L can
potentially be infinite. (All the prior work on AVF+SOFR has
been in the context of finite workloads.)

We additionally assume that program failure occurs if a raw
error is not masked. Although the time to failure and the time
to the next raw error event are continuous random variables, for
convenience, we often consider time in units of processor cycles
below (for architectural masking, for a given cycle, all raw error
events during . any part of the cycle are either masked or not
masked).

3.1 The AVF Step: MTTF for an Isolated
Functional or Storage Unit

The AVF step computes the MTTF of a single component
of the processor using equation 1. We examine the validity of
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Figure 2. Sequence of raw error events. ti is the
time between two raw error events and is expo-
nentially distributed. X is a random variable rep-
resenting the time to the first raw error event that
is not masked and leads to program failure. The
figure shows a case where X = t1 + t2 + t3.

this step by deriving the MTTF of a given component from first
principles.

Figure 2 illustrates a sequence of raw error events with inter-
arrival times of t1, t2, .., tn, ... Each of these times is an instance
of a random variable, say T, with exponential density function
λe−λt. Each raw error has some probability of being masked.
Failure occurs at the first raw error that is not masked.

Let X be the random variable that denotes the time to failure.
Then X = t1+t2+..+tk if the first k−1 raw errors are masked
and the kth raw error is not masked. Thus, X =

∑K

i=1 ti, where
K is a random variable such that K = k denotes the event that
the first k−1 raw errors are masked and the kth raw error is not
masked.

Now the MTTF of the component is simply the expected
value of X , E(X). Using a standard result for the expectation
of a sum of random variables [10], it follows that: MTTF =
E(X) = E(K)E(T ). We know that E(T ) = 1

λ
(this would be

the MTTF if there were no architectural masking and every raw
error resulted in failure). Thus,

MTTF = E(K)
1

λ
(4)

Comparing with equation 1, to validate the AVF step, we
would need to show that E(K) = 1

AV F
for all cases. However,

E(K) depends on the workload characteristics and the raw er-
ror rate λ, and, in general, cannot be analytically derived. Nev-
ertheless, with certain assumptions, we show that we can derive
E(K) to be 1/AVF, validating the AVF step for cases where the
assumptions hold. We then show counter-examples where these
assumptions do not hold, and the MTTF derived from first prin-
ciples is significantly different from the MTTF derived from the
AVF equation 1.

3.1.1 AVF is valid when L · λ → 0

We first show that if the product of the raw error rate and the
program loop size is very small, then E(K) = 1

AV F
(and so

the AVF equation holds). Below we show that in this case, any
of the L cycles in the program loop are equally vulnerable to
a raw error event occurrence. From this, it will follow that the
expected value of K (i.e., the count of the first raw error event
that is not masked) is the same as 1/AVF.

Let T be the cycle count at which the next raw error event
occurs. Then, without loss of generality, T mod L is the cycle

count for this event relative to the start of the loop iteration.
Theorem 1 in Appendix A shows that if L · λ → 0, the random
variable T mod L follows a uniform distribution over [0, L].
In other words, for very small L · λ, any of the L cycles of
program execution are equally vulnerable to a raw error event
occurrence.

Thus, the probability that the next raw error event occurs at
cycle i (relative to the start of the loop iteration) is 1/L. Let pi

be the probability that a raw error event that occurs at cycle i
(relative to the start of the loop iteration) is masked (pi is 0 or 1
for a given program execution). Therefore, the probability that
the next raw error event is masked is

∑L
i=1

1
L
· pi. This value is

a constant that we denote by M .
Now to calculate E(K), we first calculate P{K=k}. This

is the probability that the first k − 1 raw error events are
masked and the kth raw error event is not masked. Since
raw error events are independent, it follows that P{K=k} =
Mk−1(1 − M). That is, K is a geometrically distributed ran-
dom variable and so E(K) = 1/(1 − M). Thus, we just need
to show that 1 − M is the same as the AVF.

(1−M) can be expressed as
∑L

i=1
1−pi

L
. 1− pi is the prob-

ability that a raw error event at cycle i will not be masked and
will cause failure. 1−M is therefore the average of this proba-
bility over the entire program length. This is exactly the defini-
tion of AVF. Thus, we have shown that the AVF equation 1 is
valid when L · λ → 0.

3.1.2 AVF is not valid for some values of λ and L

In this section, we construct a simple (synthetic) program that
serves as a counter-example to show that the assumptions be-
hind the AVF step do not always hold.

Consider a program with an infinite loop with iteration size
L, such that the considered system component is active for the
first A cycles and is idle for the remaining A + 1 to L cycles
of the iteration. As before, let X be the random variable de-
noting the time to failure for the component running the above
program. Let T be the random variable denoting the time to the
first raw error event. If T is in cycles [0, A], [L, L + A], ..., then
the component is active and the time to failure is simply the
value of T . Otherwise, the raw error occurs in an idle period,
say, of iteration k, and it is masked. Further, any raw errors until
the next active period (i.e., until cycle kL) will also be masked.

As seen at cycle kL, the distribution for the time to the next
raw error event (starting from kL) is the same as that starting
from time 0. This is due to the memoryless property of the ex-
ponential distribution.1 Further, as seen from kL, the masking
process is also the same as at time 0, since all iterations are
identical. Thus, given that there is no failure until cycle kL, the
expected time to failure from cycle kL is again E(X).

It follows that given that the first raw error event occurs in
the idle period of the kth iteration, the expected time to failure

1Recall that for an exponential distribution, P (T < t + 4t|T > t) =
(e−λt

−e
−λ(t+4t))

e−λt
= 1 − e−λ4t. That is, given that a raw error has not

occurred at time t, the probability that the error will occur within some time 4t

after t is the same as that of it occurring within 4t after time 0.
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Figure 3. The relative error in the AVF step ap-
plied to a large 100MB cache running a loop with
iteration size of L days with each iteration busy
for L/2 days and idle for the rest. Lambda is the
raw error rate of the entire cache (the smallest
value represents 0.001 FIT per bit).

is kL + E(X). Now using a standard result for conditional
expectation [10], we get the following:

E(X) = E(E(X |T )) =
∫ ∞
0

EX|T (t) · fT (t)dt

=
∫ A

0 λe−λttdt +
∫ L

A
λe−λt(L + E(X))dt+

∫ L+A

L
λe−λttdt +

∫ 2L

L+A
λe−λt(2L + E(X))dt...

In Appendix A, we show the above equation has the follow-
ing closed form solution, giving the MTTF of the component
from first principles:

E(X) = 1−e−λL

1−e−λA · ( Le−λL

(1−e−λL)2
− Le−λAe−λL

(1−e−λL)2
− Ae−λA

(1−e−λL)
+

1
λ

(1−e−λA)
(1−e−λL)

+ L e−λA−e−λL

(1−e−λL)2
)

The AVF for our program is A
L

; therefore, the MTTF accord-
ing to the AVF method is:

EAV F (X) = L
A
· 1

λ

Now we can calculate the relative difference between the
MTTF from first principles and from the AVF method as:

|EAV F (X) − E(X)|
E(X)

When λL is very small, we can show that the two MTTFs
converge to the same value. For other cases, there can be a
significant difference. Figure 3 shows the difference between
the two MTTF values for a 100MB cache for different values
of L and λ. We vary L from 1 to 16 days, setting A as L/2 in
each case. We start with λ at 10−8 errors/year per bit (0.001
FIT/bit) [6] which translates to 10 errors/year for the full cache.
We additionally show results for λ of 3 and 5 times this value
to represent changes in technology and altitude. Although the
errors are small for the baseline (smallest) value of λ, they can
be significant for higher values. Later sections perform a more
systematic experimental exploration of the full parameter space.

3.2 The SOFR Step: MTTF for Multiple
Functional and/or Storage Units

The SOFR step derives the MTTF of a system using the
MTTFs of its individual components, as shown in equations 2
and 3. As discussed in Section 2.3, it assumes that for each
component, the time to failure follows an exponential distribu-
tion with a constant failure rate (in conjunction with the AVF
step, this rate is the product of the component’s raw error rate
and AVF). We next explore the validity of this assumption,
given that each component sees significant architectural mask-
ing.

Again, the validity of the assumption depends on the values
of the component’s raw error rate λ and the program loop size
L. Sections 3.2.1 and 3.2.2 respectively discuss cases for which
the assumption is and is not valid.

3.2.1 SOFR is valid when L · λ → 0

We show that if L · λ → 0 for a component, then the time to
failure, X , for that component is exponentially distributed with
rate parameter λ · AV F .

Section 3.1.1 showed that in this case, X =
∑K

i=1 ti, where
K follows a geometric distribution with mean 1/AV F and the
ti’s are exponentially distributed with rate λ. We can calculate
the density function of X as follows:

fX(x) = lim
4x→0

P (x<X<x+4x)
4x

= lim
4x→0

∑∞
i=1

P (x<X<x+4x|K=i)P (K=i)
4x

where P (x < X < x + 4x|K = k) = P (x <
∑k

j=1 tj <
x + 4x).

∑k

j=1 tj is the sum of several independent exponentially dis-
tributed random variables with rate λ. Such a sum follows the
Erlang-n distribution which has the probability density function
of λ(λx)n−1

(n−1)! e−λx [12]. Thus,

fX(x) =
∑∞

i=1 ((1 − AV F )i−1(AV F )λ(λx)i−1

(i−1)! e−λx

= (AV F )λe−λx
∑∞

i=1
((1−AV F )λx)i−1

(i−1)!

= λ(AV F )e−λ(AV F )x

This is an exponential distribution with rate λ · AV F . This
validates the assumption for the SOFR step for the case when
λ · L is small.

3.2.2 The general case for λ and L values

In general, it is difficult to analytically characterize the time
to failure distribution function for real (or even synthetic) pro-
grams after architectural masking. In this section, to demon-
strate a mathematical basis, we choose a distribution that is
“close” to exponential (and mathematically tractable) and de-
termine the validity of using SOFR on that distribution.

We choose the following probability density function for the
time to failure (after architectural masking) for a component.
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Figure 4. The relative error introduced by the
SOFR step for a synthesized example.

fX(x) =

{

2√
π
e−x2

x ∈ [0,∞]

0 elsewhere

The cumulative distribution function (CDF) of X is
FX(x) = 2√

π

∫ x

0 e−t2dt, x ∈ [0,∞].
It follows that the MTTF of the component is E(X) =

2√
π

∫ ∞
0 xe−x2

dx = 1√
π

.
Assume a system with N such identical components where

Xi denotes the time to failure for component i. Since we as-
sume series failure, it follows that the time to failure of the sys-
tem, Y , is min(X1, X2, ..., XN).

The CDF of Y is FY (y) = 1 − (1 − FX(y))N .
The PDF is fY (y) = dFY (y)

dy
= N ∗(1−FX(y))N−1∗fX(y)

The MTTF of the system is E(Y ) =
∫ ∞
0 fY (y)ydy

The above integration cannot be calculated analytically. We
solve it numerically using a software package to derive the real
MTTF for N from 2 to 32.

The SOFR step calculates the MTTF of the system using
Equations 2 and 3. For the component MTTFs used in the
equations, we use the real MTTF derived above ( 1√

π
):

MTTFsofr =
1

∑N
i=1

√
π

=
1

N
√

π

Figure 4 shows the error in MTTFsofr relative to the MTTF
derived from first principles. We see that the error grows from
15% for a system with two components to about 32% for a sys-
tem with 32 components.

3.3 Summary of implications

Our mathematical analysis so far provides intuition for when
the AVF+SOFR method works. The AVF step averages the “uti-
lization” of a component over the whole program. It therefore
makes the implicit assumption that every point of the program
will have uniform probability of being hit by a soft error. The
SOFR step assumes that the time to failure for each individual
component follows the exponential distribution. Our analysis

Base Processor Parameters
Processor frequency 2.0 GHz
Fetch/finish rate 8 per cycle
Retirement rate 1 dispatch-group (=5, max) per cycle
Functional units 2 integer, 2 FP, 2 load-store, 1 branch
Integer FU latencies 1/4/35 add/multiply/divide
FP FU latencies 5 default, 28 divide (pipelined)
Reorder buffer size 150 entries
Register file size 256 entries (80 integer, 72 FP, and various control)
Memory queue size 32 entries
iTLB 128 entries
dTLB 128 entries

Base Memory Hierarchy Parameters
L1 Dcache 32KB, 2-way, 128-byte line
L1 Icache 64KB, 1-way, 128-byte line
L2 (Unified) 1MB, 4-way, 128-byte line

Base Contentionless Memory Latencies
L1 Latency 1 cycles
L2 Latency 10 cycles
Main memory Latency 77 cycles

Table 1. Base POWER4-like processor configu-
ration.

shows that the above assumptions are valid when λ · L → 0.
However, in the general case, these assumptions may not hold.
We show mathematically tractable synthetic examples to illus-
trate a few such cases. The next sections provide a more system-
atic experimental exploration of the parameter space to assess
the extent of the errors due to these assumptions.

4 Experimental Methodology

This section describes the methodology for our experimen-
tal analysis of the assumptions of the AVF and SOFR steps. For
each step, we first evaluate the assumptions for single processor
systems common today running SPEC CPU2000 applications,
and using detailed simulation to determine architectural mask-
ing. We then take a broader view, and evaluate the assumptions
for a large design space, including large clusters of processors
and a broader range of (synthesized) workloads, but with less
detailed simulation of architectural masking.

For both cases, we first generate a masking trace that in-
dicates, for each system component, whether a raw error in
a given cycle would be masked for the evaluated system and
workload. To calculate the real MTTF of the system (without
the AVF+SOFR assumptions), we use the Monte Carlo tech-
nique to model the raw error process, apply the masking trace
to the process, and determine the MTTF of the modeled system.

4.1 Today’s Uniprocessors Running SPEC

To determine the impact of architectural masking in a mod-
ern processor, we study an out-of-order 8-way superscalar pro-
cessor (Table 1) running programs from the SPEC CPU2000
suite (9 integer and 12 floating point benchmarks). To gener-
ate the masking trace, we use Turandot [7], a detailed trace-
driven microarchitecture-level timing simulator. We simulate
an instruction trace of 100 million instructions for each SPEC
benchmark running on the above processor configuration.
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We choose four processor components to study the impact of
architecture masking: the integer, floating point, and instruction
decode units, and the 256 entry register file, with raw error rates
of 2.3∗10−6, 4.5∗10−6, 3.3∗10−6, and 1.0∗10−4 errors/year
respectively (10−8 errors/year = 0.001 FIT). Li et al. [6] derived
these error rates using published device error rates for current
technology [11] and estimates of the number of devices of dif-
ferent types in different components [6].

For the integer, floating point, and instruction decode units,
we assume that a raw error is masked in a cycle if the unit is not
processing an instruction in that cycle (i.e., the unit is not busy).
If the unit is busy processing an instruction, then for simplicity,
we conservatively assume that the error is not masked and will
lead to failure. For the register file, we assume that the raw error
strikes happen on each register with equal probability and error
in a given register is masked if the register contains a value that
will never be read in the future. If the register’s value will be
read, we conservatively assume the error is not masked and will
lead to failure. Our assumptions of when an error is not masked
are conservative since it is possible that an error in an active unit
or in a register value that will be read may not affect the eventual
result of the program. We did not perform a more sophisticated
analysis to more precisely determine when an error is masked
because such an analysis is orthogonal to the point of this paper
and beyond the scope of this work.

Our detailed Turandot simulation produces a masking trace
for each simulated SPEC application. The trace contains infor-
mation on whether a raw error in a given cycle in one of the four
considered processor components will or will not be masked.

4.2 Broader Design Space Exploration

We also explore a broad design space for the AVF and SOFR
steps. We consider a variety of systems consisting of vari-
ous numbers of components, operating in various environments,
with different raw error rates, and running different workloads.
We use the term system to include a single processor (either a
full processor or only a part of it) or a large cluster of thousands
of processors. A component of a system is the smallest granu-
larity at which the analysis for architectural masking is applied.
Specifically, the AVF is calculated at the granularity of a com-
ponent; the SOFR step then aggregates the information from the
different components to give the MTTF for the entire system.
In our SOFR experiments, we use component MTTFs obtained
from the Monte Carlo method; therefore, the error reported is
only that caused by the SOFR step.

Based on our analysis in Section 3, the key parameters af-
fecting the AVF and SOFR steps are the raw error rate of the
different components of the processor (or system), the number
of components in the system (only for SOFR), and the program
loop size or workload. The following discusses the space we
explore for each of these important parameters. Table 2 sum-
marizes this space.
Component raw error rate. The component raw error rate
depends on the number of devices or elements (bits of on-chip
storage or logic elements such as gates) in the component and

Dimension Value
N 10

5
10

6
10

7
10

8
10

9

S 1 5 100 2000 5000
C 2 8 5000 50000 500000

Workload SPEC fp SPEC int day week combined

Table 2. The design space explored. N = number
of elements (e.g., bits) in a component; S = scal-
ing factor for the baseline raw error rate of an
element (depends on technology and altitude);
and C = number of components in the system
(e.g., processors in a cluster).

the raw error rate per element. We denote the number of ele-
ments in a component as N . N can be as large as 109 for large
cache structures or if we consider the entire processor as one
component in a large cluster of multiple processors. To keep
the design space exploration tractable, without loss of gener-
ality, we assume that all N elements have the same raw error
rate.

We also explore different values for the raw error rate per
element. Under current technology, the terrestrial raw error
rate per bit for on-chip storage is about 10−8 errors/year (0.001
FIT), which we refer to as the baseline raw error rate. To ac-
count for changes in the raw error rate due to technology scal-
ing and at high altitudes, we introduce a parameter S that we
use to scale the above baseline rate. We use scaling factors of
1, 5, 100, 2,000, and 5,000 in our analysis. The larger factors
correspond to systems running in airplanes flying at a high alti-
tude and for systems in outer space because of strong radiation
at those heights [15]. Test systems using accelerated conditions
are also subject to high raw error rates.

The raw error rate for a given component is determined as the
product of N , S, and the above baseline raw error rate (Table 2).
Number of components: We denote the number of compo-
nents in the system as C. We study a wide range of values for
C, ranging from 2 to 500, 000. The larger numbers represent
large cluster systems with C components (each of which may
be a full processor or a microarchitectural component within a
processor, depending on the granularity at which AVF is col-
lected).
Workload and generation of the masking traces: We eval-
uate all systems in the broad design space with the SPEC
CPU2000 benchmarks mentioned in Section 4.1. However,
these are short programs (small loop iteration size L). Many
real world workloads show large differences in behavior over
long time scales (large L) that are difficult to capture with the
SPEC benchmarks. In an attempt to simulate some of the be-
haviors of real world applications, we construct three synthetic
applications. The first (called day) is a continuous loop where
the loop iteration size is set to 24 hours. The loop is busy dur-
ing the day (half the time) and idle at night. The second (called
week) is a loop with iteration size one week. It is busy during
the five business days of the week and idle for the weekend. The
third (called combined) concatenates two SPEC benchmarks in
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a loop with iteration size of 24 hours. The first half of the it-
eration runs one benchmark and the second half runs the other
benchmark.

For a system with multiple processors, we assume all proces-
sors run the same workload. Additionally, for the synthesized
workloads, we assume that a component is a full processor;
e.g., C=2 implies a 2 processor system. We assume that each
processor masks raw errors only during the idle portion of the
workload (e.g., night time for the day workload). For the SPEC
workloads, we again assume that each component is a full pro-
cessor (running the same benchmark). For the masking trace,
we use the SPEC masking traces for three units in each proces-
sor (integer, floating point, and instruction decode) – we apply
these three traces to the corresponding units simultaneously to
determine whether there is a processor-level failure.

4.3 Monte Carlo Simulation

To calculate the real MTTF, we perform Monte Carlo simu-
lation where we do the following for each trial. For each com-
ponent in the modeled system, we generate a value from an
exponential distribution with rate specified by the modeled sys-
tem (Table 2). This value gives the arrival time of the next raw
error event for the component. We use the masking trace of the
workload to determine whether a raw error at that time would
be masked. If it is masked, we generate a new raw error event
from an independent exponential distribution for that compo-
nent and repeat. If it is not masked, we consider the component
failed. The component that is earliest to fail gives the time to
failure of the system for this trial. We run a total of 1,000,000
trials and report the average of the time to failure as the MTTF
of the modeled system/workload configuration.

5 Results

5.1 AVF and SOFR with Today’s Uniproces-
sors Running SPEC

We first evaluated the discrepancy between the Monte Carlo
MTTF and the MTTF using the AVF and SOFR steps for to-
day’s uniprocessors running SPEC (as described in Section 4.1).
We found that the MTTF from the AVF step matched the Monte
Carlo MTTF very well for each of the four processor compo-
nents and each benchmark (< 0.5% discrepancy for all cases).
Similarly, the processor MTTF calculated using the SOFR step
also matched the Monte Carlo MTTF very well.

Thus, for single processor systems with a small number of
small components running SPEC benchmarks, the AVF+SOFR
method works very well. We note that in prior work, the method
has been applied primarily in this context. These results are
consistent with our mathematical analysis. The loop size L for
the SPEC benchmarks and the component raw error rates used
here are small; therefore, from Sections 3.1.1 and 3.2.1, we ex-
pect that the AVF and SOFR assumptions would be valid.

5.2 AVF: A Broad Design Space View

For the design space described in Table 2, we computed the
component MTTF using the Monte Carlo and AVF methods as
described in Section 4. Note that since the AVF step is applica-
ble to only a single component, C = 1 for all experiments in this
section. Further, for a given workload, since only the product
of N and S matters, we report relative error in the AVF step as
a function of different values of N × S.

We found that for each SPEC benchmark, the AVF step
works well for all N and S values studied (relative error <
0.5%). However, for the longer running synthesized workloads,
we observe significant discrepancy when N × S is large (i.e.,
component raw error rate is large). Figure 5 shows the error in
the AVF MTTF relative to the Monte Carlo MTTF for repre-
sentative values of N × S for the three synthesized workloads.
In all three cases, for N × S ≥ 109, the AVF step sees signifi-
cant errors (up to 90%). This high value of N × S may occur
when the AVF step is applied to either large components (e.g., a
125MB cache with N = 109 bits), or when the component size
is moderate but the raw error rate per element (bit) is high (e.g.,
S = 1000 because of high radiation at high altitudes).

Our experiments show both positive and negative errors, de-
pending on the workload. Thus, AV F may either over- or
under-estimate MTTF in practice.

Again, the above observations match well with our theoret-
ical analysis in Section 3.1. Thus, for SPEC like benchmarks
that run for a short time, it is safe to use the AVF step to calcu-
late the MTTF of a component. However, the AVF step must be
applied carefully when using a workload with large variations
over large time scales coupled with either a large component or
a large per-element raw error rate for the component.

5.3 SOFR: A Broad Design Space View

Figures 6(a) and (b) report the error in the SOFR step rela-
tive to the Monte Carlo method for three representative SPEC
benchmarks and the three synthesized benchmarks respectively.
For each case, the error is reported for representative values of
C and N × S covered by the design space in Table 2.

Focusing on the SPEC workloads (Figure 6(a)), we see that
the SOFR step is accurate for systems with a small number of
components (C = 2 or 8) for all studied values of N ×S. When
system size grows to 5,000 components or larger, we see sig-
nificant errors, but only with very large values of N × S. For
example, for a cluster of 5,000 processors with each proces-
sor containing N = 109 bits of on-chip storage, the baseline
raw error rate would need to scale 2,000 times or more to see a
significant error. In practice, terrestrial systems will likely fall
into the part of the design space where the SOFR step does not
introduce any significant error for SPEC applications.

Focusing on the synthesized workloads (Figure 6(b)), for the
day workload, we see a significant error using the SOFR step
when N ×S ≥ 108 and C ≥ 5,000. The error increases as these
parameters increase. For example, with 12.5MB of storage for
each processor (N = 108) and baseline raw error rate (S =
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Figure 5. Error in MTTF from the AVF step relative to the Monte Carlo method for the synthesized workloads
for representative values of N × S (# bits in the component × scaling factor for baseline raw error rate).

(a) SPEC benchmarks

(b) Synthesized benchmarks

Figure 6. Error in MTTF from the SOFR step relative to the Monte Carlo method for representative values of
C (# components) and N × S (bits per component × scaling factor for baseline raw error rate) for (a) SPEC
and (b) synthesized benchmarks.

1), a 5,000 processor cluster sees an error in MTTF of 11%.
For a similar cluster of 50,000 processors, the error jumps to
50%. While large, such a cluster is not unrealistic. For the week
workload, since the loop size is larger than the day workload,
the MTTF errors are correspondingly larger. Thus, the 5,000
and 50,000 processor systems mentioned above respectively see
MTTF errors of 32% and 80% for this workload. With larger
processors (more storage bits) or larger systems, the error can
grow to 90% or more. Thus, for these workloads, the SOFR
step incurs significant errors for realistic systems.

Finally, the combined workload (with two SPEC applica-
tions) shows a relative error smaller than for the day or week
workload, but there is still a significant error for some cases.

In summary, for SPEC benchmarks under current technol-
ogy and on the ground, the SOFR step gives accurate MTTF
estimates. However, in general, for larger scale workloads, care
must be taken to examine the workload behavior, number of
system components (e.g., processors), and the raw error rate
for the components (governed by component size and per-bit or
per-element error rate) before applying SOFR.
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5.4 The SoftArch Method

SoftArch is an alternate architecture-level model to calcu-
late processor MTTF due to soft errors [6]. In conjunction with
a microarchitectural timing simulator, SoftArch keeps track of
the probability of error in each instruction or data bit that is gen-
erated or communicated by different processor structures. A bit
may be erroneous if it is struck by a high energy particle (error
generation) or if it is computed from previously erroneous bits
(error propagation). SoftArch uses simple probability theory
to track probabilities of these error generation and propagation
events, thereby keeping track of the probability of error in any
bit. As the program executes in the microarchitectural simula-
tor, SoftArch identifies which values could affect program out-
come and when (e.g., values propagated to memory on a store).
Using the error probability for such values and the time they af-
fect program output (i.e., potentially result in failure), SoftArch
is able to determine the mean time to (first) failure.

SoftArch’s probabilistic approach does not require the AVF
and SOFR assumptions; it is therefore useful to explore whether
SoftArch can be applied to the parts of the design space where
AVF+SOFR shows significant discrepancies from the Monte
Carlo method. We used SoftArch to estimate MTTF for the en-
tire design space studied here. We found that for every point in
this space, the error in MTTF computed by SoftArch relative to
the Monte Carlo MTTF is less than 1% for a single component
and less than 2% for the full system. Thus, SoftArch does not
exhibit the discrepancies shown by AVF+SOFR. These results
are not meant to provide a complete validation of SoftArch or a
complete comparison between SoftArch and AVF+SOFR (such
an analysis is outside the scope of this work). Rather, these
results suggest alternative methodologies and motivate future
work combining the best of existing methodologies for the most
accurate MTTF projections across the widest design space.

6 Conclusions

This paper examines key assumptions behind the
AVF+SOFR method for estimating the architecture-level
processor MTTF due to soft errors. We use rigorous theoretical
analysis backed by simulation-based experiments to system-
atically explore the applicability of the AVF and SOFR steps
across a wide design space. Our analysis and experiments show
that while both steps are valid under the terrestrial raw soft
error rate values of today’s technology for standard workloads
(e.g., SPEC), there are cases in the design space where the
assumptions of the AVF and SOFR steps do not hold. In par-
ticular, for long running workloads with large component-level
utilization variations over large time scales, the assumptions
are violated for systems with a large number of components
and/or with high component-level raw error rate (i.e., large
component size and/or large per-bit or per-element raw error
rate). Under these conditions, the projected MTTF of the
modeled system or chip could show large errors. In general, the
paper builds better understanding about the conditions under
which the standard AVF+SOFR method may be used to project

MTTF accurately, and alerts users to the risks of using the
model blindly in conditions where the foundational axioms of
the model break down. The paper also shows that an alternative
architecture-level method (that does not make the AVF+SOFR
assumptions) does not show the above discrepancies in MTTF,
motivating future work to determine the best combination of
methodologies to provide the best estimates for all scenarios.
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Appendix A

Theorem 1: Let T be an exponential random variable with
probability density function fT (t) = λe−λt. Let random vari-
able X = T mod L where L is a constant and L · λ → 0.
Then X follows a uniform distribution with density function
fX(x) = 1

L
for x in [0, L] .

Proof:
fX(x) = lim

4x→0
P (x < X < x + 4x)/4x

= lim
4x→0

∞
∑

i=0

P (x + i · L < T < x + i · L + 4x)/4x

=
∞
∑

i=0

fT (x + i · L)

= λe−λx
∞
∑

i=0

e−λi·L

= λe−λx

1−e−λL

Since L · λ → 0 and L ≥ 1 cycles, we know λ → 0. Thus:
lim
λ→0

fX(x) = lim
λ→0

λe−λx

1−e−λL = lim
λ→0

λ+O(λ2)
λL+O(λ2)) = 1

L

End of proof

Derivation 1: We derive a closed form solution for the follow-
ing equation in Section 3.1.2:

E(X) = E(E(X |T )) =
∫ ∞
0 EX|T (t) · fX(t)dt

=
∫ A

0
λe−λttdt +

∫ L

A
λe−λt(L + E(X))dt +

∫ L+A

L
λe−λttdt +

∫ 2L

L+A
λe−λt(2L + E(X))dt...

Simplifying this equation, we arrive at:
E(X)(1 − (e−λA − e−λL) − (e−λ(A+L) − e−λ2L)...)

=
∑∞

k=0

∫ kL+A

kL
λe−λttdt + L((e−λA − e−λL) −

2(e−λ(A+L) − e−λ2L)...)

Next, we calculate the terms in the equation:
(1 − (e−λA − e−λL) − (e−λ(A+L) − e−λ2L)...)
= 1 − (e−λA − e−λL)

∑∞
i=0 e−λL·i

= 1 − e−λA−e−λL

1−e−λL = 1−e−λA

1−e−λL

and
(e−λA − e−λL) − 2(e−λ(A+L) − e−λ2L)...

= (e−λA − e−λL
∑∞

i=0 i · e−λL·i = e−λA−e−λL

(1−e−λL)2

Now the only unknown term in the equation is
∞
∑

k=0

∫ kL+A

kL
λe−λttdt. We derive the closed form solution

for it next.
First, we know that:
∫ b

a
λe−λttdt = −

∫ b

a
e−λttd(−λt) = −

∫ b

a
tde−λt =

−te−λt|ba +
∫ b

a
e−λtdt = (ae−λa − be−λb) + 1

λ
(e−λa − e−λb)

Thus,
∞
∑

k=0

∫ kL+A

kL
λe−λttdt =

∑

kLe−λkL − (kL + A)e−λ(kL+A)+

1
λ
(e−λL − e−λ(kL+A))

We know that
∑∞

n=0 nxn = x
(1−x)2

Thus, the above equation becomes:
Le−λL

(1−e−λL)2
− Le−λAe−λL

(1−e−λL)2
− Ae−λA

(1−e−λL)
+ 1

λ

(1−e−λA)
(1−e−λL)

This is the closed form solution of the series. Putting this
solution into the above equation, it follows that:

E(X) = 1−e−λL

1−e−λA · ( Le−λL

(1−e−λL)2 − Le−λAe−λL

(1−e−λL)2 − Ae−λA

(1−e−λL) +

1
λ

(1−e−λA)
(1−e−λL)

+ L e−λA−e−λL

(1−e−λL)2
)

End of derivation.
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